src/os/solaris/vm/os_solaris.cpp

Wed, 06 Jul 2011 13:02:54 -0700

author
jcoomes
date
Wed, 06 Jul 2011 13:02:54 -0700
changeset 2997
bf6481e5f96d
parent 2850
188c9a5d6a6d
child 3057
24cee90e9453
permissions
-rw-r--r--

7061225: os::print_cpu_info() should support os-specific data
Reviewed-by: dholmes, never, jwilhelm, kvn

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_solaris.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/filemap.hpp"
    36 #include "mutex_solaris.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "os_share_solaris.hpp"
    39 #include "prims/jniFastGetField.hpp"
    40 #include "prims/jvm.h"
    41 #include "prims/jvm_misc.hpp"
    42 #include "runtime/arguments.hpp"
    43 #include "runtime/extendedPC.hpp"
    44 #include "runtime/globals.hpp"
    45 #include "runtime/interfaceSupport.hpp"
    46 #include "runtime/java.hpp"
    47 #include "runtime/javaCalls.hpp"
    48 #include "runtime/mutexLocker.hpp"
    49 #include "runtime/objectMonitor.hpp"
    50 #include "runtime/osThread.hpp"
    51 #include "runtime/perfMemory.hpp"
    52 #include "runtime/sharedRuntime.hpp"
    53 #include "runtime/statSampler.hpp"
    54 #include "runtime/stubRoutines.hpp"
    55 #include "runtime/threadCritical.hpp"
    56 #include "runtime/timer.hpp"
    57 #include "services/attachListener.hpp"
    58 #include "services/runtimeService.hpp"
    59 #include "thread_solaris.inline.hpp"
    60 #include "utilities/decoder.hpp"
    61 #include "utilities/defaultStream.hpp"
    62 #include "utilities/events.hpp"
    63 #include "utilities/growableArray.hpp"
    64 #include "utilities/vmError.hpp"
    65 #ifdef TARGET_ARCH_x86
    66 # include "assembler_x86.inline.hpp"
    67 # include "nativeInst_x86.hpp"
    68 #endif
    69 #ifdef TARGET_ARCH_sparc
    70 # include "assembler_sparc.inline.hpp"
    71 # include "nativeInst_sparc.hpp"
    72 #endif
    73 #ifdef COMPILER1
    74 #include "c1/c1_Runtime1.hpp"
    75 #endif
    76 #ifdef COMPILER2
    77 #include "opto/runtime.hpp"
    78 #endif
    80 // put OS-includes here
    81 # include <dlfcn.h>
    82 # include <errno.h>
    83 # include <exception>
    84 # include <link.h>
    85 # include <poll.h>
    86 # include <pthread.h>
    87 # include <pwd.h>
    88 # include <schedctl.h>
    89 # include <setjmp.h>
    90 # include <signal.h>
    91 # include <stdio.h>
    92 # include <alloca.h>
    93 # include <sys/filio.h>
    94 # include <sys/ipc.h>
    95 # include <sys/lwp.h>
    96 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
    97 # include <sys/mman.h>
    98 # include <sys/processor.h>
    99 # include <sys/procset.h>
   100 # include <sys/pset.h>
   101 # include <sys/resource.h>
   102 # include <sys/shm.h>
   103 # include <sys/socket.h>
   104 # include <sys/stat.h>
   105 # include <sys/systeminfo.h>
   106 # include <sys/time.h>
   107 # include <sys/times.h>
   108 # include <sys/types.h>
   109 # include <sys/wait.h>
   110 # include <sys/utsname.h>
   111 # include <thread.h>
   112 # include <unistd.h>
   113 # include <sys/priocntl.h>
   114 # include <sys/rtpriocntl.h>
   115 # include <sys/tspriocntl.h>
   116 # include <sys/iapriocntl.h>
   117 # include <sys/loadavg.h>
   118 # include <string.h>
   119 # include <stdio.h>
   121 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
   122 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
   124 #define MAX_PATH (2 * K)
   126 // for timer info max values which include all bits
   127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   129 #ifdef _GNU_SOURCE
   130 // See bug #6514594
   131 extern "C" int madvise(caddr_t, size_t, int);
   132 extern "C"  int memcntl(caddr_t addr, size_t len, int cmd, caddr_t  arg,
   133      int attr, int mask);
   134 #endif //_GNU_SOURCE
   136 /*
   137   MPSS Changes Start.
   138   The JVM binary needs to be built and run on pre-Solaris 9
   139   systems, but the constants needed by MPSS are only in Solaris 9
   140   header files.  They are textually replicated here to allow
   141   building on earlier systems.  Once building on Solaris 8 is
   142   no longer a requirement, these #defines can be replaced by ordinary
   143   system .h inclusion.
   145   In earlier versions of the  JDK and Solaris, we used ISM for large pages.
   146   But ISM requires shared memory to achieve this and thus has many caveats.
   147   MPSS is a fully transparent and is a cleaner way to get large pages.
   148   Although we still require keeping ISM for backward compatiblitiy as well as
   149   giving the opportunity to use large pages on older systems it is
   150   recommended that MPSS be used for Solaris 9 and above.
   152 */
   154 #ifndef MC_HAT_ADVISE
   156 struct memcntl_mha {
   157   uint_t          mha_cmd;        /* command(s) */
   158   uint_t          mha_flags;
   159   size_t          mha_pagesize;
   160 };
   161 #define MC_HAT_ADVISE   7       /* advise hat map size */
   162 #define MHA_MAPSIZE_VA  0x1     /* set preferred page size */
   163 #define MAP_ALIGN       0x200   /* addr specifies alignment */
   165 #endif
   166 // MPSS Changes End.
   169 // Here are some liblgrp types from sys/lgrp_user.h to be able to
   170 // compile on older systems without this header file.
   172 #ifndef MADV_ACCESS_LWP
   173 # define  MADV_ACCESS_LWP         7       /* next LWP to access heavily */
   174 #endif
   175 #ifndef MADV_ACCESS_MANY
   176 # define  MADV_ACCESS_MANY        8       /* many processes to access heavily */
   177 #endif
   179 #ifndef LGRP_RSRC_CPU
   180 # define LGRP_RSRC_CPU           0       /* CPU resources */
   181 #endif
   182 #ifndef LGRP_RSRC_MEM
   183 # define LGRP_RSRC_MEM           1       /* memory resources */
   184 #endif
   186 // Some more macros from sys/mman.h that are not present in Solaris 8.
   188 #ifndef MAX_MEMINFO_CNT
   189 /*
   190  * info_req request type definitions for meminfo
   191  * request types starting with MEMINFO_V are used for Virtual addresses
   192  * and should not be mixed with MEMINFO_PLGRP which is targeted for Physical
   193  * addresses
   194  */
   195 # define MEMINFO_SHIFT           16
   196 # define MEMINFO_MASK            (0xFF << MEMINFO_SHIFT)
   197 # define MEMINFO_VPHYSICAL       (0x01 << MEMINFO_SHIFT) /* get physical addr */
   198 # define MEMINFO_VLGRP           (0x02 << MEMINFO_SHIFT) /* get lgroup */
   199 # define MEMINFO_VPAGESIZE       (0x03 << MEMINFO_SHIFT) /* size of phys page */
   200 # define MEMINFO_VREPLCNT        (0x04 << MEMINFO_SHIFT) /* no. of replica */
   201 # define MEMINFO_VREPL           (0x05 << MEMINFO_SHIFT) /* physical replica */
   202 # define MEMINFO_VREPL_LGRP      (0x06 << MEMINFO_SHIFT) /* lgrp of replica */
   203 # define MEMINFO_PLGRP           (0x07 << MEMINFO_SHIFT) /* lgroup for paddr */
   205 /* maximum number of addresses meminfo() can process at a time */
   206 # define MAX_MEMINFO_CNT 256
   208 /* maximum number of request types */
   209 # define MAX_MEMINFO_REQ 31
   210 #endif
   212 // see thr_setprio(3T) for the basis of these numbers
   213 #define MinimumPriority 0
   214 #define NormalPriority  64
   215 #define MaximumPriority 127
   217 // Values for ThreadPriorityPolicy == 1
   218 int prio_policy1[MaxPriority+1] = { -99999, 0, 16, 32, 48, 64,
   219                                         80, 96, 112, 124, 127 };
   221 // System parameters used internally
   222 static clock_t clock_tics_per_sec = 100;
   224 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
   225 static bool enabled_extended_FILE_stdio = false;
   227 // For diagnostics to print a message once. see run_periodic_checks
   228 static bool check_addr0_done = false;
   229 static sigset_t check_signal_done;
   230 static bool check_signals = true;
   232 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
   233 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
   235 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
   238 // "default" initializers for missing libc APIs
   239 extern "C" {
   240   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   241   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
   243   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   244   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
   245 }
   247 // "default" initializers for pthread-based synchronization
   248 extern "C" {
   249   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   250   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   251 }
   253 // Thread Local Storage
   254 // This is common to all Solaris platforms so it is defined here,
   255 // in this common file.
   256 // The declarations are in the os_cpu threadLS*.hpp files.
   257 //
   258 // Static member initialization for TLS
   259 Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
   261 #ifndef PRODUCT
   262 #define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
   264 int ThreadLocalStorage::_tcacheHit = 0;
   265 int ThreadLocalStorage::_tcacheMiss = 0;
   267 void ThreadLocalStorage::print_statistics() {
   268   int total = _tcacheMiss+_tcacheHit;
   269   tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
   270                 _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
   271 }
   272 #undef _PCT
   273 #endif // PRODUCT
   275 Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
   276                                                         int index) {
   277   Thread *thread = get_thread_slow();
   278   if (thread != NULL) {
   279     address sp = os::current_stack_pointer();
   280     guarantee(thread->_stack_base == NULL ||
   281               (sp <= thread->_stack_base &&
   282                  sp >= thread->_stack_base - thread->_stack_size) ||
   283                is_error_reported(),
   284               "sp must be inside of selected thread stack");
   286     thread->set_self_raw_id(raw_id);  // mark for quick retrieval
   287     _get_thread_cache[ index ] = thread;
   288   }
   289   return thread;
   290 }
   293 static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
   294 #define NO_CACHED_THREAD ((Thread*)all_zero)
   296 void ThreadLocalStorage::pd_set_thread(Thread* thread) {
   298   // Store the new value before updating the cache to prevent a race
   299   // between get_thread_via_cache_slowly() and this store operation.
   300   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
   302   // Update thread cache with new thread if setting on thread create,
   303   // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
   304   uintptr_t raw = pd_raw_thread_id();
   305   int ix = pd_cache_index(raw);
   306   _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
   307 }
   309 void ThreadLocalStorage::pd_init() {
   310   for (int i = 0; i < _pd_cache_size; i++) {
   311     _get_thread_cache[i] = NO_CACHED_THREAD;
   312   }
   313 }
   315 // Invalidate all the caches (happens to be the same as pd_init).
   316 void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
   318 #undef NO_CACHED_THREAD
   320 // END Thread Local Storage
   322 static inline size_t adjust_stack_size(address base, size_t size) {
   323   if ((ssize_t)size < 0) {
   324     // 4759953: Compensate for ridiculous stack size.
   325     size = max_intx;
   326   }
   327   if (size > (size_t)base) {
   328     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
   329     size = (size_t)base;
   330   }
   331   return size;
   332 }
   334 static inline stack_t get_stack_info() {
   335   stack_t st;
   336   int retval = thr_stksegment(&st);
   337   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
   338   assert(retval == 0, "incorrect return value from thr_stksegment");
   339   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
   340   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
   341   return st;
   342 }
   344 address os::current_stack_base() {
   345   int r = thr_main() ;
   346   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   347   bool is_primordial_thread = r;
   349   // Workaround 4352906, avoid calls to thr_stksegment by
   350   // thr_main after the first one (it looks like we trash
   351   // some data, causing the value for ss_sp to be incorrect).
   352   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
   353     stack_t st = get_stack_info();
   354     if (is_primordial_thread) {
   355       // cache initial value of stack base
   356       os::Solaris::_main_stack_base = (address)st.ss_sp;
   357     }
   358     return (address)st.ss_sp;
   359   } else {
   360     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
   361     return os::Solaris::_main_stack_base;
   362   }
   363 }
   365 size_t os::current_stack_size() {
   366   size_t size;
   368   int r = thr_main() ;
   369   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   370   if(!r) {
   371     size = get_stack_info().ss_size;
   372   } else {
   373     struct rlimit limits;
   374     getrlimit(RLIMIT_STACK, &limits);
   375     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
   376   }
   377   // base may not be page aligned
   378   address base = current_stack_base();
   379   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
   380   return (size_t)(base - bottom);
   381 }
   383 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
   384   return localtime_r(clock, res);
   385 }
   387 // interruptible infrastructure
   389 // setup_interruptible saves the thread state before going into an
   390 // interruptible system call.
   391 // The saved state is used to restore the thread to
   392 // its former state whether or not an interrupt is received.
   393 // Used by classloader os::read
   394 // os::restartable_read calls skip this layer and stay in _thread_in_native
   396 void os::Solaris::setup_interruptible(JavaThread* thread) {
   398   JavaThreadState thread_state = thread->thread_state();
   400   assert(thread_state != _thread_blocked, "Coming from the wrong thread");
   401   assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
   402   OSThread* osthread = thread->osthread();
   403   osthread->set_saved_interrupt_thread_state(thread_state);
   404   thread->frame_anchor()->make_walkable(thread);
   405   ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
   406 }
   408 // Version of setup_interruptible() for threads that are already in
   409 // _thread_blocked. Used by os_sleep().
   410 void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
   411   thread->frame_anchor()->make_walkable(thread);
   412 }
   414 JavaThread* os::Solaris::setup_interruptible() {
   415   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   416   setup_interruptible(thread);
   417   return thread;
   418 }
   420 void os::Solaris::try_enable_extended_io() {
   421   typedef int (*enable_extended_FILE_stdio_t)(int, int);
   423   if (!UseExtendedFileIO) {
   424     return;
   425   }
   427   enable_extended_FILE_stdio_t enabler =
   428     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
   429                                          "enable_extended_FILE_stdio");
   430   if (enabler) {
   431     enabler(-1, -1);
   432   }
   433 }
   436 #ifdef ASSERT
   438 JavaThread* os::Solaris::setup_interruptible_native() {
   439   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   440   JavaThreadState thread_state = thread->thread_state();
   441   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   442   return thread;
   443 }
   445 void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
   446   JavaThreadState thread_state = thread->thread_state();
   447   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   448 }
   449 #endif
   451 // cleanup_interruptible reverses the effects of setup_interruptible
   452 // setup_interruptible_already_blocked() does not need any cleanup.
   454 void os::Solaris::cleanup_interruptible(JavaThread* thread) {
   455   OSThread* osthread = thread->osthread();
   457   ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
   458 }
   460 // I/O interruption related counters called in _INTERRUPTIBLE
   462 void os::Solaris::bump_interrupted_before_count() {
   463   RuntimeService::record_interrupted_before_count();
   464 }
   466 void os::Solaris::bump_interrupted_during_count() {
   467   RuntimeService::record_interrupted_during_count();
   468 }
   470 static int _processors_online = 0;
   472          jint os::Solaris::_os_thread_limit = 0;
   473 volatile jint os::Solaris::_os_thread_count = 0;
   475 julong os::available_memory() {
   476   return Solaris::available_memory();
   477 }
   479 julong os::Solaris::available_memory() {
   480   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
   481 }
   483 julong os::Solaris::_physical_memory = 0;
   485 julong os::physical_memory() {
   486    return Solaris::physical_memory();
   487 }
   489 julong os::allocatable_physical_memory(julong size) {
   490 #ifdef _LP64
   491    return size;
   492 #else
   493    julong result = MIN2(size, (julong)3835*M);
   494    if (!is_allocatable(result)) {
   495      // Memory allocations will be aligned but the alignment
   496      // is not known at this point.  Alignments will
   497      // be at most to LargePageSizeInBytes.  Protect
   498      // allocations from alignments up to illegal
   499      // values. If at this point 2G is illegal.
   500      julong reasonable_size = (julong)2*G - 2 * LargePageSizeInBytes;
   501      result =  MIN2(size, reasonable_size);
   502    }
   503    return result;
   504 #endif
   505 }
   507 static hrtime_t first_hrtime = 0;
   508 static const hrtime_t hrtime_hz = 1000*1000*1000;
   509 const int LOCK_BUSY = 1;
   510 const int LOCK_FREE = 0;
   511 const int LOCK_INVALID = -1;
   512 static volatile hrtime_t max_hrtime = 0;
   513 static volatile int max_hrtime_lock = LOCK_FREE;     // Update counter with LSB as lock-in-progress
   516 void os::Solaris::initialize_system_info() {
   517   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   518   _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
   519   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   520 }
   522 int os::active_processor_count() {
   523   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
   524   pid_t pid = getpid();
   525   psetid_t pset = PS_NONE;
   526   // Are we running in a processor set or is there any processor set around?
   527   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
   528     uint_t pset_cpus;
   529     // Query the number of cpus available to us.
   530     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
   531       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
   532       _processors_online = pset_cpus;
   533       return pset_cpus;
   534     }
   535   }
   536   // Otherwise return number of online cpus
   537   return online_cpus;
   538 }
   540 static bool find_processors_in_pset(psetid_t        pset,
   541                                     processorid_t** id_array,
   542                                     uint_t*         id_length) {
   543   bool result = false;
   544   // Find the number of processors in the processor set.
   545   if (pset_info(pset, NULL, id_length, NULL) == 0) {
   546     // Make up an array to hold their ids.
   547     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length);
   548     // Fill in the array with their processor ids.
   549     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
   550       result = true;
   551     }
   552   }
   553   return result;
   554 }
   556 // Callers of find_processors_online() must tolerate imprecise results --
   557 // the system configuration can change asynchronously because of DR
   558 // or explicit psradm operations.
   559 //
   560 // We also need to take care that the loop (below) terminates as the
   561 // number of processors online can change between the _SC_NPROCESSORS_ONLN
   562 // request and the loop that builds the list of processor ids.   Unfortunately
   563 // there's no reliable way to determine the maximum valid processor id,
   564 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
   565 // man pages, which claim the processor id set is "sparse, but
   566 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
   567 // exit the loop.
   568 //
   569 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
   570 // not available on S8.0.
   572 static bool find_processors_online(processorid_t** id_array,
   573                                    uint*           id_length) {
   574   const processorid_t MAX_PROCESSOR_ID = 100000 ;
   575   // Find the number of processors online.
   576   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
   577   // Make up an array to hold their ids.
   578   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length);
   579   // Processors need not be numbered consecutively.
   580   long found = 0;
   581   processorid_t next = 0;
   582   while (found < *id_length && next < MAX_PROCESSOR_ID) {
   583     processor_info_t info;
   584     if (processor_info(next, &info) == 0) {
   585       // NB, PI_NOINTR processors are effectively online ...
   586       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
   587         (*id_array)[found] = next;
   588         found += 1;
   589       }
   590     }
   591     next += 1;
   592   }
   593   if (found < *id_length) {
   594       // The loop above didn't identify the expected number of processors.
   595       // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
   596       // and re-running the loop, above, but there's no guarantee of progress
   597       // if the system configuration is in flux.  Instead, we just return what
   598       // we've got.  Note that in the worst case find_processors_online() could
   599       // return an empty set.  (As a fall-back in the case of the empty set we
   600       // could just return the ID of the current processor).
   601       *id_length = found ;
   602   }
   604   return true;
   605 }
   607 static bool assign_distribution(processorid_t* id_array,
   608                                 uint           id_length,
   609                                 uint*          distribution,
   610                                 uint           distribution_length) {
   611   // We assume we can assign processorid_t's to uint's.
   612   assert(sizeof(processorid_t) == sizeof(uint),
   613          "can't convert processorid_t to uint");
   614   // Quick check to see if we won't succeed.
   615   if (id_length < distribution_length) {
   616     return false;
   617   }
   618   // Assign processor ids to the distribution.
   619   // Try to shuffle processors to distribute work across boards,
   620   // assuming 4 processors per board.
   621   const uint processors_per_board = ProcessDistributionStride;
   622   // Find the maximum processor id.
   623   processorid_t max_id = 0;
   624   for (uint m = 0; m < id_length; m += 1) {
   625     max_id = MAX2(max_id, id_array[m]);
   626   }
   627   // The next id, to limit loops.
   628   const processorid_t limit_id = max_id + 1;
   629   // Make up markers for available processors.
   630   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id);
   631   for (uint c = 0; c < limit_id; c += 1) {
   632     available_id[c] = false;
   633   }
   634   for (uint a = 0; a < id_length; a += 1) {
   635     available_id[id_array[a]] = true;
   636   }
   637   // Step by "boards", then by "slot", copying to "assigned".
   638   // NEEDS_CLEANUP: The assignment of processors should be stateful,
   639   //                remembering which processors have been assigned by
   640   //                previous calls, etc., so as to distribute several
   641   //                independent calls of this method.  What we'd like is
   642   //                It would be nice to have an API that let us ask
   643   //                how many processes are bound to a processor,
   644   //                but we don't have that, either.
   645   //                In the short term, "board" is static so that
   646   //                subsequent distributions don't all start at board 0.
   647   static uint board = 0;
   648   uint assigned = 0;
   649   // Until we've found enough processors ....
   650   while (assigned < distribution_length) {
   651     // ... find the next available processor in the board.
   652     for (uint slot = 0; slot < processors_per_board; slot += 1) {
   653       uint try_id = board * processors_per_board + slot;
   654       if ((try_id < limit_id) && (available_id[try_id] == true)) {
   655         distribution[assigned] = try_id;
   656         available_id[try_id] = false;
   657         assigned += 1;
   658         break;
   659       }
   660     }
   661     board += 1;
   662     if (board * processors_per_board + 0 >= limit_id) {
   663       board = 0;
   664     }
   665   }
   666   if (available_id != NULL) {
   667     FREE_C_HEAP_ARRAY(bool, available_id);
   668   }
   669   return true;
   670 }
   672 bool os::distribute_processes(uint length, uint* distribution) {
   673   bool result = false;
   674   // Find the processor id's of all the available CPUs.
   675   processorid_t* id_array  = NULL;
   676   uint           id_length = 0;
   677   // There are some races between querying information and using it,
   678   // since processor sets can change dynamically.
   679   psetid_t pset = PS_NONE;
   680   // Are we running in a processor set?
   681   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
   682     result = find_processors_in_pset(pset, &id_array, &id_length);
   683   } else {
   684     result = find_processors_online(&id_array, &id_length);
   685   }
   686   if (result == true) {
   687     if (id_length >= length) {
   688       result = assign_distribution(id_array, id_length, distribution, length);
   689     } else {
   690       result = false;
   691     }
   692   }
   693   if (id_array != NULL) {
   694     FREE_C_HEAP_ARRAY(processorid_t, id_array);
   695   }
   696   return result;
   697 }
   699 bool os::bind_to_processor(uint processor_id) {
   700   // We assume that a processorid_t can be stored in a uint.
   701   assert(sizeof(uint) == sizeof(processorid_t),
   702          "can't convert uint to processorid_t");
   703   int bind_result =
   704     processor_bind(P_LWPID,                       // bind LWP.
   705                    P_MYID,                        // bind current LWP.
   706                    (processorid_t) processor_id,  // id.
   707                    NULL);                         // don't return old binding.
   708   return (bind_result == 0);
   709 }
   711 bool os::getenv(const char* name, char* buffer, int len) {
   712   char* val = ::getenv( name );
   713   if ( val == NULL
   714   ||   strlen(val) + 1  >  len ) {
   715     if (len > 0)  buffer[0] = 0; // return a null string
   716     return false;
   717   }
   718   strcpy( buffer, val );
   719   return true;
   720 }
   723 // Return true if user is running as root.
   725 bool os::have_special_privileges() {
   726   static bool init = false;
   727   static bool privileges = false;
   728   if (!init) {
   729     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   730     init = true;
   731   }
   732   return privileges;
   733 }
   736 void os::init_system_properties_values() {
   737   char arch[12];
   738   sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   740   // The next steps are taken in the product version:
   741   //
   742   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   743   // This library should be located at:
   744   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   745   //
   746   // If "/jre/lib/" appears at the right place in the path, then we
   747   // assume libjvm[_g].so is installed in a JDK and we use this path.
   748   //
   749   // Otherwise exit with message: "Could not create the Java virtual machine."
   750   //
   751   // The following extra steps are taken in the debugging version:
   752   //
   753   // If "/jre/lib/" does NOT appear at the right place in the path
   754   // instead of exit check for $JAVA_HOME environment variable.
   755   //
   756   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   757   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   758   // it looks like libjvm[_g].so is installed there
   759   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   760   //
   761   // Otherwise exit.
   762   //
   763   // Important note: if the location of libjvm.so changes this
   764   // code needs to be changed accordingly.
   766   // The next few definitions allow the code to be verbatim:
   767 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
   768 #define free(p) FREE_C_HEAP_ARRAY(char, p)
   769 #define getenv(n) ::getenv(n)
   771 #define EXTENSIONS_DIR  "/lib/ext"
   772 #define ENDORSED_DIR    "/lib/endorsed"
   773 #define COMMON_DIR      "/usr/jdk/packages"
   775   {
   776     /* sysclasspath, java_home, dll_dir */
   777     {
   778         char *home_path;
   779         char *dll_path;
   780         char *pslash;
   781         char buf[MAXPATHLEN];
   782         os::jvm_path(buf, sizeof(buf));
   784         // Found the full path to libjvm.so.
   785         // Now cut the path to <java_home>/jre if we can.
