src/cpu/x86/vm/assembler_x86.cpp

Mon, 24 Mar 2014 23:13:46 -0700

author
iveresov
date
Mon, 24 Mar 2014 23:13:46 -0700
changeset 6433
bf20bec37f24
parent 6378
8a8ff6b577ed
child 6435
eb6b3ac64f0e
permissions
-rw-r--r--

8038222: Assembler::bsrl fails on assert when -UseCountLeadingZerosInstruction is used on CPU with LZCNT support
Summary: Remove the overly strict assert
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "prims/methodHandles.hpp"
    33 #include "runtime/biasedLocking.hpp"
    34 #include "runtime/interfaceSupport.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/os.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #include "utilities/macros.hpp"
    40 #if INCLUDE_ALL_GCS
    41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    43 #include "gc_implementation/g1/heapRegion.hpp"
    44 #endif // INCLUDE_ALL_GCS
    46 #ifdef PRODUCT
    47 #define BLOCK_COMMENT(str) /* nothing */
    48 #define STOP(error) stop(error)
    49 #else
    50 #define BLOCK_COMMENT(str) block_comment(str)
    51 #define STOP(error) block_comment(error); stop(error)
    52 #endif
    54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    55 // Implementation of AddressLiteral
    57 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    58   _is_lval = false;
    59   _target = target;
    60   switch (rtype) {
    61   case relocInfo::oop_type:
    62   case relocInfo::metadata_type:
    63     // Oops are a special case. Normally they would be their own section
    64     // but in cases like icBuffer they are literals in the code stream that
    65     // we don't have a section for. We use none so that we get a literal address
    66     // which is always patchable.
    67     break;
    68   case relocInfo::external_word_type:
    69     _rspec = external_word_Relocation::spec(target);
    70     break;
    71   case relocInfo::internal_word_type:
    72     _rspec = internal_word_Relocation::spec(target);
    73     break;
    74   case relocInfo::opt_virtual_call_type:
    75     _rspec = opt_virtual_call_Relocation::spec();
    76     break;
    77   case relocInfo::static_call_type:
    78     _rspec = static_call_Relocation::spec();
    79     break;
    80   case relocInfo::runtime_call_type:
    81     _rspec = runtime_call_Relocation::spec();
    82     break;
    83   case relocInfo::poll_type:
    84   case relocInfo::poll_return_type:
    85     _rspec = Relocation::spec_simple(rtype);
    86     break;
    87   case relocInfo::none:
    88     break;
    89   default:
    90     ShouldNotReachHere();
    91     break;
    92   }
    93 }
    95 // Implementation of Address
    97 #ifdef _LP64
    99 Address Address::make_array(ArrayAddress adr) {
   100   // Not implementable on 64bit machines
   101   // Should have been handled higher up the call chain.
   102   ShouldNotReachHere();
   103   return Address();
   104 }
   106 // exceedingly dangerous constructor
   107 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
   108   _base  = noreg;
   109   _index = noreg;
   110   _scale = no_scale;
   111   _disp  = disp;
   112   switch (rtype) {
   113     case relocInfo::external_word_type:
   114       _rspec = external_word_Relocation::spec(loc);
   115       break;
   116     case relocInfo::internal_word_type:
   117       _rspec = internal_word_Relocation::spec(loc);
   118       break;
   119     case relocInfo::runtime_call_type:
   120       // HMM
   121       _rspec = runtime_call_Relocation::spec();
   122       break;
   123     case relocInfo::poll_type:
   124     case relocInfo::poll_return_type:
   125       _rspec = Relocation::spec_simple(rtype);
   126       break;
   127     case relocInfo::none:
   128       break;
   129     default:
   130       ShouldNotReachHere();
   131   }
   132 }
   133 #else // LP64
   135 Address Address::make_array(ArrayAddress adr) {
   136   AddressLiteral base = adr.base();
   137   Address index = adr.index();
   138   assert(index._disp == 0, "must not have disp"); // maybe it can?
   139   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   140   array._rspec = base._rspec;
   141   return array;
   142 }
   144 // exceedingly dangerous constructor
   145 Address::Address(address loc, RelocationHolder spec) {
   146   _base  = noreg;
   147   _index = noreg;
   148   _scale = no_scale;
   149   _disp  = (intptr_t) loc;
   150   _rspec = spec;
   151 }
   153 #endif // _LP64
   157 // Convert the raw encoding form into the form expected by the constructor for
   158 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   159 // that to noreg for the Address constructor.
   160 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
   161   RelocationHolder rspec;
   162   if (disp_reloc != relocInfo::none) {
   163     rspec = Relocation::spec_simple(disp_reloc);
   164   }
   165   bool valid_index = index != rsp->encoding();
   166   if (valid_index) {
   167     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   168     madr._rspec = rspec;
   169     return madr;
   170   } else {
   171     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   172     madr._rspec = rspec;
   173     return madr;
   174   }
   175 }
   177 // Implementation of Assembler
   179 int AbstractAssembler::code_fill_byte() {
   180   return (u_char)'\xF4'; // hlt
   181 }
   183 // make this go away someday
   184 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   185   if (rtype == relocInfo::none)
   186         emit_int32(data);
   187   else  emit_data(data, Relocation::spec_simple(rtype), format);
   188 }
   190 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   191   assert(imm_operand == 0, "default format must be immediate in this file");
   192   assert(inst_mark() != NULL, "must be inside InstructionMark");
   193   if (rspec.type() !=  relocInfo::none) {
   194     #ifdef ASSERT
   195       check_relocation(rspec, format);
   196     #endif
   197     // Do not use AbstractAssembler::relocate, which is not intended for
   198     // embedded words.  Instead, relocate to the enclosing instruction.
   200     // hack. call32 is too wide for mask so use disp32
   201     if (format == call32_operand)
   202       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   203     else
   204       code_section()->relocate(inst_mark(), rspec, format);
   205   }
   206   emit_int32(data);
   207 }
   209 static int encode(Register r) {
   210   int enc = r->encoding();
   211   if (enc >= 8) {
   212     enc -= 8;
   213   }
   214   return enc;
   215 }
   217 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   218   assert(dst->has_byte_register(), "must have byte register");
   219   assert(isByte(op1) && isByte(op2), "wrong opcode");
   220   assert(isByte(imm8), "not a byte");
   221   assert((op1 & 0x01) == 0, "should be 8bit operation");
   222   emit_int8(op1);
   223   emit_int8(op2 | encode(dst));
   224   emit_int8(imm8);
   225 }
   228 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   229   assert(isByte(op1) && isByte(op2), "wrong opcode");
   230   assert((op1 & 0x01) == 1, "should be 32bit operation");
   231   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   232   if (is8bit(imm32)) {
   233     emit_int8(op1 | 0x02); // set sign bit
   234     emit_int8(op2 | encode(dst));
   235     emit_int8(imm32 & 0xFF);
   236   } else {
   237     emit_int8(op1);
   238     emit_int8(op2 | encode(dst));
   239     emit_int32(imm32);
   240   }
   241 }
   243 // Force generation of a 4 byte immediate value even if it fits into 8bit
   244 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   245   assert(isByte(op1) && isByte(op2), "wrong opcode");
   246   assert((op1 & 0x01) == 1, "should be 32bit operation");
   247   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   248   emit_int8(op1);
   249   emit_int8(op2 | encode(dst));
   250   emit_int32(imm32);
   251 }
   253 // immediate-to-memory forms
   254 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   255   assert((op1 & 0x01) == 1, "should be 32bit operation");
   256   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   257   if (is8bit(imm32)) {
   258     emit_int8(op1 | 0x02); // set sign bit
   259     emit_operand(rm, adr, 1);
   260     emit_int8(imm32 & 0xFF);
   261   } else {
   262     emit_int8(op1);
   263     emit_operand(rm, adr, 4);
   264     emit_int32(imm32);
   265   }
   266 }
   269 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   270   assert(isByte(op1) && isByte(op2), "wrong opcode");
   271   emit_int8(op1);
   272   emit_int8(op2 | encode(dst) << 3 | encode(src));
   273 }
   276 void Assembler::emit_operand(Register reg, Register base, Register index,
   277                              Address::ScaleFactor scale, int disp,
   278                              RelocationHolder const& rspec,
   279                              int rip_relative_correction) {
   280   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   282   // Encode the registers as needed in the fields they are used in
   284   int regenc = encode(reg) << 3;
   285   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   286   int baseenc = base->is_valid() ? encode(base) : 0;
   288   if (base->is_valid()) {
   289     if (index->is_valid()) {
   290       assert(scale != Address::no_scale, "inconsistent address");
   291       // [base + index*scale + disp]
   292       if (disp == 0 && rtype == relocInfo::none  &&
   293           base != rbp LP64_ONLY(&& base != r13)) {
   294         // [base + index*scale]
   295         // [00 reg 100][ss index base]
   296         assert(index != rsp, "illegal addressing mode");
   297         emit_int8(0x04 | regenc);
   298         emit_int8(scale << 6 | indexenc | baseenc);
   299       } else if (is8bit(disp) && rtype == relocInfo::none) {
   300         // [base + index*scale + imm8]
   301         // [01 reg 100][ss index base] imm8
   302         assert(index != rsp, "illegal addressing mode");
   303         emit_int8(0x44 | regenc);
   304         emit_int8(scale << 6 | indexenc | baseenc);
   305         emit_int8(disp & 0xFF);
   306       } else {
   307         // [base + index*scale + disp32]
   308         // [10 reg 100][ss index base] disp32
   309         assert(index != rsp, "illegal addressing mode");
   310         emit_int8(0x84 | regenc);
   311         emit_int8(scale << 6 | indexenc | baseenc);
   312         emit_data(disp, rspec, disp32_operand);
   313       }
   314     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   315       // [rsp + disp]
   316       if (disp == 0 && rtype == relocInfo::none) {
   317         // [rsp]
   318         // [00 reg 100][00 100 100]
   319         emit_int8(0x04 | regenc);
   320         emit_int8(0x24);
   321       } else if (is8bit(disp) && rtype == relocInfo::none) {
   322         // [rsp + imm8]
   323         // [01 reg 100][00 100 100] disp8
   324         emit_int8(0x44 | regenc);
   325         emit_int8(0x24);
   326         emit_int8(disp & 0xFF);
   327       } else {
   328         // [rsp + imm32]
   329         // [10 reg 100][00 100 100] disp32
   330         emit_int8(0x84 | regenc);
   331         emit_int8(0x24);
   332         emit_data(disp, rspec, disp32_operand);
   333       }
   334     } else {
   335       // [base + disp]
   336       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   337       if (disp == 0 && rtype == relocInfo::none &&
   338           base != rbp LP64_ONLY(&& base != r13)) {
   339         // [base]
   340         // [00 reg base]
   341         emit_int8(0x00 | regenc | baseenc);
   342       } else if (is8bit(disp) && rtype == relocInfo::none) {
   343         // [base + disp8]
   344         // [01 reg base] disp8
   345         emit_int8(0x40 | regenc | baseenc);
   346         emit_int8(disp & 0xFF);
   347       } else {
   348         // [base + disp32]
   349         // [10 reg base] disp32
   350         emit_int8(0x80 | regenc | baseenc);
   351         emit_data(disp, rspec, disp32_operand);
   352       }
   353     }
   354   } else {
   355     if (index->is_valid()) {
   356       assert(scale != Address::no_scale, "inconsistent address");
   357       // [index*scale + disp]
   358       // [00 reg 100][ss index 101] disp32
   359       assert(index != rsp, "illegal addressing mode");
   360       emit_int8(0x04 | regenc);
   361       emit_int8(scale << 6 | indexenc | 0x05);
   362       emit_data(disp, rspec, disp32_operand);
   363     } else if (rtype != relocInfo::none ) {
   364       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   365       // [00 000 101] disp32
   367       emit_int8(0x05 | regenc);
   368       // Note that the RIP-rel. correction applies to the generated
   369       // disp field, but _not_ to the target address in the rspec.
   371       // disp was created by converting the target address minus the pc
   372       // at the start of the instruction. That needs more correction here.
   373       // intptr_t disp = target - next_ip;
   374       assert(inst_mark() != NULL, "must be inside InstructionMark");
   375       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   376       int64_t adjusted = disp;
   377       // Do rip-rel adjustment for 64bit
   378       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   379       assert(is_simm32(adjusted),
   380              "must be 32bit offset (RIP relative address)");
   381       emit_data((int32_t) adjusted, rspec, disp32_operand);
   383     } else {
   384       // 32bit never did this, did everything as the rip-rel/disp code above
   385       // [disp] ABSOLUTE
   386       // [00 reg 100][00 100 101] disp32
   387       emit_int8(0x04 | regenc);
   388       emit_int8(0x25);
   389       emit_data(disp, rspec, disp32_operand);
   390     }
   391   }
   392 }
   394 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   395                              Address::ScaleFactor scale, int disp,
   396                              RelocationHolder const& rspec) {
   397   emit_operand((Register)reg, base, index, scale, disp, rspec);
   398 }
   400 // Secret local extension to Assembler::WhichOperand:
   401 #define end_pc_operand (_WhichOperand_limit)
   403 address Assembler::locate_operand(address inst, WhichOperand which) {
   404   // Decode the given instruction, and return the address of
   405   // an embedded 32-bit operand word.
   407   // If "which" is disp32_operand, selects the displacement portion
   408   // of an effective address specifier.
   409   // If "which" is imm64_operand, selects the trailing immediate constant.
   410   // If "which" is call32_operand, selects the displacement of a call or jump.
   411   // Caller is responsible for ensuring that there is such an operand,
   412   // and that it is 32/64 bits wide.
   414   // If "which" is end_pc_operand, find the end of the instruction.
   416   address ip = inst;
   417   bool is_64bit = false;
   419   debug_only(bool has_disp32 = false);
   420   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   422   again_after_prefix:
   423   switch (0xFF & *ip++) {
   425   // These convenience macros generate groups of "case" labels for the switch.
   426 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   427 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   428              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   429 #define REP16(x) REP8((x)+0): \
   430               case REP8((x)+8)
   432   case CS_segment:
   433   case SS_segment:
   434   case DS_segment:
   435   case ES_segment:
   436   case FS_segment:
   437   case GS_segment:
   438     // Seems dubious
   439     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   440     assert(ip == inst+1, "only one prefix allowed");
   441     goto again_after_prefix;
   443   case 0x67:
   444   case REX:
   445   case REX_B:
   446   case REX_X:
   447   case REX_XB:
   448   case REX_R:
   449   case REX_RB:
   450   case REX_RX:
   451   case REX_RXB:
   452     NOT_LP64(assert(false, "64bit prefixes"));
   453     goto again_after_prefix;
   455   case REX_W:
   456   case REX_WB:
   457   case REX_WX:
   458   case REX_WXB:
   459   case REX_WR:
   460   case REX_WRB:
   461   case REX_WRX:
   462   case REX_WRXB:
   463     NOT_LP64(assert(false, "64bit prefixes"));
   464     is_64bit = true;
   465     goto again_after_prefix;
   467   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   468   case 0x88: // movb a, r
   469   case 0x89: // movl a, r
   470   case 0x8A: // movb r, a
   471   case 0x8B: // movl r, a
   472   case 0x8F: // popl a
   473     debug_only(has_disp32 = true);
   474     break;
   476   case 0x68: // pushq #32
   477     if (which == end_pc_operand) {
   478       return ip + 4;
   479     }
   480     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   481     return ip;                  // not produced by emit_operand
   483   case 0x66: // movw ... (size prefix)
   484     again_after_size_prefix2:
   485     switch (0xFF & *ip++) {
   486     case REX:
   487     case REX_B:
   488     case REX_X:
   489     case REX_XB:
   490     case REX_R:
   491     case REX_RB:
   492     case REX_RX:
   493     case REX_RXB:
   494     case REX_W:
   495     case REX_WB:
   496     case REX_WX:
   497     case REX_WXB:
   498     case REX_WR:
   499     case REX_WRB:
   500     case REX_WRX:
   501     case REX_WRXB:
   502       NOT_LP64(assert(false, "64bit prefix found"));
   503       goto again_after_size_prefix2;
   504     case 0x8B: // movw r, a
   505     case 0x89: // movw a, r
   506       debug_only(has_disp32 = true);
   507       break;
   508     case 0xC7: // movw a, #16
   509       debug_only(has_disp32 = true);
   510       tail_size = 2;  // the imm16
   511       break;
   512     case 0x0F: // several SSE/SSE2 variants
   513       ip--;    // reparse the 0x0F
   514       goto again_after_prefix;
   515     default:
   516       ShouldNotReachHere();
   517     }
   518     break;
   520   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   521     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   522     // these asserts are somewhat nonsensical
   523 #ifndef _LP64
   524     assert(which == imm_operand || which == disp32_operand,
   525            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   526 #else
   527     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   528            which == narrow_oop_operand && !is_64bit,
   529            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   530 #endif // _LP64
   531     return ip;
   533   case 0x69: // imul r, a, #32
   534   case 0xC7: // movl a, #32(oop?)
   535     tail_size = 4;
   536     debug_only(has_disp32 = true); // has both kinds of operands!
   537     break;
   539   case 0x0F: // movx..., etc.
   540     switch (0xFF & *ip++) {
   541     case 0x3A: // pcmpestri
   542       tail_size = 1;
   543     case 0x38: // ptest, pmovzxbw
   544       ip++; // skip opcode
   545       debug_only(has_disp32 = true); // has both kinds of operands!
   546       break;
   548     case 0x70: // pshufd r, r/a, #8
   549       debug_only(has_disp32 = true); // has both kinds of operands!
   550     case 0x73: // psrldq r, #8
   551       tail_size = 1;
   552       break;
   554     case 0x12: // movlps
   555     case 0x28: // movaps
   556     case 0x2E: // ucomiss
   557     case 0x2F: // comiss
   558     case 0x54: // andps
   559     case 0x55: // andnps
   560     case 0x56: // orps
   561     case 0x57: // xorps
   562     case 0x6E: // movd
   563     case 0x7E: // movd
   564     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   565       debug_only(has_disp32 = true);
   566       break;
   568     case 0xAD: // shrd r, a, %cl
   569     case 0xAF: // imul r, a
   570     case 0xBE: // movsbl r, a (movsxb)
   571     case 0xBF: // movswl r, a (movsxw)
   572     case 0xB6: // movzbl r, a (movzxb)
   573     case 0xB7: // movzwl r, a (movzxw)
   574     case REP16(0x40): // cmovl cc, r, a
   575     case 0xB0: // cmpxchgb
   576     case 0xB1: // cmpxchg
   577     case 0xC1: // xaddl
   578     case 0xC7: // cmpxchg8
   579     case REP16(0x90): // setcc a
   580       debug_only(has_disp32 = true);
   581       // fall out of the switch to decode the address
   582       break;
   584     case 0xC4: // pinsrw r, a, #8
   585       debug_only(has_disp32 = true);
   586     case 0xC5: // pextrw r, r, #8
   587       tail_size = 1;  // the imm8
   588       break;
   590     case 0xAC: // shrd r, a, #8
   591       debug_only(has_disp32 = true);
   592       tail_size = 1;  // the imm8
   593       break;
   595     case REP16(0x80): // jcc rdisp32
   596       if (which == end_pc_operand)  return ip + 4;
   597       assert(which == call32_operand, "jcc has no disp32 or imm");
   598       return ip;
   599     default:
   600       ShouldNotReachHere();
   601     }
   602     break;
   604   case 0x81: // addl a, #32; addl r, #32
   605     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   606     // on 32bit in the case of cmpl, the imm might be an oop
   607     tail_size = 4;
   608     debug_only(has_disp32 = true); // has both kinds of operands!
   609     break;
   611   case 0x83: // addl a, #8; addl r, #8
   612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   613     debug_only(has_disp32 = true); // has both kinds of operands!
