src/share/vm/opto/type.cpp

Wed, 01 Jul 2009 12:22:23 -0700

author
never
date
Wed, 01 Jul 2009 12:22:23 -0700
changeset 1262
bf3489cc0aa0
parent 1255
915cc9c5ebc6
child 1393
c7e94e8fff43
permissions
-rw-r--r--

6856025: assert(_base >= OopPtr && _base <= KlassPtr,"Not a Java pointer")
Reviewed-by: kvn

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_type.cpp.incl"
    32 // Dictionary of types shared among compilations.
    33 Dict* Type::_shared_type_dict = NULL;
    35 // Array which maps compiler types to Basic Types
    36 const BasicType Type::_basic_type[Type::lastype] = {
    37   T_ILLEGAL,    // Bad
    38   T_ILLEGAL,    // Control
    39   T_VOID,       // Top
    40   T_INT,        // Int
    41   T_LONG,       // Long
    42   T_VOID,       // Half
    43   T_NARROWOOP,  // NarrowOop
    45   T_ILLEGAL,    // Tuple
    46   T_ARRAY,      // Array
    48   T_ADDRESS,    // AnyPtr   // shows up in factory methods for NULL_PTR
    49   T_ADDRESS,    // RawPtr
    50   T_OBJECT,     // OopPtr
    51   T_OBJECT,     // InstPtr
    52   T_OBJECT,     // AryPtr
    53   T_OBJECT,     // KlassPtr
    55   T_OBJECT,     // Function
    56   T_ILLEGAL,    // Abio
    57   T_ADDRESS,    // Return_Address
    58   T_ILLEGAL,    // Memory
    59   T_FLOAT,      // FloatTop
    60   T_FLOAT,      // FloatCon
    61   T_FLOAT,      // FloatBot
    62   T_DOUBLE,     // DoubleTop
    63   T_DOUBLE,     // DoubleCon
    64   T_DOUBLE,     // DoubleBot
    65   T_ILLEGAL,    // Bottom
    66 };
    68 // Map ideal registers (machine types) to ideal types
    69 const Type *Type::mreg2type[_last_machine_leaf];
    71 // Map basic types to canonical Type* pointers.
    72 const Type* Type::     _const_basic_type[T_CONFLICT+1];
    74 // Map basic types to constant-zero Types.
    75 const Type* Type::            _zero_type[T_CONFLICT+1];
    77 // Map basic types to array-body alias types.
    78 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
    80 //=============================================================================
    81 // Convenience common pre-built types.
    82 const Type *Type::ABIO;         // State-of-machine only
    83 const Type *Type::BOTTOM;       // All values
    84 const Type *Type::CONTROL;      // Control only
    85 const Type *Type::DOUBLE;       // All doubles
    86 const Type *Type::FLOAT;        // All floats
    87 const Type *Type::HALF;         // Placeholder half of doublewide type
    88 const Type *Type::MEMORY;       // Abstract store only
    89 const Type *Type::RETURN_ADDRESS;
    90 const Type *Type::TOP;          // No values in set
    92 //------------------------------get_const_type---------------------------
    93 const Type* Type::get_const_type(ciType* type) {
    94   if (type == NULL) {
    95     return NULL;
    96   } else if (type->is_primitive_type()) {
    97     return get_const_basic_type(type->basic_type());
    98   } else {
    99     return TypeOopPtr::make_from_klass(type->as_klass());
   100   }
   101 }
   103 //---------------------------array_element_basic_type---------------------------------
   104 // Mapping to the array element's basic type.
   105 BasicType Type::array_element_basic_type() const {
   106   BasicType bt = basic_type();
   107   if (bt == T_INT) {
   108     if (this == TypeInt::INT)   return T_INT;
   109     if (this == TypeInt::CHAR)  return T_CHAR;
   110     if (this == TypeInt::BYTE)  return T_BYTE;
   111     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   112     if (this == TypeInt::SHORT) return T_SHORT;
   113     return T_VOID;
   114   }
   115   return bt;
   116 }
   118 //---------------------------get_typeflow_type---------------------------------
   119 // Import a type produced by ciTypeFlow.
   120 const Type* Type::get_typeflow_type(ciType* type) {
   121   switch (type->basic_type()) {
   123   case ciTypeFlow::StateVector::T_BOTTOM:
   124     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   125     return Type::BOTTOM;
   127   case ciTypeFlow::StateVector::T_TOP:
   128     assert(type == ciTypeFlow::StateVector::top_type(), "");
   129     return Type::TOP;
   131   case ciTypeFlow::StateVector::T_NULL:
   132     assert(type == ciTypeFlow::StateVector::null_type(), "");
   133     return TypePtr::NULL_PTR;
   135   case ciTypeFlow::StateVector::T_LONG2:
   136     // The ciTypeFlow pass pushes a long, then the half.
   137     // We do the same.
   138     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   139     return TypeInt::TOP;
   141   case ciTypeFlow::StateVector::T_DOUBLE2:
   142     // The ciTypeFlow pass pushes double, then the half.
   143     // Our convention is the same.
   144     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   145     return Type::TOP;
   147   case T_ADDRESS:
   148     assert(type->is_return_address(), "");
   149     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   151   default:
   152     // make sure we did not mix up the cases:
   153     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   154     assert(type != ciTypeFlow::StateVector::top_type(), "");
   155     assert(type != ciTypeFlow::StateVector::null_type(), "");
   156     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   157     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   158     assert(!type->is_return_address(), "");
   160     return Type::get_const_type(type);
   161   }
   162 }
   165 //------------------------------make-------------------------------------------
   166 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   167 // and look for an existing copy in the type dictionary.
   168 const Type *Type::make( enum TYPES t ) {
   169   return (new Type(t))->hashcons();
   170 }
   172 //------------------------------cmp--------------------------------------------
   173 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   174   if( t1->_base != t2->_base )
   175     return 1;                   // Missed badly
   176   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   177   return !t1->eq(t2);           // Return ZERO if equal
   178 }
   180 //------------------------------hash-------------------------------------------
   181 int Type::uhash( const Type *const t ) {
   182   return t->hash();
   183 }
   185 //--------------------------Initialize_shared----------------------------------
   186 void Type::Initialize_shared(Compile* current) {
   187   // This method does not need to be locked because the first system
   188   // compilations (stub compilations) occur serially.  If they are
   189   // changed to proceed in parallel, then this section will need
   190   // locking.
   192   Arena* save = current->type_arena();
   193   Arena* shared_type_arena = new Arena();
   195   current->set_type_arena(shared_type_arena);
   196   _shared_type_dict =
   197     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   198                                   shared_type_arena, 128 );
   199   current->set_type_dict(_shared_type_dict);
   201   // Make shared pre-built types.
   202   CONTROL = make(Control);      // Control only
   203   TOP     = make(Top);          // No values in set
   204   MEMORY  = make(Memory);       // Abstract store only
   205   ABIO    = make(Abio);         // State-of-machine only
   206   RETURN_ADDRESS=make(Return_Address);
   207   FLOAT   = make(FloatBot);     // All floats
   208   DOUBLE  = make(DoubleBot);    // All doubles
   209   BOTTOM  = make(Bottom);       // Everything
   210   HALF    = make(Half);         // Placeholder half of doublewide type
   212   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   213   TypeF::ONE  = TypeF::make(1.0); // Float 1
   215   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   216   TypeD::ONE  = TypeD::make(1.0); // Double 1
   218   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   219   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   220   TypeInt::ONE     = TypeInt::make( 1);  //  1
   221   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   222   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   223   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   224   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   225   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   226   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   227   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   228   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   229   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   230   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   231   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   232   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   233   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   234   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   235   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   236   // CmpL is overloaded both as the bytecode computation returning
   237   // a trinary (-1,0,+1) integer result AND as an efficient long
   238   // compare returning optimizer ideal-type flags.
   239   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   240   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   241   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   242   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   244   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   245   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   246   TypeLong::ONE     = TypeLong::make( 1);        //  1
   247   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   248   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   249   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   250   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   252   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   253   fboth[0] = Type::CONTROL;
   254   fboth[1] = Type::CONTROL;
   255   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   257   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   258   ffalse[0] = Type::CONTROL;
   259   ffalse[1] = Type::TOP;
   260   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   262   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   263   fneither[0] = Type::TOP;
   264   fneither[1] = Type::TOP;
   265   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   267   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   268   ftrue[0] = Type::TOP;
   269   ftrue[1] = Type::CONTROL;
   270   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   272   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   273   floop[0] = Type::CONTROL;
   274   floop[1] = TypeInt::INT;
   275   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   277   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   278   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   279   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   281   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   282   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   284   const Type **fmembar = TypeTuple::fields(0);
   285   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   287   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   288   fsc[0] = TypeInt::CC;
   289   fsc[1] = Type::MEMORY;
   290   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   292   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   293   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   294   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   295   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   296                                            false, 0, oopDesc::mark_offset_in_bytes());
   297   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   298                                            false, 0, oopDesc::klass_offset_in_bytes());
   299   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot);
   301   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   302   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   304   mreg2type[Op_Node] = Type::BOTTOM;
   305   mreg2type[Op_Set ] = 0;
   306   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   307   mreg2type[Op_RegI] = TypeInt::INT;
   308   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   309   mreg2type[Op_RegF] = Type::FLOAT;
   310   mreg2type[Op_RegD] = Type::DOUBLE;
   311   mreg2type[Op_RegL] = TypeLong::LONG;
   312   mreg2type[Op_RegFlags] = TypeInt::CC;
   314   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), current->env()->Object_klass(), false, arrayOopDesc::length_offset_in_bytes());
   316   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   318 #ifdef _LP64
   319   if (UseCompressedOops) {
   320     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   321   } else
   322 #endif
   323   {
   324     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   325     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   326   }
   327   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   328   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   329   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   330   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   331   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   332   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   333   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   335   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   336   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   337   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   338   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   339   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   340   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   341   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   342   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   343   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   344   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   345   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   346   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   348   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   349   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   351   const Type **fi2c = TypeTuple::fields(2);
   352   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
   353   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   354   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   356   const Type **intpair = TypeTuple::fields(2);
   357   intpair[0] = TypeInt::INT;
   358   intpair[1] = TypeInt::INT;
   359   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   361   const Type **longpair = TypeTuple::fields(2);
   362   longpair[0] = TypeLong::LONG;
   363   longpair[1] = TypeLong::LONG;
   364   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   366   _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
   367   _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
   368   _const_basic_type[T_CHAR]    = TypeInt::CHAR;
   369   _const_basic_type[T_BYTE]    = TypeInt::BYTE;
   370   _const_basic_type[T_SHORT]   = TypeInt::SHORT;
   371   _const_basic_type[T_INT]     = TypeInt::INT;
   372   _const_basic_type[T_LONG]    = TypeLong::LONG;
   373   _const_basic_type[T_FLOAT]   = Type::FLOAT;
   374   _const_basic_type[T_DOUBLE]  = Type::DOUBLE;
   375   _const_basic_type[T_OBJECT]  = TypeInstPtr::BOTTOM;
   376   _const_basic_type[T_ARRAY]   = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   377   _const_basic_type[T_VOID]    = TypePtr::NULL_PTR;   // reflection represents void this way
   378   _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   379   _const_basic_type[T_CONFLICT]= Type::BOTTOM;        // why not?
   381   _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
   382   _zero_type[T_BOOLEAN] = TypeInt::ZERO;     // false == 0
   383   _zero_type[T_CHAR]    = TypeInt::ZERO;     // '\0' == 0
   384   _zero_type[T_BYTE]    = TypeInt::ZERO;     // 0x00 == 0
   385   _zero_type[T_SHORT]   = TypeInt::ZERO;     // 0x0000 == 0
   386   _zero_type[T_INT]     = TypeInt::ZERO;
   387   _zero_type[T_LONG]    = TypeLong::ZERO;
   388   _zero_type[T_FLOAT]   = TypeF::ZERO;
   389   _zero_type[T_DOUBLE]  = TypeD::ZERO;
   390   _zero_type[T_OBJECT]  = TypePtr::NULL_PTR;
   391   _zero_type[T_ARRAY]   = TypePtr::NULL_PTR; // null array is null oop
   392   _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
   393   _zero_type[T_VOID]    = Type::TOP;         // the only void value is no value at all
   395   // get_zero_type() should not happen for T_CONFLICT
   396   _zero_type[T_CONFLICT]= NULL;
   398   // Restore working type arena.
   399   current->set_type_arena(save);
   400   current->set_type_dict(NULL);
   401 }
   403 //------------------------------Initialize-------------------------------------
   404 void Type::Initialize(Compile* current) {
   405   assert(current->type_arena() != NULL, "must have created type arena");
   407   if (_shared_type_dict == NULL) {
   408     Initialize_shared(current);
   409   }
   411   Arena* type_arena = current->type_arena();
   413   // Create the hash-cons'ing dictionary with top-level storage allocation
   414   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   415   current->set_type_dict(tdic);
   417   // Transfer the shared types.
   418   DictI i(_shared_type_dict);
   419   for( ; i.test(); ++i ) {
   420     Type* t = (Type*)i._value;
   421     tdic->Insert(t,t);  // New Type, insert into Type table
   422   }
   424 #ifdef ASSERT
   425   verify_lastype();
   426 #endif
   427 }
   429 //------------------------------hashcons---------------------------------------
   430 // Do the hash-cons trick.  If the Type already exists in the type table,
   431 // delete the current Type and return the existing Type.  Otherwise stick the
   432 // current Type in the Type table.
   433 const Type *Type::hashcons(void) {
   434   debug_only(base());           // Check the assertion in Type::base().
   435   // Look up the Type in the Type dictionary
   436   Dict *tdic = type_dict();
   437   Type* old = (Type*)(tdic->Insert(this, this, false));
   438   if( old ) {                   // Pre-existing Type?
   439     if( old != this )           // Yes, this guy is not the pre-existing?
   440       delete this;              // Yes, Nuke this guy
   441     assert( old->_dual, "" );
   442     return old;                 // Return pre-existing
   443   }
   445   // Every type has a dual (to make my lattice symmetric).
   446   // Since we just discovered a new Type, compute its dual right now.
   447   assert( !_dual, "" );         // No dual yet
   448   _dual = xdual();              // Compute the dual
   449   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   450     _dual = this;
   451     return this;
   452   }
   453   assert( !_dual->_dual, "" );  // No reverse dual yet
   454   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   455   // New Type, insert into Type table
   456   tdic->Insert((void*)_dual,(void*)_dual);
   457   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   458 #ifdef ASSERT
   459   Type *dual_dual = (Type*)_dual->xdual();
   460   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   461   delete dual_dual;
   462 #endif
   463   return this;                  // Return new Type
   464 }
   466 //------------------------------eq---------------------------------------------
   467 // Structural equality check for Type representations
   468 bool Type::eq( const Type * ) const {
   469   return true;                  // Nothing else can go wrong
   470 }
   472 //------------------------------hash-------------------------------------------
   473 // Type-specific hashing function.
   474 int Type::hash(void) const {
   475   return _base;
   476 }
   478 //------------------------------is_finite--------------------------------------
   479 // Has a finite value
   480 bool Type::is_finite() const {
   481   return false;
   482 }
   484 //------------------------------is_nan-----------------------------------------
   485 // Is not a number (NaN)
   486 bool Type::is_nan()    const {
   487   return false;
   488 }
   490 //----------------------interface_vs_oop---------------------------------------
   491 #ifdef ASSERT
   492 bool Type::interface_vs_oop(const Type *t) const {
   493   bool result = false;
   495   const TypeInstPtr* this_inst = this->isa_instptr();
   496   const TypeInstPtr*    t_inst =    t->isa_instptr();
   497   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   498     bool this_interface = this_inst->klass()->is_interface();
   499     bool    t_interface =    t_inst->klass()->is_interface();
   500     result = this_interface ^ t_interface;
   501   }
   503   return result;
   504 }
   505 #endif
   507 //------------------------------meet-------------------------------------------
   508 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   509 // commutative and the lattice is symmetric.
   510 const Type *Type::meet( const Type *t ) const {
   511   if (isa_narrowoop() && t->isa_narrowoop()) {
   512     const Type* result = make_ptr()->meet(t->make_ptr());
   513     return result->make_narrowoop();
   514   }
   516   const Type *mt = xmeet(t);
   517   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   518 #ifdef ASSERT
   519   assert( mt == t->xmeet(this), "meet not commutative" );
   520   const Type* dual_join = mt->_dual;
   521   const Type *t2t    = dual_join->xmeet(t->_dual);
   522   const Type *t2this = dual_join->xmeet(   _dual);
   524   // Interface meet Oop is Not Symmetric:
   525   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   526   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   528   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
   529     tty->print_cr("=== Meet Not Symmetric ===");
   530     tty->print("t   =                   ");         t->dump(); tty->cr();
   531     tty->print("this=                   ");            dump(); tty->cr();
   532     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
   534     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
   535     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
   536     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
   538     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
   539     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
   541     fatal("meet not symmetric" );
   542   }
   543 #endif
   544   return mt;
   545 }
   547 //------------------------------xmeet------------------------------------------
   548 // Compute the MEET of two types.  It returns a new Type object.