   786         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   787         pslash = strrchr(buf, '/');
   788         if (pslash != NULL)
   789             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   790         dll_path = malloc(strlen(buf) + 1);
   791         if (dll_path == NULL)
   792             return;
   793         strcpy(dll_path, buf);
   794         Arguments::set_dll_dir(dll_path);
   796         if (pslash != NULL) {
   797             pslash = strrchr(buf, '/');
   798             if (pslash != NULL) {
   799                 *pslash = '\0';       /* get rid of /<arch> */
   800                 pslash = strrchr(buf, '/');
   801                 if (pslash != NULL)
   802                     *pslash = '\0';   /* get rid of /lib */
   803             }
   804         }
   806         home_path = malloc(strlen(buf) + 1);
   807         if (home_path == NULL)
   808             return;
   809         strcpy(home_path, buf);
   810         Arguments::set_java_home(home_path);
   812         if (!set_boot_path('/', ':'))
   813             return;
   814     }
   816     /*
   817      * Where to look for native libraries
   818      */
   819     {
   820       // Use dlinfo() to determine the correct java.library.path.
   821       //
   822       // If we're launched by the Java launcher, and the user
   823       // does not set java.library.path explicitly on the commandline,
   824       // the Java launcher sets LD_LIBRARY_PATH for us and unsets
   825       // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
   826       // dlinfo returns LD_LIBRARY_PATH + crle settings (including
   827       // /usr/lib), which is exactly what we want.
   828       //
   829       // If the user does set java.library.path, it completely
   830       // overwrites this setting, and always has.
   831       //
   832       // If we're not launched by the Java launcher, we may
   833       // get here with any/all of the LD_LIBRARY_PATH[_32|64]
   834       // settings.  Again, dlinfo does exactly what we want.
   836       Dl_serinfo     _info, *info = &_info;
   837       Dl_serpath     *path;
   838       char*          library_path;
   839       char           *common_path;
   840       int            i;
   842       // determine search path count and required buffer size
   843       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
   844         vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
   845       }
   847       // allocate new buffer and initialize
   848       info = (Dl_serinfo*)malloc(_info.dls_size);
   849       if (info == NULL) {
   850         vm_exit_out_of_memory(_info.dls_size,
   851                               "init_system_properties_values info");
   852       }
   853       info->dls_size = _info.dls_size;
   854       info->dls_cnt = _info.dls_cnt;
   856       // obtain search path information
   857       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
   858         free(info);
   859         vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
   860       }
   862       path = &info->dls_serpath[0];
   864       // Note: Due to a legacy implementation, most of the library path
   865       // is set in the launcher.  This was to accomodate linking restrictions
   866       // on legacy Solaris implementations (which are no longer supported).
   867       // Eventually, all the library path setting will be done here.
   868       //
   869       // However, to prevent the proliferation of improperly built native
   870       // libraries, the new path component /usr/jdk/packages is added here.
   872       // Determine the actual CPU architecture.
   873       char cpu_arch[12];
   874       sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
   875 #ifdef _LP64
   876       // If we are a 64-bit vm, perform the following translations:
   877       //   sparc   -> sparcv9
   878       //   i386    -> amd64
   879       if (strcmp(cpu_arch, "sparc") == 0)
   880         strcat(cpu_arch, "v9");
   881       else if (strcmp(cpu_arch, "i386") == 0)
   882         strcpy(cpu_arch, "amd64");
   883 #endif
   885       // Construct the invariant part of ld_library_path. Note that the
   886       // space for the colon and the trailing null are provided by the
   887       // nulls included by the sizeof operator.
   888       size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
   889       common_path = malloc(bufsize);
   890       if (common_path == NULL) {
   891         free(info);
   892         vm_exit_out_of_memory(bufsize,
   893                               "init_system_properties_values common_path");
   894       }
   895       sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
   897       // struct size is more than sufficient for the path components obtained
   898       // through the dlinfo() call, so only add additional space for the path
   899       // components explicitly added here.
   900       bufsize = info->dls_size + strlen(common_path);
   901       library_path = malloc(bufsize);
   902       if (library_path == NULL) {
   903         free(info);
   904         free(common_path);
   905         vm_exit_out_of_memory(bufsize,
   906                               "init_system_properties_values library_path");
   907       }
   908       library_path[0] = '\0';
   910       // Construct the desired Java library path from the linker's library
   911       // search path.
   912       //
   913       // For compatibility, it is optimal that we insert the additional path
   914       // components specific to the Java VM after those components specified
   915       // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
   916       // infrastructure.
   917       if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
   918         strcpy(library_path, common_path);
   919       } else {
   920         int inserted = 0;
   921         for (i = 0; i < info->dls_cnt; i++, path++) {
   922           uint_t flags = path->dls_flags & LA_SER_MASK;
   923           if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
   924             strcat(library_path, common_path);
   925             strcat(library_path, os::path_separator());
   926             inserted = 1;
   927           }
   928           strcat(library_path, path->dls_name);
   929           strcat(library_path, os::path_separator());
   930         }
   931         // eliminate trailing path separator
   932         library_path[strlen(library_path)-1] = '\0';
   933       }
   935       // happens before argument parsing - can't use a trace flag
   936       // tty->print_raw("init_system_properties_values: native lib path: ");
   937       // tty->print_raw_cr(library_path);
   939       // callee copies into its own buffer
   940       Arguments::set_library_path(library_path);
   942       free(common_path);
   943       free(library_path);
   944       free(info);
   945     }
   947     /*
   948      * Extensions directories.
   949      *
   950      * Note that the space for the colon and the trailing null are provided
   951      * by the nulls included by the sizeof operator (so actually one byte more
   952      * than necessary is allocated).
   953      */
   954     {
   955         char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
   956             sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
   957             sizeof(EXTENSIONS_DIR));
   958         sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
   959             Arguments::get_java_home());
   960         Arguments::set_ext_dirs(buf);
   961     }
   963     /* Endorsed standards default directory. */
   964     {
   965         char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   966         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   967         Arguments::set_endorsed_dirs(buf);
   968     }
   969   }
   971 #undef malloc
   972 #undef free
   973 #undef getenv
   974 #undef EXTENSIONS_DIR
   975 #undef ENDORSED_DIR
   976 #undef COMMON_DIR
   978 }
   980 void os::breakpoint() {
   981   BREAKPOINT;
   982 }
   984 bool os::obsolete_option(const JavaVMOption *option)
   985 {
   986   if (!strncmp(option->optionString, "-Xt", 3)) {
   987     return true;
   988   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
   989     return true;
   990   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
   991     return true;
   992   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
   993     return true;
   994   }
   995   return false;
   996 }
   998 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
   999   address  stackStart  = (address)thread->stack_base();
  1000   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
  1001   if (sp < stackStart && sp >= stackEnd ) return true;
  1002   return false;
  1005 extern "C" void breakpoint() {
  1006   // use debugger to set breakpoint here
  1009 // Returns an estimate of the current stack pointer. Result must be guaranteed to
  1010 // point into the calling threads stack, and be no lower than the current stack
  1011 // pointer.
  1012 address os::current_stack_pointer() {
  1013   volatile int dummy;
  1014   address sp = (address)&dummy + 8;     // %%%% need to confirm if this is right
  1015   return sp;
  1018 static thread_t main_thread;
  1020 // Thread start routine for all new Java threads
  1021 extern "C" void* java_start(void* thread_addr) {
  1022   // Try to randomize the cache line index of hot stack frames.
  1023   // This helps when threads of the same stack traces evict each other's
  1024   // cache lines. The threads can be either from the same JVM instance, or
  1025   // from different JVM instances. The benefit is especially true for
  1026   // processors with hyperthreading technology.
  1027   static int counter = 0;
  1028   int pid = os::current_process_id();
  1029   alloca(((pid ^ counter++) & 7) * 128);
  1031   int prio;
  1032   Thread* thread = (Thread*)thread_addr;
  1033   OSThread* osthr = thread->osthread();
  1035   osthr->set_lwp_id( _lwp_self() );  // Store lwp in case we are bound
  1036   thread->_schedctl = (void *) schedctl_init () ;
  1038   if (UseNUMA) {
  1039     int lgrp_id = os::numa_get_group_id();
  1040     if (lgrp_id != -1) {
  1041       thread->set_lgrp_id(lgrp_id);
  1045   // If the creator called set priority before we started,
  1046   // we need to call set priority now that we have an lwp.
  1047   // Get the priority from libthread and set the priority
  1048   // for the new Solaris lwp.
  1049   if ( osthr->thread_id() != -1 ) {
  1050     if ( UseThreadPriorities ) {
  1051       thr_getprio(osthr->thread_id(), &prio);
  1052       if (ThreadPriorityVerbose) {
  1053         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT ", setting priority: %d\n",
  1054                       osthr->thread_id(), osthr->lwp_id(), prio );
  1056       os::set_native_priority(thread, prio);
  1058   } else if (ThreadPriorityVerbose) {
  1059     warning("Can't set priority in _start routine, thread id hasn't been set\n");
  1062   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
  1064   // initialize signal mask for this thread
  1065   os::Solaris::hotspot_sigmask(thread);
  1067   thread->run();
  1069   // One less thread is executing
  1070   // When the VMThread gets here, the main thread may have already exited
  1071   // which frees the CodeHeap containing the Atomic::dec code
  1072   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
  1073     Atomic::dec(&os::Solaris::_os_thread_count);
  1076   if (UseDetachedThreads) {
  1077     thr_exit(NULL);
  1078     ShouldNotReachHere();
  1080   return NULL;
  1083 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
  1084   // Allocate the OSThread object
  1085   OSThread* osthread = new OSThread(NULL, NULL);
  1086   if (osthread == NULL) return NULL;
  1088   // Store info on the Solaris thread into the OSThread
  1089   osthread->set_thread_id(thread_id);
  1090   osthread->set_lwp_id(_lwp_self());
  1091   thread->_schedctl = (void *) schedctl_init () ;
  1093   if (UseNUMA) {
  1094     int lgrp_id = os::numa_get_group_id();
  1095     if (lgrp_id != -1) {
  1096       thread->set_lgrp_id(lgrp_id);
  1100   if ( ThreadPriorityVerbose ) {
  1101     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
  1102                   osthread->thread_id(), osthread->lwp_id() );
  1105   // Initial thread state is INITIALIZED, not SUSPENDED
  1106   osthread->set_state(INITIALIZED);
  1108   return osthread;
  1111 void os::Solaris::hotspot_sigmask(Thread* thread) {
  1113   //Save caller's signal mask
  1114   sigset_t sigmask;
  1115   thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
  1116   OSThread *osthread = thread->osthread();
  1117   osthread->set_caller_sigmask(sigmask);
  1119   thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
  1120   if (!ReduceSignalUsage) {
  1121     if (thread->is_VM_thread()) {
  1122       // Only the VM thread handles BREAK_SIGNAL ...
  1123       thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
  1124     } else {
  1125       // ... all other threads block BREAK_SIGNAL
  1126       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
  1127       thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
  1132 bool os::create_attached_thread(JavaThread* thread) {
  1133 #ifdef ASSERT
  1134   thread->verify_not_published();
  1135 #endif
  1136   OSThread* osthread = create_os_thread(thread, thr_self());
  1137   if (osthread == NULL) {
  1138      return false;
  1141   // Initial thread state is RUNNABLE
  1142   osthread->set_state(RUNNABLE);
  1143   thread->set_osthread(osthread);
  1145   // initialize signal mask for this thread
  1146   // and save the caller's signal mask
  1147   os::Solaris::hotspot_sigmask(thread);
  1149   return true;
  1152 bool os::create_main_thread(JavaThread* thread) {
  1153 #ifdef ASSERT
  1154   thread->verify_not_published();
  1155 #endif
  1156   if (_starting_thread == NULL) {
  1157     _starting_thread = create_os_thread(thread, main_thread);
  1158      if (_starting_thread == NULL) {
  1159         return false;
  1163   // The primodial thread is runnable from the start
  1164   _starting_thread->set_state(RUNNABLE);
  1166   thread->set_osthread(_starting_thread);
  1168   // initialize signal mask for this thread
  1169   // and save the caller's signal mask
  1170   os::Solaris::hotspot_sigmask(thread);
  1172   return true;
  1175 // _T2_libthread is true if we believe we are running with the newer
  1176 // SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
  1177 bool os::Solaris::_T2_libthread = false;
  1179 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
  1180   // Allocate the OSThread object
  1181   OSThread* osthread = new OSThread(NULL, NULL);
  1182   if (osthread == NULL) {
  1183     return false;
  1186   if ( ThreadPriorityVerbose ) {
  1187     char *thrtyp;
  1188     switch ( thr_type ) {
  1189       case vm_thread:
  1190         thrtyp = (char *)"vm";
  1191         break;
  1192       case cgc_thread:
  1193         thrtyp = (char *)"cgc";
  1194         break;
  1195       case pgc_thread:
  1196         thrtyp = (char *)"pgc";
  1197         break;
  1198       case java_thread:
  1199         thrtyp = (char *)"java";
  1200         break;
  1201       case compiler_thread:
  1202         thrtyp = (char *)"compiler";
  1203         break;
  1204       case watcher_thread:
  1205         thrtyp = (char *)"watcher";
  1206         break;
  1207       default:
  1208         thrtyp = (char *)"unknown";
  1209         break;
  1211     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
  1214   // Calculate stack size if it's not specified by caller.
  1215   if (stack_size == 0) {
  1216     // The default stack size 1M (2M for LP64).
  1217     stack_size = (BytesPerWord >> 2) * K * K;
  1219     switch (thr_type) {
  1220     case os::java_thread:
  1221       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
  1222       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
  1223       break;
  1224     case os::compiler_thread:
  1225       if (CompilerThreadStackSize > 0) {
  1226         stack_size = (size_t)(CompilerThreadStackSize * K);
  1227         break;
  1228       } // else fall through:
  1229         // use VMThreadStackSize if CompilerThreadStackSize is not defined
  1230     case os::vm_thread:
  1231     case os::pgc_thread:
  1232     case os::cgc_thread:
  1233     case os::watcher_thread:
  1234       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
  1235       break;
  1238   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
  1240   // Initial state is ALLOCATED but not INITIALIZED
  1241   osthread->set_state(ALLOCATED);
  1243   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
  1244     // We got lots of threads. Check if we still have some address space left.
  1245     // Need to be at least 5Mb of unreserved address space. We do check by
  1246     // trying to reserve some.
  1247     const size_t VirtualMemoryBangSize = 20*K*K;
  1248     char* mem = os::reserve_memory(VirtualMemoryBangSize);
  1249     if (mem == NULL) {
  1250       delete osthread;
  1251       return false;
  1252     } else {
  1253       // Release the memory again
  1254       os::release_memory(mem, VirtualMemoryBangSize);
  1258   // Setup osthread because the child thread may need it.
  1259   thread->set_osthread(osthread);
  1261   // Create the Solaris thread
  1262   // explicit THR_BOUND for T2_libthread case in case
  1263   // that assumption is not accurate, but our alternate signal stack
  1264   // handling is based on it which must have bound threads
  1265   thread_t tid = 0;
  1266   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
  1267                    | ((UseBoundThreads || os::Solaris::T2_libthread() ||
  1268                        (thr_type == vm_thread) ||
  1269                        (thr_type == cgc_thread) ||
  1270                        (thr_type == pgc_thread) ||
  1271                        (thr_type == compiler_thread && BackgroundCompilation)) ?
  1272                       THR_BOUND : 0);
  1273   int      status;
  1275   // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
  1276   //
  1277   // On multiprocessors systems, libthread sometimes under-provisions our
  1278   // process with LWPs.  On a 30-way systems, for instance, we could have
  1279   // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
  1280   // to our process.  This can result in under utilization of PEs.
  1281   // I suspect the problem is related to libthread's LWP
  1282   // pool management and to the kernel's SIGBLOCKING "last LWP parked"
  1283   // upcall policy.
  1284   //
  1285   // The following code is palliative -- it attempts to ensure that our
  1286   // process has sufficient LWPs to take advantage of multiple PEs.
  1287   // Proper long-term cures include using user-level threads bound to LWPs
  1288   // (THR_BOUND) or using LWP-based synchronization.  Note that there is a
  1289   // slight timing window with respect to sampling _os_thread_count, but
  1290   // the race is benign.  Also, we should periodically recompute
  1291   // _processors_online as the min of SC_NPROCESSORS_ONLN and the
  1292   // the number of PEs in our partition.  You might be tempted to use
  1293   // THR_NEW_LWP here, but I'd recommend against it as that could
  1294   // result in undesirable growth of the libthread's LWP pool.
  1295   // The fix below isn't sufficient; for instance, it doesn't take into count
  1296   // LWPs parked on IO.  It does, however, help certain CPU-bound benchmarks.
  1297   //
  1298   // Some pathologies this scheme doesn't handle:
  1299   // *  Threads can block, releasing the LWPs.  The LWPs can age out.
  1300   //    When a large number of threads become ready again there aren't
  1301   //    enough LWPs available to service them.  This can occur when the
  1302   //    number of ready threads oscillates.
  1303   // *  LWPs/Threads park on IO, thus taking the LWP out of circulation.
  1304   //
  1305   // Finally, we should call thr_setconcurrency() periodically to refresh
  1306   // the LWP pool and thwart the LWP age-out mechanism.
  1307   // The "+3" term provides a little slop -- we want to slightly overprovision.
  1309   if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
  1310     if (!(flags & THR_BOUND)) {
  1311       thr_setconcurrency (os::Solaris::_os_thread_count);       // avoid starvation
  1314   // Although this doesn't hurt, we should warn of undefined behavior
  1315   // when using unbound T1 threads with schedctl().  This should never
  1316   // happen, as the compiler and VM threads are always created bound
  1317   DEBUG_ONLY(
  1318       if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
  1319           (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
  1320           ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
  1321            (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
  1322          warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
  1324   );
  1327   // Mark that we don't have an lwp or thread id yet.
  1328   // In case we attempt to set the priority before the thread starts.
  1329   osthread->set_lwp_id(-1);
  1330   osthread->set_thread_id(-1);
  1332   status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
  1333   if (status != 0) {
  1334     if (PrintMiscellaneous && (Verbose || WizardMode)) {
  1335       perror("os::create_thread");
  1337     thread->set_osthread(NULL);
  1338     // Need to clean up stuff we've allocated so far
  1339     delete osthread;
  1340     return false;
  1343   Atomic::inc(&os::Solaris::_os_thread_count);
  1345   // Store info on the Solaris thread into the OSThread
  1346   osthread->set_thread_id(tid);
  1348   // Remember that we created this thread so we can set priority on it
  1349   osthread->set_vm_created();
  1351   // Set the default thread priority otherwise use NormalPriority
  1353   if ( UseThreadPriorities ) {
  1354      thr_setprio(tid, (DefaultThreadPriority == -1) ?
  1355                         java_to_os_priority[NormPriority] :
  1356                         DefaultThreadPriority);
  1359   // Initial thread state is INITIALIZED, not SUSPENDED
  1360   osthread->set_state(INITIALIZED);
  1362   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
  1363   return true;
  1366 /* defined for >= Solaris 10. This allows builds on earlier versions
  1367  *  of Solaris to take advantage of the newly reserved Solaris JVM signals
  1368  *  With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
  1369  *  and -XX:+UseAltSigs does nothing since these should have no conflict
  1370  */
  1371 #if !defined(SIGJVM1)
  1372 #define SIGJVM1 39
  1373 #define SIGJVM2 40
  1374 #endif
  1376 debug_only(static bool signal_sets_initialized = false);
  1377 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
  1378 int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
  1379 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
  1381 bool os::Solaris::is_sig_ignored(int sig) {
  1382       struct sigaction oact;
  1383       sigaction(sig, (struct sigaction*)NULL, &oact);
  1384       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
  1385                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
  1386       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
  1387            return true;
  1388       else
  1389            return false;
  1392 // Note: SIGRTMIN is a macro that calls sysconf() so it will
  1393 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
  1394 static bool isJVM1available() {
  1395   return SIGJVM1 < SIGRTMIN;
  1398 void os::Solaris::signal_sets_init() {
  1399   // Should also have an assertion stating we are still single-threaded.
  1400   assert(!signal_sets_initialized, "Already initialized");
  1401   // Fill in signals that are necessarily unblocked for all threads in
  1402   // the VM. Currently, we unblock the following signals:
  1403   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
  1404   //                         by -Xrs (=ReduceSignalUsage));
  1405   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
  1406   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
  1407   // the dispositions or masks wrt these signals.
  1408   // Programs embedding the VM that want to use the above signals for their
  1409   // own purposes must, at this time, use the "-Xrs" option to prevent
  1410   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
  1411   // (See bug 4345157, and other related bugs).
  1412   // In reality, though, unblocking these signals is really a nop, since
  1413   // these signals are not blocked by default.
  1414   sigemptyset(&unblocked_sigs);
  1415   sigemptyset(&allowdebug_blocked_sigs);
  1416   sigaddset(&unblocked_sigs, SIGILL);
  1417   sigaddset(&unblocked_sigs, SIGSEGV);
  1418   sigaddset(&unblocked_sigs, SIGBUS);
  1419   sigaddset(&unblocked_sigs, SIGFPE);
  1421   if (isJVM1available) {
  1422     os::Solaris::set_SIGinterrupt(SIGJVM1);
  1423     os::Solaris::set_SIGasync(SIGJVM2);
  1424   } else if (UseAltSigs) {
  1425     os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
  1426     os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
  1427   } else {
  1428     os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
  1429     os::Solaris::set_SIGasync(ASYNC_SIGNAL);
  1432   sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
  1433   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
  1435   if (!ReduceSignalUsage) {
  1436    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
  1437       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
  1438       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
  1440    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
  1441       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
  1442       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
  1444    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
  1445       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
  1446       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
  1449   // Fill in signals that are blocked by all but the VM thread.
  1450   sigemptyset(&vm_sigs);
  1451   if (!ReduceSignalUsage)
  1452     sigaddset(&vm_sigs, BREAK_SIGNAL);
  1453   debug_only(signal_sets_initialized = true);
  1455   // For diagnostics only used in run_periodic_checks
  1456   sigemptyset(&check_signal_done);
  1459 // These are signals that are unblocked while a thread is running Java.
  1460 // (For some reason, they get blocked by default.)
  1461 sigset_t* os::Solaris::unblocked_signals() {
  1462   assert(signal_sets_initialized, "Not initialized");
  1463   return &unblocked_sigs;
  1466 // These are the signals that are blocked while a (non-VM) thread is
  1467 // running Java. Only the VM thread handles these signals.
  1468 sigset_t* os::Solaris::vm_signals() {
  1469   assert(signal_sets_initialized, "Not initialized");
  1470   return &vm_sigs;
  1473 // These are signals that are blocked during cond_wait to allow debugger in
  1474 sigset_t* os::Solaris::allowdebug_blocked_signals() {
  1475   assert(signal_sets_initialized, "Not initialized");
  1476   return &allowdebug_blocked_sigs;
  1480 void _handle_uncaught_cxx_exception() {
  1481   VMError err("An uncaught C++ exception");
  1482   err.report_and_die();
  1486 // First crack at OS-specific initialization, from inside the new thread.
  1487 void os::initialize_thread() {
  1488   int r = thr_main() ;
  1489   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
  1490   if (r) {
  1491     JavaThread* jt = (JavaThread *)Thread::current();
  1492     assert(jt != NULL,"Sanity check");
  1493     size_t stack_size;
  1494     address base = jt->stack_base();
  1495     if (Arguments::created_by_java_launcher()) {
  1496       // Use 2MB to allow for Solaris 7 64 bit mode.
  1497       stack_size = JavaThread::stack_size_at_create() == 0
  1498         ? 2048*K : JavaThread::stack_size_at_create();
  1500       // There are rare cases when we may have already used more than
  1501       // the basic stack size allotment before this method is invoked.
  1502       // Attempt to allow for a normally sized java_stack.
  1503       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
  1504       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
  1505     } else {
  1506       // 6269555: If we were not created by a Java launcher, i.e. if we are
  1507       // running embedded in a native application, treat the primordial thread
  1508       // as much like a native attached thread as possible.  This means using
  1509       // the current stack size from thr_stksegment(), unless it is too large
  1510       // to reliably setup guard pages.  A reasonable max size is 8MB.
  1511       size_t current_size = current_stack_size();
  1512       // This should never happen, but just in case....
  1513       if (current_size == 0) current_size = 2 * K * K;
  1514       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
  1516     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
  1517     stack_size = (size_t)(base - bottom);
  1519     assert(stack_size > 0, "Stack size calculation problem");
  1521     if (stack_size > jt->stack_size()) {
  1522       NOT_PRODUCT(
  1523         struct rlimit limits;
  1524         getrlimit(RLIMIT_STACK, &limits);
  1525         size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
  1526         assert(size >= jt->stack_size(), "Stack size problem in main thread");
  1528       tty->print_cr(
  1529         "Stack size of %d Kb exceeds current limit of %d Kb.\n"
  1530         "(Stack sizes are rounded up to a multiple of the system page size.)\n"
  1531         "See limit(1) to increase the stack size limit.",
  1532         stack_size / K, jt->stack_size() / K);
  1533       vm_exit(1);
  1535     assert(jt->stack_size() >= stack_size,
  1536           "Attempt to map more stack than was allocated");
  1537     jt->set_stack_size(stack_size);
  1540    // 5/22/01: Right now alternate signal stacks do not handle
  1541    // throwing stack overflow exceptions, see bug 4463178
  1542    // Until a fix is found for this, T2 will NOT imply alternate signal
  1543    // stacks.
  1544    // If using T2 libthread threads, install an alternate signal stack.
  1545    // Because alternate stacks associate with LWPs on Solaris,
  1546    // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
  1547    // we prefer to explicitly stack bang.