   614     tail_size = 1;
   615     break;
   617   case 0x9B:
   618     switch (0xFF & *ip++) {
   619     case 0xD9: // fnstcw a
   620       debug_only(has_disp32 = true);
   621       break;
   622     default:
   623       ShouldNotReachHere();
   624     }
   625     break;
   627   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   628   case REP4(0x10): // adc...
   629   case REP4(0x20): // and...
   630   case REP4(0x30): // xor...
   631   case REP4(0x08): // or...
   632   case REP4(0x18): // sbb...
   633   case REP4(0x28): // sub...
   634   case 0xF7: // mull a
   635   case 0x8D: // lea r, a
   636   case 0x87: // xchg r, a
   637   case REP4(0x38): // cmp...
   638   case 0x85: // test r, a
   639     debug_only(has_disp32 = true); // has both kinds of operands!
   640     break;
   642   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   643   case 0xC6: // movb a, #8
   644   case 0x80: // cmpb a, #8
   645   case 0x6B: // imul r, a, #8
   646     debug_only(has_disp32 = true); // has both kinds of operands!
   647     tail_size = 1; // the imm8
   648     break;
   650   case 0xC4: // VEX_3bytes
   651   case 0xC5: // VEX_2bytes
   652     assert((UseAVX > 0), "shouldn't have VEX prefix");
   653     assert(ip == inst+1, "no prefixes allowed");
   654     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   655     // but they have prefix 0x0F and processed when 0x0F processed above.
   656     //
   657     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   658     // instructions (these instructions are not supported in 64-bit mode).
   659     // To distinguish them bits [7:6] are set in the VEX second byte since
   660     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   661     // those VEX bits REX and vvvv bits are inverted.
   662     //
   663     // Fortunately C2 doesn't generate these instructions so we don't need
   664     // to check for them in product version.
   666     // Check second byte
   667     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   669     // First byte
   670     if ((0xFF & *inst) == VEX_3bytes) {
   671       ip++; // third byte
   672       is_64bit = ((VEX_W & *ip) == VEX_W);
   673     }
   674     ip++; // opcode
   675     // To find the end of instruction (which == end_pc_operand).
   676     switch (0xFF & *ip) {
   677     case 0x61: // pcmpestri r, r/a, #8
   678     case 0x70: // pshufd r, r/a, #8
   679     case 0x73: // psrldq r, #8
   680       tail_size = 1;  // the imm8
   681       break;
   682     default:
   683       break;
   684     }
   685     ip++; // skip opcode
   686     debug_only(has_disp32 = true); // has both kinds of operands!
   687     break;
   689   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   690   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   691   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   692   case 0xDD: // fld_d a; fst_d a; fstp_d a
   693   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   694   case 0xDF: // fild_d a; fistp_d a
   695   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   696   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   697   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   698     debug_only(has_disp32 = true);
   699     break;
   701   case 0xE8: // call rdisp32
   702   case 0xE9: // jmp  rdisp32
   703     if (which == end_pc_operand)  return ip + 4;
   704     assert(which == call32_operand, "call has no disp32 or imm");
   705     return ip;
   707   case 0xF0:                    // Lock
   708     assert(os::is_MP(), "only on MP");
   709     goto again_after_prefix;
   711   case 0xF3:                    // For SSE
   712   case 0xF2:                    // For SSE2
   713     switch (0xFF & *ip++) {
   714     case REX:
   715     case REX_B:
   716     case REX_X:
   717     case REX_XB:
   718     case REX_R:
   719     case REX_RB:
   720     case REX_RX:
   721     case REX_RXB:
   722     case REX_W:
   723     case REX_WB:
   724     case REX_WX:
   725     case REX_WXB:
   726     case REX_WR:
   727     case REX_WRB:
   728     case REX_WRX:
   729     case REX_WRXB:
   730       NOT_LP64(assert(false, "found 64bit prefix"));
   731       ip++;
   732     default:
   733       ip++;
   734     }
   735     debug_only(has_disp32 = true); // has both kinds of operands!
   736     break;
   738   default:
   739     ShouldNotReachHere();
   741 #undef REP8
   742 #undef REP16
   743   }
   745   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   746 #ifdef _LP64
   747   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   748 #else
   749   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   750   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   751 #endif // LP64
   752   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   754   // parse the output of emit_operand
   755   int op2 = 0xFF & *ip++;
   756   int base = op2 & 0x07;
   757   int op3 = -1;
   758   const int b100 = 4;
   759   const int b101 = 5;
   760   if (base == b100 && (op2 >> 6) != 3) {
   761     op3 = 0xFF & *ip++;
   762     base = op3 & 0x07;   // refetch the base
   763   }
   764   // now ip points at the disp (if any)
   766   switch (op2 >> 6) {
   767   case 0:
   768     // [00 reg  100][ss index base]
   769     // [00 reg  100][00   100  esp]
   770     // [00 reg base]
   771     // [00 reg  100][ss index  101][disp32]
   772     // [00 reg  101]               [disp32]
   774     if (base == b101) {
   775       if (which == disp32_operand)
   776         return ip;              // caller wants the disp32
   777       ip += 4;                  // skip the disp32
   778     }
   779     break;
   781   case 1:
   782     // [01 reg  100][ss index base][disp8]
   783     // [01 reg  100][00   100  esp][disp8]
   784     // [01 reg base]               [disp8]
   785     ip += 1;                    // skip the disp8
   786     break;
   788   case 2:
   789     // [10 reg  100][ss index base][disp32]
   790     // [10 reg  100][00   100  esp][disp32]
   791     // [10 reg base]               [disp32]
   792     if (which == disp32_operand)
   793       return ip;                // caller wants the disp32
   794     ip += 4;                    // skip the disp32
   795     break;
   797   case 3:
   798     // [11 reg base]  (not a memory addressing mode)
   799     break;
   800   }
   802   if (which == end_pc_operand) {
   803     return ip + tail_size;
   804   }
   806 #ifdef _LP64
   807   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   808 #else
   809   assert(which == imm_operand, "instruction has only an imm field");
   810 #endif // LP64
   811   return ip;
   812 }
   814 address Assembler::locate_next_instruction(address inst) {
   815   // Secretly share code with locate_operand:
   816   return locate_operand(inst, end_pc_operand);
   817 }
   820 #ifdef ASSERT
   821 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   822   address inst = inst_mark();
   823   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   824   address opnd;
   826   Relocation* r = rspec.reloc();
   827   if (r->type() == relocInfo::none) {
   828     return;
   829   } else if (r->is_call() || format == call32_operand) {
   830     // assert(format == imm32_operand, "cannot specify a nonzero format");
   831     opnd = locate_operand(inst, call32_operand);
   832   } else if (r->is_data()) {
   833     assert(format == imm_operand || format == disp32_operand
   834            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   835     opnd = locate_operand(inst, (WhichOperand)format);
   836   } else {
   837     assert(format == imm_operand, "cannot specify a format");
   838     return;
   839   }
   840   assert(opnd == pc(), "must put operand where relocs can find it");
   841 }
   842 #endif // ASSERT
   844 void Assembler::emit_operand32(Register reg, Address adr) {
   845   assert(reg->encoding() < 8, "no extended registers");
   846   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   847   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   848                adr._rspec);
   849 }
   851 void Assembler::emit_operand(Register reg, Address adr,
   852                              int rip_relative_correction) {
   853   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   854                adr._rspec,
   855                rip_relative_correction);
   856 }
   858 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   859   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   860                adr._rspec);
   861 }
   863 // MMX operations
   864 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   865   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   866   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   867 }
   869 // work around gcc (3.2.1-7a) bug
   870 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   871   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   872   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   873 }
   876 void Assembler::emit_farith(int b1, int b2, int i) {
   877   assert(isByte(b1) && isByte(b2), "wrong opcode");
   878   assert(0 <= i &&  i < 8, "illegal stack offset");
   879   emit_int8(b1);
   880   emit_int8(b2 + i);
   881 }
   884 // Now the Assembler instructions (identical for 32/64 bits)
   886 void Assembler::adcl(Address dst, int32_t imm32) {
   887   InstructionMark im(this);
   888   prefix(dst);
   889   emit_arith_operand(0x81, rdx, dst, imm32);
   890 }
   892 void Assembler::adcl(Address dst, Register src) {
   893   InstructionMark im(this);
   894   prefix(dst, src);
   895   emit_int8(0x11);
   896   emit_operand(src, dst);
   897 }
   899 void Assembler::adcl(Register dst, int32_t imm32) {
   900   prefix(dst);
   901   emit_arith(0x81, 0xD0, dst, imm32);
   902 }
   904 void Assembler::adcl(Register dst, Address src) {
   905   InstructionMark im(this);
   906   prefix(src, dst);
   907   emit_int8(0x13);
   908   emit_operand(dst, src);
   909 }
   911 void Assembler::adcl(Register dst, Register src) {
   912   (void) prefix_and_encode(dst->encoding(), src->encoding());
   913   emit_arith(0x13, 0xC0, dst, src);
   914 }
   916 void Assembler::addl(Address dst, int32_t imm32) {
   917   InstructionMark im(this);
   918   prefix(dst);
   919   emit_arith_operand(0x81, rax, dst, imm32);
   920 }
   922 void Assembler::addl(Address dst, Register src) {
   923   InstructionMark im(this);
   924   prefix(dst, src);
   925   emit_int8(0x01);
   926   emit_operand(src, dst);
   927 }
   929 void Assembler::addl(Register dst, int32_t imm32) {
   930   prefix(dst);
   931   emit_arith(0x81, 0xC0, dst, imm32);
   932 }
   934 void Assembler::addl(Register dst, Address src) {
   935   InstructionMark im(this);
   936   prefix(src, dst);
   937   emit_int8(0x03);
   938   emit_operand(dst, src);
   939 }
   941 void Assembler::addl(Register dst, Register src) {
   942   (void) prefix_and_encode(dst->encoding(), src->encoding());
   943   emit_arith(0x03, 0xC0, dst, src);
   944 }
   946 void Assembler::addr_nop_4() {
   947   assert(UseAddressNop, "no CPU support");
   948   // 4 bytes: NOP DWORD PTR [EAX+0]
   949   emit_int8(0x0F);
   950   emit_int8(0x1F);
   951   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   952   emit_int8(0);    // 8-bits offset (1 byte)
   953 }
   955 void Assembler::addr_nop_5() {
   956   assert(UseAddressNop, "no CPU support");
   957   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   958   emit_int8(0x0F);
   959   emit_int8(0x1F);
   960   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   961   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   962   emit_int8(0);    // 8-bits offset (1 byte)
   963 }
   965 void Assembler::addr_nop_7() {
   966   assert(UseAddressNop, "no CPU support");
   967   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   968   emit_int8(0x0F);
   969   emit_int8(0x1F);
   970   emit_int8((unsigned char)0x80);
   971                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   972   emit_int32(0);   // 32-bits offset (4 bytes)
   973 }
   975 void Assembler::addr_nop_8() {
   976   assert(UseAddressNop, "no CPU support");
   977   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   978   emit_int8(0x0F);
   979   emit_int8(0x1F);
   980   emit_int8((unsigned char)0x84);
   981                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   982   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   983   emit_int32(0);   // 32-bits offset (4 bytes)
   984 }
   986 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   988   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   989 }
   991 void Assembler::addsd(XMMRegister dst, Address src) {
   992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   993   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   994 }
   996 void Assembler::addss(XMMRegister dst, XMMRegister src) {
   997   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   998   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
   999 }
  1001 void Assembler::addss(XMMRegister dst, Address src) {
  1002   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1003   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1006 void Assembler::aesdec(XMMRegister dst, Address src) {
  1007   assert(VM_Version::supports_aes(), "");
  1008   InstructionMark im(this);
  1009   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1010   emit_int8((unsigned char)0xDE);
  1011   emit_operand(dst, src);
  1014 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
  1015   assert(VM_Version::supports_aes(), "");
  1016   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1017   emit_int8((unsigned char)0xDE);
  1018   emit_int8(0xC0 | encode);
  1021 void Assembler::aesdeclast(XMMRegister dst, Address src) {
  1022   assert(VM_Version::supports_aes(), "");
  1023   InstructionMark im(this);
  1024   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1025   emit_int8((unsigned char)0xDF);
  1026   emit_operand(dst, src);
  1029 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
  1030   assert(VM_Version::supports_aes(), "");
  1031   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1032   emit_int8((unsigned char)0xDF);
  1033   emit_int8((unsigned char)(0xC0 | encode));
  1036 void Assembler::aesenc(XMMRegister dst, Address src) {
  1037   assert(VM_Version::supports_aes(), "");
  1038   InstructionMark im(this);
  1039   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1040   emit_int8((unsigned char)0xDC);
  1041   emit_operand(dst, src);
  1044 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
  1045   assert(VM_Version::supports_aes(), "");
  1046   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1047   emit_int8((unsigned char)0xDC);
  1048   emit_int8(0xC0 | encode);
  1051 void Assembler::aesenclast(XMMRegister dst, Address src) {
  1052   assert(VM_Version::supports_aes(), "");
  1053   InstructionMark im(this);
  1054   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1055   emit_int8((unsigned char)0xDD);
  1056   emit_operand(dst, src);
  1059 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
  1060   assert(VM_Version::supports_aes(), "");
  1061   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1062   emit_int8((unsigned char)0xDD);
  1063   emit_int8((unsigned char)(0xC0 | encode));
  1067 void Assembler::andl(Address dst, int32_t imm32) {
  1068   InstructionMark im(this);
  1069   prefix(dst);
  1070   emit_int8((unsigned char)0x81);
  1071   emit_operand(rsp, dst, 4);
  1072   emit_int32(imm32);
  1075 void Assembler::andl(Register dst, int32_t imm32) {
  1076   prefix(dst);
  1077   emit_arith(0x81, 0xE0, dst, imm32);
  1080 void Assembler::andl(Register dst, Address src) {
  1081   InstructionMark im(this);
  1082   prefix(src, dst);
  1083   emit_int8(0x23);
  1084   emit_operand(dst, src);
  1087 void Assembler::andl(Register dst, Register src) {
  1088   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1089   emit_arith(0x23, 0xC0, dst, src);
  1092 void Assembler::andnl(Register dst, Register src1, Register src2) {
  1093   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1094   int encode = vex_prefix_0F38_and_encode(dst, src1, src2);
  1095   emit_int8((unsigned char)0xF2);
  1096   emit_int8((unsigned char)(0xC0 | encode));
  1099 void Assembler::andnl(Register dst, Register src1, Address src2) {
  1100   InstructionMark im(this);
  1101   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1102   vex_prefix_0F38(dst, src1, src2);
  1103   emit_int8((unsigned char)0xF2);
  1104   emit_operand(dst, src2);
  1107 void Assembler::bsfl(Register dst, Register src) {
  1108   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1109   emit_int8(0x0F);
  1110   emit_int8((unsigned char)0xBC);
  1111   emit_int8((unsigned char)(0xC0 | encode));
  1114 void Assembler::bsrl(Register dst, Register src) {
  1115   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1116   emit_int8(0x0F);
  1117   emit_int8((unsigned char)0xBD);
  1118   emit_int8((unsigned char)(0xC0 | encode));
  1121 void Assembler::bswapl(Register reg) { // bswap
  1122   int encode = prefix_and_encode(reg->encoding());
  1123   emit_int8(0x0F);
  1124   emit_int8((unsigned char)(0xC8 | encode));
  1127 void Assembler::blsil(Register dst, Register src) {
  1128   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1129   int encode = vex_prefix_0F38_and_encode(rbx, dst, src);
  1130   emit_int8((unsigned char)0xF3);
  1131   emit_int8((unsigned char)(0xC0 | encode));
  1134 void Assembler::blsil(Register dst, Address src) {
  1135   InstructionMark im(this);
  1136   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1137   vex_prefix_0F38(rbx, dst, src);
  1138   emit_int8((unsigned char)0xF3);
  1139   emit_operand(rbx, src);
  1142 void Assembler::blsmskl(Register dst, Register src) {
  1143   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1144   int encode = vex_prefix_0F38_and_encode(rdx, dst, src);
  1145   emit_int8((unsigned char)0xF3);
  1146   emit_int8((unsigned char)(0xC0 | encode));
  1149 void Assembler::blsmskl(Register dst, Address src) {
  1150   InstructionMark im(this);
  1151   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1152   vex_prefix_0F38(rdx, dst, src);
  1153   emit_int8((unsigned char)0xF3);
  1154   emit_operand(rdx, src);
  1157 void Assembler::blsrl(Register dst, Register src) {
  1158   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1159   int encode = vex_prefix_0F38_and_encode(rcx, dst, src);
  1160   emit_int8((unsigned char)0xF3);
  1161   emit_int8((unsigned char)(0xC0 | encode));
  1164 void Assembler::blsrl(Register dst, Address src) {
  1165   InstructionMark im(this);
  1166   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1167   vex_prefix_0F38(rcx, dst, src);
  1168   emit_int8((unsigned char)0xF3);
  1169   emit_operand(rcx, src);
  1172 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1173   // suspect disp32 is always good
  1174   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1176   if (L.is_bound()) {
  1177     const int long_size = 5;
  1178     int offs = (int)( target(L) - pc() );
  1179     assert(offs <= 0, "assembler error");
  1180     InstructionMark im(this);
  1181     // 1110 1000 #32-bit disp
  1182     emit_int8((unsigned char)0xE8);
  1183     emit_data(offs - long_size, rtype, operand);
  1184   } else {
  1185     InstructionMark im(this);
  1186     // 1110 1000 #32-bit disp
  1187     L.add_patch_at(code(), locator());
  1189     emit_int8((unsigned char)0xE8);
  1190     emit_data(int(0), rtype, operand);
  1194 void Assembler::call(Register dst) {
  1195   int encode = prefix_and_encode(dst->encoding());
  1196   emit_int8((unsigned char)0xFF);
  1197   emit_int8((unsigned char)(0xD0 | encode));
  1201 void Assembler::call(Address adr) {
  1202   InstructionMark im(this);
  1203   prefix(adr);
  1204   emit_int8((unsigned char)0xFF);
  1205   emit_operand(rdx, adr);
  1208 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1209   assert(entry != NULL, "call most probably wrong");
  1210   InstructionMark im(this);
  1211   emit_int8((unsigned char)0xE8);
  1212   intptr_t disp = entry - (pc() + sizeof(int32_t));
  1213   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1214   // Technically, should use call32_operand, but this format is
  1215   // implied by the fact that we're emitting a call instruction.
  1217   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1218   emit_data((int) disp, rspec, operand);
  1221 void Assembler::cdql() {
  1222   emit_int8((unsigned char)0x99);
  1225 void Assembler::cld() {
  1226   emit_int8((unsigned char)0xFC);
  1229 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1230   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1231   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1232   emit_int8(0x0F);
  1233   emit_int8(0x40 | cc);
  1234   emit_int8((unsigned char)(0xC0 | encode));
  1238 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1239   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1240   prefix(src, dst);
  1241   emit_int8(0x0F);
  1242   emit_int8(0x40 | cc);
  1243   emit_operand(dst, src);
  1246 void Assembler::cmpb(Address dst, int imm8) {
  1247   InstructionMark im(this);
  1248   prefix(dst);
  1249   emit_int8((unsigned char)0x80);
  1250   emit_operand(rdi, dst, 1);
  1251   emit_int8(imm8);
  1254 void Assembler::cmpl(Address dst, int32_t imm32) {
  1255   InstructionMark im(this);
  1256   prefix(dst);
  1257   emit_int8((unsigned char)0x81);
  1258   emit_operand(rdi, dst, 4);
  1259   emit_int32(imm32);
  1262 void Assembler::cmpl(Register dst, int32_t imm32) {
  1263   prefix(dst);
  1264   emit_arith(0x81, 0xF8, dst, imm32);
  1267 void Assembler::cmpl(Register dst, Register src) {
  1268   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1269   emit_arith(0x3B, 0xC0, dst, src);
  1273 void Assembler::cmpl(Register dst, Address  src) {
  1274   InstructionMark im(this);
  1275   prefix(src, dst);
  1276   emit_int8((unsigned char)0x3B);
  1277   emit_operand(dst, src);
  1280 void Assembler::cmpw(Address dst, int imm16) {
  1281   InstructionMark im(this);
  1282   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1283   emit_int8(0x66);
  1284   emit_int8((unsigned char)0x81);
  1285   emit_operand(rdi, dst, 2);
  1286   emit_int16(imm16);
  1289 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1290 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1291 // The ZF is set if the compared values were equal, and cleared otherwise.
  1292 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1293   InstructionMark im(this);
  1294   prefix(adr, reg);
  1295   emit_int8(0x0F);
  1296   emit_int8((unsigned char)0xB1);
  1297   emit_operand(reg, adr);
  1300 void Assembler::comisd(XMMRegister dst, Address src) {
  1301   // NOTE: dbx seems to decode this as comiss even though the
  1302   // 0x66 is there. Strangly ucomisd comes out correct
  1303   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1304   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1307 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1308   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1309   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1312 void Assembler::comiss(XMMRegister dst, Address src) {
  1313   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1314   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1317 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1318   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1319   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1322 void Assembler::cpuid() {
  1323   emit_int8(0x0F);
  1324   emit_int8((unsigned char)0xA2);
  1327 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1329   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
  1332 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1333   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1334   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
  1337 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1338   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1339   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1342 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1343   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1344   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1347 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1348   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1349   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1350   emit_int8(0x2A);
  1351   emit_int8((unsigned char)(0xC0 | encode));
  1354 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1355   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1356   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
  1359 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1360   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1361   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1362   emit_int8(0x2A);
  1363   emit_int8((unsigned char)(0xC0 | encode));
  1366 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1367   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1368   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
  1371 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1372   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1373   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1376 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1377   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1378   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1382 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1383   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1384   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1385   emit_int8(0x2C);
  1386   emit_int8((unsigned char)(0xC0 | encode));
  1389 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1390   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1391   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1392   emit_int8(0x2C);
  1393   emit_int8((unsigned char)(0xC0 | encode));
  1396 void Assembler::decl(Address dst) {
  1397   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1398   InstructionMark im(this);
  1399   prefix(dst);
  1400   emit_int8((unsigned char)0xFF);
  1401   emit_operand(rcx, dst);
  1404 void Assembler::divsd(XMMRegister dst, Address src) {
  1405   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1406   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1409 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1410   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1411   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1414 void Assembler::divss(XMMRegister dst, Address src) {
  1415   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1416   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1419 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1420   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1421   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1424 void Assembler::emms() {
  1425   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1426   emit_int8(0x0F);
  1427   emit_int8(0x77);
  1430 void Assembler::hlt() {
  1431   emit_int8((unsigned char)0xF4);
  1434 void Assembler::idivl(Register src) {
  1435   int encode = prefix_and_encode(src->encoding());
  1436   emit_int8((unsigned char)0xF7);
  1437   emit_int8((unsigned char)(0xF8 | encode));
  1440 void Assembler::divl(Register src) { // Unsigned
  1441   int encode = prefix_and_encode(src->encoding());
  1442   emit_int8((unsigned char)0xF7);
  1443   emit_int8((unsigned char)(0xF0 | encode));
  1446 void Assembler::imull(Register dst, Register src) {
  1447   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1448   emit_int8(0x0F);
  1449   emit_int8((unsigned char)0xAF);
  1450   emit_int8((unsigned char)(0xC0 | encode));
  1454 void Assembler::imull(Register dst, Register src, int value) {
  1455   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1456   if (is8bit(value)) {
  1457     emit_int8(0x6B);
  1458     emit_int8((unsigned char)(0xC0 | encode));
  1459     emit_int8(value & 0xFF);
  1460   } else {
  1461     emit_int8(0x69);
  1462     emit_int8((unsigned char)(0xC0 | encode));
  1463     emit_int32(value);
  1467 void Assembler::imull(Register dst, Address src) {
  1468   InstructionMark im(this);
  1469   prefix(src, dst);
  1470   emit_int8(0x0F);
  1471   emit_int8((unsigned char) 0xAF);
  1472   emit_operand(dst, src);
  1476 void Assembler::incl(Address dst) {
  1477   // Don't use it directly. Use MacroAssembler::increment() instead.
  1478   InstructionMark im(this);
  1479   prefix(dst);
  1480   emit_int8((unsigned char)0xFF);
  1481   emit_operand(rax, dst);
  1484 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1485   InstructionMark im(this);
  1486   assert((0 <= cc) && (cc < 16), "illegal cc");
  1487   if (L.is_bound()) {
  1488     address dst = target(L);
  1489     assert(dst != NULL, "jcc most probably wrong");
  1491     const int short_size = 2;
  1492     const int long_size = 6;
  1493     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
  1494     if (maybe_short && is8bit(offs - short_size)) {
  1495       // 0111 tttn #8-bit disp
  1496       emit_int8(0x70 | cc);
  1497       emit_int8((offs - short_size) & 0xFF);
  1498     } else {
  1499       // 0000 1111 1000 tttn #32-bit disp
  1500       assert(is_simm32(offs - long_size),
  1501              "must be 32bit offset (call4)");
  1502       emit_int8(0x0F);
  1503       emit_int8((unsigned char)(0x80 | cc));
  1504       emit_int32(offs - long_size);
  1506   } else {
  1507     // Note: could eliminate cond. jumps to this jump if condition
  1508     //       is the same however, seems to be rather unlikely case.
  1509     // Note: use jccb() if label to be bound is very close to get
  1510     //       an 8-bit displacement
  1511     L.add_patch_at(code(), locator());
  1512     emit_int8(0x0F);
  1513     emit_int8((unsigned char)(0x80 | cc));
  1514     emit_int32(0);
  1518 void Assembler::jccb(Condition cc, Label& L) {
  1519   if (L.is_bound()) {
  1520     const int short_size = 2;
  1521     address entry = target(L);
  1522 #ifdef ASSERT
  1523     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
  1524     intptr_t delta = short_branch_delta();
  1525     if (delta != 0) {
  1526       dist += (dist < 0 ? (-delta) :delta);
  1528     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1529 #endif
  1530     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
  1531     // 0111 tttn #8-bit disp
  1532     emit_int8(0x70 | cc);
  1533     emit_int8((offs - short_size) & 0xFF);
  1534   } else {
  1535     InstructionMark im(this);
  1536     L.add_patch_at(code(), locator());
  1537     emit_int8(0x70 | cc);
  1538     emit_int8(0);
  1542 void Assembler::jmp(Address adr) {
  1543   InstructionMark im(this);
  1544   prefix(adr);
  1545   emit_int8((unsigned char)0xFF);
  1546   emit_operand(rsp, adr);
  1549 void Assembler::jmp(Label& L, bool maybe_short) {
  1550   if (L.is_bound()) {
  1551     address entry = target(L);
  1552     assert(entry != NULL, "jmp most probably wrong");
  1553     InstructionMark im(this);
  1554     const int short_size = 2;
  1555     const int long_size = 5;
  1556     intptr_t offs = entry - pc();
  1557     if (maybe_short && is8bit(offs - short_size)) {
  1558       emit_int8((unsigned char)0xEB);
  1559       emit_int8((offs - short_size) & 0xFF);
  1560     } else {
  1561       emit_int8((unsigned char)0xE9);
  1562       emit_int32(offs - long_size);
  1564   } else {
  1565     // By default, forward jumps are always 32-bit displacements, since
  1566     // we can't yet know where the label will be bound.  If you're sure that
  1567     // the forward jump will not run beyond 256 bytes, use jmpb to
  1568     // force an 8-bit displacement.
  1569     InstructionMark im(this);
  1570     L.add_patch_at(code(), locator());
  1571     emit_int8((unsigned char)0xE9);
  1572     emit_int32(0);
  1576 void Assembler::jmp(Register entry) {
  1577   int encode = prefix_and_encode(entry->encoding());
  1578   emit_int8((unsigned char)0xFF);
  1579   emit_int8((unsigned char)(0xE0 | encode));
  1582 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1583   InstructionMark im(this);
  1584   emit_int8((unsigned char)0xE9);
  1585   assert(dest != NULL, "must have a target");
  1586   intptr_t disp = dest - (pc() + sizeof(int32_t));
  1587   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1588   emit_data(disp, rspec.reloc(), call32_operand);
  1591 void Assembler::jmpb(Label& L) {
  1592   if (L.is_bound()) {
  1593     const int short_size = 2;
  1594     address entry = target(L);
  1595     assert(entry != NULL, "jmp most probably wrong");
  1596 #ifdef ASSERT
  1597     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
  1598     intptr_t delta = short_branch_delta();
  1599     if (delta != 0) {
  1600       dist += (dist < 0 ? (-delta) :delta);
  1602     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1603 #endif
  1604     intptr_t offs = entry - pc();
  1605     emit_int8((unsigned char)0xEB);
  1606     emit_int8((offs - short_size) & 0xFF);
  1607   } else {
  1608     InstructionMark im(this);
  1609     L.add_patch_at(code(), locator());
  1610     emit_int8((unsigned char)0xEB);
  1611     emit_int8(0);
  1615 void Assembler::ldmxcsr( Address src) {
  1616   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1617   InstructionMark im(this);
  1618   prefix(src);
  1619   emit_int8(0x0F);
  1620   emit_int8((unsigned char)0xAE);
  1621   emit_operand(as_Register(2), src);
  1624 void Assembler::leal(Register dst, Address src) {
  1625   InstructionMark im(this);
  1626 #ifdef _LP64
  1627   emit_int8(0x67); // addr32
  1628   prefix(src, dst);
  1629 #endif // LP64
  1630   emit_int8((unsigned char)0x8D);
  1631   emit_operand(dst, src);
  1634 void Assembler::lfence() {
  1635   emit_int8(0x0F);
  1636   emit_int8((unsigned char)0xAE);
  1637   emit_int8((unsigned char)0xE8);
  1640 void Assembler::lock() {
  1641   emit_int8((unsigned char)0xF0);
  1644 void Assembler::lzcntl(Register dst, Register src) {
  1645   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1646   emit_int8((unsigned char)0xF3);
  1647   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1648   emit_int8(0x0F);
  1649   emit_int8((unsigned char)0xBD);
  1650   emit_int8((unsigned char)(0xC0 | encode));
  1653 // Emit mfence instruction
  1654 void Assembler::mfence() {
  1655   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1656   emit_int8(0x0F);
  1657   emit_int8((unsigned char)0xAE);
  1658   emit_int8((unsigned char)0xF0);
  1661 void Assembler::mov(Register dst, Register src) {
  1662   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1665 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1666   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1667   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
  1670 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1671   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1672   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
  1675 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  1676   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1677   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
  1678   emit_int8(0x16);
  1679   emit_int8((unsigned char)(0xC0 | encode));
  1682 void Assembler::movb(Register dst, Address src) {
  1683   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1684   InstructionMark im(this);
  1685   prefix(src, dst, true);
  1686   emit_int8((unsigned char)0x8A);
  1687   emit_operand(dst, src);
  1691 void Assembler::movb(Address dst, int imm8) {
  1692   InstructionMark im(this);
  1693    prefix(dst);
  1694   emit_int8((unsigned char)0xC6);
  1695   emit_operand(rax, dst, 1);
  1696   emit_int8(imm8);
  1700 void Assembler::movb(Address dst, Register src) {
  1701   assert(src->has_byte_register(), "must have byte register");
  1702   InstructionMark im(this);
  1703   prefix(dst, src, true);
  1704   emit_int8((unsigned char)0x88);
  1705   emit_operand(src, dst);
  1708 void Assembler::movdl(XMMRegister dst, Register src) {
  1709   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1710   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1711   emit_int8(0x6E);
  1712   emit_int8((unsigned char)(0xC0 | encode));
  1715 void Assembler::movdl(Register dst, XMMRegister src) {
  1716   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1717   // swap src/dst to get correct prefix
  1718   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1719   emit_int8(0x7E);
  1720   emit_int8((unsigned char)(0xC0 | encode));
  1723 void Assembler::movdl(XMMRegister dst, Address src) {
  1724   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1725   InstructionMark im(this);
  1726   simd_prefix(dst, src, VEX_SIMD_66);
  1727   emit_int8(0x6E);
  1728   emit_operand(dst, src);
  1731 void Assembler::movdl(Address dst, XMMRegister src) {
  1732   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1733   InstructionMark im(this);
  1734   simd_prefix(dst, src, VEX_SIMD_66);
  1735   emit_int8(0x7E);
  1736   emit_operand(src, dst);
  1739 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1740   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1741   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1744 void Assembler::movdqa(XMMRegister dst, Address src) {
  1745   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1746   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1749 void Assembler::movdqu(XMMRegister dst, Address src) {
  1750   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1751   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1754 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1755   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1756   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1759 void Assembler::movdqu(Address dst, XMMRegister src) {
  1760   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1761   InstructionMark im(this);
  1762   simd_prefix(dst, src, VEX_SIMD_F3);
  1763   emit_int8(0x7F);
  1764   emit_operand(src, dst);
  1767 // Move Unaligned 256bit Vector
  1768 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  1769   assert(UseAVX, "");
  1770   bool vector256 = true;
  1771   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1772   emit_int8(0x6F);
  1773   emit_int8((unsigned char)(0xC0 | encode));
  1776 void Assembler::vmovdqu(XMMRegister dst, Address src) {
  1777   assert(UseAVX, "");
  1778   InstructionMark im(this);
  1779   bool vector256 = true;
  1780   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1781   emit_int8(0x6F);
  1782   emit_operand(dst, src);
  1785 void Assembler::vmovdqu(Address dst, XMMRegister src) {
  1786   assert(UseAVX, "");
  1787   InstructionMark im(this);
  1788   bool vector256 = true;
  1789   // swap src<->dst for encoding
  1790   assert(src != xnoreg, "sanity");
  1791   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
  1792   emit_int8(0x7F);
  1793   emit_operand(src, dst);
  1796 // Uses zero extension on 64bit
  1798 void Assembler::movl(Register dst, int32_t imm32) {
  1799   int encode = prefix_and_encode(dst->encoding());
  1800   emit_int8((unsigned char)(0xB8 | encode));
  1801   emit_int32(imm32);
  1804 void Assembler::movl(Register dst, Register src) {
  1805   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1806   emit_int8((unsigned char)0x8B);
  1807   emit_int8((unsigned char)(0xC0 | encode));
  1810 void Assembler::movl(Register dst, Address src) {
  1811   InstructionMark im(this);
  1812   prefix(src, dst);
  1813   emit_int8((unsigned char)0x8B);
  1814   emit_operand(dst, src);
  1817 void Assembler::movl(Address dst, int32_t imm32) {
  1818   InstructionMark im(this);
  1819   prefix(dst);
  1820   emit_int8((unsigned char)0xC7);
  1821   emit_operand(rax, dst, 4);
  1822   emit_int32(imm32);
  1825 void Assembler::movl(Address dst, Register src) {
  1826   InstructionMark im(this);
  1827   prefix(dst, src);
  1828   emit_int8((unsigned char)0x89);
  1829   emit_operand(src, dst);
  1832 // New cpus require to use movsd and movss to avoid partial register stall
  1833 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1834 // The selection is done in MacroAssembler::movdbl() and movflt().
  1835 void Assembler::movlpd(XMMRegister dst, Address src) {
  1836   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1837   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
  1840 void Assembler::movq( MMXRegister dst, Address src ) {
  1841   assert( VM_Version::supports_mmx(), "" );
  1842   emit_int8(0x0F);
  1843   emit_int8(0x6F);
  1844   emit_operand(dst, src);
  1847 void Assembler::movq( Address dst, MMXRegister src ) {
  1848   assert( VM_Version::supports_mmx(), "" );
  1849   emit_int8(0x0F);
  1850   emit_int8(0x7F);
  1851   // workaround gcc (3.2.1-7a) bug
  1852   // In that version of gcc with only an emit_operand(MMX, Address)
  1853   // gcc will tail jump and try and reverse the parameters completely
  1854   // obliterating dst in the process. By having a version available
  1855   // that doesn't need to swap the args at the tail jump the bug is
  1856   // avoided.
  1857   emit_operand(dst, src);
  1860 void Assembler::movq(XMMRegister dst, Address src) {
  1861   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1862   InstructionMark im(this);
  1863   simd_prefix(dst, src, VEX_SIMD_F3);
  1864   emit_int8(0x7E);
  1865   emit_operand(dst, src);
  1868 void Assembler::movq(Address dst, XMMRegister src) {
  1869   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1870   InstructionMark im(this);
  1871   simd_prefix(dst, src, VEX_SIMD_66);
  1872   emit_int8((unsigned char)0xD6);
  1873   emit_operand(src, dst);
  1876 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1877   InstructionMark im(this);
  1878   prefix(src, dst);
  1879   emit_int8(0x0F);
  1880   emit_int8((unsigned char)0xBE);
  1881   emit_operand(dst, src);
  1884 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1885   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1886   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1887   emit_int8(0x0F);
  1888   emit_int8((unsigned char)0xBE);
  1889   emit_int8((unsigned char)(0xC0 | encode));
  1892 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1893   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1894   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
  1897 void Assembler::movsd(XMMRegister dst, Address src) {
  1898   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1899   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
  1902 void Assembler::movsd(Address dst, XMMRegister src) {
  1903   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1904   InstructionMark im(this);
  1905   simd_prefix(dst, src, VEX_SIMD_F2);
  1906   emit_int8(0x11);
  1907   emit_operand(src, dst);
  1910 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1911   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1912   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
  1915 void Assembler::movss(XMMRegister dst, Address src) {
  1916   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1917   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
  1920 void Assembler::movss(Address dst, XMMRegister src) {
  1921   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1922   InstructionMark im(this);
  1923   simd_prefix(dst, src, VEX_SIMD_F3);
  1924   emit_int8(0x11);
  1925   emit_operand(src, dst);
  1928 void Assembler::movswl(Register dst, Address src) { // movsxw
  1929   InstructionMark im(this);
  1930   prefix(src, dst);
  1931   emit_int8(0x0F);
  1932   emit_int8((unsigned char)0xBF);
  1933   emit_operand(dst, src);
  1936 void Assembler::movswl(Register dst, Register src) { // movsxw
  1937   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1938   emit_int8(0x0F);
  1939   emit_int8((unsigned char)0xBF);
  1940   emit_int8((unsigned char)(0xC0 | encode));
  1943 void Assembler::movw(Address dst, int imm16) {
  1944   InstructionMark im(this);
  1946   emit_int8(0x66); // switch to 16-bit mode
  1947   prefix(dst);
  1948   emit_int8((unsigned char)0xC7);
  1949   emit_operand(rax, dst, 2);
  1950   emit_int16(imm16);
  1953 void Assembler::movw(Register dst, Address src) {
  1954   InstructionMark im(this);
  1955   emit_int8(0x66);
  1956   prefix(src, dst);
  1957   emit_int8((unsigned char)0x8B);
  1958   emit_operand(dst, src);
  1961 void Assembler::movw(Address dst, Register src) {
  1962   InstructionMark im(this);
  1963   emit_int8(0x66);
  1964   prefix(dst, src);
  1965   emit_int8((unsigned char)0x89);
  1966   emit_operand(src, dst);
  1969 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1970   InstructionMark im(this);
  1971   prefix(src, dst);
  1972   emit_int8(0x0F);
  1973   emit_int8((unsigned char)0xB6);
  1974   emit_operand(dst, src);
  1977 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1978   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1979   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1980   emit_int8(0x0F);
  1981   emit_int8((unsigned char)0xB6);
  1982   emit_int8(0xC0 | encode);
  1985 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1986   InstructionMark im(this);
  1987   prefix(src, dst);
  1988   emit_int8(0x0F);
  1989   emit_int8((unsigned char)0xB7);
  1990   emit_operand(dst, src);
  1993 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1994   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1995   emit_int8(0x0F);
  1996   emit_int8((unsigned char)0xB7);
  1997   emit_int8(0xC0 | encode);
  2000 void Assembler::mull(Address src) {
  2001   InstructionMark im(this);
  2002   prefix(src);
  2003   emit_int8((unsigned char)0xF7);
  2004   emit_operand(rsp, src);
  2007 void Assembler::mull(Register src) {
  2008   int encode = prefix_and_encode(src->encoding());
  2009   emit_int8((unsigned char)0xF7);
  2010   emit_int8((unsigned char)(0xE0 | encode));
  2013 void Assembler::mulsd(XMMRegister dst, Address src) {
  2014   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2015   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  2018 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  2019   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2020   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  2023 void Assembler::mulss(XMMRegister dst, Address src) {
  2024   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2025   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  2028 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  2029   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2030   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  2033 void Assembler::negl(Register dst) {
  2034   int encode = prefix_and_encode(dst->encoding());
  2035   emit_int8((unsigned char)0xF7);
  2036   emit_int8((unsigned char)(0xD8 | encode));
  2039 void Assembler::nop(int i) {
  2040 #ifdef ASSERT
  2041   assert(i > 0, " ");
  2042   // The fancy nops aren't currently recognized by debuggers making it a
  2043   // pain to disassemble code while debugging. If asserts are on clearly
  2044   // speed is not an issue so simply use the single byte traditional nop
  2045   // to do alignment.
  2047   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
  2048   return;
  2050 #endif // ASSERT
  2052   if (UseAddressNop && VM_Version::is_intel()) {
  2053     //
  2054     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  2055     //  1: 0x90
  2056     //  2: 0x66 0x90
  2057     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2058     //  4: 0x0F 0x1F 0x40 0x00
  2059     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2060     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2061     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2062     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2063     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2064     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2065     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2067     // The rest coding is Intel specific - don't use consecutive address nops
  2069     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2070     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2071     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2072     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2074     while(i >= 15) {
  2075       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2076       i -= 15;
  2077       emit_int8(0x66);   // size prefix
  2078       emit_int8(0x66);   // size prefix
  2079       emit_int8(0x66);   // size prefix
  2080       addr_nop_8();
  2081       emit_int8(0x66);   // size prefix
  2082       emit_int8(0x66);   // size prefix
  2083       emit_int8(0x66);   // size prefix
  2084       emit_int8((unsigned char)0x90);
  2085                          // nop
  2087     switch (i) {
  2088       case 14:
  2089         emit_int8(0x66); // size prefix
  2090       case 13:
  2091         emit_int8(0x66); // size prefix
  2092       case 12:
  2093         addr_nop_8();
  2094         emit_int8(0x66); // size prefix
  2095         emit_int8(0x66); // size prefix
  2096         emit_int8(0x66); // size prefix
  2097         emit_int8((unsigned char)0x90);
  2098                          // nop
  2099         break;
  2100       case 11:
  2101         emit_int8(0x66); // size prefix
  2102       case 10:
  2103         emit_int8(0x66); // size prefix
  2104       case 9:
  2105         emit_int8(0x66); // size prefix
  2106       case 8:
  2107         addr_nop_8();
  2108         break;
  2109       case 7:
  2110         addr_nop_7();
  2111         break;
  2112       case 6:
  2113         emit_int8(0x66); // size prefix
  2114       case 5:
  2115         addr_nop_5();
  2116         break;
  2117       case 4:
  2118         addr_nop_4();
  2119         break;
  2120       case 3:
  2121         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2122         emit_int8(0x66); // size prefix
  2123       case 2:
  2124         emit_int8(0x66); // size prefix
  2125       case 1:
  2126         emit_int8((unsigned char)0x90);
  2127                          // nop
  2128         break;
  2129       default:
  2130         assert(i == 0, " ");
  2132     return;
  2134   if (UseAddressNop && VM_Version::is_amd()) {
  2135     //
  2136     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2137     //  1: 0x90
  2138     //  2: 0x66 0x90
  2139     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2140     //  4: 0x0F 0x1F 0x40 0x00
  2141     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2142     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2143     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2144     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2145     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2146     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2147     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2149     // The rest coding is AMD specific - use consecutive address nops
  2151     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2152     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2153     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2154     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2155     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2156     //     Size prefixes (0x66) are added for larger sizes
  2158     while(i >= 22) {
  2159       i -= 11;
  2160       emit_int8(0x66); // size prefix
  2161       emit_int8(0x66); // size prefix
  2162       emit_int8(0x66); // size prefix
  2163       addr_nop_8();
  2165     // Generate first nop for size between 21-12
  2166     switch (i) {
  2167       case 21:
  2168         i -= 1;
  2169         emit_int8(0x66); // size prefix
  2170       case 20:
  2171       case 19:
  2172         i -= 1;
  2173         emit_int8(0x66); // size prefix
  2174       case 18:
  2175       case 17:
  2176         i -= 1;
  2177         emit_int8(0x66); // size prefix
  2178       case 16:
  2179       case 15:
  2180         i -= 8;
  2181         addr_nop_8();
  2182         break;
  2183       case 14:
  2184       case 13:
  2185         i -= 7;
  2186         addr_nop_7();
  2187         break;
  2188       case 12:
  2189         i -= 6;
  2190         emit_int8(0x66); // size prefix
  2191         addr_nop_5();
  2192         break;
  2193       default:
  2194         assert(i < 12, " ");
  2197     // Generate second nop for size between 11-1
  2198     switch (i) {
  2199       case 11:
  2200         emit_int8(0x66); // size prefix
  2201       case 10:
  2202         emit_int8(0x66); // size prefix
  2203       case 9:
  2204         emit_int8(0x66); // size prefix
  2205       case 8:
  2206         addr_nop_8();
  2207         break;
  2208       case 7:
  2209         addr_nop_7();
  2210         break;
  2211       case 6:
  2212         emit_int8(0x66); // size prefix
  2213       case 5:
  2214         addr_nop_5();
  2215         break;
  2216       case 4:
  2217         addr_nop_4();
  2218         break;
  2219       case 3:
  2220         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2221         emit_int8(0x66); // size prefix
  2222       case 2:
  2223         emit_int8(0x66); // size prefix
  2224       case 1:
  2225         emit_int8((unsigned char)0x90);
  2226                          // nop
  2227         break;
  2228       default:
  2229         assert(i == 0, " ");
  2231     return;
  2234   // Using nops with size prefixes "0x66 0x90".
  2235   // From AMD Optimization Guide:
  2236   //  1: 0x90
  2237   //  2: 0x66 0x90
  2238   //  3: 0x66 0x66 0x90
  2239   //  4: 0x66 0x66 0x66 0x90
  2240   //  5: 0x66 0x66 0x90 0x66 0x90
  2241   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2242   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2243   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2244   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2245   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2246   //
  2247   while(i > 12) {
  2248     i -= 4;
  2249     emit_int8(0x66); // size prefix
  2250     emit_int8(0x66);
  2251     emit_int8(0x66);
  2252     emit_int8((unsigned char)0x90);
  2253                      // nop
  2255   // 1 - 12 nops
  2256   if(i > 8) {
  2257     if(i > 9) {
  2258       i -= 1;
  2259       emit_int8(0x66);
  2261     i -= 3;
  2262     emit_int8(0x66);
  2263     emit_int8(0x66);
  2264     emit_int8((unsigned char)0x90);
  2266   // 1 - 8 nops
  2267   if(i > 4) {
  2268     if(i > 6) {
  2269       i -= 1;
  2270       emit_int8(0x66);
  2272     i -= 3;
  2273     emit_int8(0x66);
  2274     emit_int8(0x66);
  2275     emit_int8((unsigned char)0x90);
  2277   switch (i) {
  2278     case 4:
  2279       emit_int8(0x66);
  2280     case 3:
  2281       emit_int8(0x66);
  2282     case 2:
  2283       emit_int8(0x66);
  2284     case 1:
  2285       emit_int8((unsigned char)0x90);
  2286       break;
  2287     default:
  2288       assert(i == 0, " ");
  2292 void Assembler::notl(Register dst) {
  2293   int encode = prefix_and_encode(dst->encoding());
  2294   emit_int8((unsigned char)0xF7);
  2295   emit_int8((unsigned char)(0xD0 | encode));
  2298 void Assembler::orl(Address dst, int32_t imm32) {
  2299   InstructionMark im(this);
  2300   prefix(dst);
  2301   emit_arith_operand(0x81, rcx, dst, imm32);
  2304 void Assembler::orl(Register dst, int32_t imm32) {
  2305   prefix(dst);
  2306   emit_arith(0x81, 0xC8, dst, imm32);
  2309 void Assembler::orl(Register dst, Address src) {
  2310   InstructionMark im(this);
  2311   prefix(src, dst);
  2312   emit_int8(0x0B);
  2313   emit_operand(dst, src);
  2316 void Assembler::orl(Register dst, Register src) {
  2317   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2318   emit_arith(0x0B, 0xC0, dst, src);
  2321 void Assembler::packuswb(XMMRegister dst, Address src) {
  2322   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2323   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2324   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2327 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2329   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2332 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2333   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  2334   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256);
  2337 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) {
  2338   assert(VM_Version::supports_avx2(), "");
  2339   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256);
  2340   emit_int8(0x00);
  2341   emit_int8(0xC0 | encode);
  2342   emit_int8(imm8);
  2345 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2346   assert(VM_Version::supports_sse4_2(), "");
  2347   InstructionMark im(this);
  2348   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2349   emit_int8(0x61);
  2350   emit_operand(dst, src);
  2351   emit_int8(imm8);
  2354 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2355   assert(VM_Version::supports_sse4_2(), "");
  2356   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2357   emit_int8(0x61);
  2358   emit_int8((unsigned char)(0xC0 | encode));
  2359   emit_int8(imm8);
  2362 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
  2363   assert(VM_Version::supports_sse4_1(), "");
  2364   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
  2365   emit_int8(0x16);
  2366   emit_int8((unsigned char)(0xC0 | encode));
  2367   emit_int8(imm8);
  2370 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
  2371   assert(VM_Version::supports_sse4_1(), "");
  2372   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
  2373   emit_int8(0x16);
  2374   emit_int8((unsigned char)(0xC0 | encode));
  2375   emit_int8(imm8);
  2378 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
  2379   assert(VM_Version::supports_sse4_1(), "");
  2380   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
  2381   emit_int8(0x22);
  2382   emit_int8((unsigned char)(0xC0 | encode));
  2383   emit_int8(imm8);
  2386 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
  2387   assert(VM_Version::supports_sse4_1(), "");
  2388   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
  2389   emit_int8(0x22);
  2390   emit_int8((unsigned char)(0xC0 | encode));
  2391   emit_int8(imm8);
  2394 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2395   assert(VM_Version::supports_sse4_1(), "");
  2396   InstructionMark im(this);
  2397   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2398   emit_int8(0x30);
  2399   emit_operand(dst, src);
  2402 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2403   assert(VM_Version::supports_sse4_1(), "");
  2404   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2405   emit_int8(0x30);
  2406   emit_int8((unsigned char)(0xC0 | encode));
  2409 // generic
  2410 void Assembler::pop(Register dst) {
  2411   int encode = prefix_and_encode(dst->encoding());
  2412   emit_int8(0x58 | encode);
  2415 void Assembler::popcntl(Register dst, Address src) {
  2416   assert(VM_Version::supports_popcnt(), "must support");
  2417   InstructionMark im(this);
  2418   emit_int8((unsigned char)0xF3);
  2419   prefix(src, dst);
  2420   emit_int8(0x0F);
  2421   emit_int8((unsigned char)0xB8);
  2422   emit_operand(dst, src);
  2425 void Assembler::popcntl(Register dst, Register src) {
  2426   assert(VM_Version::supports_popcnt(), "must support");
  2427   emit_int8((unsigned char)0xF3);
  2428   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2429   emit_int8(0x0F);
  2430   emit_int8((unsigned char)0xB8);
  2431   emit_int8((unsigned char)(0xC0 | encode));
  2434 void Assembler::popf() {
  2435   emit_int8((unsigned char)0x9D);
  2438 #ifndef _LP64 // no 32bit push/pop on amd64
  2439 void Assembler::popl(Address dst) {
  2440   // NOTE: this will adjust stack by 8byte on 64bits
  2441   InstructionMark im(this);
  2442   prefix(dst);
  2443   emit_int8((unsigned char)0x8F);
  2444   emit_operand(rax, dst);
  2446 #endif
  2448 void Assembler::prefetch_prefix(Address src) {
  2449   prefix(src);
  2450   emit_int8(0x0F);
  2453 void Assembler::prefetchnta(Address src) {
  2454   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2455   InstructionMark im(this);
  2456   prefetch_prefix(src);
  2457   emit_int8(0x18);
  2458   emit_operand(rax, src); // 0, src
  2461 void Assembler::prefetchr(Address src) {
  2462   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2463   InstructionMark im(this);
  2464   prefetch_prefix(src);
  2465   emit_int8(0x0D);
  2466   emit_operand(rax, src); // 0, src
  2469 void Assembler::prefetcht0(Address src) {
  2470   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2471   InstructionMark im(this);
  2472   prefetch_prefix(src);
  2473   emit_int8(0x18);
  2474   emit_operand(rcx, src); // 1, src
  2477 void Assembler::prefetcht1(Address src) {
  2478   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2479   InstructionMark im(this);
  2480   prefetch_prefix(src);
  2481   emit_int8(0x18);
  2482   emit_operand(rdx, src); // 2, src
  2485 void Assembler::prefetcht2(Address src) {
  2486   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2487   InstructionMark im(this);
  2488   prefetch_prefix(src);
  2489   emit_int8(0x18);
  2490   emit_operand(rbx, src); // 3, src
  2493 void Assembler::prefetchw(Address src) {
  2494   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2495   InstructionMark im(this);
  2496   prefetch_prefix(src);
  2497   emit_int8(0x0D);
  2498   emit_operand(rcx, src); // 1, src
  2501 void Assembler::prefix(Prefix p) {
  2502   emit_int8(p);
  2505 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
  2506   assert(VM_Version::supports_ssse3(), "");
  2507   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2508   emit_int8(0x00);
  2509   emit_int8((unsigned char)(0xC0 | encode));
  2512 void Assembler::pshufb(XMMRegister dst, Address src) {
  2513   assert(VM_Version::supports_ssse3(), "");
  2514   InstructionMark im(this);
  2515   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2516   emit_int8(0x00);
  2517   emit_operand(dst, src);
  2520 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2521   assert(isByte(mode), "invalid value");
  2522   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2523   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
  2524   emit_int8(mode & 0xFF);
  2528 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2529   assert(isByte(mode), "invalid value");
  2530   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2531   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2532   InstructionMark im(this);
  2533   simd_prefix(dst, src, VEX_SIMD_66);
  2534   emit_int8(0x70);
  2535   emit_operand(dst, src);
  2536   emit_int8(mode & 0xFF);
  2539 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2540   assert(isByte(mode), "invalid value");
  2541   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2542   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
  2543   emit_int8(mode & 0xFF);
  2546 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2547   assert(isByte(mode), "invalid value");
  2548   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2549   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2550   InstructionMark im(this);
  2551   simd_prefix(dst, src, VEX_SIMD_F2);
  2552   emit_int8(0x70);
  2553   emit_operand(dst, src);
  2554   emit_int8(mode & 0xFF);
  2557 void Assembler::psrldq(XMMRegister dst, int shift) {
  2558   // Shift 128 bit value in xmm register by number of bytes.
  2559   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2560   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2561   emit_int8(0x73);
  2562   emit_int8((unsigned char)(0xC0 | encode));
  2563   emit_int8(shift);
  2566 void Assembler::ptest(XMMRegister dst, Address src) {
  2567   assert(VM_Version::supports_sse4_1(), "");
  2568   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2569   InstructionMark im(this);
  2570   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2571   emit_int8(0x17);
  2572   emit_operand(dst, src);
  2575 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2576   assert(VM_Version::supports_sse4_1(), "");
  2577   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2578   emit_int8(0x17);
  2579   emit_int8((unsigned char)(0xC0 | encode));
  2582 void Assembler::vptest(XMMRegister dst, Address src) {
  2583   assert(VM_Version::supports_avx(), "");
  2584   InstructionMark im(this);
  2585   bool vector256 = true;
  2586   assert(dst != xnoreg, "sanity");
  2587   int dst_enc = dst->encoding();
  2588   // swap src<->dst for encoding
  2589   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  2590   emit_int8(0x17);
  2591   emit_operand(dst, src);
  2594 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
  2595   assert(VM_Version::supports_avx(), "");
  2596   bool vector256 = true;
  2597   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  2598   emit_int8(0x17);
  2599   emit_int8((unsigned char)(0xC0 | encode));
  2602 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2603   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2604   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2605   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2608 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2610   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2613 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2615   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2616   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2619 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2620   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2621   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2624 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  2625   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2626   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
  2629 void Assembler::push(int32_t imm32) {
  2630   // in 64bits we push 64bits onto the stack but only
  2631   // take a 32bit immediate
  2632   emit_int8(0x68);
  2633   emit_int32(imm32);
  2636 void Assembler::push(Register src) {
  2637   int encode = prefix_and_encode(src->encoding());
  2639   emit_int8(0x50 | encode);
  2642 void Assembler::pushf() {
  2643   emit_int8((unsigned char)0x9C);
  2646 #ifndef _LP64 // no 32bit push/pop on amd64
  2647 void Assembler::pushl(Address src) {
  2648   // Note this will push 64bit on 64bit
  2649   InstructionMark im(this);
  2650   prefix(src);
  2651   emit_int8((unsigned char)0xFF);
  2652   emit_operand(rsi, src);
  2654 #endif
  2656 void Assembler::rcll(Register dst, int imm8) {
  2657   assert(isShiftCount(imm8), "illegal shift count");
  2658   int encode = prefix_and_encode(dst->encoding());
  2659   if (imm8 == 1) {
  2660     emit_int8((unsigned char)0xD1);
  2661     emit_int8((unsigned char)(0xD0 | encode));
  2662   } else {
  2663     emit_int8((unsigned char)0xC1);
  2664     emit_int8((unsigned char)0xD0 | encode);
  2665     emit_int8(imm8);
  2669 // copies data from [esi] to [edi] using rcx pointer sized words
  2670 // generic
  2671 void Assembler::rep_mov() {
  2672   emit_int8((unsigned char)0xF3);
  2673   // MOVSQ
  2674   LP64_ONLY(prefix(REX_W));
  2675   emit_int8((unsigned char)0xA5);
  2678 // sets rcx bytes with rax, value at [edi]
  2679 void Assembler::rep_stosb() {
  2680   emit_int8((unsigned char)0xF3); // REP
  2681   LP64_ONLY(prefix(REX_W));
  2682   emit_int8((unsigned char)0xAA); // STOSB
  2685 // sets rcx pointer sized words with rax, value at [edi]
  2686 // generic
  2687 void Assembler::rep_stos() {
  2688   emit_int8((unsigned char)0xF3); // REP
  2689   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
  2690   emit_int8((unsigned char)0xAB);
  2693 // scans rcx pointer sized words at [edi] for occurance of rax,
  2694 // generic
  2695 void Assembler::repne_scan() { // repne_scan
  2696   emit_int8((unsigned char)0xF2);
  2697   // SCASQ
  2698   LP64_ONLY(prefix(REX_W));
  2699   emit_int8((unsigned char)0xAF);
  2702 #ifdef _LP64
  2703 // scans rcx 4 byte words at [edi] for occurance of rax,
  2704 // generic
  2705 void Assembler::repne_scanl() { // repne_scan
  2706   emit_int8((unsigned char)0xF2);
  2707   // SCASL
  2708   emit_int8((unsigned char)0xAF);
  2710 #endif
  2712 void Assembler::ret(int imm16) {
  2713   if (imm16 == 0) {
  2714     emit_int8((unsigned char)0xC3);
  2715   } else {
  2716     emit_int8((unsigned char)0xC2);
  2717     emit_int16(imm16);
  2721 void Assembler::sahf() {
  2722 #ifdef _LP64
  2723   // Not supported in 64bit mode
  2724   ShouldNotReachHere();
  2725 #endif
  2726   emit_int8((unsigned char)0x9E);
  2729 void Assembler::sarl(Register dst, int imm8) {
  2730   int encode = prefix_and_encode(dst->encoding());
  2731   assert(isShiftCount(imm8), "illegal shift count");
  2732   if (imm8 == 1) {
  2733     emit_int8((unsigned char)0xD1);
  2734     emit_int8((unsigned char)(0xF8 | encode));
  2735   } else {
  2736     emit_int8((unsigned char)0xC1);
  2737     emit_int8((unsigned char)(0xF8 | encode));
  2738     emit_int8(imm8);
  2742 void Assembler::sarl(Register dst) {
  2743   int encode = prefix_and_encode(dst->encoding());
  2744   emit_int8((unsigned char)0xD3);
  2745   emit_int8((unsigned char)(0xF8 | encode));
  2748 void Assembler::sbbl(Address dst, int32_t imm32) {
  2749   InstructionMark im(this);
  2750   prefix(dst);
  2751   emit_arith_operand(0x81, rbx, dst, imm32);
  2754 void Assembler::sbbl(Register dst, int32_t imm32) {
  2755   prefix(dst);
  2756   emit_arith(0x81, 0xD8, dst, imm32);
  2760 void Assembler::sbbl(Register dst, Address src) {
  2761   InstructionMark im(this);
  2762   prefix(src, dst);
  2763   emit_int8(0x1B);
  2764   emit_operand(dst, src);
  2767 void Assembler::sbbl(Register dst, Register src) {
  2768   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2769   emit_arith(0x1B, 0xC0, dst, src);
  2772 void Assembler::setb(Condition cc, Register dst) {
  2773   assert(0 <= cc && cc < 16, "illegal cc");
  2774   int encode = prefix_and_encode(dst->encoding(), true);
  2775   emit_int8(0x0F);
  2776   emit_int8((unsigned char)0x90 | cc);
  2777   emit_int8((unsigned char)(0xC0 | encode));
  2780 void Assembler::shll(Register dst, int imm8) {
  2781   assert(isShiftCount(imm8), "illegal shift count");
  2782   int encode = prefix_and_encode(dst->encoding());
  2783   if (imm8 == 1 ) {
  2784     emit_int8((unsigned char)0xD1);
  2785     emit_int8((unsigned char)(0xE0 | encode));
  2786   } else {
  2787     emit_int8((unsigned char)0xC1);
  2788     emit_int8((unsigned char)(0xE0 | encode));
  2789     emit_int8(imm8);
  2793 void Assembler::shll(Register dst) {
  2794   int encode = prefix_and_encode(dst->encoding());
  2795   emit_int8((unsigned char)0xD3);
  2796   emit_int8((unsigned char)(0xE0 | encode));
  2799 void Assembler::shrl(Register dst, int imm8) {
  2800   assert(isShiftCount(imm8), "illegal shift count");
  2801   int encode = prefix_and_encode(dst->encoding());
  2802   emit_int8((unsigned char)0xC1);
  2803   emit_int8((unsigned char)(0xE8 | encode));
  2804   emit_int8(imm8);
  2807 void Assembler::shrl(Register dst) {
  2808   int encode = prefix_and_encode(dst->encoding());
  2809   emit_int8((unsigned char)0xD3);
  2810   emit_int8((unsigned char)(0xE8 | encode));
  2813 // copies a single word from [esi] to [edi]
  2814 void Assembler::smovl() {
  2815   emit_int8((unsigned char)0xA5);
  2818 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2819   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2820   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2823 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2824   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2825   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2828 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2829   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2830   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2833 void Assembler::std() {
  2834   emit_int8((unsigned char)0xFD);
  2837 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2838   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2839   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2842 void Assembler::stmxcsr( Address dst) {
  2843   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2844   InstructionMark im(this);
  2845   prefix(dst);
  2846   emit_int8(0x0F);
  2847   emit_int8((unsigned char)0xAE);
  2848   emit_operand(as_Register(3), dst);
  2851 void Assembler::subl(Address dst, int32_t imm32) {
  2852   InstructionMark im(this);
  2853   prefix(dst);
  2854   emit_arith_operand(0x81, rbp, dst, imm32);
  2857 void Assembler::subl(Address dst, Register src) {
  2858   InstructionMark im(this);
  2859   prefix(dst, src);
  2860   emit_int8(0x29);
  2861   emit_operand(src, dst);
  2864 void Assembler::subl(Register dst, int32_t imm32) {
  2865   prefix(dst);
  2866   emit_arith(0x81, 0xE8, dst, imm32);
  2869 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2870 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2871   prefix(dst);
  2872   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2875 void Assembler::subl(Register dst, Address src) {
  2876   InstructionMark im(this);
  2877   prefix(src, dst);
  2878   emit_int8(0x2B);
  2879   emit_operand(dst, src);
  2882 void Assembler::subl(Register dst, Register src) {
  2883   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2884   emit_arith(0x2B, 0xC0, dst, src);
  2887 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2888   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2889   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2892 void Assembler::subsd(XMMRegister dst, Address src) {
  2893   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2894   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2897 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2898   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2899   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2902 void Assembler::subss(XMMRegister dst, Address src) {
  2903   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2904   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2907 void Assembler::testb(Register dst, int imm8) {
  2908   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2909   (void) prefix_and_encode(dst->encoding(), true);
  2910   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2913 void Assembler::testl(Register dst, int32_t imm32) {
  2914   // not using emit_arith because test
  2915   // doesn't support sign-extension of
  2916   // 8bit operands
  2917   int encode = dst->encoding();
  2918   if (encode == 0) {
  2919     emit_int8((unsigned char)0xA9);
  2920   } else {
  2921     encode = prefix_and_encode(encode);
  2922     emit_int8((unsigned char)0xF7);
  2923     emit_int8((unsigned char)(0xC0 | encode));
  2925   emit_int32(imm32);
  2928 void Assembler::testl(Register dst, Register src) {
  2929   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2930   emit_arith(0x85, 0xC0, dst, src);
  2933 void Assembler::testl(Register dst, Address  src) {
  2934   InstructionMark im(this);
  2935   prefix(src, dst);
  2936   emit_int8((unsigned char)0x85);
  2937   emit_operand(dst, src);
  2940 void Assembler::tzcntl(Register dst, Register src) {
  2941   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
  2942   emit_int8((unsigned char)0xF3);
  2943   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2944   emit_int8(0x0F);
  2945   emit_int8((unsigned char)0xBC);
  2946   emit_int8((unsigned char)0xC0 | encode);
  2949 void Assembler::tzcntq(Register dst, Register src) {
  2950   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
  2951   emit_int8((unsigned char)0xF3);
  2952   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2953   emit_int8(0x0F);
  2954   emit_int8((unsigned char)0xBC);
  2955   emit_int8((unsigned char)(0xC0 | encode));
  2958 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2959   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2960   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2963 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2964   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2965   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2968 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2969   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2970   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2973 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2974   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2975   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2979 void Assembler::xaddl(Address dst, Register src) {
  2980   InstructionMark im(this);
  2981   prefix(dst, src);
  2982   emit_int8(0x0F);
  2983   emit_int8((unsigned char)0xC1);
  2984   emit_operand(src, dst);
  2987 void Assembler::xchgl(Register dst, Address src) { // xchg
  2988   InstructionMark im(this);
  2989   prefix(src, dst);
  2990   emit_int8((unsigned char)0x87);
  2991   emit_operand(dst, src);
  2994 void Assembler::xchgl(Register dst, Register src) {
  2995   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2996   emit_int8((unsigned char)0x87);
  2997   emit_int8((unsigned char)(0xC0 | encode));
  3000 void Assembler::xgetbv() {
  3001   emit_int8(0x0F);
  3002   emit_int8(0x01);
  3003   emit_int8((unsigned char)0xD0);
  3006 void Assembler::xorl(Register dst, int32_t imm32) {
  3007   prefix(dst);
  3008   emit_arith(0x81, 0xF0, dst, imm32);
  3011 void Assembler::xorl(Register dst, Address src) {
  3012   InstructionMark im(this);
  3013   prefix(src, dst);
  3014   emit_int8(0x33);
  3015   emit_operand(dst, src);
  3018 void Assembler::xorl(Register dst, Register src) {
  3019   (void) prefix_and_encode(dst->encoding(), src->encoding());
  3020   emit_arith(0x33, 0xC0, dst, src);
  3024 // AVX 3-operands scalar float-point arithmetic instructions
  3026 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  3027   assert(VM_Version::supports_avx(), "");
  3028   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3031 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3032   assert(VM_Version::supports_avx(), "");
  3033   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3036 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  3037   assert(VM_Version::supports_avx(), "");
  3038   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3041 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3042   assert(VM_Version::supports_avx(), "");
  3043   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3046 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  3047   assert(VM_Version::supports_avx(), "");
  3048   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3051 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3052   assert(VM_Version::supports_avx(), "");
  3053   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3056 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  3057   assert(VM_Version::supports_avx(), "");
  3058   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3061 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3062   assert(VM_Version::supports_avx(), "");
  3063   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3066 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  3067   assert(VM_Version::supports_avx(), "");
  3068   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3071 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3072   assert(VM_Version::supports_avx(), "");
  3073   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3076 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  3077   assert(VM_Version::supports_avx(), "");
  3078   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3081 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3082   assert(VM_Version::supports_avx(), "");
  3083   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3086 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  3087   assert(VM_Version::supports_avx(), "");
  3088   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3091 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3092   assert(VM_Version::supports_avx(), "");
  3093   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3096 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  3097   assert(VM_Version::supports_avx(), "");
  3098   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3101 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3102   assert(VM_Version::supports_avx(), "");
  3103   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3106 //====================VECTOR ARITHMETIC=====================================
  3108 // Float-point vector arithmetic
  3110 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
  3111   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3112   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
  3115 void Assembler::addps(XMMRegister dst, XMMRegister src) {
  3116   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3117   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
  3120 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3121   assert(VM_Version::supports_avx(), "");
  3122   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  3125 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3126   assert(VM_Version::supports_avx(), "");
  3127   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  3130 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3131   assert(VM_Version::supports_avx(), "");
  3132   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  3135 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3136   assert(VM_Version::supports_avx(), "");
  3137   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  3140 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
  3141   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3142   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
  3145 void Assembler::subps(XMMRegister dst, XMMRegister src) {
  3146   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3147   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
  3150 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3151   assert(VM_Version::supports_avx(), "");
  3152   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  3155 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3156   assert(VM_Version::supports_avx(), "");
  3157   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  3160 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3161   assert(VM_Version::supports_avx(), "");
  3162   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  3165 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3166   assert(VM_Version::supports_avx(), "");
  3167   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  3170 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
  3171   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3172   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
  3175 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
  3176   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3177   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
  3180 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3181   assert(VM_Version::supports_avx(), "");
  3182   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3185 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3186   assert(VM_Version::supports_avx(), "");
  3187   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3190 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3191   assert(VM_Version::supports_avx(), "");
  3192   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3195 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3196   assert(VM_Version::supports_avx(), "");
  3197   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3200 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
  3201   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3202   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
  3205 void Assembler::divps(XMMRegister dst, XMMRegister src) {
  3206   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3207   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
  3210 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3211   assert(VM_Version::supports_avx(), "");
  3212   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3215 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3216   assert(VM_Version::supports_avx(), "");
  3217   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3220 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3221   assert(VM_Version::supports_avx(), "");
  3222   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3225 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3226   assert(VM_Version::supports_avx(), "");
  3227   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3230 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  3231   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3232   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3235 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  3236   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3237   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3240 void Assembler::andps(XMMRegister dst, Address src) {
  3241   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3242   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3245 void Assembler::andpd(XMMRegister dst, Address src) {
  3246   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3247   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3250 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3251   assert(VM_Version::supports_avx(), "");
  3252   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3255 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3256   assert(VM_Version::supports_avx(), "");
  3257   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3260 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3261   assert(VM_Version::supports_avx(), "");
  3262   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3265 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3266   assert(VM_Version::supports_avx(), "");
  3267   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3270 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  3271   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3272   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3275 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3276   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3277   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3280 void Assembler::xorpd(XMMRegister dst, Address src) {
  3281   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3282   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3285 void Assembler::xorps(XMMRegister dst, Address src) {
  3286   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3287   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3290 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3291   assert(VM_Version::supports_avx(), "");
  3292   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3295 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3296   assert(VM_Version::supports_avx(), "");
  3297   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3300 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3301   assert(VM_Version::supports_avx(), "");
  3302   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3305 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3306   assert(VM_Version::supports_avx(), "");
  3307   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3311 // Integer vector arithmetic
  3312 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
  3313   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3314   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
  3317 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
  3318   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3319   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
  3322 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
  3323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3324   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
  3327 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
  3328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3329   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
  3332 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3333   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3334   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3337 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3338   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3339   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3342 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3343   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3344   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3347 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3348   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3349   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3352 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3353   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3354   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3357 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3358   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3359   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3362 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3363   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3364   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3367 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3368   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3369   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3372 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
  3373   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3374   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
  3377 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
  3378   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3379   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
  3382 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
  3383   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3384   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
  3387 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
  3388   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3389   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
  3392 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3393   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3394   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3397 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3398   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3399   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3402 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3403   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3404   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3407 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3408   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3409   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3412 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3413   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3414   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3417 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3418   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3419   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3422 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3423   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3424   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3427 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3428   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3429   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3432 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
  3433   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3434   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
  3437 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
  3438   assert(VM_Version::supports_sse4_1(), "");
  3439   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  3440   emit_int8(0x40);
  3441   emit_int8((unsigned char)(0xC0 | encode));
  3444 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3445   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3446   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3449 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3450   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3451   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3452   emit_int8(0x40);
  3453   emit_int8((unsigned char)(0xC0 | encode));
  3456 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3457   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3458   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3461 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3462   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3463   InstructionMark im(this);
  3464   int dst_enc = dst->encoding();
  3465   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3466   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  3467   emit_int8(0x40);
  3468   emit_operand(dst, src);
  3471 // Shift packed integers left by specified number of bits.
  3472 void Assembler::psllw(XMMRegister dst, int shift) {
  3473   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3474   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3475   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3476   emit_int8(0x71);
  3477   emit_int8((unsigned char)(0xC0 | encode));
  3478   emit_int8(shift & 0xFF);
  3481 void Assembler::pslld(XMMRegister dst, int shift) {
  3482   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3483   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3484   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3485   emit_int8(0x72);
  3486   emit_int8((unsigned char)(0xC0 | encode));
  3487   emit_int8(shift & 0xFF);
  3490 void Assembler::psllq(XMMRegister dst, int shift) {
  3491   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3492   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3493   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3494   emit_int8(0x73);
  3495   emit_int8((unsigned char)(0xC0 | encode));
  3496   emit_int8(shift & 0xFF);
  3499 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
  3500   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3501   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
  3504 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
  3505   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3506   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
  3509 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
  3510   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3511   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
  3514 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3515   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3516   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3517   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
  3518   emit_int8(shift & 0xFF);
  3521 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3522   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3523   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3524   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
  3525   emit_int8(shift & 0xFF);
  3528 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3529   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3530   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3531   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
  3532   emit_int8(shift & 0xFF);
  3535 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3536   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3537   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
  3540 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3541   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3542   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
  3545 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3546   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3547   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
  3550 // Shift packed integers logically right by specified number of bits.
  3551 void Assembler::psrlw(XMMRegister dst, int shift) {
  3552   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3553   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
  3554   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3555   emit_int8(0x71);
  3556   emit_int8((unsigned char)(0xC0 | encode));
  3557   emit_int8(shift & 0xFF);
  3560 void Assembler::psrld(XMMRegister dst, int shift) {
  3561   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3562   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
  3563   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3564   emit_int8(0x72);
  3565   emit_int8((unsigned char)(0xC0 | encode));
  3566   emit_int8(shift & 0xFF);
  3569 void Assembler::psrlq(XMMRegister dst, int shift) {
  3570   // Do not confuse it with psrldq SSE2 instruction which
  3571   // shifts 128 bit value in xmm register by number of bytes.
  3572   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3573   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3574   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3575   emit_int8(0x73);
  3576   emit_int8((unsigned char)(0xC0 | encode));
  3577   emit_int8(shift & 0xFF);
  3580 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
  3581   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3582   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
  3585 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
  3586   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3587   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
  3590 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
  3591   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3592   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
  3595 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3596   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3597   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3598   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
  3599   emit_int8(shift & 0xFF);
  3602 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3603   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3604   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3605   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
  3606   emit_int8(shift & 0xFF);
  3609 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3610   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3611   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3612   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
  3613   emit_int8(shift & 0xFF);
  3616 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3617   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3618   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
  3621 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3622   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3623   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
  3626 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3627   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3628   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
  3631 // Shift packed integers arithmetically right by specified number of bits.
  3632 void Assembler::psraw(XMMRegister dst, int shift) {
  3633   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3634   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3635   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3636   emit_int8(0x71);
  3637   emit_int8((unsigned char)(0xC0 | encode));
  3638   emit_int8(shift & 0xFF);
  3641 void Assembler::psrad(XMMRegister dst, int shift) {
  3642   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3643   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
  3644   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3645   emit_int8(0x72);
  3646   emit_int8((unsigned char)(0xC0 | encode));
  3647   emit_int8(shift & 0xFF);
  3650 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
  3651   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3652   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
  3655 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
  3656   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3657   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
  3660 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3661   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3662   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3663   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
  3664   emit_int8(shift & 0xFF);
  3667 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3668   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3669   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3670   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
  3671   emit_int8(shift & 0xFF);
  3674 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3675   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3676   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
  3679 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3680   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3681   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
  3685 // AND packed integers
  3686 void Assembler::pand(XMMRegister dst, XMMRegister src) {
  3687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3688   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
  3691 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3692   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3693   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3696 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3697   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3698   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3701 void Assembler::por(XMMRegister dst, XMMRegister src) {
  3702   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3703   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
  3706 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3707   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3708   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3711 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3712   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3713   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3716 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  3717   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3718   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
  3721 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3722   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3723   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3726 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3727   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3728   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3732 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3733   assert(VM_Version::supports_avx(), "");
  3734   bool vector256 = true;
  3735   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3736   emit_int8(0x18);
  3737   emit_int8((unsigned char)(0xC0 | encode));
  3738   // 0x00 - insert into lower 128 bits
  3739   // 0x01 - insert into upper 128 bits
  3740   emit_int8(0x01);
  3743 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
  3744   assert(VM_Version::supports_avx(), "");
  3745   InstructionMark im(this);
  3746   bool vector256 = true;
  3747   assert(dst != xnoreg, "sanity");
  3748   int dst_enc = dst->encoding();
  3749   // swap src<->dst for encoding
  3750   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3751   emit_int8(0x18);
  3752   emit_operand(dst, src);
  3753   // 0x01 - insert into upper 128 bits
  3754   emit_int8(0x01);
  3757 void Assembler::vextractf128h(Address dst, XMMRegister src) {
  3758   assert(VM_Version::supports_avx(), "");
  3759   InstructionMark im(this);
  3760   bool vector256 = true;
  3761   assert(src != xnoreg, "sanity");
  3762   int src_enc = src->encoding();
  3763   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3764   emit_int8(0x19);
  3765   emit_operand(src, dst);
  3766   // 0x01 - extract from upper 128 bits
  3767   emit_int8(0x01);
  3770 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3771   assert(VM_Version::supports_avx2(), "");
  3772   bool vector256 = true;
  3773   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3774   emit_int8(0x38);
  3775   emit_int8((unsigned char)(0xC0 | encode));
  3776   // 0x00 - insert into lower 128 bits
  3777   // 0x01 - insert into upper 128 bits
  3778   emit_int8(0x01);
  3781 void Assembler::vinserti128h(XMMRegister dst, Address src) {
  3782   assert(VM_Version::supports_avx2(), "");
  3783   InstructionMark im(this);
  3784   bool vector256 = true;
  3785   assert(dst != xnoreg, "sanity");
  3786   int dst_enc = dst->encoding();
  3787   // swap src<->dst for encoding
  3788   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3789   emit_int8(0x38);
  3790   emit_operand(dst, src);
  3791   // 0x01 - insert into upper 128 bits
  3792   emit_int8(0x01);
  3795 void Assembler::vextracti128h(Address dst, XMMRegister src) {
  3796   assert(VM_Version::supports_avx2(), "");
  3797   InstructionMark im(this);
  3798   bool vector256 = true;
  3799   assert(src != xnoreg, "sanity");
  3800   int src_enc = src->encoding();
  3801   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3802   emit_int8(0x39);
  3803   emit_operand(src, dst);
  3804   // 0x01 - extract from upper 128 bits
  3805   emit_int8(0x01);
  3808 // duplicate 4-bytes integer data from src into 8 locations in dest
  3809 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
  3810   assert(VM_Version::supports_avx2(), "");
  3811   bool vector256 = true;
  3812   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3813   emit_int8(0x58);
  3814   emit_int8((unsigned char)(0xC0 | encode));
  3817 // Carry-Less Multiplication Quadword
  3818 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
  3819   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
  3820   bool vector256 = false;
  3821   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3822   emit_int8(0x44);
  3823   emit_int8((unsigned char)(0xC0 | encode));
  3824   emit_int8((unsigned char)mask);
  3827 void Assembler::vzeroupper() {
  3828   assert(VM_Version::supports_avx(), "");
  3829   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
  3830   emit_int8(0x77);
  3834 #ifndef _LP64
  3835 // 32bit only pieces of the assembler
  3837 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3838   // NO PREFIX AS NEVER 64BIT
  3839   InstructionMark im(this);
  3840   emit_int8((unsigned char)0x81);
  3841   emit_int8((unsigned char)(0xF8 | src1->encoding()));
  3842   emit_data(imm32, rspec, 0);
  3845 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3846   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3847   InstructionMark im(this);
  3848   emit_int8((unsigned char)0x81);
  3849   emit_operand(rdi, src1);
  3850   emit_data(imm32, rspec, 0);
  3853 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3854 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3855 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3856 void Assembler::cmpxchg8(Address adr) {
  3857   InstructionMark im(this);
  3858   emit_int8(0x0F);
  3859   emit_int8((unsigned char)0xC7);
  3860   emit_operand(rcx, adr);
  3863 void Assembler::decl(Register dst) {
  3864   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3865  emit_int8(0x48 | dst->encoding());
  3868 #endif // _LP64
  3870 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3872 void Assembler::fabs() {
  3873   emit_int8((unsigned char)0xD9);
  3874   emit_int8((unsigned char)0xE1);
  3877 void Assembler::fadd(int i) {
  3878   emit_farith(0xD8, 0xC0, i);
  3881 void Assembler::fadd_d(Address src) {
  3882   InstructionMark im(this);
  3883   emit_int8((unsigned char)0xDC);
  3884   emit_operand32(rax, src);
  3887 void Assembler::fadd_s(Address src) {
  3888   InstructionMark im(this);
  3889   emit_int8((unsigned char)0xD8);
  3890   emit_operand32(rax, src);
  3893 void Assembler::fadda(int i) {
  3894   emit_farith(0xDC, 0xC0, i);
  3897 void Assembler::faddp(int i) {
  3898   emit_farith(0xDE, 0xC0, i);
  3901 void Assembler::fchs() {
  3902   emit_int8((unsigned char)0xD9);
  3903   emit_int8((unsigned char)0xE0);
  3906 void Assembler::fcom(int i) {
  3907   emit_farith(0xD8, 0xD0, i);
  3910 void Assembler::fcomp(int i) {
  3911   emit_farith(0xD8, 0xD8, i);
  3914 void Assembler::fcomp_d(Address src) {
  3915   InstructionMark im(this);
  3916   emit_int8((unsigned char)0xDC);
  3917   emit_operand32(rbx, src);
  3920 void Assembler::fcomp_s(Address src) {
  3921   InstructionMark im(this);
  3922   emit_int8((unsigned char)0xD8);
  3923   emit_operand32(rbx, src);
  3926 void Assembler::fcompp() {
  3927   emit_int8((unsigned char)0xDE);
  3928   emit_int8((unsigned char)0xD9);
  3931 void Assembler::fcos() {
  3932   emit_int8((unsigned char)0xD9);
  3933   emit_int8((unsigned char)0xFF);
  3936 void Assembler::fdecstp() {
  3937   emit_int8((unsigned char)0xD9);
  3938   emit_int8((unsigned char)0xF6);
  3941 void Assembler::fdiv(int i) {
  3942   emit_farith(0xD8, 0xF0, i);
  3945 void Assembler::fdiv_d(Address src) {
  3946   InstructionMark im(this);
  3947   emit_int8((unsigned char)0xDC);
  3948   emit_operand32(rsi, src);
  3951 void Assembler::fdiv_s(Address src) {
  3952   InstructionMark im(this);
  3953   emit_int8((unsigned char)0xD8);
  3954   emit_operand32(rsi, src);
  3957 void Assembler::fdiva(int i) {
  3958   emit_farith(0xDC, 0xF8, i);
  3961 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3962 //       is erroneous for some of the floating-point instructions below.
  3964 void Assembler::fdivp(int i) {
  3965   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3968 void Assembler::fdivr(int i) {
  3969   emit_farith(0xD8, 0xF8, i);
  3972 void Assembler::fdivr_d(Address src) {
  3973   InstructionMark im(this);
  3974   emit_int8((unsigned char)0xDC);
  3975   emit_operand32(rdi, src);
  3978 void Assembler::fdivr_s(Address src) {
  3979   InstructionMark im(this);
  3980   emit_int8((unsigned char)0xD8);
  3981   emit_operand32(rdi, src);
  3984 void Assembler::fdivra(int i) {
  3985   emit_farith(0xDC, 0xF0, i);
  3988 void Assembler::fdivrp(int i) {
  3989   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3992 void Assembler::ffree(int i) {
  3993   emit_farith(0xDD, 0xC0, i);
  3996 void Assembler::fild_d(Address adr) {
  3997   InstructionMark im(this);
  3998   emit_int8((unsigned char)0xDF);
  3999   emit_operand32(rbp, adr);
  4002 void Assembler::fild_s(Address adr) {
  4003   InstructionMark im(this);
  4004   emit_int8((unsigned char)0xDB);
  4005   emit_operand32(rax, adr);
  4008 void Assembler::fincstp() {
  4009   emit_int8((unsigned char)0xD9);
  4010   emit_int8((unsigned char)0xF7);
  4013 void Assembler::finit() {
  4014   emit_int8((unsigned char)0x9B);
  4015   emit_int8((unsigned char)0xDB);
  4016   emit_int8((unsigned char)0xE3);
  4019 void Assembler::fist_s(Address adr) {
  4020   InstructionMark im(this);
  4021   emit_int8((unsigned char)0xDB);
  4022   emit_operand32(rdx, adr);
  4025 void Assembler::fistp_d(Address adr) {
  4026   InstructionMark im(this);
  4027   emit_int8((unsigned char)0xDF);
  4028   emit_operand32(rdi, adr);
  4031 void Assembler::fistp_s(Address adr) {
  4032   InstructionMark im(this);
  4033   emit_int8((unsigned char)0xDB);
  4034   emit_operand32(rbx, adr);
  4037 void Assembler::fld1() {
  4038   emit_int8((unsigned char)0xD9);
  4039   emit_int8((unsigned char)0xE8);
  4042 void Assembler::fld_d(Address adr) {
  4043   InstructionMark im(this);
  4044   emit_int8((unsigned char)0xDD);
  4045   emit_operand32(rax, adr);
  4048 void Assembler::fld_s(Address adr) {
  4049   InstructionMark im(this);
  4050   emit_int8((unsigned char)0xD9);
  4051   emit_operand32(rax, adr);
  4055 void Assembler::fld_s(int index) {
  4056   emit_farith(0xD9, 0xC0, index);
  4059 void Assembler::fld_x(Address adr) {
  4060   InstructionMark im(this);
  4061   emit_int8((unsigned char)0xDB);
  4062   emit_operand32(rbp, adr);
  4065 void Assembler::fldcw(Address src) {
  4066   InstructionMark im(this);
  4067   emit_int8((unsigned char)0xD9);
  4068   emit_operand32(rbp, src);
  4071 void Assembler::fldenv(Address src) {
  4072   InstructionMark im(this);
  4073   emit_int8((unsigned char)0xD9);
  4074   emit_operand32(rsp, src);
  4077 void Assembler::fldlg2() {
  4078   emit_int8((unsigned char)0xD9);
  4079   emit_int8((unsigned char)0xEC);
  4082 void Assembler::fldln2() {
  4083   emit_int8((unsigned char)0xD9);
  4084   emit_int8((unsigned char)0xED);
  4087 void Assembler::fldz() {
  4088   emit_int8((unsigned char)0xD9);
  4089   emit_int8((unsigned char)0xEE);
  4092 void Assembler::flog() {
  4093   fldln2();
  4094   fxch();
  4095   fyl2x();
  4098 void Assembler::flog10() {
  4099   fldlg2();
  4100   fxch();
  4101   fyl2x();
  4104 void Assembler::fmul(int i) {
  4105   emit_farith(0xD8, 0xC8, i);
  4108 void Assembler::fmul_d(Address src) {
  4109   InstructionMark im(this);
  4110   emit_int8((unsigned char)0xDC);
  4111   emit_operand32(rcx, src);
  4114 void Assembler::fmul_s(Address src) {
  4115   InstructionMark im(this);
  4116   emit_int8((unsigned char)0xD8);
  4117   emit_operand32(rcx, src);
  4120 void Assembler::fmula(int i) {
  4121   emit_farith(0xDC, 0xC8, i);
  4124 void Assembler::fmulp(int i) {
  4125   emit_farith(0xDE, 0xC8, i);
  4128 void Assembler::fnsave(Address dst) {
  4129   InstructionMark im(this);
  4130   emit_int8((unsigned char)0xDD);
  4131   emit_operand32(rsi, dst);
  4134 void Assembler::fnstcw(Address src) {
  4135   InstructionMark im(this);
  4136   emit_int8((unsigned char)0x9B);
  4137   emit_int8((unsigned char)0xD9);
  4138   emit_operand32(rdi, src);
  4141 void Assembler::fnstsw_ax() {
  4142   emit_int8((unsigned char)0xDF);
  4143   emit_int8((unsigned char)0xE0);
  4146 void Assembler::fprem() {
  4147   emit_int8((unsigned char)0xD9);
  4148   emit_int8((unsigned char)0xF8);
  4151 void Assembler::fprem1() {
  4152   emit_int8((unsigned char)0xD9);
  4153   emit_int8((unsigned char)0xF5);
  4156 void Assembler::frstor(Address src) {
  4157   InstructionMark im(this);
  4158   emit_int8((unsigned char)0xDD);
  4159   emit_operand32(rsp, src);
  4162 void Assembler::fsin() {
  4163   emit_int8((unsigned char)0xD9);
  4164   emit_int8((unsigned char)0xFE);
  4167 void Assembler::fsqrt() {
  4168   emit_int8((unsigned char)0xD9);
  4169   emit_int8((unsigned char)0xFA);
  4172 void Assembler::fst_d(Address adr) {
  4173   InstructionMark im(this);
  4174   emit_int8((unsigned char)0xDD);
  4175   emit_operand32(rdx, adr);
  4178 void Assembler::fst_s(Address adr) {
  4179   InstructionMark im(this);
  4180   emit_int8((unsigned char)0xD9);
  4181   emit_operand32(rdx, adr);
  4184 void Assembler::fstp_d(Address adr) {
  4185   InstructionMark im(this);
  4186   emit_int8((unsigned char)0xDD);
  4187   emit_operand32(rbx, adr);
  4190 void Assembler::fstp_d(int index) {
  4191   emit_farith(0xDD, 0xD8, index);
  4194 void Assembler::fstp_s(Address adr) {
  4195   InstructionMark im(this);
  4196   emit_int8((unsigned char)0xD9);
  4197   emit_operand32(rbx, adr);
  4200 void Assembler::fstp_x(Address adr) {
  4201   InstructionMark im(this);
  4202   emit_int8((unsigned char)0xDB);
  4203   emit_operand32(rdi, adr);
  4206 void Assembler::fsub(int i) {
  4207   emit_farith(0xD8, 0xE0, i);
  4210 void Assembler::fsub_d(Address src) {
  4211   InstructionMark im(this);
  4212   emit_int8((unsigned char)0xDC);
  4213   emit_operand32(rsp, src);
  4216 void Assembler::fsub_s(Address src) {
  4217   InstructionMark im(this);
  4218   emit_int8((unsigned char)0xD8);
  4219   emit_operand32(rsp, src);
  4222 void Assembler::fsuba(int i) {
  4223   emit_farith(0xDC, 0xE8, i);
  4226 void Assembler::fsubp(int i) {
  4227   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  4230 void Assembler::fsubr(int i) {
  4231   emit_farith(0xD8, 0xE8, i);
  4234 void Assembler::fsubr_d(Address src) {
  4235   InstructionMark im(this);
  4236   emit_int8((unsigned char)0xDC);
  4237   emit_operand32(rbp, src);
  4240 void Assembler::fsubr_s(Address src) {
  4241   InstructionMark im(this);
  4242   emit_int8((unsigned char)0xD8);
  4243   emit_operand32(rbp, src);
  4246 void Assembler::fsubra(int i) {
  4247   emit_farith(0xDC, 0xE0, i);
  4250 void Assembler::fsubrp(int i) {
  4251   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  4254 void Assembler::ftan() {
  4255   emit_int8((unsigned char)0xD9);
  4256   emit_int8((unsigned char)0xF2);
  4257   emit_int8((unsigned char)0xDD);
  4258   emit_int8((unsigned char)0xD8);
  4261 void Assembler::ftst() {
  4262   emit_int8((unsigned char)0xD9);
  4263   emit_int8((unsigned char)0xE4);
  4266 void Assembler::fucomi(int i) {
  4267   // make sure the instruction is supported (introduced for P6, together with cmov)
  4268   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4269   emit_farith(0xDB, 0xE8, i);
  4272 void Assembler::fucomip(int i) {
  4273   // make sure the instruction is supported (introduced for P6, together with cmov)
  4274   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4275   emit_farith(0xDF, 0xE8, i);
  4278 void Assembler::fwait() {
  4279   emit_int8((unsigned char)0x9B);
  4282 void Assembler::fxch(int i) {
  4283   emit_farith(0xD9, 0xC8, i);
  4286 void Assembler::fyl2x() {
  4287   emit_int8((unsigned char)0xD9);
  4288   emit_int8((unsigned char)0xF1);
  4291 void Assembler::frndint() {
  4292   emit_int8((unsigned char)0xD9);
  4293   emit_int8((unsigned char)0xFC);
  4296 void Assembler::f2xm1() {
  4297   emit_int8((unsigned char)0xD9);
  4298   emit_int8((unsigned char)0xF0);
  4301 void Assembler::fldl2e() {
  4302   emit_int8((unsigned char)0xD9);
  4303   emit_int8((unsigned char)0xEA);
  4306 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  4307 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  4308 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  4309 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  4311 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  4312 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4313   if (pre > 0) {
  4314     emit_int8(simd_pre[pre]);
  4316   if (rex_w) {
  4317     prefixq(adr, xreg);
  4318   } else {
  4319     prefix(adr, xreg);
  4321   if (opc > 0) {
  4322     emit_int8(0x0F);
  4323     int opc2 = simd_opc[opc];
  4324     if (opc2 > 0) {
  4325       emit_int8(opc2);
  4330 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4331   if (pre > 0) {
  4332     emit_int8(simd_pre[pre]);
  4334   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  4335                           prefix_and_encode(dst_enc, src_enc);
  4336   if (opc > 0) {
  4337     emit_int8(0x0F);
  4338     int opc2 = simd_opc[opc];
  4339     if (opc2 > 0) {
  4340       emit_int8(opc2);
  4343   return encode;
  4347 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  4348   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  4349     prefix(VEX_3bytes);
  4351     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  4352     byte1 = (~byte1) & 0xE0;
  4353     byte1 |= opc;
  4354     emit_int8(byte1);
  4356     int byte2 = ((~nds_enc) & 0xf) << 3;
  4357     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  4358     emit_int8(byte2);
  4359   } else {
  4360     prefix(VEX_2bytes);
  4362     int byte1 = vex_r ? VEX_R : 0;
  4363     byte1 = (~byte1) & 0x80;
  4364     byte1 |= ((~nds_enc) & 0xf) << 3;
  4365     byte1 |= (vector256 ? 4 : 0) | pre;
  4366     emit_int8(byte1);
  4370 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  4371   bool vex_r = (xreg_enc >= 8);
  4372   bool vex_b = adr.base_needs_rex();
  4373   bool vex_x = adr.index_needs_rex();
  4374   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4377 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  4378   bool vex_r = (dst_enc >= 8);
  4379   bool vex_b = (src_enc >= 8);
  4380   bool vex_x = false;
  4381   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4382   return (((dst_enc & 7) << 3) | (src_enc & 7));
  4386 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4387   if (UseAVX > 0) {
  4388     int xreg_enc = xreg->encoding();
  4389     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4390     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  4391   } else {
  4392     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  4393     rex_prefix(adr, xreg, pre, opc, rex_w);
  4397 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4398   int dst_enc = dst->encoding();
  4399   int src_enc = src->encoding();
  4400   if (UseAVX > 0) {
  4401     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4402     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  4403   } else {
  4404     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  4405     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  4409 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4410   InstructionMark im(this);
  4411   simd_prefix(dst, dst, src, pre);
  4412   emit_int8(opcode);
  4413   emit_operand(dst, src);
  4416 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4417   int encode = simd_prefix_and_encode(dst, dst, src, pre);
  4418   emit_int8(opcode);
  4419   emit_int8((unsigned char)(0xC0 | encode));
  4422 // Versions with no second source register (non-destructive source).
  4423 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4424   InstructionMark im(this);
  4425   simd_prefix(dst, xnoreg, src, pre);
  4426   emit_int8(opcode);
  4427   emit_operand(dst, src);
  4430 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4431   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
  4432   emit_int8(opcode);
  4433   emit_int8((unsigned char)(0xC0 | encode));
  4436 // 3-operands AVX instructions
  4437 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4438                                Address src, VexSimdPrefix pre, bool vector256) {
  4439   InstructionMark im(this);
  4440   vex_prefix(dst, nds, src, pre, vector256);
  4441   emit_int8(opcode);
  4442   emit_operand(dst, src);
  4445 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4446                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
  4447   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
  4448   emit_int8(opcode);
  4449   emit_int8((unsigned char)(0xC0 | encode));
  4452 #ifndef _LP64
  4454 void Assembler::incl(Register dst) {
  4455   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4456   emit_int8(0x40 | dst->encoding());
  4459 void Assembler::lea(Register dst, Address src) {
  4460   leal(dst, src);
  4463 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4464   InstructionMark im(this);
  4465   emit_int8((unsigned char)0xC7);
  4466   emit_operand(rax, dst);
  4467   emit_data((int)imm32, rspec, 0);
  4470 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4471   InstructionMark im(this);
  4472   int encode = prefix_and_encode(dst->encoding());
  4473   emit_int8((unsigned char)(0xB8 | encode));
  4474   emit_data((int)imm32, rspec, 0);
  4477 void Assembler::popa() { // 32bit
  4478   emit_int8(0x61);
  4481 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  4482   InstructionMark im(this);
  4483   emit_int8(0x68);
  4484   emit_data(imm32, rspec, 0);
  4487 void Assembler::pusha() { // 32bit
  4488   emit_int8(0x60);
  4491 void Assembler::set_byte_if_not_zero(Register dst) {
  4492   emit_int8(0x0F);
  4493   emit_int8((unsigned char)0x95);
  4494   emit_int8((unsigned char)(0xE0 | dst->encoding()));
  4497 void Assembler::shldl(Register dst, Register src) {
  4498   emit_int8(0x0F);
  4499   emit_int8((unsigned char)0xA5);
  4500   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
  4503 void Assembler::shrdl(Register dst, Register src) {
  4504   emit_int8(0x0F);
  4505   emit_int8((unsigned char)0xAD);
  4506   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
  4509 #else // LP64
  4511 void Assembler::set_byte_if_not_zero(Register dst) {
  4512   int enc = prefix_and_encode(dst->encoding(), true);
  4513   emit_int8(0x0F);
  4514   emit_int8((unsigned char)0x95);
  4515   emit_int8((unsigned char)(0xE0 | enc));
  4518 // 64bit only pieces of the assembler
  4519 // This should only be used by 64bit instructions that can use rip-relative
  4520 // it cannot be used by instructions that want an immediate value.
  4522 bool Assembler::reachable(AddressLiteral adr) {
  4523   int64_t disp;
  4524   // None will force a 64bit literal to the code stream. Likely a placeholder
  4525   // for something that will be patched later and we need to certain it will
  4526   // always be reachable.
  4527   if (adr.reloc() == relocInfo::none) {
  4528     return false;
  4530   if (adr.reloc() == relocInfo::internal_word_type) {
  4531     // This should be rip relative and easily reachable.
  4532     return true;
  4534   if (adr.reloc() == relocInfo::virtual_call_type ||
  4535       adr.reloc() == relocInfo::opt_virtual_call_type ||
  4536       adr.reloc() == relocInfo::static_call_type ||
  4537       adr.reloc() == relocInfo::static_stub_type ) {
  4538     // This should be rip relative within the code cache and easily
  4539     // reachable until we get huge code caches. (At which point
  4540     // ic code is going to have issues).
  4541     return true;
  4543   if (adr.reloc() != relocInfo::external_word_type &&
  4544       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  4545       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  4546       adr.reloc() != relocInfo::runtime_call_type ) {
  4547     return false;
  4550   // Stress the correction code
  4551   if (ForceUnreachable) {
  4552     // Must be runtimecall reloc, see if it is in the codecache
  4553     // Flipping stuff in the codecache to be unreachable causes issues
  4554     // with things like inline caches where the additional instructions
  4555     // are not handled.
  4556     if (CodeCache::find_blob(adr._target) == NULL) {
  4557       return false;
  4560   // For external_word_type/runtime_call_type if it is reachable from where we
  4561   // are now (possibly a temp buffer) and where we might end up
  4562   // anywhere in the codeCache then we are always reachable.
  4563   // This would have to change if we ever save/restore shared code
  4564   // to be more pessimistic.
  4565   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  4566   if (!is_simm32(disp)) return false;
  4567   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  4568   if (!is_simm32(disp)) return false;
  4570   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
  4572   // Because rip relative is a disp + address_of_next_instruction and we
  4573   // don't know the value of address_of_next_instruction we apply a fudge factor
  4574   // to make sure we will be ok no matter the size of the instruction we get placed into.
  4575   // We don't have to fudge the checks above here because they are already worst case.
  4577   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  4578   // + 4 because better safe than sorry.
  4579   const int fudge = 12 + 4;
  4580   if (disp < 0) {
  4581     disp -= fudge;
  4582   } else {
  4583     disp += fudge;
  4585   return is_simm32(disp);
  4588 // Check if the polling page is not reachable from the code cache using rip-relative
  4589 // addressing.
  4590 bool Assembler::is_polling_page_far() {
  4591   intptr_t addr = (intptr_t)os::get_polling_page();
  4592   return ForceUnreachable ||
  4593          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  4594          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  4597 void Assembler::emit_data64(jlong data,
  4598                             relocInfo::relocType rtype,
  4599                             int format) {
  4600   if (rtype == relocInfo::none) {
  4601     emit_int64(data);
  4602   } else {
  4603     emit_data64(data, Relocation::spec_simple(rtype), format);
  4607 void Assembler::emit_data64(jlong data,
  4608                             RelocationHolder const& rspec,
  4609                             int format) {
  4610   assert(imm_operand == 0, "default format must be immediate in this file");
  4611   assert(imm_operand == format, "must be immediate");
  4612   assert(inst_mark() != NULL, "must be inside InstructionMark");
  4613   // Do not use AbstractAssembler::relocate, which is not intended for
  4614   // embedded words.  Instead, relocate to the enclosing instruction.
  4615   code_section()->relocate(inst_mark(), rspec, format);
  4616 #ifdef ASSERT
  4617   check_relocation(rspec, format);
  4618 #endif
  4619   emit_int64(data);
  4622 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  4623   if (reg_enc >= 8) {
  4624     prefix(REX_B);
  4625     reg_enc -= 8;
  4626   } else if (byteinst && reg_enc >= 4) {
  4627     prefix(REX);
  4629   return reg_enc;
  4632 int Assembler::prefixq_and_encode(int reg_enc) {
  4633   if (reg_enc < 8) {
  4634     prefix(REX_W);
  4635   } else {
  4636     prefix(REX_WB);
  4637     reg_enc -= 8;
  4639   return reg_enc;
  4642 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  4643   if (dst_enc < 8) {
  4644     if (src_enc >= 8) {
  4645       prefix(REX_B);
  4646       src_enc -= 8;
  4647     } else if (byteinst && src_enc >= 4) {
  4648       prefix(REX);
  4650   } else {
  4651     if (src_enc < 8) {
  4652       prefix(REX_R);
  4653     } else {
  4654       prefix(REX_RB);
  4655       src_enc -= 8;
  4657     dst_enc -= 8;
  4659   return dst_enc << 3 | src_enc;
  4662 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  4663   if (dst_enc < 8) {
  4664     if (src_enc < 8) {
  4665       prefix(REX_W);
  4666     } else {
  4667       prefix(REX_WB);
  4668       src_enc -= 8;
  4670   } else {
  4671     if (src_enc < 8) {
  4672       prefix(REX_WR);
  4673     } else {
  4674       prefix(REX_WRB);
  4675       src_enc -= 8;
  4677     dst_enc -= 8;
  4679   return dst_enc << 3 | src_enc;
  4682 void Assembler::prefix(Register reg) {
  4683   if (reg->encoding() >= 8) {
  4684     prefix(REX_B);
  4688 void Assembler::prefix(Address adr) {
  4689   if (adr.base_needs_rex()) {
  4690     if (adr.index_needs_rex()) {
  4691       prefix(REX_XB);
  4692     } else {
  4693       prefix(REX_B);
  4695   } else {
  4696     if (adr.index_needs_rex()) {
  4697       prefix(REX_X);
  4702 void Assembler::prefixq(Address adr) {
  4703   if (adr.base_needs_rex()) {
  4704     if (adr.index_needs_rex()) {
  4705       prefix(REX_WXB);
  4706     } else {
  4707       prefix(REX_WB);
  4709   } else {
  4710     if (adr.index_needs_rex()) {
  4711       prefix(REX_WX);
  4712     } else {
  4713       prefix(REX_W);
  4719 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  4720   if (reg->encoding() < 8) {
  4721     if (adr.base_needs_rex()) {
  4722       if (adr.index_needs_rex()) {
  4723         prefix(REX_XB);
  4724       } else {
  4725         prefix(REX_B);
  4727     } else {
  4728       if (adr.index_needs_rex()) {
  4729         prefix(REX_X);
  4730       } else if (byteinst && reg->encoding() >= 4 ) {
  4731         prefix(REX);
  4734   } else {
  4735     if (adr.base_needs_rex()) {
  4736       if (adr.index_needs_rex()) {
  4737         prefix(REX_RXB);
  4738       } else {
  4739         prefix(REX_RB);
  4741     } else {
  4742       if (adr.index_needs_rex()) {
  4743         prefix(REX_RX);
  4744       } else {
  4745         prefix(REX_R);
  4751 void Assembler::prefixq(Address adr, Register src) {
  4752   if (src->encoding() < 8) {
  4753     if (adr.base_needs_rex()) {
  4754       if (adr.index_needs_rex()) {
  4755         prefix(REX_WXB);
  4756       } else {
  4757         prefix(REX_WB);
  4759     } else {
  4760       if (adr.index_needs_rex()) {
  4761         prefix(REX_WX);
  4762       } else {
  4763         prefix(REX_W);
  4766   } else {
  4767     if (adr.base_needs_rex()) {
  4768       if (adr.index_needs_rex()) {
  4769         prefix(REX_WRXB);
  4770       } else {
  4771         prefix(REX_WRB);
  4773     } else {
  4774       if (adr.index_needs_rex()) {
  4775         prefix(REX_WRX);
  4776       } else {
  4777         prefix(REX_WR);
  4783 void Assembler::prefix(Address adr, XMMRegister reg) {
  4784   if (reg->encoding() < 8) {
  4785     if (adr.base_needs_rex()) {
  4786       if (adr.index_needs_rex()) {
  4787         prefix(REX_XB);
  4788       } else {
  4789         prefix(REX_B);
  4791     } else {
  4792       if (adr.index_needs_rex()) {
  4793         prefix(REX_X);
  4796   } else {
  4797     if (adr.base_needs_rex()) {
  4798       if (adr.index_needs_rex()) {
  4799         prefix(REX_RXB);
  4800       } else {
  4801         prefix(REX_RB);
  4803     } else {
  4804       if (adr.index_needs_rex()) {
  4805         prefix(REX_RX);
  4806       } else {
  4807         prefix(REX_R);
  4813 void Assembler::prefixq(Address adr, XMMRegister src) {
  4814   if (src->encoding() < 8) {
  4815     if (adr.base_needs_rex()) {
  4816       if (adr.index_needs_rex()) {
  4817         prefix(REX_WXB);
  4818       } else {
  4819         prefix(REX_WB);
  4821     } else {
  4822       if (adr.index_needs_rex()) {
  4823         prefix(REX_WX);
  4824       } else {
  4825         prefix(REX_W);
  4828   } else {
  4829     if (adr.base_needs_rex()) {
  4830       if (adr.index_needs_rex()) {
  4831         prefix(REX_WRXB);
  4832       } else {
  4833         prefix(REX_WRB);
  4835     } else {
  4836       if (adr.index_needs_rex()) {
  4837         prefix(REX_WRX);
  4838       } else {
  4839         prefix(REX_WR);
  4845 void Assembler::adcq(Register dst, int32_t imm32) {
  4846   (void) prefixq_and_encode(dst->encoding());
  4847   emit_arith(0x81, 0xD0, dst, imm32);
  4850 void Assembler::adcq(Register dst, Address src) {
  4851   InstructionMark im(this);
  4852   prefixq(src, dst);
  4853   emit_int8(0x13);
  4854   emit_operand(dst, src);
  4857 void Assembler::adcq(Register dst, Register src) {
  4858   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4859   emit_arith(0x13, 0xC0, dst, src);
  4862 void Assembler::addq(Address dst, int32_t imm32) {
  4863   InstructionMark im(this);
  4864   prefixq(dst);
  4865   emit_arith_operand(0x81, rax, dst,imm32);
  4868 void Assembler::addq(Address dst, Register src) {
  4869   InstructionMark im(this);
  4870   prefixq(dst, src);
  4871   emit_int8(0x01);
  4872   emit_operand(src, dst);
  4875 void Assembler::addq(Register dst, int32_t imm32) {
  4876   (void) prefixq_and_encode(dst->encoding());
  4877   emit_arith(0x81, 0xC0, dst, imm32);
  4880 void Assembler::addq(Register dst, Address src) {
  4881   InstructionMark im(this);
  4882   prefixq(src, dst);
  4883   emit_int8(0x03);
  4884   emit_operand(dst, src);
  4887 void Assembler::addq(Register dst, Register src) {
  4888   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4889   emit_arith(0x03, 0xC0, dst, src);
  4892 void Assembler::andq(Address dst, int32_t imm32) {
  4893   InstructionMark im(this);
  4894   prefixq(dst);
  4895   emit_int8((unsigned char)0x81);
  4896   emit_operand(rsp, dst, 4);
  4897   emit_int32(imm32);
  4900 void Assembler::andq(Register dst, int32_t imm32) {
  4901   (void) prefixq_and_encode(dst->encoding());
  4902   emit_arith(0x81, 0xE0, dst, imm32);
  4905 void Assembler::andq(Register dst, Address src) {
  4906   InstructionMark im(this);
  4907   prefixq(src, dst);
  4908   emit_int8(0x23);
  4909   emit_operand(dst, src);
  4912 void Assembler::andq(Register dst, Register src) {
  4913   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4914   emit_arith(0x23, 0xC0, dst, src);
  4917 void Assembler::andnq(Register dst, Register src1, Register src2) {
  4918   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  4919   int encode = vex_prefix_0F38_and_encode_q(dst, src1, src2);
  4920   emit_int8((unsigned char)0xF2);
  4921   emit_int8((unsigned char)(0xC0 | encode));
  4924 void Assembler::andnq(Register dst, Register src1, Address src2) {
  4925   InstructionMark im(this);
  4926   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  4927   vex_prefix_0F38_q(dst, src1, src2);
  4928   emit_int8((unsigned char)0xF2);
  4929   emit_operand(dst, src2);
  4932 void Assembler::bsfq(Register dst, Register src) {
  4933   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4934   emit_int8(0x0F);
  4935   emit_int8((unsigned char)0xBC);
  4936   emit_int8((unsigned char)(0xC0 | encode));
  4939 void Assembler::bsrq(Register dst, Register src) {
  4940   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4941   emit_int8(0x0F);
  4942   emit_int8((unsigned char)0xBD);
  4943   emit_int8((unsigned char)(0xC0 | encode));
  4946 void Assembler::bswapq(Register reg) {
  4947   int encode = prefixq_and_encode(reg->encoding());
  4948   emit_int8(0x0F);
  4949   emit_int8((unsigned char)(0xC8 | encode));
  4952 void Assembler::blsiq(Register dst, Register src) {
  4953   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  4954   int encode = vex_prefix_0F38_and_encode_q(rbx, dst, src);
  4955   emit_int8((unsigned char)0xF3);
  4956   emit_int8((unsigned char)(0xC0 | encode));
  4959 void Assembler::blsiq(Register dst, Address src) {
  4960   InstructionMark im(this);
  4961   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  4962   vex_prefix_0F38_q(rbx, dst, src);
  4963   emit_int8((unsigned char)0xF3);
  4964   emit_operand(rbx, src);
  4967 void Assembler::blsmskq(Register dst, Register src) {
  4968   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  4969   int encode = vex_prefix_0F38_and_encode_q(rdx, dst, src);
  4970   emit_int8((unsigned char)0xF3);
  4971   emit_int8((unsigned char)(0xC0 | encode));
  4974 void Assembler::blsmskq(Register dst, Address src) {
  4975   InstructionMark im(this);
  4976   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  4977   vex_prefix_0F38_q(rdx, dst, src);
  4978   emit_int8((unsigned char)0xF3);
  4979   emit_operand(rdx, src);
  4982 void Assembler::blsrq(Register dst, Register src) {
  4983   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  4984   int encode = vex_prefix_0F38_and_encode_q(rcx, dst, src);
  4985   emit_int8((unsigned char)0xF3);
  4986   emit_int8((unsigned char)(0xC0 | encode));
  4989 void Assembler::blsrq(Register dst, Address src) {
  4990   InstructionMark im(this);
  4991   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  4992   vex_prefix_0F38_q(rcx, dst, src);
  4993   emit_int8((unsigned char)0xF3);
  4994   emit_operand(rcx, src);
  4997 void Assembler::cdqq() {
  4998   prefix(REX_W);
  4999   emit_int8((unsigned char)0x99);
  5002 void Assembler::clflush(Address adr) {
  5003   prefix(adr);
  5004   emit_int8(0x0F);
  5005   emit_int8((unsigned char)0xAE);
  5006   emit_operand(rdi, adr);
  5009 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  5010   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5011   emit_int8(0x0F);
  5012   emit_int8(0x40 | cc);
  5013   emit_int8((unsigned char)(0xC0 | encode));
  5016 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  5017   InstructionMark im(this);
  5018   prefixq(src, dst);
  5019   emit_int8(0x0F);
  5020   emit_int8(0x40 | cc);
  5021   emit_operand(dst, src);
  5024 void Assembler::cmpq(Address dst, int32_t imm32) {
  5025   InstructionMark im(this);
  5026   prefixq(dst);
  5027   emit_int8((unsigned char)0x81);
  5028   emit_operand(rdi, dst, 4);
  5029   emit_int32(imm32);
  5032 void Assembler::cmpq(Register dst, int32_t imm32) {
  5033   (void) prefixq_and_encode(dst->encoding());
  5034   emit_arith(0x81, 0xF8, dst, imm32);
  5037 void Assembler::cmpq(Address dst, Register src) {
  5038   InstructionMark im(this);
  5039   prefixq(dst, src);
  5040   emit_int8(0x3B);
  5041   emit_operand(src, dst);
  5044 void Assembler::cmpq(Register dst, Register src) {
  5045   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5046   emit_arith(0x3B, 0xC0, dst, src);
  5049 void Assembler::cmpq(Register dst, Address  src) {
  5050   InstructionMark im(this);
  5051   prefixq(src, dst);
  5052   emit_int8(0x3B);
  5053   emit_operand(dst, src);
  5056 void Assembler::cmpxchgq(Register reg, Address adr) {
  5057   InstructionMark im(this);
  5058   prefixq(adr, reg);
  5059   emit_int8(0x0F);
  5060   emit_int8((unsigned char)0xB1);
  5061   emit_operand(reg, adr);
  5064 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  5065   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5066   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  5067   emit_int8(0x2A);
  5068   emit_int8((unsigned char)(0xC0 | encode));
  5071 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  5072   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5073   InstructionMark im(this);
  5074   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  5075   emit_int8(0x2A);
  5076   emit_operand(dst, src);
  5079 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  5080   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  5081   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  5082   emit_int8(0x2A);
  5083   emit_int8((unsigned char)(0xC0 | encode));
  5086 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  5087   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  5088   InstructionMark im(this);
  5089   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  5090   emit_int8(0x2A);
  5091   emit_operand(dst, src);
  5094 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  5095   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5096   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  5097   emit_int8(0x2C);
  5098   emit_int8((unsigned char)(0xC0 | encode));
  5101 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  5102   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  5103   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  5104   emit_int8(0x2C);
  5105   emit_int8((unsigned char)(0xC0 | encode));
  5108 void Assembler::decl(Register dst) {
  5109   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  5110   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  5111   int encode = prefix_and_encode(dst->encoding());
  5112   emit_int8((unsigned char)0xFF);
  5113   emit_int8((unsigned char)(0xC8 | encode));
  5116 void Assembler::decq(Register dst) {
  5117   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  5118   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  5119   int encode = prefixq_and_encode(dst->encoding());
  5120   emit_int8((unsigned char)0xFF);
  5121   emit_int8(0xC8 | encode);
  5124 void Assembler::decq(Address dst) {
  5125   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  5126   InstructionMark im(this);
  5127   prefixq(dst);
  5128   emit_int8((unsigned char)0xFF);
  5129   emit_operand(rcx, dst);
  5132 void Assembler::fxrstor(Address src) {
  5133   prefixq(src);
  5134   emit_int8(0x0F);
  5135   emit_int8((unsigned char)0xAE);
  5136   emit_operand(as_Register(1), src);
  5139 void Assembler::fxsave(Address dst) {
  5140   prefixq(dst);
  5141   emit_int8(0x0F);
  5142   emit_int8((unsigned char)0xAE);
  5143   emit_operand(as_Register(0), dst);
  5146 void Assembler::idivq(Register src) {
  5147   int encode = prefixq_and_encode(src->encoding());
  5148   emit_int8((unsigned char)0xF7);
  5149   emit_int8((unsigned char)(0xF8 | encode));
  5152 void Assembler::imulq(Register dst, Register src) {
  5153   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5154   emit_int8(0x0F);
  5155   emit_int8((unsigned char)0xAF);
  5156   emit_int8((unsigned char)(0xC0 | encode));
  5159 void Assembler::imulq(Register dst, Register src, int value) {
  5160   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5161   if (is8bit(value)) {
  5162     emit_int8(0x6B);
  5163     emit_int8((unsigned char)(0xC0 | encode));
  5164     emit_int8(value & 0xFF);
  5165   } else {
  5166     emit_int8(0x69);
  5167     emit_int8((unsigned char)(0xC0 | encode));
  5168     emit_int32(value);
  5172 void Assembler::imulq(Register dst, Address src) {
  5173   InstructionMark im(this);
  5174   prefixq(src, dst);
  5175   emit_int8(0x0F);
  5176   emit_int8((unsigned char) 0xAF);
  5177   emit_operand(dst, src);
  5180 void Assembler::incl(Register dst) {
  5181   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  5182   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  5183   int encode = prefix_and_encode(dst->encoding());
  5184   emit_int8((unsigned char)0xFF);
  5185   emit_int8((unsigned char)(0xC0 | encode));
  5188 void Assembler::incq(Register dst) {
  5189   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  5190   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  5191   int encode = prefixq_and_encode(dst->encoding());
  5192   emit_int8((unsigned char)0xFF);
  5193   emit_int8((unsigned char)(0xC0 | encode));
  5196 void Assembler::incq(Address dst) {
  5197   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  5198   InstructionMark im(this);
  5199   prefixq(dst);
  5200   emit_int8((unsigned char)0xFF);
  5201   emit_operand(rax, dst);
  5204 void Assembler::lea(Register dst, Address src) {
  5205   leaq(dst, src);
  5208 void Assembler::leaq(Register dst, Address src) {
  5209   InstructionMark im(this);
  5210   prefixq(src, dst);
  5211   emit_int8((unsigned char)0x8D);
  5212   emit_operand(dst, src);
  5215 void Assembler::mov64(Register dst, int64_t imm64) {
  5216   InstructionMark im(this);
  5217   int encode = prefixq_and_encode(dst->encoding());
  5218   emit_int8((unsigned char)(0xB8 | encode));
  5219   emit_int64(imm64);
  5222 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  5223   InstructionMark im(this);
  5224   int encode = prefixq_and_encode(dst->encoding());
  5225   emit_int8(0xB8 | encode);
  5226   emit_data64(imm64, rspec);
  5229 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  5230   InstructionMark im(this);
  5231   int encode = prefix_and_encode(dst->encoding());
  5232   emit_int8((unsigned char)(0xB8 | encode));
  5233   emit_data((int)imm32, rspec, narrow_oop_operand);
  5236 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  5237   InstructionMark im(this);
  5238   prefix(dst);
  5239   emit_int8((unsigned char)0xC7);
  5240   emit_operand(rax, dst, 4);
  5241   emit_data((int)imm32, rspec, narrow_oop_operand);
  5244 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  5245   InstructionMark im(this);
  5246   int encode = prefix_and_encode(src1->encoding());
  5247   emit_int8((unsigned char)0x81);
  5248   emit_int8((unsigned char)(0xF8 | encode));
  5249   emit_data((int)imm32, rspec, narrow_oop_operand);
  5252 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  5253   InstructionMark im(this);
  5254   prefix(src1);
  5255   emit_int8((unsigned char)0x81);
  5256   emit_operand(rax, src1, 4);
  5257   emit_data((int)imm32, rspec, narrow_oop_operand);
  5260 void Assembler::lzcntq(Register dst, Register src) {
  5261   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  5262   emit_int8((unsigned char)0xF3);
  5263   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5264   emit_int8(0x0F);
  5265   emit_int8((unsigned char)0xBD);
  5266   emit_int8((unsigned char)(0xC0 | encode));
  5269 void Assembler::movdq(XMMRegister dst, Register src) {
  5270   // table D-1 says MMX/SSE2
  5271   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5272   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  5273   emit_int8(0x6E);
  5274   emit_int8((unsigned char)(0xC0 | encode));
  5277 void Assembler::movdq(Register dst, XMMRegister src) {
  5278   // table D-1 says MMX/SSE2
  5279   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5280   // swap src/dst to get correct prefix
  5281   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  5282   emit_int8(0x7E);
  5283   emit_int8((unsigned char)(0xC0 | encode));
  5286 void Assembler::movq(Register dst, Register src) {
  5287   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5288   emit_int8((unsigned char)0x8B);
  5289   emit_int8((unsigned char)(0xC0 | encode));
  5292 void Assembler::movq(Register dst, Address src) {
  5293   InstructionMark im(this);
  5294   prefixq(src, dst);
  5295   emit_int8((unsigned char)0x8B);
  5296   emit_operand(dst, src);
  5299 void Assembler::movq(Address dst, Register src) {
  5300   InstructionMark im(this);
  5301   prefixq(dst, src);
  5302   emit_int8((unsigned char)0x89);
  5303   emit_operand(src, dst);
  5306 void Assembler::movsbq(Register dst, Address src) {
  5307   InstructionMark im(this);
  5308   prefixq(src, dst);
  5309   emit_int8(0x0F);
  5310   emit_int8((unsigned char)0xBE);
  5311   emit_operand(dst, src);
  5314 void Assembler::movsbq(Register dst, Register src) {
  5315   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5316   emit_int8(0x0F);
  5317   emit_int8((unsigned char)0xBE);
  5318   emit_int8((unsigned char)(0xC0 | encode));
  5321 void Assembler::movslq(Register dst, int32_t imm32) {
  5322   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  5323   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  5324   // as a result we shouldn't use until tested at runtime...
  5325   ShouldNotReachHere();
  5326   InstructionMark im(this);
  5327   int encode = prefixq_and_encode(dst->encoding());
  5328   emit_int8((unsigned char)(0xC7 | encode));
  5329   emit_int32(imm32);
  5332 void Assembler::movslq(Address dst, int32_t imm32) {
  5333   assert(is_simm32(imm32), "lost bits");
  5334   InstructionMark im(this);
  5335   prefixq(dst);
  5336   emit_int8((unsigned char)0xC7);
  5337   emit_operand(rax, dst, 4);
  5338   emit_int32(imm32);
  5341 void Assembler::movslq(Register dst, Address src) {
  5342   InstructionMark im(this);
  5343   prefixq(src, dst);
  5344   emit_int8(0x63);
  5345   emit_operand(dst, src);
  5348 void Assembler::movslq(Register dst, Register src) {
  5349   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5350   emit_int8(0x63);
  5351   emit_int8((unsigned char)(0xC0 | encode));
  5354 void Assembler::movswq(Register dst, Address src) {
  5355   InstructionMark im(this);
  5356   prefixq(src, dst);
  5357   emit_int8(0x0F);
  5358   emit_int8((unsigned char)0xBF);
  5359   emit_operand(dst, src);
  5362 void Assembler::movswq(Register dst, Register src) {
  5363   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5364   emit_int8((unsigned char)0x0F);
  5365   emit_int8((unsigned char)0xBF);
  5366   emit_int8((unsigned char)(0xC0 | encode));
  5369 void Assembler::movzbq(Register dst, Address src) {
  5370   InstructionMark im(this);
  5371   prefixq(src, dst);
  5372   emit_int8((unsigned char)0x0F);
  5373   emit_int8((unsigned char)0xB6);
  5374   emit_operand(dst, src);
  5377 void Assembler::movzbq(Register dst, Register src) {
  5378   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5379   emit_int8(0x0F);
  5380   emit_int8((unsigned char)0xB6);
  5381   emit_int8(0xC0 | encode);
  5384 void Assembler::movzwq(Register dst, Address src) {
  5385   InstructionMark im(this);
  5386   prefixq(src, dst);
  5387   emit_int8((unsigned char)0x0F);
  5388   emit_int8((unsigned char)0xB7);
  5389   emit_operand(dst, src);
  5392 void Assembler::movzwq(Register dst, Register src) {
  5393   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5394   emit_int8((unsigned char)0x0F);
  5395   emit_int8((unsigned char)0xB7);
  5396   emit_int8((unsigned char)(0xC0 | encode));
  5399 void Assembler::negq(Register dst) {
  5400   int encode = prefixq_and_encode(dst->encoding());
  5401   emit_int8((unsigned char)0xF7);
  5402   emit_int8((unsigned char)(0xD8 | encode));
  5405 void Assembler::notq(Register dst) {
  5406   int encode = prefixq_and_encode(dst->encoding());
  5407   emit_int8((unsigned char)0xF7);
  5408   emit_int8((unsigned char)(0xD0 | encode));
  5411 void Assembler::orq(Address dst, int32_t imm32) {
  5412   InstructionMark im(this);
  5413   prefixq(dst);
  5414   emit_int8((unsigned char)0x81);
  5415   emit_operand(rcx, dst, 4);
  5416   emit_int32(imm32);
  5419 void Assembler::orq(Register dst, int32_t imm32) {
  5420   (void) prefixq_and_encode(dst->encoding());
  5421   emit_arith(0x81, 0xC8, dst, imm32);
  5424 void Assembler::orq(Register dst, Address src) {
  5425   InstructionMark im(this);
  5426   prefixq(src, dst);
  5427   emit_int8(0x0B);
  5428   emit_operand(dst, src);
  5431 void Assembler::orq(Register dst, Register src) {
  5432   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5433   emit_arith(0x0B, 0xC0, dst, src);
  5436 void Assembler::popa() { // 64bit
  5437   movq(r15, Address(rsp, 0));
  5438   movq(r14, Address(rsp, wordSize));
  5439   movq(r13, Address(rsp, 2 * wordSize));
  5440   movq(r12, Address(rsp, 3 * wordSize));
  5441   movq(r11, Address(rsp, 4 * wordSize));
  5442   movq(r10, Address(rsp, 5 * wordSize));
  5443   movq(r9,  Address(rsp, 6 * wordSize));
  5444   movq(r8,  Address(rsp, 7 * wordSize));
  5445   movq(rdi, Address(rsp, 8 * wordSize));
  5446   movq(rsi, Address(rsp, 9 * wordSize));
  5447   movq(rbp, Address(rsp, 10 * wordSize));
  5448   // skip rsp
  5449   movq(rbx, Address(rsp, 12 * wordSize));
  5450   movq(rdx, Address(rsp, 13 * wordSize));
  5451   movq(rcx, Address(rsp, 14 * wordSize));
  5452   movq(rax, Address(rsp, 15 * wordSize));
  5454   addq(rsp, 16 * wordSize);
  5457 void Assembler::popcntq(Register dst, Address src) {
  5458   assert(VM_Version::supports_popcnt(), "must support");
  5459   InstructionMark im(this);
  5460   emit_int8((unsigned char)0xF3);
  5461   prefixq(src, dst);
  5462   emit_int8((unsigned char)0x0F);
  5463   emit_int8((unsigned char)0xB8);
  5464   emit_operand(dst, src);
  5467 void Assembler::popcntq(Register dst, Register src) {
  5468   assert(VM_Version::supports_popcnt(), "must support");
  5469   emit_int8((unsigned char)0xF3);
  5470   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5471   emit_int8((unsigned char)0x0F);
  5472   emit_int8((unsigned char)0xB8);
  5473   emit_int8((unsigned char)(0xC0 | encode));
  5476 void Assembler::popq(Address dst) {
  5477   InstructionMark im(this);
  5478   prefixq(dst);
  5479   emit_int8((unsigned char)0x8F);
  5480   emit_operand(rax, dst);
  5483 void Assembler::pusha() { // 64bit
  5484   // we have to store original rsp.  ABI says that 128 bytes
  5485   // below rsp are local scratch.
  5486   movq(Address(rsp, -5 * wordSize), rsp);
  5488   subq(rsp, 16 * wordSize);
  5490   movq(Address(rsp, 15 * wordSize), rax);
  5491   movq(Address(rsp, 14 * wordSize), rcx);
  5492   movq(Address(rsp, 13 * wordSize), rdx);
  5493   movq(Address(rsp, 12 * wordSize), rbx);
  5494   // skip rsp
  5495   movq(Address(rsp, 10 * wordSize), rbp);
  5496   movq(Address(rsp, 9 * wordSize), rsi);
  5497   movq(Address(rsp, 8 * wordSize), rdi);
  5498   movq(Address(rsp, 7 * wordSize), r8);
  5499   movq(Address(rsp, 6 * wordSize), r9);
  5500   movq(Address(rsp, 5 * wordSize), r10);
  5501   movq(Address(rsp, 4 * wordSize), r11);
  5502   movq(Address(rsp, 3 * wordSize), r12);
  5503   movq(Address(rsp, 2 * wordSize), r13);
  5504   movq(Address(rsp, wordSize), r14);
  5505   movq(Address(rsp, 0), r15);
  5508 void Assembler::pushq(Address src) {
  5509   InstructionMark im(this);
  5510   prefixq(src);
  5511   emit_int8((unsigned char)0xFF);
  5512   emit_operand(rsi, src);
  5515 void Assembler::rclq(Register dst, int imm8) {
  5516   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5517   int encode = prefixq_and_encode(dst->encoding());
  5518   if (imm8 == 1) {
  5519     emit_int8((unsigned char)0xD1);
  5520     emit_int8((unsigned char)(0xD0 | encode));
  5521   } else {
  5522     emit_int8((unsigned char)0xC1);
  5523     emit_int8((unsigned char)(0xD0 | encode));
  5524     emit_int8(imm8);
  5527 void Assembler::sarq(Register dst, int imm8) {
  5528   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5529   int encode = prefixq_and_encode(dst->encoding());
  5530   if (imm8 == 1) {
  5531     emit_int8((unsigned char)0xD1);
  5532     emit_int8((unsigned char)(0xF8 | encode));
  5533   } else {
  5534     emit_int8((unsigned char)0xC1);
  5535     emit_int8((unsigned char)(0xF8 | encode));
  5536     emit_int8(imm8);
  5540 void Assembler::sarq(Register dst) {
  5541   int encode = prefixq_and_encode(dst->encoding());
  5542   emit_int8((unsigned char)0xD3);
  5543   emit_int8((unsigned char)(0xF8 | encode));
  5546 void Assembler::sbbq(Address dst, int32_t imm32) {
  5547   InstructionMark im(this);
  5548   prefixq(dst);
  5549   emit_arith_operand(0x81, rbx, dst, imm32);
  5552 void Assembler::sbbq(Register dst, int32_t imm32) {
  5553   (void) prefixq_and_encode(dst->encoding());
  5554   emit_arith(0x81, 0xD8, dst, imm32);
  5557 void Assembler::sbbq(Register dst, Address src) {
  5558   InstructionMark im(this);
  5559   prefixq(src, dst);
  5560   emit_int8(0x1B);
  5561   emit_operand(dst, src);
  5564 void Assembler::sbbq(Register dst, Register src) {
  5565   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5566   emit_arith(0x1B, 0xC0, dst, src);
  5569 void Assembler::shlq(Register dst, int imm8) {
  5570   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5571   int encode = prefixq_and_encode(dst->encoding());
  5572   if (imm8 == 1) {
  5573     emit_int8((unsigned char)0xD1);
  5574     emit_int8((unsigned char)(0xE0 | encode));
  5575   } else {
  5576     emit_int8((unsigned char)0xC1);
  5577     emit_int8((unsigned char)(0xE0 | encode));
  5578     emit_int8(imm8);
  5582 void Assembler::shlq(Register dst) {
  5583   int encode = prefixq_and_encode(dst->encoding());
  5584   emit_int8((unsigned char)0xD3);
  5585   emit_int8((unsigned char)(0xE0 | encode));
  5588 void Assembler::shrq(Register dst, int imm8) {
  5589   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5590   int encode = prefixq_and_encode(dst->encoding());
  5591   emit_int8((unsigned char)0xC1);
  5592   emit_int8((unsigned char)(0xE8 | encode));
  5593   emit_int8(imm8);
  5596 void Assembler::shrq(Register dst) {
  5597   int encode = prefixq_and_encode(dst->encoding());
  5598   emit_int8((unsigned char)0xD3);
  5599   emit_int8(0xE8 | encode);
  5602 void Assembler::subq(Address dst, int32_t imm32) {
  5603   InstructionMark im(this);
  5604   prefixq(dst);
  5605   emit_arith_operand(0x81, rbp, dst, imm32);
  5608 void Assembler::subq(Address dst, Register src) {
  5609   InstructionMark im(this);
  5610   prefixq(dst, src);
  5611   emit_int8(0x29);
  5612   emit_operand(src, dst);
  5615 void Assembler::subq(Register dst, int32_t imm32) {
  5616   (void) prefixq_and_encode(dst->encoding());
  5617   emit_arith(0x81, 0xE8, dst, imm32);
  5620 // Force generation of a 4 byte immediate value even if it fits into 8bit
  5621 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  5622   (void) prefixq_and_encode(dst->encoding());
  5623   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  5626 void Assembler::subq(Register dst, Address src) {
  5627   InstructionMark im(this);
  5628   prefixq(src, dst);
  5629   emit_int8(0x2B);
  5630   emit_operand(dst, src);
  5633 void Assembler::subq(Register dst, Register src) {
  5634   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5635   emit_arith(0x2B, 0xC0, dst, src);
  5638 void Assembler::testq(Register dst, int32_t imm32) {
  5639   // not using emit_arith because test
  5640   // doesn't support sign-extension of
  5641   // 8bit operands
  5642   int encode = dst->encoding();
  5643   if (encode == 0) {
  5644     prefix(REX_W);
  5645     emit_int8((unsigned char)0xA9);
  5646   } else {
  5647     encode = prefixq_and_encode(encode);
  5648     emit_int8((unsigned char)0xF7);
  5649     emit_int8((unsigned char)(0xC0 | encode));
  5651   emit_int32(imm32);
  5654 void Assembler::testq(Register dst, Register src) {
  5655   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5656   emit_arith(0x85, 0xC0, dst, src);
  5659 void Assembler::xaddq(Address dst, Register src) {
  5660   InstructionMark im(this);
  5661   prefixq(dst, src);
  5662   emit_int8(0x0F);
  5663   emit_int8((unsigned char)0xC1);
  5664   emit_operand(src, dst);
  5667 void Assembler::xchgq(Register dst, Address src) {
  5668   InstructionMark im(this);
  5669   prefixq(src, dst);
  5670   emit_int8((unsigned char)0x87);
  5671   emit_operand(dst, src);
  5674 void Assembler::xchgq(Register dst, Register src) {
  5675   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5676   emit_int8((unsigned char)0x87);
  5677   emit_int8((unsigned char)(0xc0 | encode));
  5680 void Assembler::xorq(Register dst, Register src) {
  5681   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5682   emit_arith(0x33, 0xC0, dst, src);
  5685 void Assembler::xorq(Register dst, Address src) {
  5686   InstructionMark im(this);
  5687   prefixq(src, dst);
  5688   emit_int8(0x33);
  5689   emit_operand(dst, src);
  5692 #endif // !LP64

mercurial