src/share/vm/gc_implementation/g1/concurrentMark.hpp

Tue, 12 Aug 2014 15:17:46 +0000

author
tschatzl
date
Tue, 12 Aug 2014 15:17:46 +0000
changeset 7024
bfba6779654b
parent 7007
7df07d855c8e
child 7050
6701abbc4441
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "classfile/javaClasses.hpp"
    29 #include "gc_implementation/g1/heapRegionSet.hpp"
    30 #include "gc_implementation/shared/gcId.hpp"
    31 #include "utilities/taskqueue.hpp"
    33 class G1CollectedHeap;
    34 class CMTask;
    35 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
    36 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
    38 // Closure used by CM during concurrent reference discovery
    39 // and reference processing (during remarking) to determine
    40 // if a particular object is alive. It is primarily used
    41 // to determine if referents of discovered reference objects
    42 // are alive. An instance is also embedded into the
    43 // reference processor as the _is_alive_non_header field
    44 class G1CMIsAliveClosure: public BoolObjectClosure {
    45   G1CollectedHeap* _g1;
    46  public:
    47   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
    49   bool do_object_b(oop obj);
    50 };
    52 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    53 // class, with one bit per (1<<_shifter) HeapWords.
    55 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    56  protected:
    57   HeapWord* _bmStartWord;      // base address of range covered by map
    58   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    59   const int _shifter;          // map to char or bit
    60   VirtualSpace _virtual_space; // underlying the bit map
    61   BitMap    _bm;               // the bit map itself
    63  public:
    64   // constructor
    65   CMBitMapRO(int shifter);
    67   enum { do_yield = true };
    69   // inquiries
    70   HeapWord* startWord()   const { return _bmStartWord; }
    71   size_t    sizeInWords() const { return _bmWordSize;  }
    72   // the following is one past the last word in space
    73   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    75   // read marks
    77   bool isMarked(HeapWord* addr) const {
    78     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    79            "outside underlying space?");
    80     return _bm.at(heapWordToOffset(addr));
    81   }
    83   // iteration
    84   inline bool iterate(BitMapClosure* cl, MemRegion mr);
    85   inline bool iterate(BitMapClosure* cl);
    87   // Return the address corresponding to the next marked bit at or after
    88   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    89   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    90   HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
    91                                      const HeapWord* limit = NULL) const;
    92   // Return the address corresponding to the next unmarked bit at or after
    93   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    94   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    95   HeapWord* getNextUnmarkedWordAddress(const HeapWord* addr,
    96                                        const HeapWord* limit = NULL) const;
    98   // conversion utilities
    99   HeapWord* offsetToHeapWord(size_t offset) const {
   100     return _bmStartWord + (offset << _shifter);
   101   }
   102   size_t heapWordToOffset(const HeapWord* addr) const {
   103     return pointer_delta(addr, _bmStartWord) >> _shifter;
   104   }
   105   int heapWordDiffToOffsetDiff(size_t diff) const;
   107   // The argument addr should be the start address of a valid object
   108   HeapWord* nextObject(HeapWord* addr) {
   109     oop obj = (oop) addr;
   110     HeapWord* res =  addr + obj->size();
   111     assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
   112     return res;
   113   }
   115   void print_on_error(outputStream* st, const char* prefix) const;
   117   // debugging
   118   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
   119 };
   121 class CMBitMap : public CMBitMapRO {
   123  public:
   124   // constructor
   125   CMBitMap(int shifter) :
   126     CMBitMapRO(shifter) {}
   128   // Allocates the back store for the marking bitmap
   129   bool allocate(ReservedSpace heap_rs);
   131   // write marks
   132   void mark(HeapWord* addr) {
   133     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   134            "outside underlying space?");
   135     _bm.set_bit(heapWordToOffset(addr));
   136   }
   137   void clear(HeapWord* addr) {
   138     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   139            "outside underlying space?");
   140     _bm.clear_bit(heapWordToOffset(addr));
   141   }
   142   bool parMark(HeapWord* addr) {
   143     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   144            "outside underlying space?");
   145     return _bm.par_set_bit(heapWordToOffset(addr));
   146   }
   147   bool parClear(HeapWord* addr) {
   148     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   149            "outside underlying space?");
   150     return _bm.par_clear_bit(heapWordToOffset(addr));
   151   }
   152   void markRange(MemRegion mr);
   153   void clearAll();
   154   void clearRange(MemRegion mr);
   156   // Starting at the bit corresponding to "addr" (inclusive), find the next
   157   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   158   // the end of this run (stopping at "end_addr").  Return the MemRegion
   159   // covering from the start of the region corresponding to the first bit
   160   // of the run to the end of the region corresponding to the last bit of
   161   // the run.  If there is no "1" bit at or after "addr", return an empty
   162   // MemRegion.
   163   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   164 };
   166 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
   167 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   168   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
   169   ConcurrentMark* _cm;
   170   oop* _base;        // bottom of stack
   171   jint _index;       // one more than last occupied index
   172   jint _capacity;    // max #elements
   173   jint _saved_index; // value of _index saved at start of GC
   174   NOT_PRODUCT(jint _max_depth;)   // max depth plumbed during run
   176   bool  _overflow;
   177   bool  _should_expand;
   178   DEBUG_ONLY(bool _drain_in_progress;)
   179   DEBUG_ONLY(bool _drain_in_progress_yields;)
   181  public:
   182   CMMarkStack(ConcurrentMark* cm);
   183   ~CMMarkStack();
   185 #ifndef PRODUCT
   186   jint max_depth() const {
   187     return _max_depth;
   188   }
   189 #endif
   191   bool allocate(size_t capacity);
   193   oop pop() {
   194     if (!isEmpty()) {
   195       return _base[--_index] ;
   196     }
   197     return NULL;
   198   }
   200   // If overflow happens, don't do the push, and record the overflow.