   549 const Type *Type::xmeet( const Type *t ) const {
   550   // Perform a fast test for common case; meeting the same types together.
   551   if( this == t ) return this;  // Meeting same type-rep?
   553   // Meeting TOP with anything?
   554   if( _base == Top ) return t;
   556   // Meeting BOTTOM with anything?
   557   if( _base == Bottom ) return BOTTOM;
   559   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   560   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   561   switch (t->base()) {  // Switch on original type
   563   // Cut in half the number of cases I must handle.  Only need cases for when
   564   // the given enum "t->type" is less than or equal to the local enum "type".
   565   case FloatCon:
   566   case DoubleCon:
   567   case Int:
   568   case Long:
   569     return t->xmeet(this);
   571   case OopPtr:
   572     return t->xmeet(this);
   574   case InstPtr:
   575     return t->xmeet(this);
   577   case KlassPtr:
   578     return t->xmeet(this);
   580   case AryPtr:
   581     return t->xmeet(this);
   583   case NarrowOop:
   584     return t->xmeet(this);
   586   case Bad:                     // Type check
   587   default:                      // Bogus type not in lattice
   588     typerr(t);
   589     return Type::BOTTOM;
   591   case Bottom:                  // Ye Olde Default
   592     return t;
   594   case FloatTop:
   595     if( _base == FloatTop ) return this;
   596   case FloatBot:                // Float
   597     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   598     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   599     typerr(t);
   600     return Type::BOTTOM;
   602   case DoubleTop:
   603     if( _base == DoubleTop ) return this;
   604   case DoubleBot:               // Double
   605     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   606     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   607     typerr(t);
   608     return Type::BOTTOM;
   610   // These next few cases must match exactly or it is a compile-time error.
   611   case Control:                 // Control of code
   612   case Abio:                    // State of world outside of program
   613   case Memory:
   614     if( _base == t->_base )  return this;
   615     typerr(t);
   616     return Type::BOTTOM;
   618   case Top:                     // Top of the lattice
   619     return this;
   620   }
   622   // The type is unchanged
   623   return this;
   624 }
   626 //-----------------------------filter------------------------------------------
   627 const Type *Type::filter( const Type *kills ) const {
   628   const Type* ft = join(kills);
   629   if (ft->empty())
   630     return Type::TOP;           // Canonical empty value
   631   return ft;
   632 }
   634 //------------------------------xdual------------------------------------------
   635 // Compute dual right now.
   636 const Type::TYPES Type::dual_type[Type::lastype] = {
   637   Bad,          // Bad
   638   Control,      // Control
   639   Bottom,       // Top
   640   Bad,          // Int - handled in v-call
   641   Bad,          // Long - handled in v-call
   642   Half,         // Half
   643   Bad,          // NarrowOop - handled in v-call
   645   Bad,          // Tuple - handled in v-call
   646   Bad,          // Array - handled in v-call
   648   Bad,          // AnyPtr - handled in v-call
   649   Bad,          // RawPtr - handled in v-call
   650   Bad,          // OopPtr - handled in v-call
   651   Bad,          // InstPtr - handled in v-call
   652   Bad,          // AryPtr - handled in v-call
   653   Bad,          // KlassPtr - handled in v-call
   655   Bad,          // Function - handled in v-call
   656   Abio,         // Abio
   657   Return_Address,// Return_Address
   658   Memory,       // Memory
   659   FloatBot,     // FloatTop
   660   FloatCon,     // FloatCon
   661   FloatTop,     // FloatBot
   662   DoubleBot,    // DoubleTop
   663   DoubleCon,    // DoubleCon
   664   DoubleTop,    // DoubleBot
   665   Top           // Bottom
   666 };
   668 const Type *Type::xdual() const {
   669   // Note: the base() accessor asserts the sanity of _base.
   670   assert(dual_type[base()] != Bad, "implement with v-call");
   671   return new Type(dual_type[_base]);
   672 }
   674 //------------------------------has_memory-------------------------------------
   675 bool Type::has_memory() const {
   676   Type::TYPES tx = base();
   677   if (tx == Memory) return true;
   678   if (tx == Tuple) {
   679     const TypeTuple *t = is_tuple();
   680     for (uint i=0; i < t->cnt(); i++) {
   681       tx = t->field_at(i)->base();
   682       if (tx == Memory)  return true;
   683     }
   684   }
   685   return false;
   686 }
   688 #ifndef PRODUCT
   689 //------------------------------dump2------------------------------------------
   690 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   691   st->print(msg[_base]);
   692 }
   694 //------------------------------dump-------------------------------------------
   695 void Type::dump_on(outputStream *st) const {
   696   ResourceMark rm;
   697   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   698   dump2(d,1, st);
   699   if (is_ptr_to_narrowoop()) {
   700     st->print(" [narrow]");
   701   }
   702 }
   704 //------------------------------data-------------------------------------------
   705 const char * const Type::msg[Type::lastype] = {
   706   "bad","control","top","int:","long:","half", "narrowoop:",
   707   "tuple:", "aryptr",
   708   "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
   709   "func", "abIO", "return_address", "memory",
   710   "float_top", "ftcon:", "float",
   711   "double_top", "dblcon:", "double",
   712   "bottom"
   713 };
   714 #endif
   716 //------------------------------singleton--------------------------------------
   717 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   718 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   719 bool Type::singleton(void) const {
   720   return _base == Top || _base == Half;
   721 }
   723 //------------------------------empty------------------------------------------
   724 // TRUE if Type is a type with no values, FALSE otherwise.
   725 bool Type::empty(void) const {
   726   switch (_base) {
   727   case DoubleTop:
   728   case FloatTop:
   729   case Top:
   730     return true;
   732   case Half:
   733   case Abio:
   734   case Return_Address:
   735   case Memory:
   736   case Bottom:
   737   case FloatBot:
   738   case DoubleBot:
   739     return false;  // never a singleton, therefore never empty
   740   }
   742   ShouldNotReachHere();
   743   return false;
   744 }
   746 //------------------------------dump_stats-------------------------------------
   747 // Dump collected statistics to stderr
   748 #ifndef PRODUCT
   749 void Type::dump_stats() {
   750   tty->print("Types made: %d\n", type_dict()->Size());
   751 }
   752 #endif
   754 //------------------------------typerr-----------------------------------------
   755 void Type::typerr( const Type *t ) const {
   756 #ifndef PRODUCT
   757   tty->print("\nError mixing types: ");
   758   dump();
   759   tty->print(" and ");
   760   t->dump();
   761   tty->print("\n");
   762 #endif
   763   ShouldNotReachHere();
   764 }
   766 //------------------------------isa_oop_ptr------------------------------------
   767 // Return true if type is an oop pointer type.  False for raw pointers.
   768 static char isa_oop_ptr_tbl[Type::lastype] = {
   769   0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
   770   0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
   771   0/*func*/,0,0/*return_address*/,0,
   772   /*floats*/0,0,0, /*doubles*/0,0,0,
   773   0
   774 };
   775 bool Type::isa_oop_ptr() const {
   776   return isa_oop_ptr_tbl[_base] != 0;
   777 }
   779 //------------------------------dump_stats-------------------------------------
   780 // // Check that arrays match type enum
   781 #ifndef PRODUCT
   782 void Type::verify_lastype() {
   783   // Check that arrays match enumeration
   784   assert( Type::dual_type  [Type::lastype - 1] == Type::Top, "did not update array");
   785   assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
   786   // assert( PhiNode::tbl     [Type::lastype - 1] == NULL,    "did not update array");
   787   assert( Matcher::base2reg[Type::lastype - 1] == 0,      "did not update array");
   788   assert( isa_oop_ptr_tbl  [Type::lastype - 1] == (char)0,  "did not update array");
   789 }
   790 #endif
   792 //=============================================================================
   793 // Convenience common pre-built types.
   794 const TypeF *TypeF::ZERO;       // Floating point zero
   795 const TypeF *TypeF::ONE;        // Floating point one
   797 //------------------------------make-------------------------------------------
   798 // Create a float constant
   799 const TypeF *TypeF::make(float f) {
   800   return (TypeF*)(new TypeF(f))->hashcons();
   801 }
   803 //------------------------------meet-------------------------------------------
   804 // Compute the MEET of two types.  It returns a new Type object.
   805 const Type *TypeF::xmeet( const Type *t ) const {
   806   // Perform a fast test for common case; meeting the same types together.
   807   if( this == t ) return this;  // Meeting same type-rep?
   809   // Current "this->_base" is FloatCon
   810   switch (t->base()) {          // Switch on original type
   811   case AnyPtr:                  // Mixing with oops happens when javac
   812   case RawPtr:                  // reuses local variables
   813   case OopPtr:
   814   case InstPtr:
   815   case KlassPtr:
   816   case AryPtr:
   817   case NarrowOop:
   818   case Int:
   819   case Long:
   820   case DoubleTop:
   821   case DoubleCon:
   822   case DoubleBot:
   823   case Bottom:                  // Ye Olde Default
   824     return Type::BOTTOM;
   826   case FloatBot:
   827     return t;
   829   default:                      // All else is a mistake
   830     typerr(t);
   832   case FloatCon:                // Float-constant vs Float-constant?
   833     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   834                                 // must compare bitwise as positive zero, negative zero and NaN have
   835                                 // all the same representation in C++
   836       return FLOAT;             // Return generic float
   837                                 // Equal constants
   838   case Top:
   839   case FloatTop:
   840     break;                      // Return the float constant
   841   }
   842   return this;                  // Return the float constant
   843 }
   845 //------------------------------xdual------------------------------------------
   846 // Dual: symmetric
   847 const Type *TypeF::xdual() const {
   848   return this;
   849 }
   851 //------------------------------eq---------------------------------------------
   852 // Structural equality check for Type representations
   853 bool TypeF::eq( const Type *t ) const {
   854   if( g_isnan(_f) ||
   855       g_isnan(t->getf()) ) {
   856     // One or both are NANs.  If both are NANs return true, else false.
   857     return (g_isnan(_f) && g_isnan(t->getf()));
   858   }
   859   if (_f == t->getf()) {
   860     // (NaN is impossible at this point, since it is not equal even to itself)
   861     if (_f == 0.0) {
   862       // difference between positive and negative zero
   863       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
   864     }
   865     return true;
   866   }
   867   return false;
   868 }
   870 //------------------------------hash-------------------------------------------
   871 // Type-specific hashing function.
   872 int TypeF::hash(void) const {
   873   return *(int*)(&_f);
   874 }
   876 //------------------------------is_finite--------------------------------------
   877 // Has a finite value
   878 bool TypeF::is_finite() const {
   879   return g_isfinite(getf()) != 0;
   880 }
   882 //------------------------------is_nan-----------------------------------------
   883 // Is not a number (NaN)
   884 bool TypeF::is_nan()    const {
   885   return g_isnan(getf()) != 0;
   886 }
   888 //------------------------------dump2------------------------------------------
   889 // Dump float constant Type
   890 #ifndef PRODUCT
   891 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
   892   Type::dump2(d,depth, st);
   893   st->print("%f", _f);
   894 }
   895 #endif
   897 //------------------------------singleton--------------------------------------
   898 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   899 // constants (Ldi nodes).  Singletons are integer, float or double constants
   900 // or a single symbol.
   901 bool TypeF::singleton(void) const {
   902   return true;                  // Always a singleton
   903 }
   905 bool TypeF::empty(void) const {
   906   return false;                 // always exactly a singleton
   907 }
   909 //=============================================================================
   910 // Convenience common pre-built types.
   911 const TypeD *TypeD::ZERO;       // Floating point zero
   912 const TypeD *TypeD::ONE;        // Floating point one
   914 //------------------------------make-------------------------------------------
   915 const TypeD *TypeD::make(double d) {
   916   return (TypeD*)(new TypeD(d))->hashcons();
   917 }
   919 //------------------------------meet-------------------------------------------
   920 // Compute the MEET of two types.  It returns a new Type object.
   921 const Type *TypeD::xmeet( const Type *t ) const {
   922   // Perform a fast test for common case; meeting the same types together.
   923   if( this == t ) return this;  // Meeting same type-rep?
   925   // Current "this->_base" is DoubleCon
   926   switch (t->base()) {          // Switch on original type
   927   case AnyPtr:                  // Mixing with oops happens when javac
   928   case RawPtr:                  // reuses local variables
   929   case OopPtr:
   930   case InstPtr:
   931   case KlassPtr:
   932   case AryPtr:
   933   case NarrowOop:
   934   case Int:
   935   case Long:
   936   case FloatTop:
   937   case FloatCon:
   938   case FloatBot:
   939   case Bottom:                  // Ye Olde Default
   940     return Type::BOTTOM;
   942   case DoubleBot:
   943     return t;
   945   default:                      // All else is a mistake
   946     typerr(t);
   948   case DoubleCon:               // Double-constant vs Double-constant?
   949     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
   950       return DOUBLE;            // Return generic double
   951   case Top:
   952   case DoubleTop:
   953     break;
   954   }
   955   return this;                  // Return the double constant
   956 }
   958 //------------------------------xdual------------------------------------------
   959 // Dual: symmetric
   960 const Type *TypeD::xdual() const {
   961   return this;
   962 }
   964 //------------------------------eq---------------------------------------------
   965 // Structural equality check for Type representations
   966 bool TypeD::eq( const Type *t ) const {
   967   if( g_isnan(_d) ||
   968       g_isnan(t->getd()) ) {
   969     // One or both are NANs.  If both are NANs return true, else false.
   970     return (g_isnan(_d) && g_isnan(t->getd()));
   971   }
   972   if (_d == t->getd()) {
   973     // (NaN is impossible at this point, since it is not equal even to itself)
   974     if (_d == 0.0) {
   975       // difference between positive and negative zero
   976       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
   977     }
   978     return true;
   979   }
   980   return false;
   981 }
   983 //------------------------------hash-------------------------------------------
   984 // Type-specific hashing function.
   985 int TypeD::hash(void) const {
   986   return *(int*)(&_d);
   987 }
   989 //------------------------------is_finite--------------------------------------
   990 // Has a finite value
   991 bool TypeD::is_finite() const {
   992   return g_isfinite(getd()) != 0;
   993 }
   995 //------------------------------is_nan-----------------------------------------
   996 // Is not a number (NaN)
   997 bool TypeD::is_nan()    const {
   998   return g_isnan(getd()) != 0;
   999 }
  1001 //------------------------------dump2------------------------------------------
  1002 // Dump double constant Type
  1003 #ifndef PRODUCT
  1004 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1005   Type::dump2(d,depth,st);
  1006   st->print("%f", _d);
  1008 #endif
  1010 //------------------------------singleton--------------------------------------
  1011 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1012 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1013 // or a single symbol.
  1014 bool TypeD::singleton(void) const {
  1015   return true;                  // Always a singleton
  1018 bool TypeD::empty(void) const {
  1019   return false;                 // always exactly a singleton
  1022 //=============================================================================
  1023 // Convience common pre-built types.
  1024 const TypeInt *TypeInt::MINUS_1;// -1
  1025 const TypeInt *TypeInt::ZERO;   // 0
  1026 const TypeInt *TypeInt::ONE;    // 1
  1027 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1028 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1029 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1030 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1031 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1032 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1033 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1034 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1035 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1036 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1037 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1038 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1039 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1040 const TypeInt *TypeInt::INT;    // 32-bit integers
  1041 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1043 //------------------------------TypeInt----------------------------------------
  1044 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1047 //------------------------------make-------------------------------------------
  1048 const TypeInt *TypeInt::make( jint lo ) {
  1049   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1052 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
  1054 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1055   // Certain normalizations keep us sane when comparing types.
  1056   // The 'SMALLINT' covers constants and also CC and its relatives.
  1057   assert(CC == NULL || (juint)(CC->_hi - CC->_lo) <= SMALLINT, "CC is truly small");
  1058   if (lo <= hi) {
  1059     if ((juint)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1060     if ((juint)(hi - lo) >= max_juint)  w = Type::WidenMax; // plain int
  1062   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1065 //------------------------------meet-------------------------------------------
  1066 // Compute the MEET of two types.  It returns a new Type representation object
  1067 // with reference count equal to the number of Types pointing at it.
  1068 // Caller should wrap a Types around it.
  1069 const Type *TypeInt::xmeet( const Type *t ) const {
  1070   // Perform a fast test for common case; meeting the same types together.
