src/share/vm/opto/loopnode.hpp

Wed, 17 Mar 2010 16:40:25 -0700

author
never
date
Wed, 17 Mar 2010 16:40:25 -0700
changeset 1738
c047da02984c
parent 1607
b2b6a9bf6238
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6930043: C2: SIGSEGV in javasoft.sqe.tests.lang.arr017.arr01702.arr01702.loop_forw(II)I
Reviewed-by: kvn

     1 /*
     2  * Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class CmpNode;
    26 class CountedLoopEndNode;
    27 class CountedLoopNode;
    28 class IdealLoopTree;
    29 class LoopNode;
    30 class Node;
    31 class PhaseIdealLoop;
    32 class VectorSet;
    33 class Invariance;
    34 struct small_cache;
    36 //
    37 //                  I D E A L I Z E D   L O O P S
    38 //
    39 // Idealized loops are the set of loops I perform more interesting
    40 // transformations on, beyond simple hoisting.
    42 //------------------------------LoopNode---------------------------------------
    43 // Simple loop header.  Fall in path on left, loop-back path on right.
    44 class LoopNode : public RegionNode {
    45   // Size is bigger to hold the flags.  However, the flags do not change
    46   // the semantics so it does not appear in the hash & cmp functions.
    47   virtual uint size_of() const { return sizeof(*this); }
    48 protected:
    49   short _loop_flags;
    50   // Names for flag bitfields
    51   enum { pre_post_main=0, inner_loop=8, partial_peel_loop=16, partial_peel_failed=32  };
    52   char _unswitch_count;
    53   enum { _unswitch_max=3 };
    55 public:
    56   // Names for edge indices
    57   enum { Self=0, EntryControl, LoopBackControl };
    59   int is_inner_loop() const { return _loop_flags & inner_loop; }
    60   void set_inner_loop() { _loop_flags |= inner_loop; }
    62   int is_partial_peel_loop() const { return _loop_flags & partial_peel_loop; }
    63   void set_partial_peel_loop() { _loop_flags |= partial_peel_loop; }
    64   int partial_peel_has_failed() const { return _loop_flags & partial_peel_failed; }
    65   void mark_partial_peel_failed() { _loop_flags |= partial_peel_failed; }
    67   int unswitch_max() { return _unswitch_max; }
    68   int unswitch_count() { return _unswitch_count; }
    69   void set_unswitch_count(int val) {
    70     assert (val <= unswitch_max(), "too many unswitches");
    71     _unswitch_count = val;
    72   }
    74   LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
    75     init_class_id(Class_Loop);
    76     init_req(EntryControl, entry);
    77     init_req(LoopBackControl, backedge);
    78   }
    80   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    81   virtual int Opcode() const;
    82   bool can_be_counted_loop(PhaseTransform* phase) const {
    83     return req() == 3 && in(0) != NULL &&
    84       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
    85       in(2) != NULL && phase->type(in(2)) != Type::TOP;
    86   }
    87 #ifndef PRODUCT
    88   virtual void dump_spec(outputStream *st) const;
    89 #endif
    90 };
    92 //------------------------------Counted Loops----------------------------------
    93 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
    94 // path (and maybe some other exit paths).  The trip-counter exit is always
    95 // last in the loop.  The trip-counter does not have to stride by a constant,
    96 // but it does have to stride by a loop-invariant amount; the exit value is
    97 // also loop invariant.
    99 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
   100 // CountedLoopNode has the incoming loop control and the loop-back-control
   101 // which is always the IfTrue before the matching CountedLoopEndNode.  The
   102 // CountedLoopEndNode has an incoming control (possibly not the
   103 // CountedLoopNode if there is control flow in the loop), the post-increment
   104 // trip-counter value, and the limit.  The trip-counter value is always of
   105 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
   106 // by a Phi connected to the CountedLoopNode.  The stride is loop invariant.
   107 // The Op is any commutable opcode, including Add, Mul, Xor.  The
   108 // CountedLoopEndNode also takes in the loop-invariant limit value.
   110 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
   111 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
   112 // via the old-trip-counter from the Op node.
   114 //------------------------------CountedLoopNode--------------------------------
   115 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
   116 // inputs the incoming loop-start control and the loop-back control, so they
   117 // act like RegionNodes.  They also take in the initial trip counter, the
   118 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
   119 // produce a loop-body control and the trip counter value.  Since
   120 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
   122 class CountedLoopNode : public LoopNode {
   123   // Size is bigger to hold _main_idx.  However, _main_idx does not change
   124   // the semantics so it does not appear in the hash & cmp functions.