   201   // *Requires* that "ptr" is already marked.
   202   void push(oop ptr) {
   203     if (isFull()) {
   204       // Record overflow.
   205       _overflow = true;
   206       return;
   207     } else {
   208       _base[_index++] = ptr;
   209       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   210     }
   211   }
   212   // Non-block impl.  Note: concurrency is allowed only with other
   213   // "par_push" operations, not with "pop" or "drain".  We would need
   214   // parallel versions of them if such concurrency was desired.
   215   void par_push(oop ptr);
   217   // Pushes the first "n" elements of "ptr_arr" on the stack.
   218   // Non-block impl.  Note: concurrency is allowed only with other
   219   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   220   void par_adjoin_arr(oop* ptr_arr, int n);
   222   // Pushes the first "n" elements of "ptr_arr" on the stack.
   223   // Locking impl: concurrency is allowed only with
   224   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   225   // locking strategy.
   226   void par_push_arr(oop* ptr_arr, int n);
   228   // If returns false, the array was empty.  Otherwise, removes up to "max"
   229   // elements from the stack, and transfers them to "ptr_arr" in an
   230   // unspecified order.  The actual number transferred is given in "n" ("n
   231   // == 0" is deliberately redundant with the return value.)  Locking impl:
   232   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   233   // operations, which use the same locking strategy.
   234   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   236   // Drain the mark stack, applying the given closure to all fields of
   237   // objects on the stack.  (That is, continue until the stack is empty,
   238   // even if closure applications add entries to the stack.)  The "bm"
   239   // argument, if non-null, may be used to verify that only marked objects
   240   // are on the mark stack.  If "yield_after" is "true", then the
   241   // concurrent marker performing the drain offers to yield after
   242   // processing each object.  If a yield occurs, stops the drain operation
   243   // and returns false.  Otherwise, returns true.
   244   template<class OopClosureClass>
   245   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   247   bool isEmpty()    { return _index == 0; }
   248   bool isFull()     { return _index == _capacity; }
   249   int  maxElems()   { return _capacity; }
   251   bool overflow() { return _overflow; }
   252   void clear_overflow() { _overflow = false; }
   254   bool should_expand() const { return _should_expand; }
   255   void set_should_expand();
   257   // Expand the stack, typically in response to an overflow condition
   258   void expand();
   260   int  size() { return _index; }
   262   void setEmpty()   { _index = 0; clear_overflow(); }
   264   // Record the current index.
   265   void note_start_of_gc();
   267   // Make sure that we have not added any entries to the stack during GC.
   268   void note_end_of_gc();
   270   // iterate over the oops in the mark stack, up to the bound recorded via
   271   // the call above.
   272   void oops_do(OopClosure* f);
   273 };
   275 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
   276 private:
   277 #ifndef PRODUCT
   278   uintx _num_remaining;
   279   bool _force;
   280 #endif // !defined(PRODUCT)
   282 public:
   283   void init() PRODUCT_RETURN;
   284   void update() PRODUCT_RETURN;
   285   bool should_force() PRODUCT_RETURN_( return false; );
   286 };
   288 // this will enable a variety of different statistics per GC task
   289 #define _MARKING_STATS_       0
   290 // this will enable the higher verbose levels
   291 #define _MARKING_VERBOSE_     0
   293 #if _MARKING_STATS_
   294 #define statsOnly(statement)  \
   295 do {                          \
   296   statement ;                 \
   297 } while (0)
   298 #else // _MARKING_STATS_
   299 #define statsOnly(statement)  \
   300 do {                          \
   301 } while (0)
   302 #endif // _MARKING_STATS_
   304 typedef enum {
   305   no_verbose  = 0,   // verbose turned off
   306   stats_verbose,     // only prints stats at the end of marking
   307   low_verbose,       // low verbose, mostly per region and per major event
   308   medium_verbose,    // a bit more detailed than low
   309   high_verbose       // per object verbose
   310 } CMVerboseLevel;
   312 class YoungList;
   314 // Root Regions are regions that are not empty at the beginning of a
   315 // marking cycle and which we might collect during an evacuation pause
   316 // while the cycle is active. Given that, during evacuation pauses, we
   317 // do not copy objects that are explicitly marked, what we have to do
   318 // for the root regions is to scan them and mark all objects reachable
   319 // from them. According to the SATB assumptions, we only need to visit
   320 // each object once during marking. So, as long as we finish this scan
   321 // before the next evacuation pause, we can copy the objects from the
   322 // root regions without having to mark them or do anything else to them.
   323 //
   324 // Currently, we only support root region scanning once (at the start
   325 // of the marking cycle) and the root regions are all the survivor
   326 // regions populated during the initial-mark pause.
   327 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
   328 private:
   329   YoungList*           _young_list;
   330   ConcurrentMark*      _cm;
   332   volatile bool        _scan_in_progress;
   333   volatile bool        _should_abort;
   334   HeapRegion* volatile _next_survivor;
   336 public:
   337   CMRootRegions();
   338   // We actually do most of the initialization in this method.
   339   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
   341   // Reset the claiming / scanning of the root regions.
   342   void prepare_for_scan();
   344   // Forces get_next() to return NULL so that the iteration aborts early.
   345   void abort() { _should_abort = true; }
   347   // Return true if the CM thread are actively scanning root regions,
   348   // false otherwise.
   349   bool scan_in_progress() { return _scan_in_progress; }
   351   // Claim the next root region to scan atomically, or return NULL if
   352   // all have been claimed.
   353   HeapRegion* claim_next();
   355   // Flag that we're done with root region scanning and notify anyone
   356   // who's waiting on it. If aborted is false, assume that all regions
   357   // have been claimed.
   358   void scan_finished();
   360   // If CM threads are still scanning root regions, wait until they
   361   // are done. Return true if we had to wait, false otherwise.