  1071   if( this == t ) return this;  // Meeting same type?
  1073   // Currently "this->_base" is a TypeInt
  1074   switch (t->base()) {          // Switch on original type
  1075   case AnyPtr:                  // Mixing with oops happens when javac
  1076   case RawPtr:                  // reuses local variables
  1077   case OopPtr:
  1078   case InstPtr:
  1079   case KlassPtr:
  1080   case AryPtr:
  1081   case NarrowOop:
  1082   case Long:
  1083   case FloatTop:
  1084   case FloatCon:
  1085   case FloatBot:
  1086   case DoubleTop:
  1087   case DoubleCon:
  1088   case DoubleBot:
  1089   case Bottom:                  // Ye Olde Default
  1090     return Type::BOTTOM;
  1091   default:                      // All else is a mistake
  1092     typerr(t);
  1093   case Top:                     // No change
  1094     return this;
  1095   case Int:                     // Int vs Int?
  1096     break;
  1099   // Expand covered set
  1100   const TypeInt *r = t->is_int();
  1101   // (Avoid TypeInt::make, to avoid the argument normalizations it enforces.)
  1102   return (new TypeInt( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
  1105 //------------------------------xdual------------------------------------------
  1106 // Dual: reverse hi & lo; flip widen
  1107 const Type *TypeInt::xdual() const {
  1108   return new TypeInt(_hi,_lo,WidenMax-_widen);
  1111 //------------------------------widen------------------------------------------
  1112 // Only happens for optimistic top-down optimizations.
  1113 const Type *TypeInt::widen( const Type *old ) const {
  1114   // Coming from TOP or such; no widening
  1115   if( old->base() != Int ) return this;
  1116   const TypeInt *ot = old->is_int();
  1118   // If new guy is equal to old guy, no widening
  1119   if( _lo == ot->_lo && _hi == ot->_hi )
  1120     return old;
  1122   // If new guy contains old, then we widened
  1123   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1124     // New contains old
  1125     // If new guy is already wider than old, no widening
  1126     if( _widen > ot->_widen ) return this;
  1127     // If old guy was a constant, do not bother
  1128     if (ot->_lo == ot->_hi)  return this;
  1129     // Now widen new guy.
  1130     // Check for widening too far
  1131     if (_widen == WidenMax) {
  1132       if (min_jint < _lo && _hi < max_jint) {
  1133         // If neither endpoint is extremal yet, push out the endpoint
  1134         // which is closer to its respective limit.
  1135         if (_lo >= 0 ||                 // easy common case
  1136             (juint)(_lo - min_jint) >= (juint)(max_jint - _hi)) {
  1137           // Try to widen to an unsigned range type of 31 bits:
  1138           return make(_lo, max_jint, WidenMax);
  1139         } else {
  1140           return make(min_jint, _hi, WidenMax);
  1143       return TypeInt::INT;
  1145     // Returned widened new guy
  1146     return make(_lo,_hi,_widen+1);
  1149   // If old guy contains new, then we probably widened too far & dropped to
  1150   // bottom.  Return the wider fellow.
  1151   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1152     return old;
  1154   //fatal("Integer value range is not subset");
  1155   //return this;
  1156   return TypeInt::INT;
  1159 //------------------------------narrow---------------------------------------
  1160 // Only happens for pessimistic optimizations.
  1161 const Type *TypeInt::narrow( const Type *old ) const {
  1162   if (_lo >= _hi)  return this;   // already narrow enough
  1163   if (old == NULL)  return this;
  1164   const TypeInt* ot = old->isa_int();
  1165   if (ot == NULL)  return this;
  1166   jint olo = ot->_lo;
  1167   jint ohi = ot->_hi;
  1169   // If new guy is equal to old guy, no narrowing
  1170   if (_lo == olo && _hi == ohi)  return old;
  1172   // If old guy was maximum range, allow the narrowing
  1173   if (olo == min_jint && ohi == max_jint)  return this;
  1175   if (_lo < olo || _hi > ohi)
  1176     return this;                // doesn't narrow; pretty wierd
  1178   // The new type narrows the old type, so look for a "death march".
  1179   // See comments on PhaseTransform::saturate.
  1180   juint nrange = _hi - _lo;
  1181   juint orange = ohi - olo;
  1182   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1183     // Use the new type only if the range shrinks a lot.
  1184     // We do not want the optimizer computing 2^31 point by point.
  1185     return old;
  1188   return this;
  1191 //-----------------------------filter------------------------------------------
  1192 const Type *TypeInt::filter( const Type *kills ) const {
  1193   const TypeInt* ft = join(kills)->isa_int();
  1194   if (ft == NULL || ft->_lo > ft->_hi)
  1195     return Type::TOP;           // Canonical empty value
  1196   if (ft->_widen < this->_widen) {
  1197     // Do not allow the value of kill->_widen to affect the outcome.
  1198     // The widen bits must be allowed to run freely through the graph.
  1199     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1201   return ft;
  1204 //------------------------------eq---------------------------------------------
  1205 // Structural equality check for Type representations
  1206 bool TypeInt::eq( const Type *t ) const {
  1207   const TypeInt *r = t->is_int(); // Handy access
  1208   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1211 //------------------------------hash-------------------------------------------
  1212 // Type-specific hashing function.
  1213 int TypeInt::hash(void) const {
  1214   return _lo+_hi+_widen+(int)Type::Int;
  1217 //------------------------------is_finite--------------------------------------
  1218 // Has a finite value
  1219 bool TypeInt::is_finite() const {
  1220   return true;
  1223 //------------------------------dump2------------------------------------------
  1224 // Dump TypeInt
  1225 #ifndef PRODUCT
  1226 static const char* intname(char* buf, jint n) {
  1227   if (n == min_jint)
  1228     return "min";
  1229   else if (n < min_jint + 10000)
  1230     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1231   else if (n == max_jint)
  1232     return "max";
  1233   else if (n > max_jint - 10000)
  1234     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1235   else
  1236     sprintf(buf, INT32_FORMAT, n);
  1237   return buf;
  1240 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1241   char buf[40], buf2[40];
  1242   if (_lo == min_jint && _hi == max_jint)
  1243     st->print("int");
  1244   else if (is_con())
  1245     st->print("int:%s", intname(buf, get_con()));
  1246   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1247     st->print("bool");
  1248   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1249     st->print("byte");
  1250   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1251     st->print("char");
  1252   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1253     st->print("short");
  1254   else if (_hi == max_jint)
  1255     st->print("int:>=%s", intname(buf, _lo));
  1256   else if (_lo == min_jint)
  1257     st->print("int:<=%s", intname(buf, _hi));
  1258   else
  1259     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1261   if (_widen != 0 && this != TypeInt::INT)
  1262     st->print(":%.*s", _widen, "wwww");
  1264 #endif
  1266 //------------------------------singleton--------------------------------------
  1267 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1268 // constants.
  1269 bool TypeInt::singleton(void) const {
  1270   return _lo >= _hi;
  1273 bool TypeInt::empty(void) const {
  1274   return _lo > _hi;
  1277 //=============================================================================
  1278 // Convenience common pre-built types.
  1279 const TypeLong *TypeLong::MINUS_1;// -1
  1280 const TypeLong *TypeLong::ZERO; // 0
  1281 const TypeLong *TypeLong::ONE;  // 1
  1282 const TypeLong *TypeLong::POS;  // >=0
  1283 const TypeLong *TypeLong::LONG; // 64-bit integers
  1284 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1285 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1287 //------------------------------TypeLong---------------------------------------
  1288 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1291 //------------------------------make-------------------------------------------
  1292 const TypeLong *TypeLong::make( jlong lo ) {
  1293   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1296 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1297   // Certain normalizations keep us sane when comparing types.
  1298   // The '1' covers constants.
  1299   if (lo <= hi) {
  1300     if ((julong)(hi - lo) <= SMALLINT)    w = Type::WidenMin;
  1301     if ((julong)(hi - lo) >= max_julong)  w = Type::WidenMax; // plain long
  1303   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1307 //------------------------------meet-------------------------------------------
  1308 // Compute the MEET of two types.  It returns a new Type representation object
  1309 // with reference count equal to the number of Types pointing at it.
  1310 // Caller should wrap a Types around it.
  1311 const Type *TypeLong::xmeet( const Type *t ) const {
  1312   // Perform a fast test for common case; meeting the same types together.
  1313   if( this == t ) return this;  // Meeting same type?
  1315   // Currently "this->_base" is a TypeLong
  1316   switch (t->base()) {          // Switch on original type
  1317   case AnyPtr:                  // Mixing with oops happens when javac
  1318   case RawPtr:                  // reuses local variables
  1319   case OopPtr:
  1320   case InstPtr:
  1321   case KlassPtr:
  1322   case AryPtr:
  1323   case NarrowOop:
  1324   case Int:
  1325   case FloatTop:
  1326   case FloatCon:
  1327   case FloatBot:
  1328   case DoubleTop:
  1329   case DoubleCon:
  1330   case DoubleBot:
  1331   case Bottom:                  // Ye Olde Default
  1332     return Type::BOTTOM;
  1333   default:                      // All else is a mistake
  1334     typerr(t);
  1335   case Top:                     // No change
  1336     return this;
  1337   case Long:                    // Long vs Long?
  1338     break;
  1341   // Expand covered set
  1342   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1343   // (Avoid TypeLong::make, to avoid the argument normalizations it enforces.)
  1344   return (new TypeLong( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
  1347 //------------------------------xdual------------------------------------------
  1348 // Dual: reverse hi & lo; flip widen
  1349 const Type *TypeLong::xdual() const {
  1350   return new TypeLong(_hi,_lo,WidenMax-_widen);
  1353 //------------------------------widen------------------------------------------
  1354 // Only happens for optimistic top-down optimizations.
  1355 const Type *TypeLong::widen( const Type *old ) const {
  1356   // Coming from TOP or such; no widening
  1357   if( old->base() != Long ) return this;
  1358   const TypeLong *ot = old->is_long();
  1360   // If new guy is equal to old guy, no widening
  1361   if( _lo == ot->_lo && _hi == ot->_hi )
  1362     return old;
  1364   // If new guy contains old, then we widened
  1365   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1366     // New contains old
  1367     // If new guy is already wider than old, no widening
  1368     if( _widen > ot->_widen ) return this;
  1369     // If old guy was a constant, do not bother
  1370     if (ot->_lo == ot->_hi)  return this;
  1371     // Now widen new guy.
  1372     // Check for widening too far
  1373     if (_widen == WidenMax) {
  1374       if (min_jlong < _lo && _hi < max_jlong) {
  1375         // If neither endpoint is extremal yet, push out the endpoint
  1376         // which is closer to its respective limit.
  1377         if (_lo >= 0 ||                 // easy common case
  1378             (julong)(_lo - min_jlong) >= (julong)(max_jlong - _hi)) {
  1379           // Try to widen to an unsigned range type of 32/63 bits:
  1380           if (_hi < max_juint)
  1381             return make(_lo, max_juint, WidenMax);
  1382           else
  1383             return make(_lo, max_jlong, WidenMax);
  1384         } else {
  1385           return make(min_jlong, _hi, WidenMax);
  1388       return TypeLong::LONG;
  1390     // Returned widened new guy
  1391     return make(_lo,_hi,_widen+1);
  1394   // If old guy contains new, then we probably widened too far & dropped to
  1395   // bottom.  Return the wider fellow.
  1396   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1397     return old;
  1399   //  fatal("Long value range is not subset");
  1400   // return this;
  1401   return TypeLong::LONG;
  1404 //------------------------------narrow----------------------------------------
  1405 // Only happens for pessimistic optimizations.
  1406 const Type *TypeLong::narrow( const Type *old ) const {
  1407   if (_lo >= _hi)  return this;   // already narrow enough
  1408   if (old == NULL)  return this;
  1409   const TypeLong* ot = old->isa_long();
  1410   if (ot == NULL)  return this;
  1411   jlong olo = ot->_lo;
  1412   jlong ohi = ot->_hi;
  1414   // If new guy is equal to old guy, no narrowing
  1415   if (_lo == olo && _hi == ohi)  return old;
  1417   // If old guy was maximum range, allow the narrowing
  1418   if (olo == min_jlong && ohi == max_jlong)  return this;
  1420   if (_lo < olo || _hi > ohi)
  1421     return this;                // doesn't narrow; pretty wierd
  1423   // The new type narrows the old type, so look for a "death march".
  1424   // See comments on PhaseTransform::saturate.
  1425   julong nrange = _hi - _lo;
  1426   julong orange = ohi - olo;
  1427   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1428     // Use the new type only if the range shrinks a lot.
  1429     // We do not want the optimizer computing 2^31 point by point.
  1430     return old;
  1433   return this;
  1436 //-----------------------------filter------------------------------------------
  1437 const Type *TypeLong::filter( const Type *kills ) const {
  1438   const TypeLong* ft = join(kills)->isa_long();
  1439   if (ft == NULL || ft->_lo > ft->_hi)
  1440     return Type::TOP;           // Canonical empty value
  1441   if (ft->_widen < this->_widen) {
  1442     // Do not allow the value of kill->_widen to affect the outcome.
  1443     // The widen bits must be allowed to run freely through the graph.
  1444     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1446   return ft;
  1449 //------------------------------eq---------------------------------------------
  1450 // Structural equality check for Type representations
  1451 bool TypeLong::eq( const Type *t ) const {
  1452   const TypeLong *r = t->is_long(); // Handy access
  1453   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1456 //------------------------------hash-------------------------------------------
  1457 // Type-specific hashing function.
  1458 int TypeLong::hash(void) const {
  1459   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1462 //------------------------------is_finite--------------------------------------
  1463 // Has a finite value
  1464 bool TypeLong::is_finite() const {
  1465   return true;
  1468 //------------------------------dump2------------------------------------------
  1469 // Dump TypeLong
  1470 #ifndef PRODUCT
  1471 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1472   if (n > x) {
  1473     if (n >= x + 10000)  return NULL;
  1474     sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
  1475   } else if (n < x) {
  1476     if (n <= x - 10000)  return NULL;
  1477     sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
  1478   } else {
  1479     return xname;
  1481   return buf;
  1484 static const char* longname(char* buf, jlong n) {
  1485   const char* str;
  1486   if (n == min_jlong)
  1487     return "min";
  1488   else if (n < min_jlong + 10000)
  1489     sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
  1490   else if (n == max_jlong)
  1491     return "max";
  1492   else if (n > max_jlong - 10000)
  1493     sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
  1494   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1495     return str;
  1496   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1497     return str;
  1498   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1499     return str;
  1500   else
  1501     sprintf(buf, INT64_FORMAT, n);
  1502   return buf;
  1505 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1506   char buf[80], buf2[80];
  1507   if (_lo == min_jlong && _hi == max_jlong)
  1508     st->print("long");
  1509   else if (is_con())
  1510     st->print("long:%s", longname(buf, get_con()));
  1511   else if (_hi == max_jlong)
  1512     st->print("long:>=%s", longname(buf, _lo));
  1513   else if (_lo == min_jlong)
  1514     st->print("long:<=%s", longname(buf, _hi));
  1515   else
  1516     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1518   if (_widen != 0 && this != TypeLong::LONG)
  1519     st->print(":%.*s", _widen, "wwww");
  1521 #endif
  1523 //------------------------------singleton--------------------------------------
  1524 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1525 // constants
  1526 bool TypeLong::singleton(void) const {
  1527   return _lo >= _hi;
  1530 bool TypeLong::empty(void) const {
  1531   return _lo > _hi;
  1534 //=============================================================================
  1535 // Convenience common pre-built types.
