src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Fri, 04 Apr 2014 10:43:56 +0200

author
tschatzl
date
Fri, 04 Apr 2014 10:43:56 +0200
changeset 6541
bfdf528be8e8
parent 6422
8ee855b4e667
child 6552
8847586c9037
permissions
-rw-r--r--

8038498: Fix includes and C inlining after 8035330
Summary: Change 8035330: Remove G1ParScanPartialArrayClosure and G1ParScanHeapEvacClosure broke the debug build on AIX. The method do_oop_partial_array() is added in a header, but requires the inline function par_write_ref() through several inlined calls. In some cpp files, like arguments.cpp, par_write_ref() is not defined as the corresponding inline header and is not included. The AIX debug VM does not start because of the missing symbol. This change solves this by cleaning up include dependencies.
Reviewed-by: tschatzl, stefank

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/evacuationInfo.hpp"
    30 #include "gc_implementation/g1/g1AllocRegion.hpp"
    31 #include "gc_implementation/g1/g1HRPrinter.hpp"
    32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    33 #include "gc_implementation/g1/g1RemSet.hpp"
    34 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    35 #include "gc_implementation/g1/g1YCTypes.hpp"
    36 #include "gc_implementation/g1/heapRegionSeq.hpp"
    37 #include "gc_implementation/g1/heapRegionSet.hpp"
    38 #include "gc_implementation/shared/hSpaceCounters.hpp"
    39 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
    40 #include "memory/barrierSet.hpp"
    41 #include "memory/memRegion.hpp"
    42 #include "memory/sharedHeap.hpp"
    43 #include "utilities/stack.hpp"
    45 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    46 // It uses the "Garbage First" heap organization and algorithm, which
    47 // may combine concurrent marking with parallel, incremental compaction of
    48 // heap subsets that will yield large amounts of garbage.
    50 // Forward declarations
    51 class HeapRegion;
    52 class HRRSCleanupTask;
    53 class GenerationSpec;
    54 class OopsInHeapRegionClosure;
    55 class G1KlassScanClosure;
    56 class G1ScanHeapEvacClosure;
    57 class ObjectClosure;
    58 class SpaceClosure;
    59 class CompactibleSpaceClosure;
    60 class Space;
    61 class G1CollectorPolicy;
    62 class GenRemSet;
    63 class G1RemSet;
    64 class HeapRegionRemSetIterator;
    65 class ConcurrentMark;
    66 class ConcurrentMarkThread;
    67 class ConcurrentG1Refine;
    68 class ConcurrentGCTimer;
    69 class GenerationCounters;
    70 class STWGCTimer;
    71 class G1NewTracer;
    72 class G1OldTracer;
    73 class EvacuationFailedInfo;
    74 class nmethod;
    75 class Ticks;
    77 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
    78 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
    80 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    81 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    83 enum GCAllocPurpose {
    84   GCAllocForTenured,
    85   GCAllocForSurvived,
    86   GCAllocPurposeCount
    87 };
    89 class YoungList : public CHeapObj<mtGC> {
    90 private:
    91   G1CollectedHeap* _g1h;
    93   HeapRegion* _head;
    95   HeapRegion* _survivor_head;
    96   HeapRegion* _survivor_tail;
    98   HeapRegion* _curr;
   100   uint        _length;
   101   uint        _survivor_length;
   103   size_t      _last_sampled_rs_lengths;
   104   size_t      _sampled_rs_lengths;
   106   void         empty_list(HeapRegion* list);
   108 public:
   109   YoungList(G1CollectedHeap* g1h);
   111   void         push_region(HeapRegion* hr);
   112   void         add_survivor_region(HeapRegion* hr);
   114   void         empty_list();
   115   bool         is_empty() { return _length == 0; }
   116   uint         length() { return _length; }
   117   uint         survivor_length() { return _survivor_length; }
   119   // Currently we do not keep track of the used byte sum for the
   120   // young list and the survivors and it'd be quite a lot of work to
   121   // do so. When we'll eventually replace the young list with
   122   // instances of HeapRegionLinkedList we'll get that for free. So,
   123   // we'll report the more accurate information then.
   124   size_t       eden_used_bytes() {
   125     assert(length() >= survivor_length(), "invariant");
   126     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
   127   }
   128   size_t       survivor_used_bytes() {
   129     return (size_t) survivor_length() * HeapRegion::GrainBytes;
   130   }
   132   void rs_length_sampling_init();
   133   bool rs_length_sampling_more();
   134   void rs_length_sampling_next();
   136   void reset_sampled_info() {
   137     _last_sampled_rs_lengths =   0;
   138   }
   139   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   141   // for development purposes
   142   void reset_auxilary_lists();
   143   void clear() { _head = NULL; _length = 0; }
   145   void clear_survivors() {
   146     _survivor_head    = NULL;
   147     _survivor_tail    = NULL;
   148     _survivor_length  = 0;
   149   }
   151   HeapRegion* first_region() { return _head; }
   152   HeapRegion* first_survivor_region() { return _survivor_head; }
   153   HeapRegion* last_survivor_region() { return _survivor_tail; }
   155   // debugging
   156   bool          check_list_well_formed();
   157   bool          check_list_empty(bool check_sample = true);
   158   void          print();
   159 };
   161 class MutatorAllocRegion : public G1AllocRegion {
   162 protected:
   163   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   164   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   165 public:
   166   MutatorAllocRegion()
   167     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   168 };
   170 class SurvivorGCAllocRegion : public G1AllocRegion {
   171 protected:
   172   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   173   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   174 public:
   175   SurvivorGCAllocRegion()
   176   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   177 };
   179 class OldGCAllocRegion : public G1AllocRegion {
   180 protected:
   181   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   182   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   183 public:
   184   OldGCAllocRegion()
   185   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   186 };
   188 // The G1 STW is alive closure.
   189 // An instance is embedded into the G1CH and used as the
   190 // (optional) _is_alive_non_header closure in the STW
   191 // reference processor. It is also extensively used during
   192 // reference processing during STW evacuation pauses.
   193 class G1STWIsAliveClosure: public BoolObjectClosure {
   194   G1CollectedHeap* _g1;
   195 public:
   196   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   197   bool do_object_b(oop p);
   198 };
   200 class RefineCardTableEntryClosure;
   202 class G1CollectedHeap : public SharedHeap {
   203   friend class VM_G1CollectForAllocation;
   204   friend class VM_G1CollectFull;
   205   friend class VM_G1IncCollectionPause;
   206   friend class VMStructs;
   207   friend class MutatorAllocRegion;
   208   friend class SurvivorGCAllocRegion;
   209   friend class OldGCAllocRegion;
   211   // Closures used in implementation.
   212   template <G1Barrier barrier, bool do_mark_object>
   213   friend class G1ParCopyClosure;
   214   friend class G1IsAliveClosure;
   215   friend class G1EvacuateFollowersClosure;
   216   friend class G1ParScanThreadState;
   217   friend class G1ParScanClosureSuper;
   218   friend class G1ParEvacuateFollowersClosure;
   219   friend class G1ParTask;
   220   friend class G1FreeGarbageRegionClosure;
   221   friend class RefineCardTableEntryClosure;
   222   friend class G1PrepareCompactClosure;
   223   friend class RegionSorter;
   224   friend class RegionResetter;
   225   friend class CountRCClosure;
   226   friend class EvacPopObjClosure;
   227   friend class G1ParCleanupCTTask;
   229   // Other related classes.
   230   friend class G1MarkSweep;
   232 private:
   233   // The one and only G1CollectedHeap, so static functions can find it.
   234   static G1CollectedHeap* _g1h;
   236   static size_t _humongous_object_threshold_in_words;
   238   // Storage for the G1 heap.
   239   VirtualSpace _g1_storage;
   240   MemRegion    _g1_reserved;
   242   // The part of _g1_storage that is currently committed.
   243   MemRegion _g1_committed;
   245   // The master free list. It will satisfy all new region allocations.
   246   FreeRegionList _free_list;
   248   // The secondary free list which contains regions that have been
   249   // freed up during the cleanup process. This will be appended to the
   250   // master free list when appropriate.
   251   FreeRegionList _secondary_free_list;
   253   // It keeps track of the old regions.
   254   HeapRegionSet _old_set;
   256   // It keeps track of the humongous regions.
   257   HeapRegionSet _humongous_set;
   259   // The number of regions we could create by expansion.
   260   uint _expansion_regions;
   262   // The block offset table for the G1 heap.
   263   G1BlockOffsetSharedArray* _bot_shared;
   265   // Tears down the region sets / lists so that they are empty and the
   266   // regions on the heap do not belong to a region set / list. The
   267   // only exception is the humongous set which we leave unaltered. If
   268   // free_list_only is true, it will only tear down the master free
   269   // list. It is called before a Full GC (free_list_only == false) or
   270   // before heap shrinking (free_list_only == true).
   271   void tear_down_region_sets(bool free_list_only);
   273   // Rebuilds the region sets / lists so that they are repopulated to
   274   // reflect the contents of the heap. The only exception is the
   275   // humongous set which was not torn down in the first place. If
   276   // free_list_only is true, it will only rebuild the master free
   277   // list. It is called after a Full GC (free_list_only == false) or
   278   // after heap shrinking (free_list_only == true).
   279   void rebuild_region_sets(bool free_list_only);
   281   // The sequence of all heap regions in the heap.
   282   HeapRegionSeq _hrs;
   284   // Alloc region used to satisfy mutator allocation requests.
   285   MutatorAllocRegion _mutator_alloc_region;
   287   // Alloc region used to satisfy allocation requests by the GC for
   288   // survivor objects.
   289   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   291   // PLAB sizing policy for survivors.
   292   PLABStats _survivor_plab_stats;
   294   // Alloc region used to satisfy allocation requests by the GC for
   295   // old objects.
   296   OldGCAllocRegion _old_gc_alloc_region;
   298   // PLAB sizing policy for tenured objects.
   299   PLABStats _old_plab_stats;
   301   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
   302     PLABStats* stats = NULL;
   304     switch (purpose) {
   305     case GCAllocForSurvived:
   306       stats = &_survivor_plab_stats;
   307       break;
   308     case GCAllocForTenured:
   309       stats = &_old_plab_stats;
   310       break;
   311     default:
   312       assert(false, "unrecognized GCAllocPurpose");
   313     }
   315     return stats;
   316   }
   318   // The last old region we allocated to during the last GC.
   319   // Typically, it is not full so we should re-use it during the next GC.
   320   HeapRegion* _retained_old_gc_alloc_region;
   322   // It specifies whether we should attempt to expand the heap after a
   323   // region allocation failure. If heap expansion fails we set this to
   324   // false so that we don't re-attempt the heap expansion (it's likely
   325   // that subsequent expansion attempts will also fail if one fails).
   326   // Currently, it is only consulted during GC and it's reset at the
   327   // start of each GC.
   328   bool _expand_heap_after_alloc_failure;
   330   // It resets the mutator alloc region before new allocations can take place.
   331   void init_mutator_alloc_region();
   333   // It releases the mutator alloc region.
   334   void release_mutator_alloc_region();
   336   // It initializes the GC alloc regions at the start of a GC.
   337   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
   339   // It releases the GC alloc regions at the end of a GC.
   340   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
   342   // It does any cleanup that needs to be done on the GC alloc regions
   343   // before a Full GC.
   344   void abandon_gc_alloc_regions();
   346   // Helper for monitoring and management support.
   347   G1MonitoringSupport* _g1mm;
   349   // Determines PLAB size for a particular allocation purpose.
   350   size_t desired_plab_sz(GCAllocPurpose purpose);
   352   // Outside of GC pauses, the number of bytes used in all regions other
   353   // than the current allocation region.
   354   size_t _summary_bytes_used;
   356   // This is used for a quick test on whether a reference points into
   357   // the collection set or not. Basically, we have an array, with one
   358   // byte per region, and that byte denotes whether the corresponding
   359   // region is in the collection set or not. The entry corresponding
   360   // the bottom of the heap, i.e., region 0, is pointed to by
   361   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   362   // biased so that it actually points to address 0 of the address
   363   // space, to make the test as fast as possible (we can simply shift
   364   // the address to address into it, instead of having to subtract the
   365   // bottom of the heap from the address before shifting it; basically
   366   // it works in the same way the card table works).
   367   bool* _in_cset_fast_test;
   369   // The allocated array used for the fast test on whether a reference
   370   // points into the collection set or not. This field is also used to
   371   // free the array.
   372   bool* _in_cset_fast_test_base;
   374   // The length of the _in_cset_fast_test_base array.
   375   uint _in_cset_fast_test_length;
   377   volatile unsigned _gc_time_stamp;
   379   size_t* _surviving_young_words;
   381   G1HRPrinter _hr_printer;
   383   void setup_surviving_young_words();
   384   void update_surviving_young_words(size_t* surv_young_words);
   385   void cleanup_surviving_young_words();
   387   // It decides whether an explicit GC should start a concurrent cycle
   388   // instead of doing a STW GC. Currently, a concurrent cycle is
   389   // explicitly started if:
   390   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   391   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   392   // (c) cause == _g1_humongous_allocation
   393   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   395   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   396   // concurrent cycles) we have started.
   397   volatile unsigned int _old_marking_cycles_started;
   399   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   400   // concurrent cycles) we have completed.
   401   volatile unsigned int _old_marking_cycles_completed;
   403   bool _concurrent_cycle_started;
   405   // This is a non-product method that is helpful for testing. It is
   406   // called at the end of a GC and artificially expands the heap by
   407   // allocating a number of dead regions. This way we can induce very
   408   // frequent marking cycles and stress the cleanup / concurrent
   409   // cleanup code more (as all the regions that will be allocated by
   410   // this method will be found dead by the marking cycle).
   411   void allocate_dummy_regions() PRODUCT_RETURN;
   413   // Clear RSets after a compaction. It also resets the GC time stamps.
   414   void clear_rsets_post_compaction();
   416   // If the HR printer is active, dump the state of the regions in the
   417   // heap after a compaction.
   418   void print_hrs_post_compaction();
   420   double verify(bool guard, const char* msg);
   421   void verify_before_gc();
   422   void verify_after_gc();
   424   void log_gc_header();
   425   void log_gc_footer(double pause_time_sec);
   427   // These are macros so that, if the assert fires, we get the correct
   428   // line number, file, etc.
   430 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   431   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   432           (_extra_message_),                                                  \
   433           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   434           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   435           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   437 #define assert_heap_locked()                                                  \
   438   do {                                                                        \
   439     assert(Heap_lock->owned_by_self(),                                        \
   440            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   441   } while (0)
   443 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   444   do {                                                                        \
   445     assert(Heap_lock->owned_by_self() ||                                      \
   446            (SafepointSynchronize::is_at_safepoint() &&                        \
   447              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   448            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   449                                         "should be at a safepoint"));         \
   450   } while (0)
   452 #define assert_heap_locked_and_not_at_safepoint()                             \
   453   do {                                                                        \
   454     assert(Heap_lock->owned_by_self() &&                                      \
   455                                     !SafepointSynchronize::is_at_safepoint(), \
   456           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   457                                        "should not be at a safepoint"));      \
   458   } while (0)
   460 #define assert_heap_not_locked()                                              \
   461   do {                                                                        \
   462     assert(!Heap_lock->owned_by_self(),                                       \
   463         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   464   } while (0)
   466 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   467   do {                                                                        \
   468     assert(!Heap_lock->owned_by_self() &&                                     \
   469                                     !SafepointSynchronize::is_at_safepoint(), \
   470       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   471                                    "should not be at a safepoint"));          \
   472   } while (0)
   474 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   475   do {                                                                        \
   476     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   477               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   478            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   479   } while (0)
   481 #define assert_not_at_safepoint()                                             \
   482   do {                                                                        \
   483     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   484            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   485   } while (0)
   487 protected:
   489   // The young region list.
   490   YoungList*  _young_list;
   492   // The current policy object for the collector.
   493   G1CollectorPolicy* _g1_policy;
   495   // This is the second level of trying to allocate a new region. If
   496   // new_region() didn't find a region on the free_list, this call will
   497   // check whether there's anything available on the
   498   // secondary_free_list and/or wait for more regions to appear on
   499   // that list, if _free_regions_coming is set.
   500   HeapRegion* new_region_try_secondary_free_list(bool is_old);
   502   // Try to allocate a single non-humongous HeapRegion sufficient for
   503   // an allocation of the given word_size. If do_expand is true,
   504   // attempt to expand the heap if necessary to satisfy the allocation
   505   // request. If the region is to be used as an old region or for a
   506   // humongous object, set is_old to true. If not, to false.
   507   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
   509   // Attempt to satisfy a humongous allocation request of the given
   510   // size by finding a contiguous set of free regions of num_regions
   511   // length and remove them from the master free list. Return the
   512   // index of the first region or G1_NULL_HRS_INDEX if the search
   513   // was unsuccessful.
   514   uint humongous_obj_allocate_find_first(uint num_regions,
   515                                          size_t word_size);
   517   // Initialize a contiguous set of free regions of length num_regions
   518   // and starting at index first so that they appear as a single
   519   // humongous region.
   520   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
   521                                                       uint num_regions,
   522                                                       size_t word_size);
   524   // Attempt to allocate a humongous object of the given size. Return
   525   // NULL if unsuccessful.