  1548    // If not using T2 libthread, but using UseBoundThreads any threads
  1549    // (primordial thread, jni_attachCurrentThread) we do not create,
  1550    // probably are not bound, therefore they can not have an alternate
  1551    // signal stack. Since our stack banging code is generated and
  1552    // is shared across threads, all threads must be bound to allow
  1553    // using alternate signal stacks.  The alternative is to interpose
  1554    // on _lwp_create to associate an alt sig stack with each LWP,
  1555    // and this could be a problem when the JVM is embedded.
  1556    // We would prefer to use alternate signal stacks with T2
  1557    // Since there is currently no accurate way to detect T2
  1558    // we do not. Assuming T2 when running T1 causes sig 11s or assertions
  1559    // on installing alternate signal stacks
  1562    // 05/09/03: removed alternate signal stack support for Solaris
  1563    // The alternate signal stack mechanism is no longer needed to
  1564    // handle stack overflow. This is now handled by allocating
  1565    // guard pages (red zone) and stackbanging.
  1566    // Initially the alternate signal stack mechanism was removed because
  1567    // it did not work with T1 llibthread. Alternate
  1568    // signal stacks MUST have all threads bound to lwps. Applications
  1569    // can create their own threads and attach them without their being
  1570    // bound under T1. This is frequently the case for the primordial thread.
  1571    // If we were ever to reenable this mechanism we would need to
  1572    // use the dynamic check for T2 libthread.
  1574   os::Solaris::init_thread_fpu_state();
  1575   std::set_terminate(_handle_uncaught_cxx_exception);
  1580 // Free Solaris resources related to the OSThread
  1581 void os::free_thread(OSThread* osthread) {
  1582   assert(osthread != NULL, "os::free_thread but osthread not set");
  1585   // We are told to free resources of the argument thread,
  1586   // but we can only really operate on the current thread.
  1587   // The main thread must take the VMThread down synchronously
  1588   // before the main thread exits and frees up CodeHeap
  1589   guarantee((Thread::current()->osthread() == osthread
  1590      || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
  1591   if (Thread::current()->osthread() == osthread) {
  1592     // Restore caller's signal mask
  1593     sigset_t sigmask = osthread->caller_sigmask();
  1594     thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
  1596   delete osthread;
  1599 void os::pd_start_thread(Thread* thread) {
  1600   int status = thr_continue(thread->osthread()->thread_id());
  1601   assert_status(status == 0, status, "thr_continue failed");
  1605 intx os::current_thread_id() {
  1606   return (intx)thr_self();
  1609 static pid_t _initial_pid = 0;
  1611 int os::current_process_id() {
  1612   return (int)(_initial_pid ? _initial_pid : getpid());
  1615 int os::allocate_thread_local_storage() {
  1616   // %%%       in Win32 this allocates a memory segment pointed to by a
  1617   //           register.  Dan Stein can implement a similar feature in
  1618   //           Solaris.  Alternatively, the VM can do the same thing
  1619   //           explicitly: malloc some storage and keep the pointer in a
  1620   //           register (which is part of the thread's context) (or keep it
  1621   //           in TLS).
  1622   // %%%       In current versions of Solaris, thr_self and TSD can
  1623   //           be accessed via short sequences of displaced indirections.
  1624   //           The value of thr_self is available as %g7(36).
  1625   //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
  1626   //           assuming that the current thread already has a value bound to k.
  1627   //           It may be worth experimenting with such access patterns,
  1628   //           and later having the parameters formally exported from a Solaris
  1629   //           interface.  I think, however, that it will be faster to
  1630   //           maintain the invariant that %g2 always contains the
  1631   //           JavaThread in Java code, and have stubs simply
  1632   //           treat %g2 as a caller-save register, preserving it in a %lN.
  1633   thread_key_t tk;
  1634   if (thr_keycreate( &tk, NULL ) )
  1635     fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
  1636                   "(%s)", strerror(errno)));
  1637   return int(tk);
  1640 void os::free_thread_local_storage(int index) {
  1641   // %%% don't think we need anything here
  1642   // if ( pthread_key_delete((pthread_key_t) tk) )
  1643   //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
  1646 #define SMALLINT 32   // libthread allocate for tsd_common is a version specific
  1647                       // small number - point is NO swap space available
  1648 void os::thread_local_storage_at_put(int index, void* value) {
  1649   // %%% this is used only in threadLocalStorage.cpp
  1650   if (thr_setspecific((thread_key_t)index, value)) {
  1651     if (errno == ENOMEM) {
  1652        vm_exit_out_of_memory(SMALLINT, "thr_setspecific: out of swap space");
  1653     } else {
  1654       fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
  1655                     "(%s)", strerror(errno)));
  1657   } else {
  1658       ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
  1662 // This function could be called before TLS is initialized, for example, when
  1663 // VM receives an async signal or when VM causes a fatal error during
  1664 // initialization. Return NULL if thr_getspecific() fails.
  1665 void* os::thread_local_storage_at(int index) {
  1666   // %%% this is used only in threadLocalStorage.cpp
  1667   void* r = NULL;
  1668   return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
  1672 const int NANOSECS_PER_MILLISECS = 1000000;
  1673 // gethrtime can move backwards if read from one cpu and then a different cpu
  1674 // getTimeNanos is guaranteed to not move backward on Solaris
  1675 // local spinloop created as faster for a CAS on an int than
  1676 // a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
  1677 // supported on sparc v8 or pre supports_cx8 intel boxes.
  1678 // oldgetTimeNanos for systems which do not support CAS on 64bit jlong
  1679 // i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
  1680 inline hrtime_t oldgetTimeNanos() {
  1681   int gotlock = LOCK_INVALID;
  1682   hrtime_t newtime = gethrtime();
  1684   for (;;) {
  1685 // grab lock for max_hrtime
  1686     int curlock = max_hrtime_lock;
  1687     if (curlock & LOCK_BUSY)  continue;
  1688     if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
  1689     if (newtime > max_hrtime) {
  1690       max_hrtime = newtime;
  1691     } else {
  1692       newtime = max_hrtime;
  1694     // release lock
  1695     max_hrtime_lock = LOCK_FREE;
  1696     return newtime;
  1699 // gethrtime can move backwards if read from one cpu and then a different cpu
  1700 // getTimeNanos is guaranteed to not move backward on Solaris
  1701 inline hrtime_t getTimeNanos() {
  1702   if (VM_Version::supports_cx8()) {
  1703     const hrtime_t now = gethrtime();
  1704     // Use atomic long load since 32-bit x86 uses 2 registers to keep long.
  1705     const hrtime_t prev = Atomic::load((volatile jlong*)&max_hrtime);
  1706     if (now <= prev)  return prev;   // same or retrograde time;
  1707     const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
  1708     assert(obsv >= prev, "invariant");   // Monotonicity
  1709     // If the CAS succeeded then we're done and return "now".
  1710     // If the CAS failed and the observed value "obs" is >= now then
  1711     // we should return "obs".  If the CAS failed and now > obs > prv then
  1712     // some other thread raced this thread and installed a new value, in which case
  1713     // we could either (a) retry the entire operation, (b) retry trying to install now
  1714     // or (c) just return obs.  We use (c).   No loop is required although in some cases
  1715     // we might discard a higher "now" value in deference to a slightly lower but freshly
  1716     // installed obs value.   That's entirely benign -- it admits no new orderings compared
  1717     // to (a) or (b) -- and greatly reduces coherence traffic.
  1718     // We might also condition (c) on the magnitude of the delta between obs and now.
  1719     // Avoiding excessive CAS operations to hot RW locations is critical.
  1720     // See http://blogs.sun.com/dave/entry/cas_and_cache_trivia_invalidate
  1721     return (prev == obsv) ? now : obsv ;
  1722   } else {
  1723     return oldgetTimeNanos();
  1727 // Time since start-up in seconds to a fine granularity.
  1728 // Used by VMSelfDestructTimer and the MemProfiler.
  1729 double os::elapsedTime() {
  1730   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
  1733 jlong os::elapsed_counter() {
  1734   return (jlong)(getTimeNanos() - first_hrtime);
  1737 jlong os::elapsed_frequency() {
  1738    return hrtime_hz;
  1741 // Return the real, user, and system times in seconds from an
  1742 // arbitrary fixed point in the past.
  1743 bool os::getTimesSecs(double* process_real_time,
  1744                   double* process_user_time,
  1745                   double* process_system_time) {
  1746   struct tms ticks;
  1747   clock_t real_ticks = times(&ticks);
  1749   if (real_ticks == (clock_t) (-1)) {
  1750     return false;
  1751   } else {
  1752     double ticks_per_second = (double) clock_tics_per_sec;
  1753     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1754     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1755     // For consistency return the real time from getTimeNanos()
  1756     // converted to seconds.
  1757     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
  1759     return true;
  1763 bool os::supports_vtime() { return true; }
  1765 bool os::enable_vtime() {
  1766   int fd = ::open("/proc/self/ctl", O_WRONLY);
  1767   if (fd == -1)
  1768     return false;
  1770   long cmd[] = { PCSET, PR_MSACCT };
  1771   int res = ::write(fd, cmd, sizeof(long) * 2);
  1772   ::close(fd);
  1773   if (res != sizeof(long) * 2)
  1774     return false;
  1776   return true;
  1779 bool os::vtime_enabled() {
  1780   int fd = ::open("/proc/self/status", O_RDONLY);
  1781   if (fd == -1)
  1782     return false;
  1784   pstatus_t status;
  1785   int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
  1786   ::close(fd);
  1787   if (res != sizeof(pstatus_t))
  1788     return false;
  1790   return status.pr_flags & PR_MSACCT;
  1793 double os::elapsedVTime() {
  1794   return (double)gethrvtime() / (double)hrtime_hz;
  1797 // Used internally for comparisons only
  1798 // getTimeMillis guaranteed to not move backwards on Solaris
  1799 jlong getTimeMillis() {
  1800   jlong nanotime = getTimeNanos();
  1801   return (jlong)(nanotime / NANOSECS_PER_MILLISECS);
  1804 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
  1805 jlong os::javaTimeMillis() {
  1806   timeval t;
  1807   if (gettimeofday( &t, NULL) == -1)
  1808     fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
  1809   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
  1812 jlong os::javaTimeNanos() {
  1813   return (jlong)getTimeNanos();
  1816 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1817   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
  1818   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
  1819   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
  1820   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
  1823 char * os::local_time_string(char *buf, size_t buflen) {
  1824   struct tm t;
  1825   time_t long_time;
  1826   time(&long_time);
  1827   localtime_r(&long_time, &t);
  1828   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1829                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1830                t.tm_hour, t.tm_min, t.tm_sec);
  1831   return buf;
  1834 // Note: os::shutdown() might be called very early during initialization, or
  1835 // called from signal handler. Before adding something to os::shutdown(), make
  1836 // sure it is async-safe and can handle partially initialized VM.
  1837 void os::shutdown() {
  1839   // allow PerfMemory to attempt cleanup of any persistent resources
  1840   perfMemory_exit();
  1842   // needs to remove object in file system
  1843   AttachListener::abort();
  1845   // flush buffered output, finish log files
  1846   ostream_abort();
  1848   // Check for abort hook
  1849   abort_hook_t abort_hook = Arguments::abort_hook();
  1850   if (abort_hook != NULL) {
  1851     abort_hook();
  1855 // Note: os::abort() might be called very early during initialization, or
  1856 // called from signal handler. Before adding something to os::abort(), make
  1857 // sure it is async-safe and can handle partially initialized VM.
  1858 void os::abort(bool dump_core) {
  1859   os::shutdown();
  1860   if (dump_core) {
  1861 #ifndef PRODUCT
  1862     fdStream out(defaultStream::output_fd());
  1863     out.print_raw("Current thread is ");
  1864     char buf[16];
  1865     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1866     out.print_raw_cr(buf);
  1867     out.print_raw_cr("Dumping core ...");
  1868 #endif
  1869     ::abort(); // dump core (for debugging)
  1872   ::exit(1);
  1875 // Die immediately, no exit hook, no abort hook, no cleanup.
  1876 void os::die() {
  1877   _exit(-1);
  1880 // unused
  1881 void os::set_error_file(const char *logfile) {}
  1883 // DLL functions
  1885 const char* os::dll_file_extension() { return ".so"; }
  1887 // This must be hard coded because it's the system's temporary
  1888 // directory not the java application's temp directory, ala java.io.tmpdir.
  1889 const char* os::get_temp_directory() { return "/tmp"; }
  1891 static bool file_exists(const char* filename) {
  1892   struct stat statbuf;
  1893   if (filename == NULL || strlen(filename) == 0) {
  1894     return false;
  1896   return os::stat(filename, &statbuf) == 0;
  1899 void os::dll_build_name(char* buffer, size_t buflen,
  1900                         const char* pname, const char* fname) {
  1901   const size_t pnamelen = pname ? strlen(pname) : 0;
  1903   // Quietly truncate on buffer overflow.  Should be an error.
  1904   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1905     *buffer = '\0';
  1906     return;
  1909   if (pnamelen == 0) {
  1910     snprintf(buffer, buflen, "lib%s.so", fname);
  1911   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1912     int n;
  1913     char** pelements = split_path(pname, &n);
  1914     for (int i = 0 ; i < n ; i++) {
  1915       // really shouldn't be NULL but what the heck, check can't hurt
  1916       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1917         continue; // skip the empty path values
  1919       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1920       if (file_exists(buffer)) {
  1921         break;
  1924     // release the storage
  1925     for (int i = 0 ; i < n ; i++) {
  1926       if (pelements[i] != NULL) {
  1927         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1930     if (pelements != NULL) {
  1931       FREE_C_HEAP_ARRAY(char*, pelements);
  1933   } else {
  1934     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1938 const char* os::get_current_directory(char *buf, int buflen) {
  1939   return getcwd(buf, buflen);
  1942 // check if addr is inside libjvm[_g].so
  1943 bool os::address_is_in_vm(address addr) {
  1944   static address libjvm_base_addr;
  1945   Dl_info dlinfo;
  1947   if (libjvm_base_addr == NULL) {
  1948     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1949     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1950     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1953   if (dladdr((void *)addr, &dlinfo)) {
  1954     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1957   return false;
  1960 typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
  1961 static dladdr1_func_type dladdr1_func = NULL;
  1963 bool os::dll_address_to_function_name(address addr, char *buf,
  1964                                       int buflen, int * offset) {
  1965   Dl_info dlinfo;
  1967   // dladdr1_func was initialized in os::init()
  1968   if (dladdr1_func){
  1969       // yes, we have dladdr1
  1971       // Support for dladdr1 is checked at runtime; it may be
  1972       // available even if the vm is built on a machine that does
  1973       // not have dladdr1 support.  Make sure there is a value for
  1974       // RTLD_DL_SYMENT.
  1975       #ifndef RTLD_DL_SYMENT
  1976       #define RTLD_DL_SYMENT 1
  1977       #endif
  1978 #ifdef _LP64
  1979       Elf64_Sym * info;
  1980 #else
  1981       Elf32_Sym * info;
  1982 #endif
  1983       if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
  1984                        RTLD_DL_SYMENT)) {
  1985         if ((char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
  1986           if (buf != NULL) {
  1987             if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
  1988               jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1990             if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1991             return true;
  1994       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1995         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1996           dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
  1997           return true;
  2000       if (buf != NULL) buf[0] = '\0';
  2001       if (offset != NULL) *offset  = -1;
  2002       return false;
  2003   } else {
  2004       // no, only dladdr is available
  2005       if (dladdr((void *)addr, &dlinfo)) {
  2006         if (buf != NULL) {
  2007           if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
  2008             jio_snprintf(buf, buflen, dlinfo.dli_sname);
  2010         if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  2011         return true;
  2012       } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  2013         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  2014           dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
  2015           return true;
  2018       if (buf != NULL) buf[0] = '\0';
  2019       if (offset != NULL) *offset  = -1;
  2020       return false;
  2024 bool os::dll_address_to_library_name(address addr, char* buf,
  2025                                      int buflen, int* offset) {
  2026   Dl_info dlinfo;
  2028   if (dladdr((void*)addr, &dlinfo)){
  2029      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  2030      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  2031      return true;
  2032   } else {
  2033      if (buf) buf[0] = '\0';
  2034      if (offset) *offset = -1;
  2035      return false;
  2039 // Prints the names and full paths of all opened dynamic libraries
  2040 // for current process
  2041 void os::print_dll_info(outputStream * st) {
  2042     Dl_info dli;
  2043     void *handle;
  2044     Link_map *map;
  2045     Link_map *p;
  2047     st->print_cr("Dynamic libraries:"); st->flush();
  2049     if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
  2050         st->print_cr("Error: Cannot print dynamic libraries.");
  2051         return;
  2053     handle = dlopen(dli.dli_fname, RTLD_LAZY);
  2054     if (handle == NULL) {
  2055         st->print_cr("Error: Cannot print dynamic libraries.");
  2056         return;
  2058     dlinfo(handle, RTLD_DI_LINKMAP, &map);
  2059     if (map == NULL) {
  2060         st->print_cr("Error: Cannot print dynamic libraries.");
  2061         return;
  2064     while (map->l_prev != NULL)
  2065         map = map->l_prev;
  2067     while (map != NULL) {
  2068         st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
  2069         map = map->l_next;
  2072     dlclose(handle);
  2075   // Loads .dll/.so and
  2076   // in case of error it checks if .dll/.so was built for the
  2077   // same architecture as Hotspot is running on
  2079 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  2081   void * result= ::dlopen(filename, RTLD_LAZY);
  2082   if (result != NULL) {
  2083     // Successful loading
  2084     return result;
  2087   Elf32_Ehdr elf_head;
  2089   // Read system error message into ebuf
  2090   // It may or may not be overwritten below
  2091   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  2092   ebuf[ebuflen-1]='\0';
  2093   int diag_msg_max_length=ebuflen-strlen(ebuf);
  2094   char* diag_msg_buf=ebuf+strlen(ebuf);
  2096   if (diag_msg_max_length==0) {
  2097     // No more space in ebuf for additional diagnostics message
  2098     return NULL;
  2102   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  2104   if (file_descriptor < 0) {
  2105     // Can't open library, report dlerror() message
  2106     return NULL;
  2109   bool failed_to_read_elf_head=
  2110     (sizeof(elf_head)!=
  2111         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  2113   ::close(file_descriptor);
  2114   if (failed_to_read_elf_head) {
  2115     // file i/o error - report dlerror() msg
  2116     return NULL;
  2119   typedef struct {
  2120     Elf32_Half  code;         // Actual value as defined in elf.h
  2121     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  2122     char        elf_class;    // 32 or 64 bit
  2123     char        endianess;    // MSB or LSB
  2124     char*       name;         // String representation
  2125   } arch_t;
  2127   static const arch_t arch_array[]={
  2128     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2129     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2130     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  2131     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  2132     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2133     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2134     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  2135     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  2136     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  2137     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
  2138   };
  2140   #if  (defined IA32)
  2141     static  Elf32_Half running_arch_code=EM_386;
  2142   #elif   (defined AMD64)
  2143     static  Elf32_Half running_arch_code=EM_X86_64;
  2144   #elif  (defined IA64)
  2145     static  Elf32_Half running_arch_code=EM_IA_64;
  2146   #elif  (defined __sparc) && (defined _LP64)
  2147     static  Elf32_Half running_arch_code=EM_SPARCV9;
  2148   #elif  (defined __sparc) && (!defined _LP64)
  2149     static  Elf32_Half running_arch_code=EM_SPARC;
  2150   #elif  (defined __powerpc64__)
  2151     static  Elf32_Half running_arch_code=EM_PPC64;
  2152   #elif  (defined __powerpc__)
  2153     static  Elf32_Half running_arch_code=EM_PPC;
  2154   #elif (defined ARM)
  2155     static  Elf32_Half running_arch_code=EM_ARM;
  2156   #else
  2157     #error Method os::dll_load requires that one of following is defined:\
  2158          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
  2159   #endif
  2161   // Identify compatability class for VM's architecture and library's architecture
  2162   // Obtain string descriptions for architectures
  2164   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2165   int running_arch_index=-1;
  2167   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2168     if (running_arch_code == arch_array[i].code) {
  2169       running_arch_index    = i;
  2171     if (lib_arch.code == arch_array[i].code) {
  2172       lib_arch.compat_class = arch_array[i].compat_class;
  2173       lib_arch.name         = arch_array[i].name;
  2177   assert(running_arch_index != -1,
  2178     "Didn't find running architecture code (running_arch_code) in arch_array");
  2179   if (running_arch_index == -1) {
  2180     // Even though running architecture detection failed
  2181     // we may still continue with reporting dlerror() message
  2182     return NULL;
  2185   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2186     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2187     return NULL;
  2190   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2191     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2192     return NULL;
  2195   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2196     if ( lib_arch.name!=NULL ) {
  2197       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2198         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2199         lib_arch.name, arch_array[running_arch_index].name);
  2200     } else {
  2201       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2202       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2203         lib_arch.code,
  2204         arch_array[running_arch_index].name);
  2208   return NULL;
  2211 void* os::dll_lookup(void* handle, const char* name) {
  2212   return dlsym(handle, name);
  2215 int os::stat(const char *path, struct stat *sbuf) {
  2216   char pathbuf[MAX_PATH];
  2217   if (strlen(path) > MAX_PATH - 1) {
  2218     errno = ENAMETOOLONG;
  2219     return -1;
  2221   os::native_path(strcpy(pathbuf, path));
  2222   return ::stat(pathbuf, sbuf);
  2225 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2226   int fd = ::open(filename, O_RDONLY);
  2227   if (fd == -1) {
  2228      return false;
  2231   char buf[32];
  2232   int bytes;
  2233   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2234     st->print_raw(buf, bytes);
  2237   ::close(fd);
  2239   return true;
  2242 void os::print_os_info(outputStream* st) {
  2243   st->print("OS:");
  2245   if (!_print_ascii_file("/etc/release", st)) {
  2246     st->print("Solaris");
  2248   st->cr();
  2250   // kernel
  2251   st->print("uname:");
  2252   struct utsname name;
  2253   uname(&name);
  2254   st->print(name.sysname); st->print(" ");
  2255   st->print(name.release); st->print(" ");
  2256   st->print(name.version); st->print(" ");
  2257   st->print(name.machine);
  2259   // libthread
  2260   if (os::Solaris::T2_libthread()) st->print("  (T2 libthread)");
  2261   else st->print("  (T1 libthread)");
  2262   st->cr();
  2264   // rlimit
  2265   st->print("rlimit:");
  2266   struct rlimit rlim;
  2268   st->print(" STACK ");
  2269   getrlimit(RLIMIT_STACK, &rlim);
  2270   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2271   else st->print("%uk", rlim.rlim_cur >> 10);
  2273   st->print(", CORE ");
  2274   getrlimit(RLIMIT_CORE, &rlim);
  2275   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2276   else st->print("%uk", rlim.rlim_cur >> 10);
  2278   st->print(", NOFILE ");
  2279   getrlimit(RLIMIT_NOFILE, &rlim);
  2280   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2281   else st->print("%d", rlim.rlim_cur);
  2283   st->print(", AS ");
  2284   getrlimit(RLIMIT_AS, &rlim);
  2285   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2286   else st->print("%uk", rlim.rlim_cur >> 10);
  2287   st->cr();
  2289   // load average
  2290   st->print("load average:");
  2291   double loadavg[3];
  2292   os::loadavg(loadavg, 3);
  2293   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  2294   st->cr();
  2298 static bool check_addr0(outputStream* st) {
  2299   jboolean status = false;
  2300   int fd = ::open("/proc/self/map",O_RDONLY);
  2301   if (fd >= 0) {
  2302     prmap_t p;
  2303     while(::read(fd, &p, sizeof(p)) > 0) {
  2304       if (p.pr_vaddr == 0x0) {
  2305         st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
  2306         st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
  2307         st->print("Access:");
  2308         st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
  2309         st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
  2310         st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
  2311         st->cr();
  2312         status = true;
  2314       ::close(fd);
  2317   return status;
  2320 void os::pd_print_cpu_info(outputStream* st) {
  2321   // Nothing to do for now.
  2324 void os::print_memory_info(outputStream* st) {
  2325   st->print("Memory:");
  2326   st->print(" %dk page", os::vm_page_size()>>10);
  2327   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
  2328   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
  2329   st->cr();
  2330   (void) check_addr0(st);
  2333 // Taken from /usr/include/sys/machsig.h  Supposed to be architecture specific
  2334 // but they're the same for all the solaris architectures that we support.
  2335 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2336                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2337                           "ILL_COPROC", "ILL_BADSTK" };
  2339 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2340                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2341                           "FPE_FLTINV", "FPE_FLTSUB" };
  2343 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2345 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2347 void os::print_siginfo(outputStream* st, void* siginfo) {
  2348   st->print("siginfo:");
  2350   const int buflen = 100;
  2351   char buf[buflen];
  2352   siginfo_t *si = (siginfo_t*)siginfo;
  2353   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2354   char *err = strerror(si->si_errno);
  2355   if (si->si_errno != 0 && err != NULL) {
  2356     st->print("si_errno=%s", err);
  2357   } else {
  2358     st->print("si_errno=%d", si->si_errno);
  2360   const int c = si->si_code;
  2361   assert(c > 0, "unexpected si_code");
  2362   switch (si->si_signo) {
  2363   case SIGILL:
  2364     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2365     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2366     break;
  2367   case SIGFPE:
  2368     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2369     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2370     break;
  2371   case SIGSEGV:
  2372     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2373     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2374     break;
  2375   case SIGBUS:
  2376     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2377     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2378     break;
  2379   default:
  2380     st->print(", si_code=%d", si->si_code);
  2381     // no si_addr
  2384   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2385       UseSharedSpaces) {
  2386     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2387     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2388       st->print("\n\nError accessing class data sharing archive."   \
  2389                 " Mapped file inaccessible during execution, "      \
  2390                 " possible disk/network problem.");
  2393   st->cr();
  2396 // Moved from whole group, because we need them here for diagnostic
  2397 // prints.