  1536 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1537 const TypeTuple *TypeTuple::IFFALSE;
  1538 const TypeTuple *TypeTuple::IFTRUE;
  1539 const TypeTuple *TypeTuple::IFNEITHER;
  1540 const TypeTuple *TypeTuple::LOOPBODY;
  1541 const TypeTuple *TypeTuple::MEMBAR;
  1542 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1543 const TypeTuple *TypeTuple::START_I2C;
  1544 const TypeTuple *TypeTuple::INT_PAIR;
  1545 const TypeTuple *TypeTuple::LONG_PAIR;
  1548 //------------------------------make-------------------------------------------
  1549 // Make a TypeTuple from the range of a method signature
  1550 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1551   ciType* return_type = sig->return_type();
  1552   uint total_fields = TypeFunc::Parms + return_type->size();
  1553   const Type **field_array = fields(total_fields);
  1554   switch (return_type->basic_type()) {
  1555   case T_LONG:
  1556     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1557     field_array[TypeFunc::Parms+1] = Type::HALF;
  1558     break;
  1559   case T_DOUBLE:
  1560     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1561     field_array[TypeFunc::Parms+1] = Type::HALF;
  1562     break;
  1563   case T_OBJECT:
  1564   case T_ARRAY:
  1565   case T_BOOLEAN:
  1566   case T_CHAR:
  1567   case T_FLOAT:
  1568   case T_BYTE:
  1569   case T_SHORT:
  1570   case T_INT:
  1571     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1572     break;
  1573   case T_VOID:
  1574     break;
  1575   default:
  1576     ShouldNotReachHere();
  1578   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1581 // Make a TypeTuple from the domain of a method signature
  1582 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1583   uint total_fields = TypeFunc::Parms + sig->size();
  1585   uint pos = TypeFunc::Parms;
  1586   const Type **field_array;
  1587   if (recv != NULL) {
  1588     total_fields++;
  1589     field_array = fields(total_fields);
  1590     // Use get_const_type here because it respects UseUniqueSubclasses:
  1591     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
  1592   } else {
  1593     field_array = fields(total_fields);
  1596   int i = 0;
  1597   while (pos < total_fields) {
  1598     ciType* type = sig->type_at(i);
  1600     switch (type->basic_type()) {
  1601     case T_LONG:
  1602       field_array[pos++] = TypeLong::LONG;
  1603       field_array[pos++] = Type::HALF;
  1604       break;
  1605     case T_DOUBLE:
  1606       field_array[pos++] = Type::DOUBLE;
  1607       field_array[pos++] = Type::HALF;
  1608       break;
  1609     case T_OBJECT:
  1610     case T_ARRAY:
  1611     case T_BOOLEAN:
  1612     case T_CHAR:
  1613     case T_FLOAT:
  1614     case T_BYTE:
  1615     case T_SHORT:
  1616     case T_INT:
  1617       field_array[pos++] = get_const_type(type);
  1618       break;
  1619     default:
  1620       ShouldNotReachHere();
  1622     i++;
  1624   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1627 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1628   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1631 //------------------------------fields-----------------------------------------
  1632 // Subroutine call type with space allocated for argument types
  1633 const Type **TypeTuple::fields( uint arg_cnt ) {
  1634   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1635   flds[TypeFunc::Control  ] = Type::CONTROL;
  1636   flds[TypeFunc::I_O      ] = Type::ABIO;
  1637   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1638   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1639   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1641   return flds;
  1644 //------------------------------meet-------------------------------------------
  1645 // Compute the MEET of two types.  It returns a new Type object.
  1646 const Type *TypeTuple::xmeet( const Type *t ) const {
  1647   // Perform a fast test for common case; meeting the same types together.
  1648   if( this == t ) return this;  // Meeting same type-rep?
  1650   // Current "this->_base" is Tuple
  1651   switch (t->base()) {          // switch on original type
  1653   case Bottom:                  // Ye Olde Default
  1654     return t;
  1656   default:                      // All else is a mistake
  1657     typerr(t);
  1659   case Tuple: {                 // Meeting 2 signatures?
  1660     const TypeTuple *x = t->is_tuple();
  1661     assert( _cnt == x->_cnt, "" );
  1662     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1663     for( uint i=0; i<_cnt; i++ )
  1664       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1665     return TypeTuple::make(_cnt,fields);
  1667   case Top:
  1668     break;
  1670   return this;                  // Return the double constant
  1673 //------------------------------xdual------------------------------------------
  1674 // Dual: compute field-by-field dual
  1675 const Type *TypeTuple::xdual() const {
  1676   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1677   for( uint i=0; i<_cnt; i++ )
  1678     fields[i] = _fields[i]->dual();
  1679   return new TypeTuple(_cnt,fields);
  1682 //------------------------------eq---------------------------------------------
  1683 // Structural equality check for Type representations
  1684 bool TypeTuple::eq( const Type *t ) const {
  1685   const TypeTuple *s = (const TypeTuple *)t;
  1686   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1687   for (uint i = 0; i < _cnt; i++)
  1688     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1689       return false;             // Missed
  1690   return true;
  1693 //------------------------------hash-------------------------------------------
  1694 // Type-specific hashing function.
  1695 int TypeTuple::hash(void) const {
  1696   intptr_t sum = _cnt;
  1697   for( uint i=0; i<_cnt; i++ )
  1698     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1699   return sum;
  1702 //------------------------------dump2------------------------------------------
  1703 // Dump signature Type
  1704 #ifndef PRODUCT
  1705 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1706   st->print("{");
  1707   if( !depth || d[this] ) {     // Check for recursive print
  1708     st->print("...}");
  1709     return;
  1711   d.Insert((void*)this, (void*)this);   // Stop recursion
  1712   if( _cnt ) {
  1713     uint i;
  1714     for( i=0; i<_cnt-1; i++ ) {
  1715       st->print("%d:", i);
  1716       _fields[i]->dump2(d, depth-1, st);
  1717       st->print(", ");
  1719     st->print("%d:", i);
  1720     _fields[i]->dump2(d, depth-1, st);
  1722   st->print("}");
  1724 #endif
  1726 //------------------------------singleton--------------------------------------
  1727 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1728 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1729 // or a single symbol.
  1730 bool TypeTuple::singleton(void) const {
  1731   return false;                 // Never a singleton
  1734 bool TypeTuple::empty(void) const {
  1735   for( uint i=0; i<_cnt; i++ ) {
  1736     if (_fields[i]->empty())  return true;
  1738   return false;
  1741 //=============================================================================
  1742 // Convenience common pre-built types.
  1744 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1745   // Certain normalizations keep us sane when comparing types.
  1746   // We do not want arrayOop variables to differ only by the wideness
  1747   // of their index types.  Pick minimum wideness, since that is the
  1748   // forced wideness of small ranges anyway.
  1749   if (size->_widen != Type::WidenMin)
  1750     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1751   else
  1752     return size;
  1755 //------------------------------make-------------------------------------------
  1756 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
  1757   if (UseCompressedOops && elem->isa_oopptr()) {
  1758     elem = elem->make_narrowoop();
  1760   size = normalize_array_size(size);
  1761   return (TypeAry*)(new TypeAry(elem,size))->hashcons();
  1764 //------------------------------meet-------------------------------------------
  1765 // Compute the MEET of two types.  It returns a new Type object.
  1766 const Type *TypeAry::xmeet( const Type *t ) const {
  1767   // Perform a fast test for common case; meeting the same types together.
  1768   if( this == t ) return this;  // Meeting same type-rep?
  1770   // Current "this->_base" is Ary
  1771   switch (t->base()) {          // switch on original type
  1773   case Bottom:                  // Ye Olde Default
  1774     return t;
  1776   default:                      // All else is a mistake
  1777     typerr(t);
  1779   case Array: {                 // Meeting 2 arrays?
  1780     const TypeAry *a = t->is_ary();
  1781     return TypeAry::make(_elem->meet(a->_elem),
  1782                          _size->xmeet(a->_size)->is_int());
  1784   case Top:
  1785     break;
  1787   return this;                  // Return the double constant
  1790 //------------------------------xdual------------------------------------------
  1791 // Dual: compute field-by-field dual
  1792 const Type *TypeAry::xdual() const {
  1793   const TypeInt* size_dual = _size->dual()->is_int();
  1794   size_dual = normalize_array_size(size_dual);
  1795   return new TypeAry( _elem->dual(), size_dual);
  1798 //------------------------------eq---------------------------------------------
  1799 // Structural equality check for Type representations
  1800 bool TypeAry::eq( const Type *t ) const {
  1801   const TypeAry *a = (const TypeAry*)t;
  1802   return _elem == a->_elem &&
  1803     _size == a->_size;
  1806 //------------------------------hash-------------------------------------------
  1807 // Type-specific hashing function.
  1808 int TypeAry::hash(void) const {
  1809   return (intptr_t)_elem + (intptr_t)_size;
  1812 //----------------------interface_vs_oop---------------------------------------
  1813 #ifdef ASSERT
  1814 bool TypeAry::interface_vs_oop(const Type *t) const {
  1815   const TypeAry* t_ary = t->is_ary();
  1816   if (t_ary) {
  1817     return _elem->interface_vs_oop(t_ary->_elem);
  1819   return false;
  1821 #endif
  1823 //------------------------------dump2------------------------------------------
  1824 #ifndef PRODUCT
  1825 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  1826   _elem->dump2(d, depth, st);
  1827   st->print("[");
  1828   _size->dump2(d, depth, st);
  1829   st->print("]");
  1831 #endif
  1833 //------------------------------singleton--------------------------------------
  1834 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1835 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1836 // or a single symbol.
  1837 bool TypeAry::singleton(void) const {
  1838   return false;                 // Never a singleton
  1841 bool TypeAry::empty(void) const {
  1842   return _elem->empty() || _size->empty();
  1845 //--------------------------ary_must_be_exact----------------------------------
  1846 bool TypeAry::ary_must_be_exact() const {
  1847   if (!UseExactTypes)       return false;
  1848   // This logic looks at the element type of an array, and returns true
  1849   // if the element type is either a primitive or a final instance class.
  1850   // In such cases, an array built on this ary must have no subclasses.
  1851   if (_elem == BOTTOM)      return false;  // general array not exact
  1852   if (_elem == TOP   )      return false;  // inverted general array not exact
  1853   const TypeOopPtr*  toop = NULL;
  1854   if (UseCompressedOops && _elem->isa_narrowoop()) {
  1855     toop = _elem->make_ptr()->isa_oopptr();
  1856   } else {
  1857     toop = _elem->isa_oopptr();
  1859   if (!toop)                return true;   // a primitive type, like int
  1860   ciKlass* tklass = toop->klass();
  1861   if (tklass == NULL)       return false;  // unloaded class
  1862   if (!tklass->is_loaded()) return false;  // unloaded class
  1863   const TypeInstPtr* tinst;
  1864   if (_elem->isa_narrowoop())
  1865     tinst = _elem->make_ptr()->isa_instptr();
  1866   else
  1867     tinst = _elem->isa_instptr();
  1868   if (tinst)
  1869     return tklass->as_instance_klass()->is_final();
  1870   const TypeAryPtr*  tap;
  1871   if (_elem->isa_narrowoop())
  1872     tap = _elem->make_ptr()->isa_aryptr();
  1873   else
  1874     tap = _elem->isa_aryptr();
  1875   if (tap)
  1876     return tap->ary()->ary_must_be_exact();
  1877   return false;
  1880 //=============================================================================
  1881 // Convenience common pre-built types.
  1882 const TypePtr *TypePtr::NULL_PTR;
  1883 const TypePtr *TypePtr::NOTNULL;
  1884 const TypePtr *TypePtr::BOTTOM;
  1886 //------------------------------meet-------------------------------------------
  1887 // Meet over the PTR enum
  1888 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  1889   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  1890   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  1891   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  1892   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  1893   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  1894   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  1895   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  1896 };
  1898 //------------------------------make-------------------------------------------
  1899 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  1900   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  1903 //------------------------------cast_to_ptr_type-------------------------------
  1904 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  1905   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  1906   if( ptr == _ptr ) return this;
  1907   return make(_base, ptr, _offset);
  1910 //------------------------------get_con----------------------------------------
  1911 intptr_t TypePtr::get_con() const {
  1912   assert( _ptr == Null, "" );
  1913   return _offset;
  1916 //------------------------------meet-------------------------------------------
  1917 // Compute the MEET of two types.  It returns a new Type object.
  1918 const Type *TypePtr::xmeet( const Type *t ) const {
  1919   // Perform a fast test for common case; meeting the same types together.
  1920   if( this == t ) return this;  // Meeting same type-rep?
  1922   // Current "this->_base" is AnyPtr
  1923   switch (t->base()) {          // switch on original type
  1924   case Int:                     // Mixing ints & oops happens when javac
  1925   case Long:                    // reuses local variables
  1926   case FloatTop:
  1927   case FloatCon:
  1928   case FloatBot:
  1929   case DoubleTop:
  1930   case DoubleCon:
  1931   case DoubleBot:
  1932   case NarrowOop:
  1933   case Bottom:                  // Ye Olde Default
  1934     return Type::BOTTOM;
  1935   case Top:
  1936     return this;
  1938   case AnyPtr: {                // Meeting to AnyPtrs
  1939     const TypePtr *tp = t->is_ptr();
  1940     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  1942   case RawPtr:                  // For these, flip the call around to cut down
  1943   case OopPtr:
  1944   case InstPtr:                 // on the cases I have to handle.
  1945   case KlassPtr:
  1946   case AryPtr:
  1947     return t->xmeet(this);      // Call in reverse direction
  1948   default:                      // All else is a mistake
  1949     typerr(t);
  1952   return this;
  1955 //------------------------------meet_offset------------------------------------
  1956 int TypePtr::meet_offset( int offset ) const {
  1957   // Either is 'TOP' offset?  Return the other offset!
  1958   if( _offset == OffsetTop ) return offset;
  1959   if( offset == OffsetTop ) return _offset;
  1960   // If either is different, return 'BOTTOM' offset
  1961   if( _offset != offset ) return OffsetBot;
  1962   return _offset;
  1965 //------------------------------dual_offset------------------------------------
  1966 int TypePtr::dual_offset( ) const {
  1967   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  1968   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  1969   return _offset;               // Map everything else into self
  1972 //------------------------------xdual------------------------------------------
  1973 // Dual: compute field-by-field dual
  1974 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  1975   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  1976 };
  1977 const Type *TypePtr::xdual() const {
  1978   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  1981 //------------------------------xadd_offset------------------------------------
  1982 int TypePtr::xadd_offset( intptr_t offset ) const {
  1983   // Adding to 'TOP' offset?  Return 'TOP'!
  1984   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  1985   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  1986   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  1987   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  1988   offset += (intptr_t)_offset;
  1989   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  1991   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  1992   // It is possible to construct a negative offset during PhaseCCP
  1994   return (int)offset;        // Sum valid offsets
  1997 //------------------------------add_offset-------------------------------------
  1998 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  1999   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2002 //------------------------------eq---------------------------------------------
  2003 // Structural equality check for Type representations
  2004 bool TypePtr::eq( const Type *t ) const {
  2005   const TypePtr *a = (const TypePtr*)t;
  2006   return _ptr == a->ptr() && _offset == a->offset();
  2009 //------------------------------hash-------------------------------------------
  2010 // Type-specific hashing function.
  2011 int TypePtr::hash(void) const {
  2012   return _ptr + _offset;
  2015 //------------------------------dump2------------------------------------------
  2016 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2017   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2018 };
  2020 #ifndef PRODUCT
  2021 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2022   if( _ptr == Null ) st->print("NULL");
  2023   else st->print("%s *", ptr_msg[_ptr]);
  2024   if( _offset == OffsetTop ) st->print("+top");
  2025   else if( _offset == OffsetBot ) st->print("+bot");
  2026   else if( _offset ) st->print("+%d", _offset);
  2028 #endif
  2030 //------------------------------singleton--------------------------------------
  2031 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2032 // constants
  2033 bool TypePtr::singleton(void) const {
  2034   // TopPTR, Null, AnyNull, Constant are all singletons
  2035   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2038 bool TypePtr::empty(void) const {
  2039   return (_offset == OffsetTop) || above_centerline(_ptr);
  2042 //=============================================================================
  2043 // Convenience common pre-built types.
  2044 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2045 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2047 //------------------------------make-------------------------------------------
  2048 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2049   assert( ptr != Constant, "what is the constant?" );
  2050   assert( ptr != Null, "Use TypePtr for NULL" );
  2051   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2054 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2055   assert( bits, "Use TypePtr for NULL" );
  2056   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2059 //------------------------------cast_to_ptr_type-------------------------------
  2060 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2061   assert( ptr != Constant, "what is the constant?" );
  2062   assert( ptr != Null, "Use TypePtr for NULL" );
  2063   assert( _bits==0, "Why cast a constant address?");
  2064   if( ptr == _ptr ) return this;
  2065   return make(ptr);
  2068 //------------------------------get_con----------------------------------------
  2069 intptr_t TypeRawPtr::get_con() const {
  2070   assert( _ptr == Null || _ptr == Constant, "" );
  2071   return (intptr_t)_bits;
  2074 //------------------------------meet-------------------------------------------
  2075 // Compute the MEET of two types.  It returns a new Type object.
  2076 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2077   // Perform a fast test for common case; meeting the same types together.
  2078   if( this == t ) return this;  // Meeting same type-rep?