   362   bool wait_until_scan_finished();
   363 };
   365 class ConcurrentMarkThread;
   367 class ConcurrentMark: public CHeapObj<mtGC> {
   368   friend class CMMarkStack;
   369   friend class ConcurrentMarkThread;
   370   friend class CMTask;
   371   friend class CMBitMapClosure;
   372   friend class CMGlobalObjectClosure;
   373   friend class CMRemarkTask;
   374   friend class CMConcurrentMarkingTask;
   375   friend class G1ParNoteEndTask;
   376   friend class CalcLiveObjectsClosure;
   377   friend class G1CMRefProcTaskProxy;
   378   friend class G1CMRefProcTaskExecutor;
   379   friend class G1CMKeepAliveAndDrainClosure;
   380   friend class G1CMDrainMarkingStackClosure;
   382 protected:
   383   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   384   G1CollectedHeap*      _g1h;        // the heap.
   385   uint                  _parallel_marking_threads; // the number of marking
   386                                                    // threads we're use
   387   uint                  _max_parallel_marking_threads; // max number of marking
   388                                                    // threads we'll ever use
   389   double                _sleep_factor; // how much we have to sleep, with
   390                                        // respect to the work we just did, to
   391                                        // meet the marking overhead goal
   392   double                _marking_task_overhead; // marking target overhead for
   393                                                 // a single task
   395   // same as the two above, but for the cleanup task
   396   double                _cleanup_sleep_factor;
   397   double                _cleanup_task_overhead;
   399   FreeRegionList        _cleanup_list;
   401   // Concurrent marking support structures
   402   CMBitMap                _markBitMap1;
   403   CMBitMap                _markBitMap2;
   404   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   405   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   407   BitMap                  _region_bm;
   408   BitMap                  _card_bm;
   410   // Heap bounds
   411   HeapWord*               _heap_start;
   412   HeapWord*               _heap_end;
   414   // Root region tracking and claiming.
   415   CMRootRegions           _root_regions;
   417   // For gray objects
   418   CMMarkStack             _markStack; // Grey objects behind global finger.
   419   HeapWord* volatile      _finger;  // the global finger, region aligned,
   420                                     // always points to the end of the
   421                                     // last claimed region
   423   // marking tasks
   424   uint                    _max_worker_id;// maximum worker id
   425   uint                    _active_tasks; // task num currently active
   426   CMTask**                _tasks;        // task queue array (max_worker_id len)
   427   CMTaskQueueSet*         _task_queues;  // task queue set
   428   ParallelTaskTerminator  _terminator;   // for termination
   430   // Two sync barriers that are used to synchronise tasks when an
   431   // overflow occurs. The algorithm is the following. All tasks enter
   432   // the first one to ensure that they have all stopped manipulating
   433   // the global data structures. After they exit it, they re-initialise
   434   // their data structures and task 0 re-initialises the global data
   435   // structures. Then, they enter the second sync barrier. This
   436   // ensure, that no task starts doing work before all data
   437   // structures (local and global) have been re-initialised. When they
   438   // exit it, they are free to start working again.
   439   WorkGangBarrierSync     _first_overflow_barrier_sync;
   440   WorkGangBarrierSync     _second_overflow_barrier_sync;
   442   // this is set by any task, when an overflow on the global data
   443   // structures is detected.
   444   volatile bool           _has_overflown;
   445   // true: marking is concurrent, false: we're in remark
   446   volatile bool           _concurrent;
   447   // set at the end of a Full GC so that marking aborts
   448   volatile bool           _has_aborted;
   449   GCId                    _aborted_gc_id;
   451   // used when remark aborts due to an overflow to indicate that
   452   // another concurrent marking phase should start
   453   volatile bool           _restart_for_overflow;
   455   // This is true from the very start of concurrent marking until the
   456   // point when all the tasks complete their work. It is really used
   457   // to determine the points between the end of concurrent marking and
   458   // time of remark.
   459   volatile bool           _concurrent_marking_in_progress;
   461   // verbose level
   462   CMVerboseLevel          _verbose_level;
   464   // All of these times are in ms.
   465   NumberSeq _init_times;
   466   NumberSeq _remark_times;
   467   NumberSeq   _remark_mark_times;
   468   NumberSeq   _remark_weak_ref_times;
   469   NumberSeq _cleanup_times;
   470   double    _total_counting_time;
   471   double    _total_rs_scrub_time;
   473   double*   _accum_task_vtime;   // accumulated task vtime
   475   FlexibleWorkGang* _parallel_workers;
   477   ForceOverflowSettings _force_overflow_conc;
   478   ForceOverflowSettings _force_overflow_stw;
   480   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
   481   void weakRefsWork(bool clear_all_soft_refs);
   483   void swapMarkBitMaps();
   485   // It resets the global marking data structures, as well as the
   486   // task local ones; should be called during initial mark.
   487   void reset();
   489   // Resets all the marking data structures. Called when we have to restart
   490   // marking or when marking completes (via set_non_marking_state below).
   491   void reset_marking_state(bool clear_overflow = true);
   493   // We do this after we're done with marking so that the marking data
   494   // structures are initialised to a sensible and predictable state.
   495   void set_non_marking_state();
   497   // Called to indicate how many threads are currently active.
   498   void set_concurrency(uint active_tasks);
   500   // It should be called to indicate which phase we're in (concurrent
   501   // mark or remark) and how many threads are currently active.
   502   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
   504   // prints all gathered CM-related statistics
   505   void print_stats();
   507   bool cleanup_list_is_empty() {
   508     return _cleanup_list.is_empty();
   509   }
   511   // accessor methods
   512   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
   513   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
   514   double sleep_factor()                     { return _sleep_factor; }
   515   double marking_task_overhead()            { return _marking_task_overhead;}
   516   double cleanup_sleep_factor()             { return _cleanup_sleep_factor; }
   517   double cleanup_task_overhead()            { return _cleanup_task_overhead;}
   519   bool use_parallel_marking_threads() const {
   520     assert(parallel_marking_threads() <=
   521            max_parallel_marking_threads(), "sanity");
   522     assert((_parallel_workers == NULL && parallel_marking_threads() == 0) ||
   523            parallel_marking_threads() > 0,
   524            "parallel workers not set up correctly");
   525     return _parallel_workers != NULL;
   526   }
   528   HeapWord*               finger()          { return _finger;   }
   529   bool                    concurrent()      { return _concurrent; }
   530   uint                    active_tasks()    { return _active_tasks; }
   531   ParallelTaskTerminator* terminator()      { return &_terminator; }
   533   // It claims the next available region to be scanned by a marking
   534   // task/thread. It might return NULL if the next region is empty or
   535   // we have run out of regions. In the latter case, out_of_regions()
   536   // determines whether we've really run out of regions or the task
   537   // should call claim_region() again. This might seem a bit
   538   // awkward. Originally, the code was written so that claim_region()
   539   // either successfully returned with a non-empty region or there
   540   // were no more regions to be claimed. The problem with this was
   541   // that, in certain circumstances, it iterated over large chunks of
   542   // the heap finding only empty regions and, while it was working, it
   543   // was preventing the calling task to call its regular clock
   544   // method. So, this way, each task will spend very little time in
   545   // claim_region() and is allowed to call the regular clock method
   546   // frequently.
   547   HeapRegion* claim_region(uint worker_id);
   549   // It determines whether we've run out of regions to scan. Note that
   550   // the finger can point past the heap end in case the heap was expanded
   551   // to satisfy an allocation without doing a GC. This is fine, because all
   552   // objects in those regions will be considered live anyway because of
   553   // SATB guarantees (i.e. their TAMS will be equal to bottom).
   554   bool        out_of_regions() { return _finger >= _heap_end; }
   556   // Returns the task with the given id
   557   CMTask* task(int id) {
   558     assert(0 <= id && id < (int) _active_tasks,
   559            "task id not within active bounds");
   560     return _tasks[id];
   561   }
   563   // Returns the task queue with the given id
   564   CMTaskQueue* task_queue(int id) {
   565     assert(0 <= id && id < (int) _active_tasks,
   566            "task queue id not within active bounds");
   567     return (CMTaskQueue*) _task_queues->queue(id);
   568   }
   570   // Returns the task queue set
   571   CMTaskQueueSet* task_queues()  { return _task_queues; }
   573   // Access / manipulation of the overflow flag which is set to
   574   // indicate that the global stack has overflown
   575   bool has_overflown()           { return _has_overflown; }
   576   void set_has_overflown()       { _has_overflown = true; }
   577   void clear_has_overflown()     { _has_overflown = false; }
   578   bool restart_for_overflow()    { return _restart_for_overflow; }
   580   // Methods to enter the two overflow sync barriers
   581   void enter_first_sync_barrier(uint worker_id);
   582   void enter_second_sync_barrier(uint worker_id);
   584   ForceOverflowSettings* force_overflow_conc() {
   585     return &_force_overflow_conc;
   586   }
   588   ForceOverflowSettings* force_overflow_stw() {
   589     return &_force_overflow_stw;
   590   }
   592   ForceOverflowSettings* force_overflow() {
   593     if (concurrent()) {
   594       return force_overflow_conc();
   595     } else {
   596       return force_overflow_stw();
   597     }
   598   }
   600   // Live Data Counting data structures...
   601   // These data structures are initialized at the start of
   602   // marking. They are written to while marking is active.
   603   // They are aggregated during remark; the aggregated values
   604   // are then used to populate the _region_bm, _card_bm, and
   605   // the total live bytes, which are then subsequently updated
   606   // during cleanup.
   608   // An array of bitmaps (one bit map per task). Each bitmap
   609   // is used to record the cards spanned by the live objects
   610   // marked by that task/worker.
   611   BitMap*  _count_card_bitmaps;
   613   // Used to record the number of marked live bytes
   614   // (for each region, by worker thread).
   615   size_t** _count_marked_bytes;
   617   // Card index of the bottom of the G1 heap. Used for biasing indices into
   618   // the card bitmaps.
   619   intptr_t _heap_bottom_card_num;
   621   // Set to true when initialization is complete
   622   bool _completed_initialization;
   624 public:
   625   // Manipulation of the global mark stack.
   626   // Notice that the first mark_stack_push is CAS-based, whereas the
   627   // two below are Mutex-based. This is OK since the first one is only
   628   // called during evacuation pauses and doesn't compete with the
   629   // other two (which are called by the marking tasks during
   630   // concurrent marking or remark).
   631   bool mark_stack_push(oop p) {
   632     _markStack.par_push(p);
   633     if (_markStack.overflow()) {
   634       set_has_overflown();
   635       return false;
   636     }
   637     return true;
   638   }
   639   bool mark_stack_push(oop* arr, int n) {
   640     _markStack.par_push_arr(arr, n);
   641     if (_markStack.overflow()) {
   642       set_has_overflown();
   643       return false;
   644     }
   645     return true;
   646   }
   647   void mark_stack_pop(oop* arr, int max, int* n) {
   648     _markStack.par_pop_arr(arr, max, n);
   649   }
   650   size_t mark_stack_size()                { return _markStack.size(); }
   651   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   652   bool mark_stack_overflow()              { return _markStack.overflow(); }
   653   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
   655   CMRootRegions* root_regions() { return &_root_regions; }
   657   bool concurrent_marking_in_progress() {
   658     return _concurrent_marking_in_progress;
   659   }
   660   void set_concurrent_marking_in_progress() {
   661     _concurrent_marking_in_progress = true;
   662   }
   663   void clear_concurrent_marking_in_progress() {
   664     _concurrent_marking_in_progress = false;
   665   }
   667   void update_accum_task_vtime(int i, double vtime) {
   668     _accum_task_vtime[i] += vtime;
   669   }
   671   double all_task_accum_vtime() {
   672     double ret = 0.0;
   673     for (uint i = 0; i < _max_worker_id; ++i)
   674       ret += _accum_task_vtime[i];
   675     return ret;
   676   }
   678   // Attempts to steal an object from the task queues of other tasks
   679   bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
   680     return _task_queues->steal(worker_id, hash_seed, obj);
   681   }
   683   ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs);
   684   ~ConcurrentMark();
   686   ConcurrentMarkThread* cmThread() { return _cmThread; }
   688   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   689   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   691   // Returns the number of GC threads to be used in a concurrent
   692   // phase based on the number of GC threads being used in a STW
   693   // phase.
   694   uint scale_parallel_threads(uint n_par_threads);
   696   // Calculates the number of GC threads to be used in a concurrent phase.
   697   uint calc_parallel_marking_threads();
   699   // The following three are interaction between CM and
   700   // G1CollectedHeap
   702   // This notifies CM that a root during initial-mark needs to be
   703   // grayed. It is MT-safe. word_size is the size of the object in
   704   // words. It is passed explicitly as sometimes we cannot calculate
   705   // it from the given object because it might be in an inconsistent
   706   // state (e.g., in to-space and being copied). So the caller is
   707   // responsible for dealing with this issue (e.g., get the size from
   708   // the from-space image when the to-space image might be
   709   // inconsistent) and always passing the size. hr is the region that
   710   // contains the object and it's passed optionally from callers who
   711   // might already have it (no point in recalculating it).
   712   inline void grayRoot(oop obj, size_t word_size,
   713                        uint worker_id, HeapRegion* hr = NULL);
   715   // It iterates over the heap and for each object it comes across it
   716   // will dump the contents of its reference fields, as well as
   717   // liveness information for the object and its referents. The dump
   718   // will be written to a file with the following name:
   719   // G1PrintReachableBaseFile + "." + str.
   720   // vo decides whether the prev (vo == UsePrevMarking), the next
   721   // (vo == UseNextMarking) marking information, or the mark word
   722   // (vo == UseMarkWord) will be used to determine the liveness of
   723   // each object / referent.
   724   // If all is true, all objects in the heap will be dumped, otherwise
   725   // only the live ones. In the dump the following symbols / breviations
   726   // are used:
   727   //   M : an explicitly live object (its bitmap bit is set)
   728   //   > : an implicitly live object (over tams)
   729   //   O : an object outside the G1 heap (typically: in the perm gen)
   730   //   NOT : a reference field whose referent is not live
   731   //   AND MARKED : indicates that an object is both explicitly and
   732   //   implicitly live (it should be one or the other, not both)
   733   void print_reachable(const char* str,
   734                        VerifyOption vo, bool all) PRODUCT_RETURN;
   736   // Clear the next marking bitmap (will be called concurrently).
   737   void clearNextBitmap();
   739   // Return whether the next mark bitmap has no marks set.
   740   bool nextMarkBitmapIsClear();
   742   // These two do the work that needs to be done before and after the
   743   // initial root checkpoint. Since this checkpoint can be done at two
   744   // different points (i.e. an explicit pause or piggy-backed on a
   745   // young collection), then it's nice to be able to easily share the
   746   // pre/post code. It might be the case that we can put everything in
   747   // the post method. TP
   748   void checkpointRootsInitialPre();
   749   void checkpointRootsInitialPost();
   751   // Scan all the root regions and mark everything reachable from
   752   // them.
   753   void scanRootRegions();
   755   // Scan a single root region and mark everything reachable from it.
   756   void scanRootRegion(HeapRegion* hr, uint worker_id);
   758   // Do concurrent phase of marking, to a tentative transitive closure.
   759   void markFromRoots();
   761   void checkpointRootsFinal(bool clear_all_soft_refs);
   762   void checkpointRootsFinalWork();
   763   void cleanup();
   764   void completeCleanup();
   766   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   767   // this carefully!
   768   inline void markPrev(oop p);
   770   // Clears marks for all objects in the given range, for the prev,
   771   // next, or both bitmaps.  NB: the previous bitmap is usually
   772   // read-only, so use this carefully!
   773   void clearRangePrevBitmap(MemRegion mr);
   774   void clearRangeNextBitmap(MemRegion mr);
   775   void clearRangeBothBitmaps(MemRegion mr);
   777   // Notify data structures that a GC has started.
   778   void note_start_of_gc() {
   779     _markStack.note_start_of_gc();
   780   }
   782   // Notify data structures that a GC is finished.
   783   void note_end_of_gc() {
   784     _markStack.note_end_of_gc();
   785   }
   787   // Verify that there are no CSet oops on the stacks (taskqueues /
   788   // global mark stack), enqueued SATB buffers, per-thread SATB
   789   // buffers, and fingers (global / per-task). The boolean parameters
   790   // decide which of the above data structures to verify. If marking
   791   // is not in progress, it's a no-op.
   792   void verify_no_cset_oops(bool verify_stacks,
   793                            bool verify_enqueued_buffers,
   794                            bool verify_thread_buffers,
   795                            bool verify_fingers) PRODUCT_RETURN;
   797   // It is called at the end of an evacuation pause during marking so
   798   // that CM is notified of where the new end of the heap is. It
   799   // doesn't do anything if concurrent_marking_in_progress() is false,
   800   // unless the force parameter is true.
   801   void update_g1_committed(bool force = false);
   803   bool isMarked(oop p) const {
   804     assert(p != NULL && p->is_oop(), "expected an oop");
   805     HeapWord* addr = (HeapWord*)p;
   806     assert(addr >= _nextMarkBitMap->startWord() ||
   807            addr < _nextMarkBitMap->endWord(), "in a region");
   809     return _nextMarkBitMap->isMarked(addr);
   810   }
   812   inline bool not_yet_marked(oop p) const;
   814   // XXX Debug code
   815   bool containing_card_is_marked(void* p);
   816   bool containing_cards_are_marked(void* start, void* last);
   818   bool isPrevMarked(oop p) const {
   819     assert(p != NULL && p->is_oop(), "expected an oop");
   820     HeapWord* addr = (HeapWord*)p;
   821     assert(addr >= _prevMarkBitMap->startWord() ||
   822            addr < _prevMarkBitMap->endWord(), "in a region");
   824     return _prevMarkBitMap->isMarked(addr);
   825   }
   827   inline bool do_yield_check(uint worker_i = 0);
   829   // Called to abort the marking cycle after a Full GC takes palce.
   830   void abort();
   832   bool has_aborted()      { return _has_aborted; }
   834   const GCId& concurrent_gc_id();
   836   // This prints the global/local fingers. It is used for debugging.
   837   NOT_PRODUCT(void print_finger();)
   839   void print_summary_info();
   841   void print_worker_threads_on(outputStream* st) const;
   843   void print_on_error(outputStream* st) const;
   845   // The following indicate whether a given verbose level has been
   846   // set. Notice that anything above stats is conditional to
   847   // _MARKING_VERBOSE_ having been set to 1
   848   bool verbose_stats() {
   849     return _verbose_level >= stats_verbose;
   850   }
   851   bool verbose_low() {
   852     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
   853   }
   854   bool verbose_medium() {
   855     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
   856   }
   857   bool verbose_high() {
   858     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
   859   }
   861   // Liveness counting
   863   // Utility routine to set an exclusive range of cards on the given
   864   // card liveness bitmap
   865   inline void set_card_bitmap_range(BitMap* card_bm,
   866                                     BitMap::idx_t start_idx,
   867                                     BitMap::idx_t end_idx,
   868                                     bool is_par);
   870   // Returns the card number of the bottom of the G1 heap.
   871   // Used in biasing indices into accounting card bitmaps.
   872   intptr_t heap_bottom_card_num() const {
   873     return _heap_bottom_card_num;
   874   }
   876   // Returns the card bitmap for a given task or worker id.
   877   BitMap* count_card_bitmap_for(uint worker_id) {
   878     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   879     assert(_count_card_bitmaps != NULL, "uninitialized");
   880     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
   881     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
   882     return task_card_bm;
   883   }
   885   // Returns the array containing the marked bytes for each region,
   886   // for the given worker or task id.
   887   size_t* count_marked_bytes_array_for(uint worker_id) {
   888     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   889     assert(_count_marked_bytes != NULL, "uninitialized");
   890     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
   891     assert(marked_bytes_array != NULL, "uninitialized");
   892     return marked_bytes_array;
   893   }
   895   // Returns the index in the liveness accounting card table bitmap
   896   // for the given address
   897   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
   899   // Counts the size of the given memory region in the the given
   900   // marked_bytes array slot for the given HeapRegion.
   901   // Sets the bits in the given card bitmap that are associated with the
   902   // cards that are spanned by the memory region.
   903   inline void count_region(MemRegion mr, HeapRegion* hr,
   904                            size_t* marked_bytes_array,
   905                            BitMap* task_card_bm);
   907   // Counts the given memory region in the task/worker counting
   908   // data structures for the given worker id.
   909   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
   911   // Counts the given memory region in the task/worker counting
   912   // data structures for the given worker id.
   913   inline void count_region(MemRegion mr, uint worker_id);
   915   // Counts the given object in the given task/worker counting
   916   // data structures.
   917   inline void count_object(oop obj, HeapRegion* hr,
   918                            size_t* marked_bytes_array,
   919                            BitMap* task_card_bm);
   921   // Counts the given object in the task/worker counting data
   922   // structures for the given worker id.
   923   inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
   925   // Attempts to mark the given object and, if successful, counts
   926   // the object in the given task/worker counting structures.
   927   inline bool par_mark_and_count(oop obj, HeapRegion* hr,
   928                                  size_t* marked_bytes_array,
   929                                  BitMap* task_card_bm);
   931   // Attempts to mark the given object and, if successful, counts
   932   // the object in the task/worker counting structures for the
   933   // given worker id.
   934   inline bool par_mark_and_count(oop obj, size_t word_size,
   935                                  HeapRegion* hr, uint worker_id);
   937   // Attempts to mark the given object and, if successful, counts
   938   // the object in the task/worker counting structures for the
   939   // given worker id.
   940   inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
   942   // Similar to the above routine but we don't know the heap region that
   943   // contains the object to be marked/counted, which this routine looks up.
   944   inline bool par_mark_and_count(oop obj, uint worker_id);
   946   // Similar to the above routine but there are times when we cannot
   947   // safely calculate the size of obj due to races and we, therefore,
   948   // pass the size in as a parameter. It is the caller's reponsibility
   949   // to ensure that the size passed in for obj is valid.
   950   inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
   952   // Unconditionally mark the given object, and unconditinally count
   953   // the object in the counting structures for worker id 0.
   954   // Should *not* be called from parallel code.
   955   inline bool mark_and_count(oop obj, HeapRegion* hr);
   957   // Similar to the above routine but we don't know the heap region that
   958   // contains the object to be marked/counted, which this routine looks up.
   959   // Should *not* be called from parallel code.
   960   inline bool mark_and_count(oop obj);
   962   // Returns true if initialization was successfully completed.
   963   bool completed_initialization() const {
   964     return _completed_initialization;
   965   }
   967 protected:
   968   // Clear all the per-task bitmaps and arrays used to store the
   969   // counting data.
   970   void clear_all_count_data();
   972   // Aggregates the counting data for each worker/task
   973   // that was constructed while marking. Also sets
   974   // the amount of marked bytes for each region and
   975   // the top at concurrent mark count.