  2398 #define OLDMAXSIGNUM 32
  2399 static int Maxsignum = 0;
  2400 static int *ourSigFlags = NULL;
  2402 extern "C" void sigINTRHandler(int, siginfo_t*, void*);
  2404 int os::Solaris::get_our_sigflags(int sig) {
  2405   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2406   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2407   return ourSigFlags[sig];
  2410 void os::Solaris::set_our_sigflags(int sig, int flags) {
  2411   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2412   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2413   ourSigFlags[sig] = flags;
  2417 static const char* get_signal_handler_name(address handler,
  2418                                            char* buf, int buflen) {
  2419   int offset;
  2420   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  2421   if (found) {
  2422     // skip directory names
  2423     const char *p1, *p2;
  2424     p1 = buf;
  2425     size_t len = strlen(os::file_separator());
  2426     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  2427     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  2428   } else {
  2429     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  2431   return buf;
  2434 static void print_signal_handler(outputStream* st, int sig,
  2435                                   char* buf, size_t buflen) {
  2436   struct sigaction sa;
  2438   sigaction(sig, NULL, &sa);
  2440   st->print("%s: ", os::exception_name(sig, buf, buflen));
  2442   address handler = (sa.sa_flags & SA_SIGINFO)
  2443                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  2444                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
  2446   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  2447     st->print("SIG_DFL");
  2448   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  2449     st->print("SIG_IGN");
  2450   } else {
  2451     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  2454   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  2456   address rh = VMError::get_resetted_sighandler(sig);
  2457   // May be, handler was resetted by VMError?
  2458   if(rh != NULL) {
  2459     handler = rh;
  2460     sa.sa_flags = VMError::get_resetted_sigflags(sig);
  2463   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  2465   // Check: is it our handler?
  2466   if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
  2467      handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
  2468     // It is our signal handler
  2469     // check for flags
  2470     if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  2471       st->print(
  2472         ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  2473         os::Solaris::get_our_sigflags(sig));
  2476   st->cr();
  2479 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2480   st->print_cr("Signal Handlers:");
  2481   print_signal_handler(st, SIGSEGV, buf, buflen);
  2482   print_signal_handler(st, SIGBUS , buf, buflen);
  2483   print_signal_handler(st, SIGFPE , buf, buflen);
  2484   print_signal_handler(st, SIGPIPE, buf, buflen);
  2485   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2486   print_signal_handler(st, SIGILL , buf, buflen);
  2487   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2488   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
  2489   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2490   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
  2491   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2492   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
  2493   print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
  2494   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
  2497 static char saved_jvm_path[MAXPATHLEN] = { 0 };
  2499 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2500 void os::jvm_path(char *buf, jint buflen) {
  2501   // Error checking.
  2502   if (buflen < MAXPATHLEN) {
  2503     assert(false, "must use a large-enough buffer");
  2504     buf[0] = '\0';
  2505     return;
  2507   // Lazy resolve the path to current module.
  2508   if (saved_jvm_path[0] != 0) {
  2509     strcpy(buf, saved_jvm_path);
  2510     return;
  2513   Dl_info dlinfo;
  2514   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
  2515   assert(ret != 0, "cannot locate libjvm");
  2516   realpath((char *)dlinfo.dli_fname, buf);
  2518   if (Arguments::created_by_gamma_launcher()) {
  2519     // Support for the gamma launcher.  Typical value for buf is
  2520     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2521     // the right place in the string, then assume we are installed in a JDK and
  2522     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2523     // up the path so it looks like libjvm.so is installed there (append a
  2524     // fake suffix hotspot/libjvm.so).
  2525     const char *p = buf + strlen(buf) - 1;
  2526     for (int count = 0; p > buf && count < 5; ++count) {
  2527       for (--p; p > buf && *p != '/'; --p)
  2528         /* empty */ ;
  2531     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2532       // Look for JAVA_HOME in the environment.
  2533       char* java_home_var = ::getenv("JAVA_HOME");
  2534       if (java_home_var != NULL && java_home_var[0] != 0) {
  2535         char cpu_arch[12];
  2536         char* jrelib_p;
  2537         int   len;
  2538         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
  2539 #ifdef _LP64
  2540         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
  2541         if (strcmp(cpu_arch, "sparc") == 0) {
  2542           strcat(cpu_arch, "v9");
  2543         } else if (strcmp(cpu_arch, "i386") == 0) {
  2544           strcpy(cpu_arch, "amd64");
  2546 #endif
  2547         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2548         p = strrchr(buf, '/');
  2549         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2550         p = strstr(p, "_g") ? "_g" : "";
  2552         realpath(java_home_var, buf);
  2553         // determine if this is a legacy image or modules image
  2554         // modules image doesn't have "jre" subdirectory
  2555         len = strlen(buf);
  2556         jrelib_p = buf + len;
  2557         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2558         if (0 != access(buf, F_OK)) {
  2559           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2562         if (0 == access(buf, F_OK)) {
  2563           // Use current module name "libjvm[_g].so" instead of
  2564           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2565           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2566           len = strlen(buf);
  2567           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
  2568         } else {
  2569           // Go back to path of .so
  2570           realpath((char *)dlinfo.dli_fname, buf);
  2576   strcpy(saved_jvm_path, buf);
  2580 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2581   // no prefix required, not even "_"
  2585 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2586   // no suffix required
  2589 // This method is a copy of JDK's sysGetLastErrorString
  2590 // from src/solaris/hpi/src/system_md.c
  2592 size_t os::lasterror(char *buf, size_t len) {
  2594   if (errno == 0)  return 0;
  2596   const char *s = ::strerror(errno);
  2597   size_t n = ::strlen(s);
  2598   if (n >= len) {
  2599     n = len - 1;
  2601   ::strncpy(buf, s, n);
  2602   buf[n] = '\0';
  2603   return n;
  2607 // sun.misc.Signal
  2609 extern "C" {
  2610   static void UserHandler(int sig, void *siginfo, void *context) {
  2611     // Ctrl-C is pressed during error reporting, likely because the error
  2612     // handler fails to abort. Let VM die immediately.
  2613     if (sig == SIGINT && is_error_reported()) {
  2614        os::die();
  2617     os::signal_notify(sig);
  2618     // We do not need to reinstate the signal handler each time...
  2622 void* os::user_handler() {
  2623   return CAST_FROM_FN_PTR(void*, UserHandler);
  2626 extern "C" {
  2627   typedef void (*sa_handler_t)(int);
  2628   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2631 void* os::signal(int signal_number, void* handler) {
  2632   struct sigaction sigAct, oldSigAct;
  2633   sigfillset(&(sigAct.sa_mask));
  2634   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
  2635   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2637   if (sigaction(signal_number, &sigAct, &oldSigAct))
  2638     // -1 means registration failed
  2639     return (void *)-1;
  2641   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2644 void os::signal_raise(int signal_number) {
  2645   raise(signal_number);
  2648 /*
  2649  * The following code is moved from os.cpp for making this
  2650  * code platform specific, which it is by its very nature.
  2651  */
  2653 // a counter for each possible signal value
  2654 static int Sigexit = 0;
  2655 static int Maxlibjsigsigs;
  2656 static jint *pending_signals = NULL;
  2657 static int *preinstalled_sigs = NULL;
  2658 static struct sigaction *chainedsigactions = NULL;
  2659 static sema_t sig_sem;
  2660 typedef int (*version_getting_t)();
  2661 version_getting_t os::Solaris::get_libjsig_version = NULL;
  2662 static int libjsigversion = NULL;
  2664 int os::sigexitnum_pd() {
  2665   assert(Sigexit > 0, "signal memory not yet initialized");
  2666   return Sigexit;
  2669 void os::Solaris::init_signal_mem() {
  2670   // Initialize signal structures
  2671   Maxsignum = SIGRTMAX;
  2672   Sigexit = Maxsignum+1;
  2673   assert(Maxsignum >0, "Unable to obtain max signal number");
  2675   Maxlibjsigsigs = Maxsignum;
  2677   // pending_signals has one int per signal
  2678   // The additional signal is for SIGEXIT - exit signal to signal_thread
  2679   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1));
  2680   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
  2682   if (UseSignalChaining) {
  2683      chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
  2684        * (Maxsignum + 1));
  2685      memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
  2686      preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1));
  2687      memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
  2689   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ));
  2690   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
  2693 void os::signal_init_pd() {
  2694   int ret;
  2696   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
  2697   assert(ret == 0, "sema_init() failed");
  2700 void os::signal_notify(int signal_number) {
  2701   int ret;
  2703   Atomic::inc(&pending_signals[signal_number]);
  2704   ret = ::sema_post(&sig_sem);
  2705   assert(ret == 0, "sema_post() failed");
  2708 static int check_pending_signals(bool wait_for_signal) {
  2709   int ret;
  2710   while (true) {
  2711     for (int i = 0; i < Sigexit + 1; i++) {
  2712       jint n = pending_signals[i];
  2713       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2714         return i;
  2717     if (!wait_for_signal) {
  2718       return -1;
  2720     JavaThread *thread = JavaThread::current();
  2721     ThreadBlockInVM tbivm(thread);
  2723     bool threadIsSuspended;
  2724     do {
  2725       thread->set_suspend_equivalent();
  2726       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2727       while((ret = ::sema_wait(&sig_sem)) == EINTR)
  2729       assert(ret == 0, "sema_wait() failed");
  2731       // were we externally suspended while we were waiting?
  2732       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2733       if (threadIsSuspended) {
  2734         //
  2735         // The semaphore has been incremented, but while we were waiting
  2736         // another thread suspended us. We don't want to continue running
  2737         // while suspended because that would surprise the thread that
  2738         // suspended us.
  2739         //
  2740         ret = ::sema_post(&sig_sem);
  2741         assert(ret == 0, "sema_post() failed");
  2743         thread->java_suspend_self();
  2745     } while (threadIsSuspended);
  2749 int os::signal_lookup() {
  2750   return check_pending_signals(false);
  2753 int os::signal_wait() {
  2754   return check_pending_signals(true);
  2757 ////////////////////////////////////////////////////////////////////////////////
  2758 // Virtual Memory
  2760 static int page_size = -1;
  2762 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
  2763 // clear this var if support is not available.
  2764 static bool has_map_align = true;
  2766 int os::vm_page_size() {
  2767   assert(page_size != -1, "must call os::init");
  2768   return page_size;
  2771 // Solaris allocates memory by pages.
  2772 int os::vm_allocation_granularity() {
  2773   assert(page_size != -1, "must call os::init");
  2774   return page_size;
  2777 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
  2778   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2779   size_t size = bytes;
  2780   return
  2781      NULL != Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
  2784 bool os::commit_memory(char* addr, size_t bytes, size_t alignment_hint,
  2785                        bool exec) {
  2786   if (commit_memory(addr, bytes, exec)) {
  2787     if (UseMPSS && alignment_hint > (size_t)vm_page_size()) {
  2788       // If the large page size has been set and the VM
  2789       // is using large pages, use the large page size
  2790       // if it is smaller than the alignment hint. This is
  2791       // a case where the VM wants to use a larger alignment size
  2792       // for its own reasons but still want to use large pages
  2793       // (which is what matters to setting the mpss range.
  2794       size_t page_size = 0;
  2795       if (large_page_size() < alignment_hint) {
  2796         assert(UseLargePages, "Expected to be here for large page use only");
  2797         page_size = large_page_size();
  2798       } else {
  2799         // If the alignment hint is less than the large page
  2800         // size, the VM wants a particular alignment (thus the hint)
  2801         // for internal reasons.  Try to set the mpss range using
  2802         // the alignment_hint.
  2803         page_size = alignment_hint;
  2805       // Since this is a hint, ignore any failures.
  2806       (void)Solaris::set_mpss_range(addr, bytes, page_size);
  2808     return true;
  2810   return false;
  2813 // Uncommit the pages in a specified region.
  2814 void os::free_memory(char* addr, size_t bytes) {
  2815   if (madvise(addr, bytes, MADV_FREE) < 0) {
  2816     debug_only(warning("MADV_FREE failed."));
  2817     return;
  2821 bool os::create_stack_guard_pages(char* addr, size_t size) {
  2822   return os::commit_memory(addr, size);
  2825 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2826   return os::uncommit_memory(addr, size);
  2829 // Change the page size in a given range.
  2830 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2831   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
  2832   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
  2833   if (UseLargePages && UseMPSS) {
  2834     Solaris::set_mpss_range(addr, bytes, alignment_hint);
  2838 // Tell the OS to make the range local to the first-touching LWP
  2839 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2840   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2841   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
  2842     debug_only(warning("MADV_ACCESS_LWP failed."));
  2846 // Tell the OS that this range would be accessed from different LWPs.
  2847 void os::numa_make_global(char *addr, size_t bytes) {
  2848   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2849   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
  2850     debug_only(warning("MADV_ACCESS_MANY failed."));
  2854 // Get the number of the locality groups.
  2855 size_t os::numa_get_groups_num() {
  2856   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
  2857   return n != -1 ? n : 1;
  2860 // Get a list of leaf locality groups. A leaf lgroup is group that
  2861 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
  2862 // board. An LWP is assigned to one of these groups upon creation.
  2863 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2864    if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
  2865      ids[0] = 0;
  2866      return 1;
  2868    int result_size = 0, top = 1, bottom = 0, cur = 0;
  2869    for (int k = 0; k < size; k++) {
  2870      int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
  2871                                     (Solaris::lgrp_id_t*)&ids[top], size - top);
  2872      if (r == -1) {
  2873        ids[0] = 0;
  2874        return 1;
  2876      if (!r) {
  2877        // That's a leaf node.
  2878        assert (bottom <= cur, "Sanity check");
  2879        // Check if the node has memory
  2880        if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
  2881                                    NULL, 0, LGRP_RSRC_MEM) > 0) {
  2882          ids[bottom++] = ids[cur];
  2885      top += r;
  2886      cur++;
  2888    if (bottom == 0) {
  2889      // Handle a situation, when the OS reports no memory available.
  2890      // Assume UMA architecture.
  2891      ids[0] = 0;
  2892      return 1;
  2894    return bottom;
  2897 // Detect the topology change. Typically happens during CPU plugging-unplugging.
  2898 bool os::numa_topology_changed() {
  2899   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
  2900   if (is_stale != -1 && is_stale) {
  2901     Solaris::lgrp_fini(Solaris::lgrp_cookie());
  2902     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
  2903     assert(c != 0, "Failure to initialize LGRP API");
  2904     Solaris::set_lgrp_cookie(c);
  2905     return true;
  2907   return false;
  2910 // Get the group id of the current LWP.
  2911 int os::numa_get_group_id() {
  2912   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
  2913   if (lgrp_id == -1) {
  2914     return 0;
  2916   const int size = os::numa_get_groups_num();
  2917   int *ids = (int*)alloca(size * sizeof(int));
  2919   // Get the ids of all lgroups with memory; r is the count.
  2920   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
  2921                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
  2922   if (r <= 0) {
  2923     return 0;
  2925   return ids[os::random() % r];
  2928 // Request information about the page.
  2929 bool os::get_page_info(char *start, page_info* info) {
  2930   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2931   uint64_t addr = (uintptr_t)start;
  2932   uint64_t outdata[2];
  2933   uint_t validity = 0;
  2935   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
  2936     return false;
  2939   info->size = 0;
  2940   info->lgrp_id = -1;
  2942   if ((validity & 1) != 0) {
  2943     if ((validity & 2) != 0) {
  2944       info->lgrp_id = outdata[0];
  2946     if ((validity & 4) != 0) {
  2947       info->size = outdata[1];
  2949     return true;
  2951   return false;
  2954 // Scan the pages from start to end until a page different than
  2955 // the one described in the info parameter is encountered.
  2956 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2957   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2958   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
  2959   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
  2960   uint_t validity[MAX_MEMINFO_CNT];
  2962   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
  2963   uint64_t p = (uint64_t)start;
  2964   while (p < (uint64_t)end) {
  2965     addrs[0] = p;
  2966     size_t addrs_count = 1;
  2967     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] < (uint64_t)end) {
  2968       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
  2969       addrs_count++;
  2972     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
  2973       return NULL;
  2976     size_t i = 0;
  2977     for (; i < addrs_count; i++) {
  2978       if ((validity[i] & 1) != 0) {
  2979         if ((validity[i] & 4) != 0) {
  2980           if (outdata[types * i + 1] != page_expected->size) {
  2981             break;
  2983         } else
  2984           if (page_expected->size != 0) {
  2985             break;
  2988         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
  2989           if (outdata[types * i] != page_expected->lgrp_id) {
  2990             break;
  2993       } else {
  2994         return NULL;
  2998     if (i != addrs_count) {
  2999       if ((validity[i] & 2) != 0) {
  3000         page_found->lgrp_id = outdata[types * i];
  3001       } else {
  3002         page_found->lgrp_id = -1;
  3004       if ((validity[i] & 4) != 0) {
  3005         page_found->size = outdata[types * i + 1];
  3006       } else {
  3007         page_found->size = 0;
  3009       return (char*)addrs[i];
  3012     p = addrs[addrs_count - 1] + page_size;
  3014   return end;
  3017 bool os::uncommit_memory(char* addr, size_t bytes) {
  3018   size_t size = bytes;
  3019   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3020   // uncommitted page. Otherwise, the read/write might succeed if we
  3021   // have enough swap space to back the physical page.
  3022   return
  3023     NULL != Solaris::mmap_chunk(addr, size,
  3024                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
  3025                                 PROT_NONE);
  3028 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
  3029   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
  3031   if (b == MAP_FAILED) {
  3032     return NULL;
  3034   return b;
  3037 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
  3038   char* addr = requested_addr;
  3039   int flags = MAP_PRIVATE | MAP_NORESERVE;
  3041   assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
  3043   if (fixed) {
  3044     flags |= MAP_FIXED;
  3045   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
  3046     flags |= MAP_ALIGN;
  3047     addr = (char*) alignment_hint;
  3050   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3051   // uncommitted page. Otherwise, the read/write might succeed if we
  3052   // have enough swap space to back the physical page.
  3053   return mmap_chunk(addr, bytes, flags, PROT_NONE);
  3056 char* os::reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
  3057   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
  3059   guarantee(requested_addr == NULL || requested_addr == addr,
  3060             "OS failed to return requested mmap address.");
  3061   return addr;
  3064 // Reserve memory at an arbitrary address, only if that area is
  3065 // available (and not reserved for something else).
  3067 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3068   const int max_tries = 10;
  3069   char* base[max_tries];
  3070   size_t size[max_tries];
  3072   // Solaris adds a gap between mmap'ed regions.  The size of the gap
  3073   // is dependent on the requested size and the MMU.  Our initial gap
  3074   // value here is just a guess and will be corrected later.
  3075   bool had_top_overlap = false;
  3076   bool have_adjusted_gap = false;
  3077   size_t gap = 0x400000;
  3079   // Assert only that the size is a multiple of the page size, since
  3080   // that's all that mmap requires, and since that's all we really know
  3081   // about at this low abstraction level.  If we need higher alignment,
  3082   // we can either pass an alignment to this method or verify alignment
  3083   // in one of the methods further up the call chain.  See bug 5044738.
  3084   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3086   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
  3087   // Give it a try, if the kernel honors the hint we can return immediately.
  3088   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
  3089   volatile int err = errno;
  3090   if (addr == requested_addr) {
  3091     return addr;
  3092   } else if (addr != NULL) {
  3093     unmap_memory(addr, bytes);
  3096   if (PrintMiscellaneous && Verbose) {
  3097     char buf[256];
  3098     buf[0] = '\0';
  3099     if (addr == NULL) {
  3100       jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
  3102     warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
  3103             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
  3104             "%s", bytes, requested_addr, addr, buf);
  3107   // Address hint method didn't work.  Fall back to the old method.
  3108   // In theory, once SNV becomes our oldest supported platform, this
  3109   // code will no longer be needed.
  3110   //
  3111   // Repeatedly allocate blocks until the block is allocated at the
  3112   // right spot. Give up after max_tries.
  3113   int i;
  3114   for (i = 0; i < max_tries; ++i) {
  3115     base[i] = reserve_memory(bytes);
  3117     if (base[i] != NULL) {
  3118       // Is this the block we wanted?
  3119       if (base[i] == requested_addr) {
  3120         size[i] = bytes;
  3121         break;
  3124       // check that the gap value is right
  3125       if (had_top_overlap && !have_adjusted_gap) {
  3126         size_t actual_gap = base[i-1] - base[i] - bytes;
  3127         if (gap != actual_gap) {
  3128           // adjust the gap value and retry the last 2 allocations
  3129           assert(i > 0, "gap adjustment code problem");
  3130           have_adjusted_gap = true;  // adjust the gap only once, just in case
  3131           gap = actual_gap;
  3132           if (PrintMiscellaneous && Verbose) {
  3133             warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
  3135           unmap_memory(base[i], bytes);
  3136           unmap_memory(base[i-1], size[i-1]);
  3137           i-=2;
  3138           continue;
  3142       // Does this overlap the block we wanted? Give back the overlapped
  3143       // parts and try again.
  3144       //
  3145       // There is still a bug in this code: if top_overlap == bytes,
  3146       // the overlap is offset from requested region by the value of gap.
  3147       // In this case giving back the overlapped part will not work,
  3148       // because we'll give back the entire block at base[i] and
  3149       // therefore the subsequent allocation will not generate a new gap.
  3150       // This could be fixed with a new algorithm that used larger
  3151       // or variable size chunks to find the requested region -
  3152       // but such a change would introduce additional complications.
  3153       // It's rare enough that the planets align for this bug,
  3154       // so we'll just wait for a fix for 6204603/5003415 which
  3155       // will provide a mmap flag to allow us to avoid this business.
  3157       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3158       if (top_overlap >= 0 && top_overlap < bytes) {
  3159         had_top_overlap = true;
  3160         unmap_memory(base[i], top_overlap);
  3161         base[i] += top_overlap;
  3162         size[i] = bytes - top_overlap;
  3163       } else {
  3164         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3165         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3166           if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
  3167             warning("attempt_reserve_memory_at: possible alignment bug");
  3169           unmap_memory(requested_addr, bottom_overlap);
  3170           size[i] = bytes - bottom_overlap;
  3171         } else {
  3172           size[i] = bytes;
  3178   // Give back the unused reserved pieces.
  3180   for (int j = 0; j < i; ++j) {
  3181     if (base[j] != NULL) {
  3182       unmap_memory(base[j], size[j]);
  3186   return (i < max_tries) ? requested_addr : NULL;
  3189 bool os::release_memory(char* addr, size_t bytes) {
  3190   size_t size = bytes;
  3191   return munmap(addr, size) == 0;
  3194 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
  3195   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
  3196          "addr must be page aligned");
  3197   int retVal = mprotect(addr, bytes, prot);
  3198   return retVal == 0;
  3201 // Protect memory (Used to pass readonly pages through
  3202 // JNI GetArray<type>Elements with empty arrays.)
  3203 // Also, used for serialization page and for compressed oops null pointer
  3204 // checking.
  3205 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3206                         bool is_committed) {
  3207   unsigned int p = 0;
  3208   switch (prot) {
  3209   case MEM_PROT_NONE: p = PROT_NONE; break;
  3210   case MEM_PROT_READ: p = PROT_READ; break;
  3211   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3212   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3213   default:
  3214     ShouldNotReachHere();
  3216   // is_committed is unused.
  3217   return solaris_mprotect(addr, bytes, p);
  3220 // guard_memory and unguard_memory only happens within stack guard pages.
  3221 // Since ISM pertains only to the heap, guard and unguard memory should not
  3222 /// happen with an ISM region.
  3223 bool os::guard_memory(char* addr, size_t bytes) {
  3224   return solaris_mprotect(addr, bytes, PROT_NONE);
  3227 bool os::unguard_memory(char* addr, size_t bytes) {
  3228   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
  3231 // Large page support
  3233 // UseLargePages is the master flag to enable/disable large page memory.
  3234 // UseMPSS and UseISM are supported for compatibility reasons. Their combined
  3235 // effects can be described in the following table:
  3236 //
  3237 // UseLargePages UseMPSS UseISM
  3238 //    false         *       *   => UseLargePages is the master switch, turning
  3239 //                                 it off will turn off both UseMPSS and
  3240 //                                 UseISM. VM will not use large page memory
  3241 //                                 regardless the settings of UseMPSS/UseISM.
  3242 //     true      false    false => Unless future Solaris provides other
  3243 //                                 mechanism to use large page memory, this
  3244 //                                 combination is equivalent to -UseLargePages,
  3245 //                                 VM will not use large page memory
  3246 //     true      true     false => JVM will use MPSS for large page memory.
  3247 //                                 This is the default behavior.
  3248 //     true      false    true  => JVM will use ISM for large page memory.
  3249 //     true      true     true  => JVM will use ISM if it is available.
  3250 //                                 Otherwise, JVM will fall back to MPSS.
  3251 //                                 Becaues ISM is now available on all
  3252 //                                 supported Solaris versions, this combination
  3253 //                                 is equivalent to +UseISM -UseMPSS.
  3255 typedef int (*getpagesizes_func_type) (size_t[], int);
  3256 static size_t _large_page_size = 0;
  3258 bool os::Solaris::ism_sanity_check(bool warn, size_t * page_size) {
  3259   // x86 uses either 2M or 4M page, depending on whether PAE (Physical Address
  3260   // Extensions) mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. Sparc
  3261   // can support multiple page sizes.
  3263   // Don't bother to probe page size because getpagesizes() comes with MPSS.
  3264   // ISM is only recommended on old Solaris where there is no MPSS support.
  3265   // Simply choose a conservative value as default.
  3266   *page_size = LargePageSizeInBytes ? LargePageSizeInBytes :
  3267                SPARC_ONLY(4 * M) IA32_ONLY(4 * M) AMD64_ONLY(2 * M)
  3268                ARM_ONLY(2 * M);
  3270   // ISM is available on all supported Solaris versions
  3271   return true;
  3274 // Insertion sort for small arrays (descending order).
  3275 static void insertion_sort_descending(size_t* array, int len) {
  3276   for (int i = 0; i < len; i++) {
  3277     size_t val = array[i];
  3278     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
  3279       size_t tmp = array[key];
  3280       array[key] = array[key - 1];
  3281       array[key - 1] = tmp;
  3286 bool os::Solaris::mpss_sanity_check(bool warn, size_t * page_size) {
  3287   getpagesizes_func_type getpagesizes_func =
  3288     CAST_TO_FN_PTR(getpagesizes_func_type, dlsym(RTLD_DEFAULT, "getpagesizes"));
  3289   if (getpagesizes_func == NULL) {
  3290     if (warn) {
  3291       warning("MPSS is not supported by the operating system.");
  3293     return false;
  3296   const unsigned int usable_count = VM_Version::page_size_count();
  3297   if (usable_count == 1) {
  3298     return false;
  3301   // Fill the array of page sizes.
  3302   int n = getpagesizes_func(_page_sizes, page_sizes_max);
  3303   assert(n > 0, "Solaris bug?");
  3304   if (n == page_sizes_max) {
  3305     // Add a sentinel value (necessary only if the array was completely filled
  3306     // since it is static (zeroed at initialization)).
  3307     _page_sizes[--n] = 0;
  3308     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
  3310   assert(_page_sizes[n] == 0, "missing sentinel");
  3312   if (n == 1) return false;     // Only one page size available.
  3314   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
  3315   // select up to usable_count elements.  First sort the array, find the first
  3316   // acceptable value, then copy the usable sizes to the top of the array and
  3317   // trim the rest.  Make sure to include the default page size :-).
  3318   //
  3319   // A better policy could get rid of the 4M limit by taking the sizes of the
  3320   // important VM memory regions (java heap and possibly the code cache) into
  3321   // account.
  3322   insertion_sort_descending(_page_sizes, n);
  3323   const size_t size_limit =
  3324     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
  3325   int beg;
  3326   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
  3327   const int end = MIN2((int)usable_count, n) - 1;
  3328   for (int cur = 0; cur < end; ++cur, ++beg) {
  3329     _page_sizes[cur] = _page_sizes[beg];
  3331   _page_sizes[end] = vm_page_size();
  3332   _page_sizes[end + 1] = 0;
  3334   if (_page_sizes[end] > _page_sizes[end - 1]) {
  3335     // Default page size is not the smallest; sort again.
  3336     insertion_sort_descending(_page_sizes, end + 1);
  3338   *page_size = _page_sizes[0];
  3340   return true;
  3343 void os::large_page_init() {
  3344   if (!UseLargePages) {
  3345     UseISM = false;
  3346     UseMPSS = false;
  3347     return;
  3350   // print a warning if any large page related flag is specified on command line
  3351   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
  3352                          !FLAG_IS_DEFAULT(UseISM)               ||
  3353                          !FLAG_IS_DEFAULT(UseMPSS)              ||
  3354                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  3355   UseISM = UseISM &&
  3356            Solaris::ism_sanity_check(warn_on_failure, &_large_page_size);
  3357   if (UseISM) {
  3358     // ISM disables MPSS to be compatible with old JDK behavior
  3359     UseMPSS = false;
  3360     _page_sizes[0] = _large_page_size;
  3361     _page_sizes[1] = vm_page_size();
  3364   UseMPSS = UseMPSS &&
  3365             Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
  3367   UseLargePages = UseISM || UseMPSS;
  3370 bool os::Solaris::set_mpss_range(caddr_t start, size_t bytes, size_t align) {
  3371   // Signal to OS that we want large pages for addresses
  3372   // from addr, addr + bytes
  3373   struct memcntl_mha mpss_struct;
  3374   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
  3375   mpss_struct.mha_pagesize = align;
  3376   mpss_struct.mha_flags = 0;
  3377   if (memcntl(start, bytes, MC_HAT_ADVISE,
  3378               (caddr_t) &mpss_struct, 0, 0) < 0) {
  3379     debug_only(warning("Attempt to use MPSS failed."));
  3380     return false;
  3382   return true;
  3385 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
  3386   // "exec" is passed in but not used.  Creating the shared image for
  3387   // the code cache doesn't have an SHM_X executable permission to check.
  3388   assert(UseLargePages && UseISM, "only for ISM large pages");
  3390   size_t size = bytes;
  3391   char* retAddr = NULL;
  3392   int shmid;
  3393   key_t ismKey;
  3395   bool warn_on_failure = UseISM &&
  3396                         (!FLAG_IS_DEFAULT(UseLargePages)         ||
  3397                          !FLAG_IS_DEFAULT(UseISM)                ||
  3398                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3399                         );
  3400   char msg[128];
  3402   ismKey = IPC_PRIVATE;
  3404   // Create a large shared memory region to attach to based on size.
  3405   // Currently, size is the total size of the heap
  3406   shmid = shmget(ismKey, size, SHM_R | SHM_W | IPC_CREAT);
  3407   if (shmid == -1){
  3408      if (warn_on_failure) {
  3409        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3410        warning(msg);
  3412      return NULL;
  3415   // Attach to the region
  3416   retAddr = (char *) shmat(shmid, 0, SHM_SHARE_MMU | SHM_R | SHM_W);
  3417   int err = errno;
  3419   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3420   // will be deleted when it's detached by shmdt() or when the process
  3421   // terminates. If shmat() is not successful this will remove the shared
  3422   // segment immediately.
  3423   shmctl(shmid, IPC_RMID, NULL);
  3425   if (retAddr == (char *) -1) {
  3426     if (warn_on_failure) {
  3427       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3428       warning(msg);
  3430     return NULL;
  3433   return retAddr;
  3436 bool os::release_memory_special(char* base, size_t bytes) {
  3437   // detaching the SHM segment will also delete it, see reserve_memory_special()
  3438   int rslt = shmdt(base);
  3439   return rslt == 0;
  3442 size_t os::large_page_size() {
  3443   return _large_page_size;
  3446 // MPSS allows application to commit large page memory on demand; with ISM
  3447 // the entire memory region must be allocated as shared memory.
  3448 bool os::can_commit_large_page_memory() {
  3449   return UseISM ? false : true;
  3452 bool os::can_execute_large_page_memory() {
  3453   return UseISM ? false : true;
  3456 static int os_sleep(jlong millis, bool interruptible) {
  3457   const jlong limit = INT_MAX;
  3458   jlong prevtime;
  3459   int res;
  3461   while (millis > limit) {
  3462     if ((res = os_sleep(limit, interruptible)) != OS_OK)
  3463       return res;
  3464     millis -= limit;
  3467   // Restart interrupted polls with new parameters until the proper delay
  3468   // has been completed.
  3470   prevtime = getTimeMillis();
  3472   while (millis > 0) {
  3473     jlong newtime;
  3475     if (!interruptible) {
  3476       // Following assert fails for os::yield_all:
  3477       // assert(!thread->is_Java_thread(), "must not be java thread");
  3478       res = poll(NULL, 0, millis);
  3479     } else {
  3480       JavaThread *jt = JavaThread::current();
  3482       INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
  3483         os::Solaris::clear_interrupted);
  3486     // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
  3487     // thread.Interrupt.
  3489     // See c/r 6751923. Poll can return 0 before time
  3490     // has elapsed if time is set via clock_settime (as NTP does).
  3491     // res == 0 if poll timed out (see man poll RETURN VALUES)
  3492     // using the logic below checks that we really did
  3493     // sleep at least "millis" if not we'll sleep again.
  3494     if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) {
  3495       newtime = getTimeMillis();
  3496       assert(newtime >= prevtime, "time moving backwards");
  3497     /* Doing prevtime and newtime in microseconds doesn't help precision,
  3498        and trying to round up to avoid lost milliseconds can result in a
  3499        too-short delay. */
  3500       millis -= newtime - prevtime;
  3501       if(millis <= 0)
  3502         return OS_OK;
  3503       prevtime = newtime;
  3504     } else
  3505       return res;
  3508   return OS_OK;
  3511 // Read calls from inside the vm need to perform state transitions
  3512 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3513   INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3516 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
  3517   INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3520 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3521   assert(thread == Thread::current(),  "thread consistency check");
  3523   // TODO-FIXME: this should be removed.
  3524   // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
  3525   // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
  3526   // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
  3527   // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
  3528   // is fooled into believing that the system is making progress. In the code below we block the
  3529   // the watcher thread while safepoint is in progress so that it would not appear as though the
  3530   // system is making progress.
  3531   if (!Solaris::T2_libthread() &&
  3532       thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
  3533     // We now try to acquire the threads lock. Since this lock is held by the VM thread during
  3534     // the entire safepoint, the watcher thread will  line up here during the safepoint.
  3535     Threads_lock->lock_without_safepoint_check();
  3536     Threads_lock->unlock();
  3539   if (thread->is_Java_thread()) {
  3540     // This is a JavaThread so we honor the _thread_blocked protocol
  3541     // even for sleeps of 0 milliseconds. This was originally done
  3542     // as a workaround for bug 4338139. However, now we also do it
  3543     // to honor the suspend-equivalent protocol.
  3545     JavaThread *jt = (JavaThread *) thread;
  3546     ThreadBlockInVM tbivm(jt);
  3548     jt->set_suspend_equivalent();
  3549     // cleared by handle_special_suspend_equivalent_condition() or
  3550     // java_suspend_self() via check_and_wait_while_suspended()
  3552     int ret_code;
  3553     if (millis <= 0) {
  3554       thr_yield();
  3555       ret_code = 0;
  3556     } else {
  3557       // The original sleep() implementation did not create an
  3558       // OSThreadWaitState helper for sleeps of 0 milliseconds.
  3559       // I'm preserving that decision for now.
  3560       OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3562       ret_code = os_sleep(millis, interruptible);
  3565     // were we externally suspended while we were waiting?
  3566     jt->check_and_wait_while_suspended();
  3568     return ret_code;
  3571   // non-JavaThread from this point on:
  3573   if (millis <= 0) {
  3574     thr_yield();
  3575     return 0;
  3578   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3580   return os_sleep(millis, interruptible);
  3583 int os::naked_sleep() {
  3584   // %% make the sleep time an integer flag. for now use 1 millisec.
  3585   return os_sleep(1, false);
  3588 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3589 void os::infinite_sleep() {
  3590   while (true) {    // sleep forever ...
  3591     ::sleep(100);   // ... 100 seconds at a time
  3595 // Used to convert frequent JVM_Yield() to nops
  3596 bool os::dont_yield() {
  3597   if (DontYieldALot) {
  3598     static hrtime_t last_time = 0;
  3599     hrtime_t diff = getTimeNanos() - last_time;
  3601     if (diff < DontYieldALotInterval * 1000000)
  3602       return true;
  3604     last_time += diff;
  3606     return false;
  3608   else {
  3609     return false;
  3613 // Caveat: Solaris os::yield() causes a thread-state transition whereas
  3614 // the linux and win32 implementations do not.  This should be checked.
  3616 void os::yield() {
  3617   // Yields to all threads with same or greater priority
  3618   os::sleep(Thread::current(), 0, false);
  3621 // Note that yield semantics are defined by the scheduling class to which
  3622 // the thread currently belongs.  Typically, yield will _not yield to
  3623 // other equal or higher priority threads that reside on the dispatch queues
  3624 // of other CPUs.
  3626 os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
  3629 // On Solaris we found that yield_all doesn't always yield to all other threads.
  3630 // There have been cases where there is a thread ready to execute but it doesn't
  3631 // get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
  3632 // The 1 millisecond wait doesn't seem long enough for the kernel to issue a
  3633 // SIGWAITING signal which will cause a new lwp to be created. So we count the
  3634 // number of times yield_all is called in the one loop and increase the sleep
  3635 // time after 8 attempts. If this fails too we increase the concurrency level
  3636 // so that the starving thread would get an lwp
  3638 void os::yield_all(int attempts) {
  3639   // Yields to all threads, including threads with lower priorities
  3640   if (attempts == 0) {
  3641     os::sleep(Thread::current(), 1, false);
  3642   } else {
  3643     int iterations = attempts % 30;
  3644     if (iterations == 0 && !os::Solaris::T2_libthread()) {
  3645       // thr_setconcurrency and _getconcurrency make sense only under T1.
  3646       int noofLWPS = thr_getconcurrency();
  3647       if (noofLWPS < (Threads::number_of_threads() + 2)) {
  3648         thr_setconcurrency(thr_getconcurrency() + 1);
  3650     } else if (iterations < 25) {
  3651       os::sleep(Thread::current(), 1, false);
  3652     } else {
  3653       os::sleep(Thread::current(), 10, false);
  3658 // Called from the tight loops to possibly influence time-sharing heuristics
  3659 void os::loop_breaker(int attempts) {
  3660   os::yield_all(attempts);
  3664 // Interface for setting lwp priorities.  If we are using T2 libthread,
  3665 // which forces the use of BoundThreads or we manually set UseBoundThreads,
  3666 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
  3667 // function is meaningless in this mode so we must adjust the real lwp's priority
  3668 // The routines below implement the getting and setting of lwp priorities.
  3669 //
  3670 // Note: There are three priority scales used on Solaris.  Java priotities
  3671 //       which range from 1 to 10, libthread "thr_setprio" scale which range
  3672 //       from 0 to 127, and the current scheduling class of the process we
  3673 //       are running in.  This is typically from -60 to +60.
  3674 //       The setting of the lwp priorities in done after a call to thr_setprio
  3675 //       so Java priorities are mapped to libthread priorities and we map from
  3676 //       the latter to lwp priorities.  We don't keep priorities stored in
  3677 //       Java priorities since some of our worker threads want to set priorities
  3678 //       higher than all Java threads.
  3679 //
  3680 // For related information:
  3681 // (1)  man -s 2 priocntl
  3682 // (2)  man -s 4 priocntl
  3683 // (3)  man dispadmin
  3684 // =    librt.so
  3685 // =    libthread/common/rtsched.c - thrp_setlwpprio().
  3686 // =    ps -cL <pid> ... to validate priority.
  3687 // =    sched_get_priority_min and _max
  3688 //              pthread_create
  3689 //              sched_setparam
  3690 //              pthread_setschedparam
  3691 //
  3692 // Assumptions:
  3693 // +    We assume that all threads in the process belong to the same
  3694 //              scheduling class.   IE. an homogenous process.
  3695 // +    Must be root or in IA group to change change "interactive" attribute.
  3696 //              Priocntl() will fail silently.  The only indication of failure is when
  3697 //              we read-back the value and notice that it hasn't changed.
  3698 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
  3699 // +    For RT, change timeslice as well.  Invariant:
  3700 //              constant "priority integral"
  3701 //              Konst == TimeSlice * (60-Priority)
  3702 //              Given a priority, compute appropriate timeslice.
  3703 // +    Higher numerical values have higher priority.
  3705 // sched class attributes
  3706 typedef struct {
  3707         int   schedPolicy;              // classID
  3708         int   maxPrio;
  3709         int   minPrio;
  3710 } SchedInfo;
  3713 static SchedInfo tsLimits, iaLimits, rtLimits;
  3715 #ifdef ASSERT
  3716 static int  ReadBackValidate = 1;
  3717 #endif
  3718 static int  myClass     = 0;
  3719 static int  myMin       = 0;
  3720 static int  myMax       = 0;
  3721 static int  myCur       = 0;
  3722 static bool priocntl_enable = false;
  3725 // Call the version of priocntl suitable for all supported versions
  3726 // of Solaris. We need to call through this wrapper so that we can
  3727 // build on Solaris 9 and run on Solaris 8, 9 and 10.
  3728 //
  3729 // This code should be removed if we ever stop supporting Solaris 8
  3730 // and earlier releases.
  3732 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
  3733 typedef long (*priocntl_type)(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
  3734 static priocntl_type priocntl_ptr = priocntl_stub;
  3736 // Stub to set the value of the real pointer, and then call the real
  3737 // function.
  3739 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg) {
  3740   // Try Solaris 8- name only.
  3741   priocntl_type tmp = (priocntl_type)dlsym(RTLD_DEFAULT, "__priocntl");
  3742   guarantee(tmp != NULL, "priocntl function not found.");
  3743   priocntl_ptr = tmp;
  3744   return (*priocntl_ptr)(PC_VERSION, idtype, id, cmd, arg);
  3748 // lwp_priocntl_init
  3749 //
  3750 // Try to determine the priority scale for our process.
  3751 //
  3752 // Return errno or 0 if OK.
  3753 //
  3754 static
  3755 int     lwp_priocntl_init ()
  3757   int rslt;
  3758   pcinfo_t ClassInfo;
  3759   pcparms_t ParmInfo;
  3760   int i;
  3762   if (!UseThreadPriorities) return 0;
  3764   // We are using Bound threads, we need to determine our priority ranges
  3765   if (os::Solaris::T2_libthread() || UseBoundThreads) {
  3766     // If ThreadPriorityPolicy is 1, switch tables
  3767     if (ThreadPriorityPolicy == 1) {
  3768       for (i = 0 ; i < MaxPriority+1; i++)
  3769         os::java_to_os_priority[i] = prio_policy1[i];
  3772   // Not using Bound Threads, set to ThreadPolicy 1
  3773   else {
  3774     for ( i = 0 ; i < MaxPriority+1; i++ ) {
  3775       os::java_to_os_priority[i] = prio_policy1[i];
  3777     return 0;
  3781   // Get IDs for a set of well-known scheduling classes.
  3782   // TODO-FIXME: GETCLINFO returns the current # of classes in the
  3783   // the system.  We should have a loop that iterates over the
  3784   // classID values, which are known to be "small" integers.
  3786   strcpy(ClassInfo.pc_clname, "TS");
  3787   ClassInfo.pc_cid = -1;
  3788   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3789   if (rslt < 0) return errno;
  3790   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
  3791   tsLimits.schedPolicy = ClassInfo.pc_cid;
  3792   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
  3793   tsLimits.minPrio = -tsLimits.maxPrio;
  3795   strcpy(ClassInfo.pc_clname, "IA");
  3796   ClassInfo.pc_cid = -1;
  3797   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3798   if (rslt < 0) return errno;
  3799   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
  3800   iaLimits.schedPolicy = ClassInfo.pc_cid;
  3801   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
  3802   iaLimits.minPrio = -iaLimits.maxPrio;
  3804   strcpy(ClassInfo.pc_clname, "RT");
  3805   ClassInfo.pc_cid = -1;
  3806   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3807   if (rslt < 0) return errno;
  3808   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
  3809   rtLimits.schedPolicy = ClassInfo.pc_cid;
  3810   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
  3811   rtLimits.minPrio = 0;
  3814   // Query our "current" scheduling class.
  3815   // This will normally be IA,TS or, rarely, RT.
  3816   memset (&ParmInfo, 0, sizeof(ParmInfo));
  3817   ParmInfo.pc_cid = PC_CLNULL;
  3818   rslt = (*priocntl_ptr) (PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo );
  3819   if ( rslt < 0 ) return errno;
  3820   myClass = ParmInfo.pc_cid;
  3822   // We now know our scheduling classId, get specific information
  3823   // the class.
  3824   ClassInfo.pc_cid = myClass;
  3825   ClassInfo.pc_clname[0] = 0;
  3826   rslt = (*priocntl_ptr) (PC_VERSION, (idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo );
  3827   if ( rslt < 0 ) return errno;
  3829   if (ThreadPriorityVerbose)
  3830     tty->print_cr ("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
  3832   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3833   ParmInfo.pc_cid = PC_CLNULL;
  3834   rslt = (*priocntl_ptr)(PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
  3835   if (rslt < 0) return errno;
  3837   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3838     myMin = rtLimits.minPrio;
  3839     myMax = rtLimits.maxPrio;
  3840   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3841     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3842     myMin = iaLimits.minPrio;
  3843     myMax = iaLimits.maxPrio;
  3844     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
  3845   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3846     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3847     myMin = tsLimits.minPrio;
  3848     myMax = tsLimits.maxPrio;
  3849     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
  3850   } else {
  3851     // No clue - punt
  3852     if (ThreadPriorityVerbose)
  3853       tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
  3854     return EINVAL;      // no clue, punt
  3857   if (ThreadPriorityVerbose)
  3858         tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
  3860   priocntl_enable = true;  // Enable changing priorities
  3861   return 0;
  3864 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
  3865 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
  3866 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
  3869 // scale_to_lwp_priority
  3870 //
  3871 // Convert from the libthread "thr_setprio" scale to our current
  3872 // lwp scheduling class scale.
  3873 //
  3874 static
  3875 int     scale_to_lwp_priority (int rMin, int rMax, int x)
  3877   int v;
  3879   if (x == 127) return rMax;            // avoid round-down
  3880     v = (((x*(rMax-rMin)))/128)+rMin;
  3881   return v;
  3885 // set_lwp_priority
  3886 //
  3887 // Set the priority of the lwp.  This call should only be made
  3888 // when using bound threads (T2 threads are bound by default).
  3889 //
  3890 int     set_lwp_priority (int ThreadID, int lwpid, int newPrio )
  3892   int rslt;
  3893   int Actual, Expected, prv;
  3894   pcparms_t ParmInfo;                   // for GET-SET
  3895 #ifdef ASSERT
  3896   pcparms_t ReadBack;                   // for readback
  3897 #endif
  3899   // Set priority via PC_GETPARMS, update, PC_SETPARMS
  3900   // Query current values.
  3901   // TODO: accelerate this by eliminating the PC_GETPARMS call.
  3902   // Cache "pcparms_t" in global ParmCache.
  3903   // TODO: elide set-to-same-value
  3905   // If something went wrong on init, don't change priorities.
  3906   if ( !priocntl_enable ) {
  3907     if (ThreadPriorityVerbose)
  3908       tty->print_cr("Trying to set priority but init failed, ignoring");
  3909     return EINVAL;
  3913   // If lwp hasn't started yet, just return
  3914   // the _start routine will call us again.
  3915   if ( lwpid <= 0 ) {
  3916     if (ThreadPriorityVerbose) {
  3917       tty->print_cr ("deferring the set_lwp_priority of thread " INTPTR_FORMAT " to %d, lwpid not set",
  3918                      ThreadID, newPrio);
  3920     return 0;
  3923   if (ThreadPriorityVerbose) {
  3924     tty->print_cr ("set_lwp_priority(" INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
  3925                    ThreadID, lwpid, newPrio);
  3928   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3929   ParmInfo.pc_cid = PC_CLNULL;
  3930   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
  3931   if (rslt < 0) return errno;
  3933   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3934     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
  3935     rtInfo->rt_pri     = scale_to_lwp_priority (rtLimits.minPrio, rtLimits.maxPrio, newPrio);
  3936     rtInfo->rt_tqsecs  = RT_NOCHANGE;
  3937     rtInfo->rt_tqnsecs = RT_NOCHANGE;
  3938     if (ThreadPriorityVerbose) {
  3939       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
  3941   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3942     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3943     int maxClamped     = MIN2(iaLimits.maxPrio, (int)iaInfo->ia_uprilim);
  3944     iaInfo->ia_upri    = scale_to_lwp_priority(iaLimits.minPrio, maxClamped, newPrio);
  3945     iaInfo->ia_uprilim = IA_NOCHANGE;
  3946     iaInfo->ia_mode    = IA_NOCHANGE;
  3947     if (ThreadPriorityVerbose) {
  3948       tty->print_cr ("IA: [%d...%d] %d->%d\n",
  3949                iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
  3951   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3952     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3953     int maxClamped     = MIN2(tsLimits.maxPrio, (int)tsInfo->ts_uprilim);
  3954     prv                = tsInfo->ts_upri;
  3955     tsInfo->ts_upri    = scale_to_lwp_priority(tsLimits.minPrio, maxClamped, newPrio);
  3956     tsInfo->ts_uprilim = IA_NOCHANGE;
  3957     if (ThreadPriorityVerbose) {
  3958       tty->print_cr ("TS: %d [%d...%d] %d->%d\n",
  3959                prv, tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
  3961     if (prv == tsInfo->ts_upri) return 0;
  3962   } else {
  3963     if ( ThreadPriorityVerbose ) {
  3964       tty->print_cr ("Unknown scheduling class\n");
  3966       return EINVAL;    // no clue, punt
  3969   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
  3970   if (ThreadPriorityVerbose && rslt) {
  3971     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
  3973   if (rslt < 0) return errno;
  3975 #ifdef ASSERT
  3976   // Sanity check: read back what we just attempted to set.
  3977   // In theory it could have changed in the interim ...
  3978   //
  3979   // The priocntl system call is tricky.
  3980   // Sometimes it'll validate the priority value argument and
  3981   // return EINVAL if unhappy.  At other times it fails silently.
  3982   // Readbacks are prudent.
  3984   if (!ReadBackValidate) return 0;
  3986   memset(&ReadBack, 0, sizeof(pcparms_t));
  3987   ReadBack.pc_cid = PC_CLNULL;
  3988   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
  3989   assert(rslt >= 0, "priocntl failed");
  3990   Actual = Expected = 0xBAD;
  3991   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
  3992   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3993     Actual   = RTPRI(ReadBack)->rt_pri;
  3994     Expected = RTPRI(ParmInfo)->rt_pri;
  3995   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3996     Actual   = IAPRI(ReadBack)->ia_upri;
  3997     Expected = IAPRI(ParmInfo)->ia_upri;
  3998   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3999     Actual   = TSPRI(ReadBack)->ts_upri;
  4000     Expected = TSPRI(ParmInfo)->ts_upri;
  4001   } else {
  4002     if ( ThreadPriorityVerbose ) {
  4003       tty->print_cr("set_lwp_priority: unexpected class in readback: %d\n", ParmInfo.pc_cid);
  4007   if (Actual != Expected) {
  4008     if ( ThreadPriorityVerbose ) {
  4009       tty->print_cr ("set_lwp_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
  4010              lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
  4013 #endif
  4015   return 0;
  4020 // Solaris only gives access to 128 real priorities at a time,
  4021 // so we expand Java's ten to fill this range.  This would be better
  4022 // if we dynamically adjusted relative priorities.
  4023 //
  4024 // The ThreadPriorityPolicy option allows us to select 2 different
  4025 // priority scales.
  4026 //
  4027 // ThreadPriorityPolicy=0
  4028 // Since the Solaris' default priority is MaximumPriority, we do not
  4029 // set a priority lower than Max unless a priority lower than
  4030 // NormPriority is requested.
  4031 //
  4032 // ThreadPriorityPolicy=1
  4033 // This mode causes the priority table to get filled with
  4034 // linear values.  NormPriority get's mapped to 50% of the
  4035 // Maximum priority an so on.  This will cause VM threads
  4036 // to get unfair treatment against other Solaris processes
  4037 // which do not explicitly alter their thread priorities.
  4038 //
  4041 int os::java_to_os_priority[MaxPriority + 1] = {
  4042   -99999,         // 0 Entry should never be used
  4044   0,              // 1 MinPriority
  4045   32,             // 2
  4046   64,             // 3
  4048   96,             // 4
  4049   127,            // 5 NormPriority
  4050   127,            // 6
  4052   127,            // 7
  4053   127,            // 8
  4054   127,            // 9 NearMaxPriority
  4056   127             // 10 MaxPriority
  4057 };
  4060 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4061   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
  4062   if ( !UseThreadPriorities ) return OS_OK;
  4063   int status = thr_setprio(thread->osthread()->thread_id(), newpri);
  4064   if ( os::Solaris::T2_libthread() || (UseBoundThreads && thread->osthread()->is_vm_created()) )
  4065     status |= (set_lwp_priority (thread->osthread()->thread_id(),
  4066                     thread->osthread()->lwp_id(), newpri ));
  4067   return (status == 0) ? OS_OK : OS_ERR;
  4071 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4072   int p;
  4073   if ( !UseThreadPriorities ) {
  4074     *priority_ptr = NormalPriority;
  4075     return OS_OK;
  4077   int status = thr_getprio(thread->osthread()->thread_id(), &p);
  4078   if (status != 0) {
  4079     return OS_ERR;
  4081   *priority_ptr = p;
  4082   return OS_OK;
  4086 // Hint to the underlying OS that a task switch would not be good.
  4087 // Void return because it's a hint and can fail.
  4088 void os::hint_no_preempt() {
  4089   schedctl_start(schedctl_init());
  4092 void os::interrupt(Thread* thread) {
  4093   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4095   OSThread* osthread = thread->osthread();
  4097   int isInterrupted = osthread->interrupted();
  4098   if (!isInterrupted) {
  4099       osthread->set_interrupted(true);
  4100       OrderAccess::fence();
  4101       // os::sleep() is implemented with either poll (NULL,0,timeout) or
  4102       // by parking on _SleepEvent.  If the former, thr_kill will unwedge
  4103       // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
  4104       ParkEvent * const slp = thread->_SleepEvent ;
  4105       if (slp != NULL) slp->unpark() ;
  4108   // For JSR166:  unpark after setting status but before thr_kill -dl
  4109   if (thread->is_Java_thread()) {
  4110     ((JavaThread*)thread)->parker()->unpark();
  4113   // Handle interruptible wait() ...
  4114   ParkEvent * const ev = thread->_ParkEvent ;
  4115   if (ev != NULL) ev->unpark() ;
  4117   // When events are used everywhere for os::sleep, then this thr_kill
  4118   // will only be needed if UseVMInterruptibleIO is true.
  4120   if (!isInterrupted) {
  4121     int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
  4122     assert_status(status == 0, status, "thr_kill");
  4124     // Bump thread interruption counter
  4125     RuntimeService::record_thread_interrupt_signaled_count();
  4130 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4131   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4133   OSThread* osthread = thread->osthread();
  4135   bool res = osthread->interrupted();
  4137   // NOTE that since there is no "lock" around these two operations,
  4138   // there is the possibility that the interrupted flag will be
  4139   // "false" but that the interrupt event will be set. This is
  4140   // intentional. The effect of this is that Object.wait() will appear
  4141   // to have a spurious wakeup, which is not harmful, and the
  4142   // possibility is so rare that it is not worth the added complexity
  4143   // to add yet another lock. It has also been recommended not to put
  4144   // the interrupted flag into the os::Solaris::Event structure,
  4145   // because it hides the issue.
  4146   if (res && clear_interrupted) {
  4147     osthread->set_interrupted(false);
  4149   return res;
  4153 void os::print_statistics() {
  4156 int os::message_box(const char* title, const char* message) {
  4157   int i;
  4158   fdStream err(defaultStream::error_fd());
  4159   for (i = 0; i < 78; i++) err.print_raw("=");
  4160   err.cr();
  4161   err.print_raw_cr(title);
  4162   for (i = 0; i < 78; i++) err.print_raw("-");
  4163   err.cr();
  4164   err.print_raw_cr(message);
  4165   for (i = 0; i < 78; i++) err.print_raw("=");
  4166   err.cr();
  4168   char buf[16];
  4169   // Prevent process from exiting upon "read error" without consuming all CPU
  4170   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4172   return buf[0] == 'y' || buf[0] == 'Y';
  4175 // A lightweight implementation that does not suspend the target thread and
  4176 // thus returns only a hint. Used for profiling only!
  4177 ExtendedPC os::get_thread_pc(Thread* thread) {
  4178   // Make sure that it is called by the watcher and the Threads lock is owned.
  4179   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
  4180   // For now, is only used to profile the VM Thread
  4181   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4182   ExtendedPC epc;
  4184   GetThreadPC_Callback  cb(ProfileVM_lock);
  4185   OSThread *osthread = thread->osthread();
  4186   const int time_to_wait = 400; // 400ms wait for initial response
  4187   int status = cb.interrupt(thread, time_to_wait);
  4189   if (cb.is_done() ) {
  4190     epc = cb.addr();
  4191   } else {
  4192     DEBUG_ONLY(tty->print_cr("Failed to get pc for thread: %d got %d status",
  4193                               osthread->thread_id(), status););
  4194     // epc is already NULL
  4196   return epc;
  4200 // This does not do anything on Solaris. This is basically a hook for being
  4201 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
  4202 void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
  4203   f(value, method, args, thread);
  4206 // This routine may be used by user applications as a "hook" to catch signals.
  4207 // The user-defined signal handler must pass unrecognized signals to this
  4208 // routine, and if it returns true (non-zero), then the signal handler must
  4209 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4210 // routine will never retun false (zero), but instead will execute a VM panic
  4211 // routine kill the process.
  4212 //
  4213 // If this routine returns false, it is OK to call it again.  This allows
  4214 // the user-defined signal handler to perform checks either before or after
  4215 // the VM performs its own checks.  Naturally, the user code would be making
  4216 // a serious error if it tried to handle an exception (such as a null check
  4217 // or breakpoint) that the VM was generating for its own correct operation.
  4218 //
  4219 // This routine may recognize any of the following kinds of signals:
  4220 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
  4221 // os::Solaris::SIGasync
  4222 // It should be consulted by handlers for any of those signals.
  4223 // It explicitly does not recognize os::Solaris::SIGinterrupt
  4224 //
  4225 // The caller of this routine must pass in the three arguments supplied
  4226 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4227 // field of the structure passed to sigaction().  This routine assumes that
  4228 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4229 //
  4230 // Note that the VM will print warnings if it detects conflicting signal
  4231 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4232 //
  4233 extern "C" JNIEXPORT int
  4234 JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext,
  4235                           int abort_if_unrecognized);
  4238 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
  4239   JVM_handle_solaris_signal(sig, info, ucVoid, true);
  4242 /* Do not delete - if guarantee is ever removed,  a signal handler (even empty)
  4243    is needed to provoke threads blocked on IO to return an EINTR
  4244    Note: this explicitly does NOT call JVM_handle_solaris_signal and
  4245    does NOT participate in signal chaining due to requirement for
  4246    NOT setting SA_RESTART to make EINTR work. */
  4247 extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
  4248    if (UseSignalChaining) {
  4249       struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
  4250       if (actp && actp->sa_handler) {
  4251         vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
  4256 // This boolean allows users to forward their own non-matching signals
  4257 // to JVM_handle_solaris_signal, harmlessly.
  4258 bool os::Solaris::signal_handlers_are_installed = false;
  4260 // For signal-chaining
  4261 bool os::Solaris::libjsig_is_loaded = false;
  4262 typedef struct sigaction *(*get_signal_t)(int);
  4263 get_signal_t os::Solaris::get_signal_action = NULL;
  4265 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
  4266   struct sigaction *actp = NULL;
  4268   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
  4269     // Retrieve the old signal handler from libjsig
  4270     actp = (*get_signal_action)(sig);
  4272   if (actp == NULL) {
  4273     // Retrieve the preinstalled signal handler from jvm
  4274     actp = get_preinstalled_handler(sig);
  4277   return actp;
  4280 static bool call_chained_handler(struct sigaction *actp, int sig,
  4281                                  siginfo_t *siginfo, void *context) {
  4282   // Call the old signal handler
  4283   if (actp->sa_handler == SIG_DFL) {
  4284     // It's more reasonable to let jvm treat it as an unexpected exception
  4285     // instead of taking the default action.
  4286     return false;
  4287   } else if (actp->sa_handler != SIG_IGN) {
  4288     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4289       // automaticlly block the signal
  4290       sigaddset(&(actp->sa_mask), sig);
  4293     sa_handler_t hand;
  4294     sa_sigaction_t sa;
  4295     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4296     // retrieve the chained handler
  4297     if (siginfo_flag_set) {
  4298       sa = actp->sa_sigaction;
  4299     } else {
  4300       hand = actp->sa_handler;
  4303     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4304       actp->sa_handler = SIG_DFL;
  4307     // try to honor the signal mask
  4308     sigset_t oset;
  4309     thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4311     // call into the chained handler
  4312     if (siginfo_flag_set) {
  4313       (*sa)(sig, siginfo, context);
  4314     } else {
  4315       (*hand)(sig);
  4318     // restore the signal mask
  4319     thr_sigsetmask(SIG_SETMASK, &oset, 0);
  4321   // Tell jvm's signal handler the signal is taken care of.
  4322   return true;
  4325 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4326   bool chained = false;
  4327   // signal-chaining
  4328   if (UseSignalChaining) {
  4329     struct sigaction *actp = get_chained_signal_action(sig);
  4330     if (actp != NULL) {
  4331       chained = call_chained_handler(actp, sig, siginfo, context);
  4334   return chained;
  4337 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
  4338   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4339   if (preinstalled_sigs[sig] != 0) {
  4340     return &chainedsigactions[sig];
  4342   return NULL;
  4345 void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4347   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
  4348   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4349   chainedsigactions[sig] = oldAct;
  4350   preinstalled_sigs[sig] = 1;
  4353 void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
  4354   // Check for overwrite.
  4355   struct sigaction oldAct;
  4356   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4357   void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4358                                       : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4359   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4360       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4361       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
  4362     if (AllowUserSignalHandlers || !set_installed) {
  4363       // Do not overwrite; user takes responsibility to forward to us.
  4364       return;
  4365     } else if (UseSignalChaining) {
  4366       if (oktochain) {
  4367         // save the old handler in jvm
  4368         save_preinstalled_handler(sig, oldAct);
  4369       } else {
  4370         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
  4372       // libjsig also interposes the sigaction() call below and saves the
  4373       // old sigaction on it own.
  4374     } else {
  4375       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4376                     "%#lx for signal %d.", (long)oldhand, sig));
  4380   struct sigaction sigAct;
  4381   sigfillset(&(sigAct.sa_mask));
  4382   sigAct.sa_handler = SIG_DFL;
  4384   sigAct.sa_sigaction = signalHandler;
  4385   // Handle SIGSEGV on alternate signal stack if
  4386   // not using stack banging
  4387   if (!UseStackBanging && sig == SIGSEGV) {
  4388     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
  4389   // Interruptible i/o requires SA_RESTART cleared so EINTR
  4390   // is returned instead of restarting system calls
  4391   } else if (sig == os::Solaris::SIGinterrupt()) {
  4392     sigemptyset(&sigAct.sa_mask);
  4393     sigAct.sa_handler = NULL;
  4394     sigAct.sa_flags = SA_SIGINFO;
  4395     sigAct.sa_sigaction = sigINTRHandler;
  4396   } else {
  4397     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
  4399   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
  4401   sigaction(sig, &sigAct, &oldAct);
  4403   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4404                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4405   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4409 #define DO_SIGNAL_CHECK(sig) \
  4410   if (!sigismember(&check_signal_done, sig)) \
  4411     os::Solaris::check_signal_handler(sig)
  4413 // This method is a periodic task to check for misbehaving JNI applications
  4414 // under CheckJNI, we can add any periodic checks here
  4416 void os::run_periodic_checks() {
  4417   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
  4418   // thereby preventing a NULL checks.
  4419   if(!check_addr0_done) check_addr0_done = check_addr0(tty);
  4421   if (check_signals == false) return;
  4423   // SEGV and BUS if overridden could potentially prevent
  4424   // generation of hs*.log in the event of a crash, debugging
  4425   // such a case can be very challenging, so we absolutely
  4426   // check for the following for a good measure:
  4427   DO_SIGNAL_CHECK(SIGSEGV);
  4428   DO_SIGNAL_CHECK(SIGILL);
  4429   DO_SIGNAL_CHECK(SIGFPE);
  4430   DO_SIGNAL_CHECK(SIGBUS);
  4431   DO_SIGNAL_CHECK(SIGPIPE);
  4432   DO_SIGNAL_CHECK(SIGXFSZ);
  4434   // ReduceSignalUsage allows the user to override these handlers
  4435   // see comments at the very top and jvm_solaris.h
  4436   if (!ReduceSignalUsage) {
  4437     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4438     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4439     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4440     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4443   // See comments above for using JVM1/JVM2 and UseAltSigs
  4444   DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
  4445   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
  4449 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4451 static os_sigaction_t os_sigaction = NULL;
  4453 void os::Solaris::check_signal_handler(int sig) {
  4454   char buf[O_BUFLEN];
  4455   address jvmHandler = NULL;
  4457   struct sigaction act;
  4458   if (os_sigaction == NULL) {
  4459     // only trust the default sigaction, in case it has been interposed
  4460     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4461     if (os_sigaction == NULL) return;
  4464   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4466   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4467     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4468     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4471   switch(sig) {
  4472     case SIGSEGV:
  4473     case SIGBUS:
  4474     case SIGFPE:
  4475     case SIGPIPE:
  4476     case SIGXFSZ:
  4477     case SIGILL:
  4478       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4479       break;
  4481     case SHUTDOWN1_SIGNAL:
  4482     case SHUTDOWN2_SIGNAL:
  4483     case SHUTDOWN3_SIGNAL:
  4484     case BREAK_SIGNAL:
  4485       jvmHandler = (address)user_handler();
  4486       break;
  4488     default:
  4489       int intrsig = os::Solaris::SIGinterrupt();
  4490       int asynsig = os::Solaris::SIGasync();
  4492       if (sig == intrsig) {
  4493         jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
  4494       } else if (sig == asynsig) {
  4495         jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4496       } else {
  4497         return;
  4499       break;
  4503   if (thisHandler != jvmHandler) {
  4504     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4505     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4506     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4507     // No need to check this sig any longer
  4508     sigaddset(&check_signal_done, sig);
  4509   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  4510     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4511     tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
  4512     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4513     // No need to check this sig any longer
  4514     sigaddset(&check_signal_done, sig);
  4517   // Print all the signal handler state
  4518   if (sigismember(&check_signal_done, sig)) {
  4519     print_signal_handlers(tty, buf, O_BUFLEN);
  4524 void os::Solaris::install_signal_handlers() {
  4525   bool libjsigdone = false;
  4526   signal_handlers_are_installed = true;
  4528   // signal-chaining
  4529   typedef void (*signal_setting_t)();
  4530   signal_setting_t begin_signal_setting = NULL;
  4531   signal_setting_t end_signal_setting = NULL;
  4532   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4533                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4534   if (begin_signal_setting != NULL) {
  4535     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4536                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4537     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4538                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4539     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
  4540                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
  4541     libjsig_is_loaded = true;
  4542     if (os::Solaris::get_libjsig_version != NULL) {
  4543       libjsigversion =  (*os::Solaris::get_libjsig_version)();
  4545     assert(UseSignalChaining, "should enable signal-chaining");
  4547   if (libjsig_is_loaded) {
  4548     // Tell libjsig jvm is setting signal handlers
  4549     (*begin_signal_setting)();
  4552   set_signal_handler(SIGSEGV, true, true);
  4553   set_signal_handler(SIGPIPE, true, true);
  4554   set_signal_handler(SIGXFSZ, true, true);
  4555   set_signal_handler(SIGBUS, true, true);
  4556   set_signal_handler(SIGILL, true, true);
  4557   set_signal_handler(SIGFPE, true, true);
  4560   if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
  4562     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
  4563     // can not register overridable signals which might be > 32
  4564     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
  4565     // Tell libjsig jvm has finished setting signal handlers
  4566       (*end_signal_setting)();
  4567       libjsigdone = true;
  4571   // Never ok to chain our SIGinterrupt
  4572   set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
  4573   set_signal_handler(os::Solaris::SIGasync(), true, true);
  4575   if (libjsig_is_loaded && !libjsigdone) {
  4576     // Tell libjsig jvm finishes setting signal handlers
  4577     (*end_signal_setting)();
  4580   // We don't activate signal checker if libjsig is in place, we trust ourselves
  4581   // and if UserSignalHandler is installed all bets are off
  4582   if (CheckJNICalls) {
  4583     if (libjsig_is_loaded) {
  4584       tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4585       check_signals = false;
  4587     if (AllowUserSignalHandlers) {
  4588       tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4589       check_signals = false;
  4595 void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
  4597 const char * signames[] = {
  4598   "SIG0",
  4599   "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
  4600   "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
  4601   "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
  4602   "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
  4603   "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
  4604   "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
  4605   "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
  4606   "SIGCANCEL", "SIGLOST"
  4607 };
  4609 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4610   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4611     // signal
  4612     if (exception_code < sizeof(signames)/sizeof(const char*)) {
  4613        jio_snprintf(buf, size, "%s", signames[exception_code]);
  4614     } else {
  4615        jio_snprintf(buf, size, "SIG%d", exception_code);
  4617     return buf;
  4618   } else {
  4619     return NULL;
  4623 // (Static) wrappers for the new libthread API
  4624 int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
  4625 int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
  4626 int_fnP_thread_t_i os::Solaris::_thr_setmutator;
  4627 int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
  4628 int_fnP_thread_t os::Solaris::_thr_continue_mutator;
  4630 // (Static) wrapper for getisax(2) call.
  4631 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
  4633 // (Static) wrappers for the liblgrp API
  4634 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
  4635 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
  4636 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
  4637 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
  4638 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
  4639 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
  4640 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
  4641 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
  4642 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
  4644 // (Static) wrapper for meminfo() call.
  4645 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
  4647 static address resolve_symbol_lazy(const char* name) {
  4648   address addr = (address) dlsym(RTLD_DEFAULT, name);
  4649   if(addr == NULL) {
  4650     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
  4651     addr = (address) dlsym(RTLD_NEXT, name);
  4653   return addr;
  4656 static address resolve_symbol(const char* name) {
  4657   address addr = resolve_symbol_lazy(name);
  4658   if(addr == NULL) {
  4659     fatal(dlerror());
  4661   return addr;
  4666 // isT2_libthread()
  4667 //
  4668 // Routine to determine if we are currently using the new T2 libthread.
  4669 //
  4670 // We determine if we are using T2 by reading /proc/self/lstatus and
  4671 // looking for a thread with the ASLWP bit set.  If we find this status
  4672 // bit set, we must assume that we are NOT using T2.  The T2 team
  4673 // has approved this algorithm.
  4674 //
  4675 // We need to determine if we are running with the new T2 libthread
  4676 // since setting native thread priorities is handled differently
  4677 // when using this library.  All threads created using T2 are bound
  4678 // threads. Calling thr_setprio is meaningless in this case.
  4679 //
  4680 bool isT2_libthread() {
  4681   static prheader_t * lwpArray = NULL;
  4682   static int lwpSize = 0;
  4683   static int lwpFile = -1;
  4684   lwpstatus_t * that;
  4685   char lwpName [128];
  4686   bool isT2 = false;
  4688 #define ADR(x)  ((uintptr_t)(x))
  4689 #define LWPINDEX(ary,ix)   ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
  4691   lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0);
  4692   if (lwpFile < 0) {
  4693       if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
  4694       return false;
  4696   lwpSize = 16*1024;
  4697   for (;;) {
  4698     ::lseek64 (lwpFile, 0, SEEK_SET);
  4699     lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize);
  4700     if (::read(lwpFile, lwpArray, lwpSize) < 0) {
  4701       if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
  4702       break;
  4704     if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
  4705        // We got a good snapshot - now iterate over the list.
  4706       int aslwpcount = 0;
  4707       for (int i = 0; i < lwpArray->pr_nent; i++ ) {
  4708         that = LWPINDEX(lwpArray,i);
  4709         if (that->pr_flags & PR_ASLWP) {
  4710           aslwpcount++;
  4713       if (aslwpcount == 0) isT2 = true;
  4714       break;
  4716     lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
  4717     FREE_C_HEAP_ARRAY(char, lwpArray);  // retry.
  4720   FREE_C_HEAP_ARRAY(char, lwpArray);
  4721   ::close (lwpFile);
  4722   if (ThreadPriorityVerbose) {
  4723     if (isT2) tty->print_cr("We are running with a T2 libthread\n");
  4724     else tty->print_cr("We are not running with a T2 libthread\n");
  4726   return isT2;
  4730 void os::Solaris::libthread_init() {
  4731   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
  4733   // Determine if we are running with the new T2 libthread
  4734   os::Solaris::set_T2_libthread(isT2_libthread());
  4736   lwp_priocntl_init();
  4738   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
  4739   if(func == NULL) {
  4740     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
  4741     // Guarantee that this VM is running on an new enough OS (5.6 or
  4742     // later) that it will have a new enough libthread.so.
  4743     guarantee(func != NULL, "libthread.so is too old.");
  4746   // Initialize the new libthread getstate API wrappers
  4747   func = resolve_symbol("thr_getstate");
  4748   os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
  4750   func = resolve_symbol("thr_setstate");
  4751   os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
  4753   func = resolve_symbol("thr_setmutator");
  4754   os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
  4756   func = resolve_symbol("thr_suspend_mutator");
  4757   os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4759   func = resolve_symbol("thr_continue_mutator");
  4760   os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4762   int size;
  4763   void (*handler_info_func)(address *, int *);
  4764   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
  4765   handler_info_func(&handler_start, &size);
  4766   handler_end = handler_start + size;
  4770 int_fnP_mutex_tP os::Solaris::_mutex_lock;
  4771 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
  4772 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
  4773 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
  4774 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
  4775 int os::Solaris::_mutex_scope = USYNC_THREAD;
  4777 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
  4778 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
  4779 int_fnP_cond_tP os::Solaris::_cond_signal;
  4780 int_fnP_cond_tP os::Solaris::_cond_broadcast;
  4781 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
  4782 int_fnP_cond_tP os::Solaris::_cond_destroy;
  4783 int os::Solaris::_cond_scope = USYNC_THREAD;
  4785 void os::Solaris::synchronization_init() {
  4786   if(UseLWPSynchronization) {
  4787     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
  4788     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
  4789     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
  4790     os::Solaris::set_mutex_init(lwp_mutex_init);
  4791     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
  4792     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4794     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
  4795     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
  4796     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
  4797     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
  4798     os::Solaris::set_cond_init(lwp_cond_init);
  4799     os::Solaris::set_cond_destroy(lwp_cond_destroy);
  4800     os::Solaris::set_cond_scope(USYNC_THREAD);
  4802   else {
  4803     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4804     os::Solaris::set_cond_scope(USYNC_THREAD);
  4806     if(UsePthreads) {
  4807       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
  4808       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
  4809       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
  4810       os::Solaris::set_mutex_init(pthread_mutex_default_init);
  4811       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
  4813       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
  4814       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
  4815       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
  4816       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
  4817       os::Solaris::set_cond_init(pthread_cond_default_init);
  4818       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
  4820     else {
  4821       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
  4822       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
  4823       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
  4824       os::Solaris::set_mutex_init(::mutex_init);
  4825       os::Solaris::set_mutex_destroy(::mutex_destroy);
  4827       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
  4828       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
  4829       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
  4830       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
  4831       os::Solaris::set_cond_init(::cond_init);
  4832       os::Solaris::set_cond_destroy(::cond_destroy);
  4837 bool os::Solaris::liblgrp_init() {
  4838   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
  4839   if (handle != NULL) {
  4840     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
  4841     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
  4842     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
  4843     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
  4844     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
  4845     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
  4846     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
  4847     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
  4848                                        dlsym(handle, "lgrp_cookie_stale")));
  4850     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
  4851     set_lgrp_cookie(c);
  4852     return true;
  4854   return false;
  4857 void os::Solaris::misc_sym_init() {
  4858   address func;
  4860   // getisax
  4861   func = resolve_symbol_lazy("getisax");
  4862   if (func != NULL) {
  4863     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
  4866   // meminfo
  4867   func = resolve_symbol_lazy("meminfo");
  4868   if (func != NULL) {
  4869     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
  4873 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
  4874   assert(_getisax != NULL, "_getisax not set");
  4875   return _getisax(array, n);
  4878 // Symbol doesn't exist in Solaris 8 pset.h
  4879 #ifndef PS_MYID
  4880 #define PS_MYID -3
  4881 #endif
  4883 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
  4884 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
  4885 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
  4887 void init_pset_getloadavg_ptr(void) {
  4888   pset_getloadavg_ptr =
  4889     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
  4890   if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
  4891     warning("pset_getloadavg function not found");
  4895 int os::Solaris::_dev_zero_fd = -1;
  4897 // this is called _before_ the global arguments have been parsed
  4898 void os::init(void) {
  4899   _initial_pid = getpid();
  4901   max_hrtime = first_hrtime = gethrtime();
  4903   init_random(1234567);
  4905   page_size = sysconf(_SC_PAGESIZE);
  4906   if (page_size == -1)
  4907     fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
  4908                   strerror(errno)));
  4909   init_page_sizes((size_t) page_size);
  4911   Solaris::initialize_system_info();
  4913   // Initialize misc. symbols as soon as possible, so we can use them
  4914   // if we need them.
  4915   Solaris::misc_sym_init();
  4917   int fd = ::open("/dev/zero", O_RDWR);
  4918   if (fd < 0) {
  4919     fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
  4920   } else {
  4921     Solaris::set_dev_zero_fd(fd);
  4923     // Close on exec, child won't inherit.
  4924     fcntl(fd, F_SETFD, FD_CLOEXEC);
  4927   clock_tics_per_sec = CLK_TCK;
  4929   // check if dladdr1() exists; dladdr1 can provide more information than
  4930   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
  4931   // and is available on linker patches for 5.7 and 5.8.
  4932   // libdl.so must have been loaded, this call is just an entry lookup
  4933   void * hdl = dlopen("libdl.so", RTLD_NOW);
  4934   if (hdl)
  4935     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
  4937   // (Solaris only) this switches to calls that actually do locking.
  4938   ThreadCritical::initialize();
  4940   main_thread = thr_self();
  4942   // Constant minimum stack size allowed. It must be at least
  4943   // the minimum of what the OS supports (thr_min_stack()), and
  4944   // enough to allow the thread to get to user bytecode execution.
  4945   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
  4946   // If the pagesize of the VM is greater than 8K determine the appropriate
  4947   // number of initial guard pages.  The user can change this with the
  4948   // command line arguments, if needed.
  4949   if (vm_page_size() > 8*K) {
  4950     StackYellowPages = 1;
  4951     StackRedPages = 1;
  4952     StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
  4956 // To install functions for atexit system call
  4957 extern "C" {
  4958   static void perfMemory_exit_helper() {
  4959     perfMemory_exit();
  4963 // this is called _after_ the global arguments have been parsed
  4964 jint os::init_2(void) {
  4965   // try to enable extended file IO ASAP, see 6431278
  4966   os::Solaris::try_enable_extended_io();
  4968   // Allocate a single page and mark it as readable for safepoint polling.  Also
  4969   // use this first mmap call to check support for MAP_ALIGN.
  4970   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
  4971                                                       page_size,
  4972                                                       MAP_PRIVATE | MAP_ALIGN,
  4973                                                       PROT_READ);
  4974   if (polling_page == NULL) {
  4975     has_map_align = false;
  4976     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
  4977                                                 PROT_READ);
  4980   os::set_polling_page(polling_page);
  4982 #ifndef PRODUCT
  4983   if( Verbose && PrintMiscellaneous )
  4984     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4985 #endif
  4987   if (!UseMembar) {
  4988     address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
  4989     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  4990     os::set_memory_serialize_page( mem_serialize_page );
  4992 #ifndef PRODUCT
  4993     if(Verbose && PrintMiscellaneous)
  4994       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4995 #endif
  4998   os::large_page_init();
  5000   // Check minimum allowable stack size for thread creation and to initialize
  5001   // the java system classes, including StackOverflowError - depends on page
  5002   // size.  Add a page for compiler2 recursion in main thread.
  5003   // Add in 2*BytesPerWord times page size to account for VM stack during
  5004   // class initialization depending on 32 or 64 bit VM.
  5005   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
  5006             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  5007                     2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
  5009   size_t threadStackSizeInBytes = ThreadStackSize * K;
  5010   if (threadStackSizeInBytes != 0 &&
  5011     threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
  5012     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
  5013                   os::Solaris::min_stack_allowed/K);
  5014     return JNI_ERR;
  5017   // For 64kbps there will be a 64kb page size, which makes
  5018   // the usable default stack size quite a bit less.  Increase the
  5019   // stack for 64kb (or any > than 8kb) pages, this increases
  5020   // virtual memory fragmentation (since we're not creating the
  5021   // stack on a power of 2 boundary.  The real fix for this
  5022   // should be to fix the guard page mechanism.
  5024   if (vm_page_size() > 8*K) {
  5025       threadStackSizeInBytes = (threadStackSizeInBytes != 0)
  5026          ? threadStackSizeInBytes +
  5027            ((StackYellowPages + StackRedPages) * vm_page_size())
  5028          : 0;
  5029       ThreadStackSize = threadStackSizeInBytes/K;
  5032   // Make the stack size a multiple of the page size so that
  5033   // the yellow/red zones can be guarded.
  5034   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5035         vm_page_size()));
  5037   Solaris::libthread_init();
  5039   if (UseNUMA) {
  5040     if (!Solaris::liblgrp_init()) {
  5041       UseNUMA = false;
  5042     } else {
  5043       size_t lgrp_limit = os::numa_get_groups_num();
  5044       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit);
  5045       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
  5046       FREE_C_HEAP_ARRAY(int, lgrp_ids);
  5047       if (lgrp_num < 2) {
  5048         // There's only one locality group, disable NUMA.
  5049         UseNUMA = false;
  5052     // ISM is not compatible with the NUMA allocator - it always allocates
  5053     // pages round-robin across the lgroups.
  5054     if (UseNUMA && UseLargePages && UseISM) {
  5055       if (!FLAG_IS_DEFAULT(UseNUMA)) {
  5056         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseISM)) {
  5057           UseLargePages = false;
  5058         } else {
  5059           warning("UseNUMA is not compatible with ISM large pages, disabling NUMA allocator");
  5060           UseNUMA = false;
  5062       } else {
  5063         UseNUMA = false;
  5066     if (!UseNUMA && ForceNUMA) {
  5067       UseNUMA = true;
  5071   Solaris::signal_sets_init();
  5072   Solaris::init_signal_mem();
  5073   Solaris::install_signal_handlers();
  5075   if (libjsigversion < JSIG_VERSION_1_4_1) {
  5076     Maxlibjsigsigs = OLDMAXSIGNUM;
  5079   // initialize synchronization primitives to use either thread or
  5080   // lwp synchronization (controlled by UseLWPSynchronization)
  5081   Solaris::synchronization_init();
  5083   if (MaxFDLimit) {
  5084     // set the number of file descriptors to max. print out error
  5085     // if getrlimit/setrlimit fails but continue regardless.
  5086     struct rlimit nbr_files;
  5087     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5088     if (status != 0) {
  5089       if (PrintMiscellaneous && (Verbose || WizardMode))
  5090         perror("os::init_2 getrlimit failed");
  5091     } else {
  5092       nbr_files.rlim_cur = nbr_files.rlim_max;
  5093       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5094       if (status != 0) {
  5095         if (PrintMiscellaneous && (Verbose || WizardMode))
  5096           perror("os::init_2 setrlimit failed");
  5101   // Calculate theoretical max. size of Threads to guard gainst
  5102   // artifical out-of-memory situations, where all available address-
  5103   // space has been reserved by thread stacks. Default stack size is 1Mb.
  5104   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
  5105     JavaThread::stack_size_at_create() : (1*K*K);
  5106   assert(pre_thread_stack_size != 0, "Must have a stack");
  5107   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
  5108   // we should start doing Virtual Memory banging. Currently when the threads will
  5109   // have used all but 200Mb of space.
  5110   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
  5111   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
  5113   // at-exit methods are called in the reverse order of their registration.
  5114   // In Solaris 7 and earlier, atexit functions are called on return from
  5115   // main or as a result of a call to exit(3C). There can be only 32 of
  5116   // these functions registered and atexit() does not set errno. In Solaris
  5117   // 8 and later, there is no limit to the number of functions registered
  5118   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
  5119   // functions are called upon dlclose(3DL) in addition to return from main
  5120   // and exit(3C).
  5122   if (PerfAllowAtExitRegistration) {
  5123     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5124     // atexit functions can be delayed until process exit time, which
  5125     // can be problematic for embedded VM situations. Embedded VMs should
  5126     // call DestroyJavaVM() to assure that VM resources are released.
  5128     // note: perfMemory_exit_helper atexit function may be removed in
  5129     // the future if the appropriate cleanup code can be added to the
  5130     // VM_Exit VMOperation's doit method.
  5131     if (atexit(perfMemory_exit_helper) != 0) {
  5132       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  5136   // Init pset_loadavg function pointer
  5137   init_pset_getloadavg_ptr();
  5139   return JNI_OK;
  5142 void os::init_3(void) {
  5143   return;
  5146 // Mark the polling page as unreadable
  5147 void os::make_polling_page_unreadable(void) {
  5148   if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
  5149     fatal("Could not disable polling page");
  5150 };
  5152 // Mark the polling page as readable
  5153 void os::make_polling_page_readable(void) {
  5154   if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
  5155     fatal("Could not enable polling page");
  5156 };
  5158 // OS interface.
  5160 bool os::check_heap(bool force) { return true; }
  5162 typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
  5163 static vsnprintf_t sol_vsnprintf = NULL;
  5165 int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
  5166   if (!sol_vsnprintf) {
  5167     //search  for the named symbol in the objects that were loaded after libjvm
  5168     void* where = RTLD_NEXT;
  5169     if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5170         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5171     if (!sol_vsnprintf){
  5172       //search  for the named symbol in the objects that were loaded before libjvm
  5173       where = RTLD_DEFAULT;
  5174       if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5175         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5176       assert(sol_vsnprintf != NULL, "vsnprintf not found");
  5179   return (*sol_vsnprintf)(buf, count, fmt, argptr);
  5183 // Is a (classpath) directory empty?
  5184 bool os::dir_is_empty(const char* path) {
  5185   DIR *dir = NULL;
  5186   struct dirent *ptr;
  5188   dir = opendir(path);
  5189   if (dir == NULL) return true;
  5191   /* Scan the directory */
  5192   bool result = true;
  5193   char buf[sizeof(struct dirent) + MAX_PATH];
  5194   struct dirent *dbuf = (struct dirent *) buf;
  5195   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
  5196     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5197       result = false;
  5200   closedir(dir);
  5201   return result;
  5204 // This code originates from JDK's sysOpen and open64_w
  5205 // from src/solaris/hpi/src/system_md.c
  5207 #ifndef O_DELETE
  5208 #define O_DELETE 0x10000
  5209 #endif
  5211 // Open a file. Unlink the file immediately after open returns
  5212 // if the specified oflag has the O_DELETE flag set.
  5213 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5215 int os::open(const char *path, int oflag, int mode) {
  5216   if (strlen(path) > MAX_PATH - 1) {
  5217     errno = ENAMETOOLONG;
  5218     return -1;
  5220   int fd;
  5221   int o_delete = (oflag & O_DELETE);
  5222   oflag = oflag & ~O_DELETE;
  5224   fd = ::open64(path, oflag, mode);
  5225   if (fd == -1) return -1;
  5227   //If the open succeeded, the file might still be a directory
  5229     struct stat64 buf64;
  5230     int ret = ::fstat64(fd, &buf64);
  5231     int st_mode = buf64.st_mode;
  5233     if (ret != -1) {
  5234       if ((st_mode & S_IFMT) == S_IFDIR) {
  5235         errno = EISDIR;
  5236         ::close(fd);
  5237         return -1;
  5239     } else {
  5240       ::close(fd);
  5241       return -1;
  5244     /*
  5245      * 32-bit Solaris systems suffer from:
  5247      * - an historical default soft limit of 256 per-process file
  5248      *   descriptors that is too low for many Java programs.
  5250      * - a design flaw where file descriptors created using stdio
  5251      *   fopen must be less than 256, _even_ when the first limit above
  5252      *   has been raised.  This can cause calls to fopen (but not calls to
  5253      *   open, for example) to fail mysteriously, perhaps in 3rd party
  5254      *   native code (although the JDK itself uses fopen).  One can hardly
  5255      *   criticize them for using this most standard of all functions.
  5257      * We attempt to make everything work anyways by:
  5259      * - raising the soft limit on per-process file descriptors beyond
  5260      *   256
  5262      * - As of Solaris 10u4, we can request that Solaris raise the 256
  5263      *   stdio fopen limit by calling function enable_extended_FILE_stdio.
  5264      *   This is done in init_2 and recorded in enabled_extended_FILE_stdio
  5266      * - If we are stuck on an old (pre 10u4) Solaris system, we can
  5267      *   workaround the bug by remapping non-stdio file descriptors below
  5268      *   256 to ones beyond 256, which is done below.
  5270      * See:
  5271      * 1085341: 32-bit stdio routines should support file descriptors >255
  5272      * 6533291: Work around 32-bit Solaris stdio limit of 256 open files
  5273      * 6431278: Netbeans crash on 32 bit Solaris: need to call
  5274      *          enable_extended_FILE_stdio() in VM initialisation
  5275      * Giri Mandalika's blog
  5276      * http://technopark02.blogspot.com/2005_05_01_archive.html
  5277      */
  5278 #ifndef  _LP64
  5279      if ((!enabled_extended_FILE_stdio) && fd < 256) {
  5280          int newfd = ::fcntl(fd, F_DUPFD, 256);
  5281          if (newfd != -1) {
  5282              ::close(fd);
  5283              fd = newfd;
  5286 #endif // 32-bit Solaris
  5287     /*
  5288      * All file descriptors that are opened in the JVM and not
  5289      * specifically destined for a subprocess should have the
  5290      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5291      * party native code might fork and exec without closing all
  5292      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5293      * UNIXProcess.c), and this in turn might:
  5295      * - cause end-of-file to fail to be detected on some file
  5296      *   descriptors, resulting in mysterious hangs, or
  5298      * - might cause an fopen in the subprocess to fail on a system
  5299      *   suffering from bug 1085341.
  5301      * (Yes, the default setting of the close-on-exec flag is a Unix
  5302      * design flaw)
  5304      * See:
  5305      * 1085341: 32-bit stdio routines should support file descriptors >255
  5306      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5307      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5308      */
  5309 #ifdef FD_CLOEXEC
  5311         int flags = ::fcntl(fd, F_GETFD);
  5312         if (flags != -1)
  5313             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5315 #endif
  5317   if (o_delete != 0) {
  5318     ::unlink(path);
  5320   return fd;
  5323 // create binary file, rewriting existing file if required
  5324 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5325   int oflags = O_WRONLY | O_CREAT;
  5326   if (!rewrite_existing) {
  5327     oflags |= O_EXCL;
  5329   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5332 // return current position of file pointer
  5333 jlong os::current_file_offset(int fd) {
  5334   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5337 // move file pointer to the specified offset
  5338 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5339   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5342 jlong os::lseek(int fd, jlong offset, int whence) {
  5343   return (jlong) ::lseek64(fd, offset, whence);
  5346 char * os::native_path(char *path) {
  5347   return path;
  5350 int os::ftruncate(int fd, jlong length) {
  5351   return ::ftruncate64(fd, length);
  5354 int os::fsync(int fd)  {
  5355   RESTARTABLE_RETURN_INT(::fsync(fd));
  5358 int os::available(int fd, jlong *bytes) {
  5359   jlong cur, end;
  5360   int mode;
  5361   struct stat64 buf64;
  5363   if (::fstat64(fd, &buf64) >= 0) {
  5364     mode = buf64.st_mode;
  5365     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5366       /*
  5367       * XXX: is the following call interruptible? If so, this might
  5368       * need to go through the INTERRUPT_IO() wrapper as for other
  5369       * blocking, interruptible calls in this file.
  5370       */
  5371       int n,ioctl_return;
  5373       INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
  5374       if (ioctl_return>= 0) {
  5375           *bytes = n;
  5376         return 1;
  5380   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5381     return 0;
  5382   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5383     return 0;
  5384   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5385     return 0;
  5387   *bytes = end - cur;
  5388   return 1;
  5391 // Map a block of memory.
  5392 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  5393                      char *addr, size_t bytes, bool read_only,
  5394                      bool allow_exec) {
  5395   int prot;
  5396   int flags;
  5398   if (read_only) {
  5399     prot = PROT_READ;
  5400     flags = MAP_SHARED;
  5401   } else {
  5402     prot = PROT_READ | PROT_WRITE;
  5403     flags = MAP_PRIVATE;
  5406   if (allow_exec) {
  5407     prot |= PROT_EXEC;
  5410   if (addr != NULL) {
  5411     flags |= MAP_FIXED;
  5414   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5415                                      fd, file_offset);
  5416   if (mapped_address == MAP_FAILED) {
  5417     return NULL;
  5419   return mapped_address;
  5423 // Remap a block of memory.
  5424 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  5425                        char *addr, size_t bytes, bool read_only,
  5426                        bool allow_exec) {
  5427   // same as map_memory() on this OS
  5428   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5429                         allow_exec);
  5433 // Unmap a block of memory.
  5434 bool os::unmap_memory(char* addr, size_t bytes) {
  5435   return munmap(addr, bytes) == 0;
  5438 void os::pause() {
  5439   char filename[MAX_PATH];
  5440   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5441     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5442   } else {
  5443     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5446   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5447   if (fd != -1) {
  5448     struct stat buf;
  5449     ::close(fd);
  5450     while (::stat(filename, &buf) == 0) {
  5451       (void)::poll(NULL, 0, 100);
  5453   } else {
  5454     jio_fprintf(stderr,
  5455       "Could not open pause file '%s', continuing immediately.\n", filename);
  5459 #ifndef PRODUCT
  5460 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5461 // Turn this on if you need to trace synch operations.
  5462 // Set RECORD_SYNCH_LIMIT to a large-enough value,
  5463 // and call record_synch_enable and record_synch_disable
  5464 // around the computation of interest.
  5466 void record_synch(char* name, bool returning);  // defined below
  5468 class RecordSynch {
  5469   char* _name;
  5470  public:
  5471   RecordSynch(char* name) :_name(name)
  5472                  { record_synch(_name, false); }
  5473   ~RecordSynch() { record_synch(_name,   true);  }
  5474 };
  5476 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
  5477 extern "C" ret name params {                                    \
  5478   typedef ret name##_t params;                                  \
  5479   static name##_t* implem = NULL;                               \
  5480   static int callcount = 0;                                     \
  5481   if (implem == NULL) {                                         \
  5482     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
  5483     if (implem == NULL)  fatal(dlerror());                      \
  5484   }                                                             \
  5485   ++callcount;                                                  \
  5486   RecordSynch _rs(#name);                                       \
  5487   inner;                                                        \
  5488   return implem args;                                           \
  5490 // in dbx, examine callcounts this way:
  5491 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
  5493 #define CHECK_POINTER_OK(p) \
  5494   (Universe::perm_gen() == NULL || !Universe::is_reserved_heap((oop)(p)))
  5495 #define CHECK_MU \
  5496   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
  5497 #define CHECK_CV \
  5498   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
  5499 #define CHECK_P(p) \
  5500   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
  5502 #define CHECK_MUTEX(mutex_op) \
  5503 CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
  5505 CHECK_MUTEX(   mutex_lock)
  5506 CHECK_MUTEX(  _mutex_lock)
  5507 CHECK_MUTEX( mutex_unlock)
  5508 CHECK_MUTEX(_mutex_unlock)
  5509 CHECK_MUTEX( mutex_trylock)
  5510 CHECK_MUTEX(_mutex_trylock)
  5512 #define CHECK_COND(cond_op) \
  5513 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
  5515 CHECK_COND( cond_wait);
  5516 CHECK_COND(_cond_wait);
  5517 CHECK_COND(_cond_wait_cancel);
  5519 #define CHECK_COND2(cond_op) \
  5520 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
  5522 CHECK_COND2( cond_timedwait);
  5523 CHECK_COND2(_cond_timedwait);
  5524 CHECK_COND2(_cond_timedwait_cancel);
  5526 // do the _lwp_* versions too
  5527 #define mutex_t lwp_mutex_t
  5528 #define cond_t  lwp_cond_t
  5529 CHECK_MUTEX(  _lwp_mutex_lock)
  5530 CHECK_MUTEX(  _lwp_mutex_unlock)
  5531 CHECK_MUTEX(  _lwp_mutex_trylock)
  5532 CHECK_MUTEX( __lwp_mutex_lock)
  5533 CHECK_MUTEX( __lwp_mutex_unlock)
  5534 CHECK_MUTEX( __lwp_mutex_trylock)
  5535 CHECK_MUTEX(___lwp_mutex_lock)
  5536 CHECK_MUTEX(___lwp_mutex_unlock)
  5538 CHECK_COND(  _lwp_cond_wait);
  5539 CHECK_COND( __lwp_cond_wait);
  5540 CHECK_COND(___lwp_cond_wait);
  5542 CHECK_COND2(  _lwp_cond_timedwait);
  5543 CHECK_COND2( __lwp_cond_timedwait);
  5544 #undef mutex_t
  5545 #undef cond_t
  5547 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5548 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5549 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5550 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5551 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5552 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5553 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5554 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5557 // recording machinery:
  5559 enum { RECORD_SYNCH_LIMIT = 200 };
  5560 char* record_synch_name[RECORD_SYNCH_LIMIT];
  5561 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
  5562 bool record_synch_returning[RECORD_SYNCH_LIMIT];
  5563 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
  5564 int record_synch_count = 0;
  5565 bool record_synch_enabled = false;
  5567 // in dbx, examine recorded data this way:
  5568 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
  5570 void record_synch(char* name, bool returning) {
  5571   if (record_synch_enabled) {
  5572     if (record_synch_count < RECORD_SYNCH_LIMIT) {
  5573       record_synch_name[record_synch_count] = name;
  5574       record_synch_returning[record_synch_count] = returning;
  5575       record_synch_thread[record_synch_count] = thr_self();
  5576       record_synch_arg0ptr[record_synch_count] = &name;
  5577       record_synch_count++;
  5579     // put more checking code here:
  5580     // ...
  5584 void record_synch_enable() {
  5585   // start collecting trace data, if not already doing so
  5586   if (!record_synch_enabled)  record_synch_count = 0;
  5587   record_synch_enabled = true;
  5590 void record_synch_disable() {
  5591   // stop collecting trace data
  5592   record_synch_enabled = false;
  5595 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5596 #endif // PRODUCT
  5598 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5599 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
  5600                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5603 // JVMTI & JVM monitoring and management support
  5604 // The thread_cpu_time() and current_thread_cpu_time() are only
  5605 // supported if is_thread_cpu_time_supported() returns true.
  5606 // They are not supported on Solaris T1.
  5608 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5609 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5610 // of a thread.
  5611 //
  5612 // current_thread_cpu_time() and thread_cpu_time(Thread *)
  5613 // returns the fast estimate available on the platform.
  5615 // hrtime_t gethrvtime() return value includes
  5616 // user time but does not include system time
  5617 jlong os::current_thread_cpu_time() {
  5618   return (jlong) gethrvtime();
  5621 jlong os::thread_cpu_time(Thread *thread) {
  5622   // return user level CPU time only to be consistent with
  5623   // what current_thread_cpu_time returns.
  5624   // thread_cpu_time_info() must be changed if this changes
  5625   return os::thread_cpu_time(thread, false /* user time only */);
  5628 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5629   if (user_sys_cpu_time) {
  5630     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5631   } else {
  5632     return os::current_thread_cpu_time();
  5636 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5637   char proc_name[64];
  5638   int count;
  5639   prusage_t prusage;
  5640   jlong lwp_time;
  5641   int fd;
  5643   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
  5644                      getpid(),
  5645                      thread->osthread()->lwp_id());
  5646   fd = ::open(proc_name, O_RDONLY);
  5647   if ( fd == -1 ) return -1;
  5649   do {
  5650     count = ::pread(fd,
  5651                   (void *)&prusage.pr_utime,
  5652                   thr_time_size,
  5653                   thr_time_off);
  5654   } while (count < 0 && errno == EINTR);
  5655   ::close(fd);
  5656   if ( count < 0 ) return -1;
  5658   if (user_sys_cpu_time) {
  5659     // user + system CPU time
  5660     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
  5661                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
  5662                  (jlong)prusage.pr_stime.tv_nsec +
  5663                  (jlong)prusage.pr_utime.tv_nsec;
  5664   } else {
  5665     // user level CPU time only
  5666     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
  5667                 (jlong)prusage.pr_utime.tv_nsec;
  5670   return(lwp_time);
  5673 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5674   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5675   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5676   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5677   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5680 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5681   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5682   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5683   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5684   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5687 bool os::is_thread_cpu_time_supported() {
  5688   if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
  5689     return true;
  5690   } else {
  5691     return false;
  5695 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5696 // Return the load average for our processor set if the primitive exists
  5697 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
  5698 int os::loadavg(double loadavg[], int nelem) {
  5699   if (pset_getloadavg_ptr != NULL) {
  5700     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
  5701   } else {
  5702     return ::getloadavg(loadavg, nelem);
  5706 //---------------------------------------------------------------------------------
  5708 static address same_page(address x, address y) {
  5709   intptr_t page_bits = -os::vm_page_size();
  5710   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  5711     return x;
  5712   else if (x > y)
  5713     return (address)(intptr_t(y) | ~page_bits) + 1;
  5714   else
  5715     return (address)(intptr_t(y) & page_bits);
  5718 bool os::find(address addr, outputStream* st) {
  5719   Dl_info dlinfo;
  5720   memset(&dlinfo, 0, sizeof(dlinfo));
  5721   if (dladdr(addr, &dlinfo)) {
  5722 #ifdef _LP64
  5723     st->print("0x%016lx: ", addr);
  5724 #else
  5725     st->print("0x%08x: ", addr);
  5726 #endif
  5727     if (dlinfo.dli_sname != NULL)
  5728       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
  5729     else if (dlinfo.dli_fname)
  5730       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
  5731     else
  5732       st->print("<absolute address>");
  5733     if (dlinfo.dli_fname)  st->print(" in %s", dlinfo.dli_fname);
  5734 #ifdef _LP64
  5735     if (dlinfo.dli_fbase)  st->print(" at 0x%016lx", dlinfo.dli_fbase);
  5736 #else
  5737     if (dlinfo.dli_fbase)  st->print(" at 0x%08x", dlinfo.dli_fbase);
  5738 #endif
  5739     st->cr();
  5741     if (Verbose) {
  5742       // decode some bytes around the PC
  5743       address begin = same_page(addr-40, addr);
  5744       address end   = same_page(addr+40, addr);
  5745       address       lowest = (address) dlinfo.dli_sname;
  5746       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5747       if (begin < lowest)  begin = lowest;
  5748       Dl_info dlinfo2;
  5749       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5750           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5751         end = (address) dlinfo2.dli_saddr;
  5752       Disassembler::decode(begin, end, st);
  5754     return true;
  5756   return false;
  5759 // Following function has been added to support HotSparc's libjvm.so running
  5760 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
  5761 // src/solaris/hpi/native_threads in the EVM codebase.
  5762 //
  5763 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
  5764 // libraries and should thus be removed. We will leave it behind for a while
  5765 // until we no longer want to able to run on top of 1.3.0 Solaris production
  5766 // JDK. See 4341971.
  5768 #define STACK_SLACK 0x800
  5770 extern "C" {
  5771   intptr_t sysThreadAvailableStackWithSlack() {
  5772     stack_t st;
  5773     intptr_t retval, stack_top;
  5774     retval = thr_stksegment(&st);
  5775     assert(retval == 0, "incorrect return value from thr_stksegment");
  5776     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
  5777     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
  5778     stack_top=(intptr_t)st.ss_sp-st.ss_size;
  5779     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
  5783 // Just to get the Kernel build to link on solaris for testing.
  5785 extern "C" {
  5786 class ASGCT_CallTrace;
  5787 void AsyncGetCallTrace(ASGCT_CallTrace *trace, jint depth, void* ucontext)
  5788   KERNEL_RETURN;
  5792 // ObjectMonitor park-unpark infrastructure ...
  5793 //
  5794 // We implement Solaris and Linux PlatformEvents with the
  5795 // obvious condvar-mutex-flag triple.
  5796 // Another alternative that works quite well is pipes:
  5797 // Each PlatformEvent consists of a pipe-pair.
  5798 // The thread associated with the PlatformEvent
  5799 // calls park(), which reads from the input end of the pipe.
  5800 // Unpark() writes into the other end of the pipe.
  5801 // The write-side of the pipe must be set NDELAY.
  5802 // Unfortunately pipes consume a large # of handles.
  5803 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
  5804 // Using pipes for the 1st few threads might be workable, however.
  5805 //
  5806 // park() is permitted to return spuriously.
  5807 // Callers of park() should wrap the call to park() in
  5808 // an appropriate loop.  A litmus test for the correct
  5809 // usage of park is the following: if park() were modified
  5810 // to immediately return 0 your code should still work,
  5811 // albeit degenerating to a spin loop.
  5812 //
  5813 // An interesting optimization for park() is to use a trylock()
  5814 // to attempt to acquire the mutex.  If the trylock() fails
  5815 // then we know that a concurrent unpark() operation is in-progress.
  5816 // in that case the park() code could simply set _count to 0
  5817 // and return immediately.  The subsequent park() operation *might*
  5818 // return immediately.  That's harmless as the caller of park() is
  5819 // expected to loop.  By using trylock() we will have avoided a
  5820 // avoided a context switch caused by contention on the per-thread mutex.
  5821 //
  5822 // TODO-FIXME:
  5823 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
  5824 //     objectmonitor implementation.
  5825 // 2.  Collapse the JSR166 parker event, and the
  5826 //     objectmonitor ParkEvent into a single "Event" construct.
  5827 // 3.  In park() and unpark() add:
  5828 //     assert (Thread::current() == AssociatedWith).
  5829 // 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
  5830 //     1-out-of-N park() operations will return immediately.
  5831 //
  5832 // _Event transitions in park()
  5833 //   -1 => -1 : illegal
  5834 //    1 =>  0 : pass - return immediately
  5835 //    0 => -1 : block
  5836 //
  5837 // _Event serves as a restricted-range semaphore.
  5838 //
  5839 // Another possible encoding of _Event would be with
  5840 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
  5841 //
  5842 // TODO-FIXME: add DTRACE probes for:
  5843 // 1.   Tx parks
  5844 // 2.   Ty unparks Tx
  5845 // 3.   Tx resumes from park
  5848 // value determined through experimentation
  5849 #define ROUNDINGFIX 11
  5851 // utility to compute the abstime argument to timedwait.
  5852 // TODO-FIXME: switch from compute_abstime() to unpackTime().
  5854 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
  5855   // millis is the relative timeout time
  5856   // abstime will be the absolute timeout time
  5857   if (millis < 0)  millis = 0;
  5858   struct timeval now;
  5859   int status = gettimeofday(&now, NULL);
  5860   assert(status == 0, "gettimeofday");
  5861   jlong seconds = millis / 1000;
  5862   jlong max_wait_period;
  5864   if (UseLWPSynchronization) {
  5865     // forward port of fix for 4275818 (not sleeping long enough)
  5866     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
  5867     // _lwp_cond_timedwait() used a round_down algorithm rather
  5868     // than a round_up. For millis less than our roundfactor
  5869     // it rounded down to 0 which doesn't meet the spec.
  5870     // For millis > roundfactor we may return a bit sooner, but
  5871     // since we can not accurately identify the patch level and
  5872     // this has already been fixed in Solaris 9 and 8 we will
  5873     // leave it alone rather than always rounding down.
  5875     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
  5876        // It appears that when we go directly through Solaris _lwp_cond_timedwait()
  5877            // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
  5878            max_wait_period = 21000000;
  5879   } else {
  5880     max_wait_period = 50000000;
  5882   millis %= 1000;
  5883   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
  5884      seconds = max_wait_period;
  5886   abstime->tv_sec = now.tv_sec  + seconds;
  5887   long       usec = now.tv_usec + millis * 1000;
  5888   if (usec >= 1000000) {
  5889     abstime->tv_sec += 1;
  5890     usec -= 1000000;
  5892   abstime->tv_nsec = usec * 1000;
  5893   return abstime;
  5896 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5897 // Conceptually TryPark() should be equivalent to park(0).
  5899 int os::PlatformEvent::TryPark() {
  5900   for (;;) {
  5901     const int v = _Event ;
  5902     guarantee ((v == 0) || (v == 1), "invariant") ;
  5903     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5907 void os::PlatformEvent::park() {           // AKA: down()
  5908   // Invariant: Only the thread associated with the Event/PlatformEvent
  5909   // may call park().
  5910   int v ;
  5911   for (;;) {
  5912       v = _Event ;
  5913       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5915   guarantee (v >= 0, "invariant") ;
  5916   if (v == 0) {
  5917      // Do this the hard way by blocking ...
  5918      // See http://monaco.sfbay/detail.jsf?cr=5094058.
  5919      // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  5920      // Only for SPARC >= V8PlusA
  5921 #if defined(__sparc) && defined(COMPILER2)
  5922      if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  5923 #endif
  5924      int status = os::Solaris::mutex_lock(_mutex);
  5925      assert_status(status == 0, status,  "mutex_lock");
  5926      guarantee (_nParked == 0, "invariant") ;
  5927      ++ _nParked ;
  5928      while (_Event < 0) {
  5929         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5930         // Treat this the same as if the wait was interrupted
  5931         // With usr/lib/lwp going to kernel, always handle ETIME
  5932         status = os::Solaris::cond_wait(_cond, _mutex);
  5933         if (status == ETIME) status = EINTR ;
  5934         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5936      -- _nParked ;
  5937      _Event = 0 ;
  5938      status = os::Solaris::mutex_unlock(_mutex);
  5939      assert_status(status == 0, status, "mutex_unlock");
  5943 int os::PlatformEvent::park(jlong millis) {
  5944   guarantee (_nParked == 0, "invariant") ;
  5945   int v ;
  5946   for (;;) {
  5947       v = _Event ;
  5948       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5950   guarantee (v >= 0, "invariant") ;
  5951   if (v != 0) return OS_OK ;
  5953   int ret = OS_TIMEOUT;
  5954   timestruc_t abst;
  5955   compute_abstime (&abst, millis);
  5957   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  5958   // For Solaris SPARC set fprs.FEF=0 prior to parking.
  5959   // Only for SPARC >= V8PlusA
  5960 #if defined(__sparc) && defined(COMPILER2)
  5961  if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  5962 #endif
  5963   int status = os::Solaris::mutex_lock(_mutex);
  5964   assert_status(status == 0, status, "mutex_lock");
  5965   guarantee (_nParked == 0, "invariant") ;
  5966   ++ _nParked ;
  5967   while (_Event < 0) {
  5968      int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
  5969      assert_status(status == 0 || status == EINTR ||
  5970                    status == ETIME || status == ETIMEDOUT,
  5971                    status, "cond_timedwait");
  5972      if (!FilterSpuriousWakeups) break ;                // previous semantics
  5973      if (status == ETIME || status == ETIMEDOUT) break ;
  5974      // We consume and ignore EINTR and spurious wakeups.
  5976   -- _nParked ;
  5977   if (_Event >= 0) ret = OS_OK ;
  5978   _Event = 0 ;
  5979   status = os::Solaris::mutex_unlock(_mutex);
  5980   assert_status(status == 0, status, "mutex_unlock");
  5981   return ret;
  5984 void os::PlatformEvent::unpark() {
  5985   int v, AnyWaiters;
  5987   // Increment _Event.
  5988   // Another acceptable implementation would be to simply swap 1
  5989   // into _Event:
  5990   //   if (Swap (&_Event, 1) < 0) {
  5991   //      mutex_lock (_mutex) ; AnyWaiters = nParked; mutex_unlock (_mutex) ;
  5992   //      if (AnyWaiters) cond_signal (_cond) ;
  5993   //   }
  5995   for (;;) {
  5996     v = _Event ;
  5997     if (v > 0) {
  5998        // The LD of _Event could have reordered or be satisfied
  5999        // by a read-aside from this processor's write buffer.
  6000        // To avoid problems execute a barrier and then
  6001        // ratify the value.  A degenerate CAS() would also work.
  6002        // Viz., CAS (v+0, &_Event, v) == v).
  6003        OrderAccess::fence() ;
  6004        if (_Event == v) return ;
  6005        continue ;
  6007     if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  6010   // If the thread associated with the event was parked, wake it.
  6011   if (v < 0) {
  6012      int status ;
  6013      // Wait for the thread assoc with the PlatformEvent to vacate.
  6014      status = os::Solaris::mutex_lock(_mutex);
  6015      assert_status(status == 0, status, "mutex_lock");
  6016      AnyWaiters = _nParked ;
  6017      status = os::Solaris::mutex_unlock(_mutex);
  6018      assert_status(status == 0, status, "mutex_unlock");
  6019      guarantee (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  6020      if (AnyWaiters != 0) {
  6021        // We intentional signal *after* dropping the lock
  6022        // to avoid a common class of futile wakeups.
  6023        status = os::Solaris::cond_signal(_cond);
  6024        assert_status(status == 0, status, "cond_signal");
  6029 // JSR166
  6030 // -------------------------------------------------------
  6032 /*
  6033  * The solaris and linux implementations of park/unpark are fairly
  6034  * conservative for now, but can be improved. They currently use a
  6035  * mutex/condvar pair, plus _counter.
  6036  * Park decrements _counter if > 0, else does a condvar wait.  Unpark
  6037  * sets count to 1 and signals condvar.  Only one thread ever waits
  6038  * on the condvar. Contention seen when trying to park implies that someone
  6039  * is unparking you, so don't wait. And spurious returns are fine, so there
  6040  * is no need to track notifications.
  6041  */
  6043 #define NANOSECS_PER_SEC 1000000000
  6044 #define NANOSECS_PER_MILLISEC 1000000
  6045 #define MAX_SECS 100000000
  6047 /*
  6048  * This code is common to linux and solaris and will be moved to a
  6049  * common place in dolphin.
  6051  * The passed in time value is either a relative time in nanoseconds
  6052  * or an absolute time in milliseconds. Either way it has to be unpacked
  6053  * into suitable seconds and nanoseconds components and stored in the
  6054  * given timespec structure.
  6055  * Given time is a 64-bit value and the time_t used in the timespec is only
  6056  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  6057  * overflow if times way in the future are given. Further on Solaris versions
  6058  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  6059  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  6060  * As it will be 28 years before "now + 100000000" will overflow we can
  6061  * ignore overflow and just impose a hard-limit on seconds using the value
  6062  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  6063  * years from "now".
  6064  */
  6065 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  6066   assert (time > 0, "convertTime");
  6068   struct timeval now;
  6069   int status = gettimeofday(&now, NULL);
  6070   assert(status == 0, "gettimeofday");
  6072   time_t max_secs = now.tv_sec + MAX_SECS;
  6074   if (isAbsolute) {
  6075     jlong secs = time / 1000;
  6076     if (secs > max_secs) {
  6077       absTime->tv_sec = max_secs;
  6079     else {
  6080       absTime->tv_sec = secs;
  6082     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6084   else {
  6085     jlong secs = time / NANOSECS_PER_SEC;
  6086     if (secs >= MAX_SECS) {
  6087       absTime->tv_sec = max_secs;
  6088       absTime->tv_nsec = 0;
  6090     else {
  6091       absTime->tv_sec = now.tv_sec + secs;
  6092       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6093       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6094         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6095         ++absTime->tv_sec; // note: this must be <= max_secs
  6099   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6100   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6101   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6102   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6105 void Parker::park(bool isAbsolute, jlong time) {
  6107   // Optional fast-path check:
  6108   // Return immediately if a permit is available.
  6109   if (_counter > 0) {
  6110       _counter = 0 ;
  6111       OrderAccess::fence();
  6112       return ;
  6115   // Optional fast-exit: Check interrupt before trying to wait
  6116   Thread* thread = Thread::current();
  6117   assert(thread->is_Java_thread(), "Must be JavaThread");
  6118   JavaThread *jt = (JavaThread *)thread;
  6119   if (Thread::is_interrupted(thread, false)) {
  6120     return;
  6123   // First, demultiplex/decode time arguments
  6124   timespec absTime;
  6125   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6126     return;
  6128   if (time > 0) {
  6129     // Warning: this code might be exposed to the old Solaris time
  6130     // round-down bugs.  Grep "roundingFix" for details.
  6131     unpackTime(&absTime, isAbsolute, time);
  6134   // Enter safepoint region
  6135   // Beware of deadlocks such as 6317397.
  6136   // The per-thread Parker:: _mutex is a classic leaf-lock.
  6137   // In particular a thread must never block on the Threads_lock while
  6138   // holding the Parker:: mutex.  If safepoints are pending both the
  6139   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6140   ThreadBlockInVM tbivm(jt);
  6142   // Don't wait if cannot get lock since interference arises from
  6143   // unblocking.  Also. check interrupt before trying wait
  6144   if (Thread::is_interrupted(thread, false) ||
  6145       os::Solaris::mutex_trylock(_mutex) != 0) {
  6146     return;
  6149   int status ;
  6151   if (_counter > 0)  { // no wait needed
  6152     _counter = 0;
  6153     status = os::Solaris::mutex_unlock(_mutex);
  6154     assert (status == 0, "invariant") ;
  6155     OrderAccess::fence();
  6156     return;
  6159 #ifdef ASSERT
  6160   // Don't catch signals while blocked; let the running threads have the signals.
  6161   // (This allows a debugger to break into the running thread.)
  6162   sigset_t oldsigs;
  6163   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
  6164   thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6165 #endif
  6167   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6168   jt->set_suspend_equivalent();
  6169   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6171   // Do this the hard way by blocking ...
  6172   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6173   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  6174   // Only for SPARC >= V8PlusA
  6175 #if defined(__sparc) && defined(COMPILER2)
  6176   if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6177 #endif
  6179   if (time == 0) {
  6180     status = os::Solaris::cond_wait (_cond, _mutex) ;
  6181   } else {
  6182     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
  6184   // Note that an untimed cond_wait() can sometimes return ETIME on older
  6185   // versions of the Solaris.
  6186   assert_status(status == 0 || status == EINTR ||
  6187                 status == ETIME || status == ETIMEDOUT,
  6188                 status, "cond_timedwait");
  6190 #ifdef ASSERT
  6191   thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
  6192 #endif
  6193   _counter = 0 ;
  6194   status = os::Solaris::mutex_unlock(_mutex);
  6195   assert_status(status == 0, status, "mutex_unlock") ;
  6197   // If externally suspended while waiting, re-suspend
  6198   if (jt->handle_special_suspend_equivalent_condition()) {
  6199     jt->java_suspend_self();
  6201   OrderAccess::fence();
  6204 void Parker::unpark() {
  6205   int s, status ;
  6206   status = os::Solaris::mutex_lock (_mutex) ;
  6207   assert (status == 0, "invariant") ;
  6208   s = _counter;
  6209   _counter = 1;
  6210   status = os::Solaris::mutex_unlock (_mutex) ;
  6211   assert (status == 0, "invariant") ;
  6213   if (s < 1) {
  6214     status = os::Solaris::cond_signal (_cond) ;
  6215     assert (status == 0, "invariant") ;
  6219 extern char** environ;
  6221 // Run the specified command in a separate process. Return its exit value,
  6222 // or -1 on failure (e.g. can't fork a new process).
  6223 // Unlike system(), this function can be called from signal handler. It
  6224 // doesn't block SIGINT et al.
  6225 int os::fork_and_exec(char* cmd) {
  6226   char * argv[4];
  6227   argv[0] = (char *)"sh";
  6228   argv[1] = (char *)"-c";
  6229   argv[2] = cmd;
  6230   argv[3] = NULL;
  6232   // fork is async-safe, fork1 is not so can't use in signal handler
  6233   pid_t pid;
  6234   Thread* t = ThreadLocalStorage::get_thread_slow();
  6235   if (t != NULL && t->is_inside_signal_handler()) {
  6236     pid = fork();
  6237   } else {
  6238     pid = fork1();
  6241   if (pid < 0) {
  6242     // fork failed
  6243     warning("fork failed: %s", strerror(errno));
  6244     return -1;
  6246   } else if (pid == 0) {
  6247     // child process
  6249     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
  6250     execve("/usr/bin/sh", argv, environ);
  6252     // execve failed
  6253     _exit(-1);
  6255   } else  {
  6256     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6257     // care about the actual exit code, for now.
  6259     int status;
  6261     // Wait for the child process to exit.  This returns immediately if
  6262     // the child has already exited. */
  6263     while (waitpid(pid, &status, 0) < 0) {
  6264         switch (errno) {
  6265         case ECHILD: return 0;
  6266         case EINTR: break;
  6267         default: return -1;
  6271     if (WIFEXITED(status)) {
  6272        // The child exited normally; get its exit code.
  6273        return WEXITSTATUS(status);
  6274     } else if (WIFSIGNALED(status)) {
  6275        // The child exited because of a signal
  6276        // The best value to return is 0x80 + signal number,
  6277        // because that is what all Unix shells do, and because
  6278        // it allows callers to distinguish between process exit and
  6279        // process death by signal.
  6280        return 0x80 + WTERMSIG(status);
  6281     } else {
  6282        // Unknown exit code; pass it through
  6283        return status;
  6288 // is_headless_jre()
  6289 //
  6290 // Test for the existence of libmawt in motif21 or xawt directories
  6291 // in order to report if we are running in a headless jre
  6292 //
  6293 bool os::is_headless_jre() {
  6294     struct stat statbuf;
  6295     char buf[MAXPATHLEN];
  6296     char libmawtpath[MAXPATHLEN];
  6297     const char *xawtstr  = "/xawt/libmawt.so";
  6298     const char *motifstr = "/motif21/libmawt.so";
  6299     char *p;
  6301     // Get path to libjvm.so
  6302     os::jvm_path(buf, sizeof(buf));
  6304     // Get rid of libjvm.so
  6305     p = strrchr(buf, '/');
  6306     if (p == NULL) return false;
  6307     else *p = '\0';
  6309     // Get rid of client or server
  6310     p = strrchr(buf, '/');
  6311     if (p == NULL) return false;
  6312     else *p = '\0';
  6314     // check xawt/libmawt.so
  6315     strcpy(libmawtpath, buf);
  6316     strcat(libmawtpath, xawtstr);
  6317     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6319     // check motif21/libmawt.so
  6320     strcpy(libmawtpath, buf);
  6321     strcat(libmawtpath, motifstr);
  6322     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6324     return true;
  6327 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
  6328   INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
  6331 int os::close(int fd) {
  6332   RESTARTABLE_RETURN_INT(::close(fd));
  6335 int os::socket_close(int fd) {
  6336   RESTARTABLE_RETURN_INT(::close(fd));
  6339 int os::recv(int fd, char *buf, int nBytes, int flags) {
  6340   INTERRUPTIBLE_RETURN_INT(::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6344 int os::send(int fd, char *buf, int nBytes, int flags) {
  6345   INTERRUPTIBLE_RETURN_INT(::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6348 int os::raw_send(int fd, char *buf, int nBytes, int flags) {
  6349   RESTARTABLE_RETURN_INT(::send(fd, buf, nBytes, flags));
  6352 // As both poll and select can be interrupted by signals, we have to be
  6353 // prepared to restart the system call after updating the timeout, unless
  6354 // a poll() is done with timeout == -1, in which case we repeat with this
  6355 // "wait forever" value.
  6357 int os::timeout(int fd, long timeout) {
  6358   int res;
  6359   struct timeval t;
  6360   julong prevtime, newtime;
  6361   static const char* aNull = 0;
  6362   struct pollfd pfd;
  6363   pfd.fd = fd;
  6364   pfd.events = POLLIN;
  6366   gettimeofday(&t, &aNull);
  6367   prevtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec / 1000;
  6369   for(;;) {
  6370     INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
  6371     if(res == OS_ERR && errno == EINTR) {
  6372         if(timeout != -1) {
  6373           gettimeofday(&t, &aNull);
  6374           newtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec /1000;
  6375           timeout -= newtime - prevtime;
  6376           if(timeout <= 0)
  6377             return OS_OK;
  6378           prevtime = newtime;
  6380     } else return res;
  6384 int os::connect(int fd, struct sockaddr *him, int len) {
  6385   int _result;
  6386   INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,
  6387                           os::Solaris::clear_interrupted);
  6389   // Depending on when thread interruption is reset, _result could be
  6390   // one of two values when errno == EINTR
  6392   if (((_result == OS_INTRPT) || (_result == OS_ERR))
  6393                                         && (errno == EINTR)) {
  6394      /* restarting a connect() changes its errno semantics */
  6395      INTERRUPTIBLE(::connect(fd, him, len), _result,
  6396                      os::Solaris::clear_interrupted);
  6397      /* undo these changes */
  6398      if (_result == OS_ERR) {
  6399        if (errno == EALREADY) {
  6400          errno = EINPROGRESS; /* fall through */
  6401        } else if (errno == EISCONN) {
  6402          errno = 0;
  6403          return OS_OK;
  6407    return _result;
  6410 int os::accept(int fd, struct sockaddr *him, int *len) {
  6411   if (fd < 0)
  6412    return OS_ERR;
  6413   INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him,\
  6414     (socklen_t*) len), os::Solaris::clear_interrupted);
  6417 int os::recvfrom(int fd, char *buf, int nBytes, int flags,
  6418                              sockaddr *from, int *fromlen) {
  6419    //%%note jvm_r11
  6420   INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes,\
  6421     flags, from, fromlen), os::Solaris::clear_interrupted);
  6424 int os::sendto(int fd, char *buf, int len, int flags,
  6425                            struct sockaddr *to, int tolen) {
  6426   //%%note jvm_r11
  6427   INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags,\
  6428     to, tolen), os::Solaris::clear_interrupted);
  6431 int os::socket_available(int fd, jint *pbytes) {
  6432    if (fd < 0)
  6433      return OS_OK;
  6435    int ret;
  6437    RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
  6439    //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  6440    // is expected to return 0 on failure and 1 on success to the jdk.
  6442    return (ret == OS_ERR) ? 0 : 1;
  6446 int os::bind(int fd, struct sockaddr *him, int len) {
  6447    INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
  6448      os::Solaris::clear_interrupted);

mercurial