  2080   // Current "this->_base" is RawPtr
  2081   switch( t->base() ) {         // switch on original type
  2082   case Bottom:                  // Ye Olde Default
  2083     return t;
  2084   case Top:
  2085     return this;
  2086   case AnyPtr:                  // Meeting to AnyPtrs
  2087     break;
  2088   case RawPtr: {                // might be top, bot, any/not or constant
  2089     enum PTR tptr = t->is_ptr()->ptr();
  2090     enum PTR ptr = meet_ptr( tptr );
  2091     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2092       if( tptr == Constant && _ptr != Constant)  return t;
  2093       if( _ptr == Constant && tptr != Constant)  return this;
  2094       ptr = NotNull;            // Fall down in lattice
  2096     return make( ptr );
  2099   case OopPtr:
  2100   case InstPtr:
  2101   case KlassPtr:
  2102   case AryPtr:
  2103     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2104   default:                      // All else is a mistake
  2105     typerr(t);
  2108   // Found an AnyPtr type vs self-RawPtr type
  2109   const TypePtr *tp = t->is_ptr();
  2110   switch (tp->ptr()) {
  2111   case TypePtr::TopPTR:  return this;
  2112   case TypePtr::BotPTR:  return t;
  2113   case TypePtr::Null:
  2114     if( _ptr == TypePtr::TopPTR ) return t;
  2115     return TypeRawPtr::BOTTOM;
  2116   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2117   case TypePtr::AnyNull:
  2118     if( _ptr == TypePtr::Constant) return this;
  2119     return make( meet_ptr(TypePtr::AnyNull) );
  2120   default: ShouldNotReachHere();
  2122   return this;
  2125 //------------------------------xdual------------------------------------------
  2126 // Dual: compute field-by-field dual
  2127 const Type *TypeRawPtr::xdual() const {
  2128   return new TypeRawPtr( dual_ptr(), _bits );
  2131 //------------------------------add_offset-------------------------------------
  2132 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2133   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2134   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2135   if( offset == 0 ) return this; // No change
  2136   switch (_ptr) {
  2137   case TypePtr::TopPTR:
  2138   case TypePtr::BotPTR:
  2139   case TypePtr::NotNull:
  2140     return this;
  2141   case TypePtr::Null:
  2142   case TypePtr::Constant:
  2143     return make( _bits+offset );
  2144   default:  ShouldNotReachHere();
  2146   return NULL;                  // Lint noise
  2149 //------------------------------eq---------------------------------------------
  2150 // Structural equality check for Type representations
  2151 bool TypeRawPtr::eq( const Type *t ) const {
  2152   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2153   return _bits == a->_bits && TypePtr::eq(t);
  2156 //------------------------------hash-------------------------------------------
  2157 // Type-specific hashing function.
  2158 int TypeRawPtr::hash(void) const {
  2159   return (intptr_t)_bits + TypePtr::hash();
  2162 //------------------------------dump2------------------------------------------
  2163 #ifndef PRODUCT
  2164 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2165   if( _ptr == Constant )
  2166     st->print(INTPTR_FORMAT, _bits);
  2167   else
  2168     st->print("rawptr:%s", ptr_msg[_ptr]);
  2170 #endif
  2172 //=============================================================================
  2173 // Convenience common pre-built type.
  2174 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2176 //------------------------------TypeOopPtr-------------------------------------
  2177 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
  2178   : TypePtr(t, ptr, offset),
  2179     _const_oop(o), _klass(k),
  2180     _klass_is_exact(xk),
  2181     _is_ptr_to_narrowoop(false),
  2182     _instance_id(instance_id) {
  2183 #ifdef _LP64
  2184   if (UseCompressedOops && _offset != 0) {
  2185     if (klass() == NULL) {
  2186       assert(this->isa_aryptr(), "only arrays without klass");
  2187       _is_ptr_to_narrowoop = true;
  2188     } else if (_offset == oopDesc::klass_offset_in_bytes()) {
  2189       _is_ptr_to_narrowoop = true;
  2190     } else if (this->isa_aryptr()) {
  2191       _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
  2192                              _offset != arrayOopDesc::length_offset_in_bytes());
  2193     } else if (klass() == ciEnv::current()->Class_klass() &&
  2194                (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2195                 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2196       // Special hidden fields from the Class.
  2197       assert(this->isa_instptr(), "must be an instance ptr.");
  2198       _is_ptr_to_narrowoop = true;
  2199     } else if (klass()->is_instance_klass()) {
  2200       ciInstanceKlass* ik = klass()->as_instance_klass();
  2201       ciField* field = NULL;
  2202       if (this->isa_klassptr()) {
  2203         // Perm objects don't use compressed references, except for
  2204         // static fields which are currently compressed.
  2205         field = ik->get_field_by_offset(_offset, true);
  2206         if (field != NULL) {
  2207           BasicType basic_elem_type = field->layout_type();
  2208           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
  2209                                   basic_elem_type == T_ARRAY);
  2211       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2212         // unsafe access
  2213         _is_ptr_to_narrowoop = true;
  2214       } else { // exclude unsafe ops
  2215         assert(this->isa_instptr(), "must be an instance ptr.");
  2216         // Field which contains a compressed oop references.
  2217         field = ik->get_field_by_offset(_offset, false);
  2218         if (field != NULL) {
  2219           BasicType basic_elem_type = field->layout_type();
  2220           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
  2221                                   basic_elem_type == T_ARRAY);
  2222         } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2223           // Compile::find_alias_type() cast exactness on all types to verify
  2224           // that it does not affect alias type.
  2225           _is_ptr_to_narrowoop = true;
  2226         } else {
  2227           // Type for the copy start in LibraryCallKit::inline_native_clone().
  2228           assert(!klass_is_exact(), "only non-exact klass");
  2229           _is_ptr_to_narrowoop = true;
  2234 #endif
  2237 //------------------------------make-------------------------------------------
  2238 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2239                                    int offset) {
  2240   assert(ptr != Constant, "no constant generic pointers");
  2241   ciKlass*  k = ciKlassKlass::make();
  2242   bool      xk = false;
  2243   ciObject* o = NULL;
  2244   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, InstanceBot))->hashcons();
  2248 //------------------------------cast_to_ptr_type-------------------------------
  2249 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2250   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2251   if( ptr == _ptr ) return this;
  2252   return make(ptr, _offset);
  2255 //-----------------------------cast_to_instance_id----------------------------
  2256 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2257   // There are no instances of a general oop.
  2258   // Return self unchanged.
  2259   return this;
  2262 //-----------------------------cast_to_exactness-------------------------------
  2263 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2264   // There is no such thing as an exact general oop.
  2265   // Return self unchanged.
  2266   return this;
  2270 //------------------------------as_klass_type----------------------------------
  2271 // Return the klass type corresponding to this instance or array type.
  2272 // It is the type that is loaded from an object of this type.
  2273 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2274   ciKlass* k = klass();
  2275   bool    xk = klass_is_exact();
  2276   if (k == NULL || !k->is_java_klass())
  2277     return TypeKlassPtr::OBJECT;
  2278   else
  2279     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2283 //------------------------------meet-------------------------------------------
  2284 // Compute the MEET of two types.  It returns a new Type object.
  2285 const Type *TypeOopPtr::xmeet( const Type *t ) const {
  2286   // Perform a fast test for common case; meeting the same types together.
  2287   if( this == t ) return this;  // Meeting same type-rep?
  2289   // Current "this->_base" is OopPtr
  2290   switch (t->base()) {          // switch on original type
  2292   case Int:                     // Mixing ints & oops happens when javac
  2293   case Long:                    // reuses local variables
  2294   case FloatTop:
  2295   case FloatCon:
  2296   case FloatBot:
  2297   case DoubleTop:
  2298   case DoubleCon:
  2299   case DoubleBot:
  2300   case NarrowOop:
  2301   case Bottom:                  // Ye Olde Default
  2302     return Type::BOTTOM;
  2303   case Top:
  2304     return this;
  2306   default:                      // All else is a mistake
  2307     typerr(t);
  2309   case RawPtr:
  2310     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2312   case AnyPtr: {
  2313     // Found an AnyPtr type vs self-OopPtr type
  2314     const TypePtr *tp = t->is_ptr();
  2315     int offset = meet_offset(tp->offset());
  2316     PTR ptr = meet_ptr(tp->ptr());
  2317     switch (tp->ptr()) {
  2318     case Null:
  2319       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2320       // else fall through:
  2321     case TopPTR:
  2322     case AnyNull:
  2323       return make(ptr, offset);
  2324     case BotPTR:
  2325     case NotNull:
  2326       return TypePtr::make(AnyPtr, ptr, offset);
  2327     default: typerr(t);
  2331   case OopPtr: {                 // Meeting to other OopPtrs
  2332     const TypeOopPtr *tp = t->is_oopptr();
  2333     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  2336   case InstPtr:                  // For these, flip the call around to cut down
  2337   case KlassPtr:                 // on the cases I have to handle.
  2338   case AryPtr:
  2339     return t->xmeet(this);      // Call in reverse direction
  2341   } // End of switch
  2342   return this;                  // Return the double constant
  2346 //------------------------------xdual------------------------------------------
  2347 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2348 const Type *TypeOopPtr::xdual() const {
  2349   assert(klass() == ciKlassKlass::make(), "no klasses here");
  2350   assert(const_oop() == NULL,             "no constants here");
  2351   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  2354 //--------------------------make_from_klass_common-----------------------------
  2355 // Computes the element-type given a klass.
  2356 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2357   assert(klass->is_java_klass(), "must be java language klass");
  2358   if (klass->is_instance_klass()) {
  2359     Compile* C = Compile::current();
  2360     Dependencies* deps = C->dependencies();
  2361     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2362     // Element is an instance
  2363     bool klass_is_exact = false;
  2364     if (klass->is_loaded()) {
  2365       // Try to set klass_is_exact.
  2366       ciInstanceKlass* ik = klass->as_instance_klass();
  2367       klass_is_exact = ik->is_final();
  2368       if (!klass_is_exact && klass_change
  2369           && deps != NULL && UseUniqueSubclasses) {
  2370         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2371         if (sub != NULL) {
  2372           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2373           klass = ik = sub;
  2374           klass_is_exact = sub->is_final();
  2377       if (!klass_is_exact && try_for_exact
  2378           && deps != NULL && UseExactTypes) {
  2379         if (!ik->is_interface() && !ik->has_subklass()) {
  2380           // Add a dependence; if concrete subclass added we need to recompile
  2381           deps->assert_leaf_type(ik);
  2382           klass_is_exact = true;
  2386     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2387   } else if (klass->is_obj_array_klass()) {
  2388     // Element is an object array. Recursively call ourself.
  2389     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2390     bool xk = etype->klass_is_exact();
  2391     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2392     // We used to pass NotNull in here, asserting that the sub-arrays
  2393     // are all not-null.  This is not true in generally, as code can
  2394     // slam NULLs down in the subarrays.
  2395     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2396     return arr;
  2397   } else if (klass->is_type_array_klass()) {
  2398     // Element is an typeArray
  2399     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2400     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2401     // We used to pass NotNull in here, asserting that the array pointer
  2402     // is not-null. That was not true in general.
  2403     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2404     return arr;
  2405   } else {
  2406     ShouldNotReachHere();
  2407     return NULL;
  2411 //------------------------------make_from_constant-----------------------------
  2412 // Make a java pointer from an oop constant
  2413 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o) {
  2414   if (o->is_method_data() || o->is_method()) {
  2415     // Treat much like a typeArray of bytes, like below, but fake the type...
  2416     assert(o->has_encoding(), "must be a perm space object");
  2417     const Type* etype = (Type*)get_const_basic_type(T_BYTE);
  2418     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2419     ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
  2420     assert(o->has_encoding(), "method data oops should be tenured");
  2421     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2422     return arr;
  2423   } else {
  2424     assert(o->is_java_object(), "must be java language object");
  2425     assert(!o->is_null_object(), "null object not yet handled here.");
  2426     ciKlass *klass = o->klass();
  2427     if (klass->is_instance_klass()) {
  2428       // Element is an instance
  2429       if (!o->has_encoding()) {  // not a perm-space constant
  2430         // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
  2431         return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2433       return TypeInstPtr::make(o);
  2434     } else if (klass->is_obj_array_klass()) {
  2435       // Element is an object array. Recursively call ourself.
  2436       const Type *etype =
  2437         TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2438       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2439       // We used to pass NotNull in here, asserting that the sub-arrays
  2440       // are all not-null.  This is not true in generally, as code can
  2441       // slam NULLs down in the subarrays.
  2442       if (!o->has_encoding()) {  // not a perm-space constant
  2443         // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
  2444         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2446       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2447       return arr;
  2448     } else if (klass->is_type_array_klass()) {
  2449       // Element is an typeArray
  2450       const Type* etype =
  2451         (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2452       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2453       // We used to pass NotNull in here, asserting that the array pointer
  2454       // is not-null. That was not true in general.
  2455       if (!o->has_encoding()) {  // not a perm-space constant
  2456         // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
  2457         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2459       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2460       return arr;
  2464   ShouldNotReachHere();
  2465   return NULL;
  2468 //------------------------------get_con----------------------------------------
  2469 intptr_t TypeOopPtr::get_con() const {
  2470   assert( _ptr == Null || _ptr == Constant, "" );
  2471   assert( _offset >= 0, "" );
  2473   if (_offset != 0) {
  2474     // After being ported to the compiler interface, the compiler no longer
  2475     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2476     // to a handle at compile time.  This handle is embedded in the generated
  2477     // code and dereferenced at the time the nmethod is made.  Until that time,
  2478     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2479     // have access to the addresses!).  This does not seem to currently happen,
  2480     // but this assertion here is to help prevent its occurence.
  2481     tty->print_cr("Found oop constant with non-zero offset");
  2482     ShouldNotReachHere();
  2485   return (intptr_t)const_oop()->encoding();
  2489 //-----------------------------filter------------------------------------------
  2490 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2491 const Type *TypeOopPtr::filter( const Type *kills ) const {
  2493   const Type* ft = join(kills);
  2494   const TypeInstPtr* ftip = ft->isa_instptr();
  2495   const TypeInstPtr* ktip = kills->isa_instptr();
  2496   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  2497   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  2499   if (ft->empty()) {
  2500     // Check for evil case of 'this' being a class and 'kills' expecting an
  2501     // interface.  This can happen because the bytecodes do not contain
  2502     // enough type info to distinguish a Java-level interface variable
  2503     // from a Java-level object variable.  If we meet 2 classes which
  2504     // both implement interface I, but their meet is at 'j/l/O' which
  2505     // doesn't implement I, we have no way to tell if the result should
  2506     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2507     // into a Phi which "knows" it's an Interface type we'll have to
  2508     // uplift the type.
  2509     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
  2510       return kills;             // Uplift to interface
  2511     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  2512       return kills;             // Uplift to interface
  2514     return Type::TOP;           // Canonical empty value
  2517   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2518   // the join should report back the class.  However, if we have a J/L/Object
  2519   // class-typed Phi and an interface flows in, it's possible that the meet &
  2520   // join report an interface back out.  This isn't possible but happens
  2521   // because the type system doesn't interact well with interfaces.
  2522   if (ftip != NULL && ktip != NULL &&
  2523       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2524       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2525     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2526     return ktip->cast_to_ptr_type(ftip->ptr());
  2528   if (ftkp != NULL && ktkp != NULL &&
  2529       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  2530       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  2531     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2532     return ktkp->cast_to_ptr_type(ftkp->ptr());
  2535   return ft;
  2538 //------------------------------eq---------------------------------------------
  2539 // Structural equality check for Type representations
  2540 bool TypeOopPtr::eq( const Type *t ) const {
  2541   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2542   if (_klass_is_exact != a->_klass_is_exact ||
  2543       _instance_id != a->_instance_id)  return false;
  2544   ciObject* one = const_oop();
  2545   ciObject* two = a->const_oop();
  2546   if (one == NULL || two == NULL) {
  2547     return (one == two) && TypePtr::eq(t);
  2548   } else {
  2549     return one->equals(two) && TypePtr::eq(t);
  2553 //------------------------------hash-------------------------------------------
  2554 // Type-specific hashing function.
  2555 int TypeOopPtr::hash(void) const {
  2556   return
  2557     (const_oop() ? const_oop()->hash() : 0) +
  2558     _klass_is_exact +
  2559     _instance_id +
  2560     TypePtr::hash();
  2563 //------------------------------dump2------------------------------------------
  2564 #ifndef PRODUCT
  2565 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2566   st->print("oopptr:%s", ptr_msg[_ptr]);
  2567   if( _klass_is_exact ) st->print(":exact");
  2568   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2569   switch( _offset ) {
  2570   case OffsetTop: st->print("+top"); break;
  2571   case OffsetBot: st->print("+any"); break;
  2572   case         0: break;
  2573   default:        st->print("+%d",_offset); break;
  2575   if (_instance_id == InstanceTop)
  2576     st->print(",iid=top");
  2577   else if (_instance_id != InstanceBot)
  2578     st->print(",iid=%d",_instance_id);
  2580 #endif
  2582 //------------------------------singleton--------------------------------------
  2583 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2584 // constants
  2585 bool TypeOopPtr::singleton(void) const {
  2586   // detune optimizer to not generate constant oop + constant offset as a constant!