   125   virtual uint size_of() const { return sizeof(*this); }
   127   // For Pre- and Post-loops during debugging ONLY, this holds the index of
   128   // the Main CountedLoop.  Used to assert that we understand the graph shape.
   129   node_idx_t _main_idx;
   131   // Known trip count calculated by policy_maximally_unroll
   132   int   _trip_count;
   134   // Expected trip count from profile data
   135   float _profile_trip_cnt;
   137   // Log2 of original loop bodies in unrolled loop
   138   int _unrolled_count_log2;
   140   // Node count prior to last unrolling - used to decide if
   141   // unroll,optimize,unroll,optimize,... is making progress
   142   int _node_count_before_unroll;
   144 public:
   145   CountedLoopNode( Node *entry, Node *backedge )
   146     : LoopNode(entry, backedge), _trip_count(max_jint),
   147       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
   148       _node_count_before_unroll(0) {
   149     init_class_id(Class_CountedLoop);
   150     // Initialize _trip_count to the largest possible value.
   151     // Will be reset (lower) if the loop's trip count is known.
   152   }
   154   virtual int Opcode() const;
   155   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   157   Node *init_control() const { return in(EntryControl); }
   158   Node *back_control() const { return in(LoopBackControl); }
   159   CountedLoopEndNode *loopexit() const;
   160   Node *init_trip() const;
   161   Node *stride() const;
   162   int   stride_con() const;
   163   bool  stride_is_con() const;
   164   Node *limit() const;
   165   Node *incr() const;
   166   Node *phi() const;
   168   // Match increment with optional truncation
   169   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
   171   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
   172   // can run short a few iterations and may start a few iterations in.
   173   // It will be RCE'd and unrolled and aligned.
   175   // A following 'post' loop will run any remaining iterations.  Used
   176   // during Range Check Elimination, the 'post' loop will do any final
   177   // iterations with full checks.  Also used by Loop Unrolling, where
   178   // the 'post' loop will do any epilog iterations needed.  Basically,
   179   // a 'post' loop can not profitably be further unrolled or RCE'd.
   181   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
   182   // it may do under-flow checks for RCE and may do alignment iterations
   183   // so the following main loop 'knows' that it is striding down cache
   184   // lines.
   186   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
   187   // Aligned, may be missing it's pre-loop.
   188   enum { Normal=0, Pre=1, Main=2, Post=3, PrePostFlagsMask=3, Main_Has_No_Pre_Loop=4 };
   189   int is_normal_loop() const { return (_loop_flags&PrePostFlagsMask) == Normal; }
   190   int is_pre_loop   () const { return (_loop_flags&PrePostFlagsMask) == Pre;    }
   191   int is_main_loop  () const { return (_loop_flags&PrePostFlagsMask) == Main;   }
   192   int is_post_loop  () const { return (_loop_flags&PrePostFlagsMask) == Post;   }
   193   int is_main_no_pre_loop() const { return _loop_flags & Main_Has_No_Pre_Loop; }
   194   void set_main_no_pre_loop() { _loop_flags |= Main_Has_No_Pre_Loop; }
   196   int main_idx() const { return _main_idx; }
   199   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
   200   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
   201   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
   202   void set_normal_loop(                    ) { _loop_flags &= ~PrePostFlagsMask; }
   204   void set_trip_count(int tc) { _trip_count = tc; }
   205   int trip_count()            { return _trip_count; }
   207   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
   208   float profile_trip_cnt()             { return _profile_trip_cnt; }
   210   void double_unrolled_count() { _unrolled_count_log2++; }
   211   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
   213   void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
   214   int  node_count_before_unroll()           { return _node_count_before_unroll; }
   216 #ifndef PRODUCT
   217   virtual void dump_spec(outputStream *st) const;
   218 #endif
   219 };
   221 //------------------------------CountedLoopEndNode-----------------------------
   222 // CountedLoopEndNodes end simple trip counted loops.  They act much like
   223 // IfNodes.
   224 class CountedLoopEndNode : public IfNode {
   225 public:
   226   enum { TestControl, TestValue };
   228   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
   229     : IfNode( control, test, prob, cnt) {
   230     init_class_id(Class_CountedLoopEnd);
   231   }
   232   virtual int Opcode() const;
   234   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
   235   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
   236   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
   237   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
   238   Node *phi() const                 { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
   239   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
   240   int stride_con() const;
   241   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
   242   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
   243   CountedLoopNode *loopnode() const {
   244     Node *ln = phi()->in(0);
   245     assert( ln->Opcode() == Op_CountedLoop, "malformed loop" );
   246     return (CountedLoopNode*)ln; }
   248 #ifndef PRODUCT
   249   virtual void dump_spec(outputStream *st) const;
   250 #endif
   251 };
   254 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
   255   Node *bc = back_control();
   256   if( bc == NULL ) return NULL;
   257   Node *le = bc->in(0);
   258   if( le->Opcode() != Op_CountedLoopEnd )
   259     return NULL;
   260   return (CountedLoopEndNode*)le;
   261 }
   262 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
   263 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
   264 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
   265 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
   266 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
   267 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
   268 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
   271 // -----------------------------IdealLoopTree----------------------------------
   272 class IdealLoopTree : public ResourceObj {
   273 public:
   274   IdealLoopTree *_parent;       // Parent in loop tree
   275   IdealLoopTree *_next;         // Next sibling in loop tree
   276   IdealLoopTree *_child;        // First child in loop tree
   278   // The head-tail backedge defines the loop.
   279   // If tail is NULL then this loop has multiple backedges as part of the
   280   // same loop.  During cleanup I'll peel off the multiple backedges; merge
   281   // them at the loop bottom and flow 1 real backedge into the loop.
   282   Node *_head;                  // Head of loop
   283   Node *_tail;                  // Tail of loop
   284   inline Node *tail();          // Handle lazy update of _tail field
   285   PhaseIdealLoop* _phase;
   287   Node_List _body;              // Loop body for inner loops
   289   uint8 _nest;                  // Nesting depth
   290   uint8 _irreducible:1,         // True if irreducible
   291         _has_call:1,            // True if has call safepoint
   292         _has_sfpt:1,            // True if has non-call safepoint
   293         _rce_candidate:1;       // True if candidate for range check elimination
   295   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
   296   bool  _allow_optimizations;   // Allow loop optimizations
   298   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
   299     : _parent(0), _next(0), _child(0),
   300       _head(head), _tail(tail),
   301       _phase(phase),
   302       _required_safept(NULL),
   303       _allow_optimizations(true),
   304       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0)
   305   { }
   307   // Is 'l' a member of 'this'?
   308   int is_member( const IdealLoopTree *l ) const; // Test for nested membership
   310   // Set loop nesting depth.  Accumulate has_call bits.
   311   int set_nest( uint depth );
   313   // Split out multiple fall-in edges from the loop header.  Move them to a
   314   // private RegionNode before the loop.  This becomes the loop landing pad.
   315   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
   317   // Split out the outermost loop from this shared header.
   318   void split_outer_loop( PhaseIdealLoop *phase );
   320   // Merge all the backedges from the shared header into a private Region.
   321   // Feed that region as the one backedge to this loop.
   322   void merge_many_backedges( PhaseIdealLoop *phase );
   324   // Split shared headers and insert loop landing pads.
   325   // Insert a LoopNode to replace the RegionNode.
   326   // Returns TRUE if loop tree is structurally changed.
   327   bool beautify_loops( PhaseIdealLoop *phase );
   329   // Perform optimization to use the loop predicates for null checks and range checks.
   330   // Applies to any loop level (not just the innermost one)
   331   bool loop_predication( PhaseIdealLoop *phase);
   333   // Perform iteration-splitting on inner loops.  Split iterations to
   334   // avoid range checks or one-shot null checks.  Returns false if the
   335   // current round of loop opts should stop.
   336   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
   338   // Driver for various flavors of iteration splitting.  Returns false
   339   // if the current round of loop opts should stop.
   340   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
   342   // Given dominators, try to find loops with calls that must always be
   343   // executed (call dominates loop tail).  These loops do not need non-call
   344   // safepoints (ncsfpt).
   345   void check_safepts(VectorSet &visited, Node_List &stack);
   347   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
   348   // encountered.
   349   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
   351   // Convert to counted loops where possible
   352   void counted_loop( PhaseIdealLoop *phase );
   354   // Check for Node being a loop-breaking test
   355   Node *is_loop_exit(Node *iff) const;
   357   // Returns true if ctrl is executed on every complete iteration
   358   bool dominates_backedge(Node* ctrl);
   360   // Remove simplistic dead code from loop body
   361   void DCE_loop_body();
   363   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
   364   // Replace with a 1-in-10 exit guess.
   365   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
   367   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
   368   // Useful for unrolling loops with NO array accesses.
   369   bool policy_peel_only( PhaseIdealLoop *phase ) const;
   371   // Return TRUE or FALSE if the loop should be unswitched -- clone
   372   // loop with an invariant test
   373   bool policy_unswitching( PhaseIdealLoop *phase ) const;
   375   // Micro-benchmark spamming.  Remove empty loops.
   376   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
   378   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   379   // make some loop-invariant test (usually a null-check) happen before the
   380   // loop.
   381   bool policy_peeling( PhaseIdealLoop *phase ) const;
   383   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
   384   // known trip count in the counted loop node.
   385   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
   387   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   388   // the loop is a CountedLoop and the body is small enough.
   389   bool policy_unroll( PhaseIdealLoop *phase ) const;
   391   // Return TRUE or FALSE if the loop should be range-check-eliminated.
   392   // Gather a list of IF tests that are dominated by iteration splitting;
   393   // also gather the end of the first split and the start of the 2nd split.
   394   bool policy_range_check( PhaseIdealLoop *phase ) const;
   396   // Return TRUE or FALSE if the loop should be cache-line aligned.
   397   // Gather the expression that does the alignment.  Note that only
   398   // one array base can be aligned in a loop (unless the VM guarantees
   399   // mutual alignment).  Note that if we vectorize short memory ops
   400   // into longer memory ops, we may want to increase alignment.
   401   bool policy_align( PhaseIdealLoop *phase ) const;
   403   // Return TRUE if "iff" is a range check.
   404   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
   406   // Compute loop trip count from profile data
   407   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
   409   // Reassociate invariant expressions.
   410   void reassociate_invariants(PhaseIdealLoop *phase);
   411   // Reassociate invariant add and subtract expressions.
   412   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
   413   // Return nonzero index of invariant operand if invariant and variant
   414   // are combined with an Add or Sub. Helper for reassociate_invariants.
   415   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
   417   // Return true if n is invariant
   418   bool is_invariant(Node* n) const;
   420   // Put loop body on igvn work list
   421   void record_for_igvn();
   423   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
   424   bool is_inner()   { return is_loop() && _child == NULL; }
   425   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
   427 #ifndef PRODUCT
   428   void dump_head( ) const;      // Dump loop head only
   429   void dump() const;            // Dump this loop recursively
   430   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
   431 #endif
   433 };
   435 // -----------------------------PhaseIdealLoop---------------------------------
   436 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
   437 // loop tree.  Drives the loop-based transformations on the ideal graph.
   438 class PhaseIdealLoop : public PhaseTransform {
   439   friend class IdealLoopTree;
   440   friend class SuperWord;
   441   // Pre-computed def-use info
   442   PhaseIterGVN &_igvn;
   444   // Head of loop tree
   445   IdealLoopTree *_ltree_root;
   447   // Array of pre-order numbers, plus post-visited bit.
   448   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
   449   // ODD for post-visited.  Other bits are the pre-order number.
   450   uint *_preorders;
   451   uint _max_preorder;
   453   const PhaseIdealLoop* _verify_me;
   454   bool _verify_only;
   456   // Allocate _preorders[] array
   457   void allocate_preorders() {
   458     _max_preorder = C->unique()+8;
   459     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
   460     memset(_preorders, 0, sizeof(uint) * _max_preorder);
   461   }
   463   // Allocate _preorders[] array
   464   void reallocate_preorders() {
   465     if ( _max_preorder < C->unique() ) {
   466       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
   467       _max_preorder = C->unique();
   468     }
   469     memset(_preorders, 0, sizeof(uint) * _max_preorder);
   470   }
   472   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
   473   // adds new nodes.
   474   void check_grow_preorders( ) {
   475     if ( _max_preorder < C->unique() ) {
   476       uint newsize = _max_preorder<<1;  // double size of array
   477       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
   478       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
   479       _max_preorder = newsize;
   480     }
   481   }
   482   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
   483   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
   484   // Pre-order numbers are written to the Nodes array as low-bit-set values.
   485   void set_preorder_visited( Node *n, int pre_order ) {
   486     assert( !is_visited( n ), "already set" );
   487     _preorders[n->_idx] = (pre_order<<1);
   488   };
   489   // Return pre-order number.
   490   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
   492   // Check for being post-visited.
   493   // Should be previsited already (checked with assert(is_visited(n))).
   494   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
   496   // Mark as post visited
   497   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
   499   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
   500   // Returns true if "n" is a data node, false if it's a control node.
   501   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
   503   // clear out dead code after build_loop_late
   504   Node_List _deadlist;
   506   // Support for faster execution of get_late_ctrl()/dom_lca()
   507   // when a node has many uses and dominator depth is deep.
   508   Node_Array _dom_lca_tags;
   509   void   init_dom_lca_tags();
   510   void   clear_dom_lca_tags();
   512   // Helper for debugging bad dominance relationships
   513   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
   515   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
   517   // Inline wrapper for frequent cases:
   518   // 1) only one use
   519   // 2) a use is the same as the current LCA passed as 'n1'
   520   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
   521     assert( n->is_CFG(), "" );
   522     // Fast-path NULL lca
   523     if( lca != NULL && lca != n ) {
   524       assert( lca->is_CFG(), "" );
   525       // find LCA of all uses
   526       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
   527     }
   528     return find_non_split_ctrl(n);
   529   }
   530   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
   532   // Helper function for directing control inputs away from CFG split
   533   // points.
   534   Node *find_non_split_ctrl( Node *ctrl ) const {
   535     if (ctrl != NULL) {
   536       if (ctrl->is_MultiBranch()) {
   537         ctrl = ctrl->in(0);
   538       }
   539       assert(ctrl->is_CFG(), "CFG");
   540     }
   541     return ctrl;
   542   }
   544 public:
   545   bool has_node( Node* n ) const { return _nodes[n->_idx] != NULL; }
   546   // check if transform created new nodes that need _ctrl recorded
   547   Node *get_late_ctrl( Node *n, Node *early );
   548   Node *get_early_ctrl( Node *n );
   549   void set_early_ctrl( Node *n );
   550   void set_subtree_ctrl( Node *root );
   551   void set_ctrl( Node *n, Node *ctrl ) {
   552     assert( !has_node(n) || has_ctrl(n), "" );
   553     assert( ctrl->in(0), "cannot set dead control node" );
   554     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
   555     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
   556   }
   557   // Set control and update loop membership
   558   void set_ctrl_and_loop(Node* n, Node* ctrl) {
   559     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
   560     IdealLoopTree* new_loop = get_loop(ctrl);
   561     if (old_loop != new_loop) {
   562       if (old_loop->_child == NULL) old_loop->_body.yank(n);
   563       if (new_loop->_child == NULL) new_loop->_body.push(n);
   564     }
   565     set_ctrl(n, ctrl);
   566   }
   567   // Control nodes can be replaced or subsumed.  During this pass they
   568   // get their replacement Node in slot 1.  Instead of updating the block
   569   // location of all Nodes in the subsumed block, we lazily do it.  As we
   570   // pull such a subsumed block out of the array, we write back the final
   571   // correct block.
   572   Node *get_ctrl( Node *i ) {
   573     assert(has_node(i), "");
   574     Node *n = get_ctrl_no_update(i);
   575     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
   576     assert(has_node(i) && has_ctrl(i), "");
   577     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
   578     return n;
   579   }
   580   // true if CFG node d dominates CFG node n
   581   bool is_dominator(Node *d, Node *n);
   582   // return get_ctrl for a data node and self(n) for a CFG node
   583   Node* ctrl_or_self(Node* n) {
   584     if (has_ctrl(n))
   585       return get_ctrl(n);
   586     else {
   587       assert (n->is_CFG(), "must be a CFG node");
   588       return n;
   589     }
   590   }
   592 private:
   593   Node *get_ctrl_no_update( Node *i ) const {
   594     assert( has_ctrl(i), "" );
   595     Node *n = (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
   596     if (!n->in(0)) {
   597       // Skip dead CFG nodes
   598       do {
   599         n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
   600       } while (!n->in(0));
   601       n = find_non_split_ctrl(n);
   602     }
   603     return n;
   604   }
   606   // Check for loop being set
   607   // "n" must be a control node. Returns true if "n" is known to be in a loop.
   608   bool has_loop( Node *n ) const {
   609     assert(!has_node(n) || !has_ctrl(n), "");
   610     return has_node(n);
   611   }
   612   // Set loop
   613   void set_loop( Node *n, IdealLoopTree *loop ) {
   614     _nodes.map(n->_idx, (Node*)loop);
   615   }
   616   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
   617   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
   618   // from old_node to new_node to support the lazy update.  Reference
   619   // replaces loop reference, since that is not needed for dead node.
   620 public:
   621   void lazy_update( Node *old_node, Node *new_node ) {
   622     assert( old_node != new_node, "no cycles please" );
   623     //old_node->set_req( 1, new_node /*NO DU INFO*/ );
   624     // Nodes always have DU info now, so re-use the side array slot
   625     // for this node to provide the forwarding pointer.
   626     _nodes.map( old_node->_idx, (Node*)((intptr_t)new_node + 1) );
   627   }
   628   void lazy_replace( Node *old_node, Node *new_node ) {
   629     _igvn.hash_delete(old_node);
   630     _igvn.subsume_node( old_node, new_node );
   631     lazy_update( old_node, new_node );
   632   }
   633   void lazy_replace_proj( Node *old_node, Node *new_node ) {
   634     assert( old_node->req() == 1, "use this for Projs" );
   635     _igvn.hash_delete(old_node); // Must hash-delete before hacking edges
   636     old_node->add_req( NULL );
   637     lazy_replace( old_node, new_node );
   638   }
   640 private:
   642   // Place 'n' in some loop nest, where 'n' is a CFG node
   643   void build_loop_tree();
   644   int build_loop_tree_impl( Node *n, int pre_order );
   645   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
   646   // loop tree, not the root.
   647   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
   649   // Place Data nodes in some loop nest
   650   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
   651   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
   652   void build_loop_late_post ( Node* n );
   654   // Array of immediate dominance info for each CFG node indexed by node idx
   655 private:
   656   uint _idom_size;
   657   Node **_idom;                 // Array of immediate dominators
   658   uint *_dom_depth;           // Used for fast LCA test
   659   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
   661   Node* idom_no_update(Node* d) const {
   662     assert(d->_idx < _idom_size, "oob");
   663     Node* n = _idom[d->_idx];
   664     assert(n != NULL,"Bad immediate dominator info.");
   665     while (n->in(0) == NULL) {  // Skip dead CFG nodes
   666       //n = n->in(1);
   667       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
   668       assert(n != NULL,"Bad immediate dominator info.");
   669     }
   670     return n;
   671   }
   672   Node *idom(Node* d) const {
   673     uint didx = d->_idx;
   674     Node *n = idom_no_update(d);
   675     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
   676     return n;
   677   }
   678   uint dom_depth(Node* d) const {
   679     assert(d->_idx < _idom_size, "");
   680     return _dom_depth[d->_idx];
   681   }
   682   void set_idom(Node* d, Node* n, uint dom_depth);
   683   // Locally compute IDOM using dom_lca call
   684   Node *compute_idom( Node *region ) const;
   685   // Recompute dom_depth
   686   void recompute_dom_depth();
   688   // Is safept not required by an outer loop?
   689   bool is_deleteable_safept(Node* sfpt);
   691   // Perform verification that the graph is valid.
   692   PhaseIdealLoop( PhaseIterGVN &igvn) :
   693     PhaseTransform(Ideal_Loop),
   694     _igvn(igvn),
   695     _dom_lca_tags(C->comp_arena()),
   696     _verify_me(NULL),
   697     _verify_only(true) {
   698     build_and_optimize(false, false);
   699   }
   701   // build the loop tree and perform any requested optimizations
   702   void build_and_optimize(bool do_split_if, bool do_loop_pred);
   704 public:
   705   // Dominators for the sea of nodes
   706   void Dominators();
   707   Node *dom_lca( Node *n1, Node *n2 ) const {
   708     return find_non_split_ctrl(dom_lca_internal(n1, n2));
   709   }
   710   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
   712   // Compute the Ideal Node to Loop mapping
   713   PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool do_loop_pred) :
   714     PhaseTransform(Ideal_Loop),
   715     _igvn(igvn),
   716     _dom_lca_tags(C->comp_arena()),
   717     _verify_me(NULL),
   718     _verify_only(false) {
   719     build_and_optimize(do_split_ifs, do_loop_pred);
   720   }
   722   // Verify that verify_me made the same decisions as a fresh run.
   723   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
   724     PhaseTransform(Ideal_Loop),
   725     _igvn(igvn),
   726     _dom_lca_tags(C->comp_arena()),
   727     _verify_me(verify_me),
   728     _verify_only(false) {
   729     build_and_optimize(false, false);
   730   }
   732   // Build and verify the loop tree without modifying the graph.  This
   733   // is useful to verify that all inputs properly dominate their uses.
   734   static void verify(PhaseIterGVN& igvn) {
   735 #ifdef ASSERT
   736     PhaseIdealLoop v(igvn);
   737 #endif
   738   }
   740   // True if the method has at least 1 irreducible loop
   741   bool _has_irreducible_loops;
   743   // Per-Node transform
   744   virtual Node *transform( Node *a_node ) { return 0; }
   746   Node *is_counted_loop( Node *x, IdealLoopTree *loop );
   748   // Return a post-walked LoopNode
   749   IdealLoopTree *get_loop( Node *n ) const {
   750     // Dead nodes have no loop, so return the top level loop instead
   751     if (!has_node(n))  return _ltree_root;
   752     assert(!has_ctrl(n), "");
   753     return (IdealLoopTree*)_nodes[n->_idx];
   754   }
   756   // Is 'n' a (nested) member of 'loop'?
   757   int is_member( const IdealLoopTree *loop, Node *n ) const {
   758     return loop->is_member(get_loop(n)); }
   760   // This is the basic building block of the loop optimizations.  It clones an
   761   // entire loop body.  It makes an old_new loop body mapping; with this
   762   // mapping you can find the new-loop equivalent to an old-loop node.  All
   763   // new-loop nodes are exactly equal to their old-loop counterparts, all
   764   // edges are the same.  All exits from the old-loop now have a RegionNode
   765   // that merges the equivalent new-loop path.  This is true even for the
   766   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
   767   // now come from (one or more) Phis that merge their new-loop equivalents.
   768   // Parameter side_by_side_idom:
   769   //   When side_by_size_idom is NULL, the dominator tree is constructed for
   770   //      the clone loop to dominate the original.  Used in construction of
   771   //      pre-main-post loop sequence.
   772   //   When nonnull, the clone and original are side-by-side, both are
   773   //      dominated by the passed in side_by_side_idom node.  Used in
   774   //      construction of unswitched loops.
   775   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
   776                    Node* side_by_side_idom = NULL);
   778   // If we got the effect of peeling, either by actually peeling or by
   779   // making a pre-loop which must execute at least once, we can remove
   780   // all loop-invariant dominated tests in the main body.
   781   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
   783   // Generate code to do a loop peel for the given loop (and body).
   784   // old_new is a temp array.
   785   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
   787   // Add pre and post loops around the given loop.  These loops are used
   788   // during RCE, unrolling and aligning loops.
   789   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
   790   // If Node n lives in the back_ctrl block, we clone a private version of n
   791   // in preheader_ctrl block and return that, otherwise return n.
   792   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n );
   794   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
   795   // unroll to do double iterations.  The next round of major loop transforms
   796   // will repeat till the doubled loop body does all remaining iterations in 1
   797   // pass.
   798   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
   800   // Unroll the loop body one step - make each trip do 2 iterations.
   801   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
   803   // Return true if exp is a constant times an induction var
   804   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
   806   // Return true if exp is a scaled induction var plus (or minus) constant
   807   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
   809   // Return true if proj is for "proj->[region->..]call_uct"
   810   bool is_uncommon_trap_proj(ProjNode* proj, bool must_reason_predicate = false);
   811   // Return true for    "if(test)-> proj -> ...
   812   //                          |
   813   //                          V
   814   //                      other_proj->[region->..]call_uct"
   815   bool is_uncommon_trap_if_pattern(ProjNode* proj, bool must_reason_predicate = false);
   816   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
   817   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj);
   818   // Find a good location to insert a predicate
   819   ProjNode* find_predicate_insertion_point(Node* start_c);
   820   // Construct a range check for a predicate if
   821   BoolNode* rc_predicate(Node* ctrl,
   822                          int scale, Node* offset,
   823                          Node* init, Node* limit, Node* stride,
   824                          Node* range, bool upper);
   826   // Implementation of the loop predication to promote checks outside the loop
   827   bool loop_predication_impl(IdealLoopTree *loop);
   829   // Helper function to collect predicate for eliminating the useless ones
   830   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
   831   void eliminate_useless_predicates();
   833   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
   834   void do_range_check( IdealLoopTree *loop, Node_List &old_new );
   836   // Create a slow version of the loop by cloning the loop
   837   // and inserting an if to select fast-slow versions.
   838   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
   839                                         Node_List &old_new);
   841   // Clone loop with an invariant test (that does not exit) and
   842   // insert a clone of the test that selects which version to
   843   // execute.
   844   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
   846   // Find candidate "if" for unswitching
   847   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
   849   // Range Check Elimination uses this function!
   850   // Constrain the main loop iterations so the affine function:
   851   //    scale_con * I + offset  <  limit
   852   // always holds true.  That is, either increase the number of iterations in
   853   // the pre-loop or the post-loop until the condition holds true in the main
   854   // loop.  Scale_con, offset and limit are all loop invariant.
   855   void add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
   857   // Partially peel loop up through last_peel node.
   858   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
   860   // Create a scheduled list of nodes control dependent on ctrl set.
   861   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
   862   // Has a use in the vector set
   863   bool has_use_in_set( Node* n, VectorSet& vset );
   864   // Has use internal to the vector set (ie. not in a phi at the loop head)
   865   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
   866   // clone "n" for uses that are outside of loop
   867   void clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
   868   // clone "n" for special uses that are in the not_peeled region
   869   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
   870                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
   871   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
   872   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
   873 #ifdef ASSERT
   874   // Validate the loop partition sets: peel and not_peel
   875   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
   876   // Ensure that uses outside of loop are of the right form
   877   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
   878                                  uint orig_exit_idx, uint clone_exit_idx);
   879   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
   880 #endif
   882   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
   883   int stride_of_possible_iv( Node* iff );
   884   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
   885   // Return the (unique) control output node that's in the loop (if it exists.)
   886   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
   887   // Insert a signed compare loop exit cloned from an unsigned compare.
   888   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
   889   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
   890   // Utility to register node "n" with PhaseIdealLoop
   891   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
   892   // Utility to create an if-projection
   893   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
   894   // Force the iff control output to be the live_proj
   895   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
   896   // Insert a region before an if projection
   897   RegionNode* insert_region_before_proj(ProjNode* proj);
   898   // Insert a new if before an if projection
   899   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
   901   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
   902   // "Nearly" because all Nodes have been cloned from the original in the loop,
   903   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
   904   // through the Phi recursively, and return a Bool.
   905   BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
   906   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
   909   // Rework addressing expressions to get the most loop-invariant stuff
   910   // moved out.  We'd like to do all associative operators, but it's especially
   911   // important (common) to do address expressions.
   912   Node *remix_address_expressions( Node *n );
   914   // Attempt to use a conditional move instead of a phi/branch
   915   Node *conditional_move( Node *n );
   917   // Reorganize offset computations to lower register pressure.
   918   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
   919   // (which are then alive with the post-incremented trip counter
   920   // forcing an extra register move)
   921   void reorg_offsets( IdealLoopTree *loop );
   923   // Check for aggressive application of 'split-if' optimization,
   924   // using basic block level info.
   925   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
   926   Node *split_if_with_blocks_pre ( Node *n );
   927   void  split_if_with_blocks_post( Node *n );
   928   Node *has_local_phi_input( Node *n );
   929   // Mark an IfNode as being dominated by a prior test,
   930   // without actually altering the CFG (and hence IDOM info).
   931   void dominated_by( Node *prevdom, Node *iff );
   933   // Split Node 'n' through merge point
   934   Node *split_thru_region( Node *n, Node *region );
   935   // Split Node 'n' through merge point if there is enough win.
   936   Node *split_thru_phi( Node *n, Node *region, int policy );
   937   // Found an If getting its condition-code input from a Phi in the
   938   // same block.  Split thru the Region.
   939   void do_split_if( Node *iff );
   941 private:
   942   // Return a type based on condition control flow
   943   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
   944   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
   945  // Helpers for filtered type
   946   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
   948   // Helper functions
   949   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
   950   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
   951   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
   952   bool split_up( Node *n, Node *blk1, Node *blk2 );
   953   void sink_use( Node *use, Node *post_loop );
   954   Node *place_near_use( Node *useblock ) const;
   956   bool _created_loop_node;
   957 public:
   958   void set_created_loop_node() { _created_loop_node = true; }
   959   bool created_loop_node()     { return _created_loop_node; }
   960   void register_new_node( Node *n, Node *blk );
   962 #ifndef PRODUCT
   963   void dump( ) const;
   964   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
   965   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
   966   void verify() const;          // Major slow  :-)
   967   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
   968   IdealLoopTree *get_loop_idx(Node* n) const {
   969     // Dead nodes have no loop, so return the top level loop instead
   970     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
   971   }
   972   // Print some stats
   973   static void print_statistics();
   974   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
   975   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
   976 #endif
   977 };
   979 inline Node* IdealLoopTree::tail() {
   980 // Handle lazy update of _tail field
   981   Node *n = _tail;
   982   //while( !n->in(0) )  // Skip dead CFG nodes
   983     //n = n->in(1);
   984   if (n->in(0) == NULL)
   985     n = _phase->get_ctrl(n);
   986   _tail = n;
   987   return n;
   988 }
   991 // Iterate over the loop tree using a preorder, left-to-right traversal.
   992 //
   993 // Example that visits all counted loops from within PhaseIdealLoop
   994 //
   995 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
   996 //   IdealLoopTree* lpt = iter.current();
   997 //   if (!lpt->is_counted()) continue;
   998 //   ...
   999 class LoopTreeIterator : public StackObj {
  1000 private:
  1001   IdealLoopTree* _root;
  1002   IdealLoopTree* _curnt;
  1004 public:
  1005   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
  1007   bool done() { return _curnt == NULL; }       // Finished iterating?
  1009   void next();                                 // Advance to next loop tree
  1011   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
  1012 };

mercurial