   976   void aggregate_count_data();
   978   // Verification routine
   979   void verify_count_data();
   980 };
   982 // A class representing a marking task.
   983 class CMTask : public TerminatorTerminator {
   984 private:
   985   enum PrivateConstants {
   986     // the regular clock call is called once the scanned words reaches
   987     // this limit
   988     words_scanned_period          = 12*1024,
   989     // the regular clock call is called once the number of visited
   990     // references reaches this limit
   991     refs_reached_period           = 384,
   992     // initial value for the hash seed, used in the work stealing code
   993     init_hash_seed                = 17,
   994     // how many entries will be transferred between global stack and
   995     // local queues
   996     global_stack_transfer_size    = 16
   997   };
   999   uint                        _worker_id;
  1000   G1CollectedHeap*            _g1h;
  1001   ConcurrentMark*             _cm;
  1002   CMBitMap*                   _nextMarkBitMap;
  1003   // the task queue of this task
  1004   CMTaskQueue*                _task_queue;
  1005 private:
  1006   // the task queue set---needed for stealing
  1007   CMTaskQueueSet*             _task_queues;
  1008   // indicates whether the task has been claimed---this is only  for
  1009   // debugging purposes
  1010   bool                        _claimed;
  1012   // number of calls to this task
  1013   int                         _calls;
  1015   // when the virtual timer reaches this time, the marking step should
  1016   // exit
  1017   double                      _time_target_ms;
  1018   // the start time of the current marking step
  1019   double                      _start_time_ms;
  1021   // the oop closure used for iterations over oops
  1022   G1CMOopClosure*             _cm_oop_closure;
  1024   // the region this task is scanning, NULL if we're not scanning any
  1025   HeapRegion*                 _curr_region;
  1026   // the local finger of this task, NULL if we're not scanning a region
  1027   HeapWord*                   _finger;
  1028   // limit of the region this task is scanning, NULL if we're not scanning one
  1029   HeapWord*                   _region_limit;
  1031   // the number of words this task has scanned
  1032   size_t                      _words_scanned;
  1033   // When _words_scanned reaches this limit, the regular clock is
  1034   // called. Notice that this might be decreased under certain
  1035   // circumstances (i.e. when we believe that we did an expensive
  1036   // operation).
  1037   size_t                      _words_scanned_limit;
  1038   // the initial value of _words_scanned_limit (i.e. what it was
  1039   // before it was decreased).
  1040   size_t                      _real_words_scanned_limit;
  1042   // the number of references this task has visited
  1043   size_t                      _refs_reached;
  1044   // When _refs_reached reaches this limit, the regular clock is
  1045   // called. Notice this this might be decreased under certain
  1046   // circumstances (i.e. when we believe that we did an expensive
  1047   // operation).
  1048   size_t                      _refs_reached_limit;
  1049   // the initial value of _refs_reached_limit (i.e. what it was before
  1050   // it was decreased).
  1051   size_t                      _real_refs_reached_limit;
  1053   // used by the work stealing stuff
  1054   int                         _hash_seed;
  1055   // if this is true, then the task has aborted for some reason
  1056   bool                        _has_aborted;
  1057   // set when the task aborts because it has met its time quota
  1058   bool                        _has_timed_out;
  1059   // true when we're draining SATB buffers; this avoids the task
  1060   // aborting due to SATB buffers being available (as we're already
  1061   // dealing with them)
  1062   bool                        _draining_satb_buffers;
  1064   // number sequence of past step times
  1065   NumberSeq                   _step_times_ms;
  1066   // elapsed time of this task
  1067   double                      _elapsed_time_ms;
  1068   // termination time of this task
  1069   double                      _termination_time_ms;
  1070   // when this task got into the termination protocol
  1071   double                      _termination_start_time_ms;
  1073   // true when the task is during a concurrent phase, false when it is
  1074   // in the remark phase (so, in the latter case, we do not have to
  1075   // check all the things that we have to check during the concurrent
  1076   // phase, i.e. SATB buffer availability...)
  1077   bool                        _concurrent;
  1079   TruncatedSeq                _marking_step_diffs_ms;
  1081   // Counting data structures. Embedding the task's marked_bytes_array
  1082   // and card bitmap into the actual task saves having to go through
  1083   // the ConcurrentMark object.
  1084   size_t*                     _marked_bytes_array;
  1085   BitMap*                     _card_bm;
  1087   // LOTS of statistics related with this task
  1088 #if _MARKING_STATS_
  1089   NumberSeq                   _all_clock_intervals_ms;
  1090   double                      _interval_start_time_ms;
  1092   int                         _aborted;
  1093   int                         _aborted_overflow;
  1094   int                         _aborted_cm_aborted;
  1095   int                         _aborted_yield;
  1096   int                         _aborted_timed_out;
  1097   int                         _aborted_satb;
  1098   int                         _aborted_termination;
  1100   int                         _steal_attempts;
  1101   int                         _steals;
  1103   int                         _clock_due_to_marking;
  1104   int                         _clock_due_to_scanning;
  1106   int                         _local_pushes;
  1107   int                         _local_pops;
  1108   int                         _local_max_size;
  1109   int                         _objs_scanned;
  1111   int                         _global_pushes;
  1112   int                         _global_pops;
  1113   int                         _global_max_size;
  1115   int                         _global_transfers_to;
  1116   int                         _global_transfers_from;
  1118   int                         _regions_claimed;
  1119   int                         _objs_found_on_bitmap;
  1121   int                         _satb_buffers_processed;
  1122 #endif // _MARKING_STATS_
  1124   // it updates the local fields after this task has claimed
  1125   // a new region to scan
  1126   void setup_for_region(HeapRegion* hr);
  1127   // it brings up-to-date the limit of the region
  1128   void update_region_limit();
  1130   // called when either the words scanned or the refs visited limit
  1131   // has been reached
  1132   void reached_limit();
  1133   // recalculates the words scanned and refs visited limits
  1134   void recalculate_limits();
  1135   // decreases the words scanned and refs visited limits when we reach
  1136   // an expensive operation
  1137   void decrease_limits();
  1138   // it checks whether the words scanned or refs visited reached their
  1139   // respective limit and calls reached_limit() if they have
  1140   void check_limits() {
  1141     if (_words_scanned >= _words_scanned_limit ||
  1142         _refs_reached >= _refs_reached_limit) {
  1143       reached_limit();
  1146   // this is supposed to be called regularly during a marking step as
  1147   // it checks a bunch of conditions that might cause the marking step
  1148   // to abort
  1149   void regular_clock_call();
  1150   bool concurrent() { return _concurrent; }
  1152 public:
  1153   // It resets the task; it should be called right at the beginning of
  1154   // a marking phase.
  1155   void reset(CMBitMap* _nextMarkBitMap);
  1156   // it clears all the fields that correspond to a claimed region.
  1157   void clear_region_fields();
  1159   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1161   // The main method of this class which performs a marking step
  1162   // trying not to exceed the given duration. However, it might exit
  1163   // prematurely, according to some conditions (i.e. SATB buffers are
  1164   // available for processing).
  1165   void do_marking_step(double target_ms,
  1166                        bool do_termination,
  1167                        bool is_serial);
  1169   // These two calls start and stop the timer
  1170   void record_start_time() {
  1171     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1173   void record_end_time() {
  1174     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1177   // returns the worker ID associated with this task.
  1178   uint worker_id() { return _worker_id; }
  1180   // From TerminatorTerminator. It determines whether this task should
  1181   // exit the termination protocol after it's entered it.
  1182   virtual bool should_exit_termination();
  1184   // Resets the local region fields after a task has finished scanning a
  1185   // region; or when they have become stale as a result of the region
  1186   // being evacuated.
  1187   void giveup_current_region();
  1189   HeapWord* finger()            { return _finger; }
  1191   bool has_aborted()            { return _has_aborted; }
  1192   void set_has_aborted()        { _has_aborted = true; }
  1193   void clear_has_aborted()      { _has_aborted = false; }
  1194   bool has_timed_out()          { return _has_timed_out; }
  1195   bool claimed()                { return _claimed; }
  1197   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
  1199   // It grays the object by marking it and, if necessary, pushing it
  1200   // on the local queue
  1201   inline void deal_with_reference(oop obj);
  1203   // It scans an object and visits its children.
  1204   void scan_object(oop obj);
  1206   // It pushes an object on the local queue.
  1207   inline void push(oop obj);
  1209   // These two move entries to/from the global stack.
  1210   void move_entries_to_global_stack();
  1211   void get_entries_from_global_stack();
  1213   // It pops and scans objects from the local queue. If partially is
  1214   // true, then it stops when the queue size is of a given limit. If
  1215   // partially is false, then it stops when the queue is empty.
  1216   void drain_local_queue(bool partially);
  1217   // It moves entries from the global stack to the local queue and
  1218   // drains the local queue. If partially is true, then it stops when
  1219   // both the global stack and the local queue reach a given size. If
  1220   // partially if false, it tries to empty them totally.
  1221   void drain_global_stack(bool partially);
  1222   // It keeps picking SATB buffers and processing them until no SATB
  1223   // buffers are available.
  1224   void drain_satb_buffers();
  1226   // moves the local finger to a new location
  1227   inline void move_finger_to(HeapWord* new_finger) {
  1228     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1229     _finger = new_finger;
  1232   CMTask(uint worker_id, ConcurrentMark *cm,
  1233          size_t* marked_bytes, BitMap* card_bm,
  1234          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1236   // it prints statistics associated with this task
  1237   void print_stats();
  1239 #if _MARKING_STATS_
  1240   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1241 #endif // _MARKING_STATS_
  1242 };
  1244 // Class that's used to to print out per-region liveness
  1245 // information. It's currently used at the end of marking and also
  1246 // after we sort the old regions at the end of the cleanup operation.
  1247 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
  1248 private:
  1249   outputStream* _out;
  1251   // Accumulators for these values.
  1252   size_t _total_used_bytes;
  1253   size_t _total_capacity_bytes;
  1254   size_t _total_prev_live_bytes;
  1255   size_t _total_next_live_bytes;
  1257   // These are set up when we come across a "stars humongous" region
  1258   // (as this is where most of this information is stored, not in the
  1259   // subsequent "continues humongous" regions). After that, for every
  1260   // region in a given humongous region series we deduce the right
  1261   // values for it by simply subtracting the appropriate amount from
  1262   // these fields. All these values should reach 0 after we've visited
  1263   // the last region in the series.
  1264   size_t _hum_used_bytes;
  1265   size_t _hum_capacity_bytes;
  1266   size_t _hum_prev_live_bytes;
  1267   size_t _hum_next_live_bytes;
  1269   // Accumulator for the remembered set size
  1270   size_t _total_remset_bytes;
  1272   // Accumulator for strong code roots memory size
  1273   size_t _total_strong_code_roots_bytes;
  1275   static double perc(size_t val, size_t total) {
  1276     if (total == 0) {
  1277       return 0.0;
  1278     } else {
  1279       return 100.0 * ((double) val / (double) total);
  1283   static double bytes_to_mb(size_t val) {
  1284     return (double) val / (double) M;
  1287   // See the .cpp file.
  1288   size_t get_hum_bytes(size_t* hum_bytes);
  1289   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
  1290                      size_t* prev_live_bytes, size_t* next_live_bytes);
  1292 public:
  1293   // The header and footer are printed in the constructor and
  1294   // destructor respectively.
  1295   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
  1296   virtual bool doHeapRegion(HeapRegion* r);
  1297   ~G1PrintRegionLivenessInfoClosure();
  1298 };
  1300 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial