src/share/vm/utilities/globalDefinitions.hpp

Tue, 21 Apr 2009 23:21:04 -0700

author
jrose
date
Tue, 21 Apr 2009 23:21:04 -0700
changeset 1161
be93aad57795
parent 1145
e5b0439ef4ae
child 1696
0414c1049f15
permissions
-rw-r--r--

6655646: dynamic languages need dynamically linked call sites
Summary: invokedynamic instruction (JSR 292 RI)
Reviewed-by: twisti, never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // This file holds all globally used constants & types, class (forward)
    26 // declarations and a few frequently used utility functions.
    28 //----------------------------------------------------------------------------------------------------
    29 // Constants
    31 const int LogBytesPerShort   = 1;
    32 const int LogBytesPerInt     = 2;
    33 #ifdef _LP64
    34 const int LogBytesPerWord    = 3;
    35 #else
    36 const int LogBytesPerWord    = 2;
    37 #endif
    38 const int LogBytesPerLong    = 3;
    40 const int BytesPerShort      = 1 << LogBytesPerShort;
    41 const int BytesPerInt        = 1 << LogBytesPerInt;
    42 const int BytesPerWord       = 1 << LogBytesPerWord;
    43 const int BytesPerLong       = 1 << LogBytesPerLong;
    45 const int LogBitsPerByte     = 3;
    46 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
    47 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
    48 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
    49 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
    51 const int BitsPerByte        = 1 << LogBitsPerByte;
    52 const int BitsPerShort       = 1 << LogBitsPerShort;
    53 const int BitsPerInt         = 1 << LogBitsPerInt;
    54 const int BitsPerWord        = 1 << LogBitsPerWord;
    55 const int BitsPerLong        = 1 << LogBitsPerLong;
    57 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
    58 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
    60 const int WordsPerLong       = 2;       // Number of stack entries for longs
    62 const int oopSize            = sizeof(char*); // Full-width oop
    63 extern int heapOopSize;                       // Oop within a java object
    64 const int wordSize           = sizeof(char*);
    65 const int longSize           = sizeof(jlong);
    66 const int jintSize           = sizeof(jint);
    67 const int size_tSize         = sizeof(size_t);
    69 const int BytesPerOop        = BytesPerWord;  // Full-width oop
    71 extern int LogBytesPerHeapOop;                // Oop within a java object
    72 extern int LogBitsPerHeapOop;
    73 extern int BytesPerHeapOop;
    74 extern int BitsPerHeapOop;
    76 const int BitsPerJavaInteger = 32;
    77 const int BitsPerJavaLong    = 64;
    78 const int BitsPerSize_t      = size_tSize * BitsPerByte;
    80 // Size of a char[] needed to represent a jint as a string in decimal.
    81 const int jintAsStringSize = 12;
    83 // In fact this should be
    84 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
    85 // see os::set_memory_serialize_page()
    86 #ifdef _LP64
    87 const int SerializePageShiftCount = 4;
    88 #else
    89 const int SerializePageShiftCount = 3;
    90 #endif
    92 // An opaque struct of heap-word width, so that HeapWord* can be a generic
    93 // pointer into the heap.  We require that object sizes be measured in
    94 // units of heap words, so that that
    95 //   HeapWord* hw;
    96 //   hw += oop(hw)->foo();
    97 // works, where foo is a method (like size or scavenge) that returns the
    98 // object size.
    99 class HeapWord {
   100   friend class VMStructs;
   101  private:
   102   char* i;
   103 #ifndef PRODUCT
   104  public:
   105   char* value() { return i; }
   106 #endif
   107 };
   109 // HeapWordSize must be 2^LogHeapWordSize.
   110 const int HeapWordSize        = sizeof(HeapWord);
   111 #ifdef _LP64
   112 const int LogHeapWordSize     = 3;
   113 #else
   114 const int LogHeapWordSize     = 2;
   115 #endif
   116 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
   117 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
   119 // The larger HeapWordSize for 64bit requires larger heaps
   120 // for the same application running in 64bit.  See bug 4967770.
   121 // The minimum alignment to a heap word size is done.  Other
   122 // parts of the memory system may required additional alignment
   123 // and are responsible for those alignments.
   124 #ifdef _LP64
   125 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
   126 #else
   127 #define ScaleForWordSize(x) (x)
   128 #endif
   130 // The minimum number of native machine words necessary to contain "byte_size"
   131 // bytes.
   132 inline size_t heap_word_size(size_t byte_size) {
   133   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
   134 }
   137 const size_t K                  = 1024;
   138 const size_t M                  = K*K;
   139 const size_t G                  = M*K;
   140 const size_t HWperKB            = K / sizeof(HeapWord);
   142 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
   143 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
   145 // Constants for converting from a base unit to milli-base units.  For
   146 // example from seconds to milliseconds and microseconds
   148 const int MILLIUNITS    = 1000;         // milli units per base unit
   149 const int MICROUNITS    = 1000000;      // micro units per base unit
   150 const int NANOUNITS     = 1000000000;   // nano units per base unit
   152 inline const char* proper_unit_for_byte_size(size_t s) {
   153   if (s >= 10*M) {
   154     return "M";
   155   } else if (s >= 10*K) {
   156     return "K";
   157   } else {
   158     return "B";
   159   }
   160 }
   162 inline size_t byte_size_in_proper_unit(size_t s) {
   163   if (s >= 10*M) {
   164     return s/M;
   165   } else if (s >= 10*K) {
   166     return s/K;
   167   } else {
   168     return s;
   169   }
   170 }
   173 //----------------------------------------------------------------------------------------------------
   174 // VM type definitions
   176 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
   177 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
   179 typedef intptr_t  intx;
   180 typedef uintptr_t uintx;
   182 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
   183 const intx  max_intx  = (uintx)min_intx - 1;
   184 const uintx max_uintx = (uintx)-1;
   186 // Table of values:
   187 //      sizeof intx         4               8
   188 // min_intx             0x80000000      0x8000000000000000
   189 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
   190 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
   192 typedef unsigned int uint;   NEEDS_CLEANUP
   195 //----------------------------------------------------------------------------------------------------
   196 // Java type definitions
   198 // All kinds of 'plain' byte addresses
   199 typedef   signed char s_char;
   200 typedef unsigned char u_char;
   201 typedef u_char*       address;
   202 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
   203                                     // except for some implementations of a C++
   204                                     // linkage pointer to function. Should never
   205                                     // need one of those to be placed in this
   206                                     // type anyway.
   208 //  Utility functions to "portably" (?) bit twiddle pointers
   209 //  Where portable means keep ANSI C++ compilers quiet
   211 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
   212 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
   214 //  Utility functions to "portably" make cast to/from function pointers.
   216 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
   217 inline address_word  castable_address(address x)              { return address_word(x) ; }
   218 inline address_word  castable_address(void* x)                { return address_word(x) ; }
   220 // Pointer subtraction.
   221 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
   222 // the range we might need to find differences from one end of the heap
   223 // to the other.
   224 // A typical use might be:
   225 //     if (pointer_delta(end(), top()) >= size) {
   226 //       // enough room for an object of size
   227 //       ...
   228 // and then additions like
   229 //       ... top() + size ...
   230 // are safe because we know that top() is at least size below end().
   231 inline size_t pointer_delta(const void* left,
   232                             const void* right,
   233                             size_t element_size) {
   234   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
   235 }
   236 // A version specialized for HeapWord*'s.
   237 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
   238   return pointer_delta(left, right, sizeof(HeapWord));
   239 }
   241 //
   242 // ANSI C++ does not allow casting from one pointer type to a function pointer
   243 // directly without at best a warning. This macro accomplishes it silently
   244 // In every case that is present at this point the value be cast is a pointer
   245 // to a C linkage function. In somecase the type used for the cast reflects
   246 // that linkage and a picky compiler would not complain. In other cases because
   247 // there is no convenient place to place a typedef with extern C linkage (i.e
   248 // a platform dependent header file) it doesn't. At this point no compiler seems
   249 // picky enough to catch these instances (which are few). It is possible that
   250 // using templates could fix these for all cases. This use of templates is likely
   251 // so far from the middle of the road that it is likely to be problematic in
   252 // many C++ compilers.
   253 //
   254 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
   255 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
   257 // Unsigned byte types for os and stream.hpp
   259 // Unsigned one, two, four and eigth byte quantities used for describing
   260 // the .class file format. See JVM book chapter 4.
   262 typedef jubyte  u1;
   263 typedef jushort u2;
   264 typedef juint   u4;
   265 typedef julong  u8;
   267 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
   268 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
   269 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
   270 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
   272 //----------------------------------------------------------------------------------------------------
   273 // JVM spec restrictions
   275 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
   278 //----------------------------------------------------------------------------------------------------
   279 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
   280 //
   281 // Determines whether on-the-fly class replacement and frame popping are enabled.
   283 #define HOTSWAP
   285 //----------------------------------------------------------------------------------------------------
   286 // Object alignment, in units of HeapWords.
   287 //
   288 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
   289 // reference fields can be naturally aligned.
   291 const int MinObjAlignment            = HeapWordsPerLong;
   292 const int MinObjAlignmentInBytes     = MinObjAlignment * HeapWordSize;
   293 const int MinObjAlignmentInBytesMask = MinObjAlignmentInBytes - 1;
   295 const int LogMinObjAlignment         = LogHeapWordsPerLong;
   296 const int LogMinObjAlignmentInBytes  = LogMinObjAlignment + LogHeapWordSize;
   298 // Machine dependent stuff
   300 #include "incls/_globalDefinitions_pd.hpp.incl"
   302 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
   303 // Note: this value must be a power of 2
   305 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
   307 // Signed variants of alignment helpers.  There are two versions of each, a macro
   308 // for use in places like enum definitions that require compile-time constant
   309 // expressions and a function for all other places so as to get type checking.
   311 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
   313 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
   314   return align_size_up_(size, alignment);
   315 }
   317 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
   319 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
   320   return align_size_down_(size, alignment);
   321 }
   323 // Align objects by rounding up their size, in HeapWord units.
   325 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
   327 inline intptr_t align_object_size(intptr_t size) {
   328   return align_size_up(size, MinObjAlignment);
   329 }
   331 // Pad out certain offsets to jlong alignment, in HeapWord units.
   333 #define align_object_offset_(offset) align_size_up_(offset, HeapWordsPerLong)
   335 inline intptr_t align_object_offset(intptr_t offset) {
   336   return align_size_up(offset, HeapWordsPerLong);
   337 }
   339 inline bool is_object_aligned(intptr_t offset) {
   340   return offset == align_object_offset(offset);
   341 }
   344 //----------------------------------------------------------------------------------------------------
   345 // Utility macros for compilers
   346 // used to silence compiler warnings
   348 #define Unused_Variable(var) var
   351 //----------------------------------------------------------------------------------------------------
   352 // Miscellaneous
   354 // 6302670 Eliminate Hotspot __fabsf dependency
   355 // All fabs() callers should call this function instead, which will implicitly
   356 // convert the operand to double, avoiding a dependency on __fabsf which
   357 // doesn't exist in early versions of Solaris 8.
   358 inline double fabsd(double value) {
   359   return fabs(value);
   360 }
   362 inline jint low (jlong value)                    { return jint(value); }
   363 inline jint high(jlong value)                    { return jint(value >> 32); }
   365 // the fancy casts are a hopefully portable way
   366 // to do unsigned 32 to 64 bit type conversion
   367 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
   368                                                    *value |= (jlong)(julong)(juint)low; }
   370 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
   371                                                    *value |= (jlong)high       << 32; }
   373 inline jlong jlong_from(jint h, jint l) {
   374   jlong result = 0; // initialization to avoid warning
   375   set_high(&result, h);
   376   set_low(&result,  l);
   377   return result;
   378 }
   380 union jlong_accessor {
   381   jint  words[2];
   382   jlong long_value;
   383 };
   385 void basic_types_init(); // cannot define here; uses assert
   388 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   389 enum BasicType {
   390   T_BOOLEAN  =  4,
   391   T_CHAR     =  5,
   392   T_FLOAT    =  6,
   393   T_DOUBLE   =  7,
   394   T_BYTE     =  8,
   395   T_SHORT    =  9,
   396   T_INT      = 10,
   397   T_LONG     = 11,
   398   T_OBJECT   = 12,
   399   T_ARRAY    = 13,
   400   T_VOID     = 14,
   401   T_ADDRESS  = 15,
   402   T_NARROWOOP= 16,
   403   T_CONFLICT = 17, // for stack value type with conflicting contents
   404   T_ILLEGAL  = 99
   405 };
   407 inline bool is_java_primitive(BasicType t) {
   408   return T_BOOLEAN <= t && t <= T_LONG;
   409 }
   411 inline bool is_subword_type(BasicType t) {
   412   // these guys are processed exactly like T_INT in calling sequences:
   413   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
   414 }
   416 inline bool is_signed_subword_type(BasicType t) {
   417   return (t == T_BYTE || t == T_SHORT);
   418 }
   420 // Convert a char from a classfile signature to a BasicType
   421 inline BasicType char2type(char c) {
   422   switch( c ) {
   423   case 'B': return T_BYTE;
   424   case 'C': return T_CHAR;
   425   case 'D': return T_DOUBLE;
   426   case 'F': return T_FLOAT;
   427   case 'I': return T_INT;
   428   case 'J': return T_LONG;
   429   case 'S': return T_SHORT;
   430   case 'Z': return T_BOOLEAN;
   431   case 'V': return T_VOID;
   432   case 'L': return T_OBJECT;
   433   case '[': return T_ARRAY;
   434   }
   435   return T_ILLEGAL;
   436 }
   438 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   439 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
   440 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
   441 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   442 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
   443 extern BasicType name2type(const char* name);
   445 // Auxilary math routines
   446 // least common multiple
   447 extern size_t lcm(size_t a, size_t b);
   450 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   451 enum BasicTypeSize {
   452   T_BOOLEAN_size = 1,
   453   T_CHAR_size    = 1,
   454   T_FLOAT_size   = 1,
   455   T_DOUBLE_size  = 2,
   456   T_BYTE_size    = 1,
   457   T_SHORT_size   = 1,
   458   T_INT_size     = 1,
   459   T_LONG_size    = 2,
   460   T_OBJECT_size  = 1,
   461   T_ARRAY_size   = 1,
   462   T_NARROWOOP_size = 1,
   463   T_VOID_size    = 0
   464 };
   467 // maps a BasicType to its instance field storage type:
   468 // all sub-word integral types are widened to T_INT
   469 extern BasicType type2field[T_CONFLICT+1];
   470 extern BasicType type2wfield[T_CONFLICT+1];
   473 // size in bytes
   474 enum ArrayElementSize {
   475   T_BOOLEAN_aelem_bytes = 1,
   476   T_CHAR_aelem_bytes    = 2,
   477   T_FLOAT_aelem_bytes   = 4,
   478   T_DOUBLE_aelem_bytes  = 8,
   479   T_BYTE_aelem_bytes    = 1,
   480   T_SHORT_aelem_bytes   = 2,
   481   T_INT_aelem_bytes     = 4,
   482   T_LONG_aelem_bytes    = 8,
   483 #ifdef _LP64
   484   T_OBJECT_aelem_bytes  = 8,
   485   T_ARRAY_aelem_bytes   = 8,
   486 #else
   487   T_OBJECT_aelem_bytes  = 4,
   488   T_ARRAY_aelem_bytes   = 4,
   489 #endif
   490   T_NARROWOOP_aelem_bytes = 4,
   491   T_VOID_aelem_bytes    = 0
   492 };
   494 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
   495 #ifdef ASSERT
   496 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
   497 #else
   498 inline int type2aelembytes(BasicType t) { return _type2aelembytes[t]; }
   499 #endif
   502 // JavaValue serves as a container for arbitrary Java values.
   504 class JavaValue {
   506  public:
   507   typedef union JavaCallValue {
   508     jfloat   f;
   509     jdouble  d;
   510     jint     i;
   511     jlong    l;
   512     jobject  h;
   513   } JavaCallValue;
   515  private:
   516   BasicType _type;
   517   JavaCallValue _value;
   519  public:
   520   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
   522   JavaValue(jfloat value) {
   523     _type    = T_FLOAT;
   524     _value.f = value;
   525   }
   527   JavaValue(jdouble value) {
   528     _type    = T_DOUBLE;
   529     _value.d = value;
   530   }
   532  jfloat get_jfloat() const { return _value.f; }
   533  jdouble get_jdouble() const { return _value.d; }
   534  jint get_jint() const { return _value.i; }
   535  jlong get_jlong() const { return _value.l; }
   536  jobject get_jobject() const { return _value.h; }
   537  JavaCallValue* get_value_addr() { return &_value; }
   538  BasicType get_type() const { return _type; }
   540  void set_jfloat(jfloat f) { _value.f = f;}
   541  void set_jdouble(jdouble d) { _value.d = d;}
   542  void set_jint(jint i) { _value.i = i;}
   543  void set_jlong(jlong l) { _value.l = l;}
   544  void set_jobject(jobject h) { _value.h = h;}
   545  void set_type(BasicType t) { _type = t; }
   547  jboolean get_jboolean() const { return (jboolean) (_value.i);}
   548  jbyte get_jbyte() const { return (jbyte) (_value.i);}
   549  jchar get_jchar() const { return (jchar) (_value.i);}
   550  jshort get_jshort() const { return (jshort) (_value.i);}
   552 };
   555 #define STACK_BIAS      0
   556 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
   557 // in order to extend the reach of the stack pointer.
   558 #if defined(SPARC) && defined(_LP64)
   559 #undef STACK_BIAS
   560 #define STACK_BIAS      0x7ff
   561 #endif
   564 // TosState describes the top-of-stack state before and after the execution of
   565 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
   566 // registers. The TosState corresponds to the 'machine represention' of this cached
   567 // value. There's 4 states corresponding to the JAVA types int, long, float & double
   568 // as well as a 5th state in case the top-of-stack value is actually on the top
   569 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
   570 // state when it comes to machine representation but is used separately for (oop)
   571 // type specific operations (e.g. verification code).
   573 enum TosState {         // describes the tos cache contents
   574   btos = 0,             // byte, bool tos cached
   575   ctos = 1,             // char tos cached
   576   stos = 2,             // short tos cached
   577   itos = 3,             // int tos cached
   578   ltos = 4,             // long tos cached
   579   ftos = 5,             // float tos cached
   580   dtos = 6,             // double tos cached
   581   atos = 7,             // object cached
   582   vtos = 8,             // tos not cached
   583   number_of_states,
   584   ilgl                  // illegal state: should not occur
   585 };
   588 inline TosState as_TosState(BasicType type) {
   589   switch (type) {
   590     case T_BYTE   : return btos;
   591     case T_BOOLEAN: return btos; // FIXME: Add ztos
   592     case T_CHAR   : return ctos;
   593     case T_SHORT  : return stos;
   594     case T_INT    : return itos;
   595     case T_LONG   : return ltos;
   596     case T_FLOAT  : return ftos;
   597     case T_DOUBLE : return dtos;
   598     case T_VOID   : return vtos;
   599     case T_ARRAY  : // fall through
   600     case T_OBJECT : return atos;
   601   }
   602   return ilgl;
   603 }
   605 inline BasicType as_BasicType(TosState state) {
   606   switch (state) {
   607     //case ztos: return T_BOOLEAN;//FIXME
   608     case btos : return T_BYTE;
   609     case ctos : return T_CHAR;
   610     case stos : return T_SHORT;
   611     case itos : return T_INT;
   612     case ltos : return T_LONG;
   613     case ftos : return T_FLOAT;
   614     case dtos : return T_DOUBLE;
   615     case atos : return T_OBJECT;
   616     case vtos : return T_VOID;
   617   }
   618   return T_ILLEGAL;
   619 }
   622 // Helper function to convert BasicType info into TosState
   623 // Note: Cannot define here as it uses global constant at the time being.
   624 TosState as_TosState(BasicType type);
   627 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
   629 enum ReferenceType {
   630  REF_NONE,      // Regular class
   631  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
   632  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
   633  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
   634  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
   635  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
   636 };
   639 // JavaThreadState keeps track of which part of the code a thread is executing in. This
   640 // information is needed by the safepoint code.
   641 //
   642 // There are 4 essential states:
   643 //
   644 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
   645 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
   646 //  _thread_in_vm       : Executing in the vm
   647 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
   648 //
   649 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
   650 // a transition from one state to another. These extra states makes it possible for the safepoint code to
   651 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
   652 //
   653 // Given a state, the xxx_trans state can always be found by adding 1.
   654 //
   655 enum JavaThreadState {
   656   _thread_uninitialized     =  0, // should never happen (missing initialization)
   657   _thread_new               =  2, // just starting up, i.e., in process of being initialized
   658   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
   659   _thread_in_native         =  4, // running in native code
   660   _thread_in_native_trans   =  5, // corresponding transition state
   661   _thread_in_vm             =  6, // running in VM
   662   _thread_in_vm_trans       =  7, // corresponding transition state
   663   _thread_in_Java           =  8, // running in Java or in stub code
   664   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
   665   _thread_blocked           = 10, // blocked in vm
   666   _thread_blocked_trans     = 11, // corresponding transition state
   667   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
   668 };
   671 // Handy constants for deciding which compiler mode to use.
   672 enum MethodCompilation {
   673   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
   674   InvalidOSREntryBci = -2
   675 };
   677 // Enumeration to distinguish tiers of compilation
   678 enum CompLevel {
   679   CompLevel_none              = 0,
   680   CompLevel_fast_compile      = 1,
   681   CompLevel_full_optimization = 2,
   683   CompLevel_highest_tier      = CompLevel_full_optimization,
   684 #ifdef TIERED
   685   CompLevel_initial_compile   = CompLevel_fast_compile
   686 #else
   687   CompLevel_initial_compile   = CompLevel_full_optimization
   688 #endif // TIERED
   689 };
   691 inline bool is_tier1_compile(int comp_level) {
   692   return comp_level == CompLevel_fast_compile;
   693 }
   694 inline bool is_tier2_compile(int comp_level) {
   695   return comp_level == CompLevel_full_optimization;
   696 }
   697 inline bool is_highest_tier_compile(int comp_level) {
   698   return comp_level == CompLevel_highest_tier;
   699 }
   701 //----------------------------------------------------------------------------------------------------
   702 // 'Forward' declarations of frequently used classes
   703 // (in order to reduce interface dependencies & reduce
   704 // number of unnecessary compilations after changes)
   706 class symbolTable;
   707 class ClassFileStream;
   709 class Event;
   711 class Thread;
   712 class  VMThread;
   713 class  JavaThread;
   714 class Threads;
   716 class VM_Operation;
   717 class VMOperationQueue;
   719 class CodeBlob;
   720 class  nmethod;
   721 class  OSRAdapter;
   722 class  I2CAdapter;
   723 class  C2IAdapter;
   724 class CompiledIC;
   725 class relocInfo;
   726 class ScopeDesc;
   727 class PcDesc;
   729 class Recompiler;
   730 class Recompilee;
   731 class RecompilationPolicy;
   732 class RFrame;
   733 class  CompiledRFrame;
   734 class  InterpretedRFrame;
   736 class frame;
   738 class vframe;
   739 class   javaVFrame;
   740 class     interpretedVFrame;
   741 class     compiledVFrame;
   742 class     deoptimizedVFrame;
   743 class   externalVFrame;
   744 class     entryVFrame;
   746 class RegisterMap;
   748 class Mutex;
   749 class Monitor;
   750 class BasicLock;
   751 class BasicObjectLock;
   753 class PeriodicTask;
   755 class JavaCallWrapper;
   757 class   oopDesc;
   759 class NativeCall;
   761 class zone;
   763 class StubQueue;
   765 class outputStream;
   767 class ResourceArea;
   769 class DebugInformationRecorder;
   770 class ScopeValue;
   771 class CompressedStream;
   772 class   DebugInfoReadStream;
   773 class   DebugInfoWriteStream;
   774 class LocationValue;
   775 class ConstantValue;
   776 class IllegalValue;
   778 class PrivilegedElement;
   779 class MonitorArray;
   781 class MonitorInfo;
   783 class OffsetClosure;
   784 class OopMapCache;
   785 class InterpreterOopMap;
   786 class OopMapCacheEntry;
   787 class OSThread;
   789 typedef int (*OSThreadStartFunc)(void*);
   791 class Space;
   793 class JavaValue;
   794 class methodHandle;
   795 class JavaCallArguments;
   797 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
   799 extern void basic_fatal(const char* msg);
   802 //----------------------------------------------------------------------------------------------------
   803 // Special constants for debugging
   805 const jint     badInt           = -3;                       // generic "bad int" value
   806 const long     badAddressVal    = -2;                       // generic "bad address" value
   807 const long     badOopVal        = -1;                       // generic "bad oop" value
   808 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
   809 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
   810 const int      badResourceValue = 0xAB;                     // value used to zap resource area
   811 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
   812 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
   813 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
   814 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
   815 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
   816 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
   819 // (These must be implemented as #defines because C++ compilers are
   820 // not obligated to inline non-integral constants!)
   821 #define       badAddress        ((address)::badAddressVal)
   822 #define       badOop            ((oop)::badOopVal)
   823 #define       badHeapWord       (::badHeapWordVal)
   824 #define       badJNIHandle      ((oop)::badJNIHandleVal)
   827 //----------------------------------------------------------------------------------------------------
   828 // Utility functions for bitfield manipulations
   830 const intptr_t AllBits    = ~0; // all bits set in a word
   831 const intptr_t NoBits     =  0; // no bits set in a word
   832 const jlong    NoLongBits =  0; // no bits set in a long
   833 const intptr_t OneBit     =  1; // only right_most bit set in a word
   835 // get a word with the n.th or the right-most or left-most n bits set
   836 // (note: #define used only so that they can be used in enum constant definitions)
   837 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
   838 #define right_n_bits(n)   (nth_bit(n) - 1)
   839 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
   841 // bit-operations using a mask m
   842 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
   843 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
   844 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
   845 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
   846 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
   848 // bit-operations using the n.th bit
   849 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
   850 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
   851 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
   853 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
   854 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
   855   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
   856 }
   859 //----------------------------------------------------------------------------------------------------
   860 // Utility functions for integers
   862 // Avoid use of global min/max macros which may cause unwanted double
   863 // evaluation of arguments.
   864 #ifdef max
   865 #undef max
   866 #endif
   868 #ifdef min
   869 #undef min
   870 #endif
   872 #define max(a,b) Do_not_use_max_use_MAX2_instead
   873 #define min(a,b) Do_not_use_min_use_MIN2_instead
   875 // It is necessary to use templates here. Having normal overloaded
   876 // functions does not work because it is necessary to provide both 32-
   877 // and 64-bit overloaded functions, which does not work, and having
   878 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
   879 // will be even more error-prone than macros.
   880 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
   881 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
   882 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
   883 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
   884 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
   885 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
   887 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
   889 // true if x is a power of 2, false otherwise
   890 inline bool is_power_of_2(intptr_t x) {
   891   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
   892 }
   894 // long version of is_power_of_2
   895 inline bool is_power_of_2_long(jlong x) {
   896   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
   897 }
   899 //* largest i such that 2^i <= x
   900 //  A negative value of 'x' will return '31'
   901 inline int log2_intptr(intptr_t x) {
   902   int i = -1;
   903   uintptr_t p =  1;
   904   while (p != 0 && p <= (uintptr_t)x) {
   905     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
   906     i++; p *= 2;
   907   }
   908   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
   909   // (if p = 0 then overflow occurred and i = 31)
   910   return i;
   911 }
   913 //* largest i such that 2^i <= x
   914 //  A negative value of 'x' will return '63'
   915 inline int log2_long(jlong x) {
   916   int i = -1;
   917   julong p =  1;
   918   while (p != 0 && p <= (julong)x) {
   919     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
   920     i++; p *= 2;
   921   }
   922   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
   923   // (if p = 0 then overflow occurred and i = 63)
   924   return i;
   925 }
   927 //* the argument must be exactly a power of 2
   928 inline int exact_log2(intptr_t x) {
   929   #ifdef ASSERT
   930     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
   931   #endif
   932   return log2_intptr(x);
   933 }
   935 //* the argument must be exactly a power of 2
   936 inline int exact_log2_long(jlong x) {
   937   #ifdef ASSERT
   938     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
   939   #endif
   940   return log2_long(x);
   941 }
   944 // returns integer round-up to the nearest multiple of s (s must be a power of two)
   945 inline intptr_t round_to(intptr_t x, uintx s) {
   946   #ifdef ASSERT
   947     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
   948   #endif
   949   const uintx m = s - 1;
   950   return mask_bits(x + m, ~m);
   951 }
   953 // returns integer round-down to the nearest multiple of s (s must be a power of two)
   954 inline intptr_t round_down(intptr_t x, uintx s) {
   955   #ifdef ASSERT
   956     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
   957   #endif
   958   const uintx m = s - 1;
   959   return mask_bits(x, ~m);
   960 }
   963 inline bool is_odd (intx x) { return x & 1;      }
   964 inline bool is_even(intx x) { return !is_odd(x); }
   966 // "to" should be greater than "from."
   967 inline intx byte_size(void* from, void* to) {
   968   return (address)to - (address)from;
   969 }
   971 //----------------------------------------------------------------------------------------------------
   972 // Avoid non-portable casts with these routines (DEPRECATED)
   974 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
   975 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
   977 // Given sequence of four bytes, build into a 32-bit word
   978 // following the conventions used in class files.
   979 // On the 386, this could be realized with a simple address cast.
   980 //
   982 // This routine takes eight bytes:
   983 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
   984   return  ( u8(c1) << 56 )  &  ( u8(0xff) << 56 )
   985        |  ( u8(c2) << 48 )  &  ( u8(0xff) << 48 )
   986        |  ( u8(c3) << 40 )  &  ( u8(0xff) << 40 )
   987        |  ( u8(c4) << 32 )  &  ( u8(0xff) << 32 )
   988        |  ( u8(c5) << 24 )  &  ( u8(0xff) << 24 )
   989        |  ( u8(c6) << 16 )  &  ( u8(0xff) << 16 )
   990        |  ( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 )
   991        |  ( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 );
   992 }
   994 // This routine takes four bytes:
   995 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
   996   return  ( u4(c1) << 24 )  &  0xff000000
   997        |  ( u4(c2) << 16 )  &  0x00ff0000
   998        |  ( u4(c3) <<  8 )  &  0x0000ff00
   999        |  ( u4(c4) <<  0 )  &  0x000000ff;
  1002 // And this one works if the four bytes are contiguous in memory:
  1003 inline u4 build_u4_from( u1* p ) {
  1004   return  build_u4_from( p[0], p[1], p[2], p[3] );
  1007 // Ditto for two-byte ints:
  1008 inline u2 build_u2_from( u1 c1, u1 c2 ) {
  1009   return  u2(( u2(c1) <<  8 )  &  0xff00
  1010           |  ( u2(c2) <<  0 )  &  0x00ff);
  1013 // And this one works if the two bytes are contiguous in memory:
  1014 inline u2 build_u2_from( u1* p ) {
  1015   return  build_u2_from( p[0], p[1] );
  1018 // Ditto for floats:
  1019 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1020   u4 u = build_u4_from( c1, c2, c3, c4 );
  1021   return  *(jfloat*)&u;
  1024 inline jfloat build_float_from( u1* p ) {
  1025   u4 u = build_u4_from( p );
  1026   return  *(jfloat*)&u;
  1030 // now (64-bit) longs
  1032 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1033   return  ( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 )
  1034        |  ( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 )
  1035        |  ( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 )
  1036        |  ( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 )
  1037        |  ( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 )
  1038        |  ( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 )
  1039        |  ( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 )
  1040        |  ( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 );
  1043 inline jlong build_long_from( u1* p ) {
  1044   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
  1048 // Doubles, too!
  1049 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1050   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
  1051   return  *(jdouble*)&u;
  1054 inline jdouble build_double_from( u1* p ) {
  1055   jlong u = build_long_from( p );
  1056   return  *(jdouble*)&u;
  1060 // Portable routines to go the other way:
  1062 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
  1063   c1 = u1(x >> 8);
  1064   c2 = u1(x);
  1067 inline void explode_short_to( u2 x, u1* p ) {
  1068   explode_short_to( x, p[0], p[1]);
  1071 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
  1072   c1 = u1(x >> 24);
  1073   c2 = u1(x >> 16);
  1074   c3 = u1(x >>  8);
  1075   c4 = u1(x);
  1078 inline void explode_int_to( u4 x, u1* p ) {
  1079   explode_int_to( x, p[0], p[1], p[2], p[3]);
  1083 // Pack and extract shorts to/from ints:
  1085 inline int extract_low_short_from_int(jint x) {
  1086   return x & 0xffff;
  1089 inline int extract_high_short_from_int(jint x) {
  1090   return (x >> 16) & 0xffff;
  1093 inline int build_int_from_shorts( jushort low, jushort high ) {
  1094   return ((int)((unsigned int)high << 16) | (unsigned int)low);
  1097 // Printf-style formatters for fixed- and variable-width types as pointers and
  1098 // integers.
  1099 //
  1100 // Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  1101 // must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or
  1102 // '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll"
  1103 // (in ILP32).
  1105 // Format 32-bit quantities.
  1106 #define INT32_FORMAT  "%d"
  1107 #define UINT32_FORMAT "%u"
  1108 #define INT32_FORMAT_W(width)   "%" #width "d"
  1109 #define UINT32_FORMAT_W(width)  "%" #width "u"
  1111 #define PTR32_FORMAT  "0x%08x"
  1113 // Format 64-bit quantities.
  1114 #define INT64_FORMAT  "%" FORMAT64_MODIFIER "d"
  1115 #define UINT64_FORMAT "%" FORMAT64_MODIFIER "u"
  1116 #define PTR64_FORMAT  "0x%016" FORMAT64_MODIFIER "x"
  1118 #define INT64_FORMAT_W(width)  "%" #width FORMAT64_MODIFIER "d"
  1119 #define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u"
  1121 // Format macros that allow the field width to be specified.  The width must be
  1122 // a string literal (e.g., "8") or a macro that evaluates to one.
  1123 #ifdef _LP64
  1124 #define UINTX_FORMAT_W(width)   UINT64_FORMAT_W(width)
  1125 #define SSIZE_FORMAT_W(width)   INT64_FORMAT_W(width)
  1126 #define SIZE_FORMAT_W(width)    UINT64_FORMAT_W(width)
  1127 #else
  1128 #define UINTX_FORMAT_W(width)   UINT32_FORMAT_W(width)
  1129 #define SSIZE_FORMAT_W(width)   INT32_FORMAT_W(width)
  1130 #define SIZE_FORMAT_W(width)    UINT32_FORMAT_W(width)
  1131 #endif // _LP64
  1133 // Format pointers and size_t (or size_t-like integer types) which change size
  1134 // between 32- and 64-bit. The pointer format theoretically should be "%p",
  1135 // however, it has different output on different platforms. On Windows, the data
  1136 // will be padded with zeros automatically. On Solaris, we can use "%016p" &
  1137 // "%08p" on 64 bit & 32 bit platforms to make the data padded with extra zeros.
  1138 // On Linux, "%016p" or "%08p" is not be allowed, at least on the latest GCC
  1139 // 4.3.2. So we have to use "%016x" or "%08x" to simulate the printing format.
  1140 // GCC 4.3.2, however requires the data to be converted to "intptr_t" when
  1141 // using "%x".
  1142 #ifdef  _LP64
  1143 #define PTR_FORMAT    PTR64_FORMAT
  1144 #define UINTX_FORMAT  UINT64_FORMAT
  1145 #define INTX_FORMAT   INT64_FORMAT
  1146 #define SIZE_FORMAT   UINT64_FORMAT
  1147 #define SSIZE_FORMAT  INT64_FORMAT
  1148 #else   // !_LP64
  1149 #define PTR_FORMAT    PTR32_FORMAT
  1150 #define UINTX_FORMAT  UINT32_FORMAT
  1151 #define INTX_FORMAT   INT32_FORMAT
  1152 #define SIZE_FORMAT   UINT32_FORMAT
  1153 #define SSIZE_FORMAT  INT32_FORMAT
  1154 #endif  // _LP64
  1156 #define INTPTR_FORMAT PTR_FORMAT
  1158 // Enable zap-a-lot if in debug version.
  1160 # ifdef ASSERT
  1161 # ifdef COMPILER2
  1162 #   define ENABLE_ZAP_DEAD_LOCALS
  1163 #endif /* COMPILER2 */
  1164 # endif /* ASSERT */
  1166 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))

mercurial