src/share/vm/gc_implementation/g1/heapRegion.cpp

Tue, 12 Aug 2014 15:17:46 +0000

author
tschatzl
date
Tue, 12 Aug 2014 15:17:46 +0000
changeset 7024
bfba6779654b
parent 7009
3f2894c5052e
child 7050
6701abbc4441
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/nmethod.hpp"
    27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    30 #include "gc_implementation/g1/heapRegion.inline.hpp"
    31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    33 #include "gc_implementation/shared/liveRange.hpp"
    34 #include "memory/genOopClosures.inline.hpp"
    35 #include "memory/iterator.hpp"
    36 #include "memory/space.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "runtime/orderAccess.inline.hpp"
    40 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    42 int    HeapRegion::LogOfHRGrainBytes = 0;
    43 int    HeapRegion::LogOfHRGrainWords = 0;
    44 size_t HeapRegion::GrainBytes        = 0;
    45 size_t HeapRegion::GrainWords        = 0;
    46 size_t HeapRegion::CardsPerRegion    = 0;
    48 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    49                                  HeapRegion* hr, ExtendedOopClosure* cl,
    50                                  CardTableModRefBS::PrecisionStyle precision,
    51                                  FilterKind fk) :
    52   DirtyCardToOopClosure(hr, cl, precision, NULL),
    53   _hr(hr), _fk(fk), _g1(g1) { }
    55 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    56                                                    OopClosure* oc) :
    57   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
    59 template<class ClosureType>
    60 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
    61                                HeapRegion* hr,
    62                                HeapWord* cur, HeapWord* top) {
    63   oop cur_oop = oop(cur);
    64   size_t oop_size = hr->block_size(cur);
    65   HeapWord* next_obj = cur + oop_size;
    66   while (next_obj < top) {
    67     // Keep filtering the remembered set.
    68     if (!g1h->is_obj_dead(cur_oop, hr)) {
    69       // Bottom lies entirely below top, so we can call the
    70       // non-memRegion version of oop_iterate below.
    71       cur_oop->oop_iterate(cl);
    72     }
    73     cur = next_obj;
    74     cur_oop = oop(cur);
    75     oop_size = hr->block_size(cur);
    76     next_obj = cur + oop_size;
    77   }
    78   return cur;
    79 }
    81 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
    82                                       HeapWord* bottom,
    83                                       HeapWord* top) {
    84   G1CollectedHeap* g1h = _g1;
    85   size_t oop_size;
    86   ExtendedOopClosure* cl2 = NULL;
    88   FilterIntoCSClosure intoCSFilt(this, g1h, _cl);
    89   FilterOutOfRegionClosure outOfRegionFilt(_hr, _cl);
    91   switch (_fk) {
    92   case NoFilterKind:          cl2 = _cl; break;
    93   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
    94   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
    95   default:                    ShouldNotReachHere();
    96   }
    98   // Start filtering what we add to the remembered set. If the object is
    99   // not considered dead, either because it is marked (in the mark bitmap)
   100   // or it was allocated after marking finished, then we add it. Otherwise
   101   // we can safely ignore the object.
   102   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   103     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   104   } else {
   105     oop_size = _hr->block_size(bottom);
   106   }
   108   bottom += oop_size;
   110   if (bottom < top) {
   111     // We replicate the loop below for several kinds of possible filters.
   112     switch (_fk) {
   113     case NoFilterKind:
   114       bottom = walk_mem_region_loop(_cl, g1h, _hr, bottom, top);
   115       break;
   117     case IntoCSFilterKind: {
   118       FilterIntoCSClosure filt(this, g1h, _cl);
   119       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   120       break;
   121     }
   123     case OutOfRegionFilterKind: {
   124       FilterOutOfRegionClosure filt(_hr, _cl);
   125       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   126       break;
   127     }
   129     default:
   130       ShouldNotReachHere();
   131     }
   133     // Last object. Need to do dead-obj filtering here too.
   134     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   135       oop(bottom)->oop_iterate(cl2, mr);
   136     }
   137   }
   138 }
   140 // Minimum region size; we won't go lower than that.
   141 // We might want to decrease this in the future, to deal with small
   142 // heaps a bit more efficiently.
   143 #define MIN_REGION_SIZE  (      1024 * 1024 )
   145 // Maximum region size; we don't go higher than that. There's a good
   146 // reason for having an upper bound. We don't want regions to get too
   147 // large, otherwise cleanup's effectiveness would decrease as there
   148 // will be fewer opportunities to find totally empty regions after
   149 // marking.
   150 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
   152 // The automatic region size calculation will try to have around this
   153 // many regions in the heap (based on the min heap size).
   154 #define TARGET_REGION_NUMBER          2048
   156 size_t HeapRegion::max_region_size() {
   157   return (size_t)MAX_REGION_SIZE;
   158 }
   160 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
   161   uintx region_size = G1HeapRegionSize;
   162   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   163     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
   164     region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER,
   165                        (uintx) MIN_REGION_SIZE);
   166   }
   168   int region_size_log = log2_long((jlong) region_size);
   169   // Recalculate the region size to make sure it's a power of
   170   // 2. This means that region_size is the largest power of 2 that's
   171   // <= what we've calculated so far.
   172   region_size = ((uintx)1 << region_size_log);
   174   // Now make sure that we don't go over or under our limits.
   175   if (region_size < MIN_REGION_SIZE) {
   176     region_size = MIN_REGION_SIZE;
   177   } else if (region_size > MAX_REGION_SIZE) {
   178     region_size = MAX_REGION_SIZE;
   179   }
   181   // And recalculate the log.
   182   region_size_log = log2_long((jlong) region_size);
   184   // Now, set up the globals.
   185   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   186   LogOfHRGrainBytes = region_size_log;
   188   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   189   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   191   guarantee(GrainBytes == 0, "we should only set it once");
   192   // The cast to int is safe, given that we've bounded region_size by
   193   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   194   GrainBytes = (size_t)region_size;
   196   guarantee(GrainWords == 0, "we should only set it once");
   197   GrainWords = GrainBytes >> LogHeapWordSize;
   198   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   200   guarantee(CardsPerRegion == 0, "we should only set it once");
   201   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   202 }
   204 void HeapRegion::reset_after_compaction() {
   205   G1OffsetTableContigSpace::reset_after_compaction();
   206   // After a compaction the mark bitmap is invalid, so we must
   207   // treat all objects as being inside the unmarked area.
   208   zero_marked_bytes();
   209   init_top_at_mark_start();
   210 }
   212 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
   213   assert(_humongous_type == NotHumongous,
   214          "we should have already filtered out humongous regions");
   215   assert(_humongous_start_region == NULL,
   216          "we should have already filtered out humongous regions");
   217   assert(_end == _orig_end,
   218          "we should have already filtered out humongous regions");
   220   _in_collection_set = false;
   222   set_young_index_in_cset(-1);
   223   uninstall_surv_rate_group();
   224   set_young_type(NotYoung);
   225   reset_pre_dummy_top();
   227   if (!par) {
   228     // If this is parallel, this will be done later.
   229     HeapRegionRemSet* hrrs = rem_set();
   230     if (locked) {
   231       hrrs->clear_locked();
   232     } else {
   233       hrrs->clear();
   234     }
   235     _claimed = InitialClaimValue;
   236   }
   237   zero_marked_bytes();
   239   _offsets.resize(HeapRegion::GrainWords);
   240   init_top_at_mark_start();
   241   if (clear_space) clear(SpaceDecorator::Mangle);
   242 }
   244 void HeapRegion::par_clear() {
   245   assert(used() == 0, "the region should have been already cleared");
   246   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   247   HeapRegionRemSet* hrrs = rem_set();
   248   hrrs->clear();
   249   CardTableModRefBS* ct_bs =
   250                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   251   ct_bs->clear(MemRegion(bottom(), end()));
   252 }
   254 void HeapRegion::calc_gc_efficiency() {
   255   // GC efficiency is the ratio of how much space would be
   256   // reclaimed over how long we predict it would take to reclaim it.
   257   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   258   G1CollectorPolicy* g1p = g1h->g1_policy();
   260   // Retrieve a prediction of the elapsed time for this region for
   261   // a mixed gc because the region will only be evacuated during a
   262   // mixed gc.
   263   double region_elapsed_time_ms =
   264     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
   265   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
   266 }
   268 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   269   assert(!isHumongous(), "sanity / pre-condition");
   270   assert(end() == _orig_end,
   271          "Should be normal before the humongous object allocation");
   272   assert(top() == bottom(), "should be empty");
   273   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   275   _humongous_type = StartsHumongous;
   276   _humongous_start_region = this;
   278   set_end(new_end);
   279   _offsets.set_for_starts_humongous(new_top);
   280 }
   282 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   283   assert(!isHumongous(), "sanity / pre-condition");
   284   assert(end() == _orig_end,
   285          "Should be normal before the humongous object allocation");
   286   assert(top() == bottom(), "should be empty");
   287   assert(first_hr->startsHumongous(), "pre-condition");
   289   _humongous_type = ContinuesHumongous;
   290   _humongous_start_region = first_hr;
   291 }
   293 void HeapRegion::set_notHumongous() {
   294   assert(isHumongous(), "pre-condition");
   296   if (startsHumongous()) {
   297     assert(top() <= end(), "pre-condition");
   298     set_end(_orig_end);
   299     if (top() > end()) {
   300       // at least one "continues humongous" region after it
   301       set_top(end());
   302     }
   303   } else {
   304     // continues humongous
   305     assert(end() == _orig_end, "sanity");
   306   }
   308   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   309   _humongous_type = NotHumongous;
   310   _humongous_start_region = NULL;
   311 }
   313 bool HeapRegion::claimHeapRegion(jint claimValue) {
   314   jint current = _claimed;
   315   if (current != claimValue) {
   316     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   317     if (res == current) {
   318       return true;
   319     }
   320   }
   321   return false;
   322 }
   324 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
   325   HeapWord* low = addr;
   326   HeapWord* high = end();
   327   while (low < high) {
   328     size_t diff = pointer_delta(high, low);
   329     // Must add one below to bias toward the high amount.  Otherwise, if
   330   // "high" were at the desired value, and "low" were one less, we
   331     // would not converge on "high".  This is not symmetric, because
   332     // we set "high" to a block start, which might be the right one,
   333     // which we don't do for "low".
   334     HeapWord* middle = low + (diff+1)/2;
   335     if (middle == high) return high;
   336     HeapWord* mid_bs = block_start_careful(middle);
   337     if (mid_bs < addr) {
   338       low = middle;
   339     } else {
   340       high = mid_bs;
   341     }
   342   }
   343   assert(low == high && low >= addr, "Didn't work.");
   344   return low;
   345 }
   347 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   348 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   349 #endif // _MSC_VER
   352 HeapRegion::HeapRegion(uint hrs_index,
   353                        G1BlockOffsetSharedArray* sharedOffsetArray,
   354                        MemRegion mr) :
   355     G1OffsetTableContigSpace(sharedOffsetArray, mr),
   356     _hrs_index(hrs_index),
   357     _humongous_type(NotHumongous), _humongous_start_region(NULL),
   358     _in_collection_set(false),
   359     _next_in_special_set(NULL), _orig_end(NULL),
   360     _claimed(InitialClaimValue), _evacuation_failed(false),
   361     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   362     _young_type(NotYoung), _next_young_region(NULL),
   363     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL), _pending_removal(false),
   364 #ifdef ASSERT
   365     _containing_set(NULL),
   366 #endif // ASSERT
   367      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   368     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   369     _predicted_bytes_to_copy(0)
   370 {
   371   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
   372   _orig_end = mr.end();
   373   // Note that initialize() will set the start of the unmarked area of the
   374   // region.
   375   hr_clear(false /*par*/, false /*clear_space*/);
   376   set_top(bottom());
   377   record_top_and_timestamp();
   379   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   380 }
   382 CompactibleSpace* HeapRegion::next_compaction_space() const {
   383   return G1CollectedHeap::heap()->next_compaction_region(this);
   384 }
   386 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   387                                                     bool during_conc_mark) {
   388   // We always recreate the prev marking info and we'll explicitly
   389   // mark all objects we find to be self-forwarded on the prev
   390   // bitmap. So all objects need to be below PTAMS.
   391   _prev_marked_bytes = 0;
   393   if (during_initial_mark) {
   394     // During initial-mark, we'll also explicitly mark all objects
   395     // we find to be self-forwarded on the next bitmap. So all
   396     // objects need to be below NTAMS.
   397     _next_top_at_mark_start = top();
   398     _next_marked_bytes = 0;
   399   } else if (during_conc_mark) {
   400     // During concurrent mark, all objects in the CSet (including
   401     // the ones we find to be self-forwarded) are implicitly live.
   402     // So all objects need to be above NTAMS.
   403     _next_top_at_mark_start = bottom();
   404     _next_marked_bytes = 0;
   405   }
   406 }
   408 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   409                                                   bool during_conc_mark,
   410                                                   size_t marked_bytes) {
   411   assert(0 <= marked_bytes && marked_bytes <= used(),
   412          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
   413                  marked_bytes, used()));
   414   _prev_top_at_mark_start = top();
   415   _prev_marked_bytes = marked_bytes;
   416 }
   418 HeapWord*
   419 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   420                                                  ObjectClosure* cl) {
   421   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   422   // We used to use "block_start_careful" here.  But we're actually happy
   423   // to update the BOT while we do this...
   424   HeapWord* cur = block_start(mr.start());
   425   mr = mr.intersection(used_region());
   426   if (mr.is_empty()) return NULL;
   427   // Otherwise, find the obj that extends onto mr.start().
   429   assert(cur <= mr.start()
   430          && (oop(cur)->klass_or_null() == NULL ||
   431              cur + oop(cur)->size() > mr.start()),
   432          "postcondition of block_start");
   433   oop obj;
   434   while (cur < mr.end()) {
   435     obj = oop(cur);
   436     if (obj->klass_or_null() == NULL) {
   437       // Ran into an unparseable point.
   438       return cur;
   439     } else if (!g1h->is_obj_dead(obj)) {
   440       cl->do_object(obj);
   441     }
   442     if (cl->abort()) return cur;
   443     // The check above must occur before the operation below, since an
   444     // abort might invalidate the "size" operation.
   445     cur += block_size(cur);
   446   }
   447   return NULL;
   448 }
   450 HeapWord*
   451 HeapRegion::
   452 oops_on_card_seq_iterate_careful(MemRegion mr,
   453                                  FilterOutOfRegionClosure* cl,
   454                                  bool filter_young,
   455                                  jbyte* card_ptr) {
   456   // Currently, we should only have to clean the card if filter_young
   457   // is true and vice versa.
   458   if (filter_young) {
   459     assert(card_ptr != NULL, "pre-condition");
   460   } else {
   461     assert(card_ptr == NULL, "pre-condition");
   462   }
   463   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   465   // If we're within a stop-world GC, then we might look at a card in a
   466   // GC alloc region that extends onto a GC LAB, which may not be
   467   // parseable.  Stop such at the "saved_mark" of the region.
   468   if (g1h->is_gc_active()) {
   469     mr = mr.intersection(used_region_at_save_marks());
   470   } else {
   471     mr = mr.intersection(used_region());
   472   }
   473   if (mr.is_empty()) return NULL;
   474   // Otherwise, find the obj that extends onto mr.start().
   476   // The intersection of the incoming mr (for the card) and the
   477   // allocated part of the region is non-empty. This implies that
   478   // we have actually allocated into this region. The code in
   479   // G1CollectedHeap.cpp that allocates a new region sets the
   480   // is_young tag on the region before allocating. Thus we
   481   // safely know if this region is young.
   482   if (is_young() && filter_young) {
   483     return NULL;
   484   }
   486   assert(!is_young(), "check value of filter_young");
   488   // We can only clean the card here, after we make the decision that
   489   // the card is not young. And we only clean the card if we have been
   490   // asked to (i.e., card_ptr != NULL).
   491   if (card_ptr != NULL) {
   492     *card_ptr = CardTableModRefBS::clean_card_val();
   493     // We must complete this write before we do any of the reads below.
   494     OrderAccess::storeload();
   495   }
   497   // Cache the boundaries of the memory region in some const locals
   498   HeapWord* const start = mr.start();
   499   HeapWord* const end = mr.end();
   501   // We used to use "block_start_careful" here.  But we're actually happy
   502   // to update the BOT while we do this...
   503   HeapWord* cur = block_start(start);
   504   assert(cur <= start, "Postcondition");
   506   oop obj;
   508   HeapWord* next = cur;
   509   while (next <= start) {
   510     cur = next;
   511     obj = oop(cur);
   512     if (obj->klass_or_null() == NULL) {
   513       // Ran into an unparseable point.
   514       return cur;
   515     }
   516     // Otherwise...
   517     next = cur + block_size(cur);
   518   }
   520   // If we finish the above loop...We have a parseable object that
   521   // begins on or before the start of the memory region, and ends
   522   // inside or spans the entire region.
   524   assert(obj == oop(cur), "sanity");
   525   assert(cur <= start, "Loop postcondition");
   526   assert(obj->klass_or_null() != NULL, "Loop postcondition");
   527   assert((cur + block_size(cur)) > start, "Loop postcondition");
   529   if (!g1h->is_obj_dead(obj)) {
   530     obj->oop_iterate(cl, mr);
   531   }
   533   while (cur < end) {
   534     obj = oop(cur);
   535     if (obj->klass_or_null() == NULL) {
   536       // Ran into an unparseable point.
   537       return cur;
   538     };
   540     // Otherwise:
   541     next = cur + block_size(cur);
   543     if (!g1h->is_obj_dead(obj)) {
   544       if (next < end || !obj->is_objArray()) {
   545         // This object either does not span the MemRegion
   546         // boundary, or if it does it's not an array.
   547         // Apply closure to whole object.
   548         obj->oop_iterate(cl);
   549       } else {
   550         // This obj is an array that spans the boundary.
   551         // Stop at the boundary.
   552         obj->oop_iterate(cl, mr);
   553       }
   554     }
   555     cur = next;
   556   }
   557   return NULL;
   558 }
   560 // Code roots support
   562 void HeapRegion::add_strong_code_root(nmethod* nm) {
   563   HeapRegionRemSet* hrrs = rem_set();
   564   hrrs->add_strong_code_root(nm);
   565 }
   567 void HeapRegion::remove_strong_code_root(nmethod* nm) {
   568   HeapRegionRemSet* hrrs = rem_set();
   569   hrrs->remove_strong_code_root(nm);
   570 }
   572 void HeapRegion::migrate_strong_code_roots() {
   573   assert(in_collection_set(), "only collection set regions");
   574   assert(!isHumongous(),
   575           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
   576                   HR_FORMAT_PARAMS(this)));
   578   HeapRegionRemSet* hrrs = rem_set();
   579   hrrs->migrate_strong_code_roots();
   580 }
   582 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
   583   HeapRegionRemSet* hrrs = rem_set();
   584   hrrs->strong_code_roots_do(blk);
   585 }
   587 class VerifyStrongCodeRootOopClosure: public OopClosure {
   588   const HeapRegion* _hr;
   589   nmethod* _nm;
   590   bool _failures;
   591   bool _has_oops_in_region;
   593   template <class T> void do_oop_work(T* p) {
   594     T heap_oop = oopDesc::load_heap_oop(p);
   595     if (!oopDesc::is_null(heap_oop)) {
   596       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   598       // Note: not all the oops embedded in the nmethod are in the
   599       // current region. We only look at those which are.
   600       if (_hr->is_in(obj)) {
   601         // Object is in the region. Check that its less than top
   602         if (_hr->top() <= (HeapWord*)obj) {
   603           // Object is above top
   604           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
   605                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
   606                                  "top "PTR_FORMAT,
   607                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
   608           _failures = true;
   609           return;
   610         }
   611         // Nmethod has at least one oop in the current region
   612         _has_oops_in_region = true;
   613       }
   614     }
   615   }
   617 public:
   618   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
   619     _hr(hr), _failures(false), _has_oops_in_region(false) {}
   621   void do_oop(narrowOop* p) { do_oop_work(p); }
   622   void do_oop(oop* p)       { do_oop_work(p); }
   624   bool failures()           { return _failures; }
   625   bool has_oops_in_region() { return _has_oops_in_region; }
   626 };
   628 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
   629   const HeapRegion* _hr;
   630   bool _failures;
   631 public:
   632   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
   633     _hr(hr), _failures(false) {}
   635   void do_code_blob(CodeBlob* cb) {
   636     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
   637     if (nm != NULL) {
   638       // Verify that the nemthod is live
   639       if (!nm->is_alive()) {
   640         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
   641                                PTR_FORMAT" in its strong code roots",
   642                                _hr->bottom(), _hr->end(), nm);
   643         _failures = true;
   644       } else {
   645         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
   646         nm->oops_do(&oop_cl);
   647         if (!oop_cl.has_oops_in_region()) {
   648           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
   649                                  PTR_FORMAT" in its strong code roots "
   650                                  "with no pointers into region",
   651                                  _hr->bottom(), _hr->end(), nm);
   652           _failures = true;
   653         } else if (oop_cl.failures()) {
   654           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
   655                                  "failures for nmethod "PTR_FORMAT,
   656                                  _hr->bottom(), _hr->end(), nm);
   657           _failures = true;
   658         }
   659       }
   660     }
   661   }
   663   bool failures()       { return _failures; }
   664 };
   666 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
   667   if (!G1VerifyHeapRegionCodeRoots) {
   668     // We're not verifying code roots.
   669     return;
   670   }
   671   if (vo == VerifyOption_G1UseMarkWord) {
   672     // Marking verification during a full GC is performed after class
   673     // unloading, code cache unloading, etc so the strong code roots
   674     // attached to each heap region are in an inconsistent state. They won't
   675     // be consistent until the strong code roots are rebuilt after the
   676     // actual GC. Skip verifying the strong code roots in this particular
   677     // time.
   678     assert(VerifyDuringGC, "only way to get here");
   679     return;
   680   }
   682   HeapRegionRemSet* hrrs = rem_set();
   683   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
   685   // if this region is empty then there should be no entries
   686   // on its strong code root list
   687   if (is_empty()) {
   688     if (strong_code_roots_length > 0) {
   689       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
   690                              "but has "SIZE_FORMAT" code root entries",
   691                              bottom(), end(), strong_code_roots_length);
   692       *failures = true;
   693     }
   694     return;
   695   }
   697   if (continuesHumongous()) {
   698     if (strong_code_roots_length > 0) {
   699       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
   700                              "region but has "SIZE_FORMAT" code root entries",
   701                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
   702       *failures = true;
   703     }
   704     return;
   705   }
   707   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
   708   strong_code_roots_do(&cb_cl);
   710   if (cb_cl.failures()) {
   711     *failures = true;
   712   }
   713 }
   715 void HeapRegion::print() const { print_on(gclog_or_tty); }
   716 void HeapRegion::print_on(outputStream* st) const {
   717   if (isHumongous()) {
   718     if (startsHumongous())
   719       st->print(" HS");
   720     else
   721       st->print(" HC");
   722   } else {
   723     st->print("   ");
   724   }
   725   if (in_collection_set())
   726     st->print(" CS");
   727   else
   728     st->print("   ");
   729   if (is_young())
   730     st->print(is_survivor() ? " SU" : " Y ");
   731   else
   732     st->print("   ");
   733   if (is_empty())
   734     st->print(" F");
   735   else
   736     st->print("  ");
   737   st->print(" TS %5d", _gc_time_stamp);
   738   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   739             prev_top_at_mark_start(), next_top_at_mark_start());
   740   G1OffsetTableContigSpace::print_on(st);
   741 }
   743 class VerifyLiveClosure: public OopClosure {
   744 private:
   745   G1CollectedHeap* _g1h;
   746   CardTableModRefBS* _bs;
   747   oop _containing_obj;
   748   bool _failures;
   749   int _n_failures;
   750   VerifyOption _vo;
   751 public:
   752   // _vo == UsePrevMarking -> use "prev" marking information,
   753   // _vo == UseNextMarking -> use "next" marking information,
   754   // _vo == UseMarkWord    -> use mark word from object header.
   755   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
   756     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
   757     _failures(false), _n_failures(0), _vo(vo)
   758   {
   759     BarrierSet* bs = _g1h->barrier_set();
   760     if (bs->is_a(BarrierSet::CardTableModRef))
   761       _bs = (CardTableModRefBS*)bs;
   762   }
   764   void set_containing_obj(oop obj) {
   765     _containing_obj = obj;
   766   }
   768   bool failures() { return _failures; }
   769   int n_failures() { return _n_failures; }
   771   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   772   virtual void do_oop(      oop* p) { do_oop_work(p); }
   774   void print_object(outputStream* out, oop obj) {
   775 #ifdef PRODUCT
   776     Klass* k = obj->klass();
   777     const char* class_name = InstanceKlass::cast(k)->external_name();
   778     out->print_cr("class name %s", class_name);
   779 #else // PRODUCT
   780     obj->print_on(out);
   781 #endif // PRODUCT
   782   }
   784   template <class T>
   785   void do_oop_work(T* p) {
   786     assert(_containing_obj != NULL, "Precondition");
   787     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   788            "Precondition");
   789     T heap_oop = oopDesc::load_heap_oop(p);
   790     if (!oopDesc::is_null(heap_oop)) {
   791       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   792       bool failed = false;
   793       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   794         MutexLockerEx x(ParGCRareEvent_lock,
   795                         Mutex::_no_safepoint_check_flag);
   797         if (!_failures) {
   798           gclog_or_tty->cr();
   799           gclog_or_tty->print_cr("----------");
   800         }
   801         if (!_g1h->is_in_closed_subset(obj)) {
   802           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   803           gclog_or_tty->print_cr("Field "PTR_FORMAT
   804                                  " of live obj "PTR_FORMAT" in region "
   805                                  "["PTR_FORMAT", "PTR_FORMAT")",
   806                                  p, (void*) _containing_obj,
   807                                  from->bottom(), from->end());
   808           print_object(gclog_or_tty, _containing_obj);
   809           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   810                                  (void*) obj);
   811         } else {
   812           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   813           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   814           gclog_or_tty->print_cr("Field "PTR_FORMAT
   815                                  " of live obj "PTR_FORMAT" in region "
   816                                  "["PTR_FORMAT", "PTR_FORMAT")",
   817                                  p, (void*) _containing_obj,
   818                                  from->bottom(), from->end());
   819           print_object(gclog_or_tty, _containing_obj);
   820           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   821                                  "["PTR_FORMAT", "PTR_FORMAT")",
   822                                  (void*) obj, to->bottom(), to->end());
   823           print_object(gclog_or_tty, obj);
   824         }
   825         gclog_or_tty->print_cr("----------");
   826         gclog_or_tty->flush();
   827         _failures = true;
   828         failed = true;
   829         _n_failures++;
   830       }
   832       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
   833         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   834         HeapRegion* to   = _g1h->heap_region_containing(obj);
   835         if (from != NULL && to != NULL &&
   836             from != to &&
   837             !to->isHumongous()) {
   838           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   839           jbyte cv_field = *_bs->byte_for_const(p);
   840           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   842           bool is_bad = !(from->is_young()
   843                           || to->rem_set()->contains_reference(p)
   844                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   845                               (_containing_obj->is_objArray() ?
   846                                   cv_field == dirty
   847                                : cv_obj == dirty || cv_field == dirty));
   848           if (is_bad) {
   849             MutexLockerEx x(ParGCRareEvent_lock,
   850                             Mutex::_no_safepoint_check_flag);
   852             if (!_failures) {
   853               gclog_or_tty->cr();
   854               gclog_or_tty->print_cr("----------");
   855             }
   856             gclog_or_tty->print_cr("Missing rem set entry:");
   857             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
   858                                    "of obj "PTR_FORMAT", "
   859                                    "in region "HR_FORMAT,
   860                                    p, (void*) _containing_obj,
   861                                    HR_FORMAT_PARAMS(from));
   862             _containing_obj->print_on(gclog_or_tty);
   863             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
   864                                    "in region "HR_FORMAT,
   865                                    (void*) obj,
   866                                    HR_FORMAT_PARAMS(to));
   867             obj->print_on(gclog_or_tty);
   868             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   869                           cv_obj, cv_field);
   870             gclog_or_tty->print_cr("----------");
   871             gclog_or_tty->flush();
   872             _failures = true;
   873             if (!failed) _n_failures++;
   874           }
   875         }
   876       }
   877     }
   878   }
   879 };
   881 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   882 // We would need a mechanism to make that code skip dead objects.
   884 void HeapRegion::verify(VerifyOption vo,
   885                         bool* failures) const {
   886   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   887   *failures = false;
   888   HeapWord* p = bottom();
   889   HeapWord* prev_p = NULL;
   890   VerifyLiveClosure vl_cl(g1, vo);
   891   bool is_humongous = isHumongous();
   892   bool do_bot_verify = !is_young();
   893   size_t object_num = 0;
   894   while (p < top()) {
   895     oop obj = oop(p);
   896     size_t obj_size = block_size(p);
   897     object_num += 1;
   899     if (is_humongous != g1->isHumongous(obj_size) &&
   900         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
   901       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
   902                              SIZE_FORMAT" words) in a %shumongous region",
   903                              p, g1->isHumongous(obj_size) ? "" : "non-",
   904                              obj_size, is_humongous ? "" : "non-");
   905        *failures = true;
   906        return;
   907     }
   909     // If it returns false, verify_for_object() will output the
   910     // appropriate messasge.
   911     if (do_bot_verify &&
   912         !g1->is_obj_dead(obj, this) &&
   913         !_offsets.verify_for_object(p, obj_size)) {
   914       *failures = true;
   915       return;
   916     }
   918     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   919       if (obj->is_oop()) {
   920         Klass* klass = obj->klass();
   921         bool is_metaspace_object = Metaspace::contains(klass) ||
   922                                    (vo == VerifyOption_G1UsePrevMarking &&
   923                                    ClassLoaderDataGraph::unload_list_contains(klass));
   924         if (!is_metaspace_object) {
   925           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   926                                  "not metadata", klass, (void *)obj);
   927           *failures = true;
   928           return;
   929         } else if (!klass->is_klass()) {
   930           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   931                                  "not a klass", klass, (void *)obj);
   932           *failures = true;
   933           return;
   934         } else {
   935           vl_cl.set_containing_obj(obj);
   936           obj->oop_iterate_no_header(&vl_cl);
   937           if (vl_cl.failures()) {
   938             *failures = true;
   939           }
   940           if (G1MaxVerifyFailures >= 0 &&
   941               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   942             return;
   943           }
   944         }
   945       } else {
   946         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
   947         *failures = true;
   948         return;
   949       }
   950     }
   951     prev_p = p;
   952     p += obj_size;
   953   }
   955   if (p != top()) {
   956     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   957                            "does not match top "PTR_FORMAT, p, top());
   958     *failures = true;
   959     return;
   960   }
   962   HeapWord* the_end = end();
   963   assert(p == top(), "it should still hold");
   964   // Do some extra BOT consistency checking for addresses in the
   965   // range [top, end). BOT look-ups in this range should yield
   966   // top. No point in doing that if top == end (there's nothing there).
   967   if (p < the_end) {
   968     // Look up top
   969     HeapWord* addr_1 = p;
   970     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
   971     if (b_start_1 != p) {
   972       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
   973                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   974                              addr_1, b_start_1, p);
   975       *failures = true;
   976       return;
   977     }
   979     // Look up top + 1
   980     HeapWord* addr_2 = p + 1;
   981     if (addr_2 < the_end) {
   982       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
   983       if (b_start_2 != p) {
   984         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
   985                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   986                                addr_2, b_start_2, p);
   987         *failures = true;
   988         return;
   989       }
   990     }
   992     // Look up an address between top and end
   993     size_t diff = pointer_delta(the_end, p) / 2;
   994     HeapWord* addr_3 = p + diff;
   995     if (addr_3 < the_end) {
   996       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
   997       if (b_start_3 != p) {
   998         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
   999                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1000                                addr_3, b_start_3, p);
  1001         *failures = true;
  1002         return;
  1006     // Loook up end - 1
  1007     HeapWord* addr_4 = the_end - 1;
  1008     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
  1009     if (b_start_4 != p) {
  1010       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
  1011                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1012                              addr_4, b_start_4, p);
  1013       *failures = true;
  1014       return;
  1018   if (is_humongous && object_num > 1) {
  1019     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
  1020                            "but has "SIZE_FORMAT", objects",
  1021                            bottom(), end(), object_num);
  1022     *failures = true;
  1023     return;
  1026   verify_strong_code_roots(vo, failures);
  1029 void HeapRegion::verify() const {
  1030   bool dummy = false;
  1031   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
  1034 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
  1035 // away eventually.
  1037 void G1OffsetTableContigSpace::clear(bool mangle_space) {
  1038   set_top(bottom());
  1039   set_saved_mark_word(bottom());
  1040   CompactibleSpace::clear(mangle_space);
  1041   _offsets.zero_bottom_entry();
  1042   _offsets.initialize_threshold();
  1045 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
  1046   Space::set_bottom(new_bottom);
  1047   _offsets.set_bottom(new_bottom);
  1050 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
  1051   Space::set_end(new_end);
  1052   _offsets.resize(new_end - bottom());
  1055 void G1OffsetTableContigSpace::print() const {
  1056   print_short();
  1057   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
  1058                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  1059                 bottom(), top(), _offsets.threshold(), end());
  1062 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  1063   return _offsets.initialize_threshold();
  1066 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
  1067                                                     HeapWord* end) {
  1068   _offsets.alloc_block(start, end);
  1069   return _offsets.threshold();
  1072 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
  1073   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1074   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
  1075   if (_gc_time_stamp < g1h->get_gc_time_stamp())
  1076     return top();
  1077   else
  1078     return Space::saved_mark_word();
  1081 void G1OffsetTableContigSpace::record_top_and_timestamp() {
  1082   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1083   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
  1085   if (_gc_time_stamp < curr_gc_time_stamp) {
  1086     // The order of these is important, as another thread might be
  1087     // about to start scanning this region. If it does so after
  1088     // set_saved_mark and before _gc_time_stamp = ..., then the latter
  1089     // will be false, and it will pick up top() as the high water mark
  1090     // of region. If it does so after _gc_time_stamp = ..., then it
  1091     // will pick up the right saved_mark_word() as the high water mark
  1092     // of the region. Either way, the behaviour will be correct.
  1093     Space::set_saved_mark_word(top());
  1094     OrderAccess::storestore();
  1095     _gc_time_stamp = curr_gc_time_stamp;
  1096     // No need to do another barrier to flush the writes above. If
  1097     // this is called in parallel with other threads trying to
  1098     // allocate into the region, the caller should call this while
  1099     // holding a lock and when the lock is released the writes will be
  1100     // flushed.
  1104 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
  1105   object_iterate(blk);
  1108 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
  1109   HeapWord* p = bottom();
  1110   while (p < top()) {
  1111     if (block_is_obj(p)) {
  1112       blk->do_object(oop(p));
  1114     p += block_size(p);
  1118 #define block_is_always_obj(q) true
  1119 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
  1120   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
  1122 #undef block_is_always_obj
  1124 G1OffsetTableContigSpace::
  1125 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
  1126                          MemRegion mr) :
  1127   _offsets(sharedOffsetArray, mr),
  1128   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  1129   _gc_time_stamp(0)
  1131   _offsets.set_space(this);
  1132   // false ==> we'll do the clearing if there's clearing to be done.
  1133   CompactibleSpace::initialize(mr, false, SpaceDecorator::Mangle);
  1134   _top = bottom();
  1135   _offsets.zero_bottom_entry();
  1136   _offsets.initialize_threshold();

mercurial