src/os/linux/vm/os_linux.cpp

Thu, 04 Oct 2012 06:31:07 -0700

author
neliasso
date
Thu, 04 Oct 2012 06:31:07 -0700
changeset 4136
bf2edd3c9b0f
parent 3903
65906dc96aa1
child 4261
6cb0d32b828b
permissions
-rw-r--r--

8000102: Resolve include conflicts
Summary: Removing include of c1/c1_runtime.hpp and opto/runtime.hpp from all os-files.
Reviewed-by: kvn
Contributed-by: nils.eliasson@oracle.com

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_linux.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/filemap.hpp"
    36 #include "mutex_linux.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "os_share_linux.hpp"
    39 #include "prims/jniFastGetField.hpp"
    40 #include "prims/jvm.h"
    41 #include "prims/jvm_misc.hpp"
    42 #include "runtime/arguments.hpp"
    43 #include "runtime/extendedPC.hpp"
    44 #include "runtime/globals.hpp"
    45 #include "runtime/interfaceSupport.hpp"
    46 #include "runtime/java.hpp"
    47 #include "runtime/javaCalls.hpp"
    48 #include "runtime/mutexLocker.hpp"
    49 #include "runtime/objectMonitor.hpp"
    50 #include "runtime/osThread.hpp"
    51 #include "runtime/perfMemory.hpp"
    52 #include "runtime/sharedRuntime.hpp"
    53 #include "runtime/statSampler.hpp"
    54 #include "runtime/stubRoutines.hpp"
    55 #include "runtime/threadCritical.hpp"
    56 #include "runtime/timer.hpp"
    57 #include "services/attachListener.hpp"
    58 #include "services/runtimeService.hpp"
    59 #include "thread_linux.inline.hpp"
    60 #include "utilities/decoder.hpp"
    61 #include "utilities/defaultStream.hpp"
    62 #include "utilities/events.hpp"
    63 #include "utilities/growableArray.hpp"
    64 #include "utilities/vmError.hpp"
    65 #ifdef TARGET_ARCH_x86
    66 # include "assembler_x86.inline.hpp"
    67 # include "nativeInst_x86.hpp"
    68 #endif
    69 #ifdef TARGET_ARCH_sparc
    70 # include "assembler_sparc.inline.hpp"
    71 # include "nativeInst_sparc.hpp"
    72 #endif
    73 #ifdef TARGET_ARCH_zero
    74 # include "assembler_zero.inline.hpp"
    75 # include "nativeInst_zero.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_arm
    78 # include "assembler_arm.inline.hpp"
    79 # include "nativeInst_arm.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_ppc
    82 # include "assembler_ppc.inline.hpp"
    83 # include "nativeInst_ppc.hpp"
    84 #endif
    86 // put OS-includes here
    87 # include <sys/types.h>
    88 # include <sys/mman.h>
    89 # include <sys/stat.h>
    90 # include <sys/select.h>
    91 # include <pthread.h>
    92 # include <signal.h>
    93 # include <errno.h>
    94 # include <dlfcn.h>
    95 # include <stdio.h>
    96 # include <unistd.h>
    97 # include <sys/resource.h>
    98 # include <pthread.h>
    99 # include <sys/stat.h>
   100 # include <sys/time.h>
   101 # include <sys/times.h>
   102 # include <sys/utsname.h>
   103 # include <sys/socket.h>
   104 # include <sys/wait.h>
   105 # include <pwd.h>
   106 # include <poll.h>
   107 # include <semaphore.h>
   108 # include <fcntl.h>
   109 # include <string.h>
   110 # include <syscall.h>
   111 # include <sys/sysinfo.h>
   112 # include <gnu/libc-version.h>
   113 # include <sys/ipc.h>
   114 # include <sys/shm.h>
   115 # include <link.h>
   116 # include <stdint.h>
   117 # include <inttypes.h>
   118 # include <sys/ioctl.h>
   120 #define MAX_PATH    (2 * K)
   122 // for timer info max values which include all bits
   123 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   125 #define LARGEPAGES_BIT (1 << 6)
   126 ////////////////////////////////////////////////////////////////////////////////
   127 // global variables
   128 julong os::Linux::_physical_memory = 0;
   130 address   os::Linux::_initial_thread_stack_bottom = NULL;
   131 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   133 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   134 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   135 Mutex* os::Linux::_createThread_lock = NULL;
   136 pthread_t os::Linux::_main_thread;
   137 int os::Linux::_page_size = -1;
   138 bool os::Linux::_is_floating_stack = false;
   139 bool os::Linux::_is_NPTL = false;
   140 bool os::Linux::_supports_fast_thread_cpu_time = false;
   141 const char * os::Linux::_glibc_version = NULL;
   142 const char * os::Linux::_libpthread_version = NULL;
   144 static jlong initial_time_count=0;
   146 static int clock_tics_per_sec = 100;
   148 // For diagnostics to print a message once. see run_periodic_checks
   149 static sigset_t check_signal_done;
   150 static bool check_signals = true;;
   152 static pid_t _initial_pid = 0;
   154 /* Signal number used to suspend/resume a thread */
   156 /* do not use any signal number less than SIGSEGV, see 4355769 */
   157 static int SR_signum = SIGUSR2;
   158 sigset_t SR_sigset;
   160 /* Used to protect dlsym() calls */
   161 static pthread_mutex_t dl_mutex;
   163 #ifdef JAVASE_EMBEDDED
   164 class MemNotifyThread: public Thread {
   165   friend class VMStructs;
   166  public:
   167   virtual void run();
   169  private:
   170   static MemNotifyThread* _memnotify_thread;
   171   int _fd;
   173  public:
   175   // Constructor
   176   MemNotifyThread(int fd);
   178   // Tester
   179   bool is_memnotify_thread() const { return true; }
   181   // Printing
   182   char* name() const { return (char*)"Linux MemNotify Thread"; }
   184   // Returns the single instance of the MemNotifyThread
   185   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
   187   // Create and start the single instance of MemNotifyThread
   188   static void start();
   189 };
   190 #endif // JAVASE_EMBEDDED
   192 // utility functions
   194 static int SR_initialize();
   195 static int SR_finalize();
   197 julong os::available_memory() {
   198   return Linux::available_memory();
   199 }
   201 julong os::Linux::available_memory() {
   202   // values in struct sysinfo are "unsigned long"
   203   struct sysinfo si;
   204   sysinfo(&si);
   206   return (julong)si.freeram * si.mem_unit;
   207 }
   209 julong os::physical_memory() {
   210   return Linux::physical_memory();
   211 }
   213 julong os::allocatable_physical_memory(julong size) {
   214 #ifdef _LP64
   215   return size;
   216 #else
   217   julong result = MIN2(size, (julong)3800*M);
   218    if (!is_allocatable(result)) {
   219      // See comments under solaris for alignment considerations
   220      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
   221      result =  MIN2(size, reasonable_size);
   222    }
   223    return result;
   224 #endif // _LP64
   225 }
   227 ////////////////////////////////////////////////////////////////////////////////
   228 // environment support
   230 bool os::getenv(const char* name, char* buf, int len) {
   231   const char* val = ::getenv(name);
   232   if (val != NULL && strlen(val) < (size_t)len) {
   233     strcpy(buf, val);
   234     return true;
   235   }
   236   if (len > 0) buf[0] = 0;  // return a null string
   237   return false;
   238 }
   241 // Return true if user is running as root.
   243 bool os::have_special_privileges() {
   244   static bool init = false;
   245   static bool privileges = false;
   246   if (!init) {
   247     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   248     init = true;
   249   }
   250   return privileges;
   251 }
   254 #ifndef SYS_gettid
   255 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   256 #ifdef __ia64__
   257 #define SYS_gettid 1105
   258 #elif __i386__
   259 #define SYS_gettid 224
   260 #elif __amd64__
   261 #define SYS_gettid 186
   262 #elif __sparc__
   263 #define SYS_gettid 143
   264 #else
   265 #error define gettid for the arch
   266 #endif
   267 #endif
   269 // Cpu architecture string
   270 #if   defined(ZERO)
   271 static char cpu_arch[] = ZERO_LIBARCH;
   272 #elif defined(IA64)
   273 static char cpu_arch[] = "ia64";
   274 #elif defined(IA32)
   275 static char cpu_arch[] = "i386";
   276 #elif defined(AMD64)
   277 static char cpu_arch[] = "amd64";
   278 #elif defined(ARM)
   279 static char cpu_arch[] = "arm";
   280 #elif defined(PPC)
   281 static char cpu_arch[] = "ppc";
   282 #elif defined(SPARC)
   283 #  ifdef _LP64
   284 static char cpu_arch[] = "sparcv9";
   285 #  else
   286 static char cpu_arch[] = "sparc";
   287 #  endif
   288 #else
   289 #error Add appropriate cpu_arch setting
   290 #endif
   293 // pid_t gettid()
   294 //
   295 // Returns the kernel thread id of the currently running thread. Kernel
   296 // thread id is used to access /proc.
   297 //
   298 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   299 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   300 //
   301 pid_t os::Linux::gettid() {
   302   int rslt = syscall(SYS_gettid);
   303   if (rslt == -1) {
   304      // old kernel, no NPTL support
   305      return getpid();
   306   } else {
   307      return (pid_t)rslt;
   308   }
   309 }
   311 // Most versions of linux have a bug where the number of processors are
   312 // determined by looking at the /proc file system.  In a chroot environment,
   313 // the system call returns 1.  This causes the VM to act as if it is
   314 // a single processor and elide locking (see is_MP() call).
   315 static bool unsafe_chroot_detected = false;
   316 static const char *unstable_chroot_error = "/proc file system not found.\n"
   317                      "Java may be unstable running multithreaded in a chroot "
   318                      "environment on Linux when /proc filesystem is not mounted.";
   320 void os::Linux::initialize_system_info() {
   321   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   322   if (processor_count() == 1) {
   323     pid_t pid = os::Linux::gettid();
   324     char fname[32];
   325     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   326     FILE *fp = fopen(fname, "r");
   327     if (fp == NULL) {
   328       unsafe_chroot_detected = true;
   329     } else {
   330       fclose(fp);
   331     }
   332   }
   333   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   334   assert(processor_count() > 0, "linux error");
   335 }
   337 void os::init_system_properties_values() {
   338 //  char arch[12];
   339 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   341   // The next steps are taken in the product version:
   342   //
   343   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   344   // This library should be located at:
   345   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   346   //
   347   // If "/jre/lib/" appears at the right place in the path, then we
   348   // assume libjvm[_g].so is installed in a JDK and we use this path.
   349   //
   350   // Otherwise exit with message: "Could not create the Java virtual machine."
   351   //
   352   // The following extra steps are taken in the debugging version:
   353   //
   354   // If "/jre/lib/" does NOT appear at the right place in the path
   355   // instead of exit check for $JAVA_HOME environment variable.
   356   //
   357   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   358   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   359   // it looks like libjvm[_g].so is installed there
   360   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   361   //
   362   // Otherwise exit.
   363   //
   364   // Important note: if the location of libjvm.so changes this
   365   // code needs to be changed accordingly.
   367   // The next few definitions allow the code to be verbatim:
   368 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
   369 #define getenv(n) ::getenv(n)
   371 /*
   372  * See ld(1):
   373  *      The linker uses the following search paths to locate required
   374  *      shared libraries:
   375  *        1: ...
   376  *        ...
   377  *        7: The default directories, normally /lib and /usr/lib.
   378  */
   379 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   380 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   381 #else
   382 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   383 #endif
   385 #define EXTENSIONS_DIR  "/lib/ext"
   386 #define ENDORSED_DIR    "/lib/endorsed"
   387 #define REG_DIR         "/usr/java/packages"
   389   {
   390     /* sysclasspath, java_home, dll_dir */
   391     {
   392         char *home_path;
   393         char *dll_path;
   394         char *pslash;
   395         char buf[MAXPATHLEN];
   396         os::jvm_path(buf, sizeof(buf));
   398         // Found the full path to libjvm.so.
   399         // Now cut the path to <java_home>/jre if we can.
   400         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   401         pslash = strrchr(buf, '/');
   402         if (pslash != NULL)
   403             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   404         dll_path = malloc(strlen(buf) + 1);
   405         if (dll_path == NULL)
   406             return;
   407         strcpy(dll_path, buf);
   408         Arguments::set_dll_dir(dll_path);
   410         if (pslash != NULL) {
   411             pslash = strrchr(buf, '/');
   412             if (pslash != NULL) {
   413                 *pslash = '\0';       /* get rid of /<arch> */
   414                 pslash = strrchr(buf, '/');
   415                 if (pslash != NULL)
   416                     *pslash = '\0';   /* get rid of /lib */
   417             }
   418         }
   420         home_path = malloc(strlen(buf) + 1);
   421         if (home_path == NULL)
   422             return;
   423         strcpy(home_path, buf);
   424         Arguments::set_java_home(home_path);
   426         if (!set_boot_path('/', ':'))
   427             return;
   428     }
   430     /*
   431      * Where to look for native libraries
   432      *
   433      * Note: Due to a legacy implementation, most of the library path
   434      * is set in the launcher.  This was to accomodate linking restrictions
   435      * on legacy Linux implementations (which are no longer supported).
   436      * Eventually, all the library path setting will be done here.
   437      *
   438      * However, to prevent the proliferation of improperly built native
   439      * libraries, the new path component /usr/java/packages is added here.
   440      * Eventually, all the library path setting will be done here.
   441      */
   442     {
   443         char *ld_library_path;
   445         /*
   446          * Construct the invariant part of ld_library_path. Note that the
   447          * space for the colon and the trailing null are provided by the
   448          * nulls included by the sizeof operator (so actually we allocate
   449          * a byte more than necessary).
   450          */
   451         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   452             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   453         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   455         /*
   456          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   457          * should always exist (until the legacy problem cited above is
   458          * addressed).
   459          */
   460         char *v = getenv("LD_LIBRARY_PATH");
   461         if (v != NULL) {
   462             char *t = ld_library_path;
   463             /* That's +1 for the colon and +1 for the trailing '\0' */
   464             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   465             sprintf(ld_library_path, "%s:%s", v, t);
   466         }
   467         Arguments::set_library_path(ld_library_path);
   468     }
   470     /*
   471      * Extensions directories.
   472      *
   473      * Note that the space for the colon and the trailing null are provided
   474      * by the nulls included by the sizeof operator (so actually one byte more
   475      * than necessary is allocated).
   476      */
   477     {
   478         char *buf = malloc(strlen(Arguments::get_java_home()) +
   479             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   480         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   481             Arguments::get_java_home());
   482         Arguments::set_ext_dirs(buf);
   483     }
   485     /* Endorsed standards default directory. */
   486     {
   487         char * buf;
   488         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   489         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   490         Arguments::set_endorsed_dirs(buf);
   491     }
   492   }
   494 #undef malloc
   495 #undef getenv
   496 #undef EXTENSIONS_DIR
   497 #undef ENDORSED_DIR
   499   // Done
   500   return;
   501 }
   503 ////////////////////////////////////////////////////////////////////////////////
   504 // breakpoint support
   506 void os::breakpoint() {
   507   BREAKPOINT;
   508 }
   510 extern "C" void breakpoint() {
   511   // use debugger to set breakpoint here
   512 }
   514 ////////////////////////////////////////////////////////////////////////////////
   515 // signal support
   517 debug_only(static bool signal_sets_initialized = false);
   518 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   520 bool os::Linux::is_sig_ignored(int sig) {
   521       struct sigaction oact;
   522       sigaction(sig, (struct sigaction*)NULL, &oact);
   523       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   524                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   525       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   526            return true;
   527       else
   528            return false;
   529 }
   531 void os::Linux::signal_sets_init() {
   532   // Should also have an assertion stating we are still single-threaded.
   533   assert(!signal_sets_initialized, "Already initialized");
   534   // Fill in signals that are necessarily unblocked for all threads in
   535   // the VM. Currently, we unblock the following signals:
   536   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   537   //                         by -Xrs (=ReduceSignalUsage));
   538   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   539   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   540   // the dispositions or masks wrt these signals.
   541   // Programs embedding the VM that want to use the above signals for their
   542   // own purposes must, at this time, use the "-Xrs" option to prevent
   543   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   544   // (See bug 4345157, and other related bugs).
   545   // In reality, though, unblocking these signals is really a nop, since
   546   // these signals are not blocked by default.
   547   sigemptyset(&unblocked_sigs);
   548   sigemptyset(&allowdebug_blocked_sigs);
   549   sigaddset(&unblocked_sigs, SIGILL);
   550   sigaddset(&unblocked_sigs, SIGSEGV);
   551   sigaddset(&unblocked_sigs, SIGBUS);
   552   sigaddset(&unblocked_sigs, SIGFPE);
   553   sigaddset(&unblocked_sigs, SR_signum);
   555   if (!ReduceSignalUsage) {
   556    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   557       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   558       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   559    }
   560    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   561       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   562       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   563    }
   564    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   565       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   566       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   567    }
   568   }
   569   // Fill in signals that are blocked by all but the VM thread.
   570   sigemptyset(&vm_sigs);
   571   if (!ReduceSignalUsage)
   572     sigaddset(&vm_sigs, BREAK_SIGNAL);
   573   debug_only(signal_sets_initialized = true);
   575 }
   577 // These are signals that are unblocked while a thread is running Java.
   578 // (For some reason, they get blocked by default.)
   579 sigset_t* os::Linux::unblocked_signals() {
   580   assert(signal_sets_initialized, "Not initialized");
   581   return &unblocked_sigs;
   582 }
   584 // These are the signals that are blocked while a (non-VM) thread is
   585 // running Java. Only the VM thread handles these signals.
   586 sigset_t* os::Linux::vm_signals() {
   587   assert(signal_sets_initialized, "Not initialized");
   588   return &vm_sigs;
   589 }
   591 // These are signals that are blocked during cond_wait to allow debugger in
   592 sigset_t* os::Linux::allowdebug_blocked_signals() {
   593   assert(signal_sets_initialized, "Not initialized");
   594   return &allowdebug_blocked_sigs;
   595 }
   597 void os::Linux::hotspot_sigmask(Thread* thread) {
   599   //Save caller's signal mask before setting VM signal mask
   600   sigset_t caller_sigmask;
   601   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   603   OSThread* osthread = thread->osthread();
   604   osthread->set_caller_sigmask(caller_sigmask);
   606   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   608   if (!ReduceSignalUsage) {
   609     if (thread->is_VM_thread()) {
   610       // Only the VM thread handles BREAK_SIGNAL ...
   611       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   612     } else {
   613       // ... all other threads block BREAK_SIGNAL
   614       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   615     }
   616   }
   617 }
   619 //////////////////////////////////////////////////////////////////////////////
   620 // detecting pthread library
   622 void os::Linux::libpthread_init() {
   623   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   624   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   625   // generic name for earlier versions.
   626   // Define macros here so we can build HotSpot on old systems.
   627 # ifndef _CS_GNU_LIBC_VERSION
   628 # define _CS_GNU_LIBC_VERSION 2
   629 # endif
   630 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   631 # define _CS_GNU_LIBPTHREAD_VERSION 3
   632 # endif
   634   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   635   if (n > 0) {
   636      char *str = (char *)malloc(n, mtInternal);
   637      confstr(_CS_GNU_LIBC_VERSION, str, n);
   638      os::Linux::set_glibc_version(str);
   639   } else {
   640      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   641      static char _gnu_libc_version[32];
   642      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   643               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   644      os::Linux::set_glibc_version(_gnu_libc_version);
   645   }
   647   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   648   if (n > 0) {
   649      char *str = (char *)malloc(n, mtInternal);
   650      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   651      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   652      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   653      // is the case. LinuxThreads has a hard limit on max number of threads.
   654      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   655      // On the other hand, NPTL does not have such a limit, sysconf()
   656      // will return -1 and errno is not changed. Check if it is really NPTL.
   657      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   658          strstr(str, "NPTL") &&
   659          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   660        free(str);
   661        os::Linux::set_libpthread_version("linuxthreads");
   662      } else {
   663        os::Linux::set_libpthread_version(str);
   664      }
   665   } else {
   666     // glibc before 2.3.2 only has LinuxThreads.
   667     os::Linux::set_libpthread_version("linuxthreads");
   668   }
   670   if (strstr(libpthread_version(), "NPTL")) {
   671      os::Linux::set_is_NPTL();
   672   } else {
   673      os::Linux::set_is_LinuxThreads();
   674   }
   676   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   677   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   678   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   679      os::Linux::set_is_floating_stack();
   680   }
   681 }
   683 /////////////////////////////////////////////////////////////////////////////
   684 // thread stack
   686 // Force Linux kernel to expand current thread stack. If "bottom" is close
   687 // to the stack guard, caller should block all signals.
   688 //
   689 // MAP_GROWSDOWN:
   690 //   A special mmap() flag that is used to implement thread stacks. It tells
   691 //   kernel that the memory region should extend downwards when needed. This
   692 //   allows early versions of LinuxThreads to only mmap the first few pages
   693 //   when creating a new thread. Linux kernel will automatically expand thread
   694 //   stack as needed (on page faults).
   695 //
   696 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   697 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   698 //   region, it's hard to tell if the fault is due to a legitimate stack
   699 //   access or because of reading/writing non-exist memory (e.g. buffer
   700 //   overrun). As a rule, if the fault happens below current stack pointer,
   701 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   702 //   application (see Linux kernel fault.c).
   703 //
   704 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   705 //   stack overflow detection.
   706 //
   707 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   708 //   not use this flag. However, the stack of initial thread is not created
   709 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   710 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   711 //   and then attach the thread to JVM.
   712 //
   713 // To get around the problem and allow stack banging on Linux, we need to
   714 // manually expand thread stack after receiving the SIGSEGV.
   715 //
   716 // There are two ways to expand thread stack to address "bottom", we used
   717 // both of them in JVM before 1.5:
   718 //   1. adjust stack pointer first so that it is below "bottom", and then
   719 //      touch "bottom"
   720 //   2. mmap() the page in question
   721 //
   722 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   723 // if current sp is already near the lower end of page 101, and we need to
   724 // call mmap() to map page 100, it is possible that part of the mmap() frame
   725 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   726 // That will destroy the mmap() frame and cause VM to crash.
   727 //
   728 // The following code works by adjusting sp first, then accessing the "bottom"
   729 // page to force a page fault. Linux kernel will then automatically expand the
   730 // stack mapping.
   731 //
   732 // _expand_stack_to() assumes its frame size is less than page size, which
   733 // should always be true if the function is not inlined.
   735 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   736 #define NOINLINE
   737 #else
   738 #define NOINLINE __attribute__ ((noinline))
   739 #endif
   741 static void _expand_stack_to(address bottom) NOINLINE;
   743 static void _expand_stack_to(address bottom) {
   744   address sp;
   745   size_t size;
   746   volatile char *p;
   748   // Adjust bottom to point to the largest address within the same page, it
   749   // gives us a one-page buffer if alloca() allocates slightly more memory.
   750   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   751   bottom += os::Linux::page_size() - 1;
   753   // sp might be slightly above current stack pointer; if that's the case, we
   754   // will alloca() a little more space than necessary, which is OK. Don't use
   755   // os::current_stack_pointer(), as its result can be slightly below current
   756   // stack pointer, causing us to not alloca enough to reach "bottom".
   757   sp = (address)&sp;
   759   if (sp > bottom) {
   760     size = sp - bottom;
   761     p = (volatile char *)alloca(size);
   762     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   763     p[0] = '\0';
   764   }
   765 }
   767 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   768   assert(t!=NULL, "just checking");
   769   assert(t->osthread()->expanding_stack(), "expand should be set");
   770   assert(t->stack_base() != NULL, "stack_base was not initialized");
   772   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   773     sigset_t mask_all, old_sigset;
   774     sigfillset(&mask_all);
   775     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   776     _expand_stack_to(addr);
   777     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   778     return true;
   779   }
   780   return false;
   781 }
   783 //////////////////////////////////////////////////////////////////////////////
   784 // create new thread
   786 static address highest_vm_reserved_address();
   788 // check if it's safe to start a new thread
   789 static bool _thread_safety_check(Thread* thread) {
   790   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   791     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   792     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   793     //   allocated (MAP_FIXED) from high address space. Every thread stack
   794     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   795     //   it to other values if they rebuild LinuxThreads).
   796     //
   797     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   798     // the memory region has already been mmap'ed. That means if we have too
   799     // many threads and/or very large heap, eventually thread stack will
   800     // collide with heap.
   801     //
   802     // Here we try to prevent heap/stack collision by comparing current
   803     // stack bottom with the highest address that has been mmap'ed by JVM
   804     // plus a safety margin for memory maps created by native code.
   805     //
   806     // This feature can be disabled by setting ThreadSafetyMargin to 0
   807     //
   808     if (ThreadSafetyMargin > 0) {
   809       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   811       // not safe if our stack extends below the safety margin
   812       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   813     } else {
   814       return true;
   815     }
   816   } else {
   817     // Floating stack LinuxThreads or NPTL:
   818     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   819     //   there's not enough space left, pthread_create() will fail. If we come
   820     //   here, that means enough space has been reserved for stack.
   821     return true;
   822   }
   823 }
   825 // Thread start routine for all newly created threads
   826 static void *java_start(Thread *thread) {
   827   // Try to randomize the cache line index of hot stack frames.
   828   // This helps when threads of the same stack traces evict each other's
   829   // cache lines. The threads can be either from the same JVM instance, or
   830   // from different JVM instances. The benefit is especially true for
   831   // processors with hyperthreading technology.
   832   static int counter = 0;
   833   int pid = os::current_process_id();
   834   alloca(((pid ^ counter++) & 7) * 128);
   836   ThreadLocalStorage::set_thread(thread);
   838   OSThread* osthread = thread->osthread();
   839   Monitor* sync = osthread->startThread_lock();
   841   // non floating stack LinuxThreads needs extra check, see above
   842   if (!_thread_safety_check(thread)) {
   843     // notify parent thread
   844     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   845     osthread->set_state(ZOMBIE);
   846     sync->notify_all();
   847     return NULL;
   848   }
   850   // thread_id is kernel thread id (similar to Solaris LWP id)
   851   osthread->set_thread_id(os::Linux::gettid());
   853   if (UseNUMA) {
   854     int lgrp_id = os::numa_get_group_id();
   855     if (lgrp_id != -1) {
   856       thread->set_lgrp_id(lgrp_id);
   857     }
   858   }
   859   // initialize signal mask for this thread
   860   os::Linux::hotspot_sigmask(thread);
   862   // initialize floating point control register
   863   os::Linux::init_thread_fpu_state();
   865   // handshaking with parent thread
   866   {
   867     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   869     // notify parent thread
   870     osthread->set_state(INITIALIZED);
   871     sync->notify_all();
   873     // wait until os::start_thread()
   874     while (osthread->get_state() == INITIALIZED) {
   875       sync->wait(Mutex::_no_safepoint_check_flag);
   876     }
   877   }
   879   // call one more level start routine
   880   thread->run();
   882   return 0;
   883 }
   885 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   886   assert(thread->osthread() == NULL, "caller responsible");
   888   // Allocate the OSThread object
   889   OSThread* osthread = new OSThread(NULL, NULL);
   890   if (osthread == NULL) {
   891     return false;
   892   }
   894   // set the correct thread state
   895   osthread->set_thread_type(thr_type);
   897   // Initial state is ALLOCATED but not INITIALIZED
   898   osthread->set_state(ALLOCATED);
   900   thread->set_osthread(osthread);
   902   // init thread attributes
   903   pthread_attr_t attr;
   904   pthread_attr_init(&attr);
   905   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   907   // stack size
   908   if (os::Linux::supports_variable_stack_size()) {
   909     // calculate stack size if it's not specified by caller
   910     if (stack_size == 0) {
   911       stack_size = os::Linux::default_stack_size(thr_type);
   913       switch (thr_type) {
   914       case os::java_thread:
   915         // Java threads use ThreadStackSize which default value can be
   916         // changed with the flag -Xss
   917         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   918         stack_size = JavaThread::stack_size_at_create();
   919         break;
   920       case os::compiler_thread:
   921         if (CompilerThreadStackSize > 0) {
   922           stack_size = (size_t)(CompilerThreadStackSize * K);
   923           break;
   924         } // else fall through:
   925           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   926       case os::vm_thread:
   927       case os::pgc_thread:
   928       case os::cgc_thread:
   929       case os::watcher_thread:
   930         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   931         break;
   932       }
   933     }
   935     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   936     pthread_attr_setstacksize(&attr, stack_size);
   937   } else {
   938     // let pthread_create() pick the default value.
   939   }
   941   // glibc guard page
   942   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   944   ThreadState state;
   946   {
   947     // Serialize thread creation if we are running with fixed stack LinuxThreads
   948     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   949     if (lock) {
   950       os::Linux::createThread_lock()->lock_without_safepoint_check();
   951     }
   953     pthread_t tid;
   954     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   956     pthread_attr_destroy(&attr);
   958     if (ret != 0) {
   959       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   960         perror("pthread_create()");
   961       }
   962       // Need to clean up stuff we've allocated so far
   963       thread->set_osthread(NULL);
   964       delete osthread;
   965       if (lock) os::Linux::createThread_lock()->unlock();
   966       return false;
   967     }
   969     // Store pthread info into the OSThread
   970     osthread->set_pthread_id(tid);
   972     // Wait until child thread is either initialized or aborted
   973     {
   974       Monitor* sync_with_child = osthread->startThread_lock();
   975       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   976       while ((state = osthread->get_state()) == ALLOCATED) {
   977         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   978       }
   979     }
   981     if (lock) {
   982       os::Linux::createThread_lock()->unlock();
   983     }
   984   }
   986   // Aborted due to thread limit being reached
   987   if (state == ZOMBIE) {
   988       thread->set_osthread(NULL);
   989       delete osthread;
   990       return false;
   991   }
   993   // The thread is returned suspended (in state INITIALIZED),
   994   // and is started higher up in the call chain
   995   assert(state == INITIALIZED, "race condition");
   996   return true;
   997 }
   999 /////////////////////////////////////////////////////////////////////////////
  1000 // attach existing thread
  1002 // bootstrap the main thread
  1003 bool os::create_main_thread(JavaThread* thread) {
  1004   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
  1005   return create_attached_thread(thread);
  1008 bool os::create_attached_thread(JavaThread* thread) {
  1009 #ifdef ASSERT
  1010     thread->verify_not_published();
  1011 #endif
  1013   // Allocate the OSThread object
  1014   OSThread* osthread = new OSThread(NULL, NULL);
  1016   if (osthread == NULL) {
  1017     return false;
  1020   // Store pthread info into the OSThread
  1021   osthread->set_thread_id(os::Linux::gettid());
  1022   osthread->set_pthread_id(::pthread_self());
  1024   // initialize floating point control register
  1025   os::Linux::init_thread_fpu_state();
  1027   // Initial thread state is RUNNABLE
  1028   osthread->set_state(RUNNABLE);
  1030   thread->set_osthread(osthread);
  1032   if (UseNUMA) {
  1033     int lgrp_id = os::numa_get_group_id();
  1034     if (lgrp_id != -1) {
  1035       thread->set_lgrp_id(lgrp_id);
  1039   if (os::Linux::is_initial_thread()) {
  1040     // If current thread is initial thread, its stack is mapped on demand,
  1041     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1042     // the entire stack region to avoid SEGV in stack banging.
  1043     // It is also useful to get around the heap-stack-gap problem on SuSE
  1044     // kernel (see 4821821 for details). We first expand stack to the top
  1045     // of yellow zone, then enable stack yellow zone (order is significant,
  1046     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1047     // is no gap between the last two virtual memory regions.
  1049     JavaThread *jt = (JavaThread *)thread;
  1050     address addr = jt->stack_yellow_zone_base();
  1051     assert(addr != NULL, "initialization problem?");
  1052     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1054     osthread->set_expanding_stack();
  1055     os::Linux::manually_expand_stack(jt, addr);
  1056     osthread->clear_expanding_stack();
  1059   // initialize signal mask for this thread
  1060   // and save the caller's signal mask
  1061   os::Linux::hotspot_sigmask(thread);
  1063   return true;
  1066 void os::pd_start_thread(Thread* thread) {
  1067   OSThread * osthread = thread->osthread();
  1068   assert(osthread->get_state() != INITIALIZED, "just checking");
  1069   Monitor* sync_with_child = osthread->startThread_lock();
  1070   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1071   sync_with_child->notify();
  1074 // Free Linux resources related to the OSThread
  1075 void os::free_thread(OSThread* osthread) {
  1076   assert(osthread != NULL, "osthread not set");
  1078   if (Thread::current()->osthread() == osthread) {
  1079     // Restore caller's signal mask
  1080     sigset_t sigmask = osthread->caller_sigmask();
  1081     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1084   delete osthread;
  1087 //////////////////////////////////////////////////////////////////////////////
  1088 // thread local storage
  1090 int os::allocate_thread_local_storage() {
  1091   pthread_key_t key;
  1092   int rslt = pthread_key_create(&key, NULL);
  1093   assert(rslt == 0, "cannot allocate thread local storage");
  1094   return (int)key;
  1097 // Note: This is currently not used by VM, as we don't destroy TLS key
  1098 // on VM exit.
  1099 void os::free_thread_local_storage(int index) {
  1100   int rslt = pthread_key_delete((pthread_key_t)index);
  1101   assert(rslt == 0, "invalid index");
  1104 void os::thread_local_storage_at_put(int index, void* value) {
  1105   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1106   assert(rslt == 0, "pthread_setspecific failed");
  1109 extern "C" Thread* get_thread() {
  1110   return ThreadLocalStorage::thread();
  1113 //////////////////////////////////////////////////////////////////////////////
  1114 // initial thread
  1116 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1117 bool os::Linux::is_initial_thread(void) {
  1118   char dummy;
  1119   // If called before init complete, thread stack bottom will be null.
  1120   // Can be called if fatal error occurs before initialization.
  1121   if (initial_thread_stack_bottom() == NULL) return false;
  1122   assert(initial_thread_stack_bottom() != NULL &&
  1123          initial_thread_stack_size()   != 0,
  1124          "os::init did not locate initial thread's stack region");
  1125   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1126       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1127        return true;
  1128   else return false;
  1131 // Find the virtual memory area that contains addr
  1132 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1133   FILE *fp = fopen("/proc/self/maps", "r");
  1134   if (fp) {
  1135     address low, high;
  1136     while (!feof(fp)) {
  1137       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1138         if (low <= addr && addr < high) {
  1139            if (vma_low)  *vma_low  = low;
  1140            if (vma_high) *vma_high = high;
  1141            fclose (fp);
  1142            return true;
  1145       for (;;) {
  1146         int ch = fgetc(fp);
  1147         if (ch == EOF || ch == (int)'\n') break;
  1150     fclose(fp);
  1152   return false;
  1155 // Locate initial thread stack. This special handling of initial thread stack
  1156 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1157 // bogus value for initial thread.
  1158 void os::Linux::capture_initial_stack(size_t max_size) {
  1159   // stack size is the easy part, get it from RLIMIT_STACK
  1160   size_t stack_size;
  1161   struct rlimit rlim;
  1162   getrlimit(RLIMIT_STACK, &rlim);
  1163   stack_size = rlim.rlim_cur;
  1165   // 6308388: a bug in ld.so will relocate its own .data section to the
  1166   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1167   //   so we won't install guard page on ld.so's data section.
  1168   stack_size -= 2 * page_size();
  1170   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1171   //   7.1, in both cases we will get 2G in return value.
  1172   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1173   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1174   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1175   //   in case other parts in glibc still assumes 2M max stack size.
  1176   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1177 #ifndef IA64
  1178   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
  1179 #else
  1180   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1181   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
  1182 #endif
  1184   // Try to figure out where the stack base (top) is. This is harder.
  1185   //
  1186   // When an application is started, glibc saves the initial stack pointer in
  1187   // a global variable "__libc_stack_end", which is then used by system
  1188   // libraries. __libc_stack_end should be pretty close to stack top. The
  1189   // variable is available since the very early days. However, because it is
  1190   // a private interface, it could disappear in the future.
  1191   //
  1192   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1193   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1194   // stack top. Note that /proc may not exist if VM is running as a chroot
  1195   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1196   // /proc/<pid>/stat could change in the future (though unlikely).
  1197   //
  1198   // We try __libc_stack_end first. If that doesn't work, look for
  1199   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1200   // as a hint, which should work well in most cases.
  1202   uintptr_t stack_start;
  1204   // try __libc_stack_end first
  1205   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1206   if (p && *p) {
  1207     stack_start = *p;
  1208   } else {
  1209     // see if we can get the start_stack field from /proc/self/stat
  1210     FILE *fp;
  1211     int pid;
  1212     char state;
  1213     int ppid;
  1214     int pgrp;
  1215     int session;
  1216     int nr;
  1217     int tpgrp;
  1218     unsigned long flags;
  1219     unsigned long minflt;
  1220     unsigned long cminflt;
  1221     unsigned long majflt;
  1222     unsigned long cmajflt;
  1223     unsigned long utime;
  1224     unsigned long stime;
  1225     long cutime;
  1226     long cstime;
  1227     long prio;
  1228     long nice;
  1229     long junk;
  1230     long it_real;
  1231     uintptr_t start;
  1232     uintptr_t vsize;
  1233     intptr_t rss;
  1234     uintptr_t rsslim;
  1235     uintptr_t scodes;
  1236     uintptr_t ecode;
  1237     int i;
  1239     // Figure what the primordial thread stack base is. Code is inspired
  1240     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1241     // followed by command name surrounded by parentheses, state, etc.
  1242     char stat[2048];
  1243     int statlen;
  1245     fp = fopen("/proc/self/stat", "r");
  1246     if (fp) {
  1247       statlen = fread(stat, 1, 2047, fp);
  1248       stat[statlen] = '\0';
  1249       fclose(fp);
  1251       // Skip pid and the command string. Note that we could be dealing with
  1252       // weird command names, e.g. user could decide to rename java launcher
  1253       // to "java 1.4.2 :)", then the stat file would look like
  1254       //                1234 (java 1.4.2 :)) R ... ...
  1255       // We don't really need to know the command string, just find the last
  1256       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1257       char * s = strrchr(stat, ')');
  1259       i = 0;
  1260       if (s) {
  1261         // Skip blank chars
  1262         do s++; while (isspace(*s));
  1264 #define _UFM UINTX_FORMAT
  1265 #define _DFM INTX_FORMAT
  1267         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1268         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1269         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1270              &state,          /* 3  %c  */
  1271              &ppid,           /* 4  %d  */
  1272              &pgrp,           /* 5  %d  */
  1273              &session,        /* 6  %d  */
  1274              &nr,             /* 7  %d  */
  1275              &tpgrp,          /* 8  %d  */
  1276              &flags,          /* 9  %lu  */
  1277              &minflt,         /* 10 %lu  */
  1278              &cminflt,        /* 11 %lu  */
  1279              &majflt,         /* 12 %lu  */
  1280              &cmajflt,        /* 13 %lu  */
  1281              &utime,          /* 14 %lu  */
  1282              &stime,          /* 15 %lu  */
  1283              &cutime,         /* 16 %ld  */
  1284              &cstime,         /* 17 %ld  */
  1285              &prio,           /* 18 %ld  */
  1286              &nice,           /* 19 %ld  */
  1287              &junk,           /* 20 %ld  */
  1288              &it_real,        /* 21 %ld  */
  1289              &start,          /* 22 UINTX_FORMAT */
  1290              &vsize,          /* 23 UINTX_FORMAT */
  1291              &rss,            /* 24 INTX_FORMAT  */
  1292              &rsslim,         /* 25 UINTX_FORMAT */
  1293              &scodes,         /* 26 UINTX_FORMAT */
  1294              &ecode,          /* 27 UINTX_FORMAT */
  1295              &stack_start);   /* 28 UINTX_FORMAT */
  1298 #undef _UFM
  1299 #undef _DFM
  1301       if (i != 28 - 2) {
  1302          assert(false, "Bad conversion from /proc/self/stat");
  1303          // product mode - assume we are the initial thread, good luck in the
  1304          // embedded case.
  1305          warning("Can't detect initial thread stack location - bad conversion");
  1306          stack_start = (uintptr_t) &rlim;
  1308     } else {
  1309       // For some reason we can't open /proc/self/stat (for example, running on
  1310       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1311       // most cases, so don't abort:
  1312       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1313       stack_start = (uintptr_t) &rlim;
  1317   // Now we have a pointer (stack_start) very close to the stack top, the
  1318   // next thing to do is to figure out the exact location of stack top. We
  1319   // can find out the virtual memory area that contains stack_start by
  1320   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1321   // and its upper limit is the real stack top. (again, this would fail if
  1322   // running inside chroot, because /proc may not exist.)
  1324   uintptr_t stack_top;
  1325   address low, high;
  1326   if (find_vma((address)stack_start, &low, &high)) {
  1327     // success, "high" is the true stack top. (ignore "low", because initial
  1328     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1329     stack_top = (uintptr_t)high;
  1330   } else {
  1331     // failed, likely because /proc/self/maps does not exist
  1332     warning("Can't detect initial thread stack location - find_vma failed");
  1333     // best effort: stack_start is normally within a few pages below the real
  1334     // stack top, use it as stack top, and reduce stack size so we won't put
  1335     // guard page outside stack.
  1336     stack_top = stack_start;
  1337     stack_size -= 16 * page_size();
  1340   // stack_top could be partially down the page so align it
  1341   stack_top = align_size_up(stack_top, page_size());
  1343   if (max_size && stack_size > max_size) {
  1344      _initial_thread_stack_size = max_size;
  1345   } else {
  1346      _initial_thread_stack_size = stack_size;
  1349   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1350   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1353 ////////////////////////////////////////////////////////////////////////////////
  1354 // time support
  1356 // Time since start-up in seconds to a fine granularity.
  1357 // Used by VMSelfDestructTimer and the MemProfiler.
  1358 double os::elapsedTime() {
  1360   return (double)(os::elapsed_counter()) * 0.000001;
  1363 jlong os::elapsed_counter() {
  1364   timeval time;
  1365   int status = gettimeofday(&time, NULL);
  1366   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
  1369 jlong os::elapsed_frequency() {
  1370   return (1000 * 1000);
  1373 // For now, we say that linux does not support vtime.  I have no idea
  1374 // whether it can actually be made to (DLD, 9/13/05).
  1376 bool os::supports_vtime() { return false; }
  1377 bool os::enable_vtime()   { return false; }
  1378 bool os::vtime_enabled()  { return false; }
  1379 double os::elapsedVTime() {
  1380   // better than nothing, but not much
  1381   return elapsedTime();
  1384 jlong os::javaTimeMillis() {
  1385   timeval time;
  1386   int status = gettimeofday(&time, NULL);
  1387   assert(status != -1, "linux error");
  1388   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1391 #ifndef CLOCK_MONOTONIC
  1392 #define CLOCK_MONOTONIC (1)
  1393 #endif
  1395 void os::Linux::clock_init() {
  1396   // we do dlopen's in this particular order due to bug in linux
  1397   // dynamical loader (see 6348968) leading to crash on exit
  1398   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1399   if (handle == NULL) {
  1400     handle = dlopen("librt.so", RTLD_LAZY);
  1403   if (handle) {
  1404     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1405            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1406     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1407            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1408     if (clock_getres_func && clock_gettime_func) {
  1409       // See if monotonic clock is supported by the kernel. Note that some
  1410       // early implementations simply return kernel jiffies (updated every
  1411       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1412       // for nano time (though the monotonic property is still nice to have).
  1413       // It's fixed in newer kernels, however clock_getres() still returns
  1414       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1415       // resolution for now. Hopefully as people move to new kernels, this
  1416       // won't be a problem.
  1417       struct timespec res;
  1418       struct timespec tp;
  1419       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1420           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1421         // yes, monotonic clock is supported
  1422         _clock_gettime = clock_gettime_func;
  1423       } else {
  1424         // close librt if there is no monotonic clock
  1425         dlclose(handle);
  1431 #ifndef SYS_clock_getres
  1433 #if defined(IA32) || defined(AMD64)
  1434 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1435 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1436 #else
  1437 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1438 #define sys_clock_getres(x,y)  -1
  1439 #endif
  1441 #else
  1442 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1443 #endif
  1445 void os::Linux::fast_thread_clock_init() {
  1446   if (!UseLinuxPosixThreadCPUClocks) {
  1447     return;
  1449   clockid_t clockid;
  1450   struct timespec tp;
  1451   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1452       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1454   // Switch to using fast clocks for thread cpu time if
  1455   // the sys_clock_getres() returns 0 error code.
  1456   // Note, that some kernels may support the current thread
  1457   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1458   // returned by the pthread_getcpuclockid().
  1459   // If the fast Posix clocks are supported then the sys_clock_getres()
  1460   // must return at least tp.tv_sec == 0 which means a resolution
  1461   // better than 1 sec. This is extra check for reliability.
  1463   if(pthread_getcpuclockid_func &&
  1464      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1465      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1467     _supports_fast_thread_cpu_time = true;
  1468     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1472 jlong os::javaTimeNanos() {
  1473   if (Linux::supports_monotonic_clock()) {
  1474     struct timespec tp;
  1475     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1476     assert(status == 0, "gettime error");
  1477     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1478     return result;
  1479   } else {
  1480     timeval time;
  1481     int status = gettimeofday(&time, NULL);
  1482     assert(status != -1, "linux error");
  1483     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1484     return 1000 * usecs;
  1488 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1489   if (Linux::supports_monotonic_clock()) {
  1490     info_ptr->max_value = ALL_64_BITS;
  1492     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1493     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1494     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1495   } else {
  1496     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1497     info_ptr->max_value = ALL_64_BITS;
  1499     // gettimeofday is a real time clock so it skips
  1500     info_ptr->may_skip_backward = true;
  1501     info_ptr->may_skip_forward = true;
  1504   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1507 // Return the real, user, and system times in seconds from an
  1508 // arbitrary fixed point in the past.
  1509 bool os::getTimesSecs(double* process_real_time,
  1510                       double* process_user_time,
  1511                       double* process_system_time) {
  1512   struct tms ticks;
  1513   clock_t real_ticks = times(&ticks);
  1515   if (real_ticks == (clock_t) (-1)) {
  1516     return false;
  1517   } else {
  1518     double ticks_per_second = (double) clock_tics_per_sec;
  1519     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1520     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1521     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1523     return true;
  1528 char * os::local_time_string(char *buf, size_t buflen) {
  1529   struct tm t;
  1530   time_t long_time;
  1531   time(&long_time);
  1532   localtime_r(&long_time, &t);
  1533   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1534                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1535                t.tm_hour, t.tm_min, t.tm_sec);
  1536   return buf;
  1539 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1540   return localtime_r(clock, res);
  1543 ////////////////////////////////////////////////////////////////////////////////
  1544 // runtime exit support
  1546 // Note: os::shutdown() might be called very early during initialization, or
  1547 // called from signal handler. Before adding something to os::shutdown(), make
  1548 // sure it is async-safe and can handle partially initialized VM.
  1549 void os::shutdown() {
  1551   // allow PerfMemory to attempt cleanup of any persistent resources
  1552   perfMemory_exit();
  1554   // needs to remove object in file system
  1555   AttachListener::abort();
  1557   // flush buffered output, finish log files
  1558   ostream_abort();
  1560   // Check for abort hook
  1561   abort_hook_t abort_hook = Arguments::abort_hook();
  1562   if (abort_hook != NULL) {
  1563     abort_hook();
  1568 // Note: os::abort() might be called very early during initialization, or
  1569 // called from signal handler. Before adding something to os::abort(), make
  1570 // sure it is async-safe and can handle partially initialized VM.
  1571 void os::abort(bool dump_core) {
  1572   os::shutdown();
  1573   if (dump_core) {
  1574 #ifndef PRODUCT
  1575     fdStream out(defaultStream::output_fd());
  1576     out.print_raw("Current thread is ");
  1577     char buf[16];
  1578     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1579     out.print_raw_cr(buf);
  1580     out.print_raw_cr("Dumping core ...");
  1581 #endif
  1582     ::abort(); // dump core
  1585   ::exit(1);
  1588 // Die immediately, no exit hook, no abort hook, no cleanup.
  1589 void os::die() {
  1590   // _exit() on LinuxThreads only kills current thread
  1591   ::abort();
  1594 // unused on linux for now.
  1595 void os::set_error_file(const char *logfile) {}
  1598 // This method is a copy of JDK's sysGetLastErrorString
  1599 // from src/solaris/hpi/src/system_md.c
  1601 size_t os::lasterror(char *buf, size_t len) {
  1603   if (errno == 0)  return 0;
  1605   const char *s = ::strerror(errno);
  1606   size_t n = ::strlen(s);
  1607   if (n >= len) {
  1608     n = len - 1;
  1610   ::strncpy(buf, s, n);
  1611   buf[n] = '\0';
  1612   return n;
  1615 intx os::current_thread_id() { return (intx)pthread_self(); }
  1616 int os::current_process_id() {
  1618   // Under the old linux thread library, linux gives each thread
  1619   // its own process id. Because of this each thread will return
  1620   // a different pid if this method were to return the result
  1621   // of getpid(2). Linux provides no api that returns the pid
  1622   // of the launcher thread for the vm. This implementation
  1623   // returns a unique pid, the pid of the launcher thread
  1624   // that starts the vm 'process'.
  1626   // Under the NPTL, getpid() returns the same pid as the
  1627   // launcher thread rather than a unique pid per thread.
  1628   // Use gettid() if you want the old pre NPTL behaviour.
  1630   // if you are looking for the result of a call to getpid() that
  1631   // returns a unique pid for the calling thread, then look at the
  1632   // OSThread::thread_id() method in osThread_linux.hpp file
  1634   return (int)(_initial_pid ? _initial_pid : getpid());
  1637 // DLL functions
  1639 const char* os::dll_file_extension() { return ".so"; }
  1641 // This must be hard coded because it's the system's temporary
  1642 // directory not the java application's temp directory, ala java.io.tmpdir.
  1643 const char* os::get_temp_directory() { return "/tmp"; }
  1645 static bool file_exists(const char* filename) {
  1646   struct stat statbuf;
  1647   if (filename == NULL || strlen(filename) == 0) {
  1648     return false;
  1650   return os::stat(filename, &statbuf) == 0;
  1653 void os::dll_build_name(char* buffer, size_t buflen,
  1654                         const char* pname, const char* fname) {
  1655   // Copied from libhpi
  1656   const size_t pnamelen = pname ? strlen(pname) : 0;
  1658   // Quietly truncate on buffer overflow.  Should be an error.
  1659   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1660       *buffer = '\0';
  1661       return;
  1664   if (pnamelen == 0) {
  1665     snprintf(buffer, buflen, "lib%s.so", fname);
  1666   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1667     int n;
  1668     char** pelements = split_path(pname, &n);
  1669     for (int i = 0 ; i < n ; i++) {
  1670       // Really shouldn't be NULL, but check can't hurt
  1671       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1672         continue; // skip the empty path values
  1674       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1675       if (file_exists(buffer)) {
  1676         break;
  1679     // release the storage
  1680     for (int i = 0 ; i < n ; i++) {
  1681       if (pelements[i] != NULL) {
  1682         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1685     if (pelements != NULL) {
  1686       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1688   } else {
  1689     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1693 const char* os::get_current_directory(char *buf, int buflen) {
  1694   return getcwd(buf, buflen);
  1697 // check if addr is inside libjvm[_g].so
  1698 bool os::address_is_in_vm(address addr) {
  1699   static address libjvm_base_addr;
  1700   Dl_info dlinfo;
  1702   if (libjvm_base_addr == NULL) {
  1703     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1704     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1705     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1708   if (dladdr((void *)addr, &dlinfo)) {
  1709     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1712   return false;
  1715 bool os::dll_address_to_function_name(address addr, char *buf,
  1716                                       int buflen, int *offset) {
  1717   Dl_info dlinfo;
  1719   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
  1720     if (buf != NULL) {
  1721       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1722         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1725     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1726     return true;
  1727   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1728     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1729         buf, buflen, offset, dlinfo.dli_fname)) {
  1730        return true;
  1734   if (buf != NULL) buf[0] = '\0';
  1735   if (offset != NULL) *offset = -1;
  1736   return false;
  1739 struct _address_to_library_name {
  1740   address addr;          // input : memory address
  1741   size_t  buflen;        //         size of fname
  1742   char*   fname;         // output: library name
  1743   address base;          //         library base addr
  1744 };
  1746 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1747                                             size_t size, void *data) {
  1748   int i;
  1749   bool found = false;
  1750   address libbase = NULL;
  1751   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1753   // iterate through all loadable segments
  1754   for (i = 0; i < info->dlpi_phnum; i++) {
  1755     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1756     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1757       // base address of a library is the lowest address of its loaded
  1758       // segments.
  1759       if (libbase == NULL || libbase > segbase) {
  1760         libbase = segbase;
  1762       // see if 'addr' is within current segment
  1763       if (segbase <= d->addr &&
  1764           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1765         found = true;
  1770   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1771   // so dll_address_to_library_name() can fall through to use dladdr() which
  1772   // can figure out executable name from argv[0].
  1773   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1774     d->base = libbase;
  1775     if (d->fname) {
  1776       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1778     return 1;
  1780   return 0;
  1783 bool os::dll_address_to_library_name(address addr, char* buf,
  1784                                      int buflen, int* offset) {
  1785   Dl_info dlinfo;
  1786   struct _address_to_library_name data;
  1788   // There is a bug in old glibc dladdr() implementation that it could resolve
  1789   // to wrong library name if the .so file has a base address != NULL. Here
  1790   // we iterate through the program headers of all loaded libraries to find
  1791   // out which library 'addr' really belongs to. This workaround can be
  1792   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1793   data.addr = addr;
  1794   data.fname = buf;
  1795   data.buflen = buflen;
  1796   data.base = NULL;
  1797   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1799   if (rslt) {
  1800      // buf already contains library name
  1801      if (offset) *offset = addr - data.base;
  1802      return true;
  1803   } else if (dladdr((void*)addr, &dlinfo)){
  1804      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1805      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1806      return true;
  1807   } else {
  1808      if (buf) buf[0] = '\0';
  1809      if (offset) *offset = -1;
  1810      return false;
  1814   // Loads .dll/.so and
  1815   // in case of error it checks if .dll/.so was built for the
  1816   // same architecture as Hotspot is running on
  1818 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1820   void * result= ::dlopen(filename, RTLD_LAZY);
  1821   if (result != NULL) {
  1822     // Successful loading
  1823     return result;
  1826   Elf32_Ehdr elf_head;
  1828   // Read system error message into ebuf
  1829   // It may or may not be overwritten below
  1830   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1831   ebuf[ebuflen-1]='\0';
  1832   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1833   char* diag_msg_buf=ebuf+strlen(ebuf);
  1835   if (diag_msg_max_length==0) {
  1836     // No more space in ebuf for additional diagnostics message
  1837     return NULL;
  1841   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1843   if (file_descriptor < 0) {
  1844     // Can't open library, report dlerror() message
  1845     return NULL;
  1848   bool failed_to_read_elf_head=
  1849     (sizeof(elf_head)!=
  1850         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1852   ::close(file_descriptor);
  1853   if (failed_to_read_elf_head) {
  1854     // file i/o error - report dlerror() msg
  1855     return NULL;
  1858   typedef struct {
  1859     Elf32_Half  code;         // Actual value as defined in elf.h
  1860     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1861     char        elf_class;    // 32 or 64 bit
  1862     char        endianess;    // MSB or LSB
  1863     char*       name;         // String representation
  1864   } arch_t;
  1866   #ifndef EM_486
  1867   #define EM_486          6               /* Intel 80486 */
  1868   #endif
  1870   static const arch_t arch_array[]={
  1871     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1872     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1873     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1874     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1875     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1876     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1877     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1878     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1879     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1880     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1881     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1882     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1883     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1884     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1885     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1886     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1887   };
  1889   #if  (defined IA32)
  1890     static  Elf32_Half running_arch_code=EM_386;
  1891   #elif   (defined AMD64)
  1892     static  Elf32_Half running_arch_code=EM_X86_64;
  1893   #elif  (defined IA64)
  1894     static  Elf32_Half running_arch_code=EM_IA_64;
  1895   #elif  (defined __sparc) && (defined _LP64)
  1896     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1897   #elif  (defined __sparc) && (!defined _LP64)
  1898     static  Elf32_Half running_arch_code=EM_SPARC;
  1899   #elif  (defined __powerpc64__)
  1900     static  Elf32_Half running_arch_code=EM_PPC64;
  1901   #elif  (defined __powerpc__)
  1902     static  Elf32_Half running_arch_code=EM_PPC;
  1903   #elif  (defined ARM)
  1904     static  Elf32_Half running_arch_code=EM_ARM;
  1905   #elif  (defined S390)
  1906     static  Elf32_Half running_arch_code=EM_S390;
  1907   #elif  (defined ALPHA)
  1908     static  Elf32_Half running_arch_code=EM_ALPHA;
  1909   #elif  (defined MIPSEL)
  1910     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1911   #elif  (defined PARISC)
  1912     static  Elf32_Half running_arch_code=EM_PARISC;
  1913   #elif  (defined MIPS)
  1914     static  Elf32_Half running_arch_code=EM_MIPS;
  1915   #elif  (defined M68K)
  1916     static  Elf32_Half running_arch_code=EM_68K;
  1917   #else
  1918     #error Method os::dll_load requires that one of following is defined:\
  1919          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1920   #endif
  1922   // Identify compatability class for VM's architecture and library's architecture
  1923   // Obtain string descriptions for architectures
  1925   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1926   int running_arch_index=-1;
  1928   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1929     if (running_arch_code == arch_array[i].code) {
  1930       running_arch_index    = i;
  1932     if (lib_arch.code == arch_array[i].code) {
  1933       lib_arch.compat_class = arch_array[i].compat_class;
  1934       lib_arch.name         = arch_array[i].name;
  1938   assert(running_arch_index != -1,
  1939     "Didn't find running architecture code (running_arch_code) in arch_array");
  1940   if (running_arch_index == -1) {
  1941     // Even though running architecture detection failed
  1942     // we may still continue with reporting dlerror() message
  1943     return NULL;
  1946   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1947     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1948     return NULL;
  1951 #ifndef S390
  1952   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1953     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1954     return NULL;
  1956 #endif // !S390
  1958   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1959     if ( lib_arch.name!=NULL ) {
  1960       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1961         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1962         lib_arch.name, arch_array[running_arch_index].name);
  1963     } else {
  1964       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1965       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1966         lib_arch.code,
  1967         arch_array[running_arch_index].name);
  1971   return NULL;
  1974 /*
  1975  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  1976  * chances are you might want to run the generated bits against glibc-2.0
  1977  * libdl.so, so always use locking for any version of glibc.
  1978  */
  1979 void* os::dll_lookup(void* handle, const char* name) {
  1980   pthread_mutex_lock(&dl_mutex);
  1981   void* res = dlsym(handle, name);
  1982   pthread_mutex_unlock(&dl_mutex);
  1983   return res;
  1987 static bool _print_ascii_file(const char* filename, outputStream* st) {
  1988   int fd = ::open(filename, O_RDONLY);
  1989   if (fd == -1) {
  1990      return false;
  1993   char buf[32];
  1994   int bytes;
  1995   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  1996     st->print_raw(buf, bytes);
  1999   ::close(fd);
  2001   return true;
  2004 void os::print_dll_info(outputStream *st) {
  2005    st->print_cr("Dynamic libraries:");
  2007    char fname[32];
  2008    pid_t pid = os::Linux::gettid();
  2010    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2012    if (!_print_ascii_file(fname, st)) {
  2013      st->print("Can not get library information for pid = %d\n", pid);
  2017 void os::print_os_info_brief(outputStream* st) {
  2018   os::Linux::print_distro_info(st);
  2020   os::Posix::print_uname_info(st);
  2022   os::Linux::print_libversion_info(st);
  2026 void os::print_os_info(outputStream* st) {
  2027   st->print("OS:");
  2029   os::Linux::print_distro_info(st);
  2031   os::Posix::print_uname_info(st);
  2033   // Print warning if unsafe chroot environment detected
  2034   if (unsafe_chroot_detected) {
  2035     st->print("WARNING!! ");
  2036     st->print_cr(unstable_chroot_error);
  2039   os::Linux::print_libversion_info(st);
  2041   os::Posix::print_rlimit_info(st);
  2043   os::Posix::print_load_average(st);
  2045   os::Linux::print_full_memory_info(st);
  2048 // Try to identify popular distros.
  2049 // Most Linux distributions have /etc/XXX-release file, which contains
  2050 // the OS version string. Some have more than one /etc/XXX-release file
  2051 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
  2052 // so the order is important.
  2053 void os::Linux::print_distro_info(outputStream* st) {
  2054   if (!_print_ascii_file("/etc/mandrake-release", st) &&
  2055       !_print_ascii_file("/etc/sun-release", st) &&
  2056       !_print_ascii_file("/etc/redhat-release", st) &&
  2057       !_print_ascii_file("/etc/SuSE-release", st) &&
  2058       !_print_ascii_file("/etc/turbolinux-release", st) &&
  2059       !_print_ascii_file("/etc/gentoo-release", st) &&
  2060       !_print_ascii_file("/etc/debian_version", st) &&
  2061       !_print_ascii_file("/etc/ltib-release", st) &&
  2062       !_print_ascii_file("/etc/angstrom-version", st)) {
  2063       st->print("Linux");
  2065   st->cr();
  2068 void os::Linux::print_libversion_info(outputStream* st) {
  2069   // libc, pthread
  2070   st->print("libc:");
  2071   st->print(os::Linux::glibc_version()); st->print(" ");
  2072   st->print(os::Linux::libpthread_version()); st->print(" ");
  2073   if (os::Linux::is_LinuxThreads()) {
  2074      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2076   st->cr();
  2079 void os::Linux::print_full_memory_info(outputStream* st) {
  2080    st->print("\n/proc/meminfo:\n");
  2081    _print_ascii_file("/proc/meminfo", st);
  2082    st->cr();
  2085 void os::print_memory_info(outputStream* st) {
  2087   st->print("Memory:");
  2088   st->print(" %dk page", os::vm_page_size()>>10);
  2090   // values in struct sysinfo are "unsigned long"
  2091   struct sysinfo si;
  2092   sysinfo(&si);
  2094   st->print(", physical " UINT64_FORMAT "k",
  2095             os::physical_memory() >> 10);
  2096   st->print("(" UINT64_FORMAT "k free)",
  2097             os::available_memory() >> 10);
  2098   st->print(", swap " UINT64_FORMAT "k",
  2099             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2100   st->print("(" UINT64_FORMAT "k free)",
  2101             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2102   st->cr();
  2105 void os::pd_print_cpu_info(outputStream* st) {
  2106   st->print("\n/proc/cpuinfo:\n");
  2107   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2108     st->print("  <Not Available>");
  2110   st->cr();
  2113 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  2114 // but they're the same for all the linux arch that we support
  2115 // and they're the same for solaris but there's no common place to put this.
  2116 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2117                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2118                           "ILL_COPROC", "ILL_BADSTK" };
  2120 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2121                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2122                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2124 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2126 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2128 void os::print_siginfo(outputStream* st, void* siginfo) {
  2129   st->print("siginfo:");
  2131   const int buflen = 100;
  2132   char buf[buflen];
  2133   siginfo_t *si = (siginfo_t*)siginfo;
  2134   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2135   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2136     st->print("si_errno=%s", buf);
  2137   } else {
  2138     st->print("si_errno=%d", si->si_errno);
  2140   const int c = si->si_code;
  2141   assert(c > 0, "unexpected si_code");
  2142   switch (si->si_signo) {
  2143   case SIGILL:
  2144     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2145     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2146     break;
  2147   case SIGFPE:
  2148     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2149     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2150     break;
  2151   case SIGSEGV:
  2152     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2153     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2154     break;
  2155   case SIGBUS:
  2156     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2157     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2158     break;
  2159   default:
  2160     st->print(", si_code=%d", si->si_code);
  2161     // no si_addr
  2164   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2165       UseSharedSpaces) {
  2166     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2167     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2168       st->print("\n\nError accessing class data sharing archive."   \
  2169                 " Mapped file inaccessible during execution, "      \
  2170                 " possible disk/network problem.");
  2173   st->cr();
  2177 static void print_signal_handler(outputStream* st, int sig,
  2178                                  char* buf, size_t buflen);
  2180 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2181   st->print_cr("Signal Handlers:");
  2182   print_signal_handler(st, SIGSEGV, buf, buflen);
  2183   print_signal_handler(st, SIGBUS , buf, buflen);
  2184   print_signal_handler(st, SIGFPE , buf, buflen);
  2185   print_signal_handler(st, SIGPIPE, buf, buflen);
  2186   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2187   print_signal_handler(st, SIGILL , buf, buflen);
  2188   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2189   print_signal_handler(st, SR_signum, buf, buflen);
  2190   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2191   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2192   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2193   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2196 static char saved_jvm_path[MAXPATHLEN] = {0};
  2198 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2199 void os::jvm_path(char *buf, jint buflen) {
  2200   // Error checking.
  2201   if (buflen < MAXPATHLEN) {
  2202     assert(false, "must use a large-enough buffer");
  2203     buf[0] = '\0';
  2204     return;
  2206   // Lazy resolve the path to current module.
  2207   if (saved_jvm_path[0] != 0) {
  2208     strcpy(buf, saved_jvm_path);
  2209     return;
  2212   char dli_fname[MAXPATHLEN];
  2213   bool ret = dll_address_to_library_name(
  2214                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2215                 dli_fname, sizeof(dli_fname), NULL);
  2216   assert(ret != 0, "cannot locate libjvm");
  2217   char *rp = realpath(dli_fname, buf);
  2218   if (rp == NULL)
  2219     return;
  2221   if (Arguments::created_by_gamma_launcher()) {
  2222     // Support for the gamma launcher.  Typical value for buf is
  2223     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2224     // the right place in the string, then assume we are installed in a JDK and
  2225     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2226     // up the path so it looks like libjvm.so is installed there (append a
  2227     // fake suffix hotspot/libjvm.so).
  2228     const char *p = buf + strlen(buf) - 1;
  2229     for (int count = 0; p > buf && count < 5; ++count) {
  2230       for (--p; p > buf && *p != '/'; --p)
  2231         /* empty */ ;
  2234     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2235       // Look for JAVA_HOME in the environment.
  2236       char* java_home_var = ::getenv("JAVA_HOME");
  2237       if (java_home_var != NULL && java_home_var[0] != 0) {
  2238         char* jrelib_p;
  2239         int len;
  2241         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2242         p = strrchr(buf, '/');
  2243         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2244         p = strstr(p, "_g") ? "_g" : "";
  2246         rp = realpath(java_home_var, buf);
  2247         if (rp == NULL)
  2248           return;
  2250         // determine if this is a legacy image or modules image
  2251         // modules image doesn't have "jre" subdirectory
  2252         len = strlen(buf);
  2253         jrelib_p = buf + len;
  2254         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2255         if (0 != access(buf, F_OK)) {
  2256           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2259         if (0 == access(buf, F_OK)) {
  2260           // Use current module name "libjvm[_g].so" instead of
  2261           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2262           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2263           len = strlen(buf);
  2264           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
  2265         } else {
  2266           // Go back to path of .so
  2267           rp = realpath(dli_fname, buf);
  2268           if (rp == NULL)
  2269             return;
  2275   strcpy(saved_jvm_path, buf);
  2278 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2279   // no prefix required, not even "_"
  2282 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2283   // no suffix required
  2286 ////////////////////////////////////////////////////////////////////////////////
  2287 // sun.misc.Signal support
  2289 static volatile jint sigint_count = 0;
  2291 static void
  2292 UserHandler(int sig, void *siginfo, void *context) {
  2293   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2294   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2295   // don't want to flood the manager thread with sem_post requests.
  2296   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2297       return;
  2299   // Ctrl-C is pressed during error reporting, likely because the error
  2300   // handler fails to abort. Let VM die immediately.
  2301   if (sig == SIGINT && is_error_reported()) {
  2302      os::die();
  2305   os::signal_notify(sig);
  2308 void* os::user_handler() {
  2309   return CAST_FROM_FN_PTR(void*, UserHandler);
  2312 extern "C" {
  2313   typedef void (*sa_handler_t)(int);
  2314   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2317 void* os::signal(int signal_number, void* handler) {
  2318   struct sigaction sigAct, oldSigAct;
  2320   sigfillset(&(sigAct.sa_mask));
  2321   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2322   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2324   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2325     // -1 means registration failed
  2326     return (void *)-1;
  2329   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2332 void os::signal_raise(int signal_number) {
  2333   ::raise(signal_number);
  2336 /*
  2337  * The following code is moved from os.cpp for making this
  2338  * code platform specific, which it is by its very nature.
  2339  */
  2341 // Will be modified when max signal is changed to be dynamic
  2342 int os::sigexitnum_pd() {
  2343   return NSIG;
  2346 // a counter for each possible signal value
  2347 static volatile jint pending_signals[NSIG+1] = { 0 };
  2349 // Linux(POSIX) specific hand shaking semaphore.
  2350 static sem_t sig_sem;
  2352 void os::signal_init_pd() {
  2353   // Initialize signal structures
  2354   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2356   // Initialize signal semaphore
  2357   ::sem_init(&sig_sem, 0, 0);
  2360 void os::signal_notify(int sig) {
  2361   Atomic::inc(&pending_signals[sig]);
  2362   ::sem_post(&sig_sem);
  2365 static int check_pending_signals(bool wait) {
  2366   Atomic::store(0, &sigint_count);
  2367   for (;;) {
  2368     for (int i = 0; i < NSIG + 1; i++) {
  2369       jint n = pending_signals[i];
  2370       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2371         return i;
  2374     if (!wait) {
  2375       return -1;
  2377     JavaThread *thread = JavaThread::current();
  2378     ThreadBlockInVM tbivm(thread);
  2380     bool threadIsSuspended;
  2381     do {
  2382       thread->set_suspend_equivalent();
  2383       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2384       ::sem_wait(&sig_sem);
  2386       // were we externally suspended while we were waiting?
  2387       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2388       if (threadIsSuspended) {
  2389         //
  2390         // The semaphore has been incremented, but while we were waiting
  2391         // another thread suspended us. We don't want to continue running
  2392         // while suspended because that would surprise the thread that
  2393         // suspended us.
  2394         //
  2395         ::sem_post(&sig_sem);
  2397         thread->java_suspend_self();
  2399     } while (threadIsSuspended);
  2403 int os::signal_lookup() {
  2404   return check_pending_signals(false);
  2407 int os::signal_wait() {
  2408   return check_pending_signals(true);
  2411 ////////////////////////////////////////////////////////////////////////////////
  2412 // Virtual Memory
  2414 int os::vm_page_size() {
  2415   // Seems redundant as all get out
  2416   assert(os::Linux::page_size() != -1, "must call os::init");
  2417   return os::Linux::page_size();
  2420 // Solaris allocates memory by pages.
  2421 int os::vm_allocation_granularity() {
  2422   assert(os::Linux::page_size() != -1, "must call os::init");
  2423   return os::Linux::page_size();
  2426 // Rationale behind this function:
  2427 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2428 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2429 //  samples for JITted code. Here we create private executable mapping over the code cache
  2430 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2431 //  info for the reporting script by storing timestamp and location of symbol
  2432 void linux_wrap_code(char* base, size_t size) {
  2433   static volatile jint cnt = 0;
  2435   if (!UseOprofile) {
  2436     return;
  2439   char buf[PATH_MAX+1];
  2440   int num = Atomic::add(1, &cnt);
  2442   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2443            os::get_temp_directory(), os::current_process_id(), num);
  2444   unlink(buf);
  2446   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2448   if (fd != -1) {
  2449     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2450     if (rv != (off_t)-1) {
  2451       if (::write(fd, "", 1) == 1) {
  2452         mmap(base, size,
  2453              PROT_READ|PROT_WRITE|PROT_EXEC,
  2454              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2457     ::close(fd);
  2458     unlink(buf);
  2462 // NOTE: Linux kernel does not really reserve the pages for us.
  2463 //       All it does is to check if there are enough free pages
  2464 //       left at the time of mmap(). This could be a potential
  2465 //       problem.
  2466 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2467   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2468   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2469                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2470   if (res != (uintptr_t) MAP_FAILED) {
  2471     if (UseNUMAInterleaving) {
  2472       numa_make_global(addr, size);
  2474     return true;
  2476   return false;
  2479 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2480 #ifndef MAP_HUGETLB
  2481 #define MAP_HUGETLB 0x40000
  2482 #endif
  2484 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2485 #ifndef MADV_HUGEPAGE
  2486 #define MADV_HUGEPAGE 14
  2487 #endif
  2489 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2490                        bool exec) {
  2491   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2492     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2493     uintptr_t res =
  2494       (uintptr_t) ::mmap(addr, size, prot,
  2495                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
  2496                          -1, 0);
  2497     if (res != (uintptr_t) MAP_FAILED) {
  2498       if (UseNUMAInterleaving) {
  2499         numa_make_global(addr, size);
  2501       return true;
  2503     // Fall through and try to use small pages
  2506   if (commit_memory(addr, size, exec)) {
  2507     realign_memory(addr, size, alignment_hint);
  2508     return true;
  2510   return false;
  2513 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2514   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2515     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2516     // be supported or the memory may already be backed by huge pages.
  2517     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2521 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2522   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2523   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2524   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2525   // small pages on top of the SHM segment. This method always works for small pages, so we
  2526   // allow that in any case.
  2527   if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
  2528     commit_memory(addr, bytes, alignment_hint, false);
  2532 void os::numa_make_global(char *addr, size_t bytes) {
  2533   Linux::numa_interleave_memory(addr, bytes);
  2536 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2537   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2540 bool os::numa_topology_changed()   { return false; }
  2542 size_t os::numa_get_groups_num() {
  2543   int max_node = Linux::numa_max_node();
  2544   return max_node > 0 ? max_node + 1 : 1;
  2547 int os::numa_get_group_id() {
  2548   int cpu_id = Linux::sched_getcpu();
  2549   if (cpu_id != -1) {
  2550     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2551     if (lgrp_id != -1) {
  2552       return lgrp_id;
  2555   return 0;
  2558 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2559   for (size_t i = 0; i < size; i++) {
  2560     ids[i] = i;
  2562   return size;
  2565 bool os::get_page_info(char *start, page_info* info) {
  2566   return false;
  2569 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2570   return end;
  2574 int os::Linux::sched_getcpu_syscall(void) {
  2575   unsigned int cpu;
  2576   int retval = -1;
  2578 #if defined(IA32)
  2579 # ifndef SYS_getcpu
  2580 # define SYS_getcpu 318
  2581 # endif
  2582   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2583 #elif defined(AMD64)
  2584 // Unfortunately we have to bring all these macros here from vsyscall.h
  2585 // to be able to compile on old linuxes.
  2586 # define __NR_vgetcpu 2
  2587 # define VSYSCALL_START (-10UL << 20)
  2588 # define VSYSCALL_SIZE 1024
  2589 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2590   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2591   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2592   retval = vgetcpu(&cpu, NULL, NULL);
  2593 #endif
  2595   return (retval == -1) ? retval : cpu;
  2598 // Something to do with the numa-aware allocator needs these symbols
  2599 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2600 extern "C" JNIEXPORT void numa_error(char *where) { }
  2601 extern "C" JNIEXPORT int fork1() { return fork(); }
  2604 // If we are running with libnuma version > 2, then we should
  2605 // be trying to use symbols with versions 1.1
  2606 // If we are running with earlier version, which did not have symbol versions,
  2607 // we should use the base version.
  2608 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2609   void *f = dlvsym(handle, name, "libnuma_1.1");
  2610   if (f == NULL) {
  2611     f = dlsym(handle, name);
  2613   return f;
  2616 bool os::Linux::libnuma_init() {
  2617   // sched_getcpu() should be in libc.
  2618   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2619                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2621   // If it's not, try a direct syscall.
  2622   if (sched_getcpu() == -1)
  2623     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2625   if (sched_getcpu() != -1) { // Does it work?
  2626     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2627     if (handle != NULL) {
  2628       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2629                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2630       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2631                                        libnuma_dlsym(handle, "numa_max_node")));
  2632       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2633                                         libnuma_dlsym(handle, "numa_available")));
  2634       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2635                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2636       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2637                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2640       if (numa_available() != -1) {
  2641         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2642         // Create a cpu -> node mapping
  2643         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2644         rebuild_cpu_to_node_map();
  2645         return true;
  2649   return false;
  2652 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2653 // The table is later used in get_node_by_cpu().
  2654 void os::Linux::rebuild_cpu_to_node_map() {
  2655   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2656                               // in libnuma (possible values are starting from 16,
  2657                               // and continuing up with every other power of 2, but less
  2658                               // than the maximum number of CPUs supported by kernel), and
  2659                               // is a subject to change (in libnuma version 2 the requirements
  2660                               // are more reasonable) we'll just hardcode the number they use
  2661                               // in the library.
  2662   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2664   size_t cpu_num = os::active_processor_count();
  2665   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2666   size_t cpu_map_valid_size =
  2667     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2669   cpu_to_node()->clear();
  2670   cpu_to_node()->at_grow(cpu_num - 1);
  2671   size_t node_num = numa_get_groups_num();
  2673   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2674   for (size_t i = 0; i < node_num; i++) {
  2675     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2676       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2677         if (cpu_map[j] != 0) {
  2678           for (size_t k = 0; k < BitsPerCLong; k++) {
  2679             if (cpu_map[j] & (1UL << k)) {
  2680               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2687   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2690 int os::Linux::get_node_by_cpu(int cpu_id) {
  2691   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2692     return cpu_to_node()->at(cpu_id);
  2694   return -1;
  2697 GrowableArray<int>* os::Linux::_cpu_to_node;
  2698 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2699 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2700 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2701 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2702 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2703 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2704 unsigned long* os::Linux::_numa_all_nodes;
  2706 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2707   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2708                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2709   return res  != (uintptr_t) MAP_FAILED;
  2712 // Linux uses a growable mapping for the stack, and if the mapping for
  2713 // the stack guard pages is not removed when we detach a thread the
  2714 // stack cannot grow beyond the pages where the stack guard was
  2715 // mapped.  If at some point later in the process the stack expands to
  2716 // that point, the Linux kernel cannot expand the stack any further
  2717 // because the guard pages are in the way, and a segfault occurs.
  2718 //
  2719 // However, it's essential not to split the stack region by unmapping
  2720 // a region (leaving a hole) that's already part of the stack mapping,
  2721 // so if the stack mapping has already grown beyond the guard pages at
  2722 // the time we create them, we have to truncate the stack mapping.
  2723 // So, we need to know the extent of the stack mapping when
  2724 // create_stack_guard_pages() is called.
  2726 // Find the bounds of the stack mapping.  Return true for success.
  2727 //
  2728 // We only need this for stacks that are growable: at the time of
  2729 // writing thread stacks don't use growable mappings (i.e. those
  2730 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  2731 // only applies to the main thread.
  2733 static
  2734 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
  2736   char buf[128];
  2737   int fd, sz;
  2739   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
  2740     return false;
  2743   const char kw[] = "[stack]";
  2744   const int kwlen = sizeof(kw)-1;
  2746   // Address part of /proc/self/maps couldn't be more than 128 bytes
  2747   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
  2748      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
  2749         // Extract addresses
  2750         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
  2751            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
  2752            if (sp >= *bottom && sp <= *top) {
  2753               ::close(fd);
  2754               return true;
  2760  ::close(fd);
  2761   return false;
  2765 // If the (growable) stack mapping already extends beyond the point
  2766 // where we're going to put our guard pages, truncate the mapping at
  2767 // that point by munmap()ping it.  This ensures that when we later
  2768 // munmap() the guard pages we don't leave a hole in the stack
  2769 // mapping. This only affects the main/initial thread, but guard
  2770 // against future OS changes
  2771 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2772   uintptr_t stack_extent, stack_base;
  2773   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2774   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2775       assert(os::Linux::is_initial_thread(),
  2776            "growable stack in non-initial thread");
  2777     if (stack_extent < (uintptr_t)addr)
  2778       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
  2781   return os::commit_memory(addr, size);
  2784 // If this is a growable mapping, remove the guard pages entirely by
  2785 // munmap()ping them.  If not, just call uncommit_memory(). This only
  2786 // affects the main/initial thread, but guard against future OS changes
  2787 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2788   uintptr_t stack_extent, stack_base;
  2789   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2790   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2791       assert(os::Linux::is_initial_thread(),
  2792            "growable stack in non-initial thread");
  2794     return ::munmap(addr, size) == 0;
  2797   return os::uncommit_memory(addr, size);
  2800 static address _highest_vm_reserved_address = NULL;
  2802 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2803 // at 'requested_addr'. If there are existing memory mappings at the same
  2804 // location, however, they will be overwritten. If 'fixed' is false,
  2805 // 'requested_addr' is only treated as a hint, the return value may or
  2806 // may not start from the requested address. Unlike Linux mmap(), this
  2807 // function returns NULL to indicate failure.
  2808 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2809   char * addr;
  2810   int flags;
  2812   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2813   if (fixed) {
  2814     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  2815     flags |= MAP_FIXED;
  2818   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
  2819   // to PROT_EXEC if executable when we commit the page.
  2820   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
  2821                        flags, -1, 0);
  2823   if (addr != MAP_FAILED) {
  2824     // anon_mmap() should only get called during VM initialization,
  2825     // don't need lock (actually we can skip locking even it can be called
  2826     // from multiple threads, because _highest_vm_reserved_address is just a
  2827     // hint about the upper limit of non-stack memory regions.)
  2828     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2829       _highest_vm_reserved_address = (address)addr + bytes;
  2833   return addr == MAP_FAILED ? NULL : addr;
  2836 // Don't update _highest_vm_reserved_address, because there might be memory
  2837 // regions above addr + size. If so, releasing a memory region only creates
  2838 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2839 //
  2840 static int anon_munmap(char * addr, size_t size) {
  2841   return ::munmap(addr, size) == 0;
  2844 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  2845                          size_t alignment_hint) {
  2846   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2849 bool os::pd_release_memory(char* addr, size_t size) {
  2850   return anon_munmap(addr, size);
  2853 static address highest_vm_reserved_address() {
  2854   return _highest_vm_reserved_address;
  2857 static bool linux_mprotect(char* addr, size_t size, int prot) {
  2858   // Linux wants the mprotect address argument to be page aligned.
  2859   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  2861   // According to SUSv3, mprotect() should only be used with mappings
  2862   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2863   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2864   // protection of malloc'ed or statically allocated memory). Check the
  2865   // caller if you hit this assert.
  2866   assert(addr == bottom, "sanity check");
  2868   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  2869   return ::mprotect(bottom, size, prot) == 0;
  2872 // Set protections specified
  2873 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2874                         bool is_committed) {
  2875   unsigned int p = 0;
  2876   switch (prot) {
  2877   case MEM_PROT_NONE: p = PROT_NONE; break;
  2878   case MEM_PROT_READ: p = PROT_READ; break;
  2879   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2880   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2881   default:
  2882     ShouldNotReachHere();
  2884   // is_committed is unused.
  2885   return linux_mprotect(addr, bytes, p);
  2888 bool os::guard_memory(char* addr, size_t size) {
  2889   return linux_mprotect(addr, size, PROT_NONE);
  2892 bool os::unguard_memory(char* addr, size_t size) {
  2893   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2896 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  2897   bool result = false;
  2898   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
  2899                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  2900                   -1, 0);
  2902   if (p != (void *) -1) {
  2903     // We don't know if this really is a huge page or not.
  2904     FILE *fp = fopen("/proc/self/maps", "r");
  2905     if (fp) {
  2906       while (!feof(fp)) {
  2907         char chars[257];
  2908         long x = 0;
  2909         if (fgets(chars, sizeof(chars), fp)) {
  2910           if (sscanf(chars, "%lx-%*x", &x) == 1
  2911               && x == (long)p) {
  2912             if (strstr (chars, "hugepage")) {
  2913               result = true;
  2914               break;
  2919       fclose(fp);
  2921     munmap (p, page_size);
  2922     if (result)
  2923       return true;
  2926   if (warn) {
  2927     warning("HugeTLBFS is not supported by the operating system.");
  2930   return result;
  2933 /*
  2934 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  2936 * From the coredump_filter documentation:
  2938 * - (bit 0) anonymous private memory
  2939 * - (bit 1) anonymous shared memory
  2940 * - (bit 2) file-backed private memory
  2941 * - (bit 3) file-backed shared memory
  2942 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  2943 *           effective only if the bit 2 is cleared)
  2944 * - (bit 5) hugetlb private memory
  2945 * - (bit 6) hugetlb shared memory
  2946 */
  2947 static void set_coredump_filter(void) {
  2948   FILE *f;
  2949   long cdm;
  2951   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  2952     return;
  2955   if (fscanf(f, "%lx", &cdm) != 1) {
  2956     fclose(f);
  2957     return;
  2960   rewind(f);
  2962   if ((cdm & LARGEPAGES_BIT) == 0) {
  2963     cdm |= LARGEPAGES_BIT;
  2964     fprintf(f, "%#lx", cdm);
  2967   fclose(f);
  2970 // Large page support
  2972 static size_t _large_page_size = 0;
  2974 void os::large_page_init() {
  2975   if (!UseLargePages) {
  2976     UseHugeTLBFS = false;
  2977     UseSHM = false;
  2978     return;
  2981   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
  2982     // If UseLargePages is specified on the command line try both methods,
  2983     // if it's default, then try only HugeTLBFS.
  2984     if (FLAG_IS_DEFAULT(UseLargePages)) {
  2985       UseHugeTLBFS = true;
  2986     } else {
  2987       UseHugeTLBFS = UseSHM = true;
  2991   if (LargePageSizeInBytes) {
  2992     _large_page_size = LargePageSizeInBytes;
  2993   } else {
  2994     // large_page_size on Linux is used to round up heap size. x86 uses either
  2995     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  2996     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  2997     // page as large as 256M.
  2998     //
  2999     // Here we try to figure out page size by parsing /proc/meminfo and looking
  3000     // for a line with the following format:
  3001     //    Hugepagesize:     2048 kB
  3002     //
  3003     // If we can't determine the value (e.g. /proc is not mounted, or the text
  3004     // format has been changed), we'll use the largest page size supported by
  3005     // the processor.
  3007 #ifndef ZERO
  3008     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3009                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3010 #endif // ZERO
  3012     FILE *fp = fopen("/proc/meminfo", "r");
  3013     if (fp) {
  3014       while (!feof(fp)) {
  3015         int x = 0;
  3016         char buf[16];
  3017         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3018           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3019             _large_page_size = x * K;
  3020             break;
  3022         } else {
  3023           // skip to next line
  3024           for (;;) {
  3025             int ch = fgetc(fp);
  3026             if (ch == EOF || ch == (int)'\n') break;
  3030       fclose(fp);
  3034   // print a warning if any large page related flag is specified on command line
  3035   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3037   const size_t default_page_size = (size_t)Linux::page_size();
  3038   if (_large_page_size > default_page_size) {
  3039     _page_sizes[0] = _large_page_size;
  3040     _page_sizes[1] = default_page_size;
  3041     _page_sizes[2] = 0;
  3043   UseHugeTLBFS = UseHugeTLBFS &&
  3044                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
  3046   if (UseHugeTLBFS)
  3047     UseSHM = false;
  3049   UseLargePages = UseHugeTLBFS || UseSHM;
  3051   set_coredump_filter();
  3054 #ifndef SHM_HUGETLB
  3055 #define SHM_HUGETLB 04000
  3056 #endif
  3058 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  3059   // "exec" is passed in but not used.  Creating the shared image for
  3060   // the code cache doesn't have an SHM_X executable permission to check.
  3061   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3063   key_t key = IPC_PRIVATE;
  3064   char *addr;
  3066   bool warn_on_failure = UseLargePages &&
  3067                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3068                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3069                         );
  3070   char msg[128];
  3072   // Create a large shared memory region to attach to based on size.
  3073   // Currently, size is the total size of the heap
  3074   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3075   if (shmid == -1) {
  3076      // Possible reasons for shmget failure:
  3077      // 1. shmmax is too small for Java heap.
  3078      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3079      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3080      // 2. not enough large page memory.
  3081      //    > check available large pages: cat /proc/meminfo
  3082      //    > increase amount of large pages:
  3083      //          echo new_value > /proc/sys/vm/nr_hugepages
  3084      //      Note 1: different Linux may use different name for this property,
  3085      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3086      //      Note 2: it's possible there's enough physical memory available but
  3087      //            they are so fragmented after a long run that they can't
  3088      //            coalesce into large pages. Try to reserve large pages when
  3089      //            the system is still "fresh".
  3090      if (warn_on_failure) {
  3091        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3092        warning(msg);
  3094      return NULL;
  3097   // attach to the region
  3098   addr = (char*)shmat(shmid, req_addr, 0);
  3099   int err = errno;
  3101   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3102   // will be deleted when it's detached by shmdt() or when the process
  3103   // terminates. If shmat() is not successful this will remove the shared
  3104   // segment immediately.
  3105   shmctl(shmid, IPC_RMID, NULL);
  3107   if ((intptr_t)addr == -1) {
  3108      if (warn_on_failure) {
  3109        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3110        warning(msg);
  3112      return NULL;
  3115   if ((addr != NULL) && UseNUMAInterleaving) {
  3116     numa_make_global(addr, bytes);
  3119   return addr;
  3122 bool os::release_memory_special(char* base, size_t bytes) {
  3123   // detaching the SHM segment will also delete it, see reserve_memory_special()
  3124   int rslt = shmdt(base);
  3125   return rslt == 0;
  3128 size_t os::large_page_size() {
  3129   return _large_page_size;
  3132 // HugeTLBFS allows application to commit large page memory on demand;
  3133 // with SysV SHM the entire memory region must be allocated as shared
  3134 // memory.
  3135 bool os::can_commit_large_page_memory() {
  3136   return UseHugeTLBFS;
  3139 bool os::can_execute_large_page_memory() {
  3140   return UseHugeTLBFS;
  3143 // Reserve memory at an arbitrary address, only if that area is
  3144 // available (and not reserved for something else).
  3146 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3147   const int max_tries = 10;
  3148   char* base[max_tries];
  3149   size_t size[max_tries];
  3150   const size_t gap = 0x000000;
  3152   // Assert only that the size is a multiple of the page size, since
  3153   // that's all that mmap requires, and since that's all we really know
  3154   // about at this low abstraction level.  If we need higher alignment,
  3155   // we can either pass an alignment to this method or verify alignment
  3156   // in one of the methods further up the call chain.  See bug 5044738.
  3157   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3159   // Repeatedly allocate blocks until the block is allocated at the
  3160   // right spot. Give up after max_tries. Note that reserve_memory() will
  3161   // automatically update _highest_vm_reserved_address if the call is
  3162   // successful. The variable tracks the highest memory address every reserved
  3163   // by JVM. It is used to detect heap-stack collision if running with
  3164   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3165   // space than needed, it could confuse the collision detecting code. To
  3166   // solve the problem, save current _highest_vm_reserved_address and
  3167   // calculate the correct value before return.
  3168   address old_highest = _highest_vm_reserved_address;
  3170   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3171   // if kernel honors the hint then we can return immediately.
  3172   char * addr = anon_mmap(requested_addr, bytes, false);
  3173   if (addr == requested_addr) {
  3174      return requested_addr;
  3177   if (addr != NULL) {
  3178      // mmap() is successful but it fails to reserve at the requested address
  3179      anon_munmap(addr, bytes);
  3182   int i;
  3183   for (i = 0; i < max_tries; ++i) {
  3184     base[i] = reserve_memory(bytes);
  3186     if (base[i] != NULL) {
  3187       // Is this the block we wanted?
  3188       if (base[i] == requested_addr) {
  3189         size[i] = bytes;
  3190         break;
  3193       // Does this overlap the block we wanted? Give back the overlapped
  3194       // parts and try again.
  3196       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3197       if (top_overlap >= 0 && top_overlap < bytes) {
  3198         unmap_memory(base[i], top_overlap);
  3199         base[i] += top_overlap;
  3200         size[i] = bytes - top_overlap;
  3201       } else {
  3202         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3203         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3204           unmap_memory(requested_addr, bottom_overlap);
  3205           size[i] = bytes - bottom_overlap;
  3206         } else {
  3207           size[i] = bytes;
  3213   // Give back the unused reserved pieces.
  3215   for (int j = 0; j < i; ++j) {
  3216     if (base[j] != NULL) {
  3217       unmap_memory(base[j], size[j]);
  3221   if (i < max_tries) {
  3222     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3223     return requested_addr;
  3224   } else {
  3225     _highest_vm_reserved_address = old_highest;
  3226     return NULL;
  3230 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3231   return ::read(fd, buf, nBytes);
  3234 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3235 // Solaris uses poll(), linux uses park().
  3236 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3237 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3238 // SIGSEGV, see 4355769.
  3240 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3241   assert(thread == Thread::current(),  "thread consistency check");
  3243   ParkEvent * const slp = thread->_SleepEvent ;
  3244   slp->reset() ;
  3245   OrderAccess::fence() ;
  3247   if (interruptible) {
  3248     jlong prevtime = javaTimeNanos();
  3250     for (;;) {
  3251       if (os::is_interrupted(thread, true)) {
  3252         return OS_INTRPT;
  3255       jlong newtime = javaTimeNanos();
  3257       if (newtime - prevtime < 0) {
  3258         // time moving backwards, should only happen if no monotonic clock
  3259         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3260         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3261       } else {
  3262         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3265       if(millis <= 0) {
  3266         return OS_OK;
  3269       prevtime = newtime;
  3272         assert(thread->is_Java_thread(), "sanity check");
  3273         JavaThread *jt = (JavaThread *) thread;
  3274         ThreadBlockInVM tbivm(jt);
  3275         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3277         jt->set_suspend_equivalent();
  3278         // cleared by handle_special_suspend_equivalent_condition() or
  3279         // java_suspend_self() via check_and_wait_while_suspended()
  3281         slp->park(millis);
  3283         // were we externally suspended while we were waiting?
  3284         jt->check_and_wait_while_suspended();
  3287   } else {
  3288     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3289     jlong prevtime = javaTimeNanos();
  3291     for (;;) {
  3292       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3293       // the 1st iteration ...
  3294       jlong newtime = javaTimeNanos();
  3296       if (newtime - prevtime < 0) {
  3297         // time moving backwards, should only happen if no monotonic clock
  3298         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3299         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3300       } else {
  3301         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3304       if(millis <= 0) break ;
  3306       prevtime = newtime;
  3307       slp->park(millis);
  3309     return OS_OK ;
  3313 int os::naked_sleep() {
  3314   // %% make the sleep time an integer flag. for now use 1 millisec.
  3315   return os::sleep(Thread::current(), 1, false);
  3318 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3319 void os::infinite_sleep() {
  3320   while (true) {    // sleep forever ...
  3321     ::sleep(100);   // ... 100 seconds at a time
  3325 // Used to convert frequent JVM_Yield() to nops
  3326 bool os::dont_yield() {
  3327   return DontYieldALot;
  3330 void os::yield() {
  3331   sched_yield();
  3334 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3336 void os::yield_all(int attempts) {
  3337   // Yields to all threads, including threads with lower priorities
  3338   // Threads on Linux are all with same priority. The Solaris style
  3339   // os::yield_all() with nanosleep(1ms) is not necessary.
  3340   sched_yield();
  3343 // Called from the tight loops to possibly influence time-sharing heuristics
  3344 void os::loop_breaker(int attempts) {
  3345   os::yield_all(attempts);
  3348 ////////////////////////////////////////////////////////////////////////////////
  3349 // thread priority support
  3351 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3352 // only supports dynamic priority, static priority must be zero. For real-time
  3353 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3354 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3355 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3356 // of 5 runs - Sep 2005).
  3357 //
  3358 // The following code actually changes the niceness of kernel-thread/LWP. It
  3359 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3360 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3361 // threads. It has always been the case, but could change in the future. For
  3362 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3363 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3365 int os::java_to_os_priority[CriticalPriority + 1] = {
  3366   19,              // 0 Entry should never be used
  3368    4,              // 1 MinPriority
  3369    3,              // 2
  3370    2,              // 3
  3372    1,              // 4
  3373    0,              // 5 NormPriority
  3374   -1,              // 6
  3376   -2,              // 7
  3377   -3,              // 8
  3378   -4,              // 9 NearMaxPriority
  3380   -5,              // 10 MaxPriority
  3382   -5               // 11 CriticalPriority
  3383 };
  3385 static int prio_init() {
  3386   if (ThreadPriorityPolicy == 1) {
  3387     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3388     // if effective uid is not root. Perhaps, a more elegant way of doing
  3389     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3390     if (geteuid() != 0) {
  3391       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3392         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3394       ThreadPriorityPolicy = 0;
  3397   if (UseCriticalJavaThreadPriority) {
  3398     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  3400   return 0;
  3403 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3404   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3406   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3407   return (ret == 0) ? OS_OK : OS_ERR;
  3410 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3411   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3412     *priority_ptr = java_to_os_priority[NormPriority];
  3413     return OS_OK;
  3416   errno = 0;
  3417   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3418   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3421 // Hint to the underlying OS that a task switch would not be good.
  3422 // Void return because it's a hint and can fail.
  3423 void os::hint_no_preempt() {}
  3425 ////////////////////////////////////////////////////////////////////////////////
  3426 // suspend/resume support
  3428 //  the low-level signal-based suspend/resume support is a remnant from the
  3429 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3430 //  within hotspot. Now there is a single use-case for this:
  3431 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3432 //      that runs in the watcher thread.
  3433 //  The remaining code is greatly simplified from the more general suspension
  3434 //  code that used to be used.
  3435 //
  3436 //  The protocol is quite simple:
  3437 //  - suspend:
  3438 //      - sends a signal to the target thread
  3439 //      - polls the suspend state of the osthread using a yield loop
  3440 //      - target thread signal handler (SR_handler) sets suspend state
  3441 //        and blocks in sigsuspend until continued
  3442 //  - resume:
  3443 //      - sets target osthread state to continue
  3444 //      - sends signal to end the sigsuspend loop in the SR_handler
  3445 //
  3446 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3447 //
  3449 static void resume_clear_context(OSThread *osthread) {
  3450   osthread->set_ucontext(NULL);
  3451   osthread->set_siginfo(NULL);
  3453   // notify the suspend action is completed, we have now resumed
  3454   osthread->sr.clear_suspended();
  3457 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3458   osthread->set_ucontext(context);
  3459   osthread->set_siginfo(siginfo);
  3462 //
  3463 // Handler function invoked when a thread's execution is suspended or
  3464 // resumed. We have to be careful that only async-safe functions are
  3465 // called here (Note: most pthread functions are not async safe and
  3466 // should be avoided.)
  3467 //
  3468 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3469 // interface point of view, but sigwait() prevents the signal hander
  3470 // from being run. libpthread would get very confused by not having
  3471 // its signal handlers run and prevents sigwait()'s use with the
  3472 // mutex granting granting signal.
  3473 //
  3474 // Currently only ever called on the VMThread
  3475 //
  3476 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3477   // Save and restore errno to avoid confusing native code with EINTR
  3478   // after sigsuspend.
  3479   int old_errno = errno;
  3481   Thread* thread = Thread::current();
  3482   OSThread* osthread = thread->osthread();
  3483   assert(thread->is_VM_thread(), "Must be VMThread");
  3484   // read current suspend action
  3485   int action = osthread->sr.suspend_action();
  3486   if (action == SR_SUSPEND) {
  3487     suspend_save_context(osthread, siginfo, context);
  3489     // Notify the suspend action is about to be completed. do_suspend()
  3490     // waits until SR_SUSPENDED is set and then returns. We will wait
  3491     // here for a resume signal and that completes the suspend-other
  3492     // action. do_suspend/do_resume is always called as a pair from
  3493     // the same thread - so there are no races
  3495     // notify the caller
  3496     osthread->sr.set_suspended();
  3498     sigset_t suspend_set;  // signals for sigsuspend()
  3500     // get current set of blocked signals and unblock resume signal
  3501     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  3502     sigdelset(&suspend_set, SR_signum);
  3504     // wait here until we are resumed
  3505     do {
  3506       sigsuspend(&suspend_set);
  3507       // ignore all returns until we get a resume signal
  3508     } while (osthread->sr.suspend_action() != SR_CONTINUE);
  3510     resume_clear_context(osthread);
  3512   } else {
  3513     assert(action == SR_CONTINUE, "unexpected sr action");
  3514     // nothing special to do - just leave the handler
  3517   errno = old_errno;
  3521 static int SR_initialize() {
  3522   struct sigaction act;
  3523   char *s;
  3524   /* Get signal number to use for suspend/resume */
  3525   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  3526     int sig = ::strtol(s, 0, 10);
  3527     if (sig > 0 || sig < _NSIG) {
  3528         SR_signum = sig;
  3532   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  3533         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  3535   sigemptyset(&SR_sigset);
  3536   sigaddset(&SR_sigset, SR_signum);
  3538   /* Set up signal handler for suspend/resume */
  3539   act.sa_flags = SA_RESTART|SA_SIGINFO;
  3540   act.sa_handler = (void (*)(int)) SR_handler;
  3542   // SR_signum is blocked by default.
  3543   // 4528190 - We also need to block pthread restart signal (32 on all
  3544   // supported Linux platforms). Note that LinuxThreads need to block
  3545   // this signal for all threads to work properly. So we don't have
  3546   // to use hard-coded signal number when setting up the mask.
  3547   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  3549   if (sigaction(SR_signum, &act, 0) == -1) {
  3550     return -1;
  3553   // Save signal flag
  3554   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  3555   return 0;
  3558 static int SR_finalize() {
  3559   return 0;
  3563 // returns true on success and false on error - really an error is fatal
  3564 // but this seems the normal response to library errors
  3565 static bool do_suspend(OSThread* osthread) {
  3566   // mark as suspended and send signal
  3567   osthread->sr.set_suspend_action(SR_SUSPEND);
  3568   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3569   assert_status(status == 0, status, "pthread_kill");
  3571   // check status and wait until notified of suspension
  3572   if (status == 0) {
  3573     for (int i = 0; !osthread->sr.is_suspended(); i++) {
  3574       os::yield_all(i);
  3576     osthread->sr.set_suspend_action(SR_NONE);
  3577     return true;
  3579   else {
  3580     osthread->sr.set_suspend_action(SR_NONE);
  3581     return false;
  3585 static void do_resume(OSThread* osthread) {
  3586   assert(osthread->sr.is_suspended(), "thread should be suspended");
  3587   osthread->sr.set_suspend_action(SR_CONTINUE);
  3589   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3590   assert_status(status == 0, status, "pthread_kill");
  3591   // check status and wait unit notified of resumption
  3592   if (status == 0) {
  3593     for (int i = 0; osthread->sr.is_suspended(); i++) {
  3594       os::yield_all(i);
  3597   osthread->sr.set_suspend_action(SR_NONE);
  3600 ////////////////////////////////////////////////////////////////////////////////
  3601 // interrupt support
  3603 void os::interrupt(Thread* thread) {
  3604   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3605     "possibility of dangling Thread pointer");
  3607   OSThread* osthread = thread->osthread();
  3609   if (!osthread->interrupted()) {
  3610     osthread->set_interrupted(true);
  3611     // More than one thread can get here with the same value of osthread,
  3612     // resulting in multiple notifications.  We do, however, want the store
  3613     // to interrupted() to be visible to other threads before we execute unpark().
  3614     OrderAccess::fence();
  3615     ParkEvent * const slp = thread->_SleepEvent ;
  3616     if (slp != NULL) slp->unpark() ;
  3619   // For JSR166. Unpark even if interrupt status already was set
  3620   if (thread->is_Java_thread())
  3621     ((JavaThread*)thread)->parker()->unpark();
  3623   ParkEvent * ev = thread->_ParkEvent ;
  3624   if (ev != NULL) ev->unpark() ;
  3628 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3629   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3630     "possibility of dangling Thread pointer");
  3632   OSThread* osthread = thread->osthread();
  3634   bool interrupted = osthread->interrupted();
  3636   if (interrupted && clear_interrupted) {
  3637     osthread->set_interrupted(false);
  3638     // consider thread->_SleepEvent->reset() ... optional optimization
  3641   return interrupted;
  3644 ///////////////////////////////////////////////////////////////////////////////////
  3645 // signal handling (except suspend/resume)
  3647 // This routine may be used by user applications as a "hook" to catch signals.
  3648 // The user-defined signal handler must pass unrecognized signals to this
  3649 // routine, and if it returns true (non-zero), then the signal handler must
  3650 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3651 // routine will never retun false (zero), but instead will execute a VM panic
  3652 // routine kill the process.
  3653 //
  3654 // If this routine returns false, it is OK to call it again.  This allows
  3655 // the user-defined signal handler to perform checks either before or after
  3656 // the VM performs its own checks.  Naturally, the user code would be making
  3657 // a serious error if it tried to handle an exception (such as a null check
  3658 // or breakpoint) that the VM was generating for its own correct operation.
  3659 //
  3660 // This routine may recognize any of the following kinds of signals:
  3661 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3662 // It should be consulted by handlers for any of those signals.
  3663 //
  3664 // The caller of this routine must pass in the three arguments supplied
  3665 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3666 // field of the structure passed to sigaction().  This routine assumes that
  3667 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3668 //
  3669 // Note that the VM will print warnings if it detects conflicting signal
  3670 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3671 //
  3672 extern "C" JNIEXPORT int
  3673 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  3674                         void* ucontext, int abort_if_unrecognized);
  3676 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3677   assert(info != NULL && uc != NULL, "it must be old kernel");
  3678   JVM_handle_linux_signal(sig, info, uc, true);
  3682 // This boolean allows users to forward their own non-matching signals
  3683 // to JVM_handle_linux_signal, harmlessly.
  3684 bool os::Linux::signal_handlers_are_installed = false;
  3686 // For signal-chaining
  3687 struct sigaction os::Linux::sigact[MAXSIGNUM];
  3688 unsigned int os::Linux::sigs = 0;
  3689 bool os::Linux::libjsig_is_loaded = false;
  3690 typedef struct sigaction *(*get_signal_t)(int);
  3691 get_signal_t os::Linux::get_signal_action = NULL;
  3693 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  3694   struct sigaction *actp = NULL;
  3696   if (libjsig_is_loaded) {
  3697     // Retrieve the old signal handler from libjsig
  3698     actp = (*get_signal_action)(sig);
  3700   if (actp == NULL) {
  3701     // Retrieve the preinstalled signal handler from jvm
  3702     actp = get_preinstalled_handler(sig);
  3705   return actp;
  3708 static bool call_chained_handler(struct sigaction *actp, int sig,
  3709                                  siginfo_t *siginfo, void *context) {
  3710   // Call the old signal handler
  3711   if (actp->sa_handler == SIG_DFL) {
  3712     // It's more reasonable to let jvm treat it as an unexpected exception
  3713     // instead of taking the default action.
  3714     return false;
  3715   } else if (actp->sa_handler != SIG_IGN) {
  3716     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3717       // automaticlly block the signal
  3718       sigaddset(&(actp->sa_mask), sig);
  3721     sa_handler_t hand;
  3722     sa_sigaction_t sa;
  3723     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3724     // retrieve the chained handler
  3725     if (siginfo_flag_set) {
  3726       sa = actp->sa_sigaction;
  3727     } else {
  3728       hand = actp->sa_handler;
  3731     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  3732       actp->sa_handler = SIG_DFL;
  3735     // try to honor the signal mask
  3736     sigset_t oset;
  3737     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  3739     // call into the chained handler
  3740     if (siginfo_flag_set) {
  3741       (*sa)(sig, siginfo, context);
  3742     } else {
  3743       (*hand)(sig);
  3746     // restore the signal mask
  3747     pthread_sigmask(SIG_SETMASK, &oset, 0);
  3749   // Tell jvm's signal handler the signal is taken care of.
  3750   return true;
  3753 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  3754   bool chained = false;
  3755   // signal-chaining
  3756   if (UseSignalChaining) {
  3757     struct sigaction *actp = get_chained_signal_action(sig);
  3758     if (actp != NULL) {
  3759       chained = call_chained_handler(actp, sig, siginfo, context);
  3762   return chained;
  3765 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  3766   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  3767     return &sigact[sig];
  3769   return NULL;
  3772 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  3773   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3774   sigact[sig] = oldAct;
  3775   sigs |= (unsigned int)1 << sig;
  3778 // for diagnostic
  3779 int os::Linux::sigflags[MAXSIGNUM];
  3781 int os::Linux::get_our_sigflags(int sig) {
  3782   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3783   return sigflags[sig];
  3786 void os::Linux::set_our_sigflags(int sig, int flags) {
  3787   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3788   sigflags[sig] = flags;
  3791 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  3792   // Check for overwrite.
  3793   struct sigaction oldAct;
  3794   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3796   void* oldhand = oldAct.sa_sigaction
  3797                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3798                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3799   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3800       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3801       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3802     if (AllowUserSignalHandlers || !set_installed) {
  3803       // Do not overwrite; user takes responsibility to forward to us.
  3804       return;
  3805     } else if (UseSignalChaining) {
  3806       // save the old handler in jvm
  3807       save_preinstalled_handler(sig, oldAct);
  3808       // libjsig also interposes the sigaction() call below and saves the
  3809       // old sigaction on it own.
  3810     } else {
  3811       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  3812                     "%#lx for signal %d.", (long)oldhand, sig));
  3816   struct sigaction sigAct;
  3817   sigfillset(&(sigAct.sa_mask));
  3818   sigAct.sa_handler = SIG_DFL;
  3819   if (!set_installed) {
  3820     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3821   } else {
  3822     sigAct.sa_sigaction = signalHandler;
  3823     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3825   // Save flags, which are set by ours
  3826   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3827   sigflags[sig] = sigAct.sa_flags;
  3829   int ret = sigaction(sig, &sigAct, &oldAct);
  3830   assert(ret == 0, "check");
  3832   void* oldhand2  = oldAct.sa_sigaction
  3833                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3834                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3835   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3838 // install signal handlers for signals that HotSpot needs to
  3839 // handle in order to support Java-level exception handling.
  3841 void os::Linux::install_signal_handlers() {
  3842   if (!signal_handlers_are_installed) {
  3843     signal_handlers_are_installed = true;
  3845     // signal-chaining
  3846     typedef void (*signal_setting_t)();
  3847     signal_setting_t begin_signal_setting = NULL;
  3848     signal_setting_t end_signal_setting = NULL;
  3849     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3850                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3851     if (begin_signal_setting != NULL) {
  3852       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3853                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3854       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3855                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3856       libjsig_is_loaded = true;
  3857       assert(UseSignalChaining, "should enable signal-chaining");
  3859     if (libjsig_is_loaded) {
  3860       // Tell libjsig jvm is setting signal handlers
  3861       (*begin_signal_setting)();
  3864     set_signal_handler(SIGSEGV, true);
  3865     set_signal_handler(SIGPIPE, true);
  3866     set_signal_handler(SIGBUS, true);
  3867     set_signal_handler(SIGILL, true);
  3868     set_signal_handler(SIGFPE, true);
  3869     set_signal_handler(SIGXFSZ, true);
  3871     if (libjsig_is_loaded) {
  3872       // Tell libjsig jvm finishes setting signal handlers
  3873       (*end_signal_setting)();
  3876     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3877     // and if UserSignalHandler is installed all bets are off.
  3878     // Log that signal checking is off only if -verbose:jni is specified.
  3879     if (CheckJNICalls) {
  3880       if (libjsig_is_loaded) {
  3881         if (PrintJNIResolving) {
  3882           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3884         check_signals = false;
  3886       if (AllowUserSignalHandlers) {
  3887         if (PrintJNIResolving) {
  3888           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3890         check_signals = false;
  3896 // This is the fastest way to get thread cpu time on Linux.
  3897 // Returns cpu time (user+sys) for any thread, not only for current.
  3898 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  3899 // It might work on 2.6.10+ with a special kernel/glibc patch.
  3900 // For reference, please, see IEEE Std 1003.1-2004:
  3901 //   http://www.unix.org/single_unix_specification
  3903 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  3904   struct timespec tp;
  3905   int rc = os::Linux::clock_gettime(clockid, &tp);
  3906   assert(rc == 0, "clock_gettime is expected to return 0 code");
  3908   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  3911 /////
  3912 // glibc on Linux platform uses non-documented flag
  3913 // to indicate, that some special sort of signal
  3914 // trampoline is used.
  3915 // We will never set this flag, and we should
  3916 // ignore this flag in our diagnostic
  3917 #ifdef SIGNIFICANT_SIGNAL_MASK
  3918 #undef SIGNIFICANT_SIGNAL_MASK
  3919 #endif
  3920 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  3922 static const char* get_signal_handler_name(address handler,
  3923                                            char* buf, int buflen) {
  3924   int offset;
  3925   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  3926   if (found) {
  3927     // skip directory names
  3928     const char *p1, *p2;
  3929     p1 = buf;
  3930     size_t len = strlen(os::file_separator());
  3931     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  3932     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  3933   } else {
  3934     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  3936   return buf;
  3939 static void print_signal_handler(outputStream* st, int sig,
  3940                                  char* buf, size_t buflen) {
  3941   struct sigaction sa;
  3943   sigaction(sig, NULL, &sa);
  3945   // See comment for SIGNIFICANT_SIGNAL_MASK define
  3946   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3948   st->print("%s: ", os::exception_name(sig, buf, buflen));
  3950   address handler = (sa.sa_flags & SA_SIGINFO)
  3951     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  3952     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  3954   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  3955     st->print("SIG_DFL");
  3956   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  3957     st->print("SIG_IGN");
  3958   } else {
  3959     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  3962   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  3964   address rh = VMError::get_resetted_sighandler(sig);
  3965   // May be, handler was resetted by VMError?
  3966   if(rh != NULL) {
  3967     handler = rh;
  3968     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  3971   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  3973   // Check: is it our handler?
  3974   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  3975      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  3976     // It is our signal handler
  3977     // check for flags, reset system-used one!
  3978     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3979       st->print(
  3980                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  3981                 os::Linux::get_our_sigflags(sig));
  3984   st->cr();
  3988 #define DO_SIGNAL_CHECK(sig) \
  3989   if (!sigismember(&check_signal_done, sig)) \
  3990     os::Linux::check_signal_handler(sig)
  3992 // This method is a periodic task to check for misbehaving JNI applications
  3993 // under CheckJNI, we can add any periodic checks here
  3995 void os::run_periodic_checks() {
  3997   if (check_signals == false) return;
  3999   // SEGV and BUS if overridden could potentially prevent
  4000   // generation of hs*.log in the event of a crash, debugging
  4001   // such a case can be very challenging, so we absolutely
  4002   // check the following for a good measure:
  4003   DO_SIGNAL_CHECK(SIGSEGV);
  4004   DO_SIGNAL_CHECK(SIGILL);
  4005   DO_SIGNAL_CHECK(SIGFPE);
  4006   DO_SIGNAL_CHECK(SIGBUS);
  4007   DO_SIGNAL_CHECK(SIGPIPE);
  4008   DO_SIGNAL_CHECK(SIGXFSZ);
  4011   // ReduceSignalUsage allows the user to override these handlers
  4012   // see comments at the very top and jvm_solaris.h
  4013   if (!ReduceSignalUsage) {
  4014     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4015     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4016     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4017     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4020   DO_SIGNAL_CHECK(SR_signum);
  4021   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4024 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4026 static os_sigaction_t os_sigaction = NULL;
  4028 void os::Linux::check_signal_handler(int sig) {
  4029   char buf[O_BUFLEN];
  4030   address jvmHandler = NULL;
  4033   struct sigaction act;
  4034   if (os_sigaction == NULL) {
  4035     // only trust the default sigaction, in case it has been interposed
  4036     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4037     if (os_sigaction == NULL) return;
  4040   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4043   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4045   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4046     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4047     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4050   switch(sig) {
  4051   case SIGSEGV:
  4052   case SIGBUS:
  4053   case SIGFPE:
  4054   case SIGPIPE:
  4055   case SIGILL:
  4056   case SIGXFSZ:
  4057     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4058     break;
  4060   case SHUTDOWN1_SIGNAL:
  4061   case SHUTDOWN2_SIGNAL:
  4062   case SHUTDOWN3_SIGNAL:
  4063   case BREAK_SIGNAL:
  4064     jvmHandler = (address)user_handler();
  4065     break;
  4067   case INTERRUPT_SIGNAL:
  4068     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4069     break;
  4071   default:
  4072     if (sig == SR_signum) {
  4073       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4074     } else {
  4075       return;
  4077     break;
  4080   if (thisHandler != jvmHandler) {
  4081     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4082     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4083     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4084     // No need to check this sig any longer
  4085     sigaddset(&check_signal_done, sig);
  4086   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4087     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4088     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4089     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4090     // No need to check this sig any longer
  4091     sigaddset(&check_signal_done, sig);
  4094   // Dump all the signal
  4095   if (sigismember(&check_signal_done, sig)) {
  4096     print_signal_handlers(tty, buf, O_BUFLEN);
  4100 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4102 extern bool signal_name(int signo, char* buf, size_t len);
  4104 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4105   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4106     // signal
  4107     if (!signal_name(exception_code, buf, size)) {
  4108       jio_snprintf(buf, size, "SIG%d", exception_code);
  4110     return buf;
  4111   } else {
  4112     return NULL;
  4116 // this is called _before_ the most of global arguments have been parsed
  4117 void os::init(void) {
  4118   char dummy;   /* used to get a guess on initial stack address */
  4119 //  first_hrtime = gethrtime();
  4121   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4122   // is different than the pid of the java launcher thread.
  4123   // So, on Linux, the launcher thread pid is passed to the VM
  4124   // via the sun.java.launcher.pid property.
  4125   // Use this property instead of getpid() if it was correctly passed.
  4126   // See bug 6351349.
  4127   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4129   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4131   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4133   init_random(1234567);
  4135   ThreadCritical::initialize();
  4137   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4138   if (Linux::page_size() == -1) {
  4139     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4140                   strerror(errno)));
  4142   init_page_sizes((size_t) Linux::page_size());
  4144   Linux::initialize_system_info();
  4146   // main_thread points to the aboriginal thread
  4147   Linux::_main_thread = pthread_self();
  4149   Linux::clock_init();
  4150   initial_time_count = os::elapsed_counter();
  4151   pthread_mutex_init(&dl_mutex, NULL);
  4154 // To install functions for atexit system call
  4155 extern "C" {
  4156   static void perfMemory_exit_helper() {
  4157     perfMemory_exit();
  4161 // this is called _after_ the global arguments have been parsed
  4162 jint os::init_2(void)
  4164   Linux::fast_thread_clock_init();
  4166   // Allocate a single page and mark it as readable for safepoint polling
  4167   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4168   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4170   os::set_polling_page( polling_page );
  4172 #ifndef PRODUCT
  4173   if(Verbose && PrintMiscellaneous)
  4174     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4175 #endif
  4177   if (!UseMembar) {
  4178     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4179     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  4180     os::set_memory_serialize_page( mem_serialize_page );
  4182 #ifndef PRODUCT
  4183     if(Verbose && PrintMiscellaneous)
  4184       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4185 #endif
  4188   os::large_page_init();
  4190   // initialize suspend/resume support - must do this before signal_sets_init()
  4191   if (SR_initialize() != 0) {
  4192     perror("SR_initialize failed");
  4193     return JNI_ERR;
  4196   Linux::signal_sets_init();
  4197   Linux::install_signal_handlers();
  4199   // Check minimum allowable stack size for thread creation and to initialize
  4200   // the java system classes, including StackOverflowError - depends on page
  4201   // size.  Add a page for compiler2 recursion in main thread.
  4202   // Add in 2*BytesPerWord times page size to account for VM stack during
  4203   // class initialization depending on 32 or 64 bit VM.
  4204   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4205             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  4206                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
  4208   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4209   if (threadStackSizeInBytes != 0 &&
  4210       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4211         tty->print_cr("\nThe stack size specified is too small, "
  4212                       "Specify at least %dk",
  4213                       os::Linux::min_stack_allowed/ K);
  4214         return JNI_ERR;
  4217   // Make the stack size a multiple of the page size so that
  4218   // the yellow/red zones can be guarded.
  4219   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4220         vm_page_size()));
  4222   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4224   Linux::libpthread_init();
  4225   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4226      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4227           Linux::glibc_version(), Linux::libpthread_version(),
  4228           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4231   if (UseNUMA) {
  4232     if (!Linux::libnuma_init()) {
  4233       UseNUMA = false;
  4234     } else {
  4235       if ((Linux::numa_max_node() < 1)) {
  4236         // There's only one node(they start from 0), disable NUMA.
  4237         UseNUMA = false;
  4240     // With SHM large pages we cannot uncommit a page, so there's not way
  4241     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4242     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
  4243     // disable adaptive resizing.
  4244     if (UseNUMA && UseLargePages && UseSHM) {
  4245       if (!FLAG_IS_DEFAULT(UseNUMA)) {
  4246         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
  4247           UseLargePages = false;
  4248         } else {
  4249           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
  4250           UseAdaptiveSizePolicy = false;
  4251           UseAdaptiveNUMAChunkSizing = false;
  4253       } else {
  4254         UseNUMA = false;
  4257     if (!UseNUMA && ForceNUMA) {
  4258       UseNUMA = true;
  4262   if (MaxFDLimit) {
  4263     // set the number of file descriptors to max. print out error
  4264     // if getrlimit/setrlimit fails but continue regardless.
  4265     struct rlimit nbr_files;
  4266     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4267     if (status != 0) {
  4268       if (PrintMiscellaneous && (Verbose || WizardMode))
  4269         perror("os::init_2 getrlimit failed");
  4270     } else {
  4271       nbr_files.rlim_cur = nbr_files.rlim_max;
  4272       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4273       if (status != 0) {
  4274         if (PrintMiscellaneous && (Verbose || WizardMode))
  4275           perror("os::init_2 setrlimit failed");
  4280   // Initialize lock used to serialize thread creation (see os::create_thread)
  4281   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4283   // at-exit methods are called in the reverse order of their registration.
  4284   // atexit functions are called on return from main or as a result of a
  4285   // call to exit(3C). There can be only 32 of these functions registered
  4286   // and atexit() does not set errno.
  4288   if (PerfAllowAtExitRegistration) {
  4289     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4290     // atexit functions can be delayed until process exit time, which
  4291     // can be problematic for embedded VM situations. Embedded VMs should
  4292     // call DestroyJavaVM() to assure that VM resources are released.
  4294     // note: perfMemory_exit_helper atexit function may be removed in
  4295     // the future if the appropriate cleanup code can be added to the
  4296     // VM_Exit VMOperation's doit method.
  4297     if (atexit(perfMemory_exit_helper) != 0) {
  4298       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  4302   // initialize thread priority policy
  4303   prio_init();
  4305   return JNI_OK;
  4308 // this is called at the end of vm_initialization
  4309 void os::init_3(void)
  4311 #ifdef JAVASE_EMBEDDED
  4312   // Start the MemNotifyThread
  4313   if (LowMemoryProtection) {
  4314     MemNotifyThread::start();
  4316   return;
  4317 #endif
  4320 // Mark the polling page as unreadable
  4321 void os::make_polling_page_unreadable(void) {
  4322   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4323     fatal("Could not disable polling page");
  4324 };
  4326 // Mark the polling page as readable
  4327 void os::make_polling_page_readable(void) {
  4328   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4329     fatal("Could not enable polling page");
  4331 };
  4333 int os::active_processor_count() {
  4334   // Linux doesn't yet have a (official) notion of processor sets,
  4335   // so just return the number of online processors.
  4336   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4337   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4338   return online_cpus;
  4341 void os::set_native_thread_name(const char *name) {
  4342   // Not yet implemented.
  4343   return;
  4346 bool os::distribute_processes(uint length, uint* distribution) {
  4347   // Not yet implemented.
  4348   return false;
  4351 bool os::bind_to_processor(uint processor_id) {
  4352   // Not yet implemented.
  4353   return false;
  4356 ///
  4358 // Suspends the target using the signal mechanism and then grabs the PC before
  4359 // resuming the target. Used by the flat-profiler only
  4360 ExtendedPC os::get_thread_pc(Thread* thread) {
  4361   // Make sure that it is called by the watcher for the VMThread
  4362   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  4363   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4365   ExtendedPC epc;
  4367   OSThread* osthread = thread->osthread();
  4368   if (do_suspend(osthread)) {
  4369     if (osthread->ucontext() != NULL) {
  4370       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
  4371     } else {
  4372       // NULL context is unexpected, double-check this is the VMThread
  4373       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4375     do_resume(osthread);
  4377   // failure means pthread_kill failed for some reason - arguably this is
  4378   // a fatal problem, but such problems are ignored elsewhere
  4380   return epc;
  4383 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  4385    if (is_NPTL()) {
  4386       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  4387    } else {
  4388 #ifndef IA64
  4389       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  4390       // word back to default 64bit precision if condvar is signaled. Java
  4391       // wants 53bit precision.  Save and restore current value.
  4392       int fpu = get_fpu_control_word();
  4393 #endif // IA64
  4394       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  4395 #ifndef IA64
  4396       set_fpu_control_word(fpu);
  4397 #endif // IA64
  4398       return status;
  4402 ////////////////////////////////////////////////////////////////////////////////
  4403 // debug support
  4405 static address same_page(address x, address y) {
  4406   int page_bits = -os::vm_page_size();
  4407   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  4408     return x;
  4409   else if (x > y)
  4410     return (address)(intptr_t(y) | ~page_bits) + 1;
  4411   else
  4412     return (address)(intptr_t(y) & page_bits);
  4415 bool os::find(address addr, outputStream* st) {
  4416   Dl_info dlinfo;
  4417   memset(&dlinfo, 0, sizeof(dlinfo));
  4418   if (dladdr(addr, &dlinfo)) {
  4419     st->print(PTR_FORMAT ": ", addr);
  4420     if (dlinfo.dli_sname != NULL) {
  4421       st->print("%s+%#x", dlinfo.dli_sname,
  4422                  addr - (intptr_t)dlinfo.dli_saddr);
  4423     } else if (dlinfo.dli_fname) {
  4424       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  4425     } else {
  4426       st->print("<absolute address>");
  4428     if (dlinfo.dli_fname) {
  4429       st->print(" in %s", dlinfo.dli_fname);
  4431     if (dlinfo.dli_fbase) {
  4432       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  4434     st->cr();
  4436     if (Verbose) {
  4437       // decode some bytes around the PC
  4438       address begin = same_page(addr-40, addr);
  4439       address end   = same_page(addr+40, addr);
  4440       address       lowest = (address) dlinfo.dli_sname;
  4441       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  4442       if (begin < lowest)  begin = lowest;
  4443       Dl_info dlinfo2;
  4444       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  4445           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  4446         end = (address) dlinfo2.dli_saddr;
  4447       Disassembler::decode(begin, end, st);
  4449     return true;
  4451   return false;
  4454 ////////////////////////////////////////////////////////////////////////////////
  4455 // misc
  4457 // This does not do anything on Linux. This is basically a hook for being
  4458 // able to use structured exception handling (thread-local exception filters)
  4459 // on, e.g., Win32.
  4460 void
  4461 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  4462                          JavaCallArguments* args, Thread* thread) {
  4463   f(value, method, args, thread);
  4466 void os::print_statistics() {
  4469 int os::message_box(const char* title, const char* message) {
  4470   int i;
  4471   fdStream err(defaultStream::error_fd());
  4472   for (i = 0; i < 78; i++) err.print_raw("=");
  4473   err.cr();
  4474   err.print_raw_cr(title);
  4475   for (i = 0; i < 78; i++) err.print_raw("-");
  4476   err.cr();
  4477   err.print_raw_cr(message);
  4478   for (i = 0; i < 78; i++) err.print_raw("=");
  4479   err.cr();
  4481   char buf[16];
  4482   // Prevent process from exiting upon "read error" without consuming all CPU
  4483   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4485   return buf[0] == 'y' || buf[0] == 'Y';
  4488 int os::stat(const char *path, struct stat *sbuf) {
  4489   char pathbuf[MAX_PATH];
  4490   if (strlen(path) > MAX_PATH - 1) {
  4491     errno = ENAMETOOLONG;
  4492     return -1;
  4494   os::native_path(strcpy(pathbuf, path));
  4495   return ::stat(pathbuf, sbuf);
  4498 bool os::check_heap(bool force) {
  4499   return true;
  4502 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  4503   return ::vsnprintf(buf, count, format, args);
  4506 // Is a (classpath) directory empty?
  4507 bool os::dir_is_empty(const char* path) {
  4508   DIR *dir = NULL;
  4509   struct dirent *ptr;
  4511   dir = opendir(path);
  4512   if (dir == NULL) return true;
  4514   /* Scan the directory */
  4515   bool result = true;
  4516   char buf[sizeof(struct dirent) + MAX_PATH];
  4517   while (result && (ptr = ::readdir(dir)) != NULL) {
  4518     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  4519       result = false;
  4522   closedir(dir);
  4523   return result;
  4526 // This code originates from JDK's sysOpen and open64_w
  4527 // from src/solaris/hpi/src/system_md.c
  4529 #ifndef O_DELETE
  4530 #define O_DELETE 0x10000
  4531 #endif
  4533 // Open a file. Unlink the file immediately after open returns
  4534 // if the specified oflag has the O_DELETE flag set.
  4535 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  4537 int os::open(const char *path, int oflag, int mode) {
  4539   if (strlen(path) > MAX_PATH - 1) {
  4540     errno = ENAMETOOLONG;
  4541     return -1;
  4543   int fd;
  4544   int o_delete = (oflag & O_DELETE);
  4545   oflag = oflag & ~O_DELETE;
  4547   fd = ::open64(path, oflag, mode);
  4548   if (fd == -1) return -1;
  4550   //If the open succeeded, the file might still be a directory
  4552     struct stat64 buf64;
  4553     int ret = ::fstat64(fd, &buf64);
  4554     int st_mode = buf64.st_mode;
  4556     if (ret != -1) {
  4557       if ((st_mode & S_IFMT) == S_IFDIR) {
  4558         errno = EISDIR;
  4559         ::close(fd);
  4560         return -1;
  4562     } else {
  4563       ::close(fd);
  4564       return -1;
  4568     /*
  4569      * All file descriptors that are opened in the JVM and not
  4570      * specifically destined for a subprocess should have the
  4571      * close-on-exec flag set.  If we don't set it, then careless 3rd
  4572      * party native code might fork and exec without closing all
  4573      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  4574      * UNIXProcess.c), and this in turn might:
  4576      * - cause end-of-file to fail to be detected on some file
  4577      *   descriptors, resulting in mysterious hangs, or
  4579      * - might cause an fopen in the subprocess to fail on a system
  4580      *   suffering from bug 1085341.
  4582      * (Yes, the default setting of the close-on-exec flag is a Unix
  4583      * design flaw)
  4585      * See:
  4586      * 1085341: 32-bit stdio routines should support file descriptors >255
  4587      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  4588      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  4589      */
  4590 #ifdef FD_CLOEXEC
  4592         int flags = ::fcntl(fd, F_GETFD);
  4593         if (flags != -1)
  4594             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  4596 #endif
  4598   if (o_delete != 0) {
  4599     ::unlink(path);
  4601   return fd;
  4605 // create binary file, rewriting existing file if required
  4606 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4607   int oflags = O_WRONLY | O_CREAT;
  4608   if (!rewrite_existing) {
  4609     oflags |= O_EXCL;
  4611   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  4614 // return current position of file pointer
  4615 jlong os::current_file_offset(int fd) {
  4616   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  4619 // move file pointer to the specified offset
  4620 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4621   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  4624 // This code originates from JDK's sysAvailable
  4625 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  4627 int os::available(int fd, jlong *bytes) {
  4628   jlong cur, end;
  4629   int mode;
  4630   struct stat64 buf64;
  4632   if (::fstat64(fd, &buf64) >= 0) {
  4633     mode = buf64.st_mode;
  4634     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  4635       /*
  4636       * XXX: is the following call interruptible? If so, this might
  4637       * need to go through the INTERRUPT_IO() wrapper as for other
  4638       * blocking, interruptible calls in this file.
  4639       */
  4640       int n;
  4641       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  4642         *bytes = n;
  4643         return 1;
  4647   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  4648     return 0;
  4649   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  4650     return 0;
  4651   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  4652     return 0;
  4654   *bytes = end - cur;
  4655   return 1;
  4658 int os::socket_available(int fd, jint *pbytes) {
  4659   // Linux doc says EINTR not returned, unlike Solaris
  4660   int ret = ::ioctl(fd, FIONREAD, pbytes);
  4662   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  4663   // is expected to return 0 on failure and 1 on success to the jdk.
  4664   return (ret < 0) ? 0 : 1;
  4667 // Map a block of memory.
  4668 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  4669                      char *addr, size_t bytes, bool read_only,
  4670                      bool allow_exec) {
  4671   int prot;
  4672   int flags = MAP_PRIVATE;
  4674   if (read_only) {
  4675     prot = PROT_READ;
  4676   } else {
  4677     prot = PROT_READ | PROT_WRITE;
  4680   if (allow_exec) {
  4681     prot |= PROT_EXEC;
  4684   if (addr != NULL) {
  4685     flags |= MAP_FIXED;
  4688   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  4689                                      fd, file_offset);
  4690   if (mapped_address == MAP_FAILED) {
  4691     return NULL;
  4693   return mapped_address;
  4697 // Remap a block of memory.
  4698 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  4699                        char *addr, size_t bytes, bool read_only,
  4700                        bool allow_exec) {
  4701   // same as map_memory() on this OS
  4702   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4703                         allow_exec);
  4707 // Unmap a block of memory.
  4708 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  4709   return munmap(addr, bytes) == 0;
  4712 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  4714 static clockid_t thread_cpu_clockid(Thread* thread) {
  4715   pthread_t tid = thread->osthread()->pthread_id();
  4716   clockid_t clockid;
  4718   // Get thread clockid
  4719   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  4720   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  4721   return clockid;
  4724 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4725 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4726 // of a thread.
  4727 //
  4728 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4729 // the fast estimate available on the platform.
  4731 jlong os::current_thread_cpu_time() {
  4732   if (os::Linux::supports_fast_thread_cpu_time()) {
  4733     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4734   } else {
  4735     // return user + sys since the cost is the same
  4736     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  4740 jlong os::thread_cpu_time(Thread* thread) {
  4741   // consistent with what current_thread_cpu_time() returns
  4742   if (os::Linux::supports_fast_thread_cpu_time()) {
  4743     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4744   } else {
  4745     return slow_thread_cpu_time(thread, true /* user + sys */);
  4749 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4750   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4751     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4752   } else {
  4753     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4757 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4758   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4759     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4760   } else {
  4761     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  4765 //
  4766 //  -1 on error.
  4767 //
  4769 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4770   static bool proc_pid_cpu_avail = true;
  4771   static bool proc_task_unchecked = true;
  4772   static const char *proc_stat_path = "/proc/%d/stat";
  4773   pid_t  tid = thread->osthread()->thread_id();
  4774   int i;
  4775   char *s;
  4776   char stat[2048];
  4777   int statlen;
  4778   char proc_name[64];
  4779   int count;
  4780   long sys_time, user_time;
  4781   char string[64];
  4782   char cdummy;
  4783   int idummy;
  4784   long ldummy;
  4785   FILE *fp;
  4787   // We first try accessing /proc/<pid>/cpu since this is faster to
  4788   // process.  If this file is not present (linux kernels 2.5 and above)
  4789   // then we open /proc/<pid>/stat.
  4790   if ( proc_pid_cpu_avail ) {
  4791     sprintf(proc_name, "/proc/%d/cpu", tid);
  4792     fp =  fopen(proc_name, "r");
  4793     if ( fp != NULL ) {
  4794       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
  4795       fclose(fp);
  4796       if ( count != 3 ) return -1;
  4798       if (user_sys_cpu_time) {
  4799         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4800       } else {
  4801         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4804     else proc_pid_cpu_avail = false;
  4807   // The /proc/<tid>/stat aggregates per-process usage on
  4808   // new Linux kernels 2.6+ where NPTL is supported.
  4809   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  4810   // See bug 6328462.
  4811   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
  4812   // and possibly in some other cases, so we check its availability.
  4813   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  4814     // This is executed only once
  4815     proc_task_unchecked = false;
  4816     fp = fopen("/proc/self/task", "r");
  4817     if (fp != NULL) {
  4818       proc_stat_path = "/proc/self/task/%d/stat";
  4819       fclose(fp);
  4823   sprintf(proc_name, proc_stat_path, tid);
  4824   fp = fopen(proc_name, "r");
  4825   if ( fp == NULL ) return -1;
  4826   statlen = fread(stat, 1, 2047, fp);
  4827   stat[statlen] = '\0';
  4828   fclose(fp);
  4830   // Skip pid and the command string. Note that we could be dealing with
  4831   // weird command names, e.g. user could decide to rename java launcher
  4832   // to "java 1.4.2 :)", then the stat file would look like
  4833   //                1234 (java 1.4.2 :)) R ... ...
  4834   // We don't really need to know the command string, just find the last
  4835   // occurrence of ")" and then start parsing from there. See bug 4726580.
  4836   s = strrchr(stat, ')');
  4837   i = 0;
  4838   if (s == NULL ) return -1;
  4840   // Skip blank chars
  4841   do s++; while (isspace(*s));
  4843   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  4844                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  4845                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  4846                  &user_time, &sys_time);
  4847   if ( count != 13 ) return -1;
  4848   if (user_sys_cpu_time) {
  4849     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4850   } else {
  4851     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4855 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4856   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4857   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4858   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4859   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4862 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4863   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4864   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4865   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4866   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4869 bool os::is_thread_cpu_time_supported() {
  4870   return true;
  4873 // System loadavg support.  Returns -1 if load average cannot be obtained.
  4874 // Linux doesn't yet have a (official) notion of processor sets,
  4875 // so just return the system wide load average.
  4876 int os::loadavg(double loadavg[], int nelem) {
  4877   return ::getloadavg(loadavg, nelem);
  4880 void os::pause() {
  4881   char filename[MAX_PATH];
  4882   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4883     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4884   } else {
  4885     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4888   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4889   if (fd != -1) {
  4890     struct stat buf;
  4891     ::close(fd);
  4892     while (::stat(filename, &buf) == 0) {
  4893       (void)::poll(NULL, 0, 100);
  4895   } else {
  4896     jio_fprintf(stderr,
  4897       "Could not open pause file '%s', continuing immediately.\n", filename);
  4902 // Refer to the comments in os_solaris.cpp park-unpark.
  4903 //
  4904 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  4905 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4906 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4907 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4908 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4909 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4910 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4911 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4912 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4913 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4914 // of libpthread avoids the problem, but isn't practical.
  4915 //
  4916 // Possible remedies:
  4917 //
  4918 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4919 //      This is palliative and probabilistic, however.  If the thread is preempted
  4920 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  4921 //      than the minimum period may have passed, and the abstime may be stale (in the
  4922 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  4923 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  4924 //
  4925 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  4926 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  4927 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  4928 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  4929 //      thread.
  4930 //
  4931 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  4932 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  4933 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  4934 //      This also works well.  In fact it avoids kernel-level scalability impediments
  4935 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  4936 //      timers in a graceful fashion.
  4937 //
  4938 // 4.   When the abstime value is in the past it appears that control returns
  4939 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  4940 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  4941 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  4942 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  4943 //      It may be possible to avoid reinitialization by checking the return
  4944 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  4945 //      condvar we must establish the invariant that cond_signal() is only called
  4946 //      within critical sections protected by the adjunct mutex.  This prevents
  4947 //      cond_signal() from "seeing" a condvar that's in the midst of being
  4948 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  4949 //      desirable signal-after-unlock optimization that avoids futile context switching.
  4950 //
  4951 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  4952 //      structure when a condvar is used or initialized.  cond_destroy()  would
  4953 //      release the helper structure.  Our reinitialize-after-timedwait fix
  4954 //      put excessive stress on malloc/free and locks protecting the c-heap.
  4955 //
  4956 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  4957 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  4958 // and only enabling the work-around for vulnerable environments.
  4960 // utility to compute the abstime argument to timedwait:
  4961 // millis is the relative timeout time
  4962 // abstime will be the absolute timeout time
  4963 // TODO: replace compute_abstime() with unpackTime()
  4965 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  4966   if (millis < 0)  millis = 0;
  4967   struct timeval now;
  4968   int status = gettimeofday(&now, NULL);
  4969   assert(status == 0, "gettimeofday");
  4970   jlong seconds = millis / 1000;
  4971   millis %= 1000;
  4972   if (seconds > 50000000) { // see man cond_timedwait(3T)
  4973     seconds = 50000000;
  4975   abstime->tv_sec = now.tv_sec  + seconds;
  4976   long       usec = now.tv_usec + millis * 1000;
  4977   if (usec >= 1000000) {
  4978     abstime->tv_sec += 1;
  4979     usec -= 1000000;
  4981   abstime->tv_nsec = usec * 1000;
  4982   return abstime;
  4986 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  4987 // Conceptually TryPark() should be equivalent to park(0).
  4989 int os::PlatformEvent::TryPark() {
  4990   for (;;) {
  4991     const int v = _Event ;
  4992     guarantee ((v == 0) || (v == 1), "invariant") ;
  4993     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  4997 void os::PlatformEvent::park() {       // AKA "down()"
  4998   // Invariant: Only the thread associated with the Event/PlatformEvent
  4999   // may call park().
  5000   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5001   int v ;
  5002   for (;;) {
  5003       v = _Event ;
  5004       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5006   guarantee (v >= 0, "invariant") ;
  5007   if (v == 0) {
  5008      // Do this the hard way by blocking ...
  5009      int status = pthread_mutex_lock(_mutex);
  5010      assert_status(status == 0, status, "mutex_lock");
  5011      guarantee (_nParked == 0, "invariant") ;
  5012      ++ _nParked ;
  5013      while (_Event < 0) {
  5014         status = pthread_cond_wait(_cond, _mutex);
  5015         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5016         // Treat this the same as if the wait was interrupted
  5017         if (status == ETIME) { status = EINTR; }
  5018         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5020      -- _nParked ;
  5022     // In theory we could move the ST of 0 into _Event past the unlock(),
  5023     // but then we'd need a MEMBAR after the ST.
  5024     _Event = 0 ;
  5025      status = pthread_mutex_unlock(_mutex);
  5026      assert_status(status == 0, status, "mutex_unlock");
  5028   guarantee (_Event >= 0, "invariant") ;
  5031 int os::PlatformEvent::park(jlong millis) {
  5032   guarantee (_nParked == 0, "invariant") ;
  5034   int v ;
  5035   for (;;) {
  5036       v = _Event ;
  5037       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5039   guarantee (v >= 0, "invariant") ;
  5040   if (v != 0) return OS_OK ;
  5042   // We do this the hard way, by blocking the thread.
  5043   // Consider enforcing a minimum timeout value.
  5044   struct timespec abst;
  5045   compute_abstime(&abst, millis);
  5047   int ret = OS_TIMEOUT;
  5048   int status = pthread_mutex_lock(_mutex);
  5049   assert_status(status == 0, status, "mutex_lock");
  5050   guarantee (_nParked == 0, "invariant") ;
  5051   ++_nParked ;
  5053   // Object.wait(timo) will return because of
  5054   // (a) notification
  5055   // (b) timeout
  5056   // (c) thread.interrupt
  5057   //
  5058   // Thread.interrupt and object.notify{All} both call Event::set.
  5059   // That is, we treat thread.interrupt as a special case of notification.
  5060   // The underlying Solaris implementation, cond_timedwait, admits
  5061   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5062   // JVM from making those visible to Java code.  As such, we must
  5063   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5064   //
  5065   // TODO: properly differentiate simultaneous notify+interrupt.
  5066   // In that case, we should propagate the notify to another waiter.
  5068   while (_Event < 0) {
  5069     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5070     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5071       pthread_cond_destroy (_cond);
  5072       pthread_cond_init (_cond, NULL) ;
  5074     assert_status(status == 0 || status == EINTR ||
  5075                   status == ETIME || status == ETIMEDOUT,
  5076                   status, "cond_timedwait");
  5077     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5078     if (status == ETIME || status == ETIMEDOUT) break ;
  5079     // We consume and ignore EINTR and spurious wakeups.
  5081   --_nParked ;
  5082   if (_Event >= 0) {
  5083      ret = OS_OK;
  5085   _Event = 0 ;
  5086   status = pthread_mutex_unlock(_mutex);
  5087   assert_status(status == 0, status, "mutex_unlock");
  5088   assert (_nParked == 0, "invariant") ;
  5089   return ret;
  5092 void os::PlatformEvent::unpark() {
  5093   int v, AnyWaiters ;
  5094   for (;;) {
  5095       v = _Event ;
  5096       if (v > 0) {
  5097          // The LD of _Event could have reordered or be satisfied
  5098          // by a read-aside from this processor's write buffer.
  5099          // To avoid problems execute a barrier and then
  5100          // ratify the value.
  5101          OrderAccess::fence() ;
  5102          if (_Event == v) return ;
  5103          continue ;
  5105       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  5107   if (v < 0) {
  5108      // Wait for the thread associated with the event to vacate
  5109      int status = pthread_mutex_lock(_mutex);
  5110      assert_status(status == 0, status, "mutex_lock");
  5111      AnyWaiters = _nParked ;
  5112      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  5113      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5114         AnyWaiters = 0 ;
  5115         pthread_cond_signal (_cond);
  5117      status = pthread_mutex_unlock(_mutex);
  5118      assert_status(status == 0, status, "mutex_unlock");
  5119      if (AnyWaiters != 0) {
  5120         status = pthread_cond_signal(_cond);
  5121         assert_status(status == 0, status, "cond_signal");
  5125   // Note that we signal() _after dropping the lock for "immortal" Events.
  5126   // This is safe and avoids a common class of  futile wakeups.  In rare
  5127   // circumstances this can cause a thread to return prematurely from
  5128   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5129   // simply re-test the condition and re-park itself.
  5133 // JSR166
  5134 // -------------------------------------------------------
  5136 /*
  5137  * The solaris and linux implementations of park/unpark are fairly
  5138  * conservative for now, but can be improved. They currently use a
  5139  * mutex/condvar pair, plus a a count.
  5140  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5141  * sets count to 1 and signals condvar.  Only one thread ever waits
  5142  * on the condvar. Contention seen when trying to park implies that someone
  5143  * is unparking you, so don't wait. And spurious returns are fine, so there
  5144  * is no need to track notifications.
  5145  */
  5147 #define MAX_SECS 100000000
  5148 /*
  5149  * This code is common to linux and solaris and will be moved to a
  5150  * common place in dolphin.
  5152  * The passed in time value is either a relative time in nanoseconds
  5153  * or an absolute time in milliseconds. Either way it has to be unpacked
  5154  * into suitable seconds and nanoseconds components and stored in the
  5155  * given timespec structure.
  5156  * Given time is a 64-bit value and the time_t used in the timespec is only
  5157  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5158  * overflow if times way in the future are given. Further on Solaris versions
  5159  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5160  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5161  * As it will be 28 years before "now + 100000000" will overflow we can
  5162  * ignore overflow and just impose a hard-limit on seconds using the value
  5163  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5164  * years from "now".
  5165  */
  5167 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5168   assert (time > 0, "convertTime");
  5170   struct timeval now;
  5171   int status = gettimeofday(&now, NULL);
  5172   assert(status == 0, "gettimeofday");
  5174   time_t max_secs = now.tv_sec + MAX_SECS;
  5176   if (isAbsolute) {
  5177     jlong secs = time / 1000;
  5178     if (secs > max_secs) {
  5179       absTime->tv_sec = max_secs;
  5181     else {
  5182       absTime->tv_sec = secs;
  5184     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5186   else {
  5187     jlong secs = time / NANOSECS_PER_SEC;
  5188     if (secs >= MAX_SECS) {
  5189       absTime->tv_sec = max_secs;
  5190       absTime->tv_nsec = 0;
  5192     else {
  5193       absTime->tv_sec = now.tv_sec + secs;
  5194       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5195       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5196         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5197         ++absTime->tv_sec; // note: this must be <= max_secs
  5201   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5202   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5203   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5204   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5207 void Parker::park(bool isAbsolute, jlong time) {
  5208   // Optional fast-path check:
  5209   // Return immediately if a permit is available.
  5210   if (_counter > 0) {
  5211       _counter = 0 ;
  5212       OrderAccess::fence();
  5213       return ;
  5216   Thread* thread = Thread::current();
  5217   assert(thread->is_Java_thread(), "Must be JavaThread");
  5218   JavaThread *jt = (JavaThread *)thread;
  5220   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5221   // Check interrupt before trying to wait
  5222   if (Thread::is_interrupted(thread, false)) {
  5223     return;
  5226   // Next, demultiplex/decode time arguments
  5227   timespec absTime;
  5228   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5229     return;
  5231   if (time > 0) {
  5232     unpackTime(&absTime, isAbsolute, time);
  5236   // Enter safepoint region
  5237   // Beware of deadlocks such as 6317397.
  5238   // The per-thread Parker:: mutex is a classic leaf-lock.
  5239   // In particular a thread must never block on the Threads_lock while
  5240   // holding the Parker:: mutex.  If safepoints are pending both the
  5241   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5242   ThreadBlockInVM tbivm(jt);
  5244   // Don't wait if cannot get lock since interference arises from
  5245   // unblocking.  Also. check interrupt before trying wait
  5246   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5247     return;
  5250   int status ;
  5251   if (_counter > 0)  { // no wait needed
  5252     _counter = 0;
  5253     status = pthread_mutex_unlock(_mutex);
  5254     assert (status == 0, "invariant") ;
  5255     OrderAccess::fence();
  5256     return;
  5259 #ifdef ASSERT
  5260   // Don't catch signals while blocked; let the running threads have the signals.
  5261   // (This allows a debugger to break into the running thread.)
  5262   sigset_t oldsigs;
  5263   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5264   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5265 #endif
  5267   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5268   jt->set_suspend_equivalent();
  5269   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5271   if (time == 0) {
  5272     status = pthread_cond_wait (_cond, _mutex) ;
  5273   } else {
  5274     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  5275     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5276       pthread_cond_destroy (_cond) ;
  5277       pthread_cond_init    (_cond, NULL);
  5280   assert_status(status == 0 || status == EINTR ||
  5281                 status == ETIME || status == ETIMEDOUT,
  5282                 status, "cond_timedwait");
  5284 #ifdef ASSERT
  5285   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5286 #endif
  5288   _counter = 0 ;
  5289   status = pthread_mutex_unlock(_mutex) ;
  5290   assert_status(status == 0, status, "invariant") ;
  5291   // If externally suspended while waiting, re-suspend
  5292   if (jt->handle_special_suspend_equivalent_condition()) {
  5293     jt->java_suspend_self();
  5296   OrderAccess::fence();
  5299 void Parker::unpark() {
  5300   int s, status ;
  5301   status = pthread_mutex_lock(_mutex);
  5302   assert (status == 0, "invariant") ;
  5303   s = _counter;
  5304   _counter = 1;
  5305   if (s < 1) {
  5306      if (WorkAroundNPTLTimedWaitHang) {
  5307         status = pthread_cond_signal (_cond) ;
  5308         assert (status == 0, "invariant") ;
  5309         status = pthread_mutex_unlock(_mutex);
  5310         assert (status == 0, "invariant") ;
  5311      } else {
  5312         status = pthread_mutex_unlock(_mutex);
  5313         assert (status == 0, "invariant") ;
  5314         status = pthread_cond_signal (_cond) ;
  5315         assert (status == 0, "invariant") ;
  5317   } else {
  5318     pthread_mutex_unlock(_mutex);
  5319     assert (status == 0, "invariant") ;
  5324 extern char** environ;
  5326 #ifndef __NR_fork
  5327 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  5328 #endif
  5330 #ifndef __NR_execve
  5331 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  5332 #endif
  5334 // Run the specified command in a separate process. Return its exit value,
  5335 // or -1 on failure (e.g. can't fork a new process).
  5336 // Unlike system(), this function can be called from signal handler. It
  5337 // doesn't block SIGINT et al.
  5338 int os::fork_and_exec(char* cmd) {
  5339   const char * argv[4] = {"sh", "-c", cmd, NULL};
  5341   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  5342   // pthread_atfork handlers and reset pthread library. All we need is a
  5343   // separate process to execve. Make a direct syscall to fork process.
  5344   // On IA64 there's no fork syscall, we have to use fork() and hope for
  5345   // the best...
  5346   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  5347               IA64_ONLY(fork();)
  5349   if (pid < 0) {
  5350     // fork failed
  5351     return -1;
  5353   } else if (pid == 0) {
  5354     // child process
  5356     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  5357     // first to kill every thread on the thread list. Because this list is
  5358     // not reset by fork() (see notes above), execve() will instead kill
  5359     // every thread in the parent process. We know this is the only thread
  5360     // in the new process, so make a system call directly.
  5361     // IA64 should use normal execve() from glibc to match the glibc fork()
  5362     // above.
  5363     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  5364     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  5366     // execve failed
  5367     _exit(-1);
  5369   } else  {
  5370     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  5371     // care about the actual exit code, for now.
  5373     int status;
  5375     // Wait for the child process to exit.  This returns immediately if
  5376     // the child has already exited. */
  5377     while (waitpid(pid, &status, 0) < 0) {
  5378         switch (errno) {
  5379         case ECHILD: return 0;
  5380         case EINTR: break;
  5381         default: return -1;
  5385     if (WIFEXITED(status)) {
  5386        // The child exited normally; get its exit code.
  5387        return WEXITSTATUS(status);
  5388     } else if (WIFSIGNALED(status)) {
  5389        // The child exited because of a signal
  5390        // The best value to return is 0x80 + signal number,
  5391        // because that is what all Unix shells do, and because
  5392        // it allows callers to distinguish between process exit and
  5393        // process death by signal.
  5394        return 0x80 + WTERMSIG(status);
  5395     } else {
  5396        // Unknown exit code; pass it through
  5397        return status;
  5402 // is_headless_jre()
  5403 //
  5404 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  5405 // in order to report if we are running in a headless jre
  5406 //
  5407 // Since JDK8 xawt/libmawt.so was moved into the same directory
  5408 // as libawt.so, and renamed libawt_xawt.so
  5409 //
  5410 bool os::is_headless_jre() {
  5411     struct stat statbuf;
  5412     char buf[MAXPATHLEN];
  5413     char libmawtpath[MAXPATHLEN];
  5414     const char *xawtstr  = "/xawt/libmawt.so";
  5415     const char *new_xawtstr = "/libawt_xawt.so";
  5416     char *p;
  5418     // Get path to libjvm.so
  5419     os::jvm_path(buf, sizeof(buf));
  5421     // Get rid of libjvm.so
  5422     p = strrchr(buf, '/');
  5423     if (p == NULL) return false;
  5424     else *p = '\0';
  5426     // Get rid of client or server
  5427     p = strrchr(buf, '/');
  5428     if (p == NULL) return false;
  5429     else *p = '\0';
  5431     // check xawt/libmawt.so
  5432     strcpy(libmawtpath, buf);
  5433     strcat(libmawtpath, xawtstr);
  5434     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5436     // check libawt_xawt.so
  5437     strcpy(libmawtpath, buf);
  5438     strcat(libmawtpath, new_xawtstr);
  5439     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5441     return true;
  5444 // Get the default path to the core file
  5445 // Returns the length of the string
  5446 int os::get_core_path(char* buffer, size_t bufferSize) {
  5447   const char* p = get_current_directory(buffer, bufferSize);
  5449   if (p == NULL) {
  5450     assert(p != NULL, "failed to get current directory");
  5451     return 0;
  5454   return strlen(buffer);
  5457 #ifdef JAVASE_EMBEDDED
  5458 //
  5459 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
  5460 //
  5461 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
  5463 // ctor
  5464 //
  5465 MemNotifyThread::MemNotifyThread(int fd): Thread() {
  5466   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
  5467   _fd = fd;
  5469   if (os::create_thread(this, os::os_thread)) {
  5470     _memnotify_thread = this;
  5471     os::set_priority(this, NearMaxPriority);
  5472     os::start_thread(this);
  5476 // Where all the work gets done
  5477 //
  5478 void MemNotifyThread::run() {
  5479   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
  5481   // Set up the select arguments
  5482   fd_set rfds;
  5483   if (_fd != -1) {
  5484     FD_ZERO(&rfds);
  5485     FD_SET(_fd, &rfds);
  5488   // Now wait for the mem_notify device to wake up
  5489   while (1) {
  5490     // Wait for the mem_notify device to signal us..
  5491     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
  5492     if (rc == -1) {
  5493       perror("select!\n");
  5494       break;
  5495     } else if (rc) {
  5496       //ssize_t free_before = os::available_memory();
  5497       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
  5499       // The kernel is telling us there is not much memory left...
  5500       // try to do something about that
  5502       // If we are not already in a GC, try one.
  5503       if (!Universe::heap()->is_gc_active()) {
  5504         Universe::heap()->collect(GCCause::_allocation_failure);
  5506         //ssize_t free_after = os::available_memory();
  5507         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
  5508         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
  5510       // We might want to do something like the following if we find the GC's are not helping...
  5511       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
  5516 //
  5517 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
  5518 //
  5519 void MemNotifyThread::start() {
  5520   int    fd;
  5521   fd = open ("/dev/mem_notify", O_RDONLY, 0);
  5522   if (fd < 0) {
  5523       return;
  5526   if (memnotify_thread() == NULL) {
  5527     new MemNotifyThread(fd);
  5530 #endif // JAVASE_EMBEDDED

mercurial