  2587   // TopPTR, Null, AnyNull, Constant are all singletons
  2588   return (_offset == 0) && !below_centerline(_ptr);
  2591 //------------------------------add_offset-------------------------------------
  2592 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
  2593   return make( _ptr, xadd_offset(offset) );
  2596 //------------------------------meet_instance_id--------------------------------
  2597 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  2598   // Either is 'TOP' instance?  Return the other instance!
  2599   if( _instance_id == InstanceTop ) return  instance_id;
  2600   if(  instance_id == InstanceTop ) return _instance_id;
  2601   // If either is different, return 'BOTTOM' instance
  2602   if( _instance_id != instance_id ) return InstanceBot;
  2603   return _instance_id;
  2606 //------------------------------dual_instance_id--------------------------------
  2607 int TypeOopPtr::dual_instance_id( ) const {
  2608   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  2609   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  2610   return _instance_id;              // Map everything else into self
  2614 //=============================================================================
  2615 // Convenience common pre-built types.
  2616 const TypeInstPtr *TypeInstPtr::NOTNULL;
  2617 const TypeInstPtr *TypeInstPtr::BOTTOM;
  2618 const TypeInstPtr *TypeInstPtr::MIRROR;
  2619 const TypeInstPtr *TypeInstPtr::MARK;
  2620 const TypeInstPtr *TypeInstPtr::KLASS;
  2622 //------------------------------TypeInstPtr-------------------------------------
  2623 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
  2624  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
  2625    assert(k != NULL &&
  2626           (k->is_loaded() || o == NULL),
  2627           "cannot have constants with non-loaded klass");
  2628 };
  2630 //------------------------------make-------------------------------------------
  2631 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  2632                                      ciKlass* k,
  2633                                      bool xk,
  2634                                      ciObject* o,
  2635                                      int offset,
  2636                                      int instance_id) {
  2637   assert( !k->is_loaded() || k->is_instance_klass() ||
  2638           k->is_method_klass(), "Must be for instance or method");
  2639   // Either const_oop() is NULL or else ptr is Constant
  2640   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  2641           "constant pointers must have a value supplied" );
  2642   // Ptr is never Null
  2643   assert( ptr != Null, "NULL pointers are not typed" );
  2645   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  2646   if (!UseExactTypes)  xk = false;
  2647   if (ptr == Constant) {
  2648     // Note:  This case includes meta-object constants, such as methods.
  2649     xk = true;
  2650   } else if (k->is_loaded()) {
  2651     ciInstanceKlass* ik = k->as_instance_klass();
  2652     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  2653     if (xk && ik->is_interface())  xk = false;  // no exact interface
  2656   // Now hash this baby
  2657   TypeInstPtr *result =
  2658     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
  2660   return result;
  2664 //------------------------------cast_to_ptr_type-------------------------------
  2665 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  2666   if( ptr == _ptr ) return this;
  2667   // Reconstruct _sig info here since not a problem with later lazy
  2668   // construction, _sig will show up on demand.
  2669   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
  2673 //-----------------------------cast_to_exactness-------------------------------
  2674 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  2675   if( klass_is_exact == _klass_is_exact ) return this;
  2676   if (!UseExactTypes)  return this;
  2677   if (!_klass->is_loaded())  return this;
  2678   ciInstanceKlass* ik = _klass->as_instance_klass();
  2679   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  2680   if( ik->is_interface() )              return this;  // cannot set xk
  2681   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
  2684 //-----------------------------cast_to_instance_id----------------------------
  2685 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  2686   if( instance_id == _instance_id ) return this;
  2687   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
  2690 //------------------------------xmeet_unloaded---------------------------------
  2691 // Compute the MEET of two InstPtrs when at least one is unloaded.
  2692 // Assume classes are different since called after check for same name/class-loader
  2693 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  2694     int off = meet_offset(tinst->offset());
  2695     PTR ptr = meet_ptr(tinst->ptr());
  2697     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  2698     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  2699     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  2700       //
  2701       // Meet unloaded class with java/lang/Object
  2702       //
  2703       // Meet
  2704       //          |                     Unloaded Class
  2705       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  2706       //  ===================================================================
  2707       //   TOP    | ..........................Unloaded......................|
  2708       //  AnyNull |  U-AN    |................Unloaded......................|
  2709       // Constant | ... O-NN .................................. |   O-BOT   |
  2710       //  NotNull | ... O-NN .................................. |   O-BOT   |
  2711       //  BOTTOM  | ........................Object-BOTTOM ..................|
  2712       //
  2713       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  2714       //
  2715       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  2716       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass() ); }
  2717       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  2718       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  2719         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  2720         else                                      { return TypeInstPtr::NOTNULL; }
  2722       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  2724       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  2727     // Both are unloaded, not the same class, not Object
  2728     // Or meet unloaded with a different loaded class, not java/lang/Object
  2729     if( ptr != TypePtr::BotPTR ) {
  2730       return TypeInstPtr::NOTNULL;
  2732     return TypeInstPtr::BOTTOM;
  2736 //------------------------------meet-------------------------------------------
  2737 // Compute the MEET of two types.  It returns a new Type object.
  2738 const Type *TypeInstPtr::xmeet( const Type *t ) const {
  2739   // Perform a fast test for common case; meeting the same types together.
  2740   if( this == t ) return this;  // Meeting same type-rep?
  2742   // Current "this->_base" is Pointer
  2743   switch (t->base()) {          // switch on original type
  2745   case Int:                     // Mixing ints & oops happens when javac
  2746   case Long:                    // reuses local variables
  2747   case FloatTop:
  2748   case FloatCon:
  2749   case FloatBot:
  2750   case DoubleTop:
  2751   case DoubleCon:
  2752   case DoubleBot:
  2753   case NarrowOop:
  2754   case Bottom:                  // Ye Olde Default
  2755     return Type::BOTTOM;
  2756   case Top:
  2757     return this;
  2759   default:                      // All else is a mistake
  2760     typerr(t);
  2762   case RawPtr: return TypePtr::BOTTOM;
  2764   case AryPtr: {                // All arrays inherit from Object class
  2765     const TypeAryPtr *tp = t->is_aryptr();
  2766     int offset = meet_offset(tp->offset());
  2767     PTR ptr = meet_ptr(tp->ptr());
  2768     int instance_id = meet_instance_id(tp->instance_id());
  2769     switch (ptr) {
  2770     case TopPTR:
  2771     case AnyNull:                // Fall 'down' to dual of object klass
  2772       if (klass()->equals(ciEnv::current()->Object_klass())) {
  2773         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  2774       } else {
  2775         // cannot subclass, so the meet has to fall badly below the centerline
  2776         ptr = NotNull;
  2777         instance_id = InstanceBot;
  2778         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
  2780     case Constant:
  2781     case NotNull:
  2782     case BotPTR:                // Fall down to object klass
  2783       // LCA is object_klass, but if we subclass from the top we can do better
  2784       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  2785         // If 'this' (InstPtr) is above the centerline and it is Object class
  2786         // then we can subclass in the Java class hierarchy.
  2787         if (klass()->equals(ciEnv::current()->Object_klass())) {
  2788           // that is, tp's array type is a subtype of my klass
  2789           return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  2792       // The other case cannot happen, since I cannot be a subtype of an array.
  2793       // The meet falls down to Object class below centerline.
  2794       if( ptr == Constant )
  2795          ptr = NotNull;
  2796       instance_id = InstanceBot;
  2797       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
  2798     default: typerr(t);
  2802   case OopPtr: {                // Meeting to OopPtrs
  2803     // Found a OopPtr type vs self-InstPtr type
  2804     const TypePtr *tp = t->is_oopptr();
  2805     int offset = meet_offset(tp->offset());
  2806     PTR ptr = meet_ptr(tp->ptr());
  2807     switch (tp->ptr()) {
  2808     case TopPTR:
  2809     case AnyNull: {
  2810       int instance_id = meet_instance_id(InstanceTop);
  2811       return make(ptr, klass(), klass_is_exact(),
  2812                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  2814     case NotNull:
  2815     case BotPTR:
  2816       return TypeOopPtr::make(ptr, offset);
  2817     default: typerr(t);
  2821   case AnyPtr: {                // Meeting to AnyPtrs
  2822     // Found an AnyPtr type vs self-InstPtr type
  2823     const TypePtr *tp = t->is_ptr();
  2824     int offset = meet_offset(tp->offset());
  2825     PTR ptr = meet_ptr(tp->ptr());
  2826     switch (tp->ptr()) {
  2827     case Null:
  2828       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  2829       // else fall through to AnyNull
  2830     case TopPTR:
  2831     case AnyNull: {
  2832       int instance_id = meet_instance_id(InstanceTop);
  2833       return make( ptr, klass(), klass_is_exact(),
  2834                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  2836     case NotNull:
  2837     case BotPTR:
  2838       return TypePtr::make( AnyPtr, ptr, offset );
  2839     default: typerr(t);
  2843   /*
  2844                  A-top         }
  2845                /   |   \       }  Tops
  2846            B-top A-any C-top   }
  2847               | /  |  \ |      }  Any-nulls
  2848            B-any   |   C-any   }
  2849               |    |    |
  2850            B-con A-con C-con   } constants; not comparable across classes
  2851               |    |    |
  2852            B-not   |   C-not   }
  2853               | \  |  / |      }  not-nulls
  2854            B-bot A-not C-bot   }
  2855                \   |   /       }  Bottoms
  2856                  A-bot         }
  2857   */
  2859   case InstPtr: {                // Meeting 2 Oops?
  2860     // Found an InstPtr sub-type vs self-InstPtr type
  2861     const TypeInstPtr *tinst = t->is_instptr();
  2862     int off = meet_offset( tinst->offset() );
  2863     PTR ptr = meet_ptr( tinst->ptr() );
  2864     int instance_id = meet_instance_id(tinst->instance_id());
  2866     // Check for easy case; klasses are equal (and perhaps not loaded!)
  2867     // If we have constants, then we created oops so classes are loaded
  2868     // and we can handle the constants further down.  This case handles
  2869     // both-not-loaded or both-loaded classes
  2870     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  2871       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
  2874     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  2875     ciKlass* tinst_klass = tinst->klass();
  2876     ciKlass* this_klass  = this->klass();
  2877     bool tinst_xk = tinst->klass_is_exact();
  2878     bool this_xk  = this->klass_is_exact();
  2879     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  2880       // One of these classes has not been loaded
  2881       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  2882 #ifndef PRODUCT
  2883       if( PrintOpto && Verbose ) {
  2884         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  2885         tty->print("  this == "); this->dump(); tty->cr();
  2886         tty->print(" tinst == "); tinst->dump(); tty->cr();
  2888 #endif
  2889       return unloaded_meet;
  2892     // Handle mixing oops and interfaces first.
  2893     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
  2894       ciKlass *tmp = tinst_klass; // Swap interface around
  2895       tinst_klass = this_klass;
  2896       this_klass = tmp;
  2897       bool tmp2 = tinst_xk;
  2898       tinst_xk = this_xk;
  2899       this_xk = tmp2;
  2901     if (tinst_klass->is_interface() &&
  2902         !(this_klass->is_interface() ||
  2903           // Treat java/lang/Object as an honorary interface,
  2904           // because we need a bottom for the interface hierarchy.
  2905           this_klass == ciEnv::current()->Object_klass())) {
  2906       // Oop meets interface!
  2908       // See if the oop subtypes (implements) interface.
  2909       ciKlass *k;
  2910       bool xk;
  2911       if( this_klass->is_subtype_of( tinst_klass ) ) {
  2912         // Oop indeed subtypes.  Now keep oop or interface depending
  2913         // on whether we are both above the centerline or either is
  2914         // below the centerline.  If we are on the centerline
  2915         // (e.g., Constant vs. AnyNull interface), use the constant.
  2916         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  2917         // If we are keeping this_klass, keep its exactness too.
  2918         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  2919       } else {                  // Does not implement, fall to Object
  2920         // Oop does not implement interface, so mixing falls to Object
  2921         // just like the verifier does (if both are above the
  2922         // centerline fall to interface)
  2923         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  2924         xk = above_centerline(ptr) ? tinst_xk : false;
  2925         // Watch out for Constant vs. AnyNull interface.
  2926         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  2927         instance_id = InstanceBot;
  2929       ciObject* o = NULL;  // the Constant value, if any
  2930       if (ptr == Constant) {
  2931         // Find out which constant.
  2932         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  2934       return make( ptr, k, xk, o, off, instance_id );
  2937     // Either oop vs oop or interface vs interface or interface vs Object
  2939     // !!! Here's how the symmetry requirement breaks down into invariants:
  2940     // If we split one up & one down AND they subtype, take the down man.
  2941     // If we split one up & one down AND they do NOT subtype, "fall hard".
  2942     // If both are up and they subtype, take the subtype class.
  2943     // If both are up and they do NOT subtype, "fall hard".
  2944     // If both are down and they subtype, take the supertype class.
  2945     // If both are down and they do NOT subtype, "fall hard".
  2946     // Constants treated as down.
  2948     // Now, reorder the above list; observe that both-down+subtype is also
  2949     // "fall hard"; "fall hard" becomes the default case:
  2950     // If we split one up & one down AND they subtype, take the down man.
  2951     // If both are up and they subtype, take the subtype class.
  2953     // If both are down and they subtype, "fall hard".
  2954     // If both are down and they do NOT subtype, "fall hard".
  2955     // If both are up and they do NOT subtype, "fall hard".
  2956     // If we split one up & one down AND they do NOT subtype, "fall hard".
  2958     // If a proper subtype is exact, and we return it, we return it exactly.
  2959     // If a proper supertype is exact, there can be no subtyping relationship!
  2960     // If both types are equal to the subtype, exactness is and-ed below the
  2961     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  2963     // Check for subtyping:
  2964     ciKlass *subtype = NULL;
  2965     bool subtype_exact = false;
  2966     if( tinst_klass->equals(this_klass) ) {
  2967       subtype = this_klass;
  2968       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  2969     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  2970       subtype = this_klass;     // Pick subtyping class
  2971       subtype_exact = this_xk;
  2972     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  2973       subtype = tinst_klass;    // Pick subtyping class
  2974       subtype_exact = tinst_xk;
  2977     if( subtype ) {
  2978       if( above_centerline(ptr) ) { // both are up?
  2979         this_klass = tinst_klass = subtype;
  2980         this_xk = tinst_xk = subtype_exact;
  2981       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  2982         this_klass = tinst_klass; // tinst is down; keep down man
  2983         this_xk = tinst_xk;
  2984       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  2985         tinst_klass = this_klass; // this is down; keep down man
  2986         tinst_xk = this_xk;
  2987       } else {
  2988         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  2992     // Check for classes now being equal
  2993     if (tinst_klass->equals(this_klass)) {
  2994       // If the klasses are equal, the constants may still differ.  Fall to
  2995       // NotNull if they do (neither constant is NULL; that is a special case
  2996       // handled elsewhere).
  2997       ciObject* o = NULL;             // Assume not constant when done
  2998       ciObject* this_oop  = const_oop();
  2999       ciObject* tinst_oop = tinst->const_oop();
  3000       if( ptr == Constant ) {
  3001         if (this_oop != NULL && tinst_oop != NULL &&
  3002             this_oop->equals(tinst_oop) )
  3003           o = this_oop;
  3004         else if (above_centerline(this ->_ptr))
  3005           o = tinst_oop;
  3006         else if (above_centerline(tinst ->_ptr))
  3007           o = this_oop;
  3008         else
  3009           ptr = NotNull;
  3011       return make( ptr, this_klass, this_xk, o, off, instance_id );
  3012     } // Else classes are not equal
  3014     // Since klasses are different, we require a LCA in the Java
  3015     // class hierarchy - which means we have to fall to at least NotNull.
  3016     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3017       ptr = NotNull;
  3018     instance_id = InstanceBot;
  3020     // Now we find the LCA of Java classes
  3021     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3022     return make( ptr, k, false, NULL, off, instance_id );
  3023   } // End of case InstPtr
  3025   case KlassPtr:
  3026     return TypeInstPtr::BOTTOM;
  3028   } // End of switch
  3029   return this;                  // Return the double constant
  3033 //------------------------java_mirror_type--------------------------------------
  3034 ciType* TypeInstPtr::java_mirror_type() const {
  3035   // must be a singleton type
  3036   if( const_oop() == NULL )  return NULL;
  3038   // must be of type java.lang.Class
  3039   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3041   return const_oop()->as_instance()->java_mirror_type();
  3045 //------------------------------xdual------------------------------------------
  3046 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3047 // inheritance mechanism.
  3048 const Type *TypeInstPtr::xdual() const {
  3049   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  3052 //------------------------------eq---------------------------------------------
  3053 // Structural equality check for Type representations
  3054 bool TypeInstPtr::eq( const Type *t ) const {
  3055   const TypeInstPtr *p = t->is_instptr();
  3056   return
  3057     klass()->equals(p->klass()) &&
  3058     TypeOopPtr::eq(p);          // Check sub-type stuff
  3061 //------------------------------hash-------------------------------------------
  3062 // Type-specific hashing function.
  3063 int TypeInstPtr::hash(void) const {
  3064   int hash = klass()->hash() + TypeOopPtr::hash();
  3065   return hash;
  3068 //------------------------------dump2------------------------------------------
  3069 // Dump oop Type
  3070 #ifndef PRODUCT
  3071 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3072   // Print the name of the klass.
  3073   klass()->print_name_on(st);
  3075   switch( _ptr ) {
  3076   case Constant:
  3077     // TO DO: Make CI print the hex address of the underlying oop.
  3078     if (WizardMode || Verbose) {
  3079       const_oop()->print_oop(st);
  3081   case BotPTR:
  3082     if (!WizardMode && !Verbose) {
  3083       if( _klass_is_exact ) st->print(":exact");
  3084       break;
  3086   case TopPTR:
  3087   case AnyNull:
  3088   case NotNull:
  3089     st->print(":%s", ptr_msg[_ptr]);
  3090     if( _klass_is_exact ) st->print(":exact");
  3091     break;
  3094   if( _offset ) {               // Dump offset, if any
  3095     if( _offset == OffsetBot )      st->print("+any");
  3096     else if( _offset == OffsetTop ) st->print("+unknown");
  3097     else st->print("+%d", _offset);
  3100   st->print(" *");
  3101   if (_instance_id == InstanceTop)
  3102     st->print(",iid=top");
  3103   else if (_instance_id != InstanceBot)
  3104     st->print(",iid=%d",_instance_id);
  3106 #endif
  3108 //------------------------------add_offset-------------------------------------
  3109 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
  3110   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
  3113 //=============================================================================
  3114 // Convenience common pre-built types.
  3115 const TypeAryPtr *TypeAryPtr::RANGE;
  3116 const TypeAryPtr *TypeAryPtr::OOPS;
  3117 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3118 const TypeAryPtr *TypeAryPtr::BYTES;
  3119 const TypeAryPtr *TypeAryPtr::SHORTS;
  3120 const TypeAryPtr *TypeAryPtr::CHARS;
  3121 const TypeAryPtr *TypeAryPtr::INTS;
  3122 const TypeAryPtr *TypeAryPtr::LONGS;
  3123 const TypeAryPtr *TypeAryPtr::FLOATS;
  3124 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3126 //------------------------------make-------------------------------------------
  3127 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3128   assert(!(k == NULL && ary->_elem->isa_int()),
  3129          "integral arrays must be pre-equipped with a class");
  3130   if (!xk)  xk = ary->ary_must_be_exact();
  3131   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3132   if (!UseExactTypes)  xk = (ptr == Constant);
  3133   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
  3136 //------------------------------make-------------------------------------------
  3137 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3138   assert(!(k == NULL && ary->_elem->isa_int()),
  3139          "integral arrays must be pre-equipped with a class");
  3140   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3141   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3142   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3143   if (!UseExactTypes)  xk = (ptr == Constant);
  3144   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
  3147 //------------------------------cast_to_ptr_type-------------------------------
  3148 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3149   if( ptr == _ptr ) return this;
  3150   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
  3154 //-----------------------------cast_to_exactness-------------------------------
  3155 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3156   if( klass_is_exact == _klass_is_exact ) return this;
  3157   if (!UseExactTypes)  return this;
  3158   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3159   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
  3162 //-----------------------------cast_to_instance_id----------------------------
  3163 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3164   if( instance_id == _instance_id ) return this;
  3165   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
  3168 //-----------------------------narrow_size_type-------------------------------
  3169 // Local cache for arrayOopDesc::max_array_length(etype),
  3170 // which is kind of slow (and cached elsewhere by other users).
  3171 static jint max_array_length_cache[T_CONFLICT+1];
  3172 static jint max_array_length(BasicType etype) {
  3173   jint& cache = max_array_length_cache[etype];
  3174   jint res = cache;
  3175   if (res == 0) {
  3176     switch (etype) {
  3177     case T_NARROWOOP:
  3178       etype = T_OBJECT;
  3179       break;
  3180     case T_CONFLICT:
  3181     case T_ILLEGAL:
  3182     case T_VOID:
  3183       etype = T_BYTE;           // will produce conservatively high value
  3185     cache = res = arrayOopDesc::max_array_length(etype);
  3187   return res;
  3190 // Narrow the given size type to the index range for the given array base type.
  3191 // Return NULL if the resulting int type becomes empty.
  3192 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3193   jint hi = size->_hi;
  3194   jint lo = size->_lo;
  3195   jint min_lo = 0;
  3196   jint max_hi = max_array_length(elem()->basic_type());
  3197   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3198   bool chg = false;
  3199   if (lo < min_lo) { lo = min_lo; chg = true; }
  3200   if (hi > max_hi) { hi = max_hi; chg = true; }
  3201   // Negative length arrays will produce weird intermediate dead fast-path code
  3202   if (lo > hi)
  3203     return TypeInt::ZERO;
  3204   if (!chg)
  3205     return size;
  3206   return TypeInt::make(lo, hi, Type::WidenMin);
  3209 //-------------------------------cast_to_size----------------------------------
  3210 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3211   assert(new_size != NULL, "");
  3212   new_size = narrow_size_type(new_size);
  3213   if (new_size == size())  return this;
  3214   const TypeAry* new_ary = TypeAry::make(elem(), new_size);
  3215   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3219 //------------------------------eq---------------------------------------------
  3220 // Structural equality check for Type representations
  3221 bool TypeAryPtr::eq( const Type *t ) const {
  3222   const TypeAryPtr *p = t->is_aryptr();
  3223   return
  3224     _ary == p->_ary &&  // Check array
  3225     TypeOopPtr::eq(p);  // Check sub-parts
  3228 //------------------------------hash-------------------------------------------
  3229 // Type-specific hashing function.
  3230 int TypeAryPtr::hash(void) const {
  3231   return (intptr_t)_ary + TypeOopPtr::hash();
  3234 //------------------------------meet-------------------------------------------
  3235 // Compute the MEET of two types.  It returns a new Type object.
  3236 const Type *TypeAryPtr::xmeet( const Type *t ) const {
  3237   // Perform a fast test for common case; meeting the same types together.
  3238   if( this == t ) return this;  // Meeting same type-rep?
  3239   // Current "this->_base" is Pointer
  3240   switch (t->base()) {          // switch on original type
  3242   // Mixing ints & oops happens when javac reuses local variables
  3243   case Int:
  3244   case Long:
  3245   case FloatTop:
  3246   case FloatCon:
  3247   case FloatBot:
  3248   case DoubleTop:
  3249   case DoubleCon:
  3250   case DoubleBot:
  3251   case NarrowOop:
  3252   case Bottom:                  // Ye Olde Default
  3253     return Type::BOTTOM;
  3254   case Top:
  3255     return this;
  3257   default:                      // All else is a mistake
  3258     typerr(t);
  3260   case OopPtr: {                // Meeting to OopPtrs
  3261     // Found a OopPtr type vs self-AryPtr type
  3262     const TypePtr *tp = t->is_oopptr();
  3263     int offset = meet_offset(tp->offset());
  3264     PTR ptr = meet_ptr(tp->ptr());
  3265     switch (tp->ptr()) {
  3266     case TopPTR:
  3267     case AnyNull: {
  3268       int instance_id = meet_instance_id(InstanceTop);
  3269       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3270                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3272     case BotPTR:
  3273     case NotNull:
  3274       return TypeOopPtr::make(ptr, offset);
  3275     default: ShouldNotReachHere();
  3279   case AnyPtr: {                // Meeting two AnyPtrs
  3280     // Found an AnyPtr type vs self-AryPtr type
  3281     const TypePtr *tp = t->is_ptr();
  3282     int offset = meet_offset(tp->offset());
  3283     PTR ptr = meet_ptr(tp->ptr());
  3284     switch (tp->ptr()) {
  3285     case TopPTR:
  3286       return this;
  3287     case BotPTR:
  3288     case NotNull:
  3289       return TypePtr::make(AnyPtr, ptr, offset);
  3290     case Null:
  3291       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3292       // else fall through to AnyNull
  3293     case AnyNull: {
  3294       int instance_id = meet_instance_id(InstanceTop);
  3295       return make( ptr, (ptr == Constant ? const_oop() : NULL),
  3296                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3298     default: ShouldNotReachHere();
  3302   case RawPtr: return TypePtr::BOTTOM;
  3304   case AryPtr: {                // Meeting 2 references?
  3305     const TypeAryPtr *tap = t->is_aryptr();
  3306     int off = meet_offset(tap->offset());
  3307     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
  3308     PTR ptr = meet_ptr(tap->ptr());
  3309     int instance_id = meet_instance_id(tap->instance_id());
  3310     ciKlass* lazy_klass = NULL;
  3311     if (tary->_elem->isa_int()) {
  3312       // Integral array element types have irrelevant lattice relations.
  3313       // It is the klass that determines array layout, not the element type.
  3314       if (_klass == NULL)
  3315         lazy_klass = tap->_klass;
  3316       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3317         lazy_klass = _klass;
  3318       } else {
  3319         // Something like byte[int+] meets char[int+].
  3320         // This must fall to bottom, not (int[-128..65535])[int+].
  3321         instance_id = InstanceBot;
  3322         tary = TypeAry::make(Type::BOTTOM, tary->_size);
  3325     bool xk;
  3326     switch (tap->ptr()) {
  3327     case AnyNull:
  3328     case TopPTR:
  3329       // Compute new klass on demand, do not use tap->_klass
  3330       xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3331       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
  3332     case Constant: {
  3333       ciObject* o = const_oop();
  3334       if( _ptr == Constant ) {
  3335         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3336           ptr = NotNull;
  3337           o = NULL;
  3338           instance_id = InstanceBot;
  3340       } else if( above_centerline(_ptr) ) {
  3341         o = tap->const_oop();
  3343       xk = true;
  3344       return TypeAryPtr::make( ptr, o, tary, tap->_klass, xk, off, instance_id );
  3346     case NotNull:
  3347     case BotPTR:
  3348       // Compute new klass on demand, do not use tap->_klass
  3349       if (above_centerline(this->_ptr))
  3350             xk = tap->_klass_is_exact;
  3351       else if (above_centerline(tap->_ptr))
  3352             xk = this->_klass_is_exact;
  3353       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  3354               (klass() == tap->klass()); // Only precise for identical arrays
  3355       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
  3356     default: ShouldNotReachHere();
  3360   // All arrays inherit from Object class
  3361   case InstPtr: {
  3362     const TypeInstPtr *tp = t->is_instptr();
  3363     int offset = meet_offset(tp->offset());
  3364     PTR ptr = meet_ptr(tp->ptr());
  3365     int instance_id = meet_instance_id(tp->instance_id());
  3366     switch (ptr) {
  3367     case TopPTR:
  3368     case AnyNull:                // Fall 'down' to dual of object klass
  3369       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3370         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
  3371       } else {
  3372         // cannot subclass, so the meet has to fall badly below the centerline
  3373         ptr = NotNull;
  3374         instance_id = InstanceBot;
  3375         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3377     case Constant:
  3378     case NotNull:
  3379     case BotPTR:                // Fall down to object klass
  3380       // LCA is object_klass, but if we subclass from the top we can do better
  3381       if (above_centerline(tp->ptr())) {
  3382         // If 'tp'  is above the centerline and it is Object class
  3383         // then we can subclass in the Java class hierarchy.
  3384         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3385           // that is, my array type is a subtype of 'tp' klass
  3386           return make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
  3389       // The other case cannot happen, since t cannot be a subtype of an array.
  3390       // The meet falls down to Object class below centerline.
  3391       if( ptr == Constant )
  3392          ptr = NotNull;
  3393       instance_id = InstanceBot;
  3394       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3395     default: typerr(t);
  3399   case KlassPtr:
  3400     return TypeInstPtr::BOTTOM;
  3403   return this;                  // Lint noise
  3406 //------------------------------xdual------------------------------------------
  3407 // Dual: compute field-by-field dual
  3408 const Type *TypeAryPtr::xdual() const {
  3409   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
  3412 //----------------------interface_vs_oop---------------------------------------
  3413 #ifdef ASSERT
  3414 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  3415   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  3416   if (t_aryptr) {
  3417     return _ary->interface_vs_oop(t_aryptr->_ary);
  3419   return false;
  3421 #endif
  3423 //------------------------------dump2------------------------------------------
  3424 #ifndef PRODUCT
  3425 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3426   _ary->dump2(d,depth,st);
  3427   switch( _ptr ) {
  3428   case Constant:
  3429     const_oop()->print(st);
  3430     break;
  3431   case BotPTR:
  3432     if (!WizardMode && !Verbose) {
  3433       if( _klass_is_exact ) st->print(":exact");
  3434       break;
  3436   case TopPTR:
  3437   case AnyNull:
  3438   case NotNull:
  3439     st->print(":%s", ptr_msg[_ptr]);
  3440     if( _klass_is_exact ) st->print(":exact");
  3441     break;
  3444   if( _offset != 0 ) {
  3445     int header_size = objArrayOopDesc::header_size() * wordSize;
  3446     if( _offset == OffsetTop )       st->print("+undefined");
  3447     else if( _offset == OffsetBot )  st->print("+any");
  3448     else if( _offset < header_size ) st->print("+%d", _offset);
  3449     else {
  3450       BasicType basic_elem_type = elem()->basic_type();
  3451       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  3452       int elem_size = type2aelembytes(basic_elem_type);
  3453       st->print("[%d]", (_offset - array_base)/elem_size);
  3456   st->print(" *");
  3457   if (_instance_id == InstanceTop)
  3458     st->print(",iid=top");
  3459   else if (_instance_id != InstanceBot)
  3460     st->print(",iid=%d",_instance_id);
  3462 #endif
  3464 bool TypeAryPtr::empty(void) const {
  3465   if (_ary->empty())       return true;
  3466   return TypeOopPtr::empty();
  3469 //------------------------------add_offset-------------------------------------
  3470 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
  3471   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
  3475 //=============================================================================
  3476 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  3477 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  3480 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  3481   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  3484 //------------------------------hash-------------------------------------------
  3485 // Type-specific hashing function.
  3486 int TypeNarrowOop::hash(void) const {
  3487   return _ptrtype->hash() + 7;
  3491 bool TypeNarrowOop::eq( const Type *t ) const {
  3492   const TypeNarrowOop* tc = t->isa_narrowoop();
  3493   if (tc != NULL) {
  3494     if (_ptrtype->base() != tc->_ptrtype->base()) {
  3495       return false;
  3497     return tc->_ptrtype->eq(_ptrtype);
  3499   return false;
  3502 bool TypeNarrowOop::singleton(void) const {    // TRUE if type is a singleton
  3503   return _ptrtype->singleton();
  3506 bool TypeNarrowOop::empty(void) const {
  3507   return _ptrtype->empty();
  3510 //------------------------------xmeet------------------------------------------
  3511 // Compute the MEET of two types.  It returns a new Type object.
  3512 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
  3513   // Perform a fast test for common case; meeting the same types together.
  3514   if( this == t ) return this;  // Meeting same type-rep?
  3517   // Current "this->_base" is OopPtr
  3518   switch (t->base()) {          // switch on original type
  3520   case Int:                     // Mixing ints & oops happens when javac
  3521   case Long:                    // reuses local variables
  3522   case FloatTop:
  3523   case FloatCon:
  3524   case FloatBot:
  3525   case DoubleTop:
  3526   case DoubleCon:
  3527   case DoubleBot:
  3528   case AnyPtr:
  3529   case RawPtr:
  3530   case OopPtr:
  3531   case InstPtr:
  3532   case KlassPtr:
  3533   case AryPtr:
  3535   case Bottom:                  // Ye Olde Default
  3536     return Type::BOTTOM;
  3537   case Top:
  3538     return this;
  3540   case NarrowOop: {
  3541     const Type* result = _ptrtype->xmeet(t->make_ptr());
  3542     if (result->isa_ptr()) {
  3543       return TypeNarrowOop::make(result->is_ptr());
  3545     return result;
  3548   default:                      // All else is a mistake
  3549     typerr(t);
  3551   } // End of switch
  3553   return this;
  3556 const Type *TypeNarrowOop::xdual() const {    // Compute dual right now.
  3557   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  3558   return new TypeNarrowOop(odual);
  3561 const Type *TypeNarrowOop::filter( const Type *kills ) const {
  3562   if (kills->isa_narrowoop()) {
  3563     const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
  3564     if (ft->empty())
  3565       return Type::TOP;           // Canonical empty value
  3566     if (ft->isa_ptr()) {
  3567       return make(ft->isa_ptr());
  3569     return ft;
  3570   } else if (kills->isa_ptr()) {
  3571     const Type* ft = _ptrtype->join(kills);
  3572     if (ft->empty())
  3573       return Type::TOP;           // Canonical empty value
  3574     return ft;
  3575   } else {
  3576     return Type::TOP;
  3581 intptr_t TypeNarrowOop::get_con() const {
  3582   return _ptrtype->get_con();
  3585 #ifndef PRODUCT
  3586 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  3587   st->print("narrowoop: ");
  3588   _ptrtype->dump2(d, depth, st);
  3590 #endif
  3593 //=============================================================================
  3594 // Convenience common pre-built types.
  3596 // Not-null object klass or below
  3597 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  3598 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  3600 //------------------------------TypeKlasPtr------------------------------------
  3601 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  3602   : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
  3605 //------------------------------make-------------------------------------------
  3606 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  3607 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  3608   assert( k != NULL, "Expect a non-NULL klass");
  3609   assert(k->is_instance_klass() || k->is_array_klass() ||
  3610          k->is_method_klass(), "Incorrect type of klass oop");
  3611   TypeKlassPtr *r =
  3612     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  3614   return r;
  3617 //------------------------------eq---------------------------------------------
  3618 // Structural equality check for Type representations
  3619 bool TypeKlassPtr::eq( const Type *t ) const {
  3620   const TypeKlassPtr *p = t->is_klassptr();
  3621   return
  3622     klass()->equals(p->klass()) &&
  3623     TypeOopPtr::eq(p);
  3626 //------------------------------hash-------------------------------------------
  3627 // Type-specific hashing function.
  3628 int TypeKlassPtr::hash(void) const {
  3629   return klass()->hash() + TypeOopPtr::hash();
  3633 //------------------------------klass------------------------------------------
  3634 // Return the defining klass for this class
  3635 ciKlass* TypeAryPtr::klass() const {
  3636   if( _klass ) return _klass;   // Return cached value, if possible
  3638   // Oops, need to compute _klass and cache it
  3639   ciKlass* k_ary = NULL;
  3640   const TypeInstPtr *tinst;
  3641   const TypeAryPtr *tary;
  3642   const Type* el = elem();
  3643   if (el->isa_narrowoop()) {
  3644     el = el->make_ptr();
  3647   // Get element klass
  3648   if ((tinst = el->isa_instptr()) != NULL) {
  3649     // Compute array klass from element klass
  3650     k_ary = ciObjArrayKlass::make(tinst->klass());
  3651   } else if ((tary = el->isa_aryptr()) != NULL) {
  3652     // Compute array klass from element klass
  3653     ciKlass* k_elem = tary->klass();
  3654     // If element type is something like bottom[], k_elem will be null.
  3655     if (k_elem != NULL)
  3656       k_ary = ciObjArrayKlass::make(k_elem);
  3657   } else if ((el->base() == Type::Top) ||
  3658              (el->base() == Type::Bottom)) {
  3659     // element type of Bottom occurs from meet of basic type
  3660     // and object; Top occurs when doing join on Bottom.
  3661     // Leave k_ary at NULL.
  3662   } else {
  3663     // Cannot compute array klass directly from basic type,
  3664     // since subtypes of TypeInt all have basic type T_INT.
  3665     assert(!el->isa_int(),
  3666            "integral arrays must be pre-equipped with a class");
  3667     // Compute array klass directly from basic type
  3668     k_ary = ciTypeArrayKlass::make(el->basic_type());
  3671   if( this != TypeAryPtr::OOPS ) {
  3672     // The _klass field acts as a cache of the underlying
  3673     // ciKlass for this array type.  In order to set the field,
  3674     // we need to cast away const-ness.
  3675     //
  3676     // IMPORTANT NOTE: we *never* set the _klass field for the
  3677     // type TypeAryPtr::OOPS.  This Type is shared between all
  3678     // active compilations.  However, the ciKlass which represents
  3679     // this Type is *not* shared between compilations, so caching
  3680     // this value would result in fetching a dangling pointer.
  3681     //
  3682     // Recomputing the underlying ciKlass for each request is
  3683     // a bit less efficient than caching, but calls to
  3684     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  3685     ((TypeAryPtr*)this)->_klass = k_ary;
  3686     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  3687         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  3688       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  3691   return k_ary;
  3695 //------------------------------add_offset-------------------------------------
  3696 // Access internals of klass object
  3697 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  3698   return make( _ptr, klass(), xadd_offset(offset) );
  3701 //------------------------------cast_to_ptr_type-------------------------------
  3702 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  3703   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  3704   if( ptr == _ptr ) return this;
  3705   return make(ptr, _klass, _offset);
  3709 //-----------------------------cast_to_exactness-------------------------------
  3710 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  3711   if( klass_is_exact == _klass_is_exact ) return this;
  3712   if (!UseExactTypes)  return this;
  3713   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  3717 //-----------------------------as_instance_type--------------------------------
  3718 // Corresponding type for an instance of the given class.
  3719 // It will be NotNull, and exact if and only if the klass type is exact.
  3720 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  3721   ciKlass* k = klass();
  3722   bool    xk = klass_is_exact();
  3723   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  3724   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  3725   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  3726   return toop->cast_to_exactness(xk)->is_oopptr();
  3730 //------------------------------xmeet------------------------------------------
  3731 // Compute the MEET of two types, return a new Type object.
  3732 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  3733   // Perform a fast test for common case; meeting the same types together.
  3734   if( this == t ) return this;  // Meeting same type-rep?
  3736   // Current "this->_base" is Pointer
  3737   switch (t->base()) {          // switch on original type
  3739   case Int:                     // Mixing ints & oops happens when javac
  3740   case Long:                    // reuses local variables
  3741   case FloatTop:
  3742   case FloatCon:
  3743   case FloatBot:
  3744   case DoubleTop:
  3745   case DoubleCon:
  3746   case DoubleBot:
  3747   case NarrowOop:
  3748   case Bottom:                  // Ye Olde Default
  3749     return Type::BOTTOM;
  3750   case Top:
  3751     return this;
  3753   default:                      // All else is a mistake
  3754     typerr(t);
  3756   case RawPtr: return TypePtr::BOTTOM;
  3758   case OopPtr: {                // Meeting to OopPtrs
  3759     // Found a OopPtr type vs self-KlassPtr type
  3760     const TypePtr *tp = t->is_oopptr();
  3761     int offset = meet_offset(tp->offset());
  3762     PTR ptr = meet_ptr(tp->ptr());
  3763     switch (tp->ptr()) {
  3764     case TopPTR:
  3765     case AnyNull:
  3766       return make(ptr, klass(), offset);
  3767     case BotPTR:
  3768     case NotNull:
  3769       return TypePtr::make(AnyPtr, ptr, offset);
  3770     default: typerr(t);
  3774   case AnyPtr: {                // Meeting to AnyPtrs
  3775     // Found an AnyPtr type vs self-KlassPtr type
  3776     const TypePtr *tp = t->is_ptr();
  3777     int offset = meet_offset(tp->offset());
  3778     PTR ptr = meet_ptr(tp->ptr());
  3779     switch (tp->ptr()) {
  3780     case TopPTR:
  3781       return this;
  3782     case Null:
  3783       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  3784     case AnyNull:
  3785       return make( ptr, klass(), offset );
  3786     case BotPTR:
  3787     case NotNull:
  3788       return TypePtr::make(AnyPtr, ptr, offset);
  3789     default: typerr(t);
  3793   case AryPtr:                  // Meet with AryPtr
  3794   case InstPtr:                 // Meet with InstPtr
  3795     return TypeInstPtr::BOTTOM;
  3797   //
  3798   //             A-top         }
  3799   //           /   |   \       }  Tops
  3800   //       B-top A-any C-top   }
  3801   //          | /  |  \ |      }  Any-nulls
  3802   //       B-any   |   C-any   }
  3803   //          |    |    |
  3804   //       B-con A-con C-con   } constants; not comparable across classes
  3805   //          |    |    |
  3806   //       B-not   |   C-not   }
  3807   //          | \  |  / |      }  not-nulls
  3808   //       B-bot A-not C-bot   }
  3809   //           \   |   /       }  Bottoms
  3810   //             A-bot         }
  3811   //
  3813   case KlassPtr: {  // Meet two KlassPtr types
  3814     const TypeKlassPtr *tkls = t->is_klassptr();
  3815     int  off     = meet_offset(tkls->offset());
  3816     PTR  ptr     = meet_ptr(tkls->ptr());
  3818     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3819     // If we have constants, then we created oops so classes are loaded
  3820     // and we can handle the constants further down.  This case handles
  3821     // not-loaded classes
  3822     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  3823       return make( ptr, klass(), off );
  3826     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3827     ciKlass* tkls_klass = tkls->klass();
  3828     ciKlass* this_klass = this->klass();
  3829     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  3830     assert( this_klass->is_loaded(), "This class should have been loaded.");
  3832     // If 'this' type is above the centerline and is a superclass of the
  3833     // other, we can treat 'this' as having the same type as the other.
  3834     if ((above_centerline(this->ptr())) &&
  3835         tkls_klass->is_subtype_of(this_klass)) {
  3836       this_klass = tkls_klass;
  3838     // If 'tinst' type is above the centerline and is a superclass of the
  3839     // other, we can treat 'tinst' as having the same type as the other.
  3840     if ((above_centerline(tkls->ptr())) &&
  3841         this_klass->is_subtype_of(tkls_klass)) {
  3842       tkls_klass = this_klass;
  3845     // Check for classes now being equal
  3846     if (tkls_klass->equals(this_klass)) {
  3847       // If the klasses are equal, the constants may still differ.  Fall to
  3848       // NotNull if they do (neither constant is NULL; that is a special case
  3849       // handled elsewhere).
  3850       ciObject* o = NULL;             // Assume not constant when done
  3851       ciObject* this_oop = const_oop();
  3852       ciObject* tkls_oop = tkls->const_oop();
  3853       if( ptr == Constant ) {
  3854         if (this_oop != NULL && tkls_oop != NULL &&
  3855             this_oop->equals(tkls_oop) )
  3856           o = this_oop;
  3857         else if (above_centerline(this->ptr()))
  3858           o = tkls_oop;
  3859         else if (above_centerline(tkls->ptr()))
  3860           o = this_oop;
  3861         else
  3862           ptr = NotNull;
  3864       return make( ptr, this_klass, off );
  3865     } // Else classes are not equal
  3867     // Since klasses are different, we require the LCA in the Java
  3868     // class hierarchy - which means we have to fall to at least NotNull.
  3869     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3870       ptr = NotNull;
  3871     // Now we find the LCA of Java classes
  3872     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  3873     return   make( ptr, k, off );
  3874   } // End of case KlassPtr
  3876   } // End of switch
  3877   return this;                  // Return the double constant
  3880 //------------------------------xdual------------------------------------------
  3881 // Dual: compute field-by-field dual
  3882 const Type    *TypeKlassPtr::xdual() const {
  3883   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  3886 //------------------------------dump2------------------------------------------
  3887 // Dump Klass Type
  3888 #ifndef PRODUCT
  3889 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  3890   switch( _ptr ) {
  3891   case Constant:
  3892     st->print("precise ");
  3893   case NotNull:
  3895       const char *name = klass()->name()->as_utf8();
  3896       if( name ) {
  3897         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  3898       } else {
  3899         ShouldNotReachHere();
  3902   case BotPTR:
  3903     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  3904   case TopPTR:
  3905   case AnyNull:
  3906     st->print(":%s", ptr_msg[_ptr]);
  3907     if( _klass_is_exact ) st->print(":exact");
  3908     break;
  3911   if( _offset ) {               // Dump offset, if any
  3912     if( _offset == OffsetBot )      { st->print("+any"); }
  3913     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  3914     else                            { st->print("+%d", _offset); }
  3917   st->print(" *");
  3919 #endif
  3923 //=============================================================================
  3924 // Convenience common pre-built types.
  3926 //------------------------------make-------------------------------------------
  3927 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  3928   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  3931 //------------------------------make-------------------------------------------
  3932 const TypeFunc *TypeFunc::make(ciMethod* method) {
  3933   Compile* C = Compile::current();
  3934   const TypeFunc* tf = C->last_tf(method); // check cache
  3935   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  3936   const TypeTuple *domain;
  3937   if (method->flags().is_static()) {
  3938     domain = TypeTuple::make_domain(NULL, method->signature());
  3939   } else {
  3940     domain = TypeTuple::make_domain(method->holder(), method->signature());
  3942   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  3943   tf = TypeFunc::make(domain, range);
  3944   C->set_last_tf(method, tf);  // fill cache
  3945   return tf;
  3948 //------------------------------meet-------------------------------------------
  3949 // Compute the MEET of two types.  It returns a new Type object.
  3950 const Type *TypeFunc::xmeet( const Type *t ) const {
  3951   // Perform a fast test for common case; meeting the same types together.
  3952   if( this == t ) return this;  // Meeting same type-rep?
  3954   // Current "this->_base" is Func
  3955   switch (t->base()) {          // switch on original type
  3957   case Bottom:                  // Ye Olde Default
  3958     return t;
  3960   default:                      // All else is a mistake
  3961     typerr(t);
  3963   case Top:
  3964     break;
  3966   return this;                  // Return the double constant
  3969 //------------------------------xdual------------------------------------------
  3970 // Dual: compute field-by-field dual
  3971 const Type *TypeFunc::xdual() const {
  3972   return this;
  3975 //------------------------------eq---------------------------------------------
  3976 // Structural equality check for Type representations
  3977 bool TypeFunc::eq( const Type *t ) const {
  3978   const TypeFunc *a = (const TypeFunc*)t;
  3979   return _domain == a->_domain &&
  3980     _range == a->_range;
  3983 //------------------------------hash-------------------------------------------
  3984 // Type-specific hashing function.
  3985 int TypeFunc::hash(void) const {
  3986   return (intptr_t)_domain + (intptr_t)_range;
  3989 //------------------------------dump2------------------------------------------
  3990 // Dump Function Type
  3991 #ifndef PRODUCT
  3992 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  3993   if( _range->_cnt <= Parms )
  3994     st->print("void");
  3995   else {
  3996     uint i;
  3997     for (i = Parms; i < _range->_cnt-1; i++) {
  3998       _range->field_at(i)->dump2(d,depth,st);
  3999       st->print("/");
  4001     _range->field_at(i)->dump2(d,depth,st);
  4003   st->print(" ");
  4004   st->print("( ");
  4005   if( !depth || d[this] ) {     // Check for recursive dump
  4006     st->print("...)");
  4007     return;
  4009   d.Insert((void*)this,(void*)this);    // Stop recursion
  4010   if (Parms < _domain->_cnt)
  4011     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4012   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4013     st->print(", ");
  4014     _domain->field_at(i)->dump2(d,depth-1,st);
  4016   st->print(" )");
  4019 //------------------------------print_flattened--------------------------------
  4020 // Print a 'flattened' signature
  4021 static const char * const flat_type_msg[Type::lastype] = {
  4022   "bad","control","top","int","long","_", "narrowoop",
  4023   "tuple:", "array:",
  4024   "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
  4025   "func", "abIO", "return_address", "mem",
  4026   "float_top", "ftcon:", "flt",
  4027   "double_top", "dblcon:", "dbl",
  4028   "bottom"
  4029 };
  4031 void TypeFunc::print_flattened() const {
  4032   if( _range->_cnt <= Parms )
  4033     tty->print("void");
  4034   else {
  4035     uint i;
  4036     for (i = Parms; i < _range->_cnt-1; i++)
  4037       tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
  4038     tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
  4040   tty->print(" ( ");
  4041   if (Parms < _domain->_cnt)
  4042     tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
  4043   for (uint i = Parms+1; i < _domain->_cnt; i++)
  4044     tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
  4045   tty->print(" )");
  4047 #endif
  4049 //------------------------------singleton--------------------------------------
  4050 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4051 // constants (Ldi nodes).  Singletons are integer, float or double constants
  4052 // or a single symbol.
  4053 bool TypeFunc::singleton(void) const {
  4054   return false;                 // Never a singleton
  4057 bool TypeFunc::empty(void) const {
  4058   return false;                 // Never empty
  4062 BasicType TypeFunc::return_type() const{
  4063   if (range()->cnt() == TypeFunc::Parms) {
  4064     return T_VOID;
  4066   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial