src/os/windows/vm/os_windows.cpp

Mon, 13 Oct 2014 22:11:39 +0200

author
sla
date
Mon, 13 Oct 2014 22:11:39 +0200
changeset 9676
bf1c9a3312a4
parent 9628
04cb6ac03887
child 9703
2fdf635bcf28
child 9711
0f2fe7d37d8c
permissions
-rw-r--r--

7102541: RFE: os::set_native_thread_name() cleanups
Summary: implement os::set_native_thread_name() on windows, linux
Reviewed-by: sla, ctornqvi, simonis
Contributed-by: thomas.stuefe@sap.com

     1 /*
     2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
    26 #define _WIN32_WINNT 0x500
    28 // no precompiled headers
    29 #include "classfile/classLoader.hpp"
    30 #include "classfile/systemDictionary.hpp"
    31 #include "classfile/vmSymbols.hpp"
    32 #include "code/icBuffer.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/disassembler.hpp"
    36 #include "interpreter/interpreter.hpp"
    37 #include "jvm_windows.h"
    38 #include "memory/allocation.inline.hpp"
    39 #include "memory/filemap.hpp"
    40 #include "mutex_windows.inline.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "os_share_windows.hpp"
    43 #include "prims/jniFastGetField.hpp"
    44 #include "prims/jvm.h"
    45 #include "prims/jvm_misc.hpp"
    46 #include "runtime/arguments.hpp"
    47 #include "runtime/extendedPC.hpp"
    48 #include "runtime/globals.hpp"
    49 #include "runtime/interfaceSupport.hpp"
    50 #include "runtime/java.hpp"
    51 #include "runtime/javaCalls.hpp"
    52 #include "runtime/mutexLocker.hpp"
    53 #include "runtime/objectMonitor.hpp"
    54 #include "runtime/orderAccess.inline.hpp"
    55 #include "runtime/osThread.hpp"
    56 #include "runtime/perfMemory.hpp"
    57 #include "runtime/sharedRuntime.hpp"
    58 #include "runtime/statSampler.hpp"
    59 #include "runtime/stubRoutines.hpp"
    60 #include "runtime/thread.inline.hpp"
    61 #include "runtime/threadCritical.hpp"
    62 #include "runtime/timer.hpp"
    63 #include "services/attachListener.hpp"
    64 #include "services/memTracker.hpp"
    65 #include "services/runtimeService.hpp"
    66 #include "utilities/decoder.hpp"
    67 #include "utilities/defaultStream.hpp"
    68 #include "utilities/events.hpp"
    69 #include "utilities/growableArray.hpp"
    70 #include "utilities/vmError.hpp"
    72 #ifdef _DEBUG
    73 #include <crtdbg.h>
    74 #endif
    77 #include <windows.h>
    78 #include <sys/types.h>
    79 #include <sys/stat.h>
    80 #include <sys/timeb.h>
    81 #include <objidl.h>
    82 #include <shlobj.h>
    84 #include <malloc.h>
    85 #include <signal.h>
    86 #include <direct.h>
    87 #include <errno.h>
    88 #include <fcntl.h>
    89 #include <io.h>
    90 #include <process.h>              // For _beginthreadex(), _endthreadex()
    91 #include <imagehlp.h>             // For os::dll_address_to_function_name
    92 /* for enumerating dll libraries */
    93 #include <vdmdbg.h>
    95 // for timer info max values which include all bits
    96 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    98 // For DLL loading/load error detection
    99 // Values of PE COFF
   100 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
   101 #define IMAGE_FILE_SIGNATURE_LENGTH 4
   103 static HANDLE main_process;
   104 static HANDLE main_thread;
   105 static int    main_thread_id;
   107 static FILETIME process_creation_time;
   108 static FILETIME process_exit_time;
   109 static FILETIME process_user_time;
   110 static FILETIME process_kernel_time;
   112 #ifdef _M_IA64
   113   #define __CPU__ ia64
   114 #else
   115   #ifdef _M_AMD64
   116     #define __CPU__ amd64
   117   #else
   118     #define __CPU__ i486
   119   #endif
   120 #endif
   122 // save DLL module handle, used by GetModuleFileName
   124 HINSTANCE vm_lib_handle;
   126 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
   127   switch (reason) {
   128     case DLL_PROCESS_ATTACH:
   129       vm_lib_handle = hinst;
   130       if(ForceTimeHighResolution)
   131         timeBeginPeriod(1L);
   132       break;
   133     case DLL_PROCESS_DETACH:
   134       if(ForceTimeHighResolution)
   135         timeEndPeriod(1L);
   137       break;
   138     default:
   139       break;
   140   }
   141   return true;
   142 }
   144 static inline double fileTimeAsDouble(FILETIME* time) {
   145   const double high  = (double) ((unsigned int) ~0);
   146   const double split = 10000000.0;
   147   double result = (time->dwLowDateTime / split) +
   148                    time->dwHighDateTime * (high/split);
   149   return result;
   150 }
   152 // Implementation of os
   154 bool os::getenv(const char* name, char* buffer, int len) {
   155  int result = GetEnvironmentVariable(name, buffer, len);
   156  return result > 0 && result < len;
   157 }
   159 bool os::unsetenv(const char* name) {
   160   assert(name != NULL, "Null pointer");
   161   return (SetEnvironmentVariable(name, NULL) == TRUE);
   162 }
   164 // No setuid programs under Windows.
   165 bool os::have_special_privileges() {
   166   return false;
   167 }
   170 // This method is  a periodic task to check for misbehaving JNI applications
   171 // under CheckJNI, we can add any periodic checks here.
   172 // For Windows at the moment does nothing
   173 void os::run_periodic_checks() {
   174   return;
   175 }
   177 #ifndef _WIN64
   178 // previous UnhandledExceptionFilter, if there is one
   179 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
   181 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   182 #endif
   183 void os::init_system_properties_values() {
   184   /* sysclasspath, java_home, dll_dir */
   185   {
   186       char *home_path;
   187       char *dll_path;
   188       char *pslash;
   189       char *bin = "\\bin";
   190       char home_dir[MAX_PATH];
   192       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   193           os::jvm_path(home_dir, sizeof(home_dir));
   194           // Found the full path to jvm.dll.
   195           // Now cut the path to <java_home>/jre if we can.
   196           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   197           pslash = strrchr(home_dir, '\\');
   198           if (pslash != NULL) {
   199               *pslash = '\0';                 /* get rid of \{client|server} */
   200               pslash = strrchr(home_dir, '\\');
   201               if (pslash != NULL)
   202                   *pslash = '\0';             /* get rid of \bin */
   203           }
   204       }
   206       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
   207       if (home_path == NULL)
   208           return;
   209       strcpy(home_path, home_dir);
   210       Arguments::set_java_home(home_path);
   212       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
   213       if (dll_path == NULL)
   214           return;
   215       strcpy(dll_path, home_dir);
   216       strcat(dll_path, bin);
   217       Arguments::set_dll_dir(dll_path);
   219       if (!set_boot_path('\\', ';'))
   220           return;
   221   }
   223   /* library_path */
   224   #define EXT_DIR "\\lib\\ext"
   225   #define BIN_DIR "\\bin"
   226   #define PACKAGE_DIR "\\Sun\\Java"
   227   {
   228     /* Win32 library search order (See the documentation for LoadLibrary):
   229      *
   230      * 1. The directory from which application is loaded.
   231      * 2. The system wide Java Extensions directory (Java only)
   232      * 3. System directory (GetSystemDirectory)
   233      * 4. Windows directory (GetWindowsDirectory)
   234      * 5. The PATH environment variable
   235      * 6. The current directory
   236      */
   238     char *library_path;
   239     char tmp[MAX_PATH];
   240     char *path_str = ::getenv("PATH");
   242     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   243         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
   245     library_path[0] = '\0';
   247     GetModuleFileName(NULL, tmp, sizeof(tmp));
   248     *(strrchr(tmp, '\\')) = '\0';
   249     strcat(library_path, tmp);
   251     GetWindowsDirectory(tmp, sizeof(tmp));
   252     strcat(library_path, ";");
   253     strcat(library_path, tmp);
   254     strcat(library_path, PACKAGE_DIR BIN_DIR);
   256     GetSystemDirectory(tmp, sizeof(tmp));
   257     strcat(library_path, ";");
   258     strcat(library_path, tmp);
   260     GetWindowsDirectory(tmp, sizeof(tmp));
   261     strcat(library_path, ";");
   262     strcat(library_path, tmp);
   264     if (path_str) {
   265         strcat(library_path, ";");
   266         strcat(library_path, path_str);
   267     }
   269     strcat(library_path, ";.");
   271     Arguments::set_library_path(library_path);
   272     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
   273   }
   275   /* Default extensions directory */
   276   {
   277     char path[MAX_PATH];
   278     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   279     GetWindowsDirectory(path, MAX_PATH);
   280     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   281         path, PACKAGE_DIR, EXT_DIR);
   282     Arguments::set_ext_dirs(buf);
   283   }
   284   #undef EXT_DIR
   285   #undef BIN_DIR
   286   #undef PACKAGE_DIR
   288   /* Default endorsed standards directory. */
   289   {
   290     #define ENDORSED_DIR "\\lib\\endorsed"
   291     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   292     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
   293     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   294     Arguments::set_endorsed_dirs(buf);
   295     #undef ENDORSED_DIR
   296   }
   298 #ifndef _WIN64
   299   // set our UnhandledExceptionFilter and save any previous one
   300   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
   301 #endif
   303   // Done
   304   return;
   305 }
   307 void os::breakpoint() {
   308   DebugBreak();
   309 }
   311 // Invoked from the BREAKPOINT Macro
   312 extern "C" void breakpoint() {
   313   os::breakpoint();
   314 }
   316 /*
   317  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
   318  * So far, this method is only used by Native Memory Tracking, which is
   319  * only supported on Windows XP or later.
   320  */
   322 int os::get_native_stack(address* stack, int frames, int toSkip) {
   323 #ifdef _NMT_NOINLINE_
   324   toSkip ++;
   325 #endif
   326   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
   327     (PVOID*)stack, NULL);
   328   for (int index = captured; index < frames; index ++) {
   329     stack[index] = NULL;
   330   }
   331   return captured;
   332 }
   335 // os::current_stack_base()
   336 //
   337 //   Returns the base of the stack, which is the stack's
   338 //   starting address.  This function must be called
   339 //   while running on the stack of the thread being queried.
   341 address os::current_stack_base() {
   342   MEMORY_BASIC_INFORMATION minfo;
   343   address stack_bottom;
   344   size_t stack_size;
   346   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   347   stack_bottom =  (address)minfo.AllocationBase;
   348   stack_size = minfo.RegionSize;
   350   // Add up the sizes of all the regions with the same
   351   // AllocationBase.
   352   while( 1 )
   353   {
   354     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   355     if ( stack_bottom == (address)minfo.AllocationBase )
   356       stack_size += minfo.RegionSize;
   357     else
   358       break;
   359   }
   361 #ifdef _M_IA64
   362   // IA64 has memory and register stacks
   363   //
   364   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
   365   // at thread creation (1MB backing store growing upwards, 1MB memory stack
   366   // growing downwards, 2MB summed up)
   367   //
   368   // ...
   369   // ------- top of stack (high address) -----
   370   // |
   371   // |      1MB
   372   // |      Backing Store (Register Stack)
   373   // |
   374   // |         / \
   375   // |          |
   376   // |          |
   377   // |          |
   378   // ------------------------ stack base -----
   379   // |      1MB
   380   // |      Memory Stack
   381   // |
   382   // |          |
   383   // |          |
   384   // |          |
   385   // |         \ /
   386   // |
   387   // ----- bottom of stack (low address) -----
   388   // ...
   390   stack_size = stack_size / 2;
   391 #endif
   392   return stack_bottom + stack_size;
   393 }
   395 size_t os::current_stack_size() {
   396   size_t sz;
   397   MEMORY_BASIC_INFORMATION minfo;
   398   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   399   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   400   return sz;
   401 }
   403 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
   404   const struct tm* time_struct_ptr = localtime(clock);
   405   if (time_struct_ptr != NULL) {
   406     *res = *time_struct_ptr;
   407     return res;
   408   }
   409   return NULL;
   410 }
   412 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   414 // Thread start routine for all new Java threads
   415 static unsigned __stdcall java_start(Thread* thread) {
   416   // Try to randomize the cache line index of hot stack frames.
   417   // This helps when threads of the same stack traces evict each other's
   418   // cache lines. The threads can be either from the same JVM instance, or
   419   // from different JVM instances. The benefit is especially true for
   420   // processors with hyperthreading technology.
   421   static int counter = 0;
   422   int pid = os::current_process_id();
   423   _alloca(((pid ^ counter++) & 7) * 128);
   425   OSThread* osthr = thread->osthread();
   426   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   428   if (UseNUMA) {
   429     int lgrp_id = os::numa_get_group_id();
   430     if (lgrp_id != -1) {
   431       thread->set_lgrp_id(lgrp_id);
   432     }
   433   }
   436   // Install a win32 structured exception handler around every thread created
   437   // by VM, so VM can genrate error dump when an exception occurred in non-
   438   // Java thread (e.g. VM thread).
   439   __try {
   440      thread->run();
   441   } __except(topLevelExceptionFilter(
   442              (_EXCEPTION_POINTERS*)_exception_info())) {
   443       // Nothing to do.
   444   }
   446   // One less thread is executing
   447   // When the VMThread gets here, the main thread may have already exited
   448   // which frees the CodeHeap containing the Atomic::add code
   449   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   450     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   451   }
   453   return 0;
   454 }
   456 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   457   // Allocate the OSThread object
   458   OSThread* osthread = new OSThread(NULL, NULL);
   459   if (osthread == NULL) return NULL;
   461   // Initialize support for Java interrupts
   462   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   463   if (interrupt_event == NULL) {
   464     delete osthread;
   465     return NULL;
   466   }
   467   osthread->set_interrupt_event(interrupt_event);
   469   // Store info on the Win32 thread into the OSThread
   470   osthread->set_thread_handle(thread_handle);
   471   osthread->set_thread_id(thread_id);
   473   if (UseNUMA) {
   474     int lgrp_id = os::numa_get_group_id();
   475     if (lgrp_id != -1) {
   476       thread->set_lgrp_id(lgrp_id);
   477     }
   478   }
   480   // Initial thread state is INITIALIZED, not SUSPENDED
   481   osthread->set_state(INITIALIZED);
   483   return osthread;
   484 }
   487 bool os::create_attached_thread(JavaThread* thread) {
   488 #ifdef ASSERT
   489   thread->verify_not_published();
   490 #endif
   491   HANDLE thread_h;
   492   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   493                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   494     fatal("DuplicateHandle failed\n");
   495   }
   496   OSThread* osthread = create_os_thread(thread, thread_h,
   497                                         (int)current_thread_id());
   498   if (osthread == NULL) {
   499      return false;
   500   }
   502   // Initial thread state is RUNNABLE
   503   osthread->set_state(RUNNABLE);
   505   thread->set_osthread(osthread);
   506   return true;
   507 }
   509 bool os::create_main_thread(JavaThread* thread) {
   510 #ifdef ASSERT
   511   thread->verify_not_published();
   512 #endif
   513   if (_starting_thread == NULL) {
   514     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   515      if (_starting_thread == NULL) {
   516         return false;
   517      }
   518   }
   520   // The primordial thread is runnable from the start)
   521   _starting_thread->set_state(RUNNABLE);
   523   thread->set_osthread(_starting_thread);
   524   return true;
   525 }
   527 // Allocate and initialize a new OSThread
   528 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   529   unsigned thread_id;
   531   // Allocate the OSThread object
   532   OSThread* osthread = new OSThread(NULL, NULL);
   533   if (osthread == NULL) {
   534     return false;
   535   }
   537   // Initialize support for Java interrupts
   538   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   539   if (interrupt_event == NULL) {
   540     delete osthread;
   541     return NULL;
   542   }
   543   osthread->set_interrupt_event(interrupt_event);
   544   osthread->set_interrupted(false);
   546   thread->set_osthread(osthread);
   548   if (stack_size == 0) {
   549     switch (thr_type) {
   550     case os::java_thread:
   551       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   552       if (JavaThread::stack_size_at_create() > 0)
   553         stack_size = JavaThread::stack_size_at_create();
   554       break;
   555     case os::compiler_thread:
   556       if (CompilerThreadStackSize > 0) {
   557         stack_size = (size_t)(CompilerThreadStackSize * K);
   558         break;
   559       } // else fall through:
   560         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   561     case os::vm_thread:
   562     case os::pgc_thread:
   563     case os::cgc_thread:
   564     case os::watcher_thread:
   565       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   566       break;
   567     }
   568   }
   570   // Create the Win32 thread
   571   //
   572   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   573   // does not specify stack size. Instead, it specifies the size of
   574   // initially committed space. The stack size is determined by
   575   // PE header in the executable. If the committed "stack_size" is larger
   576   // than default value in the PE header, the stack is rounded up to the
   577   // nearest multiple of 1MB. For example if the launcher has default
   578   // stack size of 320k, specifying any size less than 320k does not
   579   // affect the actual stack size at all, it only affects the initial
   580   // commitment. On the other hand, specifying 'stack_size' larger than
   581   // default value may cause significant increase in memory usage, because
   582   // not only the stack space will be rounded up to MB, but also the
   583   // entire space is committed upfront.
   584   //
   585   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   586   // for CreateThread() that can treat 'stack_size' as stack size. However we
   587   // are not supposed to call CreateThread() directly according to MSDN
   588   // document because JVM uses C runtime library. The good news is that the
   589   // flag appears to work with _beginthredex() as well.
   591 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   592 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   593 #endif
   595   HANDLE thread_handle =
   596     (HANDLE)_beginthreadex(NULL,
   597                            (unsigned)stack_size,
   598                            (unsigned (__stdcall *)(void*)) java_start,
   599                            thread,
   600                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   601                            &thread_id);
   602   if (thread_handle == NULL) {
   603     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   604     // without the flag.
   605     thread_handle =
   606     (HANDLE)_beginthreadex(NULL,
   607                            (unsigned)stack_size,
   608                            (unsigned (__stdcall *)(void*)) java_start,
   609                            thread,
   610                            CREATE_SUSPENDED,
   611                            &thread_id);
   612   }
   613   if (thread_handle == NULL) {
   614     // Need to clean up stuff we've allocated so far
   615     CloseHandle(osthread->interrupt_event());
   616     thread->set_osthread(NULL);
   617     delete osthread;
   618     return NULL;
   619   }
   621   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   623   // Store info on the Win32 thread into the OSThread
   624   osthread->set_thread_handle(thread_handle);
   625   osthread->set_thread_id(thread_id);
   627   // Initial thread state is INITIALIZED, not SUSPENDED
   628   osthread->set_state(INITIALIZED);
   630   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   631   return true;
   632 }
   635 // Free Win32 resources related to the OSThread
   636 void os::free_thread(OSThread* osthread) {
   637   assert(osthread != NULL, "osthread not set");
   638   CloseHandle(osthread->thread_handle());
   639   CloseHandle(osthread->interrupt_event());
   640   delete osthread;
   641 }
   644 static int    has_performance_count = 0;
   645 static jlong first_filetime;
   646 static jlong initial_performance_count;
   647 static jlong performance_frequency;
   650 jlong as_long(LARGE_INTEGER x) {
   651   jlong result = 0; // initialization to avoid warning
   652   set_high(&result, x.HighPart);
   653   set_low(&result,  x.LowPart);
   654   return result;
   655 }
   658 jlong os::elapsed_counter() {
   659   LARGE_INTEGER count;
   660   if (has_performance_count) {
   661     QueryPerformanceCounter(&count);
   662     return as_long(count) - initial_performance_count;
   663   } else {
   664     FILETIME wt;
   665     GetSystemTimeAsFileTime(&wt);
   666     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   667   }
   668 }
   671 jlong os::elapsed_frequency() {
   672   if (has_performance_count) {
   673     return performance_frequency;
   674   } else {
   675    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   676    return 10000000;
   677   }
   678 }
   681 julong os::available_memory() {
   682   return win32::available_memory();
   683 }
   685 julong os::win32::available_memory() {
   686   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
   687   // value if total memory is larger than 4GB
   688   MEMORYSTATUSEX ms;
   689   ms.dwLength = sizeof(ms);
   690   GlobalMemoryStatusEx(&ms);
   692   return (julong)ms.ullAvailPhys;
   693 }
   695 julong os::physical_memory() {
   696   return win32::physical_memory();
   697 }
   699 bool os::has_allocatable_memory_limit(julong* limit) {
   700   MEMORYSTATUSEX ms;
   701   ms.dwLength = sizeof(ms);
   702   GlobalMemoryStatusEx(&ms);
   703 #ifdef _LP64
   704   *limit = (julong)ms.ullAvailVirtual;
   705   return true;
   706 #else
   707   // Limit to 1400m because of the 2gb address space wall
   708   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
   709   return true;
   710 #endif
   711 }
   713 // VC6 lacks DWORD_PTR
   714 #if _MSC_VER < 1300
   715 typedef UINT_PTR DWORD_PTR;
   716 #endif
   718 int os::active_processor_count() {
   719   // User has overridden the number of active processors
   720   if (ActiveProcessorCount > 0) {
   721     if (PrintActiveCpus) {
   722       tty->print_cr("active_processor_count: "
   723                     "active processor count set by user : %d",
   724                      ActiveProcessorCount);
   725     }
   726     return ActiveProcessorCount;
   727   }
   729   DWORD_PTR lpProcessAffinityMask = 0;
   730   DWORD_PTR lpSystemAffinityMask = 0;
   731   int proc_count = processor_count();
   732   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   733       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   734     // Nof active processors is number of bits in process affinity mask
   735     int bitcount = 0;
   736     while (lpProcessAffinityMask != 0) {
   737       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   738       bitcount++;
   739     }
   740     return bitcount;
   741   } else {
   742     return proc_count;
   743   }
   744 }
   746 void os::set_native_thread_name(const char *name) {
   748   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
   749   //
   750   // Note that unfortunately this only works if the process
   751   // is already attached to a debugger; debugger must observe
   752   // the exception below to show the correct name.
   754   const DWORD MS_VC_EXCEPTION = 0x406D1388;
   755   struct {
   756     DWORD dwType;     // must be 0x1000
   757     LPCSTR szName;    // pointer to name (in user addr space)
   758     DWORD dwThreadID; // thread ID (-1=caller thread)
   759     DWORD dwFlags;    // reserved for future use, must be zero
   760   } info;
   762   info.dwType = 0x1000;
   763   info.szName = name;
   764   info.dwThreadID = -1;
   765   info.dwFlags = 0;
   767   __try {
   768     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
   769   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
   770 }
   772 bool os::distribute_processes(uint length, uint* distribution) {
   773   // Not yet implemented.
   774   return false;
   775 }
   777 bool os::bind_to_processor(uint processor_id) {
   778   // Not yet implemented.
   779   return false;
   780 }
   782 static void initialize_performance_counter() {
   783   LARGE_INTEGER count;
   784   if (QueryPerformanceFrequency(&count)) {
   785     has_performance_count = 1;
   786     performance_frequency = as_long(count);
   787     QueryPerformanceCounter(&count);
   788     initial_performance_count = as_long(count);
   789   } else {
   790     has_performance_count = 0;
   791     FILETIME wt;
   792     GetSystemTimeAsFileTime(&wt);
   793     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   794   }
   795 }
   798 double os::elapsedTime() {
   799   return (double) elapsed_counter() / (double) elapsed_frequency();
   800 }
   803 // Windows format:
   804 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   805 // Java format:
   806 //   Java standards require the number of milliseconds since 1/1/1970
   808 // Constant offset - calculated using offset()
   809 static jlong  _offset   = 116444736000000000;
   810 // Fake time counter for reproducible results when debugging
   811 static jlong  fake_time = 0;
   813 #ifdef ASSERT
   814 // Just to be safe, recalculate the offset in debug mode
   815 static jlong _calculated_offset = 0;
   816 static int   _has_calculated_offset = 0;
   818 jlong offset() {
   819   if (_has_calculated_offset) return _calculated_offset;
   820   SYSTEMTIME java_origin;
   821   java_origin.wYear          = 1970;
   822   java_origin.wMonth         = 1;
   823   java_origin.wDayOfWeek     = 0; // ignored
   824   java_origin.wDay           = 1;
   825   java_origin.wHour          = 0;
   826   java_origin.wMinute        = 0;
   827   java_origin.wSecond        = 0;
   828   java_origin.wMilliseconds  = 0;
   829   FILETIME jot;
   830   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   831     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
   832   }
   833   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   834   _has_calculated_offset = 1;
   835   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   836   return _calculated_offset;
   837 }
   838 #else
   839 jlong offset() {
   840   return _offset;
   841 }
   842 #endif
   844 jlong windows_to_java_time(FILETIME wt) {
   845   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   846   return (a - offset()) / 10000;
   847 }
   849 FILETIME java_to_windows_time(jlong l) {
   850   jlong a = (l * 10000) + offset();
   851   FILETIME result;
   852   result.dwHighDateTime = high(a);
   853   result.dwLowDateTime  = low(a);
   854   return result;
   855 }
   857 bool os::supports_vtime() { return true; }
   858 bool os::enable_vtime() { return false; }
   859 bool os::vtime_enabled() { return false; }
   861 double os::elapsedVTime() {
   862   FILETIME created;
   863   FILETIME exited;
   864   FILETIME kernel;
   865   FILETIME user;
   866   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
   867     // the resolution of windows_to_java_time() should be sufficient (ms)
   868     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
   869   } else {
   870     return elapsedTime();
   871   }
   872 }
   874 jlong os::javaTimeMillis() {
   875   if (UseFakeTimers) {
   876     return fake_time++;
   877   } else {
   878     FILETIME wt;
   879     GetSystemTimeAsFileTime(&wt);
   880     return windows_to_java_time(wt);
   881   }
   882 }
   884 jlong os::javaTimeNanos() {
   885   if (!has_performance_count) {
   886     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
   887   } else {
   888     LARGE_INTEGER current_count;
   889     QueryPerformanceCounter(&current_count);
   890     double current = as_long(current_count);
   891     double freq = performance_frequency;
   892     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
   893     return time;
   894   }
   895 }
   897 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   898   if (!has_performance_count) {
   899     // javaTimeMillis() doesn't have much percision,
   900     // but it is not going to wrap -- so all 64 bits
   901     info_ptr->max_value = ALL_64_BITS;
   903     // this is a wall clock timer, so may skip
   904     info_ptr->may_skip_backward = true;
   905     info_ptr->may_skip_forward = true;
   906   } else {
   907     jlong freq = performance_frequency;
   908     if (freq < NANOSECS_PER_SEC) {
   909       // the performance counter is 64 bits and we will
   910       // be multiplying it -- so no wrap in 64 bits
   911       info_ptr->max_value = ALL_64_BITS;
   912     } else if (freq > NANOSECS_PER_SEC) {
   913       // use the max value the counter can reach to
   914       // determine the max value which could be returned
   915       julong max_counter = (julong)ALL_64_BITS;
   916       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
   917     } else {
   918       // the performance counter is 64 bits and we will
   919       // be using it directly -- so no wrap in 64 bits
   920       info_ptr->max_value = ALL_64_BITS;
   921     }
   923     // using a counter, so no skipping
   924     info_ptr->may_skip_backward = false;
   925     info_ptr->may_skip_forward = false;
   926   }
   927   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   928 }
   930 char* os::local_time_string(char *buf, size_t buflen) {
   931   SYSTEMTIME st;
   932   GetLocalTime(&st);
   933   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   934                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   935   return buf;
   936 }
   938 bool os::getTimesSecs(double* process_real_time,
   939                      double* process_user_time,
   940                      double* process_system_time) {
   941   HANDLE h_process = GetCurrentProcess();
   942   FILETIME create_time, exit_time, kernel_time, user_time;
   943   BOOL result = GetProcessTimes(h_process,
   944                                &create_time,
   945                                &exit_time,
   946                                &kernel_time,
   947                                &user_time);
   948   if (result != 0) {
   949     FILETIME wt;
   950     GetSystemTimeAsFileTime(&wt);
   951     jlong rtc_millis = windows_to_java_time(wt);
   952     jlong user_millis = windows_to_java_time(user_time);
   953     jlong system_millis = windows_to_java_time(kernel_time);
   954     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   955     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   956     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   957     return true;
   958   } else {
   959     return false;
   960   }
   961 }
   963 void os::shutdown() {
   965   // allow PerfMemory to attempt cleanup of any persistent resources
   966   perfMemory_exit();
   968   // flush buffered output, finish log files
   969   ostream_abort();
   971   // Check for abort hook
   972   abort_hook_t abort_hook = Arguments::abort_hook();
   973   if (abort_hook != NULL) {
   974     abort_hook();
   975   }
   976 }
   979 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   980                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
   982 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
   983   HINSTANCE dbghelp;
   984   EXCEPTION_POINTERS ep;
   985   MINIDUMP_EXCEPTION_INFORMATION mei;
   986   MINIDUMP_EXCEPTION_INFORMATION* pmei;
   988   HANDLE hProcess = GetCurrentProcess();
   989   DWORD processId = GetCurrentProcessId();
   990   HANDLE dumpFile;
   991   MINIDUMP_TYPE dumpType;
   992   static const char* cwd;
   994 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
   995 #ifndef ASSERT
   996   // If running on a client version of Windows and user has not explicitly enabled dumping
   997   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
   998     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
   999     return;
  1000     // If running on a server version of Windows and user has explictly disabled dumping
  1001   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
  1002     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
  1003     return;
  1005 #else
  1006   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
  1007     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
  1008     return;
  1010 #endif
  1012   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
  1014   if (dbghelp == NULL) {
  1015     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
  1016     return;
  1019   _MiniDumpWriteDump = CAST_TO_FN_PTR(
  1020     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
  1021     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
  1022     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
  1024   if (_MiniDumpWriteDump == NULL) {
  1025     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
  1026     return;
  1029   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
  1031 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
  1032 // API_VERSION_NUMBER 11 or higher contains the ones we want though
  1033 #if API_VERSION_NUMBER >= 11
  1034   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
  1035     MiniDumpWithUnloadedModules);
  1036 #endif
  1038   cwd = get_current_directory(NULL, 0);
  1039   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
  1040   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
  1042   if (dumpFile == INVALID_HANDLE_VALUE) {
  1043     VMError::report_coredump_status("Failed to create file for dumping", false);
  1044     return;
  1046   if (exceptionRecord != NULL && contextRecord != NULL) {
  1047     ep.ContextRecord = (PCONTEXT) contextRecord;
  1048     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
  1050     mei.ThreadId = GetCurrentThreadId();
  1051     mei.ExceptionPointers = &ep;
  1052     pmei = &mei;
  1053   } else {
  1054     pmei = NULL;
  1058   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
  1059   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
  1060   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
  1061       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
  1062         DWORD error = GetLastError();
  1063         LPTSTR msgbuf = NULL;
  1065         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
  1066                       FORMAT_MESSAGE_FROM_SYSTEM |
  1067                       FORMAT_MESSAGE_IGNORE_INSERTS,
  1068                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
  1070           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
  1071           LocalFree(msgbuf);
  1072         } else {
  1073           // Call to FormatMessage failed, just include the result from GetLastError
  1074           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
  1076         VMError::report_coredump_status(buffer, false);
  1077   } else {
  1078     VMError::report_coredump_status(buffer, true);
  1081   CloseHandle(dumpFile);
  1086 void os::abort(bool dump_core)
  1088   os::shutdown();
  1089   // no core dump on Windows
  1090   ::exit(1);
  1093 // Die immediately, no exit hook, no abort hook, no cleanup.
  1094 void os::die() {
  1095   _exit(-1);
  1098 // Directory routines copied from src/win32/native/java/io/dirent_md.c
  1099 //  * dirent_md.c       1.15 00/02/02
  1100 //
  1101 // The declarations for DIR and struct dirent are in jvm_win32.h.
  1103 /* Caller must have already run dirname through JVM_NativePath, which removes
  1104    duplicate slashes and converts all instances of '/' into '\\'. */
  1106 DIR *
  1107 os::opendir(const char *dirname)
  1109     assert(dirname != NULL, "just checking");   // hotspot change
  1110     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
  1111     DWORD fattr;                                // hotspot change
  1112     char alt_dirname[4] = { 0, 0, 0, 0 };
  1114     if (dirp == 0) {
  1115         errno = ENOMEM;
  1116         return 0;
  1119     /*
  1120      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
  1121      * as a directory in FindFirstFile().  We detect this case here and
  1122      * prepend the current drive name.
  1123      */
  1124     if (dirname[1] == '\0' && dirname[0] == '\\') {
  1125         alt_dirname[0] = _getdrive() + 'A' - 1;
  1126         alt_dirname[1] = ':';
  1127         alt_dirname[2] = '\\';
  1128         alt_dirname[3] = '\0';
  1129         dirname = alt_dirname;
  1132     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
  1133     if (dirp->path == 0) {
  1134         free(dirp, mtInternal);
  1135         errno = ENOMEM;
  1136         return 0;
  1138     strcpy(dirp->path, dirname);
  1140     fattr = GetFileAttributes(dirp->path);
  1141     if (fattr == 0xffffffff) {
  1142         free(dirp->path, mtInternal);
  1143         free(dirp, mtInternal);
  1144         errno = ENOENT;
  1145         return 0;
  1146     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
  1147         free(dirp->path, mtInternal);
  1148         free(dirp, mtInternal);
  1149         errno = ENOTDIR;
  1150         return 0;
  1153     /* Append "*.*", or possibly "\\*.*", to path */
  1154     if (dirp->path[1] == ':'
  1155         && (dirp->path[2] == '\0'
  1156             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
  1157         /* No '\\' needed for cases like "Z:" or "Z:\" */
  1158         strcat(dirp->path, "*.*");
  1159     } else {
  1160         strcat(dirp->path, "\\*.*");
  1163     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
  1164     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1165         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
  1166             free(dirp->path, mtInternal);
  1167             free(dirp, mtInternal);
  1168             errno = EACCES;
  1169             return 0;
  1172     return dirp;
  1175 /* parameter dbuf unused on Windows */
  1177 struct dirent *
  1178 os::readdir(DIR *dirp, dirent *dbuf)
  1180     assert(dirp != NULL, "just checking");      // hotspot change
  1181     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1182         return 0;
  1185     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
  1187     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
  1188         if (GetLastError() == ERROR_INVALID_HANDLE) {
  1189             errno = EBADF;
  1190             return 0;
  1192         FindClose(dirp->handle);
  1193         dirp->handle = INVALID_HANDLE_VALUE;
  1196     return &dirp->dirent;
  1199 int
  1200 os::closedir(DIR *dirp)
  1202     assert(dirp != NULL, "just checking");      // hotspot change
  1203     if (dirp->handle != INVALID_HANDLE_VALUE) {
  1204         if (!FindClose(dirp->handle)) {
  1205             errno = EBADF;
  1206             return -1;
  1208         dirp->handle = INVALID_HANDLE_VALUE;
  1210     free(dirp->path, mtInternal);
  1211     free(dirp, mtInternal);
  1212     return 0;
  1215 // This must be hard coded because it's the system's temporary
  1216 // directory not the java application's temp directory, ala java.io.tmpdir.
  1217 const char* os::get_temp_directory() {
  1218   static char path_buf[MAX_PATH];
  1219   if (GetTempPath(MAX_PATH, path_buf)>0)
  1220     return path_buf;
  1221   else{
  1222     path_buf[0]='\0';
  1223     return path_buf;
  1227 static bool file_exists(const char* filename) {
  1228   if (filename == NULL || strlen(filename) == 0) {
  1229     return false;
  1231   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
  1234 bool os::dll_build_name(char *buffer, size_t buflen,
  1235                         const char* pname, const char* fname) {
  1236   bool retval = false;
  1237   const size_t pnamelen = pname ? strlen(pname) : 0;
  1238   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1240   // Return error on buffer overflow.
  1241   if (pnamelen + strlen(fname) + 10 > buflen) {
  1242     return retval;
  1245   if (pnamelen == 0) {
  1246     jio_snprintf(buffer, buflen, "%s.dll", fname);
  1247     retval = true;
  1248   } else if (c == ':' || c == '\\') {
  1249     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
  1250     retval = true;
  1251   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1252     int n;
  1253     char** pelements = split_path(pname, &n);
  1254     if (pelements == NULL) {
  1255       return false;
  1257     for (int i = 0 ; i < n ; i++) {
  1258       char* path = pelements[i];
  1259       // Really shouldn't be NULL, but check can't hurt
  1260       size_t plen = (path == NULL) ? 0 : strlen(path);
  1261       if (plen == 0) {
  1262         continue; // skip the empty path values
  1264       const char lastchar = path[plen - 1];
  1265       if (lastchar == ':' || lastchar == '\\') {
  1266         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
  1267       } else {
  1268         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
  1270       if (file_exists(buffer)) {
  1271         retval = true;
  1272         break;
  1275     // release the storage
  1276     for (int i = 0 ; i < n ; i++) {
  1277       if (pelements[i] != NULL) {
  1278         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1281     if (pelements != NULL) {
  1282       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1284   } else {
  1285     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
  1286     retval = true;
  1288   return retval;
  1291 // Needs to be in os specific directory because windows requires another
  1292 // header file <direct.h>
  1293 const char* os::get_current_directory(char *buf, size_t buflen) {
  1294   int n = static_cast<int>(buflen);
  1295   if (buflen > INT_MAX)  n = INT_MAX;
  1296   return _getcwd(buf, n);
  1299 //-----------------------------------------------------------
  1300 // Helper functions for fatal error handler
  1301 #ifdef _WIN64
  1302 // Helper routine which returns true if address in
  1303 // within the NTDLL address space.
  1304 //
  1305 static bool _addr_in_ntdll( address addr )
  1307   HMODULE hmod;
  1308   MODULEINFO minfo;
  1310   hmod = GetModuleHandle("NTDLL.DLL");
  1311   if ( hmod == NULL ) return false;
  1312   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
  1313                                &minfo, sizeof(MODULEINFO)) )
  1314     return false;
  1316   if ( (addr >= minfo.lpBaseOfDll) &&
  1317        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1318     return true;
  1319   else
  1320     return false;
  1322 #endif
  1325 // Enumerate all modules for a given process ID
  1326 //
  1327 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1328 // different API for doing this. We use PSAPI.DLL on NT based
  1329 // Windows and ToolHelp on 95/98/Me.
  1331 // Callback function that is called by enumerate_modules() on
  1332 // every DLL module.
  1333 // Input parameters:
  1334 //    int       pid,
  1335 //    char*     module_file_name,
  1336 //    address   module_base_addr,
  1337 //    unsigned  module_size,
  1338 //    void*     param
  1339 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1341 // enumerate_modules for Windows NT, using PSAPI
  1342 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1344   HANDLE   hProcess ;
  1346 # define MAX_NUM_MODULES 128
  1347   HMODULE     modules[MAX_NUM_MODULES];
  1348   static char filename[ MAX_PATH ];
  1349   int         result = 0;
  1351   if (!os::PSApiDll::PSApiAvailable()) {
  1352     return 0;
  1355   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1356                          FALSE, pid ) ;
  1357   if (hProcess == NULL) return 0;
  1359   DWORD size_needed;
  1360   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
  1361                            sizeof(modules), &size_needed)) {
  1362       CloseHandle( hProcess );
  1363       return 0;
  1366   // number of modules that are currently loaded
  1367   int num_modules = size_needed / sizeof(HMODULE);
  1369   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1370     // Get Full pathname:
  1371     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
  1372                              filename, sizeof(filename))) {
  1373         filename[0] = '\0';
  1376     MODULEINFO modinfo;
  1377     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
  1378                                &modinfo, sizeof(modinfo))) {
  1379         modinfo.lpBaseOfDll = NULL;
  1380         modinfo.SizeOfImage = 0;
  1383     // Invoke callback function
  1384     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1385                   modinfo.SizeOfImage, param);
  1386     if (result) break;
  1389   CloseHandle( hProcess ) ;
  1390   return result;
  1394 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1395 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1397   HANDLE                hSnapShot ;
  1398   static MODULEENTRY32  modentry ;
  1399   int                   result = 0;
  1401   if (!os::Kernel32Dll::HelpToolsAvailable()) {
  1402     return 0;
  1405   // Get a handle to a Toolhelp snapshot of the system
  1406   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1407   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1408       return FALSE ;
  1411   // iterate through all modules
  1412   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1413   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
  1415   while( not_done ) {
  1416     // invoke the callback
  1417     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1418                 modentry.modBaseSize, param);
  1419     if (result) break;
  1421     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1422     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
  1425   CloseHandle(hSnapShot);
  1426   return result;
  1429 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1431   // Get current process ID if caller doesn't provide it.
  1432   if (!pid) pid = os::current_process_id();
  1434   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1435   else                    return _enumerate_modules_windows(pid, func, param);
  1438 struct _modinfo {
  1439    address addr;
  1440    char*   full_path;   // point to a char buffer
  1441    int     buflen;      // size of the buffer
  1442    address base_addr;
  1443 };
  1445 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1446                                   unsigned size, void * param) {
  1447    struct _modinfo *pmod = (struct _modinfo *)param;
  1448    if (!pmod) return -1;
  1450    if (base_addr     <= pmod->addr &&
  1451        base_addr+size > pmod->addr) {
  1452      // if a buffer is provided, copy path name to the buffer
  1453      if (pmod->full_path) {
  1454        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1456      pmod->base_addr = base_addr;
  1457      return 1;
  1459    return 0;
  1462 bool os::dll_address_to_library_name(address addr, char* buf,
  1463                                      int buflen, int* offset) {
  1464   // buf is not optional, but offset is optional
  1465   assert(buf != NULL, "sanity check");
  1467 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1468 //       return the full path to the DLL file, sometimes it returns path
  1469 //       to the corresponding PDB file (debug info); sometimes it only
  1470 //       returns partial path, which makes life painful.
  1472   struct _modinfo mi;
  1473   mi.addr      = addr;
  1474   mi.full_path = buf;
  1475   mi.buflen    = buflen;
  1476   int pid = os::current_process_id();
  1477   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1478     // buf already contains path name
  1479     if (offset) *offset = addr - mi.base_addr;
  1480     return true;
  1483   buf[0] = '\0';
  1484   if (offset) *offset = -1;
  1485   return false;
  1488 bool os::dll_address_to_function_name(address addr, char *buf,
  1489                                       int buflen, int *offset) {
  1490   // buf is not optional, but offset is optional
  1491   assert(buf != NULL, "sanity check");
  1493   if (Decoder::decode(addr, buf, buflen, offset)) {
  1494     return true;
  1496   if (offset != NULL)  *offset  = -1;
  1497   buf[0] = '\0';
  1498   return false;
  1501 // save the start and end address of jvm.dll into param[0] and param[1]
  1502 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1503                     unsigned size, void * param) {
  1504    if (!param) return -1;
  1506    if (base_addr     <= (address)_locate_jvm_dll &&
  1507        base_addr+size > (address)_locate_jvm_dll) {
  1508          ((address*)param)[0] = base_addr;
  1509          ((address*)param)[1] = base_addr + size;
  1510          return 1;
  1512    return 0;
  1515 address vm_lib_location[2];    // start and end address of jvm.dll
  1517 // check if addr is inside jvm.dll
  1518 bool os::address_is_in_vm(address addr) {
  1519   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1520     int pid = os::current_process_id();
  1521     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1522       assert(false, "Can't find jvm module.");
  1523       return false;
  1527   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1530 // print module info; param is outputStream*
  1531 static int _print_module(int pid, char* fname, address base,
  1532                          unsigned size, void* param) {
  1533    if (!param) return -1;
  1535    outputStream* st = (outputStream*)param;
  1537    address end_addr = base + size;
  1538    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1539    return 0;
  1542 // Loads .dll/.so and
  1543 // in case of error it checks if .dll/.so was built for the
  1544 // same architecture as Hotspot is running on
  1545 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1547   void * result = LoadLibrary(name);
  1548   if (result != NULL)
  1550     return result;
  1553   DWORD errcode = GetLastError();
  1554   if (errcode == ERROR_MOD_NOT_FOUND) {
  1555     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1556     ebuf[ebuflen-1]='\0';
  1557     return NULL;
  1560   // Parsing dll below
  1561   // If we can read dll-info and find that dll was built
  1562   // for an architecture other than Hotspot is running in
  1563   // - then print to buffer "DLL was built for a different architecture"
  1564   // else call os::lasterror to obtain system error message
  1566   // Read system error message into ebuf
  1567   // It may or may not be overwritten below (in the for loop and just above)
  1568   lasterror(ebuf, (size_t) ebuflen);
  1569   ebuf[ebuflen-1]='\0';
  1570   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1571   if (file_descriptor<0)
  1573     return NULL;
  1576   uint32_t signature_offset;
  1577   uint16_t lib_arch=0;
  1578   bool failed_to_get_lib_arch=
  1580     //Go to position 3c in the dll
  1581     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1582     ||
  1583     // Read loacation of signature
  1584     (sizeof(signature_offset)!=
  1585       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1586     ||
  1587     //Go to COFF File Header in dll
  1588     //that is located after"signature" (4 bytes long)
  1589     (os::seek_to_file_offset(file_descriptor,
  1590       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1591     ||
  1592     //Read field that contains code of architecture
  1593     // that dll was build for
  1594     (sizeof(lib_arch)!=
  1595       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1596   );
  1598   ::close(file_descriptor);
  1599   if (failed_to_get_lib_arch)
  1601     // file i/o error - report os::lasterror(...) msg
  1602     return NULL;
  1605   typedef struct
  1607     uint16_t arch_code;
  1608     char* arch_name;
  1609   } arch_t;
  1611   static const arch_t arch_array[]={
  1612     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1613     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1614     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1615   };
  1616   #if   (defined _M_IA64)
  1617     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1618   #elif (defined _M_AMD64)
  1619     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1620   #elif (defined _M_IX86)
  1621     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1622   #else
  1623     #error Method os::dll_load requires that one of following \
  1624            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1625   #endif
  1628   // Obtain a string for printf operation
  1629   // lib_arch_str shall contain string what platform this .dll was built for
  1630   // running_arch_str shall string contain what platform Hotspot was built for
  1631   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1632   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1634     if (lib_arch==arch_array[i].arch_code)
  1635       lib_arch_str=arch_array[i].arch_name;
  1636     if (running_arch==arch_array[i].arch_code)
  1637       running_arch_str=arch_array[i].arch_name;
  1640   assert(running_arch_str,
  1641     "Didn't find runing architecture code in arch_array");
  1643   // If the architure is right
  1644   // but some other error took place - report os::lasterror(...) msg
  1645   if (lib_arch == running_arch)
  1647     return NULL;
  1650   if (lib_arch_str!=NULL)
  1652     ::_snprintf(ebuf, ebuflen-1,
  1653       "Can't load %s-bit .dll on a %s-bit platform",
  1654       lib_arch_str,running_arch_str);
  1656   else
  1658     // don't know what architecture this dll was build for
  1659     ::_snprintf(ebuf, ebuflen-1,
  1660       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1661       lib_arch,running_arch_str);
  1664   return NULL;
  1668 void os::print_dll_info(outputStream *st) {
  1669    int pid = os::current_process_id();
  1670    st->print_cr("Dynamic libraries:");
  1671    enumerate_modules(pid, _print_module, (void *)st);
  1674 void os::print_os_info_brief(outputStream* st) {
  1675   os::print_os_info(st);
  1678 void os::print_os_info(outputStream* st) {
  1679   st->print("OS:");
  1681   os::win32::print_windows_version(st);
  1684 void os::win32::print_windows_version(outputStream* st) {
  1685   OSVERSIONINFOEX osvi;
  1686   VS_FIXEDFILEINFO *file_info;
  1687   TCHAR kernel32_path[MAX_PATH];
  1688   UINT len, ret;
  1690   // Use the GetVersionEx information to see if we're on a server or
  1691   // workstation edition of Windows. Starting with Windows 8.1 we can't
  1692   // trust the OS version information returned by this API.
  1693   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1694   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1695   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1696     st->print_cr("Call to GetVersionEx failed");
  1697     return;
  1699   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
  1701   // Get the full path to \Windows\System32\kernel32.dll and use that for
  1702   // determining what version of Windows we're running on.
  1703   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
  1704   ret = GetSystemDirectory(kernel32_path, len);
  1705   if (ret == 0 || ret > len) {
  1706     st->print_cr("Call to GetSystemDirectory failed");
  1707     return;
  1709   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
  1711   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
  1712   if (version_size == 0) {
  1713     st->print_cr("Call to GetFileVersionInfoSize failed");
  1714     return;
  1717   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
  1718   if (version_info == NULL) {
  1719     st->print_cr("Failed to allocate version_info");
  1720     return;
  1723   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
  1724     os::free(version_info);
  1725     st->print_cr("Call to GetFileVersionInfo failed");
  1726     return;
  1729   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
  1730     os::free(version_info);
  1731     st->print_cr("Call to VerQueryValue failed");
  1732     return;
  1735   int major_version = HIWORD(file_info->dwProductVersionMS);
  1736   int minor_version = LOWORD(file_info->dwProductVersionMS);
  1737   int build_number = HIWORD(file_info->dwProductVersionLS);
  1738   int build_minor = LOWORD(file_info->dwProductVersionLS);
  1739   int os_vers = major_version * 1000 + minor_version;
  1740   os::free(version_info);
  1742   st->print(" Windows ");
  1743   switch (os_vers) {
  1745   case 6000:
  1746     if (is_workstation) {
  1747       st->print("Vista");
  1748     } else {
  1749       st->print("Server 2008");
  1751     break;
  1753   case 6001:
  1754     if (is_workstation) {
  1755       st->print("7");
  1756     } else {
  1757       st->print("Server 2008 R2");
  1759     break;
  1761   case 6002:
  1762     if (is_workstation) {
  1763       st->print("8");
  1764     } else {
  1765       st->print("Server 2012");
  1767     break;
  1769   case 6003:
  1770     if (is_workstation) {
  1771       st->print("8.1");
  1772     } else {
  1773       st->print("Server 2012 R2");
  1775     break;
  1777   case 6004:
  1778     if (is_workstation) {
  1779       st->print("10");
  1780     } else {
  1781       // distinguish Windows Server 2016 and 2019 by build number
  1782       // Windows server 2019 GA 10/2018 build number is 17763
  1783       if (build_number > 17762) {
  1784         st->print("Server 2019");
  1785       } else {
  1786         st->print("Server 2016");
  1789     break;
  1791   default:
  1792     // Unrecognized windows, print out its major and minor versions
  1793     st->print("%d.%d", major_version, minor_version);
  1794     break;
  1797   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1798   // find out whether we are running on 64 bit processor or not
  1799   SYSTEM_INFO si;
  1800   ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1801   os::Kernel32Dll::GetNativeSystemInfo(&si);
  1802   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
  1803     st->print(" , 64 bit");
  1806   st->print(" Build %d", build_number);
  1807   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
  1808   st->cr();
  1811 void os::pd_print_cpu_info(outputStream* st) {
  1812   // Nothing to do for now.
  1815 void os::print_memory_info(outputStream* st) {
  1816   st->print("Memory:");
  1817   st->print(" %dk page", os::vm_page_size()>>10);
  1819   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
  1820   // value if total memory is larger than 4GB
  1821   MEMORYSTATUSEX ms;
  1822   ms.dwLength = sizeof(ms);
  1823   GlobalMemoryStatusEx(&ms);
  1825   st->print(", physical %uk", os::physical_memory() >> 10);
  1826   st->print("(%uk free)", os::available_memory() >> 10);
  1828   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
  1829   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
  1830   st->cr();
  1833 void os::print_siginfo(outputStream *st, void *siginfo) {
  1834   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1835   st->print("siginfo:");
  1836   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1838   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1839       er->NumberParameters >= 2) {
  1840       switch (er->ExceptionInformation[0]) {
  1841       case 0: st->print(", reading address"); break;
  1842       case 1: st->print(", writing address"); break;
  1843       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1844                             er->ExceptionInformation[0]);
  1846       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1847   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1848              er->NumberParameters >= 2 && UseSharedSpaces) {
  1849     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1850     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1851       st->print("\n\nError accessing class data sharing archive."       \
  1852                 " Mapped file inaccessible during execution, "          \
  1853                 " possible disk/network problem.");
  1855   } else {
  1856     int num = er->NumberParameters;
  1857     if (num > 0) {
  1858       st->print(", ExceptionInformation=");
  1859       for (int i = 0; i < num; i++) {
  1860         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1864   st->cr();
  1868 int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
  1869 #if _MSC_VER >= 1900
  1870   // Starting with Visual Studio 2015, vsnprint is C99 compliant.
  1871   int result = ::vsnprintf(buf, len, fmt, args);
  1872   // If an encoding error occurred (result < 0) then it's not clear
  1873   // whether the buffer is NUL terminated, so ensure it is.
  1874   if ((result < 0) && (len > 0)) {
  1875     buf[len - 1] = '\0';
  1877   return result;
  1878 #else
  1879   // Before Visual Studio 2015, vsnprintf is not C99 compliant, so use
  1880   // _vsnprintf, whose behavior seems to be *mostly* consistent across
  1881   // versions.  However, when len == 0, avoid _vsnprintf too, and just
  1882   // go straight to _vscprintf.  The output is going to be truncated in
  1883   // that case, except in the unusual case of empty output.  More
  1884   // importantly, the documentation for various versions of Visual Studio
  1885   // are inconsistent about the behavior of _vsnprintf when len == 0,
  1886   // including it possibly being an error.
  1887   int result = -1;
  1888   if (len > 0) {
  1889     result = _vsnprintf(buf, len, fmt, args);
  1890     // If output (including NUL terminator) is truncated, the buffer
  1891     // won't be NUL terminated.  Add the trailing NUL specified by C99.
  1892     if ((result < 0) || (result >= (int) len)) {
  1893       buf[len - 1] = '\0';
  1896   if (result < 0) {
  1897     result = _vscprintf(fmt, args);
  1899   return result;
  1900 #endif // _MSC_VER dispatch
  1903 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1904   // do nothing
  1907 static char saved_jvm_path[MAX_PATH] = {0};
  1909 // Find the full path to the current module, jvm.dll
  1910 void os::jvm_path(char *buf, jint buflen) {
  1911   // Error checking.
  1912   if (buflen < MAX_PATH) {
  1913     assert(false, "must use a large-enough buffer");
  1914     buf[0] = '\0';
  1915     return;
  1917   // Lazy resolve the path to current module.
  1918   if (saved_jvm_path[0] != 0) {
  1919     strcpy(buf, saved_jvm_path);
  1920     return;
  1923   buf[0] = '\0';
  1924   if (Arguments::created_by_gamma_launcher()) {
  1925      // Support for the gamma launcher. Check for an
  1926      // JAVA_HOME environment variable
  1927      // and fix up the path so it looks like
  1928      // libjvm.so is installed there (append a fake suffix
  1929      // hotspot/libjvm.so).
  1930      char* java_home_var = ::getenv("JAVA_HOME");
  1931      if (java_home_var != NULL && java_home_var[0] != 0 &&
  1932          strlen(java_home_var) < (size_t)buflen) {
  1934         strncpy(buf, java_home_var, buflen);
  1936         // determine if this is a legacy image or modules image
  1937         // modules image doesn't have "jre" subdirectory
  1938         size_t len = strlen(buf);
  1939         char* jrebin_p = buf + len;
  1940         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
  1941         if (0 != _access(buf, 0)) {
  1942           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
  1944         len = strlen(buf);
  1945         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
  1949   if(buf[0] == '\0') {
  1950     GetModuleFileName(vm_lib_handle, buf, buflen);
  1952   strncpy(saved_jvm_path, buf, MAX_PATH);
  1956 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1957 #ifndef _WIN64
  1958   st->print("_");
  1959 #endif
  1963 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1964 #ifndef _WIN64
  1965   st->print("@%d", args_size  * sizeof(int));
  1966 #endif
  1969 // This method is a copy of JDK's sysGetLastErrorString
  1970 // from src/windows/hpi/src/system_md.c
  1972 size_t os::lasterror(char* buf, size_t len) {
  1973   DWORD errval;
  1975   if ((errval = GetLastError()) != 0) {
  1976     // DOS error
  1977     size_t n = (size_t)FormatMessage(
  1978           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  1979           NULL,
  1980           errval,
  1981           0,
  1982           buf,
  1983           (DWORD)len,
  1984           NULL);
  1985     if (n > 3) {
  1986       // Drop final '.', CR, LF
  1987       if (buf[n - 1] == '\n') n--;
  1988       if (buf[n - 1] == '\r') n--;
  1989       if (buf[n - 1] == '.') n--;
  1990       buf[n] = '\0';
  1992     return n;
  1995   if (errno != 0) {
  1996     // C runtime error that has no corresponding DOS error code
  1997     const char* s = strerror(errno);
  1998     size_t n = strlen(s);
  1999     if (n >= len) n = len - 1;
  2000     strncpy(buf, s, n);
  2001     buf[n] = '\0';
  2002     return n;
  2005   return 0;
  2008 int os::get_last_error() {
  2009   DWORD error = GetLastError();
  2010   if (error == 0)
  2011     error = errno;
  2012   return (int)error;
  2015 // sun.misc.Signal
  2016 // NOTE that this is a workaround for an apparent kernel bug where if
  2017 // a signal handler for SIGBREAK is installed then that signal handler
  2018 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  2019 // See bug 4416763.
  2020 static void (*sigbreakHandler)(int) = NULL;
  2022 static void UserHandler(int sig, void *siginfo, void *context) {
  2023   os::signal_notify(sig);
  2024   // We need to reinstate the signal handler each time...
  2025   os::signal(sig, (void*)UserHandler);
  2028 void* os::user_handler() {
  2029   return (void*) UserHandler;
  2032 void* os::signal(int signal_number, void* handler) {
  2033   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  2034     void (*oldHandler)(int) = sigbreakHandler;
  2035     sigbreakHandler = (void (*)(int)) handler;
  2036     return (void*) oldHandler;
  2037   } else {
  2038     return (void*)::signal(signal_number, (void (*)(int))handler);
  2042 void os::signal_raise(int signal_number) {
  2043   raise(signal_number);
  2046 // The Win32 C runtime library maps all console control events other than ^C
  2047 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  2048 // logoff, and shutdown events.  We therefore install our own console handler
  2049 // that raises SIGTERM for the latter cases.
  2050 //
  2051 static BOOL WINAPI consoleHandler(DWORD event) {
  2052   switch(event) {
  2053     case CTRL_C_EVENT:
  2054       if (is_error_reported()) {
  2055         // Ctrl-C is pressed during error reporting, likely because the error
  2056         // handler fails to abort. Let VM die immediately.
  2057         os::die();
  2060       os::signal_raise(SIGINT);
  2061       return TRUE;
  2062       break;
  2063     case CTRL_BREAK_EVENT:
  2064       if (sigbreakHandler != NULL) {
  2065         (*sigbreakHandler)(SIGBREAK);
  2067       return TRUE;
  2068       break;
  2069     case CTRL_LOGOFF_EVENT: {
  2070       // Don't terminate JVM if it is running in a non-interactive session,
  2071       // such as a service process.
  2072       USEROBJECTFLAGS flags;
  2073       HANDLE handle = GetProcessWindowStation();
  2074       if (handle != NULL &&
  2075           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
  2076             sizeof( USEROBJECTFLAGS), NULL)) {
  2077         // If it is a non-interactive session, let next handler to deal
  2078         // with it.
  2079         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
  2080           return FALSE;
  2084     case CTRL_CLOSE_EVENT:
  2085     case CTRL_SHUTDOWN_EVENT:
  2086       os::signal_raise(SIGTERM);
  2087       return TRUE;
  2088       break;
  2089     default:
  2090       break;
  2092   return FALSE;
  2095 /*
  2096  * The following code is moved from os.cpp for making this
  2097  * code platform specific, which it is by its very nature.
  2098  */
  2100 // Return maximum OS signal used + 1 for internal use only
  2101 // Used as exit signal for signal_thread
  2102 int os::sigexitnum_pd(){
  2103   return NSIG;
  2106 // a counter for each possible signal value, including signal_thread exit signal
  2107 static volatile jint pending_signals[NSIG+1] = { 0 };
  2108 static HANDLE sig_sem = NULL;
  2110 void os::signal_init_pd() {
  2111   // Initialize signal structures
  2112   memset((void*)pending_signals, 0, sizeof(pending_signals));
  2114   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  2116   // Programs embedding the VM do not want it to attempt to receive
  2117   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  2118   // shutdown hooks mechanism introduced in 1.3.  For example, when
  2119   // the VM is run as part of a Windows NT service (i.e., a servlet
  2120   // engine in a web server), the correct behavior is for any console
  2121   // control handler to return FALSE, not TRUE, because the OS's
  2122   // "final" handler for such events allows the process to continue if
  2123   // it is a service (while terminating it if it is not a service).
  2124   // To make this behavior uniform and the mechanism simpler, we
  2125   // completely disable the VM's usage of these console events if -Xrs
  2126   // (=ReduceSignalUsage) is specified.  This means, for example, that
  2127   // the CTRL-BREAK thread dump mechanism is also disabled in this
  2128   // case.  See bugs 4323062, 4345157, and related bugs.
  2130   if (!ReduceSignalUsage) {
  2131     // Add a CTRL-C handler
  2132     SetConsoleCtrlHandler(consoleHandler, TRUE);
  2136 void os::signal_notify(int signal_number) {
  2137   BOOL ret;
  2138   if (sig_sem != NULL) {
  2139     Atomic::inc(&pending_signals[signal_number]);
  2140     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  2141     assert(ret != 0, "ReleaseSemaphore() failed");
  2145 static int check_pending_signals(bool wait_for_signal) {
  2146   DWORD ret;
  2147   while (true) {
  2148     for (int i = 0; i < NSIG + 1; i++) {
  2149       jint n = pending_signals[i];
  2150       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2151         return i;
  2154     if (!wait_for_signal) {
  2155       return -1;
  2158     JavaThread *thread = JavaThread::current();
  2160     ThreadBlockInVM tbivm(thread);
  2162     bool threadIsSuspended;
  2163     do {
  2164       thread->set_suspend_equivalent();
  2165       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2166       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  2167       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  2169       // were we externally suspended while we were waiting?
  2170       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2171       if (threadIsSuspended) {
  2172         //
  2173         // The semaphore has been incremented, but while we were waiting
  2174         // another thread suspended us. We don't want to continue running
  2175         // while suspended because that would surprise the thread that
  2176         // suspended us.
  2177         //
  2178         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  2179         assert(ret != 0, "ReleaseSemaphore() failed");
  2181         thread->java_suspend_self();
  2183     } while (threadIsSuspended);
  2187 int os::signal_lookup() {
  2188   return check_pending_signals(false);
  2191 int os::signal_wait() {
  2192   return check_pending_signals(true);
  2195 // Implicit OS exception handling
  2197 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  2198   JavaThread* thread = JavaThread::current();
  2199   // Save pc in thread
  2200 #ifdef _M_IA64
  2201   // Do not blow up if no thread info available.
  2202   if (thread) {
  2203     // Saving PRECISE pc (with slot information) in thread.
  2204     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
  2205     // Convert precise PC into "Unix" format
  2206     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
  2207     thread->set_saved_exception_pc((address)precise_pc);
  2209   // Set pc to handler
  2210   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  2211   // Clear out psr.ri (= Restart Instruction) in order to continue
  2212   // at the beginning of the target bundle.
  2213   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
  2214   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
  2215 #else
  2216   #ifdef _M_AMD64
  2217   // Do not blow up if no thread info available.
  2218   if (thread) {
  2219     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
  2221   // Set pc to handler
  2222   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  2223   #else
  2224   // Do not blow up if no thread info available.
  2225   if (thread) {
  2226     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
  2228   // Set pc to handler
  2229   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
  2230   #endif
  2231 #endif
  2233   // Continue the execution
  2234   return EXCEPTION_CONTINUE_EXECUTION;
  2238 // Used for PostMortemDump
  2239 extern "C" void safepoints();
  2240 extern "C" void find(int x);
  2241 extern "C" void events();
  2243 // According to Windows API documentation, an illegal instruction sequence should generate
  2244 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  2245 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  2246 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  2248 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  2250 // From "Execution Protection in the Windows Operating System" draft 0.35
  2251 // Once a system header becomes available, the "real" define should be
  2252 // included or copied here.
  2253 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  2255 // Handle NAT Bit consumption on IA64.
  2256 #ifdef _M_IA64
  2257 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
  2258 #endif
  2260 // Windows Vista/2008 heap corruption check
  2261 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
  2263 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
  2264 // C++ compiler contain this error code. Because this is a compiler-generated
  2265 // error, the code is not listed in the Win32 API header files.
  2266 // The code is actually a cryptic mnemonic device, with the initial "E"
  2267 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
  2268 // ASCII values of "msc".
  2270 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
  2272 #define def_excpt(val) { #val, (val) }
  2274 static const struct { char* name; uint number; } exceptlabels[] = {
  2275     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  2276     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  2277     def_excpt(EXCEPTION_BREAKPOINT),
  2278     def_excpt(EXCEPTION_SINGLE_STEP),
  2279     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  2280     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  2281     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  2282     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  2283     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  2284     def_excpt(EXCEPTION_FLT_OVERFLOW),
  2285     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  2286     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  2287     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  2288     def_excpt(EXCEPTION_INT_OVERFLOW),
  2289     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  2290     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  2291     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  2292     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  2293     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  2294     def_excpt(EXCEPTION_STACK_OVERFLOW),
  2295     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  2296     def_excpt(EXCEPTION_GUARD_PAGE),
  2297     def_excpt(EXCEPTION_INVALID_HANDLE),
  2298     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
  2299     def_excpt(EXCEPTION_HEAP_CORRUPTION)
  2300 #ifdef _M_IA64
  2301     , def_excpt(EXCEPTION_REG_NAT_CONSUMPTION)
  2302 #endif
  2303 };
  2305 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  2306   uint code = static_cast<uint>(exception_code);
  2307   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
  2308     if (exceptlabels[i].number == code) {
  2309        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  2310        return buf;
  2314   return NULL;
  2317 //-----------------------------------------------------------------------------
  2318 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2319   // handle exception caused by idiv; should only happen for -MinInt/-1
  2320   // (division by zero is handled explicitly)
  2321 #ifdef _M_IA64
  2322   assert(0, "Fix Handle_IDiv_Exception");
  2323 #else
  2324   #ifdef  _M_AMD64
  2325   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2326   address pc = (address)ctx->Rip;
  2327   assert(pc[0] == 0xF7, "not an idiv opcode");
  2328   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2329   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  2330   // set correct result values and continue after idiv instruction
  2331   ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
  2332   ctx->Rax = (DWORD64)min_jint;      // result
  2333   ctx->Rdx = (DWORD64)0;             // remainder
  2334   // Continue the execution
  2335   #else
  2336   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2337   address pc = (address)ctx->Eip;
  2338   assert(pc[0] == 0xF7, "not an idiv opcode");
  2339   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2340   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  2341   // set correct result values and continue after idiv instruction
  2342   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2343   ctx->Eax = (DWORD)min_jint;      // result
  2344   ctx->Edx = (DWORD)0;             // remainder
  2345   // Continue the execution
  2346   #endif
  2347 #endif
  2348   return EXCEPTION_CONTINUE_EXECUTION;
  2351 #ifndef  _WIN64
  2352 //-----------------------------------------------------------------------------
  2353 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2354   // handle exception caused by native method modifying control word
  2355   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2356   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2358   switch (exception_code) {
  2359     case EXCEPTION_FLT_DENORMAL_OPERAND:
  2360     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  2361     case EXCEPTION_FLT_INEXACT_RESULT:
  2362     case EXCEPTION_FLT_INVALID_OPERATION:
  2363     case EXCEPTION_FLT_OVERFLOW:
  2364     case EXCEPTION_FLT_STACK_CHECK:
  2365     case EXCEPTION_FLT_UNDERFLOW:
  2366       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  2367       if (fp_control_word != ctx->FloatSave.ControlWord) {
  2368         // Restore FPCW and mask out FLT exceptions
  2369         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  2370         // Mask out pending FLT exceptions
  2371         ctx->FloatSave.StatusWord &=  0xffffff00;
  2372         return EXCEPTION_CONTINUE_EXECUTION;
  2376   if (prev_uef_handler != NULL) {
  2377     // We didn't handle this exception so pass it to the previous
  2378     // UnhandledExceptionFilter.
  2379     return (prev_uef_handler)(exceptionInfo);
  2382   return EXCEPTION_CONTINUE_SEARCH;
  2384 #else //_WIN64
  2385 /*
  2386   On Windows, the mxcsr control bits are non-volatile across calls
  2387   See also CR 6192333
  2388   If EXCEPTION_FLT_* happened after some native method modified
  2389   mxcsr - it is not a jvm fault.
  2390   However should we decide to restore of mxcsr after a faulty
  2391   native method we can uncomment following code
  2392       jint MxCsr = INITIAL_MXCSR;
  2393         // we can't use StubRoutines::addr_mxcsr_std()
  2394         // because in Win64 mxcsr is not saved there
  2395       if (MxCsr != ctx->MxCsr) {
  2396         ctx->MxCsr = MxCsr;
  2397         return EXCEPTION_CONTINUE_EXECUTION;
  2400 */
  2401 #endif // _WIN64
  2404 static inline void report_error(Thread* t, DWORD exception_code,
  2405                                 address addr, void* siginfo, void* context) {
  2406   VMError err(t, exception_code, addr, siginfo, context);
  2407   err.report_and_die();
  2409   // If UseOsErrorReporting, this will return here and save the error file
  2410   // somewhere where we can find it in the minidump.
  2413 //-----------------------------------------------------------------------------
  2414 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2415   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  2416   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2417 #ifdef _M_IA64
  2418   // On Itanium, we need the "precise pc", which has the slot number coded
  2419   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
  2420   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
  2421   // Convert the pc to "Unix format", which has the slot number coded
  2422   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
  2423   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
  2424   // information is saved in the Unix format.
  2425   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
  2426 #else
  2427   #ifdef _M_AMD64
  2428   address pc = (address) exceptionInfo->ContextRecord->Rip;
  2429   #else
  2430   address pc = (address) exceptionInfo->ContextRecord->Eip;
  2431   #endif
  2432 #endif
  2433   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  2435   // Handle SafeFetch32 and SafeFetchN exceptions.
  2436   if (StubRoutines::is_safefetch_fault(pc)) {
  2437     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
  2440 #ifndef _WIN64
  2441   // Execution protection violation - win32 running on AMD64 only
  2442   // Handled first to avoid misdiagnosis as a "normal" access violation;
  2443   // This is safe to do because we have a new/unique ExceptionInformation
  2444   // code for this condition.
  2445   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2446     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2447     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  2448     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2450     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  2451       int page_size = os::vm_page_size();
  2453       // Make sure the pc and the faulting address are sane.
  2454       //
  2455       // If an instruction spans a page boundary, and the page containing
  2456       // the beginning of the instruction is executable but the following
  2457       // page is not, the pc and the faulting address might be slightly
  2458       // different - we still want to unguard the 2nd page in this case.
  2459       //
  2460       // 15 bytes seems to be a (very) safe value for max instruction size.
  2461       bool pc_is_near_addr =
  2462         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2463       bool instr_spans_page_boundary =
  2464         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2465                          (intptr_t) page_size) > 0);
  2467       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2468         static volatile address last_addr =
  2469           (address) os::non_memory_address_word();
  2471         // In conservative mode, don't unguard unless the address is in the VM
  2472         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2473             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2475           // Set memory to RWX and retry
  2476           address page_start =
  2477             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2478           bool res = os::protect_memory((char*) page_start, page_size,
  2479                                         os::MEM_PROT_RWX);
  2481           if (PrintMiscellaneous && Verbose) {
  2482             char buf[256];
  2483             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2484                          "at " INTPTR_FORMAT
  2485                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2486                          page_start, (res ? "success" : strerror(errno)));
  2487             tty->print_raw_cr(buf);
  2490           // Set last_addr so if we fault again at the same address, we don't
  2491           // end up in an endless loop.
  2492           //
  2493           // There are two potential complications here.  Two threads trapping
  2494           // at the same address at the same time could cause one of the
  2495           // threads to think it already unguarded, and abort the VM.  Likely
  2496           // very rare.
  2497           //
  2498           // The other race involves two threads alternately trapping at
  2499           // different addresses and failing to unguard the page, resulting in
  2500           // an endless loop.  This condition is probably even more unlikely
  2501           // than the first.
  2502           //
  2503           // Although both cases could be avoided by using locks or thread
  2504           // local last_addr, these solutions are unnecessary complication:
  2505           // this handler is a best-effort safety net, not a complete solution.
  2506           // It is disabled by default and should only be used as a workaround
  2507           // in case we missed any no-execute-unsafe VM code.
  2509           last_addr = addr;
  2511           return EXCEPTION_CONTINUE_EXECUTION;
  2515       // Last unguard failed or not unguarding
  2516       tty->print_raw_cr("Execution protection violation");
  2517       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2518                    exceptionInfo->ContextRecord);
  2519       return EXCEPTION_CONTINUE_SEARCH;
  2522 #endif // _WIN64
  2524   // Check to see if we caught the safepoint code in the
  2525   // process of write protecting the memory serialization page.
  2526   // It write enables the page immediately after protecting it
  2527   // so just return.
  2528   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2529     JavaThread* thread = (JavaThread*) t;
  2530     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2531     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2532     if ( os::is_memory_serialize_page(thread, addr) ) {
  2533       // Block current thread until the memory serialize page permission restored.
  2534       os::block_on_serialize_page_trap();
  2535       return EXCEPTION_CONTINUE_EXECUTION;
  2539   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
  2540       VM_Version::is_cpuinfo_segv_addr(pc)) {
  2541     // Verify that OS save/restore AVX registers.
  2542     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
  2545   if (t != NULL && t->is_Java_thread()) {
  2546     JavaThread* thread = (JavaThread*) t;
  2547     bool in_java = thread->thread_state() == _thread_in_Java;
  2549     // Handle potential stack overflows up front.
  2550     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2551       if (os::uses_stack_guard_pages()) {
  2552 #ifdef _M_IA64
  2553         // Use guard page for register stack.
  2554         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2555         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2556         // Check for a register stack overflow on Itanium
  2557         if (thread->addr_inside_register_stack_red_zone(addr)) {
  2558           // Fatal red zone violation happens if the Java program
  2559           // catches a StackOverflow error and does so much processing
  2560           // that it runs beyond the unprotected yellow guard zone. As
  2561           // a result, we are out of here.
  2562           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
  2563         } else if(thread->addr_inside_register_stack(addr)) {
  2564           // Disable the yellow zone which sets the state that
  2565           // we've got a stack overflow problem.
  2566           if (thread->stack_yellow_zone_enabled()) {
  2567             thread->disable_stack_yellow_zone();
  2569           // Give us some room to process the exception.
  2570           thread->disable_register_stack_guard();
  2571           // Tracing with +Verbose.
  2572           if (Verbose) {
  2573             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
  2574             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
  2575             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
  2576             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
  2577                           thread->register_stack_base(),
  2578                           thread->register_stack_base() + thread->stack_size());
  2581           // Reguard the permanent register stack red zone just to be sure.
  2582           // We saw Windows silently disabling this without telling us.
  2583           thread->enable_register_stack_red_zone();
  2585           return Handle_Exception(exceptionInfo,
  2586             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2588 #endif
  2589         if (thread->stack_yellow_zone_enabled()) {
  2590           // Yellow zone violation.  The o/s has unprotected the first yellow
  2591           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2592           // update the enabled status, even if the zone contains only one page.
  2593           thread->disable_stack_yellow_zone();
  2594           // If not in java code, return and hope for the best.
  2595           return in_java ? Handle_Exception(exceptionInfo,
  2596             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2597             :  EXCEPTION_CONTINUE_EXECUTION;
  2598         } else {
  2599           // Fatal red zone violation.
  2600           thread->disable_stack_red_zone();
  2601           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2602           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2603                        exceptionInfo->ContextRecord);
  2604           return EXCEPTION_CONTINUE_SEARCH;
  2606       } else if (in_java) {
  2607         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2608         // a one-time-only guard page, which it has released to us.  The next
  2609         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2610         return Handle_Exception(exceptionInfo,
  2611           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2612       } else {
  2613         // Can only return and hope for the best.  Further stack growth will
  2614         // result in an ACCESS_VIOLATION.
  2615         return EXCEPTION_CONTINUE_EXECUTION;
  2617     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2618       // Either stack overflow or null pointer exception.
  2619       if (in_java) {
  2620         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2621         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2622         address stack_end = thread->stack_base() - thread->stack_size();
  2623         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2624           // Stack overflow.
  2625           assert(!os::uses_stack_guard_pages(),
  2626             "should be caught by red zone code above.");
  2627           return Handle_Exception(exceptionInfo,
  2628             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2630         //
  2631         // Check for safepoint polling and implicit null
  2632         // We only expect null pointers in the stubs (vtable)
  2633         // the rest are checked explicitly now.
  2634         //
  2635         CodeBlob* cb = CodeCache::find_blob(pc);
  2636         if (cb != NULL) {
  2637           if (os::is_poll_address(addr)) {
  2638             address stub = SharedRuntime::get_poll_stub(pc);
  2639             return Handle_Exception(exceptionInfo, stub);
  2643 #ifdef _WIN64
  2644           //
  2645           // If it's a legal stack address map the entire region in
  2646           //
  2647           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2648           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2649           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2650                   addr = (address)((uintptr_t)addr &
  2651                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2652                   os::commit_memory((char *)addr, thread->stack_base() - addr,
  2653                                     !ExecMem);
  2654                   return EXCEPTION_CONTINUE_EXECUTION;
  2656           else
  2657 #endif
  2659             // Null pointer exception.
  2660 #ifdef _M_IA64
  2661             // Process implicit null checks in compiled code. Note: Implicit null checks
  2662             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
  2663             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
  2664               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
  2665               // Handle implicit null check in UEP method entry
  2666               if (cb && (cb->is_frame_complete_at(pc) ||
  2667                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
  2668                 if (Verbose) {
  2669                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
  2670                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
  2671                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
  2672                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
  2673                                 *(bundle_start + 1), *bundle_start);
  2675                 return Handle_Exception(exceptionInfo,
  2676                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
  2680             // Implicit null checks were processed above.  Hence, we should not reach
  2681             // here in the usual case => die!
  2682             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
  2683             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2684                          exceptionInfo->ContextRecord);
  2685             return EXCEPTION_CONTINUE_SEARCH;
  2687 #else // !IA64
  2689             // Windows 98 reports faulting addresses incorrectly
  2690             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2691                 !os::win32::is_nt()) {
  2692               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2693               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2695             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2696                          exceptionInfo->ContextRecord);
  2697             return EXCEPTION_CONTINUE_SEARCH;
  2698 #endif
  2703 #ifdef _WIN64
  2704       // Special care for fast JNI field accessors.
  2705       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2706       // in and the heap gets shrunk before the field access.
  2707       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2708         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2709         if (addr != (address)-1) {
  2710           return Handle_Exception(exceptionInfo, addr);
  2713 #endif
  2715       // Stack overflow or null pointer exception in native code.
  2716       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2717                    exceptionInfo->ContextRecord);
  2718       return EXCEPTION_CONTINUE_SEARCH;
  2719     } // /EXCEPTION_ACCESS_VIOLATION
  2720     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  2721 #if defined _M_IA64
  2722     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
  2723               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
  2724       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
  2726       // Compiled method patched to be non entrant? Following conditions must apply:
  2727       // 1. must be first instruction in bundle
  2728       // 2. must be a break instruction with appropriate code
  2729       if((((uint64_t) pc & 0x0F) == 0) &&
  2730          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
  2731         return Handle_Exception(exceptionInfo,
  2732                                 (address)SharedRuntime::get_handle_wrong_method_stub());
  2734     } // /EXCEPTION_ILLEGAL_INSTRUCTION
  2735 #endif
  2738     if (in_java) {
  2739       switch (exception_code) {
  2740       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2741         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2743       case EXCEPTION_INT_OVERFLOW:
  2744         return Handle_IDiv_Exception(exceptionInfo);
  2746       } // switch
  2748 #ifndef _WIN64
  2749     if (((thread->thread_state() == _thread_in_Java) ||
  2750         (thread->thread_state() == _thread_in_native)) &&
  2751         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
  2753       LONG result=Handle_FLT_Exception(exceptionInfo);
  2754       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2756 #endif //_WIN64
  2759   if (exception_code != EXCEPTION_BREAKPOINT) {
  2760     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2761                  exceptionInfo->ContextRecord);
  2763   return EXCEPTION_CONTINUE_SEARCH;
  2766 #ifndef _WIN64
  2767 // Special care for fast JNI accessors.
  2768 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2769 // the heap gets shrunk before the field access.
  2770 // Need to install our own structured exception handler since native code may
  2771 // install its own.
  2772 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2773   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2774   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2775     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2776     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2777     if (addr != (address)-1) {
  2778       return Handle_Exception(exceptionInfo, addr);
  2781   return EXCEPTION_CONTINUE_SEARCH;
  2784 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2785 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2786   __try { \
  2787     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2788   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2789   } \
  2790   return 0; \
  2793 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2794 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2795 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2796 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2797 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2798 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2799 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2800 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2802 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2803   switch (type) {
  2804     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2805     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2806     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2807     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2808     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2809     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2810     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2811     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2812     default:        ShouldNotReachHere();
  2814   return (address)-1;
  2816 #endif
  2818 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
  2819   // Install a win32 structured exception handler around the test
  2820   // function call so the VM can generate an error dump if needed.
  2821   __try {
  2822     (*funcPtr)();
  2823   } __except(topLevelExceptionFilter(
  2824              (_EXCEPTION_POINTERS*)_exception_info())) {
  2825     // Nothing to do.
  2829 // Virtual Memory
  2831 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2832 int os::vm_allocation_granularity() {
  2833   return os::win32::vm_allocation_granularity();
  2836 // Windows large page support is available on Windows 2003. In order to use
  2837 // large page memory, the administrator must first assign additional privilege
  2838 // to the user:
  2839 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2840 //   + select Local Policies -> User Rights Assignment
  2841 //   + double click "Lock pages in memory", add users and/or groups
  2842 //   + reboot
  2843 // Note the above steps are needed for administrator as well, as administrators
  2844 // by default do not have the privilege to lock pages in memory.
  2845 //
  2846 // Note about Windows 2003: although the API supports committing large page
  2847 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2848 // scenario, I found through experiment it only uses large page if the entire
  2849 // memory region is reserved and committed in a single VirtualAlloc() call.
  2850 // This makes Windows large page support more or less like Solaris ISM, in
  2851 // that the entire heap must be committed upfront. This probably will change
  2852 // in the future, if so the code below needs to be revisited.
  2854 #ifndef MEM_LARGE_PAGES
  2855 #define MEM_LARGE_PAGES 0x20000000
  2856 #endif
  2858 static HANDLE    _hProcess;
  2859 static HANDLE    _hToken;
  2861 // Container for NUMA node list info
  2862 class NUMANodeListHolder {
  2863 private:
  2864   int *_numa_used_node_list;  // allocated below
  2865   int _numa_used_node_count;
  2867   void free_node_list() {
  2868     if (_numa_used_node_list != NULL) {
  2869       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
  2873 public:
  2874   NUMANodeListHolder() {
  2875     _numa_used_node_count = 0;
  2876     _numa_used_node_list = NULL;
  2877     // do rest of initialization in build routine (after function pointers are set up)
  2880   ~NUMANodeListHolder() {
  2881     free_node_list();
  2884   bool build() {
  2885     DWORD_PTR proc_aff_mask;
  2886     DWORD_PTR sys_aff_mask;
  2887     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
  2888     ULONG highest_node_number;
  2889     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
  2890     free_node_list();
  2891     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
  2892     for (unsigned int i = 0; i <= highest_node_number; i++) {
  2893       ULONGLONG proc_mask_numa_node;
  2894       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
  2895       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
  2896         _numa_used_node_list[_numa_used_node_count++] = i;
  2899     return (_numa_used_node_count > 1);
  2902   int get_count() {return _numa_used_node_count;}
  2903   int get_node_list_entry(int n) {
  2904     // for indexes out of range, returns -1
  2905     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
  2908 } numa_node_list_holder;
  2912 static size_t _large_page_size = 0;
  2914 static bool resolve_functions_for_large_page_init() {
  2915   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
  2916     os::Advapi32Dll::AdvapiAvailable();
  2919 static bool request_lock_memory_privilege() {
  2920   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2921                                 os::current_process_id());
  2923   LUID luid;
  2924   if (_hProcess != NULL &&
  2925       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2926       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2928     TOKEN_PRIVILEGES tp;
  2929     tp.PrivilegeCount = 1;
  2930     tp.Privileges[0].Luid = luid;
  2931     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2933     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2934     // privilege. Check GetLastError() too. See MSDN document.
  2935     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2936         (GetLastError() == ERROR_SUCCESS)) {
  2937       return true;
  2941   return false;
  2944 static void cleanup_after_large_page_init() {
  2945   if (_hProcess) CloseHandle(_hProcess);
  2946   _hProcess = NULL;
  2947   if (_hToken) CloseHandle(_hToken);
  2948   _hToken = NULL;
  2951 static bool numa_interleaving_init() {
  2952   bool success = false;
  2953   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
  2955   // print a warning if UseNUMAInterleaving flag is specified on command line
  2956   bool warn_on_failure = use_numa_interleaving_specified;
  2957 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2959   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
  2960   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2961   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
  2963   if (os::Kernel32Dll::NumaCallsAvailable()) {
  2964     if (numa_node_list_holder.build()) {
  2965       if (PrintMiscellaneous && Verbose) {
  2966         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
  2967         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
  2968           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
  2970         tty->print("\n");
  2972       success = true;
  2973     } else {
  2974       WARN("Process does not cover multiple NUMA nodes.");
  2976   } else {
  2977     WARN("NUMA Interleaving is not supported by the operating system.");
  2979   if (!success) {
  2980     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
  2982   return success;
  2983 #undef WARN
  2986 // this routine is used whenever we need to reserve a contiguous VA range
  2987 // but we need to make separate VirtualAlloc calls for each piece of the range
  2988 // Reasons for doing this:
  2989 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
  2990 //  * UseNUMAInterleaving requires a separate node for each piece
  2991 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
  2992                                          bool should_inject_error=false) {
  2993   char * p_buf;
  2994   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
  2995   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2996   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
  2998   // first reserve enough address space in advance since we want to be
  2999   // able to break a single contiguous virtual address range into multiple
  3000   // large page commits but WS2003 does not allow reserving large page space
  3001   // so we just use 4K pages for reserve, this gives us a legal contiguous
  3002   // address space. then we will deallocate that reservation, and re alloc
  3003   // using large pages
  3004   const size_t size_of_reserve = bytes + chunk_size;
  3005   if (bytes > size_of_reserve) {
  3006     // Overflowed.
  3007     return NULL;
  3009   p_buf = (char *) VirtualAlloc(addr,
  3010                                 size_of_reserve,  // size of Reserve
  3011                                 MEM_RESERVE,
  3012                                 PAGE_READWRITE);
  3013   // If reservation failed, return NULL
  3014   if (p_buf == NULL) return NULL;
  3015   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
  3016   os::release_memory(p_buf, bytes + chunk_size);
  3018   // we still need to round up to a page boundary (in case we are using large pages)
  3019   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
  3020   // instead we handle this in the bytes_to_rq computation below
  3021   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
  3023   // now go through and allocate one chunk at a time until all bytes are
  3024   // allocated
  3025   size_t  bytes_remaining = bytes;
  3026   // An overflow of align_size_up() would have been caught above
  3027   // in the calculation of size_of_reserve.
  3028   char * next_alloc_addr = p_buf;
  3029   HANDLE hProc = GetCurrentProcess();
  3031 #ifdef ASSERT
  3032   // Variable for the failure injection
  3033   long ran_num = os::random();
  3034   size_t fail_after = ran_num % bytes;
  3035 #endif
  3037   int count=0;
  3038   while (bytes_remaining) {
  3039     // select bytes_to_rq to get to the next chunk_size boundary
  3041     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
  3042     // Note allocate and commit
  3043     char * p_new;
  3045 #ifdef ASSERT
  3046     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
  3047 #else
  3048     const bool inject_error_now = false;
  3049 #endif
  3051     if (inject_error_now) {
  3052       p_new = NULL;
  3053     } else {
  3054       if (!UseNUMAInterleaving) {
  3055         p_new = (char *) VirtualAlloc(next_alloc_addr,
  3056                                       bytes_to_rq,
  3057                                       flags,
  3058                                       prot);
  3059       } else {
  3060         // get the next node to use from the used_node_list
  3061         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
  3062         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
  3063         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
  3064                                                             next_alloc_addr,
  3065                                                             bytes_to_rq,
  3066                                                             flags,
  3067                                                             prot,
  3068                                                             node);
  3072     if (p_new == NULL) {
  3073       // Free any allocated pages
  3074       if (next_alloc_addr > p_buf) {
  3075         // Some memory was committed so release it.
  3076         size_t bytes_to_release = bytes - bytes_remaining;
  3077         // NMT has yet to record any individual blocks, so it
  3078         // need to create a dummy 'reserve' record to match
  3079         // the release.
  3080         MemTracker::record_virtual_memory_reserve((address)p_buf,
  3081           bytes_to_release, CALLER_PC);
  3082         os::release_memory(p_buf, bytes_to_release);
  3084 #ifdef ASSERT
  3085       if (should_inject_error) {
  3086         if (TracePageSizes && Verbose) {
  3087           tty->print_cr("Reserving pages individually failed.");
  3090 #endif
  3091       return NULL;
  3094     bytes_remaining -= bytes_to_rq;
  3095     next_alloc_addr += bytes_to_rq;
  3096     count++;
  3098   // Although the memory is allocated individually, it is returned as one.
  3099   // NMT records it as one block.
  3100   if ((flags & MEM_COMMIT) != 0) {
  3101     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
  3102   } else {
  3103     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
  3106   // made it this far, success
  3107   return p_buf;
  3112 void os::large_page_init() {
  3113   if (!UseLargePages) return;
  3115   // print a warning if any large page related flag is specified on command line
  3116   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  3117                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  3118   bool success = false;
  3120 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  3121   if (resolve_functions_for_large_page_init()) {
  3122     if (request_lock_memory_privilege()) {
  3123       size_t s = os::Kernel32Dll::GetLargePageMinimum();
  3124       if (s) {
  3125 #if defined(IA32) || defined(AMD64)
  3126         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  3127           WARN("JVM cannot use large pages bigger than 4mb.");
  3128         } else {
  3129 #endif
  3130           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  3131             _large_page_size = LargePageSizeInBytes;
  3132           } else {
  3133             _large_page_size = s;
  3135           success = true;
  3136 #if defined(IA32) || defined(AMD64)
  3138 #endif
  3139       } else {
  3140         WARN("Large page is not supported by the processor.");
  3142     } else {
  3143       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  3145   } else {
  3146     WARN("Large page is not supported by the operating system.");
  3148 #undef WARN
  3150   const size_t default_page_size = (size_t) vm_page_size();
  3151   if (success && _large_page_size > default_page_size) {
  3152     _page_sizes[0] = _large_page_size;
  3153     _page_sizes[1] = default_page_size;
  3154     _page_sizes[2] = 0;
  3157   cleanup_after_large_page_init();
  3158   UseLargePages = success;
  3161 // On win32, one cannot release just a part of reserved memory, it's an
  3162 // all or nothing deal.  When we split a reservation, we must break the
  3163 // reservation into two reservations.
  3164 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
  3165                               bool realloc) {
  3166   if (size > 0) {
  3167     release_memory(base, size);
  3168     if (realloc) {
  3169       reserve_memory(split, base);
  3171     if (size != split) {
  3172       reserve_memory(size - split, base + split);
  3177 // Multiple threads can race in this code but it's not possible to unmap small sections of
  3178 // virtual space to get requested alignment, like posix-like os's.
  3179 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
  3180 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
  3181   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
  3182       "Alignment must be a multiple of allocation granularity (page size)");
  3183   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
  3185   size_t extra_size = size + alignment;
  3186   assert(extra_size >= size, "overflow, size is too large to allow alignment");
  3188   char* aligned_base = NULL;
  3190   do {
  3191     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
  3192     if (extra_base == NULL) {
  3193       return NULL;
  3195     // Do manual alignment
  3196     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
  3198     os::release_memory(extra_base, extra_size);
  3200     aligned_base = os::reserve_memory(size, aligned_base);
  3202   } while (aligned_base == NULL);
  3204   return aligned_base;
  3207 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  3208   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  3209          "reserve alignment");
  3210   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  3211   char* res;
  3212   // note that if UseLargePages is on, all the areas that require interleaving
  3213   // will go thru reserve_memory_special rather than thru here.
  3214   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
  3215   if (!use_individual) {
  3216     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
  3217   } else {
  3218     elapsedTimer reserveTimer;
  3219     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
  3220     // in numa interleaving, we have to allocate pages individually
  3221     // (well really chunks of NUMAInterleaveGranularity size)
  3222     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
  3223     if (res == NULL) {
  3224       warning("NUMA page allocation failed");
  3226     if( Verbose && PrintMiscellaneous ) {
  3227       reserveTimer.stop();
  3228       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
  3229                     reserveTimer.milliseconds(), reserveTimer.ticks());
  3232   assert(res == NULL || addr == NULL || addr == res,
  3233          "Unexpected address from reserve.");
  3235   return res;
  3238 // Reserve memory at an arbitrary address, only if that area is
  3239 // available (and not reserved for something else).
  3240 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3241   // Windows os::reserve_memory() fails of the requested address range is
  3242   // not avilable.
  3243   return reserve_memory(bytes, requested_addr);
  3246 size_t os::large_page_size() {
  3247   return _large_page_size;
  3250 bool os::can_commit_large_page_memory() {
  3251   // Windows only uses large page memory when the entire region is reserved
  3252   // and committed in a single VirtualAlloc() call. This may change in the
  3253   // future, but with Windows 2003 it's not possible to commit on demand.
  3254   return false;
  3257 bool os::can_execute_large_page_memory() {
  3258   return true;
  3261 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
  3262   assert(UseLargePages, "only for large pages");
  3264   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
  3265     return NULL; // Fallback to small pages.
  3268   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
  3269   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3271   // with large pages, there are two cases where we need to use Individual Allocation
  3272   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
  3273   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
  3274   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
  3275     if (TracePageSizes && Verbose) {
  3276        tty->print_cr("Reserving large pages individually.");
  3278     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
  3279     if (p_buf == NULL) {
  3280       // give an appropriate warning message
  3281       if (UseNUMAInterleaving) {
  3282         warning("NUMA large page allocation failed, UseLargePages flag ignored");
  3284       if (UseLargePagesIndividualAllocation) {
  3285         warning("Individually allocated large pages failed, "
  3286                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
  3288       return NULL;
  3291     return p_buf;
  3293   } else {
  3294     if (TracePageSizes && Verbose) {
  3295        tty->print_cr("Reserving large pages in a single large chunk.");
  3297     // normal policy just allocate it all at once
  3298     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3299     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
  3300     if (res != NULL) {
  3301       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
  3304     return res;
  3308 bool os::release_memory_special(char* base, size_t bytes) {
  3309   assert(base != NULL, "Sanity check");
  3310   return release_memory(base, bytes);
  3313 void os::print_statistics() {
  3316 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
  3317   int err = os::get_last_error();
  3318   char buf[256];
  3319   size_t buf_len = os::lasterror(buf, sizeof(buf));
  3320   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  3321           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
  3322           exec, buf_len != 0 ? buf : "<no_error_string>", err);
  3325 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
  3326   if (bytes == 0) {
  3327     // Don't bother the OS with noops.
  3328     return true;
  3330   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  3331   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  3332   // Don't attempt to print anything if the OS call fails. We're
  3333   // probably low on resources, so the print itself may cause crashes.
  3335   // unless we have NUMAInterleaving enabled, the range of a commit
  3336   // is always within a reserve covered by a single VirtualAlloc
  3337   // in that case we can just do a single commit for the requested size
  3338   if (!UseNUMAInterleaving) {
  3339     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
  3340       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
  3341       return false;
  3343     if (exec) {
  3344       DWORD oldprot;
  3345       // Windows doc says to use VirtualProtect to get execute permissions
  3346       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
  3347         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
  3348         return false;
  3351     return true;
  3352   } else {
  3354     // when NUMAInterleaving is enabled, the commit might cover a range that
  3355     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
  3356     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
  3357     // returns represents the number of bytes that can be committed in one step.
  3358     size_t bytes_remaining = bytes;
  3359     char * next_alloc_addr = addr;
  3360     while (bytes_remaining > 0) {
  3361       MEMORY_BASIC_INFORMATION alloc_info;
  3362       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
  3363       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
  3364       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
  3365                        PAGE_READWRITE) == NULL) {
  3366         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
  3367                                             exec);)
  3368         return false;
  3370       if (exec) {
  3371         DWORD oldprot;
  3372         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
  3373                             PAGE_EXECUTE_READWRITE, &oldprot)) {
  3374           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
  3375                                               exec);)
  3376           return false;
  3379       bytes_remaining -= bytes_to_rq;
  3380       next_alloc_addr += bytes_to_rq;
  3383   // if we made it this far, return true
  3384   return true;
  3387 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  3388                        bool exec) {
  3389   // alignment_hint is ignored on this OS
  3390   return pd_commit_memory(addr, size, exec);
  3393 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  3394                                   const char* mesg) {
  3395   assert(mesg != NULL, "mesg must be specified");
  3396   if (!pd_commit_memory(addr, size, exec)) {
  3397     warn_fail_commit_memory(addr, size, exec);
  3398     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  3402 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  3403                                   size_t alignment_hint, bool exec,
  3404                                   const char* mesg) {
  3405   // alignment_hint is ignored on this OS
  3406   pd_commit_memory_or_exit(addr, size, exec, mesg);
  3409 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
  3410   if (bytes == 0) {
  3411     // Don't bother the OS with noops.
  3412     return true;
  3414   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  3415   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  3416   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
  3419 bool os::pd_release_memory(char* addr, size_t bytes) {
  3420   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  3423 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3424   return os::commit_memory(addr, size, !ExecMem);
  3427 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3428   return os::uncommit_memory(addr, size);
  3431 // Set protections specified
  3432 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3433                         bool is_committed) {
  3434   unsigned int p = 0;
  3435   switch (prot) {
  3436   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  3437   case MEM_PROT_READ: p = PAGE_READONLY; break;
  3438   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  3439   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  3440   default:
  3441     ShouldNotReachHere();
  3444   DWORD old_status;
  3446   // Strange enough, but on Win32 one can change protection only for committed
  3447   // memory, not a big deal anyway, as bytes less or equal than 64K
  3448   if (!is_committed) {
  3449     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
  3450                           "cannot commit protection page");
  3452   // One cannot use os::guard_memory() here, as on Win32 guard page
  3453   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  3454   //
  3455   // Pages in the region become guard pages. Any attempt to access a guard page
  3456   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  3457   // the guard page status. Guard pages thus act as a one-time access alarm.
  3458   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  3461 bool os::guard_memory(char* addr, size_t bytes) {
  3462   DWORD old_status;
  3463   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
  3466 bool os::unguard_memory(char* addr, size_t bytes) {
  3467   DWORD old_status;
  3468   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
  3471 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3472 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3473 void os::numa_make_global(char *addr, size_t bytes)    { }
  3474 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  3475 bool os::numa_topology_changed()                       { return false; }
  3476 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
  3477 int os::numa_get_group_id()                            { return 0; }
  3478 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  3479   if (numa_node_list_holder.get_count() == 0 && size > 0) {
  3480     // Provide an answer for UMA systems
  3481     ids[0] = 0;
  3482     return 1;
  3483   } else {
  3484     // check for size bigger than actual groups_num
  3485     size = MIN2(size, numa_get_groups_num());
  3486     for (int i = 0; i < (int)size; i++) {
  3487       ids[i] = numa_node_list_holder.get_node_list_entry(i);
  3489     return size;
  3493 bool os::get_page_info(char *start, page_info* info) {
  3494   return false;
  3497 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  3498   return end;
  3501 char* os::non_memory_address_word() {
  3502   // Must never look like an address returned by reserve_memory,
  3503   // even in its subfields (as defined by the CPU immediate fields,
  3504   // if the CPU splits constants across multiple instructions).
  3505   return (char*)-1;
  3508 #define MAX_ERROR_COUNT 100
  3509 #define SYS_THREAD_ERROR 0xffffffffUL
  3511 void os::pd_start_thread(Thread* thread) {
  3512   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  3513   // Returns previous suspend state:
  3514   // 0:  Thread was not suspended
  3515   // 1:  Thread is running now
  3516   // >1: Thread is still suspended.
  3517   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  3520 class HighResolutionInterval : public CHeapObj<mtThread> {
  3521   // The default timer resolution seems to be 10 milliseconds.
  3522   // (Where is this written down?)
  3523   // If someone wants to sleep for only a fraction of the default,
  3524   // then we set the timer resolution down to 1 millisecond for
  3525   // the duration of their interval.
  3526   // We carefully set the resolution back, since otherwise we
  3527   // seem to incur an overhead (3%?) that we don't need.
  3528   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  3529   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  3530   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  3531   // timeBeginPeriod() if the relative error exceeded some threshold.
  3532   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  3533   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  3534   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  3535   // resolution timers running.
  3536 private:
  3537     jlong resolution;
  3538 public:
  3539   HighResolutionInterval(jlong ms) {
  3540     resolution = ms % 10L;
  3541     if (resolution != 0) {
  3542       MMRESULT result = timeBeginPeriod(1L);
  3545   ~HighResolutionInterval() {
  3546     if (resolution != 0) {
  3547       MMRESULT result = timeEndPeriod(1L);
  3549     resolution = 0L;
  3551 };
  3553 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  3554   jlong limit = (jlong) MAXDWORD;
  3556   while(ms > limit) {
  3557     int res;
  3558     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  3559       return res;
  3560     ms -= limit;
  3563   assert(thread == Thread::current(),  "thread consistency check");
  3564   OSThread* osthread = thread->osthread();
  3565   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  3566   int result;
  3567   if (interruptable) {
  3568     assert(thread->is_Java_thread(), "must be java thread");
  3569     JavaThread *jt = (JavaThread *) thread;
  3570     ThreadBlockInVM tbivm(jt);
  3572     jt->set_suspend_equivalent();
  3573     // cleared by handle_special_suspend_equivalent_condition() or
  3574     // java_suspend_self() via check_and_wait_while_suspended()
  3576     HANDLE events[1];
  3577     events[0] = osthread->interrupt_event();
  3578     HighResolutionInterval *phri=NULL;
  3579     if(!ForceTimeHighResolution)
  3580       phri = new HighResolutionInterval( ms );
  3581     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  3582       result = OS_TIMEOUT;
  3583     } else {
  3584       ResetEvent(osthread->interrupt_event());
  3585       osthread->set_interrupted(false);
  3586       result = OS_INTRPT;
  3588     delete phri; //if it is NULL, harmless
  3590     // were we externally suspended while we were waiting?
  3591     jt->check_and_wait_while_suspended();
  3592   } else {
  3593     assert(!thread->is_Java_thread(), "must not be java thread");
  3594     Sleep((long) ms);
  3595     result = OS_TIMEOUT;
  3597   return result;
  3600 //
  3601 // Short sleep, direct OS call.
  3602 //
  3603 // ms = 0, means allow others (if any) to run.
  3604 //
  3605 void os::naked_short_sleep(jlong ms) {
  3606   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  3607   Sleep(ms);
  3610 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3611 void os::infinite_sleep() {
  3612   while (true) {    // sleep forever ...
  3613     Sleep(100000);  // ... 100 seconds at a time
  3617 typedef BOOL (WINAPI * STTSignature)(void) ;
  3619 os::YieldResult os::NakedYield() {
  3620   // Use either SwitchToThread() or Sleep(0)
  3621   // Consider passing back the return value from SwitchToThread().
  3622   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
  3623     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  3624   } else {
  3625     Sleep(0);
  3627   return os::YIELD_UNKNOWN ;
  3630 void os::yield() {  os::NakedYield(); }
  3632 void os::yield_all(int attempts) {
  3633   // Yields to all threads, including threads with lower priorities
  3634   Sleep(1);
  3637 // Win32 only gives you access to seven real priorities at a time,
  3638 // so we compress Java's ten down to seven.  It would be better
  3639 // if we dynamically adjusted relative priorities.
  3641 int os::java_to_os_priority[CriticalPriority + 1] = {
  3642   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3643   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3644   THREAD_PRIORITY_LOWEST,                       // 2
  3645   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3646   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3647   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3648   THREAD_PRIORITY_NORMAL,                       // 6
  3649   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3650   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  3651   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3652   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
  3653   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
  3654 };
  3656 int prio_policy1[CriticalPriority + 1] = {
  3657   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3658   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3659   THREAD_PRIORITY_LOWEST,                       // 2
  3660   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3661   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3662   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3663   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  3664   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3665   THREAD_PRIORITY_HIGHEST,                      // 8
  3666   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3667   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
  3668   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
  3669 };
  3671 static int prio_init() {
  3672   // If ThreadPriorityPolicy is 1, switch tables
  3673   if (ThreadPriorityPolicy == 1) {
  3674     int i;
  3675     for (i = 0; i < CriticalPriority + 1; i++) {
  3676       os::java_to_os_priority[i] = prio_policy1[i];
  3679   if (UseCriticalJavaThreadPriority) {
  3680     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
  3682   return 0;
  3685 OSReturn os::set_native_priority(Thread* thread, int priority) {
  3686   if (!UseThreadPriorities) return OS_OK;
  3687   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  3688   return ret ? OS_OK : OS_ERR;
  3691 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  3692   if ( !UseThreadPriorities ) {
  3693     *priority_ptr = java_to_os_priority[NormPriority];
  3694     return OS_OK;
  3696   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  3697   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  3698     assert(false, "GetThreadPriority failed");
  3699     return OS_ERR;
  3701   *priority_ptr = os_prio;
  3702   return OS_OK;
  3706 // Hint to the underlying OS that a task switch would not be good.
  3707 // Void return because it's a hint and can fail.
  3708 void os::hint_no_preempt() {}
  3710 void os::interrupt(Thread* thread) {
  3711   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3712          "possibility of dangling Thread pointer");
  3714   OSThread* osthread = thread->osthread();
  3715   osthread->set_interrupted(true);
  3716   // More than one thread can get here with the same value of osthread,
  3717   // resulting in multiple notifications.  We do, however, want the store
  3718   // to interrupted() to be visible to other threads before we post
  3719   // the interrupt event.
  3720   OrderAccess::release();
  3721   SetEvent(osthread->interrupt_event());
  3722   // For JSR166:  unpark after setting status
  3723   if (thread->is_Java_thread())
  3724     ((JavaThread*)thread)->parker()->unpark();
  3726   ParkEvent * ev = thread->_ParkEvent ;
  3727   if (ev != NULL) ev->unpark() ;
  3732 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3733   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3734          "possibility of dangling Thread pointer");
  3736   OSThread* osthread = thread->osthread();
  3737   // There is no synchronization between the setting of the interrupt
  3738   // and it being cleared here. It is critical - see 6535709 - that
  3739   // we only clear the interrupt state, and reset the interrupt event,
  3740   // if we are going to report that we were indeed interrupted - else
  3741   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
  3742   // depending on the timing. By checking thread interrupt event to see
  3743   // if the thread gets real interrupt thus prevent spurious wakeup.
  3744   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
  3745   if (interrupted && clear_interrupted) {
  3746     osthread->set_interrupted(false);
  3747     ResetEvent(osthread->interrupt_event());
  3748   } // Otherwise leave the interrupted state alone
  3750   return interrupted;
  3753 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3754 ExtendedPC os::get_thread_pc(Thread* thread) {
  3755   CONTEXT context;
  3756   context.ContextFlags = CONTEXT_CONTROL;
  3757   HANDLE handle = thread->osthread()->thread_handle();
  3758 #ifdef _M_IA64
  3759   assert(0, "Fix get_thread_pc");
  3760   return ExtendedPC(NULL);
  3761 #else
  3762   if (GetThreadContext(handle, &context)) {
  3763 #ifdef _M_AMD64
  3764     return ExtendedPC((address) context.Rip);
  3765 #else
  3766     return ExtendedPC((address) context.Eip);
  3767 #endif
  3768   } else {
  3769     return ExtendedPC(NULL);
  3771 #endif
  3774 // GetCurrentThreadId() returns DWORD
  3775 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3777 static int _initial_pid = 0;
  3779 int os::current_process_id()
  3781   return (_initial_pid ? _initial_pid : _getpid());
  3784 int    os::win32::_vm_page_size       = 0;
  3785 int    os::win32::_vm_allocation_granularity = 0;
  3786 int    os::win32::_processor_type     = 0;
  3787 // Processor level is not available on non-NT systems, use vm_version instead
  3788 int    os::win32::_processor_level    = 0;
  3789 julong os::win32::_physical_memory    = 0;
  3790 size_t os::win32::_default_stack_size = 0;
  3792          intx os::win32::_os_thread_limit    = 0;
  3793 volatile intx os::win32::_os_thread_count    = 0;
  3795 bool   os::win32::_is_nt              = false;
  3796 bool   os::win32::_is_windows_2003    = false;
  3797 bool   os::win32::_is_windows_server  = false;
  3799 void os::win32::initialize_system_info() {
  3800   SYSTEM_INFO si;
  3801   GetSystemInfo(&si);
  3802   _vm_page_size    = si.dwPageSize;
  3803   _vm_allocation_granularity = si.dwAllocationGranularity;
  3804   _processor_type  = si.dwProcessorType;
  3805   _processor_level = si.wProcessorLevel;
  3806   set_processor_count(si.dwNumberOfProcessors);
  3808   MEMORYSTATUSEX ms;
  3809   ms.dwLength = sizeof(ms);
  3811   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3812   // dwMemoryLoad (% of memory in use)
  3813   GlobalMemoryStatusEx(&ms);
  3814   _physical_memory = ms.ullTotalPhys;
  3816   OSVERSIONINFOEX oi;
  3817   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  3818   GetVersionEx((OSVERSIONINFO*)&oi);
  3819   switch(oi.dwPlatformId) {
  3820     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3821     case VER_PLATFORM_WIN32_NT:
  3822       _is_nt = true;
  3824         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3825         if (os_vers == 5002) {
  3826           _is_windows_2003 = true;
  3828         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
  3829           oi.wProductType == VER_NT_SERVER) {
  3830             _is_windows_server = true;
  3833       break;
  3834     default: fatal("Unknown platform");
  3837   _default_stack_size = os::current_stack_size();
  3838   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3839   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3840     "stack size not a multiple of page size");
  3842   initialize_performance_counter();
  3844   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3845   // known to deadlock the system, if the VM issues to thread operations with
  3846   // a too high frequency, e.g., such as changing the priorities.
  3847   // The 6000 seems to work well - no deadlocks has been notices on the test
  3848   // programs that we have seen experience this problem.
  3849   if (!os::win32::is_nt()) {
  3850     StarvationMonitorInterval = 6000;
  3855 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
  3856   char path[MAX_PATH];
  3857   DWORD size;
  3858   DWORD pathLen = (DWORD)sizeof(path);
  3859   HINSTANCE result = NULL;
  3861   // only allow library name without path component
  3862   assert(strchr(name, '\\') == NULL, "path not allowed");
  3863   assert(strchr(name, ':') == NULL, "path not allowed");
  3864   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
  3865     jio_snprintf(ebuf, ebuflen,
  3866       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
  3867     return NULL;
  3870   // search system directory
  3871   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
  3872     strcat(path, "\\");
  3873     strcat(path, name);
  3874     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3875       return result;
  3879   // try Windows directory
  3880   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
  3881     strcat(path, "\\");
  3882     strcat(path, name);
  3883     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3884       return result;
  3888   jio_snprintf(ebuf, ebuflen,
  3889     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
  3890   return NULL;
  3893 void os::win32::setmode_streams() {
  3894   _setmode(_fileno(stdin), _O_BINARY);
  3895   _setmode(_fileno(stdout), _O_BINARY);
  3896   _setmode(_fileno(stderr), _O_BINARY);
  3900 bool os::is_debugger_attached() {
  3901   return IsDebuggerPresent() ? true : false;
  3905 void os::wait_for_keypress_at_exit(void) {
  3906   if (PauseAtExit) {
  3907     fprintf(stderr, "Press any key to continue...\n");
  3908     fgetc(stdin);
  3913 int os::message_box(const char* title, const char* message) {
  3914   int result = MessageBox(NULL, message, title,
  3915                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3916   return result == IDYES;
  3919 int os::allocate_thread_local_storage() {
  3920   return TlsAlloc();
  3924 void os::free_thread_local_storage(int index) {
  3925   TlsFree(index);
  3929 void os::thread_local_storage_at_put(int index, void* value) {
  3930   TlsSetValue(index, value);
  3931   assert(thread_local_storage_at(index) == value, "Just checking");
  3935 void* os::thread_local_storage_at(int index) {
  3936   return TlsGetValue(index);
  3940 #ifndef PRODUCT
  3941 #ifndef _WIN64
  3942 // Helpers to check whether NX protection is enabled
  3943 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3944   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3945       pex->ExceptionRecord->NumberParameters > 0 &&
  3946       pex->ExceptionRecord->ExceptionInformation[0] ==
  3947       EXCEPTION_INFO_EXEC_VIOLATION) {
  3948     return EXCEPTION_EXECUTE_HANDLER;
  3950   return EXCEPTION_CONTINUE_SEARCH;
  3953 void nx_check_protection() {
  3954   // If NX is enabled we'll get an exception calling into code on the stack
  3955   char code[] = { (char)0xC3 }; // ret
  3956   void *code_ptr = (void *)code;
  3957   __try {
  3958     __asm call code_ptr
  3959   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  3960     tty->print_raw_cr("NX protection detected.");
  3963 #endif // _WIN64
  3964 #endif // PRODUCT
  3966 // this is called _before_ the global arguments have been parsed
  3967 void os::init(void) {
  3968   _initial_pid = _getpid();
  3970   init_random(1234567);
  3972   win32::initialize_system_info();
  3973   win32::setmode_streams();
  3974   init_page_sizes((size_t) win32::vm_page_size());
  3976   // For better scalability on MP systems (must be called after initialize_system_info)
  3977 #ifndef PRODUCT
  3978   if (is_MP()) {
  3979     NoYieldsInMicrolock = true;
  3981 #endif
  3982   // This may be overridden later when argument processing is done.
  3983   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  3984     os::win32::is_windows_2003());
  3986   // Initialize main_process and main_thread
  3987   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3988  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3989                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3990     fatal("DuplicateHandle failed\n");
  3992   main_thread_id = (int) GetCurrentThreadId();
  3995 // To install functions for atexit processing
  3996 extern "C" {
  3997   static void perfMemory_exit_helper() {
  3998     perfMemory_exit();
  4002 static jint initSock();
  4004 // this is called _after_ the global arguments have been parsed
  4005 jint os::init_2(void) {
  4006   // Allocate a single page and mark it as readable for safepoint polling
  4007   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  4008   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  4010   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  4011   guarantee( return_page != NULL, "Commit Failed for polling page");
  4013   os::set_polling_page( polling_page );
  4015 #ifndef PRODUCT
  4016   if( Verbose && PrintMiscellaneous )
  4017     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4018 #endif
  4020   if (!UseMembar) {
  4021     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
  4022     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  4024     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
  4025     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  4027     os::set_memory_serialize_page( mem_serialize_page );
  4029 #ifndef PRODUCT
  4030     if(Verbose && PrintMiscellaneous)
  4031       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4032 #endif
  4035   // Setup Windows Exceptions
  4037   // for debugging float code generation bugs
  4038   if (ForceFloatExceptions) {
  4039 #ifndef  _WIN64
  4040     static long fp_control_word = 0;
  4041     __asm { fstcw fp_control_word }
  4042     // see Intel PPro Manual, Vol. 2, p 7-16
  4043     const long precision = 0x20;
  4044     const long underflow = 0x10;
  4045     const long overflow  = 0x08;
  4046     const long zero_div  = 0x04;
  4047     const long denorm    = 0x02;
  4048     const long invalid   = 0x01;
  4049     fp_control_word |= invalid;
  4050     __asm { fldcw fp_control_word }
  4051 #endif
  4054   // If stack_commit_size is 0, windows will reserve the default size,
  4055   // but only commit a small portion of it.
  4056   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  4057   size_t default_reserve_size = os::win32::default_stack_size();
  4058   size_t actual_reserve_size = stack_commit_size;
  4059   if (stack_commit_size < default_reserve_size) {
  4060     // If stack_commit_size == 0, we want this too
  4061     actual_reserve_size = default_reserve_size;
  4064   // Check minimum allowable stack size for thread creation and to initialize
  4065   // the java system classes, including StackOverflowError - depends on page
  4066   // size.  Add a page for compiler2 recursion in main thread.
  4067   // Add in 2*BytesPerWord times page size to account for VM stack during
  4068   // class initialization depending on 32 or 64 bit VM.
  4069   size_t min_stack_allowed =
  4070             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  4071             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
  4072   if (actual_reserve_size < min_stack_allowed) {
  4073     tty->print_cr("\nThe stack size specified is too small, "
  4074                   "Specify at least %dk",
  4075                   min_stack_allowed / K);
  4076     return JNI_ERR;
  4079   JavaThread::set_stack_size_at_create(stack_commit_size);
  4081   // Calculate theoretical max. size of Threads to guard gainst artifical
  4082   // out-of-memory situations, where all available address-space has been
  4083   // reserved by thread stacks.
  4084   assert(actual_reserve_size != 0, "Must have a stack");
  4086   // Calculate the thread limit when we should start doing Virtual Memory
  4087   // banging. Currently when the threads will have used all but 200Mb of space.
  4088   //
  4089   // TODO: consider performing a similar calculation for commit size instead
  4090   // as reserve size, since on a 64-bit platform we'll run into that more
  4091   // often than running out of virtual memory space.  We can use the
  4092   // lower value of the two calculations as the os_thread_limit.
  4093   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  4094   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  4096   // at exit methods are called in the reverse order of their registration.
  4097   // there is no limit to the number of functions registered. atexit does
  4098   // not set errno.
  4100   if (PerfAllowAtExitRegistration) {
  4101     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4102     // atexit functions can be delayed until process exit time, which
  4103     // can be problematic for embedded VM situations. Embedded VMs should
  4104     // call DestroyJavaVM() to assure that VM resources are released.
  4106     // note: perfMemory_exit_helper atexit function may be removed in
  4107     // the future if the appropriate cleanup code can be added to the
  4108     // VM_Exit VMOperation's doit method.
  4109     if (atexit(perfMemory_exit_helper) != 0) {
  4110       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  4114 #ifndef _WIN64
  4115   // Print something if NX is enabled (win32 on AMD64)
  4116   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  4117 #endif
  4119   // initialize thread priority policy
  4120   prio_init();
  4122   if (UseNUMA && !ForceNUMA) {
  4123     UseNUMA = false; // We don't fully support this yet
  4126   if (UseNUMAInterleaving) {
  4127     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
  4128     bool success = numa_interleaving_init();
  4129     if (!success) UseNUMAInterleaving = false;
  4132   if (initSock() != JNI_OK) {
  4133     return JNI_ERR;
  4136   return JNI_OK;
  4139 // Mark the polling page as unreadable
  4140 void os::make_polling_page_unreadable(void) {
  4141   DWORD old_status;
  4142   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  4143     fatal("Could not disable polling page");
  4144 };
  4146 // Mark the polling page as readable
  4147 void os::make_polling_page_readable(void) {
  4148   DWORD old_status;
  4149   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  4150     fatal("Could not enable polling page");
  4151 };
  4154 int os::stat(const char *path, struct stat *sbuf) {
  4155   char pathbuf[MAX_PATH];
  4156   if (strlen(path) > MAX_PATH - 1) {
  4157     errno = ENAMETOOLONG;
  4158     return -1;
  4160   os::native_path(strcpy(pathbuf, path));
  4161   int ret = ::stat(pathbuf, sbuf);
  4162   if (sbuf != NULL && UseUTCFileTimestamp) {
  4163     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  4164     // the system timezone and so can return different values for the
  4165     // same file if/when daylight savings time changes.  This adjustment
  4166     // makes sure the same timestamp is returned regardless of the TZ.
  4167     //
  4168     // See:
  4169     // http://msdn.microsoft.com/library/
  4170     //   default.asp?url=/library/en-us/sysinfo/base/
  4171     //   time_zone_information_str.asp
  4172     // and
  4173     // http://msdn.microsoft.com/library/default.asp?url=
  4174     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  4175     //
  4176     // NOTE: there is a insidious bug here:  If the timezone is changed
  4177     // after the call to stat() but before 'GetTimeZoneInformation()', then
  4178     // the adjustment we do here will be wrong and we'll return the wrong
  4179     // value (which will likely end up creating an invalid class data
  4180     // archive).  Absent a better API for this, or some time zone locking
  4181     // mechanism, we'll have to live with this risk.
  4182     TIME_ZONE_INFORMATION tz;
  4183     DWORD tzid = GetTimeZoneInformation(&tz);
  4184     int daylightBias =
  4185       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  4186     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  4188   return ret;
  4192 #define FT2INT64(ft) \
  4193   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  4196 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4197 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4198 // of a thread.
  4199 //
  4200 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4201 // the fast estimate available on the platform.
  4203 // current_thread_cpu_time() is not optimized for Windows yet
  4204 jlong os::current_thread_cpu_time() {
  4205   // return user + sys since the cost is the same
  4206   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  4209 jlong os::thread_cpu_time(Thread* thread) {
  4210   // consistent with what current_thread_cpu_time() returns.
  4211   return os::thread_cpu_time(thread, true /* user+sys */);
  4214 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4215   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4218 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  4219   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  4220   // If this function changes, os::is_thread_cpu_time_supported() should too
  4221   if (os::win32::is_nt()) {
  4222     FILETIME CreationTime;
  4223     FILETIME ExitTime;
  4224     FILETIME KernelTime;
  4225     FILETIME UserTime;
  4227     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  4228                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  4229       return -1;
  4230     else
  4231       if (user_sys_cpu_time) {
  4232         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  4233       } else {
  4234         return FT2INT64(UserTime) * 100;
  4236   } else {
  4237     return (jlong) timeGetTime() * 1000000;
  4241 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4242   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  4243   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  4244   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  4245   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  4248 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4249   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  4250   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  4251   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  4252   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  4255 bool os::is_thread_cpu_time_supported() {
  4256   // see os::thread_cpu_time
  4257   if (os::win32::is_nt()) {
  4258     FILETIME CreationTime;
  4259     FILETIME ExitTime;
  4260     FILETIME KernelTime;
  4261     FILETIME UserTime;
  4263     if ( GetThreadTimes(GetCurrentThread(),
  4264                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  4265       return false;
  4266     else
  4267       return true;
  4268   } else {
  4269     return false;
  4273 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  4274 // It does have primitives (PDH API) to get CPU usage and run queue length.
  4275 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  4276 // If we wanted to implement loadavg on Windows, we have a few options:
  4277 //
  4278 // a) Query CPU usage and run queue length and "fake" an answer by
  4279 //    returning the CPU usage if it's under 100%, and the run queue
  4280 //    length otherwise.  It turns out that querying is pretty slow
  4281 //    on Windows, on the order of 200 microseconds on a fast machine.
  4282 //    Note that on the Windows the CPU usage value is the % usage
  4283 //    since the last time the API was called (and the first call
  4284 //    returns 100%), so we'd have to deal with that as well.
  4285 //
  4286 // b) Sample the "fake" answer using a sampling thread and store
  4287 //    the answer in a global variable.  The call to loadavg would
  4288 //    just return the value of the global, avoiding the slow query.
  4289 //
  4290 // c) Sample a better answer using exponential decay to smooth the
  4291 //    value.  This is basically the algorithm used by UNIX kernels.
  4292 //
  4293 // Note that sampling thread starvation could affect both (b) and (c).
  4294 int os::loadavg(double loadavg[], int nelem) {
  4295   return -1;
  4299 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  4300 bool os::dont_yield() {
  4301   return DontYieldALot;
  4304 // This method is a slightly reworked copy of JDK's sysOpen
  4305 // from src/windows/hpi/src/sys_api_md.c
  4307 int os::open(const char *path, int oflag, int mode) {
  4308   char pathbuf[MAX_PATH];
  4310   if (strlen(path) > MAX_PATH - 1) {
  4311     errno = ENAMETOOLONG;
  4312           return -1;
  4314   os::native_path(strcpy(pathbuf, path));
  4315   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
  4318 FILE* os::open(int fd, const char* mode) {
  4319   return ::_fdopen(fd, mode);
  4322 // Is a (classpath) directory empty?
  4323 bool os::dir_is_empty(const char* path) {
  4324   WIN32_FIND_DATA fd;
  4325   HANDLE f = FindFirstFile(path, &fd);
  4326   if (f == INVALID_HANDLE_VALUE) {
  4327     return true;
  4329   FindClose(f);
  4330   return false;
  4333 // create binary file, rewriting existing file if required
  4334 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4335   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  4336   if (!rewrite_existing) {
  4337     oflags |= _O_EXCL;
  4339   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  4342 // return current position of file pointer
  4343 jlong os::current_file_offset(int fd) {
  4344   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  4347 // move file pointer to the specified offset
  4348 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4349   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  4353 jlong os::lseek(int fd, jlong offset, int whence) {
  4354   return (jlong) ::_lseeki64(fd, offset, whence);
  4357 // This method is a slightly reworked copy of JDK's sysNativePath
  4358 // from src/windows/hpi/src/path_md.c
  4360 /* Convert a pathname to native format.  On win32, this involves forcing all
  4361    separators to be '\\' rather than '/' (both are legal inputs, but Win95
  4362    sometimes rejects '/') and removing redundant separators.  The input path is
  4363    assumed to have been converted into the character encoding used by the local
  4364    system.  Because this might be a double-byte encoding, care is taken to
  4365    treat double-byte lead characters correctly.
  4367    This procedure modifies the given path in place, as the result is never
  4368    longer than the original.  There is no error return; this operation always
  4369    succeeds. */
  4370 char * os::native_path(char *path) {
  4371   char *src = path, *dst = path, *end = path;
  4372   char *colon = NULL;           /* If a drive specifier is found, this will
  4373                                         point to the colon following the drive
  4374                                         letter */
  4376   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
  4377   assert(((!::IsDBCSLeadByte('/'))
  4378     && (!::IsDBCSLeadByte('\\'))
  4379     && (!::IsDBCSLeadByte(':'))),
  4380     "Illegal lead byte");
  4382   /* Check for leading separators */
  4383 #define isfilesep(c) ((c) == '/' || (c) == '\\')
  4384   while (isfilesep(*src)) {
  4385     src++;
  4388   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
  4389     /* Remove leading separators if followed by drive specifier.  This
  4390       hack is necessary to support file URLs containing drive
  4391       specifiers (e.g., "file://c:/path").  As a side effect,
  4392       "/c:/path" can be used as an alternative to "c:/path". */
  4393     *dst++ = *src++;
  4394     colon = dst;
  4395     *dst++ = ':';
  4396     src++;
  4397   } else {
  4398     src = path;
  4399     if (isfilesep(src[0]) && isfilesep(src[1])) {
  4400       /* UNC pathname: Retain first separator; leave src pointed at
  4401          second separator so that further separators will be collapsed
  4402          into the second separator.  The result will be a pathname
  4403          beginning with "\\\\" followed (most likely) by a host name. */
  4404       src = dst = path + 1;
  4405       path[0] = '\\';     /* Force first separator to '\\' */
  4409   end = dst;
  4411   /* Remove redundant separators from remainder of path, forcing all
  4412       separators to be '\\' rather than '/'. Also, single byte space
  4413       characters are removed from the end of the path because those
  4414       are not legal ending characters on this operating system.
  4415   */
  4416   while (*src != '\0') {
  4417     if (isfilesep(*src)) {
  4418       *dst++ = '\\'; src++;
  4419       while (isfilesep(*src)) src++;
  4420       if (*src == '\0') {
  4421         /* Check for trailing separator */
  4422         end = dst;
  4423         if (colon == dst - 2) break;                      /* "z:\\" */
  4424         if (dst == path + 1) break;                       /* "\\" */
  4425         if (dst == path + 2 && isfilesep(path[0])) {
  4426           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
  4427             beginning of a UNC pathname.  Even though it is not, by
  4428             itself, a valid UNC pathname, we leave it as is in order
  4429             to be consistent with the path canonicalizer as well
  4430             as the win32 APIs, which treat this case as an invalid
  4431             UNC pathname rather than as an alias for the root
  4432             directory of the current drive. */
  4433           break;
  4435         end = --dst;  /* Path does not denote a root directory, so
  4436                                     remove trailing separator */
  4437         break;
  4439       end = dst;
  4440     } else {
  4441       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
  4442         *dst++ = *src++;
  4443         if (*src) *dst++ = *src++;
  4444         end = dst;
  4445       } else {         /* Copy a single-byte character */
  4446         char c = *src++;
  4447         *dst++ = c;
  4448         /* Space is not a legal ending character */
  4449         if (c != ' ') end = dst;
  4454   *end = '\0';
  4456   /* For "z:", add "." to work around a bug in the C runtime library */
  4457   if (colon == dst - 1) {
  4458           path[2] = '.';
  4459           path[3] = '\0';
  4462   return path;
  4465 // This code is a copy of JDK's sysSetLength
  4466 // from src/windows/hpi/src/sys_api_md.c
  4468 int os::ftruncate(int fd, jlong length) {
  4469   HANDLE h = (HANDLE)::_get_osfhandle(fd);
  4470   long high = (long)(length >> 32);
  4471   DWORD ret;
  4473   if (h == (HANDLE)(-1)) {
  4474     return -1;
  4477   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
  4478   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
  4479       return -1;
  4482   if (::SetEndOfFile(h) == FALSE) {
  4483     return -1;
  4486   return 0;
  4490 // This code is a copy of JDK's sysSync
  4491 // from src/windows/hpi/src/sys_api_md.c
  4492 // except for the legacy workaround for a bug in Win 98
  4494 int os::fsync(int fd) {
  4495   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
  4497   if ( (!::FlushFileBuffers(handle)) &&
  4498          (GetLastError() != ERROR_ACCESS_DENIED) ) {
  4499     /* from winerror.h */
  4500     return -1;
  4502   return 0;
  4505 static int nonSeekAvailable(int, long *);
  4506 static int stdinAvailable(int, long *);
  4508 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
  4509 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
  4511 // This code is a copy of JDK's sysAvailable
  4512 // from src/windows/hpi/src/sys_api_md.c
  4514 int os::available(int fd, jlong *bytes) {
  4515   jlong cur, end;
  4516   struct _stati64 stbuf64;
  4518   if (::_fstati64(fd, &stbuf64) >= 0) {
  4519     int mode = stbuf64.st_mode;
  4520     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
  4521       int ret;
  4522       long lpbytes;
  4523       if (fd == 0) {
  4524         ret = stdinAvailable(fd, &lpbytes);
  4525       } else {
  4526         ret = nonSeekAvailable(fd, &lpbytes);
  4528       (*bytes) = (jlong)(lpbytes);
  4529       return ret;
  4531     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
  4532       return FALSE;
  4533     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
  4534       return FALSE;
  4535     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
  4536       return FALSE;
  4538     *bytes = end - cur;
  4539     return TRUE;
  4540   } else {
  4541     return FALSE;
  4545 // This code is a copy of JDK's nonSeekAvailable
  4546 // from src/windows/hpi/src/sys_api_md.c
  4548 static int nonSeekAvailable(int fd, long *pbytes) {
  4549   /* This is used for available on non-seekable devices
  4550     * (like both named and anonymous pipes, such as pipes
  4551     *  connected to an exec'd process).
  4552     * Standard Input is a special case.
  4554     */
  4555   HANDLE han;
  4557   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
  4558     return FALSE;
  4561   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
  4562         /* PeekNamedPipe fails when at EOF.  In that case we
  4563          * simply make *pbytes = 0 which is consistent with the
  4564          * behavior we get on Solaris when an fd is at EOF.
  4565          * The only alternative is to raise an Exception,
  4566          * which isn't really warranted.
  4567          */
  4568     if (::GetLastError() != ERROR_BROKEN_PIPE) {
  4569       return FALSE;
  4571     *pbytes = 0;
  4573   return TRUE;
  4576 #define MAX_INPUT_EVENTS 2000
  4578 // This code is a copy of JDK's stdinAvailable
  4579 // from src/windows/hpi/src/sys_api_md.c
  4581 static int stdinAvailable(int fd, long *pbytes) {
  4582   HANDLE han;
  4583   DWORD numEventsRead = 0;      /* Number of events read from buffer */
  4584   DWORD numEvents = 0;  /* Number of events in buffer */
  4585   DWORD i = 0;          /* Loop index */
  4586   DWORD curLength = 0;  /* Position marker */
  4587   DWORD actualLength = 0;       /* Number of bytes readable */
  4588   BOOL error = FALSE;         /* Error holder */
  4589   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
  4591   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
  4592         return FALSE;
  4595   /* Construct an array of input records in the console buffer */
  4596   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
  4597   if (error == 0) {
  4598     return nonSeekAvailable(fd, pbytes);
  4601   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
  4602   if (numEvents > MAX_INPUT_EVENTS) {
  4603     numEvents = MAX_INPUT_EVENTS;
  4606   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
  4607   if (lpBuffer == NULL) {
  4608     return FALSE;
  4611   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
  4612   if (error == 0) {
  4613     os::free(lpBuffer, mtInternal);
  4614     return FALSE;
  4617   /* Examine input records for the number of bytes available */
  4618   for(i=0; i<numEvents; i++) {
  4619     if (lpBuffer[i].EventType == KEY_EVENT) {
  4621       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
  4622                                       &(lpBuffer[i].Event);
  4623       if (keyRecord->bKeyDown == TRUE) {
  4624         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
  4625         curLength++;
  4626         if (*keyPressed == '\r') {
  4627           actualLength = curLength;
  4633   if(lpBuffer != NULL) {
  4634     os::free(lpBuffer, mtInternal);
  4637   *pbytes = (long) actualLength;
  4638   return TRUE;
  4641 // Map a block of memory.
  4642 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  4643                      char *addr, size_t bytes, bool read_only,
  4644                      bool allow_exec) {
  4645   HANDLE hFile;
  4646   char* base;
  4648   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  4649                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  4650   if (hFile == NULL) {
  4651     if (PrintMiscellaneous && Verbose) {
  4652       DWORD err = GetLastError();
  4653       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
  4655     return NULL;
  4658   if (allow_exec) {
  4659     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  4660     // unless it comes from a PE image (which the shared archive is not.)
  4661     // Even VirtualProtect refuses to give execute access to mapped memory
  4662     // that was not previously executable.
  4663     //
  4664     // Instead, stick the executable region in anonymous memory.  Yuck.
  4665     // Penalty is that ~4 pages will not be shareable - in the future
  4666     // we might consider DLLizing the shared archive with a proper PE
  4667     // header so that mapping executable + sharing is possible.
  4669     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  4670                                 PAGE_READWRITE);
  4671     if (base == NULL) {
  4672       if (PrintMiscellaneous && Verbose) {
  4673         DWORD err = GetLastError();
  4674         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  4676       CloseHandle(hFile);
  4677       return NULL;
  4680     DWORD bytes_read;
  4681     OVERLAPPED overlapped;
  4682     overlapped.Offset = (DWORD)file_offset;
  4683     overlapped.OffsetHigh = 0;
  4684     overlapped.hEvent = NULL;
  4685     // ReadFile guarantees that if the return value is true, the requested
  4686     // number of bytes were read before returning.
  4687     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  4688     if (!res) {
  4689       if (PrintMiscellaneous && Verbose) {
  4690         DWORD err = GetLastError();
  4691         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  4693       release_memory(base, bytes);
  4694       CloseHandle(hFile);
  4695       return NULL;
  4697   } else {
  4698     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  4699                                     NULL /*file_name*/);
  4700     if (hMap == NULL) {
  4701       if (PrintMiscellaneous && Verbose) {
  4702         DWORD err = GetLastError();
  4703         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
  4705       CloseHandle(hFile);
  4706       return NULL;
  4709     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  4710     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  4711                                   (DWORD)bytes, addr);
  4712     if (base == NULL) {
  4713       if (PrintMiscellaneous && Verbose) {
  4714         DWORD err = GetLastError();
  4715         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  4717       CloseHandle(hMap);
  4718       CloseHandle(hFile);
  4719       return NULL;
  4722     if (CloseHandle(hMap) == 0) {
  4723       if (PrintMiscellaneous && Verbose) {
  4724         DWORD err = GetLastError();
  4725         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  4727       CloseHandle(hFile);
  4728       return base;
  4732   if (allow_exec) {
  4733     DWORD old_protect;
  4734     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  4735     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  4737     if (!res) {
  4738       if (PrintMiscellaneous && Verbose) {
  4739         DWORD err = GetLastError();
  4740         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  4742       // Don't consider this a hard error, on IA32 even if the
  4743       // VirtualProtect fails, we should still be able to execute
  4744       CloseHandle(hFile);
  4745       return base;
  4749   if (CloseHandle(hFile) == 0) {
  4750     if (PrintMiscellaneous && Verbose) {
  4751       DWORD err = GetLastError();
  4752       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  4754     return base;
  4757   return base;
  4761 // Remap a block of memory.
  4762 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  4763                        char *addr, size_t bytes, bool read_only,
  4764                        bool allow_exec) {
  4765   // This OS does not allow existing memory maps to be remapped so we
  4766   // have to unmap the memory before we remap it.
  4767   if (!os::unmap_memory(addr, bytes)) {
  4768     return NULL;
  4771   // There is a very small theoretical window between the unmap_memory()
  4772   // call above and the map_memory() call below where a thread in native
  4773   // code may be able to access an address that is no longer mapped.
  4775   return os::map_memory(fd, file_name, file_offset, addr, bytes,
  4776            read_only, allow_exec);
  4780 // Unmap a block of memory.
  4781 // Returns true=success, otherwise false.
  4783 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  4784   BOOL result = UnmapViewOfFile(addr);
  4785   if (result == 0) {
  4786     if (PrintMiscellaneous && Verbose) {
  4787       DWORD err = GetLastError();
  4788       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  4790     return false;
  4792   return true;
  4795 void os::pause() {
  4796   char filename[MAX_PATH];
  4797   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4798     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4799   } else {
  4800     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4803   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4804   if (fd != -1) {
  4805     struct stat buf;
  4806     ::close(fd);
  4807     while (::stat(filename, &buf) == 0) {
  4808       Sleep(100);
  4810   } else {
  4811     jio_fprintf(stderr,
  4812       "Could not open pause file '%s', continuing immediately.\n", filename);
  4816 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
  4817   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
  4820 /*
  4821  * See the caveats for this class in os_windows.hpp
  4822  * Protects the callback call so that raised OS EXCEPTIONS causes a jump back
  4823  * into this method and returns false. If no OS EXCEPTION was raised, returns
  4824  * true.
  4825  * The callback is supposed to provide the method that should be protected.
  4826  */
  4827 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
  4828   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
  4829   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
  4830       "crash_protection already set?");
  4832   bool success = true;
  4833   __try {
  4834     WatcherThread::watcher_thread()->set_crash_protection(this);
  4835     cb.call();
  4836   } __except(EXCEPTION_EXECUTE_HANDLER) {
  4837     // only for protection, nothing to do
  4838     success = false;
  4840   WatcherThread::watcher_thread()->set_crash_protection(NULL);
  4841   return success;
  4844 // An Event wraps a win32 "CreateEvent" kernel handle.
  4845 //
  4846 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  4847 //
  4848 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  4849 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  4850 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  4851 //     In addition, an unpark() operation might fetch the handle field, but the
  4852 //     event could recycle between the fetch and the SetEvent() operation.
  4853 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  4854 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  4855 //     on an stale but recycled handle would be harmless, but in practice this might
  4856 //     confuse other non-Sun code, so it's not a viable approach.
  4857 //
  4858 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  4859 //     with the Event.  The event handle is never closed.  This could be construed
  4860 //     as handle leakage, but only up to the maximum # of threads that have been extant
  4861 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  4862 //     permit a process to have hundreds of thousands of open handles.
  4863 //
  4864 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  4865 //     and release unused handles.
  4866 //
  4867 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  4868 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  4869 //
  4870 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  4871 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  4872 //
  4873 // We use (2).
  4874 //
  4875 // TODO-FIXME:
  4876 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  4877 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  4878 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  4879 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  4880 //     into a single win32 CreateEvent() handle.
  4881 //
  4882 // _Event transitions in park()
  4883 //   -1 => -1 : illegal
  4884 //    1 =>  0 : pass - return immediately
  4885 //    0 => -1 : block
  4886 //
  4887 // _Event serves as a restricted-range semaphore :
  4888 //    -1 : thread is blocked
  4889 //     0 : neutral  - thread is running or ready
  4890 //     1 : signaled - thread is running or ready
  4891 //
  4892 // Another possible encoding of _Event would be
  4893 // with explicit "PARKED" and "SIGNALED" bits.
  4895 int os::PlatformEvent::park (jlong Millis) {
  4896     guarantee (_ParkHandle != NULL , "Invariant") ;
  4897     guarantee (Millis > 0          , "Invariant") ;
  4898     int v ;
  4900     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  4901     // the initial park() operation.
  4903     for (;;) {
  4904         v = _Event ;
  4905         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4907     guarantee ((v == 0) || (v == 1), "invariant") ;
  4908     if (v != 0) return OS_OK ;
  4910     // Do this the hard way by blocking ...
  4911     // TODO: consider a brief spin here, gated on the success of recent
  4912     // spin attempts by this thread.
  4913     //
  4914     // We decompose long timeouts into series of shorter timed waits.
  4915     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  4916     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  4917     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  4918     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  4919     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  4920     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  4921     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  4922     // for the already waited time.  This policy does not admit any new outcomes.
  4923     // In the future, however, we might want to track the accumulated wait time and
  4924     // adjust Millis accordingly if we encounter a spurious wakeup.
  4926     const int MAXTIMEOUT = 0x10000000 ;
  4927     DWORD rv = WAIT_TIMEOUT ;
  4928     while (_Event < 0 && Millis > 0) {
  4929        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  4930        if (Millis > MAXTIMEOUT) {
  4931           prd = MAXTIMEOUT ;
  4933        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  4934        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  4935        if (rv == WAIT_TIMEOUT) {
  4936            Millis -= prd ;
  4939     v = _Event ;
  4940     _Event = 0 ;
  4941     // see comment at end of os::PlatformEvent::park() below:
  4942     OrderAccess::fence() ;
  4943     // If we encounter a nearly simultanous timeout expiry and unpark()
  4944     // we return OS_OK indicating we awoke via unpark().
  4945     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  4946     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  4949 void os::PlatformEvent::park () {
  4950     guarantee (_ParkHandle != NULL, "Invariant") ;
  4951     // Invariant: Only the thread associated with the Event/PlatformEvent
  4952     // may call park().
  4953     int v ;
  4954     for (;;) {
  4955         v = _Event ;
  4956         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4958     guarantee ((v == 0) || (v == 1), "invariant") ;
  4959     if (v != 0) return ;
  4961     // Do this the hard way by blocking ...
  4962     // TODO: consider a brief spin here, gated on the success of recent
  4963     // spin attempts by this thread.
  4964     while (_Event < 0) {
  4965        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  4966        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  4969     // Usually we'll find _Event == 0 at this point, but as
  4970     // an optional optimization we clear it, just in case can
  4971     // multiple unpark() operations drove _Event up to 1.
  4972     _Event = 0 ;
  4973     OrderAccess::fence() ;
  4974     guarantee (_Event >= 0, "invariant") ;
  4977 void os::PlatformEvent::unpark() {
  4978   guarantee (_ParkHandle != NULL, "Invariant") ;
  4980   // Transitions for _Event:
  4981   //    0 :=> 1
  4982   //    1 :=> 1
  4983   //   -1 :=> either 0 or 1; must signal target thread
  4984   //          That is, we can safely transition _Event from -1 to either
  4985   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  4986   //          unpark() calls.
  4987   // See also: "Semaphores in Plan 9" by Mullender & Cox
  4988   //
  4989   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  4990   // that it will take two back-to-back park() calls for the owning
  4991   // thread to block. This has the benefit of forcing a spurious return
  4992   // from the first park() call after an unpark() call which will help
  4993   // shake out uses of park() and unpark() without condition variables.
  4995   if (Atomic::xchg(1, &_Event) >= 0) return;
  4997   ::SetEvent(_ParkHandle);
  5001 // JSR166
  5002 // -------------------------------------------------------
  5004 /*
  5005  * The Windows implementation of Park is very straightforward: Basic
  5006  * operations on Win32 Events turn out to have the right semantics to
  5007  * use them directly. We opportunistically resuse the event inherited
  5008  * from Monitor.
  5009  */
  5012 void Parker::park(bool isAbsolute, jlong time) {
  5013   guarantee (_ParkEvent != NULL, "invariant") ;
  5014   // First, demultiplex/decode time arguments
  5015   if (time < 0) { // don't wait
  5016     return;
  5018   else if (time == 0 && !isAbsolute) {
  5019     time = INFINITE;
  5021   else if  (isAbsolute) {
  5022     time -= os::javaTimeMillis(); // convert to relative time
  5023     if (time <= 0) // already elapsed
  5024       return;
  5026   else { // relative
  5027     time /= 1000000; // Must coarsen from nanos to millis
  5028     if (time == 0)   // Wait for the minimal time unit if zero
  5029       time = 1;
  5032   JavaThread* thread = (JavaThread*)(Thread::current());
  5033   assert(thread->is_Java_thread(), "Must be JavaThread");
  5034   JavaThread *jt = (JavaThread *)thread;
  5036   // Don't wait if interrupted or already triggered
  5037   if (Thread::is_interrupted(thread, false) ||
  5038     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  5039     ResetEvent(_ParkEvent);
  5040     return;
  5042   else {
  5043     ThreadBlockInVM tbivm(jt);
  5044     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5045     jt->set_suspend_equivalent();
  5047     WaitForSingleObject(_ParkEvent,  time);
  5048     ResetEvent(_ParkEvent);
  5050     // If externally suspended while waiting, re-suspend
  5051     if (jt->handle_special_suspend_equivalent_condition()) {
  5052       jt->java_suspend_self();
  5057 void Parker::unpark() {
  5058   guarantee (_ParkEvent != NULL, "invariant") ;
  5059   SetEvent(_ParkEvent);
  5062 // Run the specified command in a separate process. Return its exit value,
  5063 // or -1 on failure (e.g. can't create a new process).
  5064 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
  5065   STARTUPINFO si;
  5066   PROCESS_INFORMATION pi;
  5068   memset(&si, 0, sizeof(si));
  5069   si.cb = sizeof(si);
  5070   memset(&pi, 0, sizeof(pi));
  5071   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  5072                             cmd,    // command line
  5073                             NULL,   // process security attribute
  5074                             NULL,   // thread security attribute
  5075                             TRUE,   // inherits system handles
  5076                             0,      // no creation flags
  5077                             NULL,   // use parent's environment block
  5078                             NULL,   // use parent's starting directory
  5079                             &si,    // (in) startup information
  5080                             &pi);   // (out) process information
  5082   if (rslt) {
  5083     // Wait until child process exits.
  5084     WaitForSingleObject(pi.hProcess, INFINITE);
  5086     DWORD exit_code;
  5087     GetExitCodeProcess(pi.hProcess, &exit_code);
  5089     // Close process and thread handles.
  5090     CloseHandle(pi.hProcess);
  5091     CloseHandle(pi.hThread);
  5093     return (int)exit_code;
  5094   } else {
  5095     return -1;
  5099 //--------------------------------------------------------------------------------------------------
  5100 // Non-product code
  5102 static int mallocDebugIntervalCounter = 0;
  5103 static int mallocDebugCounter = 0;
  5104 bool os::check_heap(bool force) {
  5105   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  5106   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  5107     // Note: HeapValidate executes two hardware breakpoints when it finds something
  5108     // wrong; at these points, eax contains the address of the offending block (I think).
  5109     // To get to the exlicit error message(s) below, just continue twice.
  5110     HANDLE heap = GetProcessHeap();
  5111     { HeapLock(heap);
  5112       PROCESS_HEAP_ENTRY phe;
  5113       phe.lpData = NULL;
  5114       while (HeapWalk(heap, &phe) != 0) {
  5115         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  5116             !HeapValidate(heap, 0, phe.lpData)) {
  5117           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  5118           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  5119           fatal("corrupted C heap");
  5122       DWORD err = GetLastError();
  5123       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  5124         fatal(err_msg("heap walk aborted with error %d", err));
  5126       HeapUnlock(heap);
  5128     mallocDebugIntervalCounter = 0;
  5130   return true;
  5134 bool os::find(address addr, outputStream* st) {
  5135   // Nothing yet
  5136   return false;
  5139 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  5140   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  5142   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  5143     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  5144     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  5145     address addr = (address) exceptionRecord->ExceptionInformation[1];
  5147     if (os::is_memory_serialize_page(thread, addr))
  5148       return EXCEPTION_CONTINUE_EXECUTION;
  5151   return EXCEPTION_CONTINUE_SEARCH;
  5154 // We don't build a headless jre for Windows
  5155 bool os::is_headless_jre() { return false; }
  5157 static jint initSock() {
  5158   WSADATA wsadata;
  5160   if (!os::WinSock2Dll::WinSock2Available()) {
  5161     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
  5162       ::GetLastError());
  5163     return JNI_ERR;
  5166   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
  5167     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
  5168       ::GetLastError());
  5169     return JNI_ERR;
  5171   return JNI_OK;
  5174 struct hostent* os::get_host_by_name(char* name) {
  5175   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
  5178 int os::socket_close(int fd) {
  5179   return ::closesocket(fd);
  5182 int os::socket_available(int fd, jint *pbytes) {
  5183   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
  5184   return (ret < 0) ? 0 : 1;
  5187 int os::socket(int domain, int type, int protocol) {
  5188   return ::socket(domain, type, protocol);
  5191 int os::listen(int fd, int count) {
  5192   return ::listen(fd, count);
  5195 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
  5196   return ::connect(fd, him, len);
  5199 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
  5200   return ::accept(fd, him, len);
  5203 int os::sendto(int fd, char* buf, size_t len, uint flags,
  5204                struct sockaddr* to, socklen_t tolen) {
  5206   return ::sendto(fd, buf, (int)len, flags, to, tolen);
  5209 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
  5210                  sockaddr* from, socklen_t* fromlen) {
  5212   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
  5215 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
  5216   return ::recv(fd, buf, (int)nBytes, flags);
  5219 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
  5220   return ::send(fd, buf, (int)nBytes, flags);
  5223 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
  5224   return ::send(fd, buf, (int)nBytes, flags);
  5227 int os::timeout(int fd, long timeout) {
  5228   fd_set tbl;
  5229   struct timeval t;
  5231   t.tv_sec  = timeout / 1000;
  5232   t.tv_usec = (timeout % 1000) * 1000;
  5234   tbl.fd_count    = 1;
  5235   tbl.fd_array[0] = fd;
  5237   return ::select(1, &tbl, 0, 0, &t);
  5240 int os::get_host_name(char* name, int namelen) {
  5241   return ::gethostname(name, namelen);
  5244 int os::socket_shutdown(int fd, int howto) {
  5245   return ::shutdown(fd, howto);
  5248 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
  5249   return ::bind(fd, him, len);
  5252 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
  5253   return ::getsockname(fd, him, len);
  5256 int os::get_sock_opt(int fd, int level, int optname,
  5257                      char* optval, socklen_t* optlen) {
  5258   return ::getsockopt(fd, level, optname, optval, optlen);
  5261 int os::set_sock_opt(int fd, int level, int optname,
  5262                      const char* optval, socklen_t optlen) {
  5263   return ::setsockopt(fd, level, optname, optval, optlen);
  5266 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
  5267 #if defined(IA32)
  5268 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
  5269 #elif defined (AMD64)
  5270 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
  5271 #endif
  5273 // returns true if thread could be suspended,
  5274 // false otherwise
  5275 static bool do_suspend(HANDLE* h) {
  5276   if (h != NULL) {
  5277     if (SuspendThread(*h) != ~0) {
  5278       return true;
  5281   return false;
  5284 // resume the thread
  5285 // calling resume on an active thread is a no-op
  5286 static void do_resume(HANDLE* h) {
  5287   if (h != NULL) {
  5288     ResumeThread(*h);
  5292 // retrieve a suspend/resume context capable handle
  5293 // from the tid. Caller validates handle return value.
  5294 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
  5295   if (h != NULL) {
  5296     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
  5300 //
  5301 // Thread sampling implementation
  5302 //
  5303 void os::SuspendedThreadTask::internal_do_task() {
  5304   CONTEXT    ctxt;
  5305   HANDLE     h = NULL;
  5307   // get context capable handle for thread
  5308   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
  5310   // sanity
  5311   if (h == NULL || h == INVALID_HANDLE_VALUE) {
  5312     return;
  5315   // suspend the thread
  5316   if (do_suspend(&h)) {
  5317     ctxt.ContextFlags = sampling_context_flags;
  5318     // get thread context
  5319     GetThreadContext(h, &ctxt);
  5320     SuspendedThreadTaskContext context(_thread, &ctxt);
  5321     // pass context to Thread Sampling impl
  5322     do_task(context);
  5323     // resume thread
  5324     do_resume(&h);
  5327   // close handle
  5328   CloseHandle(h);
  5332 // Kernel32 API
  5333 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
  5334 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
  5335 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
  5336 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
  5337 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
  5339 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
  5340 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
  5341 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
  5342 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
  5343 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
  5346 BOOL                        os::Kernel32Dll::initialized = FALSE;
  5347 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
  5348   assert(initialized && _GetLargePageMinimum != NULL,
  5349     "GetLargePageMinimumAvailable() not yet called");
  5350   return _GetLargePageMinimum();
  5353 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
  5354   if (!initialized) {
  5355     initialize();
  5357   return _GetLargePageMinimum != NULL;
  5360 BOOL os::Kernel32Dll::NumaCallsAvailable() {
  5361   if (!initialized) {
  5362     initialize();
  5364   return _VirtualAllocExNuma != NULL;
  5367 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
  5368   assert(initialized && _VirtualAllocExNuma != NULL,
  5369     "NUMACallsAvailable() not yet called");
  5371   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
  5374 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
  5375   assert(initialized && _GetNumaHighestNodeNumber != NULL,
  5376     "NUMACallsAvailable() not yet called");
  5378   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
  5381 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
  5382   assert(initialized && _GetNumaNodeProcessorMask != NULL,
  5383     "NUMACallsAvailable() not yet called");
  5385   return _GetNumaNodeProcessorMask(node, proc_mask);
  5388 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
  5389   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
  5390     if (!initialized) {
  5391       initialize();
  5394     if (_RtlCaptureStackBackTrace != NULL) {
  5395       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
  5396         BackTrace, BackTraceHash);
  5397     } else {
  5398       return 0;
  5402 void os::Kernel32Dll::initializeCommon() {
  5403   if (!initialized) {
  5404     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5405     assert(handle != NULL, "Just check");
  5406     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
  5407     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
  5408     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
  5409     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
  5410     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
  5411     initialized = TRUE;
  5417 #ifndef JDK6_OR_EARLIER
  5419 void os::Kernel32Dll::initialize() {
  5420   initializeCommon();
  5424 // Kernel32 API
  5425 inline BOOL os::Kernel32Dll::SwitchToThread() {
  5426   return ::SwitchToThread();
  5429 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5430   return true;
  5433   // Help tools
  5434 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5435   return true;
  5438 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5439   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5442 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5443   return ::Module32First(hSnapshot, lpme);
  5446 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5447   return ::Module32Next(hSnapshot, lpme);
  5450 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5451   ::GetNativeSystemInfo(lpSystemInfo);
  5454 // PSAPI API
  5455 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5456   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5459 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5460   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5463 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5464   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5467 inline BOOL os::PSApiDll::PSApiAvailable() {
  5468   return true;
  5472 // WinSock2 API
  5473 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5474   return ::WSAStartup(wVersionRequested, lpWSAData);
  5477 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5478   return ::gethostbyname(name);
  5481 inline BOOL os::WinSock2Dll::WinSock2Available() {
  5482   return true;
  5485 // Advapi API
  5486 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5487    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5488    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5489      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5490        BufferLength, PreviousState, ReturnLength);
  5493 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5494   PHANDLE TokenHandle) {
  5495     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5498 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5499   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5502 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
  5503   return true;
  5506 void* os::get_default_process_handle() {
  5507   return (void*)GetModuleHandle(NULL);
  5510 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
  5511 // which is used to find statically linked in agents.
  5512 // Additionally for windows, takes into account __stdcall names.
  5513 // Parameters:
  5514 //            sym_name: Symbol in library we are looking for
  5515 //            lib_name: Name of library to look in, NULL for shared libs.
  5516 //            is_absolute_path == true if lib_name is absolute path to agent
  5517 //                                     such as "C:/a/b/L.dll"
  5518 //            == false if only the base name of the library is passed in
  5519 //               such as "L"
  5520 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
  5521                                     bool is_absolute_path) {
  5522   char *agent_entry_name;
  5523   size_t len;
  5524   size_t name_len;
  5525   size_t prefix_len = strlen(JNI_LIB_PREFIX);
  5526   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
  5527   const char *start;
  5529   if (lib_name != NULL) {
  5530     len = name_len = strlen(lib_name);
  5531     if (is_absolute_path) {
  5532       // Need to strip path, prefix and suffix
  5533       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
  5534         lib_name = ++start;
  5535       } else {
  5536         // Need to check for drive prefix
  5537         if ((start = strchr(lib_name, ':')) != NULL) {
  5538           lib_name = ++start;
  5541       if (len <= (prefix_len + suffix_len)) {
  5542         return NULL;
  5544       lib_name += prefix_len;
  5545       name_len = strlen(lib_name) - suffix_len;
  5548   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
  5549   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
  5550   if (agent_entry_name == NULL) {
  5551     return NULL;
  5553   if (lib_name != NULL) {
  5554     const char *p = strrchr(sym_name, '@');
  5555     if (p != NULL && p != sym_name) {
  5556       // sym_name == _Agent_OnLoad@XX
  5557       strncpy(agent_entry_name, sym_name, (p - sym_name));
  5558       agent_entry_name[(p-sym_name)] = '\0';
  5559       // agent_entry_name == _Agent_OnLoad
  5560       strcat(agent_entry_name, "_");
  5561       strncat(agent_entry_name, lib_name, name_len);
  5562       strcat(agent_entry_name, p);
  5563       // agent_entry_name == _Agent_OnLoad_lib_name@XX
  5564     } else {
  5565       strcpy(agent_entry_name, sym_name);
  5566       strcat(agent_entry_name, "_");
  5567       strncat(agent_entry_name, lib_name, name_len);
  5569   } else {
  5570     strcpy(agent_entry_name, sym_name);
  5572   return agent_entry_name;
  5575 #else
  5576 // Kernel32 API
  5577 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
  5578 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
  5579 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
  5580 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
  5581 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
  5583 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
  5584 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
  5585 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
  5586 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
  5587 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
  5589 void os::Kernel32Dll::initialize() {
  5590   if (!initialized) {
  5591     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5592     assert(handle != NULL, "Just check");
  5594     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
  5595     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
  5596       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
  5597     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
  5598     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
  5599     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
  5600     initializeCommon();  // resolve the functions that always need resolving
  5602     initialized = TRUE;
  5606 BOOL os::Kernel32Dll::SwitchToThread() {
  5607   assert(initialized && _SwitchToThread != NULL,
  5608     "SwitchToThreadAvailable() not yet called");
  5609   return _SwitchToThread();
  5613 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5614   if (!initialized) {
  5615     initialize();
  5617   return _SwitchToThread != NULL;
  5620 // Help tools
  5621 BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5622   if (!initialized) {
  5623     initialize();
  5625   return _CreateToolhelp32Snapshot != NULL &&
  5626          _Module32First != NULL &&
  5627          _Module32Next != NULL;
  5630 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5631   assert(initialized && _CreateToolhelp32Snapshot != NULL,
  5632     "HelpToolsAvailable() not yet called");
  5634   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5637 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5638   assert(initialized && _Module32First != NULL,
  5639     "HelpToolsAvailable() not yet called");
  5641   return _Module32First(hSnapshot, lpme);
  5644 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5645   assert(initialized && _Module32Next != NULL,
  5646     "HelpToolsAvailable() not yet called");
  5648   return _Module32Next(hSnapshot, lpme);
  5652 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
  5653   if (!initialized) {
  5654     initialize();
  5656   return _GetNativeSystemInfo != NULL;
  5659 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5660   assert(initialized && _GetNativeSystemInfo != NULL,
  5661     "GetNativeSystemInfoAvailable() not yet called");
  5663   _GetNativeSystemInfo(lpSystemInfo);
  5666 // PSAPI API
  5669 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
  5670 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
  5671 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
  5673 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
  5674 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
  5675 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
  5676 BOOL                    os::PSApiDll::initialized = FALSE;
  5678 void os::PSApiDll::initialize() {
  5679   if (!initialized) {
  5680     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
  5681     if (handle != NULL) {
  5682       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
  5683         "EnumProcessModules");
  5684       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
  5685         "GetModuleFileNameExA");
  5686       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
  5687         "GetModuleInformation");
  5689     initialized = TRUE;
  5695 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5696   assert(initialized && _EnumProcessModules != NULL,
  5697     "PSApiAvailable() not yet called");
  5698   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5701 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5702   assert(initialized && _GetModuleFileNameEx != NULL,
  5703     "PSApiAvailable() not yet called");
  5704   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5707 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5708   assert(initialized && _GetModuleInformation != NULL,
  5709     "PSApiAvailable() not yet called");
  5710   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5713 BOOL os::PSApiDll::PSApiAvailable() {
  5714   if (!initialized) {
  5715     initialize();
  5717   return _EnumProcessModules != NULL &&
  5718     _GetModuleFileNameEx != NULL &&
  5719     _GetModuleInformation != NULL;
  5723 // WinSock2 API
  5724 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
  5725 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
  5727 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
  5728 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
  5729 BOOL             os::WinSock2Dll::initialized = FALSE;
  5731 void os::WinSock2Dll::initialize() {
  5732   if (!initialized) {
  5733     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
  5734     if (handle != NULL) {
  5735       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
  5736       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
  5738     initialized = TRUE;
  5743 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5744   assert(initialized && _WSAStartup != NULL,
  5745     "WinSock2Available() not yet called");
  5746   return _WSAStartup(wVersionRequested, lpWSAData);
  5749 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5750   assert(initialized && _gethostbyname != NULL,
  5751     "WinSock2Available() not yet called");
  5752   return _gethostbyname(name);
  5755 BOOL os::WinSock2Dll::WinSock2Available() {
  5756   if (!initialized) {
  5757     initialize();
  5759   return _WSAStartup != NULL &&
  5760     _gethostbyname != NULL;
  5763 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  5764 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
  5765 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
  5767 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
  5768 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
  5769 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
  5770 BOOL                     os::Advapi32Dll::initialized = FALSE;
  5772 void os::Advapi32Dll::initialize() {
  5773   if (!initialized) {
  5774     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
  5775     if (handle != NULL) {
  5776       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
  5777         "AdjustTokenPrivileges");
  5778       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
  5779         "OpenProcessToken");
  5780       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
  5781         "LookupPrivilegeValueA");
  5783     initialized = TRUE;
  5787 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5788    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5789    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5790    assert(initialized && _AdjustTokenPrivileges != NULL,
  5791      "AdvapiAvailable() not yet called");
  5792    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5793        BufferLength, PreviousState, ReturnLength);
  5796 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5797   PHANDLE TokenHandle) {
  5798    assert(initialized && _OpenProcessToken != NULL,
  5799      "AdvapiAvailable() not yet called");
  5800     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5803 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5804    assert(initialized && _LookupPrivilegeValue != NULL,
  5805      "AdvapiAvailable() not yet called");
  5806   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5809 BOOL os::Advapi32Dll::AdvapiAvailable() {
  5810   if (!initialized) {
  5811     initialize();
  5813   return _AdjustTokenPrivileges != NULL &&
  5814     _OpenProcessToken != NULL &&
  5815     _LookupPrivilegeValue != NULL;
  5818 #endif
  5820 #ifndef PRODUCT
  5822 // test the code path in reserve_memory_special() that tries to allocate memory in a single
  5823 // contiguous memory block at a particular address.
  5824 // The test first tries to find a good approximate address to allocate at by using the same
  5825 // method to allocate some memory at any address. The test then tries to allocate memory in
  5826 // the vicinity (not directly after it to avoid possible by-chance use of that location)
  5827 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
  5828 // the previously allocated memory is available for allocation. The only actual failure
  5829 // that is reported is when the test tries to allocate at a particular location but gets a
  5830 // different valid one. A NULL return value at this point is not considered an error but may
  5831 // be legitimate.
  5832 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
  5833 void TestReserveMemorySpecial_test() {
  5834   if (!UseLargePages) {
  5835     if (VerboseInternalVMTests) {
  5836       gclog_or_tty->print("Skipping test because large pages are disabled");
  5838     return;
  5840   // save current value of globals
  5841   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
  5842   bool old_use_numa_interleaving = UseNUMAInterleaving;
  5844   // set globals to make sure we hit the correct code path
  5845   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
  5847   // do an allocation at an address selected by the OS to get a good one.
  5848   const size_t large_allocation_size = os::large_page_size() * 4;
  5849   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
  5850   if (result == NULL) {
  5851     if (VerboseInternalVMTests) {
  5852       gclog_or_tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
  5853         large_allocation_size);
  5855   } else {
  5856     os::release_memory_special(result, large_allocation_size);
  5858     // allocate another page within the recently allocated memory area which seems to be a good location. At least
  5859     // we managed to get it once.
  5860     const size_t expected_allocation_size = os::large_page_size();
  5861     char* expected_location = result + os::large_page_size();
  5862     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
  5863     if (actual_location == NULL) {
  5864       if (VerboseInternalVMTests) {
  5865         gclog_or_tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
  5866           expected_location, large_allocation_size);
  5868     } else {
  5869       // release memory
  5870       os::release_memory_special(actual_location, expected_allocation_size);
  5871       // only now check, after releasing any memory to avoid any leaks.
  5872       assert(actual_location == expected_location,
  5873         err_msg("Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
  5874           expected_location, expected_allocation_size, actual_location));
  5878   // restore globals
  5879   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
  5880   UseNUMAInterleaving = old_use_numa_interleaving;
  5882 #endif // PRODUCT

mercurial