   526   HeapWord* humongous_obj_allocate(size_t word_size);
   528   // The following two methods, allocate_new_tlab() and
   529   // mem_allocate(), are the two main entry points from the runtime
   530   // into the G1's allocation routines. They have the following
   531   // assumptions:
   532   //
   533   // * They should both be called outside safepoints.
   534   //
   535   // * They should both be called without holding the Heap_lock.
   536   //
   537   // * All allocation requests for new TLABs should go to
   538   //   allocate_new_tlab().
   539   //
   540   // * All non-TLAB allocation requests should go to mem_allocate().
   541   //
   542   // * If either call cannot satisfy the allocation request using the
   543   //   current allocating region, they will try to get a new one. If
   544   //   this fails, they will attempt to do an evacuation pause and
   545   //   retry the allocation.
   546   //
   547   // * If all allocation attempts fail, even after trying to schedule
   548   //   an evacuation pause, allocate_new_tlab() will return NULL,
   549   //   whereas mem_allocate() will attempt a heap expansion and/or
   550   //   schedule a Full GC.
   551   //
   552   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   553   //   should never be called with word_size being humongous. All
   554   //   humongous allocation requests should go to mem_allocate() which
   555   //   will satisfy them with a special path.
   557   virtual HeapWord* allocate_new_tlab(size_t word_size);
   559   virtual HeapWord* mem_allocate(size_t word_size,
   560                                  bool*  gc_overhead_limit_was_exceeded);
   562   // The following three methods take a gc_count_before_ret
   563   // parameter which is used to return the GC count if the method
   564   // returns NULL. Given that we are required to read the GC count
   565   // while holding the Heap_lock, and these paths will take the
   566   // Heap_lock at some point, it's easier to get them to read the GC
   567   // count while holding the Heap_lock before they return NULL instead
   568   // of the caller (namely: mem_allocate()) having to also take the
   569   // Heap_lock just to read the GC count.
   571   // First-level mutator allocation attempt: try to allocate out of
   572   // the mutator alloc region without taking the Heap_lock. This
   573   // should only be used for non-humongous allocations.
   574   inline HeapWord* attempt_allocation(size_t word_size,
   575                                       unsigned int* gc_count_before_ret,
   576                                       int* gclocker_retry_count_ret);
   578   // Second-level mutator allocation attempt: take the Heap_lock and
   579   // retry the allocation attempt, potentially scheduling a GC
   580   // pause. This should only be used for non-humongous allocations.
   581   HeapWord* attempt_allocation_slow(size_t word_size,
   582                                     unsigned int* gc_count_before_ret,
   583                                     int* gclocker_retry_count_ret);
   585   // Takes the Heap_lock and attempts a humongous allocation. It can
   586   // potentially schedule a GC pause.
   587   HeapWord* attempt_allocation_humongous(size_t word_size,
   588                                          unsigned int* gc_count_before_ret,
   589                                          int* gclocker_retry_count_ret);
   591   // Allocation attempt that should be called during safepoints (e.g.,
   592   // at the end of a successful GC). expect_null_mutator_alloc_region
   593   // specifies whether the mutator alloc region is expected to be NULL
   594   // or not.
   595   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   596                                        bool expect_null_mutator_alloc_region);
   598   // It dirties the cards that cover the block so that so that the post
   599   // write barrier never queues anything when updating objects on this
   600   // block. It is assumed (and in fact we assert) that the block
   601   // belongs to a young region.
   602   inline void dirty_young_block(HeapWord* start, size_t word_size);
   604   // Allocate blocks during garbage collection. Will ensure an
   605   // allocation region, either by picking one or expanding the
   606   // heap, and then allocate a block of the given size. The block
   607   // may not be a humongous - it must fit into a single heap region.
   608   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   610   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   611                                     HeapRegion*    alloc_region,
   612                                     bool           par,
   613                                     size_t         word_size);
   615   // Ensure that no further allocations can happen in "r", bearing in mind
   616   // that parallel threads might be attempting allocations.
   617   void par_allocate_remaining_space(HeapRegion* r);
   619   // Allocation attempt during GC for a survivor object / PLAB.
   620   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   622   // Allocation attempt during GC for an old object / PLAB.
   623   inline HeapWord* old_attempt_allocation(size_t word_size);
   625   // These methods are the "callbacks" from the G1AllocRegion class.
   627   // For mutator alloc regions.
   628   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   629   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   630                                    size_t allocated_bytes);
   632   // For GC alloc regions.
   633   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
   634                                   GCAllocPurpose ap);
   635   void retire_gc_alloc_region(HeapRegion* alloc_region,
   636                               size_t allocated_bytes, GCAllocPurpose ap);
   638   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   639   //   inspection request and should collect the entire heap
   640   // - if clear_all_soft_refs is true, all soft references should be
   641   //   cleared during the GC
   642   // - if explicit_gc is false, word_size describes the allocation that
   643   //   the GC should attempt (at least) to satisfy
   644   // - it returns false if it is unable to do the collection due to the
   645   //   GC locker being active, true otherwise
   646   bool do_collection(bool explicit_gc,
   647                      bool clear_all_soft_refs,
   648                      size_t word_size);
   650   // Callback from VM_G1CollectFull operation.
   651   // Perform a full collection.
   652   virtual void do_full_collection(bool clear_all_soft_refs);
   654   // Resize the heap if necessary after a full collection.  If this is
   655   // after a collect-for allocation, "word_size" is the allocation size,
   656   // and will be considered part of the used portion of the heap.
   657   void resize_if_necessary_after_full_collection(size_t word_size);
   659   // Callback from VM_G1CollectForAllocation operation.
   660   // This function does everything necessary/possible to satisfy a
   661   // failed allocation request (including collection, expansion, etc.)
   662   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   664   // Attempting to expand the heap sufficiently
   665   // to support an allocation of the given "word_size".  If
   666   // successful, perform the allocation and return the address of the
   667   // allocated block, or else "NULL".
   668   HeapWord* expand_and_allocate(size_t word_size);
   670   // Process any reference objects discovered during
   671   // an incremental evacuation pause.
   672   void process_discovered_references(uint no_of_gc_workers);
   674   // Enqueue any remaining discovered references
   675   // after processing.
   676   void enqueue_discovered_references(uint no_of_gc_workers);
   678 public:
   680   G1MonitoringSupport* g1mm() {
   681     assert(_g1mm != NULL, "should have been initialized");
   682     return _g1mm;
   683   }
   685   // Expand the garbage-first heap by at least the given size (in bytes!).
   686   // Returns true if the heap was expanded by the requested amount;
   687   // false otherwise.
   688   // (Rounds up to a HeapRegion boundary.)
   689   bool expand(size_t expand_bytes);
   691   // Do anything common to GC's.
   692   virtual void gc_prologue(bool full);
   693   virtual void gc_epilogue(bool full);
   695   // We register a region with the fast "in collection set" test. We
   696   // simply set to true the array slot corresponding to this region.
   697   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   698     assert(_in_cset_fast_test_base != NULL, "sanity");
   699     assert(r->in_collection_set(), "invariant");
   700     uint index = r->hrs_index();
   701     assert(index < _in_cset_fast_test_length, "invariant");
   702     assert(!_in_cset_fast_test_base[index], "invariant");
   703     _in_cset_fast_test_base[index] = true;
   704   }
   706   // This is a fast test on whether a reference points into the
   707   // collection set or not. Assume that the reference
   708   // points into the heap.
   709   inline bool in_cset_fast_test(oop obj);
   711   void clear_cset_fast_test() {
   712     assert(_in_cset_fast_test_base != NULL, "sanity");
   713     memset(_in_cset_fast_test_base, false,
   714            (size_t) _in_cset_fast_test_length * sizeof(bool));
   715   }
   717   // This is called at the start of either a concurrent cycle or a Full
   718   // GC to update the number of old marking cycles started.
   719   void increment_old_marking_cycles_started();
   721   // This is called at the end of either a concurrent cycle or a Full
   722   // GC to update the number of old marking cycles completed. Those two
   723   // can happen in a nested fashion, i.e., we start a concurrent
   724   // cycle, a Full GC happens half-way through it which ends first,
   725   // and then the cycle notices that a Full GC happened and ends
   726   // too. The concurrent parameter is a boolean to help us do a bit
   727   // tighter consistency checking in the method. If concurrent is
   728   // false, the caller is the inner caller in the nesting (i.e., the
   729   // Full GC). If concurrent is true, the caller is the outer caller
   730   // in this nesting (i.e., the concurrent cycle). Further nesting is
   731   // not currently supported. The end of this call also notifies
   732   // the FullGCCount_lock in case a Java thread is waiting for a full
   733   // GC to happen (e.g., it called System.gc() with
   734   // +ExplicitGCInvokesConcurrent).
   735   void increment_old_marking_cycles_completed(bool concurrent);
   737   unsigned int old_marking_cycles_completed() {
   738     return _old_marking_cycles_completed;
   739   }
   741   void register_concurrent_cycle_start(const Ticks& start_time);
   742   void register_concurrent_cycle_end();
   743   void trace_heap_after_concurrent_cycle();
   745   G1YCType yc_type();
   747   G1HRPrinter* hr_printer() { return &_hr_printer; }
   749   // Frees a non-humongous region by initializing its contents and
   750   // adding it to the free list that's passed as a parameter (this is
   751   // usually a local list which will be appended to the master free
   752   // list later). The used bytes of freed regions are accumulated in
   753   // pre_used. If par is true, the region's RSet will not be freed
   754   // up. The assumption is that this will be done later.
   755   // The locked parameter indicates if the caller has already taken
   756   // care of proper synchronization. This may allow some optimizations.
   757   void free_region(HeapRegion* hr,
   758                    FreeRegionList* free_list,
   759                    bool par,
   760                    bool locked = false);
   762   // Frees a humongous region by collapsing it into individual regions
   763   // and calling free_region() for each of them. The freed regions
   764   // will be added to the free list that's passed as a parameter (this
   765   // is usually a local list which will be appended to the master free
   766   // list later). The used bytes of freed regions are accumulated in
   767   // pre_used. If par is true, the region's RSet will not be freed
   768   // up. The assumption is that this will be done later.
   769   void free_humongous_region(HeapRegion* hr,
   770                              FreeRegionList* free_list,
   771                              bool par);
   772 protected:
   774   // Shrink the garbage-first heap by at most the given size (in bytes!).
   775   // (Rounds down to a HeapRegion boundary.)
   776   virtual void shrink(size_t expand_bytes);
   777   void shrink_helper(size_t expand_bytes);
   779   #if TASKQUEUE_STATS
   780   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   781   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   782   void reset_taskqueue_stats();
   783   #endif // TASKQUEUE_STATS
   785   // Schedule the VM operation that will do an evacuation pause to
   786   // satisfy an allocation request of word_size. *succeeded will
   787   // return whether the VM operation was successful (it did do an
   788   // evacuation pause) or not (another thread beat us to it or the GC
   789   // locker was active). Given that we should not be holding the
   790   // Heap_lock when we enter this method, we will pass the
   791   // gc_count_before (i.e., total_collections()) as a parameter since
   792   // it has to be read while holding the Heap_lock. Currently, both
   793   // methods that call do_collection_pause() release the Heap_lock
   794   // before the call, so it's easy to read gc_count_before just before.
   795   HeapWord* do_collection_pause(size_t         word_size,
   796                                 unsigned int   gc_count_before,
   797                                 bool*          succeeded,
   798                                 GCCause::Cause gc_cause);
   800   // The guts of the incremental collection pause, executed by the vm
   801   // thread. It returns false if it is unable to do the collection due
   802   // to the GC locker being active, true otherwise
   803   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   805   // Actually do the work of evacuating the collection set.
   806   void evacuate_collection_set(EvacuationInfo& evacuation_info);
   808   // The g1 remembered set of the heap.
   809   G1RemSet* _g1_rem_set;
   811   // A set of cards that cover the objects for which the Rsets should be updated
   812   // concurrently after the collection.
   813   DirtyCardQueueSet _dirty_card_queue_set;
   815   // The closure used to refine a single card.
   816   RefineCardTableEntryClosure* _refine_cte_cl;
   818   // A function to check the consistency of dirty card logs.
   819   void check_ct_logs_at_safepoint();
   821   // A DirtyCardQueueSet that is used to hold cards that contain
   822   // references into the current collection set. This is used to
   823   // update the remembered sets of the regions in the collection
   824   // set in the event of an evacuation failure.
   825   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   827   // After a collection pause, make the regions in the CS into free
   828   // regions.
   829   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
   831   // Abandon the current collection set without recording policy
   832   // statistics or updating free lists.
   833   void abandon_collection_set(HeapRegion* cs_head);
   835   // Applies "scan_non_heap_roots" to roots outside the heap,
   836   // "scan_rs" to roots inside the heap (having done "set_region" to
   837   // indicate the region in which the root resides),
   838   // and does "scan_metadata" If "scan_rs" is
   839   // NULL, then this step is skipped.  The "worker_i"
   840   // param is for use with parallel roots processing, and should be
   841   // the "i" of the calling parallel worker thread's work(i) function.
   842   // In the sequential case this param will be ignored.
   843   void g1_process_strong_roots(bool is_scavenging,
   844                                ScanningOption so,
   845                                OopClosure* scan_non_heap_roots,
   846                                OopsInHeapRegionClosure* scan_rs,
   847                                G1KlassScanClosure* scan_klasses,
   848                                int worker_i);
   850   // Apply "blk" to all the weak roots of the system.  These include
   851   // JNI weak roots, the code cache, system dictionary, symbol table,
   852   // string table, and referents of reachable weak refs.
   853   void g1_process_weak_roots(OopClosure* root_closure);
   855   // Notifies all the necessary spaces that the committed space has
   856   // been updated (either expanded or shrunk). It should be called
   857   // after _g1_storage is updated.
   858   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   860   // The concurrent marker (and the thread it runs in.)
   861   ConcurrentMark* _cm;
   862   ConcurrentMarkThread* _cmThread;
   863   bool _mark_in_progress;
   865   // The concurrent refiner.
   866   ConcurrentG1Refine* _cg1r;
   868   // The parallel task queues
   869   RefToScanQueueSet *_task_queues;
   871   // True iff a evacuation has failed in the current collection.
   872   bool _evacuation_failed;
   874   EvacuationFailedInfo* _evacuation_failed_info_array;
   876   // Failed evacuations cause some logical from-space objects to have
   877   // forwarding pointers to themselves.  Reset them.
   878   void remove_self_forwarding_pointers();
   880   // Together, these store an object with a preserved mark, and its mark value.
   881   Stack<oop, mtGC>     _objs_with_preserved_marks;
   882   Stack<markOop, mtGC> _preserved_marks_of_objs;
   884   // Preserve the mark of "obj", if necessary, in preparation for its mark
   885   // word being overwritten with a self-forwarding-pointer.
   886   void preserve_mark_if_necessary(oop obj, markOop m);
   888   // The stack of evac-failure objects left to be scanned.
   889   GrowableArray<oop>*    _evac_failure_scan_stack;
   890   // The closure to apply to evac-failure objects.
   892   OopsInHeapRegionClosure* _evac_failure_closure;
   893   // Set the field above.
   894   void
   895   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   896     _evac_failure_closure = evac_failure_closure;
   897   }
   899   // Push "obj" on the scan stack.
   900   void push_on_evac_failure_scan_stack(oop obj);
   901   // Process scan stack entries until the stack is empty.
   902   void drain_evac_failure_scan_stack();
   903   // True iff an invocation of "drain_scan_stack" is in progress; to
   904   // prevent unnecessary recursion.
   905   bool _drain_in_progress;
   907   // Do any necessary initialization for evacuation-failure handling.
   908   // "cl" is the closure that will be used to process evac-failure
   909   // objects.
   910   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   911   // Do any necessary cleanup for evacuation-failure handling data
   912   // structures.
   913   void finalize_for_evac_failure();
   915   // An attempt to evacuate "obj" has failed; take necessary steps.
   916   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
   917   void handle_evacuation_failure_common(oop obj, markOop m);
   919 #ifndef PRODUCT
   920   // Support for forcing evacuation failures. Analogous to
   921   // PromotionFailureALot for the other collectors.
   923   // Records whether G1EvacuationFailureALot should be in effect
   924   // for the current GC
   925   bool _evacuation_failure_alot_for_current_gc;
   927   // Used to record the GC number for interval checking when
   928   // determining whether G1EvaucationFailureALot is in effect
   929   // for the current GC.
   930   size_t _evacuation_failure_alot_gc_number;
   932   // Count of the number of evacuations between failures.
   933   volatile size_t _evacuation_failure_alot_count;
   935   // Set whether G1EvacuationFailureALot should be in effect
   936   // for the current GC (based upon the type of GC and which
   937   // command line flags are set);
   938   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
   939                                                   bool during_initial_mark,
   940                                                   bool during_marking);
   942   inline void set_evacuation_failure_alot_for_current_gc();
   944   // Return true if it's time to cause an evacuation failure.
   945   inline bool evacuation_should_fail();
   947   // Reset the G1EvacuationFailureALot counters.  Should be called at
   948   // the end of an evacuation pause in which an evacuation failure occurred.
   949   inline void reset_evacuation_should_fail();
   950 #endif // !PRODUCT
   952   // ("Weak") Reference processing support.
   953   //
   954   // G1 has 2 instances of the reference processor class. One
   955   // (_ref_processor_cm) handles reference object discovery
   956   // and subsequent processing during concurrent marking cycles.
   957   //
   958   // The other (_ref_processor_stw) handles reference object
   959   // discovery and processing during full GCs and incremental
   960   // evacuation pauses.
   961   //
   962   // During an incremental pause, reference discovery will be
   963   // temporarily disabled for _ref_processor_cm and will be
   964   // enabled for _ref_processor_stw. At the end of the evacuation
   965   // pause references discovered by _ref_processor_stw will be
   966   // processed and discovery will be disabled. The previous
   967   // setting for reference object discovery for _ref_processor_cm
   968   // will be re-instated.
   969   //
   970   // At the start of marking:
   971   //  * Discovery by the CM ref processor is verified to be inactive
   972   //    and it's discovered lists are empty.
   973   //  * Discovery by the CM ref processor is then enabled.
   974   //
   975   // At the end of marking:
   976   //  * Any references on the CM ref processor's discovered
   977   //    lists are processed (possibly MT).
   978   //
   979   // At the start of full GC we:
   980   //  * Disable discovery by the CM ref processor and
   981   //    empty CM ref processor's discovered lists
   982   //    (without processing any entries).
   983   //  * Verify that the STW ref processor is inactive and it's
   984   //    discovered lists are empty.
   985   //  * Temporarily set STW ref processor discovery as single threaded.
   986   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   987   //    field.
   988   //  * Finally enable discovery by the STW ref processor.
   989   //
   990   // The STW ref processor is used to record any discovered
   991   // references during the full GC.
   992   //
   993   // At the end of a full GC we:
   994   //  * Enqueue any reference objects discovered by the STW ref processor
   995   //    that have non-live referents. This has the side-effect of
   996   //    making the STW ref processor inactive by disabling discovery.
   997   //  * Verify that the CM ref processor is still inactive
   998   //    and no references have been placed on it's discovered
   999   //    lists (also checked as a precondition during initial marking).
  1001   // The (stw) reference processor...
  1002   ReferenceProcessor* _ref_processor_stw;
  1004   STWGCTimer* _gc_timer_stw;
  1005   ConcurrentGCTimer* _gc_timer_cm;
  1007   G1OldTracer* _gc_tracer_cm;
  1008   G1NewTracer* _gc_tracer_stw;
  1010   // During reference object discovery, the _is_alive_non_header
  1011   // closure (if non-null) is applied to the referent object to
  1012   // determine whether the referent is live. If so then the
  1013   // reference object does not need to be 'discovered' and can
  1014   // be treated as a regular oop. This has the benefit of reducing
  1015   // the number of 'discovered' reference objects that need to
  1016   // be processed.
  1017   //
  1018   // Instance of the is_alive closure for embedding into the
  1019   // STW reference processor as the _is_alive_non_header field.
  1020   // Supplying a value for the _is_alive_non_header field is
  1021   // optional but doing so prevents unnecessary additions to
  1022   // the discovered lists during reference discovery.
  1023   G1STWIsAliveClosure _is_alive_closure_stw;
  1025   // The (concurrent marking) reference processor...
  1026   ReferenceProcessor* _ref_processor_cm;
  1028   // Instance of the concurrent mark is_alive closure for embedding
  1029   // into the Concurrent Marking reference processor as the
  1030   // _is_alive_non_header field. Supplying a value for the
  1031   // _is_alive_non_header field is optional but doing so prevents
  1032   // unnecessary additions to the discovered lists during reference
  1033   // discovery.
  1034   G1CMIsAliveClosure _is_alive_closure_cm;
  1036   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
  1037   HeapRegion** _worker_cset_start_region;
  1039   // Time stamp to validate the regions recorded in the cache
  1040   // used by G1CollectedHeap::start_cset_region_for_worker().
  1041   // The heap region entry for a given worker is valid iff
  1042   // the associated time stamp value matches the current value
  1043   // of G1CollectedHeap::_gc_time_stamp.
  1044   unsigned int* _worker_cset_start_region_time_stamp;
  1046   enum G1H_process_strong_roots_tasks {
  1047     G1H_PS_filter_satb_buffers,
  1048     G1H_PS_refProcessor_oops_do,
  1049     // Leave this one last.
  1050     G1H_PS_NumElements
  1051   };
  1053   SubTasksDone* _process_strong_tasks;
  1055   volatile bool _free_regions_coming;
  1057 public:
  1059   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
  1061   void set_refine_cte_cl_concurrency(bool concurrent);
  1063   RefToScanQueue *task_queue(int i) const;
  1065   // A set of cards where updates happened during the GC
  1066   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
  1068   // A DirtyCardQueueSet that is used to hold cards that contain
  1069   // references into the current collection set. This is used to
  1070   // update the remembered sets of the regions in the collection
  1071   // set in the event of an evacuation failure.
  1072   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
  1073         { return _into_cset_dirty_card_queue_set; }
  1075   // Create a G1CollectedHeap with the specified policy.
  1076   // Must call the initialize method afterwards.
  1077   // May not return if something goes wrong.
  1078   G1CollectedHeap(G1CollectorPolicy* policy);
  1080   // Initialize the G1CollectedHeap to have the initial and
  1081   // maximum sizes and remembered and barrier sets
  1082   // specified by the policy object.
  1083   jint initialize();
  1085   // Return the (conservative) maximum heap alignment for any G1 heap
  1086   static size_t conservative_max_heap_alignment();
  1088   // Initialize weak reference processing.
  1089   virtual void ref_processing_init();
  1091   void set_par_threads(uint t) {
  1092     SharedHeap::set_par_threads(t);
  1093     // Done in SharedHeap but oddly there are
  1094     // two _process_strong_tasks's in a G1CollectedHeap
  1095     // so do it here too.
  1096     _process_strong_tasks->set_n_threads(t);
  1099   // Set _n_par_threads according to a policy TBD.
  1100   void set_par_threads();
  1102   void set_n_termination(int t) {
  1103     _process_strong_tasks->set_n_threads(t);
  1106   virtual CollectedHeap::Name kind() const {
  1107     return CollectedHeap::G1CollectedHeap;
  1110   // The current policy object for the collector.
  1111   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1113   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
  1115   // Adaptive size policy.  No such thing for g1.
  1116   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1118   // The rem set and barrier set.
  1119   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1121   unsigned get_gc_time_stamp() {
  1122     return _gc_time_stamp;
  1125   void reset_gc_time_stamp() {
  1126     _gc_time_stamp = 0;
  1127     OrderAccess::fence();
  1128     // Clear the cached CSet starting regions and time stamps.
  1129     // Their validity is dependent on the GC timestamp.
  1130     clear_cset_start_regions();
  1133   void check_gc_time_stamps() PRODUCT_RETURN;
  1135   void increment_gc_time_stamp() {
  1136     ++_gc_time_stamp;
  1137     OrderAccess::fence();
  1140   // Reset the given region's GC timestamp. If it's starts humongous,
  1141   // also reset the GC timestamp of its corresponding
  1142   // continues humongous regions too.
  1143   void reset_gc_time_stamps(HeapRegion* hr);
  1145   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1146                                   DirtyCardQueue* into_cset_dcq,
  1147                                   bool concurrent, int worker_i);
  1149   // The shared block offset table array.
  1150   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1152   // Reference Processing accessors
  1154   // The STW reference processor....
  1155   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1157   // The Concurrent Marking reference processor...
  1158   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1160   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
  1161   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
  1163   virtual size_t capacity() const;
  1164   virtual size_t used() const;
  1165   // This should be called when we're not holding the heap lock. The
  1166   // result might be a bit inaccurate.
  1167   size_t used_unlocked() const;
  1168   size_t recalculate_used() const;
  1170   // These virtual functions do the actual allocation.
  1171   // Some heaps may offer a contiguous region for shared non-blocking
  1172   // allocation, via inlined code (by exporting the address of the top and
  1173   // end fields defining the extent of the contiguous allocation region.)
  1174   // But G1CollectedHeap doesn't yet support this.
  1176   // Return an estimate of the maximum allocation that could be performed
  1177   // without triggering any collection or expansion activity.  In a
  1178   // generational collector, for example, this is probably the largest
  1179   // allocation that could be supported (without expansion) in the youngest
  1180   // generation.  It is "unsafe" because no locks are taken; the result
  1181   // should be treated as an approximation, not a guarantee, for use in
  1182   // heuristic resizing decisions.
  1183   virtual size_t unsafe_max_alloc();
  1185   virtual bool is_maximal_no_gc() const {
  1186     return _g1_storage.uncommitted_size() == 0;
  1189   // The total number of regions in the heap.
  1190   uint n_regions() { return _hrs.length(); }
  1192   // The max number of regions in the heap.
  1193   uint max_regions() { return _hrs.max_length(); }
  1195   // The number of regions that are completely free.
  1196   uint free_regions() { return _free_list.length(); }
  1198   // The number of regions that are not completely free.
  1199   uint used_regions() { return n_regions() - free_regions(); }
  1201   // The number of regions available for "regular" expansion.
  1202   uint expansion_regions() { return _expansion_regions; }
  1204   // Factory method for HeapRegion instances. It will return NULL if
  1205   // the allocation fails.
  1206   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
  1208   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1209   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1210   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1211   void verify_dirty_young_regions() PRODUCT_RETURN;
  1213   // verify_region_sets() performs verification over the region
  1214   // lists. It will be compiled in the product code to be used when
  1215   // necessary (i.e., during heap verification).
  1216   void verify_region_sets();
  1218   // verify_region_sets_optional() is planted in the code for
  1219   // list verification in non-product builds (and it can be enabled in
  1220   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1221 #if HEAP_REGION_SET_FORCE_VERIFY
  1222   void verify_region_sets_optional() {
  1223     verify_region_sets();
  1225 #else // HEAP_REGION_SET_FORCE_VERIFY
  1226   void verify_region_sets_optional() { }
  1227 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1229 #ifdef ASSERT
  1230   bool is_on_master_free_list(HeapRegion* hr) {
  1231     return hr->containing_set() == &_free_list;
  1233 #endif // ASSERT
  1235   // Wrapper for the region list operations that can be called from
  1236   // methods outside this class.
  1238   void secondary_free_list_add(FreeRegionList* list) {
  1239     _secondary_free_list.add_ordered(list);
  1242   void append_secondary_free_list() {
  1243     _free_list.add_ordered(&_secondary_free_list);
  1246   void append_secondary_free_list_if_not_empty_with_lock() {
  1247     // If the secondary free list looks empty there's no reason to
  1248     // take the lock and then try to append it.
  1249     if (!_secondary_free_list.is_empty()) {
  1250       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1251       append_secondary_free_list();
  1255   inline void old_set_remove(HeapRegion* hr);
  1257   size_t non_young_capacity_bytes() {
  1258     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  1261   void set_free_regions_coming();
  1262   void reset_free_regions_coming();
  1263   bool free_regions_coming() { return _free_regions_coming; }
  1264   void wait_while_free_regions_coming();
  1266   // Determine whether the given region is one that we are using as an
  1267   // old GC alloc region.
  1268   bool is_old_gc_alloc_region(HeapRegion* hr) {
  1269     return hr == _retained_old_gc_alloc_region;
  1272   // Perform a collection of the heap; intended for use in implementing
  1273   // "System.gc".  This probably implies as full a collection as the
  1274   // "CollectedHeap" supports.
  1275   virtual void collect(GCCause::Cause cause);
  1277   // The same as above but assume that the caller holds the Heap_lock.
  1278   void collect_locked(GCCause::Cause cause);
  1280   // True iff an evacuation has failed in the most-recent collection.
  1281   bool evacuation_failed() { return _evacuation_failed; }
  1283   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
  1284   void prepend_to_freelist(FreeRegionList* list);
  1285   void decrement_summary_bytes(size_t bytes);
  1287   // Returns "TRUE" iff "p" points into the committed areas of the heap.
  1288   virtual bool is_in(const void* p) const;
  1290   // Return "TRUE" iff the given object address is within the collection
  1291   // set.
  1292   inline bool obj_in_cs(oop obj);
  1294   // Return "TRUE" iff the given object address is in the reserved
  1295   // region of g1.
  1296   bool is_in_g1_reserved(const void* p) const {
  1297     return _g1_reserved.contains(p);
  1300   // Returns a MemRegion that corresponds to the space that has been
  1301   // reserved for the heap
  1302   MemRegion g1_reserved() {
  1303     return _g1_reserved;
  1306   // Returns a MemRegion that corresponds to the space that has been
  1307   // committed in the heap
  1308   MemRegion g1_committed() {
  1309     return _g1_committed;
  1312   virtual bool is_in_closed_subset(const void* p) const;
  1314   G1SATBCardTableModRefBS* g1_barrier_set() {
  1315     return (G1SATBCardTableModRefBS*) barrier_set();
  1318   // This resets the card table to all zeros.  It is used after
  1319   // a collection pause which used the card table to claim cards.
  1320   void cleanUpCardTable();
  1322   // Iteration functions.
  1324   // Iterate over all the ref-containing fields of all objects, calling
  1325   // "cl.do_oop" on each.
  1326   virtual void oop_iterate(ExtendedOopClosure* cl);
  1328   // Same as above, restricted to a memory region.
  1329   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
  1331   // Iterate over all objects, calling "cl.do_object" on each.
  1332   virtual void object_iterate(ObjectClosure* cl);
  1334   virtual void safe_object_iterate(ObjectClosure* cl) {
  1335     object_iterate(cl);
  1338   // Iterate over all spaces in use in the heap, in ascending address order.
  1339   virtual void space_iterate(SpaceClosure* cl);
  1341   // Iterate over heap regions, in address order, terminating the
  1342   // iteration early if the "doHeapRegion" method returns "true".
  1343   void heap_region_iterate(HeapRegionClosure* blk) const;
  1345   // Return the region with the given index. It assumes the index is valid.
  1346   inline HeapRegion* region_at(uint index) const;
  1348   // Divide the heap region sequence into "chunks" of some size (the number
  1349   // of regions divided by the number of parallel threads times some
  1350   // overpartition factor, currently 4).  Assumes that this will be called
  1351   // in parallel by ParallelGCThreads worker threads with discinct worker
  1352   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1353   // calls will use the same "claim_value", and that that claim value is
  1354   // different from the claim_value of any heap region before the start of
  1355   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1356   // attempting to claim the first region in each chunk, and, if
  1357   // successful, applying the closure to each region in the chunk (and
  1358   // setting the claim value of the second and subsequent regions of the
  1359   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1360   // i.e., that a closure never attempt to abort a traversal.
  1361   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1362                                        uint worker,
  1363                                        uint no_of_par_workers,
  1364                                        jint claim_value);
  1366   // It resets all the region claim values to the default.
  1367   void reset_heap_region_claim_values();
  1369   // Resets the claim values of regions in the current
  1370   // collection set to the default.
  1371   void reset_cset_heap_region_claim_values();
  1373 #ifdef ASSERT
  1374   bool check_heap_region_claim_values(jint claim_value);
  1376   // Same as the routine above but only checks regions in the
  1377   // current collection set.
  1378   bool check_cset_heap_region_claim_values(jint claim_value);
  1379 #endif // ASSERT
  1381   // Clear the cached cset start regions and (more importantly)
  1382   // the time stamps. Called when we reset the GC time stamp.
  1383   void clear_cset_start_regions();
  1385   // Given the id of a worker, obtain or calculate a suitable
  1386   // starting region for iterating over the current collection set.
  1387   HeapRegion* start_cset_region_for_worker(int worker_i);
  1389   // This is a convenience method that is used by the
  1390   // HeapRegionIterator classes to calculate the starting region for
  1391   // each worker so that they do not all start from the same region.
  1392   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
  1394   // Iterate over the regions (if any) in the current collection set.
  1395   void collection_set_iterate(HeapRegionClosure* blk);
  1397   // As above but starting from region r
  1398   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1400   // Returns the first (lowest address) compactible space in the heap.
  1401   virtual CompactibleSpace* first_compactible_space();
  1403   // A CollectedHeap will contain some number of spaces.  This finds the
  1404   // space containing a given address, or else returns NULL.
  1405   virtual Space* space_containing(const void* addr) const;
  1407   // A G1CollectedHeap will contain some number of heap regions.  This
  1408   // finds the region containing a given address, or else returns NULL.
  1409   template <class T>
  1410   inline HeapRegion* heap_region_containing(const T addr) const;
  1412   // Like the above, but requires "addr" to be in the heap (to avoid a
  1413   // null-check), and unlike the above, may return an continuing humongous
  1414   // region.
  1415   template <class T>
  1416   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1418   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1419   // each address in the (reserved) heap is a member of exactly
  1420   // one block.  The defining characteristic of a block is that it is
  1421   // possible to find its size, and thus to progress forward to the next
  1422   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1423   // represent Java objects, or they might be free blocks in a
  1424   // free-list-based heap (or subheap), as long as the two kinds are
  1425   // distinguishable and the size of each is determinable.
  1427   // Returns the address of the start of the "block" that contains the
  1428   // address "addr".  We say "blocks" instead of "object" since some heaps
  1429   // may not pack objects densely; a chunk may either be an object or a
  1430   // non-object.
  1431   virtual HeapWord* block_start(const void* addr) const;
  1433   // Requires "addr" to be the start of a chunk, and returns its size.
  1434   // "addr + size" is required to be the start of a new chunk, or the end
  1435   // of the active area of the heap.
  1436   virtual size_t block_size(const HeapWord* addr) const;
  1438   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1439   // the block is an object.
  1440   virtual bool block_is_obj(const HeapWord* addr) const;
  1442   // Does this heap support heap inspection? (+PrintClassHistogram)
  1443   virtual bool supports_heap_inspection() const { return true; }
  1445   // Section on thread-local allocation buffers (TLABs)
  1446   // See CollectedHeap for semantics.
  1448   bool supports_tlab_allocation() const;
  1449   size_t tlab_capacity(Thread* ignored) const;
  1450   size_t tlab_used(Thread* ignored) const;
  1451   size_t max_tlab_size() const;
  1452   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
  1454   // Can a compiler initialize a new object without store barriers?
  1455   // This permission only extends from the creation of a new object
  1456   // via a TLAB up to the first subsequent safepoint. If such permission
  1457   // is granted for this heap type, the compiler promises to call
  1458   // defer_store_barrier() below on any slow path allocation of
  1459   // a new object for which such initializing store barriers will
  1460   // have been elided. G1, like CMS, allows this, but should be
  1461   // ready to provide a compensating write barrier as necessary
  1462   // if that storage came out of a non-young region. The efficiency
  1463   // of this implementation depends crucially on being able to
  1464   // answer very efficiently in constant time whether a piece of
  1465   // storage in the heap comes from a young region or not.
  1466   // See ReduceInitialCardMarks.
  1467   virtual bool can_elide_tlab_store_barriers() const {
  1468     return true;
  1471   virtual bool card_mark_must_follow_store() const {
  1472     return true;
  1475   inline bool is_in_young(const oop obj);
  1477 #ifdef ASSERT
  1478   virtual bool is_in_partial_collection(const void* p);
  1479 #endif
  1481   virtual bool is_scavengable(const void* addr);
  1483   // We don't need barriers for initializing stores to objects
  1484   // in the young gen: for the SATB pre-barrier, there is no
  1485   // pre-value that needs to be remembered; for the remembered-set
  1486   // update logging post-barrier, we don't maintain remembered set
  1487   // information for young gen objects.
  1488   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
  1490   // Returns "true" iff the given word_size is "very large".
  1491   static bool isHumongous(size_t word_size) {
  1492     // Note this has to be strictly greater-than as the TLABs
  1493     // are capped at the humongous thresold and we want to
  1494     // ensure that we don't try to allocate a TLAB as
  1495     // humongous and that we don't allocate a humongous
  1496     // object in a TLAB.
  1497     return word_size > _humongous_object_threshold_in_words;
  1500   // Update mod union table with the set of dirty cards.
  1501   void updateModUnion();
  1503   // Set the mod union bits corresponding to the given memRegion.  Note
  1504   // that this is always a safe operation, since it doesn't clear any
  1505   // bits.
  1506   void markModUnionRange(MemRegion mr);
  1508   // Records the fact that a marking phase is no longer in progress.
  1509   void set_marking_complete() {
  1510     _mark_in_progress = false;
  1512   void set_marking_started() {
  1513     _mark_in_progress = true;
  1515   bool mark_in_progress() {
  1516     return _mark_in_progress;
  1519   // Print the maximum heap capacity.
  1520   virtual size_t max_capacity() const;
  1522   virtual jlong millis_since_last_gc();
  1525   // Convenience function to be used in situations where the heap type can be
  1526   // asserted to be this type.
  1527   static G1CollectedHeap* heap();
  1529   void set_region_short_lived_locked(HeapRegion* hr);
  1530   // add appropriate methods for any other surv rate groups
  1532   YoungList* young_list() const { return _young_list; }
  1534   // debugging
  1535   bool check_young_list_well_formed() {
  1536     return _young_list->check_list_well_formed();
  1539   bool check_young_list_empty(bool check_heap,
  1540                               bool check_sample = true);
  1542   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1543   // many of these need to be public.
  1545   // The functions below are helper functions that a subclass of
  1546   // "CollectedHeap" can use in the implementation of its virtual
  1547   // functions.
  1548   // This performs a concurrent marking of the live objects in a
  1549   // bitmap off to the side.
  1550   void doConcurrentMark();
  1552   bool isMarkedPrev(oop obj) const;
  1553   bool isMarkedNext(oop obj) const;
  1555   // Determine if an object is dead, given the object and also
  1556   // the region to which the object belongs. An object is dead
  1557   // iff a) it was not allocated since the last mark and b) it
  1558   // is not marked.
  1560   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1561     return
  1562       !hr->obj_allocated_since_prev_marking(obj) &&
  1563       !isMarkedPrev(obj);
  1566   // This function returns true when an object has been
  1567   // around since the previous marking and hasn't yet
  1568   // been marked during this marking.
  1570   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1571     return
  1572       !hr->obj_allocated_since_next_marking(obj) &&
  1573       !isMarkedNext(obj);
  1576   // Determine if an object is dead, given only the object itself.
  1577   // This will find the region to which the object belongs and
  1578   // then call the region version of the same function.
  1580   // Added if it is NULL it isn't dead.
  1582   inline bool is_obj_dead(const oop obj) const;
  1584   inline bool is_obj_ill(const oop obj) const;
  1586   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  1587   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  1588   bool is_marked(oop obj, VerifyOption vo);
  1589   const char* top_at_mark_start_str(VerifyOption vo);
  1591   ConcurrentMark* concurrent_mark() const { return _cm; }
  1593   // Refinement
  1595   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1597   // The dirty cards region list is used to record a subset of regions
  1598   // whose cards need clearing. The list if populated during the
  1599   // remembered set scanning and drained during the card table
  1600   // cleanup. Although the methods are reentrant, population/draining
  1601   // phases must not overlap. For synchronization purposes the last
  1602   // element on the list points to itself.
  1603   HeapRegion* _dirty_cards_region_list;
  1604   void push_dirty_cards_region(HeapRegion* hr);
  1605   HeapRegion* pop_dirty_cards_region();
  1607   // Optimized nmethod scanning support routines
  1609   // Register the given nmethod with the G1 heap
  1610   virtual void register_nmethod(nmethod* nm);
  1612   // Unregister the given nmethod from the G1 heap
  1613   virtual void unregister_nmethod(nmethod* nm);
  1615   // Migrate the nmethods in the code root lists of the regions
  1616   // in the collection set to regions in to-space. In the event
  1617   // of an evacuation failure, nmethods that reference objects
  1618   // that were not successfullly evacuated are not migrated.
  1619   void migrate_strong_code_roots();
  1621   // Free up superfluous code root memory.
  1622   void purge_code_root_memory();
  1624   // During an initial mark pause, mark all the code roots that
  1625   // point into regions *not* in the collection set.
  1626   void mark_strong_code_roots(uint worker_id);
  1628   // Rebuild the stong code root lists for each region
  1629   // after a full GC
  1630   void rebuild_strong_code_roots();
  1632   // Delete entries for dead interned string and clean up unreferenced symbols
  1633   // in symbol table, possibly in parallel.
  1634   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
  1636   // Redirty logged cards in the refinement queue.
  1637   void redirty_logged_cards();
  1638   // Verification
  1640   // The following is just to alert the verification code
  1641   // that a full collection has occurred and that the
  1642   // remembered sets are no longer up to date.
  1643   bool _full_collection;
  1644   void set_full_collection() { _full_collection = true;}
  1645   void clear_full_collection() {_full_collection = false;}
  1646   bool full_collection() {return _full_collection;}
  1648   // Perform any cleanup actions necessary before allowing a verification.
  1649   virtual void prepare_for_verify();
  1651   // Perform verification.
  1653   // vo == UsePrevMarking  -> use "prev" marking information,
  1654   // vo == UseNextMarking -> use "next" marking information
  1655   // vo == UseMarkWord    -> use the mark word in the object header
  1656   //
  1657   // NOTE: Only the "prev" marking information is guaranteed to be
  1658   // consistent most of the time, so most calls to this should use
  1659   // vo == UsePrevMarking.
  1660   // Currently, there is only one case where this is called with
  1661   // vo == UseNextMarking, which is to verify the "next" marking
  1662   // information at the end of remark.
  1663   // Currently there is only one place where this is called with
  1664   // vo == UseMarkWord, which is to verify the marking during a
  1665   // full GC.
  1666   void verify(bool silent, VerifyOption vo);
  1668   // Override; it uses the "prev" marking information
  1669   virtual void verify(bool silent);
  1671   // The methods below are here for convenience and dispatch the
  1672   // appropriate method depending on value of the given VerifyOption
  1673   // parameter. The values for that parameter, and their meanings,
  1674   // are the same as those above.
  1676   bool is_obj_dead_cond(const oop obj,
  1677                         const HeapRegion* hr,
  1678                         const VerifyOption vo) const;
  1680   bool is_obj_dead_cond(const oop obj,
  1681                         const VerifyOption vo) const;
  1683   // Printing
  1685   virtual void print_on(outputStream* st) const;
  1686   virtual void print_extended_on(outputStream* st) const;
  1687   virtual void print_on_error(outputStream* st) const;
  1689   virtual void print_gc_threads_on(outputStream* st) const;
  1690   virtual void gc_threads_do(ThreadClosure* tc) const;
  1692   // Override
  1693   void print_tracing_info() const;
  1695   // The following two methods are helpful for debugging RSet issues.
  1696   void print_cset_rsets() PRODUCT_RETURN;
  1697   void print_all_rsets() PRODUCT_RETURN;
  1699 public:
  1700   void stop_conc_gc_threads();
  1702   size_t pending_card_num();
  1703   size_t cards_scanned();
  1705 protected:
  1706   size_t _max_heap_capacity;
  1707 };
  1709 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1710 private:
  1711   bool        _retired;
  1713 public:
  1714   G1ParGCAllocBuffer(size_t gclab_word_size);
  1716   void set_buf(HeapWord* buf) {
  1717     ParGCAllocBuffer::set_buf(buf);
  1718     _retired = false;
  1721   void retire(bool end_of_gc, bool retain) {
  1722     if (_retired)
  1723       return;
  1724     ParGCAllocBuffer::retire(end_of_gc, retain);
  1725     _retired = true;
  1727 };
  1729 class G1ParScanThreadState : public StackObj {
  1730 protected:
  1731   G1CollectedHeap* _g1h;
  1732   RefToScanQueue*  _refs;
  1733   DirtyCardQueue   _dcq;
  1734   G1SATBCardTableModRefBS* _ct_bs;
  1735   G1RemSet* _g1_rem;
  1737   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1738   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1739   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1740   ageTable            _age_table;
  1742   G1ParScanClosure    _scanner;
  1744   size_t           _alloc_buffer_waste;
  1745   size_t           _undo_waste;
  1747   OopsInHeapRegionClosure*      _evac_failure_cl;
  1749   int  _hash_seed;
  1750   uint _queue_num;
  1752   size_t _term_attempts;
  1754   double _start;
  1755   double _start_strong_roots;
  1756   double _strong_roots_time;
  1757   double _start_term;
  1758   double _term_time;
  1760   // Map from young-age-index (0 == not young, 1 is youngest) to
  1761   // surviving words. base is what we get back from the malloc call
  1762   size_t* _surviving_young_words_base;
  1763   // this points into the array, as we use the first few entries for padding
  1764   size_t* _surviving_young_words;
  1766 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1768   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1770   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1772   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1773   G1SATBCardTableModRefBS* ctbs()                { return _ct_bs; }
  1775   template <class T> inline void immediate_rs_update(HeapRegion* from, T* p, int tid);
  1777   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1778     // If the new value of the field points to the same region or
  1779     // is the to-space, we don't need to include it in the Rset updates.
  1780     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1781       size_t card_index = ctbs()->index_for(p);
  1782       // If the card hasn't been added to the buffer, do it.
  1783       if (ctbs()->mark_card_deferred(card_index)) {
  1784         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1789 public:
  1790   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp);
  1792   ~G1ParScanThreadState() {
  1793     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
  1796   RefToScanQueue*   refs()            { return _refs;             }
  1797   ageTable*         age_table()       { return &_age_table;       }
  1799   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1800     return _alloc_buffers[purpose];
  1803   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1804   size_t undo_waste() const                      { return _undo_waste; }
  1806 #ifdef ASSERT
  1807   bool verify_ref(narrowOop* ref) const;
  1808   bool verify_ref(oop* ref) const;
  1809   bool verify_task(StarTask ref) const;
  1810 #endif // ASSERT
  1812   template <class T> void push_on_queue(T* ref) {
  1813     assert(verify_ref(ref), "sanity");
  1814     refs()->push(ref);
  1817   template <class T> inline void update_rs(HeapRegion* from, T* p, int tid);
  1819   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1820     HeapWord* obj = NULL;
  1821     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1822     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1823       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1824       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1825       alloc_buf->retire(false /* end_of_gc */, false /* retain */);
  1827       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1828       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1829       // Otherwise.
  1830       alloc_buf->set_word_size(gclab_word_size);
  1831       alloc_buf->set_buf(buf);
  1833       obj = alloc_buf->allocate(word_sz);
  1834       assert(obj != NULL, "buffer was definitely big enough...");
  1835     } else {
  1836       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1838     return obj;
  1841   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1842     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1843     if (obj != NULL) return obj;
  1844     return allocate_slow(purpose, word_sz);
  1847   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1848     if (alloc_buffer(purpose)->contains(obj)) {
  1849       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1850              "should contain whole object");
  1851       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1852     } else {
  1853       CollectedHeap::fill_with_object(obj, word_sz);
  1854       add_to_undo_waste(word_sz);
  1858   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1859     _evac_failure_cl = evac_failure_cl;
  1861   OopsInHeapRegionClosure* evac_failure_closure() {
  1862     return _evac_failure_cl;
  1865   int* hash_seed() { return &_hash_seed; }
  1866   uint queue_num() { return _queue_num; }
  1868   size_t term_attempts() const  { return _term_attempts; }
  1869   void note_term_attempt() { _term_attempts++; }
  1871   void start_strong_roots() {
  1872     _start_strong_roots = os::elapsedTime();
  1874   void end_strong_roots() {
  1875     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1877   double strong_roots_time() const { return _strong_roots_time; }
  1879   void start_term_time() {
  1880     note_term_attempt();
  1881     _start_term = os::elapsedTime();
  1883   void end_term_time() {
  1884     _term_time += (os::elapsedTime() - _start_term);
  1886   double term_time() const { return _term_time; }
  1888   double elapsed_time() const {
  1889     return os::elapsedTime() - _start;
  1892   static void
  1893     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1894   void
  1895     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1897   size_t* surviving_young_words() {
  1898     // We add on to hide entry 0 which accumulates surviving words for
  1899     // age -1 regions (i.e. non-young ones)
  1900     return _surviving_young_words;
  1903   void retire_alloc_buffers() {
  1904     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1905       size_t waste = _alloc_buffers[ap]->words_remaining();
  1906       add_to_alloc_buffer_waste(waste);
  1907       _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
  1908                                                  true /* end_of_gc */,
  1909                                                  false /* retain */);
  1912 private:
  1913   #define G1_PARTIAL_ARRAY_MASK 0x2
  1915   inline bool has_partial_array_mask(oop* ref) const {
  1916     return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
  1919   // We never encode partial array oops as narrowOop*, so return false immediately.
  1920   // This allows the compiler to create optimized code when popping references from
  1921   // the work queue.
  1922   inline bool has_partial_array_mask(narrowOop* ref) const {
  1923     assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
  1924     return false;
  1927   // Only implement set_partial_array_mask() for regular oops, not for narrowOops.
  1928   // We always encode partial arrays as regular oop, to allow the
  1929   // specialization for has_partial_array_mask() for narrowOops above.
  1930   // This means that unintentional use of this method with narrowOops are caught
  1931   // by the compiler.
  1932   inline oop* set_partial_array_mask(oop obj) const {
  1933     assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
  1934     return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
  1937   inline oop clear_partial_array_mask(oop* ref) const {
  1938     return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
  1941   inline void do_oop_partial_array(oop* p);
  1943   // This method is applied to the fields of the objects that have just been copied.
  1944   template <class T> void do_oop_evac(T* p, HeapRegion* from) {
  1945     assert(!oopDesc::is_null(oopDesc::load_decode_heap_oop(p)),
  1946            "Reference should not be NULL here as such are never pushed to the task queue.");
  1947     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
  1949     // Although we never intentionally push references outside of the collection
  1950     // set, due to (benign) races in the claim mechanism during RSet scanning more
  1951     // than one thread might claim the same card. So the same card may be
  1952     // processed multiple times. So redo this check.
  1953     if (_g1h->in_cset_fast_test(obj)) {
  1954       oop forwardee;
  1955       if (obj->is_forwarded()) {
  1956         forwardee = obj->forwardee();
  1957       } else {
  1958         forwardee = copy_to_survivor_space(obj);
  1960       assert(forwardee != NULL, "forwardee should not be NULL");
  1961       oopDesc::encode_store_heap_oop(p, forwardee);
  1964     assert(obj != NULL, "Must be");
  1965     update_rs(from, p, queue_num());
  1967 public:
  1969   oop copy_to_survivor_space(oop const obj);
  1971   template <class T> inline void deal_with_reference(T* ref_to_scan);
  1973   inline void deal_with_reference(StarTask ref);
  1975 public:
  1976   void trim_queue();
  1977 };
  1979 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial