src/share/vm/opto/compile.cpp

Wed, 31 Aug 2011 16:46:11 -0700

author
never
date
Wed, 31 Aug 2011 16:46:11 -0700
changeset 3099
c124e2e7463e
parent 3051
11211f7cb5a0
child 3260
670a74b863fc
permissions
-rw-r--r--

7083786: dead various dead chunks of code
Reviewed-by: iveresov, kvn

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/exceptionHandlerTable.hpp"
    29 #include "code/nmethod.hpp"
    30 #include "compiler/compileLog.hpp"
    31 #include "compiler/oopMap.hpp"
    32 #include "opto/addnode.hpp"
    33 #include "opto/block.hpp"
    34 #include "opto/c2compiler.hpp"
    35 #include "opto/callGenerator.hpp"
    36 #include "opto/callnode.hpp"
    37 #include "opto/cfgnode.hpp"
    38 #include "opto/chaitin.hpp"
    39 #include "opto/compile.hpp"
    40 #include "opto/connode.hpp"
    41 #include "opto/divnode.hpp"
    42 #include "opto/escape.hpp"
    43 #include "opto/idealGraphPrinter.hpp"
    44 #include "opto/loopnode.hpp"
    45 #include "opto/machnode.hpp"
    46 #include "opto/macro.hpp"
    47 #include "opto/matcher.hpp"
    48 #include "opto/memnode.hpp"
    49 #include "opto/mulnode.hpp"
    50 #include "opto/node.hpp"
    51 #include "opto/opcodes.hpp"
    52 #include "opto/output.hpp"
    53 #include "opto/parse.hpp"
    54 #include "opto/phaseX.hpp"
    55 #include "opto/rootnode.hpp"
    56 #include "opto/runtime.hpp"
    57 #include "opto/stringopts.hpp"
    58 #include "opto/type.hpp"
    59 #include "opto/vectornode.hpp"
    60 #include "runtime/arguments.hpp"
    61 #include "runtime/signature.hpp"
    62 #include "runtime/stubRoutines.hpp"
    63 #include "runtime/timer.hpp"
    64 #include "utilities/copy.hpp"
    65 #ifdef TARGET_ARCH_MODEL_x86_32
    66 # include "adfiles/ad_x86_32.hpp"
    67 #endif
    68 #ifdef TARGET_ARCH_MODEL_x86_64
    69 # include "adfiles/ad_x86_64.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_MODEL_sparc
    72 # include "adfiles/ad_sparc.hpp"
    73 #endif
    74 #ifdef TARGET_ARCH_MODEL_zero
    75 # include "adfiles/ad_zero.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_MODEL_arm
    78 # include "adfiles/ad_arm.hpp"
    79 #endif
    80 #ifdef TARGET_ARCH_MODEL_ppc
    81 # include "adfiles/ad_ppc.hpp"
    82 #endif
    85 // -------------------- Compile::mach_constant_base_node -----------------------
    86 // Constant table base node singleton.
    87 MachConstantBaseNode* Compile::mach_constant_base_node() {
    88   if (_mach_constant_base_node == NULL) {
    89     _mach_constant_base_node = new (C) MachConstantBaseNode();
    90     _mach_constant_base_node->add_req(C->root());
    91   }
    92   return _mach_constant_base_node;
    93 }
    96 /// Support for intrinsics.
    98 // Return the index at which m must be inserted (or already exists).
    99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
   100 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   101 #ifdef ASSERT
   102   for (int i = 1; i < _intrinsics->length(); i++) {
   103     CallGenerator* cg1 = _intrinsics->at(i-1);
   104     CallGenerator* cg2 = _intrinsics->at(i);
   105     assert(cg1->method() != cg2->method()
   106            ? cg1->method()     < cg2->method()
   107            : cg1->is_virtual() < cg2->is_virtual(),
   108            "compiler intrinsics list must stay sorted");
   109   }
   110 #endif
   111   // Binary search sorted list, in decreasing intervals [lo, hi].
   112   int lo = 0, hi = _intrinsics->length()-1;
   113   while (lo <= hi) {
   114     int mid = (uint)(hi + lo) / 2;
   115     ciMethod* mid_m = _intrinsics->at(mid)->method();
   116     if (m < mid_m) {
   117       hi = mid-1;
   118     } else if (m > mid_m) {
   119       lo = mid+1;
   120     } else {
   121       // look at minor sort key
   122       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   123       if (is_virtual < mid_virt) {
   124         hi = mid-1;
   125       } else if (is_virtual > mid_virt) {
   126         lo = mid+1;
   127       } else {
   128         return mid;  // exact match
   129       }
   130     }
   131   }
   132   return lo;  // inexact match
   133 }
   135 void Compile::register_intrinsic(CallGenerator* cg) {
   136   if (_intrinsics == NULL) {
   137     _intrinsics = new GrowableArray<CallGenerator*>(60);
   138   }
   139   // This code is stolen from ciObjectFactory::insert.
   140   // Really, GrowableArray should have methods for
   141   // insert_at, remove_at, and binary_search.
   142   int len = _intrinsics->length();
   143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   144   if (index == len) {
   145     _intrinsics->append(cg);
   146   } else {
   147 #ifdef ASSERT
   148     CallGenerator* oldcg = _intrinsics->at(index);
   149     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   150 #endif
   151     _intrinsics->append(_intrinsics->at(len-1));
   152     int pos;
   153     for (pos = len-2; pos >= index; pos--) {
   154       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   155     }
   156     _intrinsics->at_put(index, cg);
   157   }
   158   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   159 }
   161 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   162   assert(m->is_loaded(), "don't try this on unloaded methods");
   163   if (_intrinsics != NULL) {
   164     int index = intrinsic_insertion_index(m, is_virtual);
   165     if (index < _intrinsics->length()
   166         && _intrinsics->at(index)->method() == m
   167         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   168       return _intrinsics->at(index);
   169     }
   170   }
   171   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   172   if (m->intrinsic_id() != vmIntrinsics::_none &&
   173       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   174     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   175     if (cg != NULL) {
   176       // Save it for next time:
   177       register_intrinsic(cg);
   178       return cg;
   179     } else {
   180       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   181     }
   182   }
   183   return NULL;
   184 }
   186 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   187 // in library_call.cpp.
   190 #ifndef PRODUCT
   191 // statistics gathering...
   193 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   194 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   196 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   197   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   198   int oflags = _intrinsic_hist_flags[id];
   199   assert(flags != 0, "what happened?");
   200   if (is_virtual) {
   201     flags |= _intrinsic_virtual;
   202   }
   203   bool changed = (flags != oflags);
   204   if ((flags & _intrinsic_worked) != 0) {
   205     juint count = (_intrinsic_hist_count[id] += 1);
   206     if (count == 1) {
   207       changed = true;           // first time
   208     }
   209     // increment the overall count also:
   210     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   211   }
   212   if (changed) {
   213     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   214       // Something changed about the intrinsic's virtuality.
   215       if ((flags & _intrinsic_virtual) != 0) {
   216         // This is the first use of this intrinsic as a virtual call.
   217         if (oflags != 0) {
   218           // We already saw it as a non-virtual, so note both cases.
   219           flags |= _intrinsic_both;
   220         }
   221       } else if ((oflags & _intrinsic_both) == 0) {
   222         // This is the first use of this intrinsic as a non-virtual
   223         flags |= _intrinsic_both;
   224       }
   225     }
   226     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   227   }
   228   // update the overall flags also:
   229   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   230   return changed;
   231 }
   233 static char* format_flags(int flags, char* buf) {
   234   buf[0] = 0;
   235   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   236   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   237   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   238   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   239   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   240   if (buf[0] == 0)  strcat(buf, ",");
   241   assert(buf[0] == ',', "must be");
   242   return &buf[1];
   243 }
   245 void Compile::print_intrinsic_statistics() {
   246   char flagsbuf[100];
   247   ttyLocker ttyl;
   248   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   249   tty->print_cr("Compiler intrinsic usage:");
   250   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   251   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   252   #define PRINT_STAT_LINE(name, c, f) \
   253     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   254   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   255     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   256     int   flags = _intrinsic_hist_flags[id];
   257     juint count = _intrinsic_hist_count[id];
   258     if ((flags | count) != 0) {
   259       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   260     }
   261   }
   262   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   263   if (xtty != NULL)  xtty->tail("statistics");
   264 }
   266 void Compile::print_statistics() {
   267   { ttyLocker ttyl;
   268     if (xtty != NULL)  xtty->head("statistics type='opto'");
   269     Parse::print_statistics();
   270     PhaseCCP::print_statistics();
   271     PhaseRegAlloc::print_statistics();
   272     Scheduling::print_statistics();
   273     PhasePeephole::print_statistics();
   274     PhaseIdealLoop::print_statistics();
   275     if (xtty != NULL)  xtty->tail("statistics");
   276   }
   277   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   278     // put this under its own <statistics> element.
   279     print_intrinsic_statistics();
   280   }
   281 }
   282 #endif //PRODUCT
   284 // Support for bundling info
   285 Bundle* Compile::node_bundling(const Node *n) {
   286   assert(valid_bundle_info(n), "oob");
   287   return &_node_bundling_base[n->_idx];
   288 }
   290 bool Compile::valid_bundle_info(const Node *n) {
   291   return (_node_bundling_limit > n->_idx);
   292 }
   295 void Compile::gvn_replace_by(Node* n, Node* nn) {
   296   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   297     Node* use = n->last_out(i);
   298     bool is_in_table = initial_gvn()->hash_delete(use);
   299     uint uses_found = 0;
   300     for (uint j = 0; j < use->len(); j++) {
   301       if (use->in(j) == n) {
   302         if (j < use->req())
   303           use->set_req(j, nn);
   304         else
   305           use->set_prec(j, nn);
   306         uses_found++;
   307       }
   308     }
   309     if (is_in_table) {
   310       // reinsert into table
   311       initial_gvn()->hash_find_insert(use);
   312     }
   313     record_for_igvn(use);
   314     i -= uses_found;    // we deleted 1 or more copies of this edge
   315   }
   316 }
   321 // Identify all nodes that are reachable from below, useful.
   322 // Use breadth-first pass that records state in a Unique_Node_List,
   323 // recursive traversal is slower.
   324 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   325   int estimated_worklist_size = unique();
   326   useful.map( estimated_worklist_size, NULL );  // preallocate space
   328   // Initialize worklist
   329   if (root() != NULL)     { useful.push(root()); }
   330   // If 'top' is cached, declare it useful to preserve cached node
   331   if( cached_top_node() ) { useful.push(cached_top_node()); }
   333   // Push all useful nodes onto the list, breadthfirst
   334   for( uint next = 0; next < useful.size(); ++next ) {
   335     assert( next < unique(), "Unique useful nodes < total nodes");
   336     Node *n  = useful.at(next);
   337     uint max = n->len();
   338     for( uint i = 0; i < max; ++i ) {
   339       Node *m = n->in(i);
   340       if( m == NULL ) continue;
   341       useful.push(m);
   342     }
   343   }
   344 }
   346 // Disconnect all useless nodes by disconnecting those at the boundary.
   347 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   348   uint next = 0;
   349   while( next < useful.size() ) {
   350     Node *n = useful.at(next++);
   351     // Use raw traversal of out edges since this code removes out edges
   352     int max = n->outcnt();
   353     for (int j = 0; j < max; ++j ) {
   354       Node* child = n->raw_out(j);
   355       if( ! useful.member(child) ) {
   356         assert( !child->is_top() || child != top(),
   357                 "If top is cached in Compile object it is in useful list");
   358         // Only need to remove this out-edge to the useless node
   359         n->raw_del_out(j);
   360         --j;
   361         --max;
   362       }
   363     }
   364     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   365       record_for_igvn( n->unique_out() );
   366     }
   367   }
   368   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   369 }
   371 //------------------------------frame_size_in_words-----------------------------
   372 // frame_slots in units of words
   373 int Compile::frame_size_in_words() const {
   374   // shift is 0 in LP32 and 1 in LP64
   375   const int shift = (LogBytesPerWord - LogBytesPerInt);
   376   int words = _frame_slots >> shift;
   377   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   378   return words;
   379 }
   381 // ============================================================================
   382 //------------------------------CompileWrapper---------------------------------
   383 class CompileWrapper : public StackObj {
   384   Compile *const _compile;
   385  public:
   386   CompileWrapper(Compile* compile);
   388   ~CompileWrapper();
   389 };
   391 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   392   // the Compile* pointer is stored in the current ciEnv:
   393   ciEnv* env = compile->env();
   394   assert(env == ciEnv::current(), "must already be a ciEnv active");
   395   assert(env->compiler_data() == NULL, "compile already active?");
   396   env->set_compiler_data(compile);
   397   assert(compile == Compile::current(), "sanity");
   399   compile->set_type_dict(NULL);
   400   compile->set_type_hwm(NULL);
   401   compile->set_type_last_size(0);
   402   compile->set_last_tf(NULL, NULL);
   403   compile->set_indexSet_arena(NULL);
   404   compile->set_indexSet_free_block_list(NULL);
   405   compile->init_type_arena();
   406   Type::Initialize(compile);
   407   _compile->set_scratch_buffer_blob(NULL);
   408   _compile->begin_method();
   409 }
   410 CompileWrapper::~CompileWrapper() {
   411   _compile->end_method();
   412   if (_compile->scratch_buffer_blob() != NULL)
   413     BufferBlob::free(_compile->scratch_buffer_blob());
   414   _compile->env()->set_compiler_data(NULL);
   415 }
   418 //----------------------------print_compile_messages---------------------------
   419 void Compile::print_compile_messages() {
   420 #ifndef PRODUCT
   421   // Check if recompiling
   422   if (_subsume_loads == false && PrintOpto) {
   423     // Recompiling without allowing machine instructions to subsume loads
   424     tty->print_cr("*********************************************************");
   425     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   426     tty->print_cr("*********************************************************");
   427   }
   428   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   429     // Recompiling without escape analysis
   430     tty->print_cr("*********************************************************");
   431     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   432     tty->print_cr("*********************************************************");
   433   }
   434   if (env()->break_at_compile()) {
   435     // Open the debugger when compiling this method.
   436     tty->print("### Breaking when compiling: ");
   437     method()->print_short_name();
   438     tty->cr();
   439     BREAKPOINT;
   440   }
   442   if( PrintOpto ) {
   443     if (is_osr_compilation()) {
   444       tty->print("[OSR]%3d", _compile_id);
   445     } else {
   446       tty->print("%3d", _compile_id);
   447     }
   448   }
   449 #endif
   450 }
   453 //-----------------------init_scratch_buffer_blob------------------------------
   454 // Construct a temporary BufferBlob and cache it for this compile.
   455 void Compile::init_scratch_buffer_blob(int const_size) {
   456   // If there is already a scratch buffer blob allocated and the
   457   // constant section is big enough, use it.  Otherwise free the
   458   // current and allocate a new one.
   459   BufferBlob* blob = scratch_buffer_blob();
   460   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   461     // Use the current blob.
   462   } else {
   463     if (blob != NULL) {
   464       BufferBlob::free(blob);
   465     }
   467     ResourceMark rm;
   468     _scratch_const_size = const_size;
   469     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   470     blob = BufferBlob::create("Compile::scratch_buffer", size);
   471     // Record the buffer blob for next time.
   472     set_scratch_buffer_blob(blob);
   473     // Have we run out of code space?
   474     if (scratch_buffer_blob() == NULL) {
   475       // Let CompilerBroker disable further compilations.
   476       record_failure("Not enough space for scratch buffer in CodeCache");
   477       return;
   478     }
   479   }
   481   // Initialize the relocation buffers
   482   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   483   set_scratch_locs_memory(locs_buf);
   484 }
   487 //-----------------------scratch_emit_size-------------------------------------
   488 // Helper function that computes size by emitting code
   489 uint Compile::scratch_emit_size(const Node* n) {
   490   // Start scratch_emit_size section.
   491   set_in_scratch_emit_size(true);
   493   // Emit into a trash buffer and count bytes emitted.
   494   // This is a pretty expensive way to compute a size,
   495   // but it works well enough if seldom used.
   496   // All common fixed-size instructions are given a size
   497   // method by the AD file.
   498   // Note that the scratch buffer blob and locs memory are
   499   // allocated at the beginning of the compile task, and
   500   // may be shared by several calls to scratch_emit_size.
   501   // The allocation of the scratch buffer blob is particularly
   502   // expensive, since it has to grab the code cache lock.
   503   BufferBlob* blob = this->scratch_buffer_blob();
   504   assert(blob != NULL, "Initialize BufferBlob at start");
   505   assert(blob->size() > MAX_inst_size, "sanity");
   506   relocInfo* locs_buf = scratch_locs_memory();
   507   address blob_begin = blob->content_begin();
   508   address blob_end   = (address)locs_buf;
   509   assert(blob->content_contains(blob_end), "sanity");
   510   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   511   buf.initialize_consts_size(_scratch_const_size);
   512   buf.initialize_stubs_size(MAX_stubs_size);
   513   assert(locs_buf != NULL, "sanity");
   514   int lsize = MAX_locs_size / 3;
   515   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   516   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   517   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   519   // Do the emission.
   521   Label fakeL; // Fake label for branch instructions.
   522   Label*   saveL = NULL;
   523   uint save_bnum = 0;
   524   bool is_branch = n->is_MachBranch();
   525   if (is_branch) {
   526     MacroAssembler masm(&buf);
   527     masm.bind(fakeL);
   528     n->as_MachBranch()->save_label(&saveL, &save_bnum);
   529     n->as_MachBranch()->label_set(&fakeL, 0);
   530   }
   531   n->emit(buf, this->regalloc());
   532   if (is_branch) // Restore label.
   533     n->as_MachBranch()->label_set(saveL, save_bnum);
   535   // End scratch_emit_size section.
   536   set_in_scratch_emit_size(false);
   538   return buf.insts_size();
   539 }
   542 // ============================================================================
   543 //------------------------------Compile standard-------------------------------
   544 debug_only( int Compile::_debug_idx = 100000; )
   546 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   547 // the continuation bci for on stack replacement.
   550 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
   551                 : Phase(Compiler),
   552                   _env(ci_env),
   553                   _log(ci_env->log()),
   554                   _compile_id(ci_env->compile_id()),
   555                   _save_argument_registers(false),
   556                   _stub_name(NULL),
   557                   _stub_function(NULL),
   558                   _stub_entry_point(NULL),
   559                   _method(target),
   560                   _entry_bci(osr_bci),
   561                   _initial_gvn(NULL),
   562                   _for_igvn(NULL),
   563                   _warm_calls(NULL),
   564                   _subsume_loads(subsume_loads),
   565                   _do_escape_analysis(do_escape_analysis),
   566                   _failure_reason(NULL),
   567                   _code_buffer("Compile::Fill_buffer"),
   568                   _orig_pc_slot(0),
   569                   _orig_pc_slot_offset_in_bytes(0),
   570                   _has_method_handle_invokes(false),
   571                   _mach_constant_base_node(NULL),
   572                   _node_bundling_limit(0),
   573                   _node_bundling_base(NULL),
   574                   _java_calls(0),
   575                   _inner_loops(0),
   576                   _scratch_const_size(-1),
   577                   _in_scratch_emit_size(false),
   578 #ifndef PRODUCT
   579                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   580                   _printer(IdealGraphPrinter::printer()),
   581 #endif
   582                   _congraph(NULL) {
   583   C = this;
   585   CompileWrapper cw(this);
   586 #ifndef PRODUCT
   587   if (TimeCompiler2) {
   588     tty->print(" ");
   589     target->holder()->name()->print();
   590     tty->print(".");
   591     target->print_short_name();
   592     tty->print("  ");
   593   }
   594   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   595   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   596   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   597   if (!print_opto_assembly) {
   598     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   599     if (print_assembly && !Disassembler::can_decode()) {
   600       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   601       print_opto_assembly = true;
   602     }
   603   }
   604   set_print_assembly(print_opto_assembly);
   605   set_parsed_irreducible_loop(false);
   606 #endif
   608   if (ProfileTraps) {
   609     // Make sure the method being compiled gets its own MDO,
   610     // so we can at least track the decompile_count().
   611     method()->ensure_method_data();
   612   }
   614   Init(::AliasLevel);
   617   print_compile_messages();
   619   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
   620     _ilt = InlineTree::build_inline_tree_root();
   621   else
   622     _ilt = NULL;
   624   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   625   assert(num_alias_types() >= AliasIdxRaw, "");
   627 #define MINIMUM_NODE_HASH  1023
   628   // Node list that Iterative GVN will start with
   629   Unique_Node_List for_igvn(comp_arena());
   630   set_for_igvn(&for_igvn);
   632   // GVN that will be run immediately on new nodes
   633   uint estimated_size = method()->code_size()*4+64;
   634   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   635   PhaseGVN gvn(node_arena(), estimated_size);
   636   set_initial_gvn(&gvn);
   638   { // Scope for timing the parser
   639     TracePhase t3("parse", &_t_parser, true);
   641     // Put top into the hash table ASAP.
   642     initial_gvn()->transform_no_reclaim(top());
   644     // Set up tf(), start(), and find a CallGenerator.
   645     CallGenerator* cg = NULL;
   646     if (is_osr_compilation()) {
   647       const TypeTuple *domain = StartOSRNode::osr_domain();
   648       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   649       init_tf(TypeFunc::make(domain, range));
   650       StartNode* s = new (this, 2) StartOSRNode(root(), domain);
   651       initial_gvn()->set_type_bottom(s);
   652       init_start(s);
   653       cg = CallGenerator::for_osr(method(), entry_bci());
   654     } else {
   655       // Normal case.
   656       init_tf(TypeFunc::make(method()));
   657       StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
   658       initial_gvn()->set_type_bottom(s);
   659       init_start(s);
   660       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
   661         // With java.lang.ref.reference.get() we must go through the
   662         // intrinsic when G1 is enabled - even when get() is the root
   663         // method of the compile - so that, if necessary, the value in
   664         // the referent field of the reference object gets recorded by
   665         // the pre-barrier code.
   666         // Specifically, if G1 is enabled, the value in the referent
   667         // field is recorded by the G1 SATB pre barrier. This will
   668         // result in the referent being marked live and the reference
   669         // object removed from the list of discovered references during
   670         // reference processing.
   671         cg = find_intrinsic(method(), false);
   672       }
   673       if (cg == NULL) {
   674         float past_uses = method()->interpreter_invocation_count();
   675         float expected_uses = past_uses;
   676         cg = CallGenerator::for_inline(method(), expected_uses);
   677       }
   678     }
   679     if (failing())  return;
   680     if (cg == NULL) {
   681       record_method_not_compilable_all_tiers("cannot parse method");
   682       return;
   683     }
   684     JVMState* jvms = build_start_state(start(), tf());
   685     if ((jvms = cg->generate(jvms)) == NULL) {
   686       record_method_not_compilable("method parse failed");
   687       return;
   688     }
   689     GraphKit kit(jvms);
   691     if (!kit.stopped()) {
   692       // Accept return values, and transfer control we know not where.
   693       // This is done by a special, unique ReturnNode bound to root.
   694       return_values(kit.jvms());
   695     }
   697     if (kit.has_exceptions()) {
   698       // Any exceptions that escape from this call must be rethrown
   699       // to whatever caller is dynamically above us on the stack.
   700       // This is done by a special, unique RethrowNode bound to root.
   701       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   702     }
   704     if (!failing() && has_stringbuilder()) {
   705       {
   706         // remove useless nodes to make the usage analysis simpler
   707         ResourceMark rm;
   708         PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   709       }
   711       {
   712         ResourceMark rm;
   713         print_method("Before StringOpts", 3);
   714         PhaseStringOpts pso(initial_gvn(), &for_igvn);
   715         print_method("After StringOpts", 3);
   716       }
   718       // now inline anything that we skipped the first time around
   719       while (_late_inlines.length() > 0) {
   720         CallGenerator* cg = _late_inlines.pop();
   721         cg->do_late_inline();
   722       }
   723     }
   724     assert(_late_inlines.length() == 0, "should have been processed");
   726     print_method("Before RemoveUseless", 3);
   728     // Remove clutter produced by parsing.
   729     if (!failing()) {
   730       ResourceMark rm;
   731       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   732     }
   733   }
   735   // Note:  Large methods are capped off in do_one_bytecode().
   736   if (failing())  return;
   738   // After parsing, node notes are no longer automagic.
   739   // They must be propagated by register_new_node_with_optimizer(),
   740   // clone(), or the like.
   741   set_default_node_notes(NULL);
   743   for (;;) {
   744     int successes = Inline_Warm();
   745     if (failing())  return;
   746     if (successes == 0)  break;
   747   }
   749   // Drain the list.
   750   Finish_Warm();
   751 #ifndef PRODUCT
   752   if (_printer) {
   753     _printer->print_inlining(this);
   754   }
   755 #endif
   757   if (failing())  return;
   758   NOT_PRODUCT( verify_graph_edges(); )
   760   // Now optimize
   761   Optimize();
   762   if (failing())  return;
   763   NOT_PRODUCT( verify_graph_edges(); )
   765 #ifndef PRODUCT
   766   if (PrintIdeal) {
   767     ttyLocker ttyl;  // keep the following output all in one block
   768     // This output goes directly to the tty, not the compiler log.
   769     // To enable tools to match it up with the compilation activity,
   770     // be sure to tag this tty output with the compile ID.
   771     if (xtty != NULL) {
   772       xtty->head("ideal compile_id='%d'%s", compile_id(),
   773                  is_osr_compilation()    ? " compile_kind='osr'" :
   774                  "");
   775     }
   776     root()->dump(9999);
   777     if (xtty != NULL) {
   778       xtty->tail("ideal");
   779     }
   780   }
   781 #endif
   783   // Now that we know the size of all the monitors we can add a fixed slot
   784   // for the original deopt pc.
   786   _orig_pc_slot =  fixed_slots();
   787   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   788   set_fixed_slots(next_slot);
   790   // Now generate code
   791   Code_Gen();
   792   if (failing())  return;
   794   // Check if we want to skip execution of all compiled code.
   795   {
   796 #ifndef PRODUCT
   797     if (OptoNoExecute) {
   798       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   799       return;
   800     }
   801     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   802 #endif
   804     if (is_osr_compilation()) {
   805       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   806       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   807     } else {
   808       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   809       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   810     }
   812     env()->register_method(_method, _entry_bci,
   813                            &_code_offsets,
   814                            _orig_pc_slot_offset_in_bytes,
   815                            code_buffer(),
   816                            frame_size_in_words(), _oop_map_set,
   817                            &_handler_table, &_inc_table,
   818                            compiler,
   819                            env()->comp_level(),
   820                            has_unsafe_access()
   821                            );
   822   }
   823 }
   825 //------------------------------Compile----------------------------------------
   826 // Compile a runtime stub
   827 Compile::Compile( ciEnv* ci_env,
   828                   TypeFunc_generator generator,
   829                   address stub_function,
   830                   const char *stub_name,
   831                   int is_fancy_jump,
   832                   bool pass_tls,
   833                   bool save_arg_registers,
   834                   bool return_pc )
   835   : Phase(Compiler),
   836     _env(ci_env),
   837     _log(ci_env->log()),
   838     _compile_id(-1),
   839     _save_argument_registers(save_arg_registers),
   840     _method(NULL),
   841     _stub_name(stub_name),
   842     _stub_function(stub_function),
   843     _stub_entry_point(NULL),
   844     _entry_bci(InvocationEntryBci),
   845     _initial_gvn(NULL),
   846     _for_igvn(NULL),
   847     _warm_calls(NULL),
   848     _orig_pc_slot(0),
   849     _orig_pc_slot_offset_in_bytes(0),
   850     _subsume_loads(true),
   851     _do_escape_analysis(false),
   852     _failure_reason(NULL),
   853     _code_buffer("Compile::Fill_buffer"),
   854     _has_method_handle_invokes(false),
   855     _mach_constant_base_node(NULL),
   856     _node_bundling_limit(0),
   857     _node_bundling_base(NULL),
   858     _java_calls(0),
   859     _inner_loops(0),
   860 #ifndef PRODUCT
   861     _trace_opto_output(TraceOptoOutput),
   862     _printer(NULL),
   863 #endif
   864     _congraph(NULL) {
   865   C = this;
   867 #ifndef PRODUCT
   868   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
   869   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
   870   set_print_assembly(PrintFrameConverterAssembly);
   871   set_parsed_irreducible_loop(false);
   872 #endif
   873   CompileWrapper cw(this);
   874   Init(/*AliasLevel=*/ 0);
   875   init_tf((*generator)());
   877   {
   878     // The following is a dummy for the sake of GraphKit::gen_stub
   879     Unique_Node_List for_igvn(comp_arena());
   880     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
   881     PhaseGVN gvn(Thread::current()->resource_area(),255);
   882     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
   883     gvn.transform_no_reclaim(top());
   885     GraphKit kit;
   886     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
   887   }
   889   NOT_PRODUCT( verify_graph_edges(); )
   890   Code_Gen();
   891   if (failing())  return;
   894   // Entry point will be accessed using compile->stub_entry_point();
   895   if (code_buffer() == NULL) {
   896     Matcher::soft_match_failure();
   897   } else {
   898     if (PrintAssembly && (WizardMode || Verbose))
   899       tty->print_cr("### Stub::%s", stub_name);
   901     if (!failing()) {
   902       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
   904       // Make the NMethod
   905       // For now we mark the frame as never safe for profile stackwalking
   906       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
   907                                                       code_buffer(),
   908                                                       CodeOffsets::frame_never_safe,
   909                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
   910                                                       frame_size_in_words(),
   911                                                       _oop_map_set,
   912                                                       save_arg_registers);
   913       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
   915       _stub_entry_point = rs->entry_point();
   916     }
   917   }
   918 }
   920 #ifndef PRODUCT
   921 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
   922   if(PrintOpto && Verbose) {
   923     tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
   924   }
   925 }
   926 #endif
   928 void Compile::print_codes() {
   929 }
   931 //------------------------------Init-------------------------------------------
   932 // Prepare for a single compilation
   933 void Compile::Init(int aliaslevel) {
   934   _unique  = 0;
   935   _regalloc = NULL;
   937   _tf      = NULL;  // filled in later
   938   _top     = NULL;  // cached later
   939   _matcher = NULL;  // filled in later
   940   _cfg     = NULL;  // filled in later
   942   set_24_bit_selection_and_mode(Use24BitFP, false);
   944   _node_note_array = NULL;
   945   _default_node_notes = NULL;
   947   _immutable_memory = NULL; // filled in at first inquiry
   949   // Globally visible Nodes
   950   // First set TOP to NULL to give safe behavior during creation of RootNode
   951   set_cached_top_node(NULL);
   952   set_root(new (this, 3) RootNode());
   953   // Now that you have a Root to point to, create the real TOP
   954   set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
   955   set_recent_alloc(NULL, NULL);
   957   // Create Debug Information Recorder to record scopes, oopmaps, etc.
   958   env()->set_oop_recorder(new OopRecorder(comp_arena()));
   959   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
   960   env()->set_dependencies(new Dependencies(env()));
   962   _fixed_slots = 0;
   963   set_has_split_ifs(false);
   964   set_has_loops(has_method() && method()->has_loops()); // first approximation
   965   set_has_stringbuilder(false);
   966   _trap_can_recompile = false;  // no traps emitted yet
   967   _major_progress = true; // start out assuming good things will happen
   968   set_has_unsafe_access(false);
   969   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
   970   set_decompile_count(0);
   972   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
   973   set_num_loop_opts(LoopOptsCount);
   974   set_do_inlining(Inline);
   975   set_max_inline_size(MaxInlineSize);
   976   set_freq_inline_size(FreqInlineSize);
   977   set_do_scheduling(OptoScheduling);
   978   set_do_count_invocations(false);
   979   set_do_method_data_update(false);
   981   if (debug_info()->recording_non_safepoints()) {
   982     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
   983                         (comp_arena(), 8, 0, NULL));
   984     set_default_node_notes(Node_Notes::make(this));
   985   }
   987   // // -- Initialize types before each compile --
   988   // // Update cached type information
   989   // if( _method && _method->constants() )
   990   //   Type::update_loaded_types(_method, _method->constants());
   992   // Init alias_type map.
   993   if (!_do_escape_analysis && aliaslevel == 3)
   994     aliaslevel = 2;  // No unique types without escape analysis
   995   _AliasLevel = aliaslevel;
   996   const int grow_ats = 16;
   997   _max_alias_types = grow_ats;
   998   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
   999   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
  1000   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
  1002     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
  1004   // Initialize the first few types.
  1005   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
  1006   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
  1007   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
  1008   _num_alias_types = AliasIdxRaw+1;
  1009   // Zero out the alias type cache.
  1010   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
  1011   // A NULL adr_type hits in the cache right away.  Preload the right answer.
  1012   probe_alias_cache(NULL)->_index = AliasIdxTop;
  1014   _intrinsics = NULL;
  1015   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1016   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1017   register_library_intrinsics();
  1020 //---------------------------init_start----------------------------------------
  1021 // Install the StartNode on this compile object.
  1022 void Compile::init_start(StartNode* s) {
  1023   if (failing())
  1024     return; // already failing
  1025   assert(s == start(), "");
  1028 StartNode* Compile::start() const {
  1029   assert(!failing(), "");
  1030   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1031     Node* start = root()->fast_out(i);
  1032     if( start->is_Start() )
  1033       return start->as_Start();
  1035   ShouldNotReachHere();
  1036   return NULL;
  1039 //-------------------------------immutable_memory-------------------------------------
  1040 // Access immutable memory
  1041 Node* Compile::immutable_memory() {
  1042   if (_immutable_memory != NULL) {
  1043     return _immutable_memory;
  1045   StartNode* s = start();
  1046   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1047     Node *p = s->fast_out(i);
  1048     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1049       _immutable_memory = p;
  1050       return _immutable_memory;
  1053   ShouldNotReachHere();
  1054   return NULL;
  1057 //----------------------set_cached_top_node------------------------------------
  1058 // Install the cached top node, and make sure Node::is_top works correctly.
  1059 void Compile::set_cached_top_node(Node* tn) {
  1060   if (tn != NULL)  verify_top(tn);
  1061   Node* old_top = _top;
  1062   _top = tn;
  1063   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1064   // their _out arrays.
  1065   if (_top != NULL)     _top->setup_is_top();
  1066   if (old_top != NULL)  old_top->setup_is_top();
  1067   assert(_top == NULL || top()->is_top(), "");
  1070 #ifndef PRODUCT
  1071 void Compile::verify_top(Node* tn) const {
  1072   if (tn != NULL) {
  1073     assert(tn->is_Con(), "top node must be a constant");
  1074     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1075     assert(tn->in(0) != NULL, "must have live top node");
  1078 #endif
  1081 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1083 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1084   guarantee(arr != NULL, "");
  1085   int num_blocks = arr->length();
  1086   if (grow_by < num_blocks)  grow_by = num_blocks;
  1087   int num_notes = grow_by * _node_notes_block_size;
  1088   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1089   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1090   while (num_notes > 0) {
  1091     arr->append(notes);
  1092     notes     += _node_notes_block_size;
  1093     num_notes -= _node_notes_block_size;
  1095   assert(num_notes == 0, "exact multiple, please");
  1098 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1099   if (source == NULL || dest == NULL)  return false;
  1101   if (dest->is_Con())
  1102     return false;               // Do not push debug info onto constants.
  1104 #ifdef ASSERT
  1105   // Leave a bread crumb trail pointing to the original node:
  1106   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1107     dest->set_debug_orig(source);
  1109 #endif
  1111   if (node_note_array() == NULL)
  1112     return false;               // Not collecting any notes now.
  1114   // This is a copy onto a pre-existing node, which may already have notes.
  1115   // If both nodes have notes, do not overwrite any pre-existing notes.
  1116   Node_Notes* source_notes = node_notes_at(source->_idx);
  1117   if (source_notes == NULL || source_notes->is_clear())  return false;
  1118   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1119   if (dest_notes == NULL || dest_notes->is_clear()) {
  1120     return set_node_notes_at(dest->_idx, source_notes);
  1123   Node_Notes merged_notes = (*source_notes);
  1124   // The order of operations here ensures that dest notes will win...
  1125   merged_notes.update_from(dest_notes);
  1126   return set_node_notes_at(dest->_idx, &merged_notes);
  1130 //--------------------------allow_range_check_smearing-------------------------
  1131 // Gating condition for coalescing similar range checks.
  1132 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1133 // single covering check that is at least as strong as any of them.
  1134 // If the optimization succeeds, the simplified (strengthened) range check
  1135 // will always succeed.  If it fails, we will deopt, and then give up
  1136 // on the optimization.
  1137 bool Compile::allow_range_check_smearing() const {
  1138   // If this method has already thrown a range-check,
  1139   // assume it was because we already tried range smearing
  1140   // and it failed.
  1141   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1142   return !already_trapped;
  1146 //------------------------------flatten_alias_type-----------------------------
  1147 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1148   int offset = tj->offset();
  1149   TypePtr::PTR ptr = tj->ptr();
  1151   // Known instance (scalarizable allocation) alias only with itself.
  1152   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1153                        tj->is_oopptr()->is_known_instance();
  1155   // Process weird unsafe references.
  1156   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1157     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1158     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1159     tj = TypeOopPtr::BOTTOM;
  1160     ptr = tj->ptr();
  1161     offset = tj->offset();
  1164   // Array pointers need some flattening
  1165   const TypeAryPtr *ta = tj->isa_aryptr();
  1166   if( ta && is_known_inst ) {
  1167     if ( offset != Type::OffsetBot &&
  1168          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1169       offset = Type::OffsetBot; // Flatten constant access into array body only
  1170       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1172   } else if( ta && _AliasLevel >= 2 ) {
  1173     // For arrays indexed by constant indices, we flatten the alias
  1174     // space to include all of the array body.  Only the header, klass
  1175     // and array length can be accessed un-aliased.
  1176     if( offset != Type::OffsetBot ) {
  1177       if( ta->const_oop() ) { // methodDataOop or methodOop
  1178         offset = Type::OffsetBot;   // Flatten constant access into array body
  1179         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1180       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1181         // range is OK as-is.
  1182         tj = ta = TypeAryPtr::RANGE;
  1183       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1184         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1185         ta = TypeAryPtr::RANGE; // generic ignored junk
  1186         ptr = TypePtr::BotPTR;
  1187       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1188         tj = TypeInstPtr::MARK;
  1189         ta = TypeAryPtr::RANGE; // generic ignored junk
  1190         ptr = TypePtr::BotPTR;
  1191       } else {                  // Random constant offset into array body
  1192         offset = Type::OffsetBot;   // Flatten constant access into array body
  1193         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1196     // Arrays of fixed size alias with arrays of unknown size.
  1197     if (ta->size() != TypeInt::POS) {
  1198       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1199       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1201     // Arrays of known objects become arrays of unknown objects.
  1202     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1203       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1204       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1206     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1207       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1208       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1210     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1211     // cannot be distinguished by bytecode alone.
  1212     if (ta->elem() == TypeInt::BOOL) {
  1213       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1214       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1215       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1217     // During the 2nd round of IterGVN, NotNull castings are removed.
  1218     // Make sure the Bottom and NotNull variants alias the same.
  1219     // Also, make sure exact and non-exact variants alias the same.
  1220     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
  1221       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1225   // Oop pointers need some flattening
  1226   const TypeInstPtr *to = tj->isa_instptr();
  1227   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1228     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1229     if( ptr == TypePtr::Constant ) {
  1230       if (to->klass() != ciEnv::current()->Class_klass() ||
  1231           offset < k->size_helper() * wordSize) {
  1232         // No constant oop pointers (such as Strings); they alias with
  1233         // unknown strings.
  1234         assert(!is_known_inst, "not scalarizable allocation");
  1235         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1237     } else if( is_known_inst ) {
  1238       tj = to; // Keep NotNull and klass_is_exact for instance type
  1239     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1240       // During the 2nd round of IterGVN, NotNull castings are removed.
  1241       // Make sure the Bottom and NotNull variants alias the same.
  1242       // Also, make sure exact and non-exact variants alias the same.
  1243       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1245     // Canonicalize the holder of this field
  1246     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1247       // First handle header references such as a LoadKlassNode, even if the
  1248       // object's klass is unloaded at compile time (4965979).
  1249       if (!is_known_inst) { // Do it only for non-instance types
  1250         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1252     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1253       // Static fields are in the space above the normal instance
  1254       // fields in the java.lang.Class instance.
  1255       if (to->klass() != ciEnv::current()->Class_klass()) {
  1256         to = NULL;
  1257         tj = TypeOopPtr::BOTTOM;
  1258         offset = tj->offset();
  1260     } else {
  1261       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1262       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1263         if( is_known_inst ) {
  1264           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1265         } else {
  1266           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1272   // Klass pointers to object array klasses need some flattening
  1273   const TypeKlassPtr *tk = tj->isa_klassptr();
  1274   if( tk ) {
  1275     // If we are referencing a field within a Klass, we need
  1276     // to assume the worst case of an Object.  Both exact and
  1277     // inexact types must flatten to the same alias class.
  1278     // Since the flattened result for a klass is defined to be
  1279     // precisely java.lang.Object, use a constant ptr.
  1280     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1282       tj = tk = TypeKlassPtr::make(TypePtr::Constant,
  1283                                    TypeKlassPtr::OBJECT->klass(),
  1284                                    offset);
  1287     ciKlass* klass = tk->klass();
  1288     if( klass->is_obj_array_klass() ) {
  1289       ciKlass* k = TypeAryPtr::OOPS->klass();
  1290       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1291         k = TypeInstPtr::BOTTOM->klass();
  1292       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1295     // Check for precise loads from the primary supertype array and force them
  1296     // to the supertype cache alias index.  Check for generic array loads from
  1297     // the primary supertype array and also force them to the supertype cache
  1298     // alias index.  Since the same load can reach both, we need to merge
  1299     // these 2 disparate memories into the same alias class.  Since the
  1300     // primary supertype array is read-only, there's no chance of confusion
  1301     // where we bypass an array load and an array store.
  1302     uint off2 = offset - Klass::primary_supers_offset_in_bytes();
  1303     if( offset == Type::OffsetBot ||
  1304         off2 < Klass::primary_super_limit()*wordSize ) {
  1305       offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
  1306       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1310   // Flatten all Raw pointers together.
  1311   if (tj->base() == Type::RawPtr)
  1312     tj = TypeRawPtr::BOTTOM;
  1314   if (tj->base() == Type::AnyPtr)
  1315     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1317   // Flatten all to bottom for now
  1318   switch( _AliasLevel ) {
  1319   case 0:
  1320     tj = TypePtr::BOTTOM;
  1321     break;
  1322   case 1:                       // Flatten to: oop, static, field or array
  1323     switch (tj->base()) {
  1324     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1325     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1326     case Type::AryPtr:   // do not distinguish arrays at all
  1327     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1328     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1329     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1330     default: ShouldNotReachHere();
  1332     break;
  1333   case 2:                       // No collapsing at level 2; keep all splits
  1334   case 3:                       // No collapsing at level 3; keep all splits
  1335     break;
  1336   default:
  1337     Unimplemented();
  1340   offset = tj->offset();
  1341   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1343   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1344           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1345           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1346           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1347           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1348           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1349           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1350           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1351   assert( tj->ptr() != TypePtr::TopPTR &&
  1352           tj->ptr() != TypePtr::AnyNull &&
  1353           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1354 //    assert( tj->ptr() != TypePtr::Constant ||
  1355 //            tj->base() == Type::RawPtr ||
  1356 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1358   return tj;
  1361 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1362   _index = i;
  1363   _adr_type = at;
  1364   _field = NULL;
  1365   _is_rewritable = true; // default
  1366   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1367   if (atoop != NULL && atoop->is_known_instance()) {
  1368     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1369     _general_index = Compile::current()->get_alias_index(gt);
  1370   } else {
  1371     _general_index = 0;
  1375 //---------------------------------print_on------------------------------------
  1376 #ifndef PRODUCT
  1377 void Compile::AliasType::print_on(outputStream* st) {
  1378   if (index() < 10)
  1379         st->print("@ <%d> ", index());
  1380   else  st->print("@ <%d>",  index());
  1381   st->print(is_rewritable() ? "   " : " RO");
  1382   int offset = adr_type()->offset();
  1383   if (offset == Type::OffsetBot)
  1384         st->print(" +any");
  1385   else  st->print(" +%-3d", offset);
  1386   st->print(" in ");
  1387   adr_type()->dump_on(st);
  1388   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1389   if (field() != NULL && tjp) {
  1390     if (tjp->klass()  != field()->holder() ||
  1391         tjp->offset() != field()->offset_in_bytes()) {
  1392       st->print(" != ");
  1393       field()->print();
  1394       st->print(" ***");
  1399 void print_alias_types() {
  1400   Compile* C = Compile::current();
  1401   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1402   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1403     C->alias_type(idx)->print_on(tty);
  1404     tty->cr();
  1407 #endif
  1410 //----------------------------probe_alias_cache--------------------------------
  1411 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1412   intptr_t key = (intptr_t) adr_type;
  1413   key ^= key >> logAliasCacheSize;
  1414   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1418 //-----------------------------grow_alias_types--------------------------------
  1419 void Compile::grow_alias_types() {
  1420   const int old_ats  = _max_alias_types; // how many before?
  1421   const int new_ats  = old_ats;          // how many more?
  1422   const int grow_ats = old_ats+new_ats;  // how many now?
  1423   _max_alias_types = grow_ats;
  1424   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1425   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1426   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1427   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1431 //--------------------------------find_alias_type------------------------------
  1432 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1433   if (_AliasLevel == 0)
  1434     return alias_type(AliasIdxBot);
  1436   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1437   if (ace->_adr_type == adr_type) {
  1438     return alias_type(ace->_index);
  1441   // Handle special cases.
  1442   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1443   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1445   // Do it the slow way.
  1446   const TypePtr* flat = flatten_alias_type(adr_type);
  1448 #ifdef ASSERT
  1449   assert(flat == flatten_alias_type(flat), "idempotent");
  1450   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1451   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1452     const TypeOopPtr* foop = flat->is_oopptr();
  1453     // Scalarizable allocations have exact klass always.
  1454     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1455     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1456     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1458   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1459 #endif
  1461   int idx = AliasIdxTop;
  1462   for (int i = 0; i < num_alias_types(); i++) {
  1463     if (alias_type(i)->adr_type() == flat) {
  1464       idx = i;
  1465       break;
  1469   if (idx == AliasIdxTop) {
  1470     if (no_create)  return NULL;
  1471     // Grow the array if necessary.
  1472     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1473     // Add a new alias type.
  1474     idx = _num_alias_types++;
  1475     _alias_types[idx]->Init(idx, flat);
  1476     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1477     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1478     if (flat->isa_instptr()) {
  1479       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1480           && flat->is_instptr()->klass() == env()->Class_klass())
  1481         alias_type(idx)->set_rewritable(false);
  1483     if (flat->isa_klassptr()) {
  1484       if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
  1485         alias_type(idx)->set_rewritable(false);
  1486       if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
  1487         alias_type(idx)->set_rewritable(false);
  1488       if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
  1489         alias_type(idx)->set_rewritable(false);
  1490       if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
  1491         alias_type(idx)->set_rewritable(false);
  1493     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1494     // but the base pointer type is not distinctive enough to identify
  1495     // references into JavaThread.)
  1497     // Check for final fields.
  1498     const TypeInstPtr* tinst = flat->isa_instptr();
  1499     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1500       ciField* field;
  1501       if (tinst->const_oop() != NULL &&
  1502           tinst->klass() == ciEnv::current()->Class_klass() &&
  1503           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1504         // static field
  1505         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1506         field = k->get_field_by_offset(tinst->offset(), true);
  1507       } else {
  1508         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1509         field = k->get_field_by_offset(tinst->offset(), false);
  1511       assert(field == NULL ||
  1512              original_field == NULL ||
  1513              (field->holder() == original_field->holder() &&
  1514               field->offset() == original_field->offset() &&
  1515               field->is_static() == original_field->is_static()), "wrong field?");
  1516       // Set field() and is_rewritable() attributes.
  1517       if (field != NULL)  alias_type(idx)->set_field(field);
  1521   // Fill the cache for next time.
  1522   ace->_adr_type = adr_type;
  1523   ace->_index    = idx;
  1524   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1526   // Might as well try to fill the cache for the flattened version, too.
  1527   AliasCacheEntry* face = probe_alias_cache(flat);
  1528   if (face->_adr_type == NULL) {
  1529     face->_adr_type = flat;
  1530     face->_index    = idx;
  1531     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1534   return alias_type(idx);
  1538 Compile::AliasType* Compile::alias_type(ciField* field) {
  1539   const TypeOopPtr* t;
  1540   if (field->is_static())
  1541     t = TypeInstPtr::make(field->holder()->java_mirror());
  1542   else
  1543     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1544   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1545   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
  1546   return atp;
  1550 //------------------------------have_alias_type--------------------------------
  1551 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1552   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1553   if (ace->_adr_type == adr_type) {
  1554     return true;
  1557   // Handle special cases.
  1558   if (adr_type == NULL)             return true;
  1559   if (adr_type == TypePtr::BOTTOM)  return true;
  1561   return find_alias_type(adr_type, true, NULL) != NULL;
  1564 //-----------------------------must_alias--------------------------------------
  1565 // True if all values of the given address type are in the given alias category.
  1566 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1567   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1568   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1569   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1570   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1572   // the only remaining possible overlap is identity
  1573   int adr_idx = get_alias_index(adr_type);
  1574   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1575   assert(adr_idx == alias_idx ||
  1576          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1577           && adr_type                       != TypeOopPtr::BOTTOM),
  1578          "should not be testing for overlap with an unsafe pointer");
  1579   return adr_idx == alias_idx;
  1582 //------------------------------can_alias--------------------------------------
  1583 // True if any values of the given address type are in the given alias category.
  1584 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1585   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1586   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1587   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1588   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1590   // the only remaining possible overlap is identity
  1591   int adr_idx = get_alias_index(adr_type);
  1592   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1593   return adr_idx == alias_idx;
  1598 //---------------------------pop_warm_call-------------------------------------
  1599 WarmCallInfo* Compile::pop_warm_call() {
  1600   WarmCallInfo* wci = _warm_calls;
  1601   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1602   return wci;
  1605 //----------------------------Inline_Warm--------------------------------------
  1606 int Compile::Inline_Warm() {
  1607   // If there is room, try to inline some more warm call sites.
  1608   // %%% Do a graph index compaction pass when we think we're out of space?
  1609   if (!InlineWarmCalls)  return 0;
  1611   int calls_made_hot = 0;
  1612   int room_to_grow   = NodeCountInliningCutoff - unique();
  1613   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1614   int amount_grown   = 0;
  1615   WarmCallInfo* call;
  1616   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1617     int est_size = (int)call->size();
  1618     if (est_size > (room_to_grow - amount_grown)) {
  1619       // This one won't fit anyway.  Get rid of it.
  1620       call->make_cold();
  1621       continue;
  1623     call->make_hot();
  1624     calls_made_hot++;
  1625     amount_grown   += est_size;
  1626     amount_to_grow -= est_size;
  1629   if (calls_made_hot > 0)  set_major_progress();
  1630   return calls_made_hot;
  1634 //----------------------------Finish_Warm--------------------------------------
  1635 void Compile::Finish_Warm() {
  1636   if (!InlineWarmCalls)  return;
  1637   if (failing())  return;
  1638   if (warm_calls() == NULL)  return;
  1640   // Clean up loose ends, if we are out of space for inlining.
  1641   WarmCallInfo* call;
  1642   while ((call = pop_warm_call()) != NULL) {
  1643     call->make_cold();
  1647 //---------------------cleanup_loop_predicates-----------------------
  1648 // Remove the opaque nodes that protect the predicates so that all unused
  1649 // checks and uncommon_traps will be eliminated from the ideal graph
  1650 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1651   if (predicate_count()==0) return;
  1652   for (int i = predicate_count(); i > 0; i--) {
  1653     Node * n = predicate_opaque1_node(i-1);
  1654     assert(n->Opcode() == Op_Opaque1, "must be");
  1655     igvn.replace_node(n, n->in(1));
  1657   assert(predicate_count()==0, "should be clean!");
  1660 //------------------------------Optimize---------------------------------------
  1661 // Given a graph, optimize it.
  1662 void Compile::Optimize() {
  1663   TracePhase t1("optimizer", &_t_optimizer, true);
  1665 #ifndef PRODUCT
  1666   if (env()->break_at_compile()) {
  1667     BREAKPOINT;
  1670 #endif
  1672   ResourceMark rm;
  1673   int          loop_opts_cnt;
  1675   NOT_PRODUCT( verify_graph_edges(); )
  1677   print_method("After Parsing");
  1680   // Iterative Global Value Numbering, including ideal transforms
  1681   // Initialize IterGVN with types and values from parse-time GVN
  1682   PhaseIterGVN igvn(initial_gvn());
  1684     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  1685     igvn.optimize();
  1688   print_method("Iter GVN 1", 2);
  1690   if (failing())  return;
  1692   // Perform escape analysis
  1693   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  1694     TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
  1695     ConnectionGraph::do_analysis(this, &igvn);
  1697     if (failing())  return;
  1699     igvn.optimize();
  1700     print_method("Iter GVN 3", 2);
  1702     if (failing())  return;
  1706   // Loop transforms on the ideal graph.  Range Check Elimination,
  1707   // peeling, unrolling, etc.
  1709   // Set loop opts counter
  1710   loop_opts_cnt = num_loop_opts();
  1711   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  1713       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1714       PhaseIdealLoop ideal_loop( igvn, true );
  1715       loop_opts_cnt--;
  1716       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
  1717       if (failing())  return;
  1719     // Loop opts pass if partial peeling occurred in previous pass
  1720     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  1721       TracePhase t3("idealLoop", &_t_idealLoop, true);
  1722       PhaseIdealLoop ideal_loop( igvn, false );
  1723       loop_opts_cnt--;
  1724       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
  1725       if (failing())  return;
  1727     // Loop opts pass for loop-unrolling before CCP
  1728     if(major_progress() && (loop_opts_cnt > 0)) {
  1729       TracePhase t4("idealLoop", &_t_idealLoop, true);
  1730       PhaseIdealLoop ideal_loop( igvn, false );
  1731       loop_opts_cnt--;
  1732       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
  1734     if (!failing()) {
  1735       // Verify that last round of loop opts produced a valid graph
  1736       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  1737       PhaseIdealLoop::verify(igvn);
  1740   if (failing())  return;
  1742   // Conditional Constant Propagation;
  1743   PhaseCCP ccp( &igvn );
  1744   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  1746     TracePhase t2("ccp", &_t_ccp, true);
  1747     ccp.do_transform();
  1749   print_method("PhaseCPP 1", 2);
  1751   assert( true, "Break here to ccp.dump_old2new_map()");
  1753   // Iterative Global Value Numbering, including ideal transforms
  1755     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  1756     igvn = ccp;
  1757     igvn.optimize();
  1760   print_method("Iter GVN 2", 2);
  1762   if (failing())  return;
  1764   // Loop transforms on the ideal graph.  Range Check Elimination,
  1765   // peeling, unrolling, etc.
  1766   if(loop_opts_cnt > 0) {
  1767     debug_only( int cnt = 0; );
  1768     while(major_progress() && (loop_opts_cnt > 0)) {
  1769       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1770       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  1771       PhaseIdealLoop ideal_loop( igvn, true);
  1772       loop_opts_cnt--;
  1773       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
  1774       if (failing())  return;
  1779     // Verify that all previous optimizations produced a valid graph
  1780     // at least to this point, even if no loop optimizations were done.
  1781     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  1782     PhaseIdealLoop::verify(igvn);
  1786     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  1787     PhaseMacroExpand  mex(igvn);
  1788     if (mex.expand_macro_nodes()) {
  1789       assert(failing(), "must bail out w/ explicit message");
  1790       return;
  1794  } // (End scope of igvn; run destructor if necessary for asserts.)
  1796   // A method with only infinite loops has no edges entering loops from root
  1798     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  1799     if (final_graph_reshaping()) {
  1800       assert(failing(), "must bail out w/ explicit message");
  1801       return;
  1805   print_method("Optimize finished", 2);
  1809 //------------------------------Code_Gen---------------------------------------
  1810 // Given a graph, generate code for it
  1811 void Compile::Code_Gen() {
  1812   if (failing())  return;
  1814   // Perform instruction selection.  You might think we could reclaim Matcher
  1815   // memory PDQ, but actually the Matcher is used in generating spill code.
  1816   // Internals of the Matcher (including some VectorSets) must remain live
  1817   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  1818   // set a bit in reclaimed memory.
  1820   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  1821   // nodes.  Mapping is only valid at the root of each matched subtree.
  1822   NOT_PRODUCT( verify_graph_edges(); )
  1824   Node_List proj_list;
  1825   Matcher m(proj_list);
  1826   _matcher = &m;
  1828     TracePhase t2("matcher", &_t_matcher, true);
  1829     m.match();
  1831   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  1832   // nodes.  Mapping is only valid at the root of each matched subtree.
  1833   NOT_PRODUCT( verify_graph_edges(); )
  1835   // If you have too many nodes, or if matching has failed, bail out
  1836   check_node_count(0, "out of nodes matching instructions");
  1837   if (failing())  return;
  1839   // Build a proper-looking CFG
  1840   PhaseCFG cfg(node_arena(), root(), m);
  1841   _cfg = &cfg;
  1843     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  1844     cfg.Dominators();
  1845     if (failing())  return;
  1847     NOT_PRODUCT( verify_graph_edges(); )
  1849     cfg.Estimate_Block_Frequency();
  1850     cfg.GlobalCodeMotion(m,unique(),proj_list);
  1852     print_method("Global code motion", 2);
  1854     if (failing())  return;
  1855     NOT_PRODUCT( verify_graph_edges(); )
  1857     debug_only( cfg.verify(); )
  1859   NOT_PRODUCT( verify_graph_edges(); )
  1861   PhaseChaitin regalloc(unique(),cfg,m);
  1862   _regalloc = &regalloc;
  1864     TracePhase t2("regalloc", &_t_registerAllocation, true);
  1865     // Perform any platform dependent preallocation actions.  This is used,
  1866     // for example, to avoid taking an implicit null pointer exception
  1867     // using the frame pointer on win95.
  1868     _regalloc->pd_preallocate_hook();
  1870     // Perform register allocation.  After Chaitin, use-def chains are
  1871     // no longer accurate (at spill code) and so must be ignored.
  1872     // Node->LRG->reg mappings are still accurate.
  1873     _regalloc->Register_Allocate();
  1875     // Bail out if the allocator builds too many nodes
  1876     if (failing())  return;
  1879   // Prior to register allocation we kept empty basic blocks in case the
  1880   // the allocator needed a place to spill.  After register allocation we
  1881   // are not adding any new instructions.  If any basic block is empty, we
  1882   // can now safely remove it.
  1884     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  1885     cfg.remove_empty();
  1886     if (do_freq_based_layout()) {
  1887       PhaseBlockLayout layout(cfg);
  1888     } else {
  1889       cfg.set_loop_alignment();
  1891     cfg.fixup_flow();
  1894   // Perform any platform dependent postallocation verifications.
  1895   debug_only( _regalloc->pd_postallocate_verify_hook(); )
  1897   // Apply peephole optimizations
  1898   if( OptoPeephole ) {
  1899     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  1900     PhasePeephole peep( _regalloc, cfg);
  1901     peep.do_transform();
  1904   // Convert Nodes to instruction bits in a buffer
  1906     // %%%% workspace merge brought two timers together for one job
  1907     TracePhase t2a("output", &_t_output, true);
  1908     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  1909     Output();
  1912   print_method("Final Code");
  1914   // He's dead, Jim.
  1915   _cfg     = (PhaseCFG*)0xdeadbeef;
  1916   _regalloc = (PhaseChaitin*)0xdeadbeef;
  1920 //------------------------------dump_asm---------------------------------------
  1921 // Dump formatted assembly
  1922 #ifndef PRODUCT
  1923 void Compile::dump_asm(int *pcs, uint pc_limit) {
  1924   bool cut_short = false;
  1925   tty->print_cr("#");
  1926   tty->print("#  ");  _tf->dump();  tty->cr();
  1927   tty->print_cr("#");
  1929   // For all blocks
  1930   int pc = 0x0;                 // Program counter
  1931   char starts_bundle = ' ';
  1932   _regalloc->dump_frame();
  1934   Node *n = NULL;
  1935   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  1936     if (VMThread::should_terminate()) { cut_short = true; break; }
  1937     Block *b = _cfg->_blocks[i];
  1938     if (b->is_connector() && !Verbose) continue;
  1939     n = b->_nodes[0];
  1940     if (pcs && n->_idx < pc_limit)
  1941       tty->print("%3.3x   ", pcs[n->_idx]);
  1942     else
  1943       tty->print("      ");
  1944     b->dump_head( &_cfg->_bbs );
  1945     if (b->is_connector()) {
  1946       tty->print_cr("        # Empty connector block");
  1947     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  1948       tty->print_cr("        # Block is sole successor of call");
  1951     // For all instructions
  1952     Node *delay = NULL;
  1953     for( uint j = 0; j<b->_nodes.size(); j++ ) {
  1954       if (VMThread::should_terminate()) { cut_short = true; break; }
  1955       n = b->_nodes[j];
  1956       if (valid_bundle_info(n)) {
  1957         Bundle *bundle = node_bundling(n);
  1958         if (bundle->used_in_unconditional_delay()) {
  1959           delay = n;
  1960           continue;
  1962         if (bundle->starts_bundle())
  1963           starts_bundle = '+';
  1966       if (WizardMode) n->dump();
  1968       if( !n->is_Region() &&    // Dont print in the Assembly
  1969           !n->is_Phi() &&       // a few noisely useless nodes
  1970           !n->is_Proj() &&
  1971           !n->is_MachTemp() &&
  1972           !n->is_SafePointScalarObject() &&
  1973           !n->is_Catch() &&     // Would be nice to print exception table targets
  1974           !n->is_MergeMem() &&  // Not very interesting
  1975           !n->is_top() &&       // Debug info table constants
  1976           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  1977           ) {
  1978         if (pcs && n->_idx < pc_limit)
  1979           tty->print("%3.3x", pcs[n->_idx]);
  1980         else
  1981           tty->print("   ");
  1982         tty->print(" %c ", starts_bundle);
  1983         starts_bundle = ' ';
  1984         tty->print("\t");
  1985         n->format(_regalloc, tty);
  1986         tty->cr();
  1989       // If we have an instruction with a delay slot, and have seen a delay,
  1990       // then back up and print it
  1991       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1992         assert(delay != NULL, "no unconditional delay instruction");
  1993         if (WizardMode) delay->dump();
  1995         if (node_bundling(delay)->starts_bundle())
  1996           starts_bundle = '+';
  1997         if (pcs && n->_idx < pc_limit)
  1998           tty->print("%3.3x", pcs[n->_idx]);
  1999         else
  2000           tty->print("   ");
  2001         tty->print(" %c ", starts_bundle);
  2002         starts_bundle = ' ';
  2003         tty->print("\t");
  2004         delay->format(_regalloc, tty);
  2005         tty->print_cr("");
  2006         delay = NULL;
  2009       // Dump the exception table as well
  2010       if( n->is_Catch() && (Verbose || WizardMode) ) {
  2011         // Print the exception table for this offset
  2012         _handler_table.print_subtable_for(pc);
  2016     if (pcs && n->_idx < pc_limit)
  2017       tty->print_cr("%3.3x", pcs[n->_idx]);
  2018     else
  2019       tty->print_cr("");
  2021     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2023   } // End of per-block dump
  2024   tty->print_cr("");
  2026   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2028 #endif
  2030 //------------------------------Final_Reshape_Counts---------------------------
  2031 // This class defines counters to help identify when a method
  2032 // may/must be executed using hardware with only 24-bit precision.
  2033 struct Final_Reshape_Counts : public StackObj {
  2034   int  _call_count;             // count non-inlined 'common' calls
  2035   int  _float_count;            // count float ops requiring 24-bit precision
  2036   int  _double_count;           // count double ops requiring more precision
  2037   int  _java_call_count;        // count non-inlined 'java' calls
  2038   int  _inner_loop_count;       // count loops which need alignment
  2039   VectorSet _visited;           // Visitation flags
  2040   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2042   Final_Reshape_Counts() :
  2043     _call_count(0), _float_count(0), _double_count(0),
  2044     _java_call_count(0), _inner_loop_count(0),
  2045     _visited( Thread::current()->resource_area() ) { }
  2047   void inc_call_count  () { _call_count  ++; }
  2048   void inc_float_count () { _float_count ++; }
  2049   void inc_double_count() { _double_count++; }
  2050   void inc_java_call_count() { _java_call_count++; }
  2051   void inc_inner_loop_count() { _inner_loop_count++; }
  2053   int  get_call_count  () const { return _call_count  ; }
  2054   int  get_float_count () const { return _float_count ; }
  2055   int  get_double_count() const { return _double_count; }
  2056   int  get_java_call_count() const { return _java_call_count; }
  2057   int  get_inner_loop_count() const { return _inner_loop_count; }
  2058 };
  2060 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2061   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2062   // Make sure the offset goes inside the instance layout.
  2063   return k->contains_field_offset(tp->offset());
  2064   // Note that OffsetBot and OffsetTop are very negative.
  2067 // Eliminate trivially redundant StoreCMs and accumulate their
  2068 // precedence edges.
  2069 static void eliminate_redundant_card_marks(Node* n) {
  2070   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
  2071   if (n->in(MemNode::Address)->outcnt() > 1) {
  2072     // There are multiple users of the same address so it might be
  2073     // possible to eliminate some of the StoreCMs
  2074     Node* mem = n->in(MemNode::Memory);
  2075     Node* adr = n->in(MemNode::Address);
  2076     Node* val = n->in(MemNode::ValueIn);
  2077     Node* prev = n;
  2078     bool done = false;
  2079     // Walk the chain of StoreCMs eliminating ones that match.  As
  2080     // long as it's a chain of single users then the optimization is
  2081     // safe.  Eliminating partially redundant StoreCMs would require
  2082     // cloning copies down the other paths.
  2083     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
  2084       if (adr == mem->in(MemNode::Address) &&
  2085           val == mem->in(MemNode::ValueIn)) {
  2086         // redundant StoreCM
  2087         if (mem->req() > MemNode::OopStore) {
  2088           // Hasn't been processed by this code yet.
  2089           n->add_prec(mem->in(MemNode::OopStore));
  2090         } else {
  2091           // Already converted to precedence edge
  2092           for (uint i = mem->req(); i < mem->len(); i++) {
  2093             // Accumulate any precedence edges
  2094             if (mem->in(i) != NULL) {
  2095               n->add_prec(mem->in(i));
  2098           // Everything above this point has been processed.
  2099           done = true;
  2101         // Eliminate the previous StoreCM
  2102         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2103         assert(mem->outcnt() == 0, "should be dead");
  2104         mem->disconnect_inputs(NULL);
  2105       } else {
  2106         prev = mem;
  2108       mem = prev->in(MemNode::Memory);
  2113 //------------------------------final_graph_reshaping_impl----------------------
  2114 // Implement items 1-5 from final_graph_reshaping below.
  2115 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
  2117   if ( n->outcnt() == 0 ) return; // dead node
  2118   uint nop = n->Opcode();
  2120   // Check for 2-input instruction with "last use" on right input.
  2121   // Swap to left input.  Implements item (2).
  2122   if( n->req() == 3 &&          // two-input instruction
  2123       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2124       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2125       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2126       !n->in(2)->is_Con() ) {   // right use is not a constant
  2127     // Check for commutative opcode
  2128     switch( nop ) {
  2129     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2130     case Op_MaxI:  case Op_MinI:
  2131     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2132     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2133     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2134       // Move "last use" input to left by swapping inputs
  2135       n->swap_edges(1, 2);
  2136       break;
  2138     default:
  2139       break;
  2143 #ifdef ASSERT
  2144   if( n->is_Mem() ) {
  2145     Compile* C = Compile::current();
  2146     int alias_idx = C->get_alias_index(n->as_Mem()->adr_type());
  2147     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2148             // oop will be recorded in oop map if load crosses safepoint
  2149             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2150                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2151             "raw memory operations should have control edge");
  2153 #endif
  2154   // Count FPU ops and common calls, implements item (3)
  2155   switch( nop ) {
  2156   // Count all float operations that may use FPU
  2157   case Op_AddF:
  2158   case Op_SubF:
  2159   case Op_MulF:
  2160   case Op_DivF:
  2161   case Op_NegF:
  2162   case Op_ModF:
  2163   case Op_ConvI2F:
  2164   case Op_ConF:
  2165   case Op_CmpF:
  2166   case Op_CmpF3:
  2167   // case Op_ConvL2F: // longs are split into 32-bit halves
  2168     frc.inc_float_count();
  2169     break;
  2171   case Op_ConvF2D:
  2172   case Op_ConvD2F:
  2173     frc.inc_float_count();
  2174     frc.inc_double_count();
  2175     break;
  2177   // Count all double operations that may use FPU
  2178   case Op_AddD:
  2179   case Op_SubD:
  2180   case Op_MulD:
  2181   case Op_DivD:
  2182   case Op_NegD:
  2183   case Op_ModD:
  2184   case Op_ConvI2D:
  2185   case Op_ConvD2I:
  2186   // case Op_ConvL2D: // handled by leaf call
  2187   // case Op_ConvD2L: // handled by leaf call
  2188   case Op_ConD:
  2189   case Op_CmpD:
  2190   case Op_CmpD3:
  2191     frc.inc_double_count();
  2192     break;
  2193   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2194   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2195     n->subsume_by(n->in(1));
  2196     break;
  2197   case Op_CallStaticJava:
  2198   case Op_CallJava:
  2199   case Op_CallDynamicJava:
  2200     frc.inc_java_call_count(); // Count java call site;
  2201   case Op_CallRuntime:
  2202   case Op_CallLeaf:
  2203   case Op_CallLeafNoFP: {
  2204     assert( n->is_Call(), "" );
  2205     CallNode *call = n->as_Call();
  2206     // Count call sites where the FP mode bit would have to be flipped.
  2207     // Do not count uncommon runtime calls:
  2208     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2209     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2210     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2211       frc.inc_call_count();   // Count the call site
  2212     } else {                  // See if uncommon argument is shared
  2213       Node *n = call->in(TypeFunc::Parms);
  2214       int nop = n->Opcode();
  2215       // Clone shared simple arguments to uncommon calls, item (1).
  2216       if( n->outcnt() > 1 &&
  2217           !n->is_Proj() &&
  2218           nop != Op_CreateEx &&
  2219           nop != Op_CheckCastPP &&
  2220           nop != Op_DecodeN &&
  2221           !n->is_Mem() ) {
  2222         Node *x = n->clone();
  2223         call->set_req( TypeFunc::Parms, x );
  2226     break;
  2229   case Op_StoreD:
  2230   case Op_LoadD:
  2231   case Op_LoadD_unaligned:
  2232     frc.inc_double_count();
  2233     goto handle_mem;
  2234   case Op_StoreF:
  2235   case Op_LoadF:
  2236     frc.inc_float_count();
  2237     goto handle_mem;
  2239   case Op_StoreCM:
  2241       // Convert OopStore dependence into precedence edge
  2242       Node* prec = n->in(MemNode::OopStore);
  2243       n->del_req(MemNode::OopStore);
  2244       n->add_prec(prec);
  2245       eliminate_redundant_card_marks(n);
  2248     // fall through
  2250   case Op_StoreB:
  2251   case Op_StoreC:
  2252   case Op_StorePConditional:
  2253   case Op_StoreI:
  2254   case Op_StoreL:
  2255   case Op_StoreIConditional:
  2256   case Op_StoreLConditional:
  2257   case Op_CompareAndSwapI:
  2258   case Op_CompareAndSwapL:
  2259   case Op_CompareAndSwapP:
  2260   case Op_CompareAndSwapN:
  2261   case Op_StoreP:
  2262   case Op_StoreN:
  2263   case Op_LoadB:
  2264   case Op_LoadUB:
  2265   case Op_LoadUS:
  2266   case Op_LoadI:
  2267   case Op_LoadUI2L:
  2268   case Op_LoadKlass:
  2269   case Op_LoadNKlass:
  2270   case Op_LoadL:
  2271   case Op_LoadL_unaligned:
  2272   case Op_LoadPLocked:
  2273   case Op_LoadLLocked:
  2274   case Op_LoadP:
  2275   case Op_LoadN:
  2276   case Op_LoadRange:
  2277   case Op_LoadS: {
  2278   handle_mem:
  2279 #ifdef ASSERT
  2280     if( VerifyOptoOopOffsets ) {
  2281       assert( n->is_Mem(), "" );
  2282       MemNode *mem  = (MemNode*)n;
  2283       // Check to see if address types have grounded out somehow.
  2284       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2285       assert( !tp || oop_offset_is_sane(tp), "" );
  2287 #endif
  2288     break;
  2291   case Op_AddP: {               // Assert sane base pointers
  2292     Node *addp = n->in(AddPNode::Address);
  2293     assert( !addp->is_AddP() ||
  2294             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2295             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2296             "Base pointers must match" );
  2297 #ifdef _LP64
  2298     if (UseCompressedOops &&
  2299         addp->Opcode() == Op_ConP &&
  2300         addp == n->in(AddPNode::Base) &&
  2301         n->in(AddPNode::Offset)->is_Con()) {
  2302       // Use addressing with narrow klass to load with offset on x86.
  2303       // On sparc loading 32-bits constant and decoding it have less
  2304       // instructions (4) then load 64-bits constant (7).
  2305       // Do this transformation here since IGVN will convert ConN back to ConP.
  2306       const Type* t = addp->bottom_type();
  2307       if (t->isa_oopptr()) {
  2308         Node* nn = NULL;
  2310         // Look for existing ConN node of the same exact type.
  2311         Compile* C = Compile::current();
  2312         Node* r  = C->root();
  2313         uint cnt = r->outcnt();
  2314         for (uint i = 0; i < cnt; i++) {
  2315           Node* m = r->raw_out(i);
  2316           if (m!= NULL && m->Opcode() == Op_ConN &&
  2317               m->bottom_type()->make_ptr() == t) {
  2318             nn = m;
  2319             break;
  2322         if (nn != NULL) {
  2323           // Decode a narrow oop to match address
  2324           // [R12 + narrow_oop_reg<<3 + offset]
  2325           nn = new (C,  2) DecodeNNode(nn, t);
  2326           n->set_req(AddPNode::Base, nn);
  2327           n->set_req(AddPNode::Address, nn);
  2328           if (addp->outcnt() == 0) {
  2329             addp->disconnect_inputs(NULL);
  2334 #endif
  2335     break;
  2338 #ifdef _LP64
  2339   case Op_CastPP:
  2340     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2341       Compile* C = Compile::current();
  2342       Node* in1 = n->in(1);
  2343       const Type* t = n->bottom_type();
  2344       Node* new_in1 = in1->clone();
  2345       new_in1->as_DecodeN()->set_type(t);
  2347       if (!Matcher::narrow_oop_use_complex_address()) {
  2348         //
  2349         // x86, ARM and friends can handle 2 adds in addressing mode
  2350         // and Matcher can fold a DecodeN node into address by using
  2351         // a narrow oop directly and do implicit NULL check in address:
  2352         //
  2353         // [R12 + narrow_oop_reg<<3 + offset]
  2354         // NullCheck narrow_oop_reg
  2355         //
  2356         // On other platforms (Sparc) we have to keep new DecodeN node and
  2357         // use it to do implicit NULL check in address:
  2358         //
  2359         // decode_not_null narrow_oop_reg, base_reg
  2360         // [base_reg + offset]
  2361         // NullCheck base_reg
  2362         //
  2363         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2364         // to keep the information to which NULL check the new DecodeN node
  2365         // corresponds to use it as value in implicit_null_check().
  2366         //
  2367         new_in1->set_req(0, n->in(0));
  2370       n->subsume_by(new_in1);
  2371       if (in1->outcnt() == 0) {
  2372         in1->disconnect_inputs(NULL);
  2375     break;
  2377   case Op_CmpP:
  2378     // Do this transformation here to preserve CmpPNode::sub() and
  2379     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2380     if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
  2381       Node* in1 = n->in(1);
  2382       Node* in2 = n->in(2);
  2383       if (!in1->is_DecodeN()) {
  2384         in2 = in1;
  2385         in1 = n->in(2);
  2387       assert(in1->is_DecodeN(), "sanity");
  2389       Compile* C = Compile::current();
  2390       Node* new_in2 = NULL;
  2391       if (in2->is_DecodeN()) {
  2392         new_in2 = in2->in(1);
  2393       } else if (in2->Opcode() == Op_ConP) {
  2394         const Type* t = in2->bottom_type();
  2395         if (t == TypePtr::NULL_PTR) {
  2396           // Don't convert CmpP null check into CmpN if compressed
  2397           // oops implicit null check is not generated.
  2398           // This will allow to generate normal oop implicit null check.
  2399           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2400             new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
  2401           //
  2402           // This transformation together with CastPP transformation above
  2403           // will generated code for implicit NULL checks for compressed oops.
  2404           //
  2405           // The original code after Optimize()
  2406           //
  2407           //    LoadN memory, narrow_oop_reg
  2408           //    decode narrow_oop_reg, base_reg
  2409           //    CmpP base_reg, NULL
  2410           //    CastPP base_reg // NotNull
  2411           //    Load [base_reg + offset], val_reg
  2412           //
  2413           // after these transformations will be
  2414           //
  2415           //    LoadN memory, narrow_oop_reg
  2416           //    CmpN narrow_oop_reg, NULL
  2417           //    decode_not_null narrow_oop_reg, base_reg
  2418           //    Load [base_reg + offset], val_reg
  2419           //
  2420           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2421           // since narrow oops can be used in debug info now (see the code in
  2422           // final_graph_reshaping_walk()).
  2423           //
  2424           // At the end the code will be matched to
  2425           // on x86:
  2426           //
  2427           //    Load_narrow_oop memory, narrow_oop_reg
  2428           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2429           //    NullCheck narrow_oop_reg
  2430           //
  2431           // and on sparc:
  2432           //
  2433           //    Load_narrow_oop memory, narrow_oop_reg
  2434           //    decode_not_null narrow_oop_reg, base_reg
  2435           //    Load [base_reg + offset], val_reg
  2436           //    NullCheck base_reg
  2437           //
  2438         } else if (t->isa_oopptr()) {
  2439           new_in2 = ConNode::make(C, t->make_narrowoop());
  2442       if (new_in2 != NULL) {
  2443         Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
  2444         n->subsume_by( cmpN );
  2445         if (in1->outcnt() == 0) {
  2446           in1->disconnect_inputs(NULL);
  2448         if (in2->outcnt() == 0) {
  2449           in2->disconnect_inputs(NULL);
  2453     break;
  2455   case Op_DecodeN:
  2456     assert(!n->in(1)->is_EncodeP(), "should be optimized out");
  2457     // DecodeN could be pinned when it can't be fold into
  2458     // an address expression, see the code for Op_CastPP above.
  2459     assert(n->in(0) == NULL || !Matcher::narrow_oop_use_complex_address(), "no control");
  2460     break;
  2462   case Op_EncodeP: {
  2463     Node* in1 = n->in(1);
  2464     if (in1->is_DecodeN()) {
  2465       n->subsume_by(in1->in(1));
  2466     } else if (in1->Opcode() == Op_ConP) {
  2467       Compile* C = Compile::current();
  2468       const Type* t = in1->bottom_type();
  2469       if (t == TypePtr::NULL_PTR) {
  2470         n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
  2471       } else if (t->isa_oopptr()) {
  2472         n->subsume_by(ConNode::make(C, t->make_narrowoop()));
  2475     if (in1->outcnt() == 0) {
  2476       in1->disconnect_inputs(NULL);
  2478     break;
  2481   case Op_Proj: {
  2482     if (OptimizeStringConcat) {
  2483       ProjNode* p = n->as_Proj();
  2484       if (p->_is_io_use) {
  2485         // Separate projections were used for the exception path which
  2486         // are normally removed by a late inline.  If it wasn't inlined
  2487         // then they will hang around and should just be replaced with
  2488         // the original one.
  2489         Node* proj = NULL;
  2490         // Replace with just one
  2491         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  2492           Node *use = i.get();
  2493           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  2494             proj = use;
  2495             break;
  2498         assert(p != NULL, "must be found");
  2499         p->subsume_by(proj);
  2502     break;
  2505   case Op_Phi:
  2506     if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
  2507       // The EncodeP optimization may create Phi with the same edges
  2508       // for all paths. It is not handled well by Register Allocator.
  2509       Node* unique_in = n->in(1);
  2510       assert(unique_in != NULL, "");
  2511       uint cnt = n->req();
  2512       for (uint i = 2; i < cnt; i++) {
  2513         Node* m = n->in(i);
  2514         assert(m != NULL, "");
  2515         if (unique_in != m)
  2516           unique_in = NULL;
  2518       if (unique_in != NULL) {
  2519         n->subsume_by(unique_in);
  2522     break;
  2524 #endif
  2526   case Op_ModI:
  2527     if (UseDivMod) {
  2528       // Check if a%b and a/b both exist
  2529       Node* d = n->find_similar(Op_DivI);
  2530       if (d) {
  2531         // Replace them with a fused divmod if supported
  2532         Compile* C = Compile::current();
  2533         if (Matcher::has_match_rule(Op_DivModI)) {
  2534           DivModINode* divmod = DivModINode::make(C, n);
  2535           d->subsume_by(divmod->div_proj());
  2536           n->subsume_by(divmod->mod_proj());
  2537         } else {
  2538           // replace a%b with a-((a/b)*b)
  2539           Node* mult = new (C, 3) MulINode(d, d->in(2));
  2540           Node* sub  = new (C, 3) SubINode(d->in(1), mult);
  2541           n->subsume_by( sub );
  2545     break;
  2547   case Op_ModL:
  2548     if (UseDivMod) {
  2549       // Check if a%b and a/b both exist
  2550       Node* d = n->find_similar(Op_DivL);
  2551       if (d) {
  2552         // Replace them with a fused divmod if supported
  2553         Compile* C = Compile::current();
  2554         if (Matcher::has_match_rule(Op_DivModL)) {
  2555           DivModLNode* divmod = DivModLNode::make(C, n);
  2556           d->subsume_by(divmod->div_proj());
  2557           n->subsume_by(divmod->mod_proj());
  2558         } else {
  2559           // replace a%b with a-((a/b)*b)
  2560           Node* mult = new (C, 3) MulLNode(d, d->in(2));
  2561           Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
  2562           n->subsume_by( sub );
  2566     break;
  2568   case Op_Load16B:
  2569   case Op_Load8B:
  2570   case Op_Load4B:
  2571   case Op_Load8S:
  2572   case Op_Load4S:
  2573   case Op_Load2S:
  2574   case Op_Load8C:
  2575   case Op_Load4C:
  2576   case Op_Load2C:
  2577   case Op_Load4I:
  2578   case Op_Load2I:
  2579   case Op_Load2L:
  2580   case Op_Load4F:
  2581   case Op_Load2F:
  2582   case Op_Load2D:
  2583   case Op_Store16B:
  2584   case Op_Store8B:
  2585   case Op_Store4B:
  2586   case Op_Store8C:
  2587   case Op_Store4C:
  2588   case Op_Store2C:
  2589   case Op_Store4I:
  2590   case Op_Store2I:
  2591   case Op_Store2L:
  2592   case Op_Store4F:
  2593   case Op_Store2F:
  2594   case Op_Store2D:
  2595     break;
  2597   case Op_PackB:
  2598   case Op_PackS:
  2599   case Op_PackC:
  2600   case Op_PackI:
  2601   case Op_PackF:
  2602   case Op_PackL:
  2603   case Op_PackD:
  2604     if (n->req()-1 > 2) {
  2605       // Replace many operand PackNodes with a binary tree for matching
  2606       PackNode* p = (PackNode*) n;
  2607       Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
  2608       n->subsume_by(btp);
  2610     break;
  2611   case Op_Loop:
  2612   case Op_CountedLoop:
  2613     if (n->as_Loop()->is_inner_loop()) {
  2614       frc.inc_inner_loop_count();
  2616     break;
  2617   case Op_LShiftI:
  2618   case Op_RShiftI:
  2619   case Op_URShiftI:
  2620   case Op_LShiftL:
  2621   case Op_RShiftL:
  2622   case Op_URShiftL:
  2623     if (Matcher::need_masked_shift_count) {
  2624       // The cpu's shift instructions don't restrict the count to the
  2625       // lower 5/6 bits. We need to do the masking ourselves.
  2626       Node* in2 = n->in(2);
  2627       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  2628       const TypeInt* t = in2->find_int_type();
  2629       if (t != NULL && t->is_con()) {
  2630         juint shift = t->get_con();
  2631         if (shift > mask) { // Unsigned cmp
  2632           Compile* C = Compile::current();
  2633           n->set_req(2, ConNode::make(C, TypeInt::make(shift & mask)));
  2635       } else {
  2636         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  2637           Compile* C = Compile::current();
  2638           Node* shift = new (C, 3) AndINode(in2, ConNode::make(C, TypeInt::make(mask)));
  2639           n->set_req(2, shift);
  2642       if (in2->outcnt() == 0) { // Remove dead node
  2643         in2->disconnect_inputs(NULL);
  2646     break;
  2647   default:
  2648     assert( !n->is_Call(), "" );
  2649     assert( !n->is_Mem(), "" );
  2650     break;
  2653   // Collect CFG split points
  2654   if (n->is_MultiBranch())
  2655     frc._tests.push(n);
  2658 //------------------------------final_graph_reshaping_walk---------------------
  2659 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  2660 // requires that the walk visits a node's inputs before visiting the node.
  2661 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  2662   ResourceArea *area = Thread::current()->resource_area();
  2663   Unique_Node_List sfpt(area);
  2665   frc._visited.set(root->_idx); // first, mark node as visited
  2666   uint cnt = root->req();
  2667   Node *n = root;
  2668   uint  i = 0;
  2669   while (true) {
  2670     if (i < cnt) {
  2671       // Place all non-visited non-null inputs onto stack
  2672       Node* m = n->in(i);
  2673       ++i;
  2674       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  2675         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
  2676           sfpt.push(m);
  2677         cnt = m->req();
  2678         nstack.push(n, i); // put on stack parent and next input's index
  2679         n = m;
  2680         i = 0;
  2682     } else {
  2683       // Now do post-visit work
  2684       final_graph_reshaping_impl( n, frc );
  2685       if (nstack.is_empty())
  2686         break;             // finished
  2687       n = nstack.node();   // Get node from stack
  2688       cnt = n->req();
  2689       i = nstack.index();
  2690       nstack.pop();        // Shift to the next node on stack
  2694   // Skip next transformation if compressed oops are not used.
  2695   if (!UseCompressedOops || !Matcher::gen_narrow_oop_implicit_null_checks())
  2696     return;
  2698   // Go over safepoints nodes to skip DecodeN nodes for debug edges.
  2699   // It could be done for an uncommon traps or any safepoints/calls
  2700   // if the DecodeN node is referenced only in a debug info.
  2701   while (sfpt.size() > 0) {
  2702     n = sfpt.pop();
  2703     JVMState *jvms = n->as_SafePoint()->jvms();
  2704     assert(jvms != NULL, "sanity");
  2705     int start = jvms->debug_start();
  2706     int end   = n->req();
  2707     bool is_uncommon = (n->is_CallStaticJava() &&
  2708                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  2709     for (int j = start; j < end; j++) {
  2710       Node* in = n->in(j);
  2711       if (in->is_DecodeN()) {
  2712         bool safe_to_skip = true;
  2713         if (!is_uncommon ) {
  2714           // Is it safe to skip?
  2715           for (uint i = 0; i < in->outcnt(); i++) {
  2716             Node* u = in->raw_out(i);
  2717             if (!u->is_SafePoint() ||
  2718                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  2719               safe_to_skip = false;
  2723         if (safe_to_skip) {
  2724           n->set_req(j, in->in(1));
  2726         if (in->outcnt() == 0) {
  2727           in->disconnect_inputs(NULL);
  2734 //------------------------------final_graph_reshaping--------------------------
  2735 // Final Graph Reshaping.
  2736 //
  2737 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  2738 //     and not commoned up and forced early.  Must come after regular
  2739 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  2740 //     inputs to Loop Phis; these will be split by the allocator anyways.
  2741 //     Remove Opaque nodes.
  2742 // (2) Move last-uses by commutative operations to the left input to encourage
  2743 //     Intel update-in-place two-address operations and better register usage
  2744 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  2745 //     calls canonicalizing them back.
  2746 // (3) Count the number of double-precision FP ops, single-precision FP ops
  2747 //     and call sites.  On Intel, we can get correct rounding either by
  2748 //     forcing singles to memory (requires extra stores and loads after each
  2749 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  2750 //     clearing the mode bit around call sites).  The mode bit is only used
  2751 //     if the relative frequency of single FP ops to calls is low enough.
  2752 //     This is a key transform for SPEC mpeg_audio.
  2753 // (4) Detect infinite loops; blobs of code reachable from above but not
  2754 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  2755 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  2756 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  2757 //     Detection is by looking for IfNodes where only 1 projection is
  2758 //     reachable from below or CatchNodes missing some targets.
  2759 // (5) Assert for insane oop offsets in debug mode.
  2761 bool Compile::final_graph_reshaping() {
  2762   // an infinite loop may have been eliminated by the optimizer,
  2763   // in which case the graph will be empty.
  2764   if (root()->req() == 1) {
  2765     record_method_not_compilable("trivial infinite loop");
  2766     return true;
  2769   Final_Reshape_Counts frc;
  2771   // Visit everybody reachable!
  2772   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2773   Node_Stack nstack(unique() >> 1);
  2774   final_graph_reshaping_walk(nstack, root(), frc);
  2776   // Check for unreachable (from below) code (i.e., infinite loops).
  2777   for( uint i = 0; i < frc._tests.size(); i++ ) {
  2778     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  2779     // Get number of CFG targets.
  2780     // Note that PCTables include exception targets after calls.
  2781     uint required_outcnt = n->required_outcnt();
  2782     if (n->outcnt() != required_outcnt) {
  2783       // Check for a few special cases.  Rethrow Nodes never take the
  2784       // 'fall-thru' path, so expected kids is 1 less.
  2785       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  2786         if (n->in(0)->in(0)->is_Call()) {
  2787           CallNode *call = n->in(0)->in(0)->as_Call();
  2788           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  2789             required_outcnt--;      // Rethrow always has 1 less kid
  2790           } else if (call->req() > TypeFunc::Parms &&
  2791                      call->is_CallDynamicJava()) {
  2792             // Check for null receiver. In such case, the optimizer has
  2793             // detected that the virtual call will always result in a null
  2794             // pointer exception. The fall-through projection of this CatchNode
  2795             // will not be populated.
  2796             Node *arg0 = call->in(TypeFunc::Parms);
  2797             if (arg0->is_Type() &&
  2798                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  2799               required_outcnt--;
  2801           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  2802                      call->req() > TypeFunc::Parms+1 &&
  2803                      call->is_CallStaticJava()) {
  2804             // Check for negative array length. In such case, the optimizer has
  2805             // detected that the allocation attempt will always result in an
  2806             // exception. There is no fall-through projection of this CatchNode .
  2807             Node *arg1 = call->in(TypeFunc::Parms+1);
  2808             if (arg1->is_Type() &&
  2809                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  2810               required_outcnt--;
  2815       // Recheck with a better notion of 'required_outcnt'
  2816       if (n->outcnt() != required_outcnt) {
  2817         record_method_not_compilable("malformed control flow");
  2818         return true;            // Not all targets reachable!
  2821     // Check that I actually visited all kids.  Unreached kids
  2822     // must be infinite loops.
  2823     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  2824       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  2825         record_method_not_compilable("infinite loop");
  2826         return true;            // Found unvisited kid; must be unreach
  2830   // If original bytecodes contained a mixture of floats and doubles
  2831   // check if the optimizer has made it homogenous, item (3).
  2832   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  2833       frc.get_float_count() > 32 &&
  2834       frc.get_double_count() == 0 &&
  2835       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  2836     set_24_bit_selection_and_mode( false,  true );
  2839   set_java_calls(frc.get_java_call_count());
  2840   set_inner_loops(frc.get_inner_loop_count());
  2842   // No infinite loops, no reason to bail out.
  2843   return false;
  2846 //-----------------------------too_many_traps----------------------------------
  2847 // Report if there are too many traps at the current method and bci.
  2848 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  2849 bool Compile::too_many_traps(ciMethod* method,
  2850                              int bci,
  2851                              Deoptimization::DeoptReason reason) {
  2852   ciMethodData* md = method->method_data();
  2853   if (md->is_empty()) {
  2854     // Assume the trap has not occurred, or that it occurred only
  2855     // because of a transient condition during start-up in the interpreter.
  2856     return false;
  2858   if (md->has_trap_at(bci, reason) != 0) {
  2859     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  2860     // Also, if there are multiple reasons, or if there is no per-BCI record,
  2861     // assume the worst.
  2862     if (log())
  2863       log()->elem("observe trap='%s' count='%d'",
  2864                   Deoptimization::trap_reason_name(reason),
  2865                   md->trap_count(reason));
  2866     return true;
  2867   } else {
  2868     // Ignore method/bci and see if there have been too many globally.
  2869     return too_many_traps(reason, md);
  2873 // Less-accurate variant which does not require a method and bci.
  2874 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  2875                              ciMethodData* logmd) {
  2876  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
  2877     // Too many traps globally.
  2878     // Note that we use cumulative trap_count, not just md->trap_count.
  2879     if (log()) {
  2880       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  2881       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  2882                   Deoptimization::trap_reason_name(reason),
  2883                   mcount, trap_count(reason));
  2885     return true;
  2886   } else {
  2887     // The coast is clear.
  2888     return false;
  2892 //--------------------------too_many_recompiles--------------------------------
  2893 // Report if there are too many recompiles at the current method and bci.
  2894 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  2895 // Is not eager to return true, since this will cause the compiler to use
  2896 // Action_none for a trap point, to avoid too many recompilations.
  2897 bool Compile::too_many_recompiles(ciMethod* method,
  2898                                   int bci,
  2899                                   Deoptimization::DeoptReason reason) {
  2900   ciMethodData* md = method->method_data();
  2901   if (md->is_empty()) {
  2902     // Assume the trap has not occurred, or that it occurred only
  2903     // because of a transient condition during start-up in the interpreter.
  2904     return false;
  2906   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  2907   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  2908   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  2909   Deoptimization::DeoptReason per_bc_reason
  2910     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  2911   if ((per_bc_reason == Deoptimization::Reason_none
  2912        || md->has_trap_at(bci, reason) != 0)
  2913       // The trap frequency measure we care about is the recompile count:
  2914       && md->trap_recompiled_at(bci)
  2915       && md->overflow_recompile_count() >= bc_cutoff) {
  2916     // Do not emit a trap here if it has already caused recompilations.
  2917     // Also, if there are multiple reasons, or if there is no per-BCI record,
  2918     // assume the worst.
  2919     if (log())
  2920       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  2921                   Deoptimization::trap_reason_name(reason),
  2922                   md->trap_count(reason),
  2923                   md->overflow_recompile_count());
  2924     return true;
  2925   } else if (trap_count(reason) != 0
  2926              && decompile_count() >= m_cutoff) {
  2927     // Too many recompiles globally, and we have seen this sort of trap.
  2928     // Use cumulative decompile_count, not just md->decompile_count.
  2929     if (log())
  2930       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  2931                   Deoptimization::trap_reason_name(reason),
  2932                   md->trap_count(reason), trap_count(reason),
  2933                   md->decompile_count(), decompile_count());
  2934     return true;
  2935   } else {
  2936     // The coast is clear.
  2937     return false;
  2942 #ifndef PRODUCT
  2943 //------------------------------verify_graph_edges---------------------------
  2944 // Walk the Graph and verify that there is a one-to-one correspondence
  2945 // between Use-Def edges and Def-Use edges in the graph.
  2946 void Compile::verify_graph_edges(bool no_dead_code) {
  2947   if (VerifyGraphEdges) {
  2948     ResourceArea *area = Thread::current()->resource_area();
  2949     Unique_Node_List visited(area);
  2950     // Call recursive graph walk to check edges
  2951     _root->verify_edges(visited);
  2952     if (no_dead_code) {
  2953       // Now make sure that no visited node is used by an unvisited node.
  2954       bool dead_nodes = 0;
  2955       Unique_Node_List checked(area);
  2956       while (visited.size() > 0) {
  2957         Node* n = visited.pop();
  2958         checked.push(n);
  2959         for (uint i = 0; i < n->outcnt(); i++) {
  2960           Node* use = n->raw_out(i);
  2961           if (checked.member(use))  continue;  // already checked
  2962           if (visited.member(use))  continue;  // already in the graph
  2963           if (use->is_Con())        continue;  // a dead ConNode is OK
  2964           // At this point, we have found a dead node which is DU-reachable.
  2965           if (dead_nodes++ == 0)
  2966             tty->print_cr("*** Dead nodes reachable via DU edges:");
  2967           use->dump(2);
  2968           tty->print_cr("---");
  2969           checked.push(use);  // No repeats; pretend it is now checked.
  2972       assert(dead_nodes == 0, "using nodes must be reachable from root");
  2976 #endif
  2978 // The Compile object keeps track of failure reasons separately from the ciEnv.
  2979 // This is required because there is not quite a 1-1 relation between the
  2980 // ciEnv and its compilation task and the Compile object.  Note that one
  2981 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  2982 // to backtrack and retry without subsuming loads.  Other than this backtracking
  2983 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  2984 // by the logic in C2Compiler.
  2985 void Compile::record_failure(const char* reason) {
  2986   if (log() != NULL) {
  2987     log()->elem("failure reason='%s' phase='compile'", reason);
  2989   if (_failure_reason == NULL) {
  2990     // Record the first failure reason.
  2991     _failure_reason = reason;
  2993   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  2994     C->print_method(_failure_reason);
  2996   _root = NULL;  // flush the graph, too
  2999 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  3000   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
  3002   if (dolog) {
  3003     C = Compile::current();
  3004     _log = C->log();
  3005   } else {
  3006     C = NULL;
  3007     _log = NULL;
  3009   if (_log != NULL) {
  3010     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
  3011     _log->stamp();
  3012     _log->end_head();
  3016 Compile::TracePhase::~TracePhase() {
  3017   if (_log != NULL) {
  3018     _log->done("phase nodes='%d'", C->unique());
  3022 //=============================================================================
  3023 // Two Constant's are equal when the type and the value are equal.
  3024 bool Compile::Constant::operator==(const Constant& other) {
  3025   if (type()          != other.type()         )  return false;
  3026   if (can_be_reused() != other.can_be_reused())  return false;
  3027   // For floating point values we compare the bit pattern.
  3028   switch (type()) {
  3029   case T_FLOAT:   return (_value.i == other._value.i);
  3030   case T_LONG:
  3031   case T_DOUBLE:  return (_value.j == other._value.j);
  3032   case T_OBJECT:
  3033   case T_ADDRESS: return (_value.l == other._value.l);
  3034   case T_VOID:    return (_value.l == other._value.l);  // jump-table entries
  3035   default: ShouldNotReachHere();
  3037   return false;
  3040 // Emit constants grouped in the following order:
  3041 static BasicType type_order[] = {
  3042   T_FLOAT,    // 32-bit
  3043   T_OBJECT,   // 32 or 64-bit
  3044   T_ADDRESS,  // 32 or 64-bit
  3045   T_DOUBLE,   // 64-bit
  3046   T_LONG,     // 64-bit
  3047   T_VOID,     // 32 or 64-bit (jump-tables are at the end of the constant table for code emission reasons)
  3048   T_ILLEGAL
  3049 };
  3051 static int type_to_size_in_bytes(BasicType t) {
  3052   switch (t) {
  3053   case T_LONG:    return sizeof(jlong  );
  3054   case T_FLOAT:   return sizeof(jfloat );
  3055   case T_DOUBLE:  return sizeof(jdouble);
  3056     // We use T_VOID as marker for jump-table entries (labels) which
  3057     // need an interal word relocation.
  3058   case T_VOID:
  3059   case T_ADDRESS:
  3060   case T_OBJECT:  return sizeof(jobject);
  3063   ShouldNotReachHere();
  3064   return -1;
  3067 void Compile::ConstantTable::calculate_offsets_and_size() {
  3068   int size = 0;
  3069   for (int t = 0; type_order[t] != T_ILLEGAL; t++) {
  3070     BasicType type = type_order[t];
  3072     for (int i = 0; i < _constants.length(); i++) {
  3073       Constant con = _constants.at(i);
  3074       if (con.type() != type)  continue;  // Skip other types.
  3076       // Align size for type.
  3077       int typesize = type_to_size_in_bytes(con.type());
  3078       size = align_size_up(size, typesize);
  3080       // Set offset.
  3081       con.set_offset(size);
  3082       _constants.at_put(i, con);
  3084       // Add type size.
  3085       size = size + typesize;
  3089   // Align size up to the next section start (which is insts; see
  3090   // CodeBuffer::align_at_start).
  3091   assert(_size == -1, "already set?");
  3092   _size = align_size_up(size, CodeEntryAlignment);
  3094   if (Matcher::constant_table_absolute_addressing) {
  3095     set_table_base_offset(0);  // No table base offset required
  3096   } else {
  3097     if (UseRDPCForConstantTableBase) {
  3098       // table base offset is set in MachConstantBaseNode::emit
  3099     } else {
  3100       // When RDPC is not used, the table base is set into the middle of
  3101       // the constant table.
  3102       int half_size = _size / 2;
  3103       assert(half_size * 2 == _size, "sanity");
  3104       set_table_base_offset(-half_size);
  3109 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3110   MacroAssembler _masm(&cb);
  3111   for (int t = 0; type_order[t] != T_ILLEGAL; t++) {
  3112     BasicType type = type_order[t];
  3114     for (int i = 0; i < _constants.length(); i++) {
  3115       Constant con = _constants.at(i);
  3116       if (con.type() != type)  continue;  // Skip other types.
  3118       address constant_addr;
  3119       switch (con.type()) {
  3120       case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3121       case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3122       case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3123       case T_OBJECT: {
  3124         jobject obj = con.get_jobject();
  3125         int oop_index = _masm.oop_recorder()->find_index(obj);
  3126         constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3127         break;
  3129       case T_ADDRESS: {
  3130         address addr = (address) con.get_jobject();
  3131         constant_addr = _masm.address_constant(addr);
  3132         break;
  3134       // We use T_VOID as marker for jump-table entries (labels) which
  3135       // need an interal word relocation.
  3136       case T_VOID: {
  3137         // Write a dummy word.  The real value is filled in later
  3138         // in fill_jump_table_in_constant_table.
  3139         address addr = (address) con.get_jobject();
  3140         constant_addr = _masm.address_constant(addr);
  3141         break;
  3143       default: ShouldNotReachHere();
  3145       assert(constant_addr != NULL, "consts section too small");
  3146       assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
  3151 int Compile::ConstantTable::find_offset(Constant& con) const {
  3152   int idx = _constants.find(con);
  3153   assert(idx != -1, "constant must be in constant table");
  3154   int offset = _constants.at(idx).offset();
  3155   assert(offset != -1, "constant table not emitted yet?");
  3156   return offset;
  3159 void Compile::ConstantTable::add(Constant& con) {
  3160   if (con.can_be_reused()) {
  3161     int idx = _constants.find(con);
  3162     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3163       return;
  3166   (void) _constants.append(con);
  3169 Compile::Constant Compile::ConstantTable::add(BasicType type, jvalue value) {
  3170   Constant con(type, value);
  3171   add(con);
  3172   return con;
  3175 Compile::Constant Compile::ConstantTable::add(MachOper* oper) {
  3176   jvalue value;
  3177   BasicType type = oper->type()->basic_type();
  3178   switch (type) {
  3179   case T_LONG:    value.j = oper->constantL(); break;
  3180   case T_FLOAT:   value.f = oper->constantF(); break;
  3181   case T_DOUBLE:  value.d = oper->constantD(); break;
  3182   case T_OBJECT:
  3183   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3184   default: ShouldNotReachHere();
  3186   return add(type, value);
  3189 Compile::Constant Compile::ConstantTable::allocate_jump_table(MachConstantNode* n) {
  3190   jvalue value;
  3191   // We can use the node pointer here to identify the right jump-table
  3192   // as this method is called from Compile::Fill_buffer right before
  3193   // the MachNodes are emitted and the jump-table is filled (means the
  3194   // MachNode pointers do not change anymore).
  3195   value.l = (jobject) n;
  3196   Constant con(T_VOID, value, false);  // Labels of a jump-table cannot be reused.
  3197   for (uint i = 0; i < n->outcnt(); i++) {
  3198     add(con);
  3200   return con;
  3203 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3204   // If called from Compile::scratch_emit_size do nothing.
  3205   if (Compile::current()->in_scratch_emit_size())  return;
  3207   assert(labels.is_nonempty(), "must be");
  3208   assert((uint) labels.length() == n->outcnt(), err_msg("must be equal: %d == %d", labels.length(), n->outcnt()));
  3210   // Since MachConstantNode::constant_offset() also contains
  3211   // table_base_offset() we need to subtract the table_base_offset()
  3212   // to get the plain offset into the constant table.
  3213   int offset = n->constant_offset() - table_base_offset();
  3215   MacroAssembler _masm(&cb);
  3216   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3218   for (int i = 0; i < labels.length(); i++) {
  3219     address* constant_addr = &jump_table_base[i];
  3220     assert(*constant_addr == (address) n, "all jump-table entries must contain node pointer");
  3221     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3222     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);

mercurial