src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Thu, 19 Mar 2009 09:13:24 -0700

author
kvn
date
Thu, 19 Mar 2009 09:13:24 -0700
changeset 1082
bd441136a5ce
parent 1075
ba50942c8138
parent 1077
660978a2a31a
child 1112
96b229c54d1e
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_g1CollectedHeap.cpp.incl"
    28 // turn it on so that the contents of the young list (scan-only /
    29 // to-be-collected) are printed at "strategic" points before / during
    30 // / after the collection --- this is useful for debugging
    31 #define SCAN_ONLY_VERBOSE 0
    32 // CURRENT STATUS
    33 // This file is under construction.  Search for "FIXME".
    35 // INVARIANTS/NOTES
    36 //
    37 // All allocation activity covered by the G1CollectedHeap interface is
    38 //   serialized by acquiring the HeapLock.  This happens in
    39 //   mem_allocate_work, which all such allocation functions call.
    40 //   (Note that this does not apply to TLAB allocation, which is not part
    41 //   of this interface: it is done by clients of this interface.)
    43 // Local to this file.
    45 // Finds the first HeapRegion.
    46 // No longer used, but might be handy someday.
    48 class FindFirstRegionClosure: public HeapRegionClosure {
    49   HeapRegion* _a_region;
    50 public:
    51   FindFirstRegionClosure() : _a_region(NULL) {}
    52   bool doHeapRegion(HeapRegion* r) {
    53     _a_region = r;
    54     return true;
    55   }
    56   HeapRegion* result() { return _a_region; }
    57 };
    60 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    61   SuspendibleThreadSet* _sts;
    62   G1RemSet* _g1rs;
    63   ConcurrentG1Refine* _cg1r;
    64   bool _concurrent;
    65 public:
    66   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    67                               G1RemSet* g1rs,
    68                               ConcurrentG1Refine* cg1r) :
    69     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    70   {}
    71   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    72     _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
    73     if (_concurrent && _sts->should_yield()) {
    74       // Caller will actually yield.
    75       return false;
    76     }
    77     // Otherwise, we finished successfully; return true.
    78     return true;
    79   }
    80   void set_concurrent(bool b) { _concurrent = b; }
    81 };
    84 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
    85   int _calls;
    86   G1CollectedHeap* _g1h;
    87   CardTableModRefBS* _ctbs;
    88   int _histo[256];
    89 public:
    90   ClearLoggedCardTableEntryClosure() :
    91     _calls(0)
    92   {
    93     _g1h = G1CollectedHeap::heap();
    94     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    95     for (int i = 0; i < 256; i++) _histo[i] = 0;
    96   }
    97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    98     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
    99       _calls++;
   100       unsigned char* ujb = (unsigned char*)card_ptr;
   101       int ind = (int)(*ujb);
   102       _histo[ind]++;
   103       *card_ptr = -1;
   104     }
   105     return true;
   106   }
   107   int calls() { return _calls; }
   108   void print_histo() {
   109     gclog_or_tty->print_cr("Card table value histogram:");
   110     for (int i = 0; i < 256; i++) {
   111       if (_histo[i] != 0) {
   112         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   113       }
   114     }
   115   }
   116 };
   118 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   119   int _calls;
   120   G1CollectedHeap* _g1h;
   121   CardTableModRefBS* _ctbs;
   122 public:
   123   RedirtyLoggedCardTableEntryClosure() :
   124     _calls(0)
   125   {
   126     _g1h = G1CollectedHeap::heap();
   127     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   128   }
   129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   131       _calls++;
   132       *card_ptr = 0;
   133     }
   134     return true;
   135   }
   136   int calls() { return _calls; }
   137 };
   139 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   140 public:
   141   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   142     *card_ptr = CardTableModRefBS::dirty_card_val();
   143     return true;
   144   }
   145 };
   147 YoungList::YoungList(G1CollectedHeap* g1h)
   148   : _g1h(g1h), _head(NULL),
   149     _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
   150     _length(0), _scan_only_length(0),
   151     _last_sampled_rs_lengths(0),
   152     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   153 {
   154   guarantee( check_list_empty(false), "just making sure..." );
   155 }
   157 void YoungList::push_region(HeapRegion *hr) {
   158   assert(!hr->is_young(), "should not already be young");
   159   assert(hr->get_next_young_region() == NULL, "cause it should!");
   161   hr->set_next_young_region(_head);
   162   _head = hr;
   164   hr->set_young();
   165   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   166   ++_length;
   167 }
   169 void YoungList::add_survivor_region(HeapRegion* hr) {
   170   assert(hr->is_survivor(), "should be flagged as survivor region");
   171   assert(hr->get_next_young_region() == NULL, "cause it should!");
   173   hr->set_next_young_region(_survivor_head);
   174   if (_survivor_head == NULL) {
   175     _survivor_tail = hr;
   176   }
   177   _survivor_head = hr;
   179   ++_survivor_length;
   180 }
   182 HeapRegion* YoungList::pop_region() {
   183   while (_head != NULL) {
   184     assert( length() > 0, "list should not be empty" );
   185     HeapRegion* ret = _head;
   186     _head = ret->get_next_young_region();
   187     ret->set_next_young_region(NULL);
   188     --_length;
   189     assert(ret->is_young(), "region should be very young");
   191     // Replace 'Survivor' region type with 'Young'. So the region will
   192     // be treated as a young region and will not be 'confused' with
   193     // newly created survivor regions.
   194     if (ret->is_survivor()) {
   195       ret->set_young();
   196     }
   198     if (!ret->is_scan_only()) {
   199       return ret;
   200     }
   202     // scan-only, we'll add it to the scan-only list
   203     if (_scan_only_tail == NULL) {
   204       guarantee( _scan_only_head == NULL, "invariant" );
   206       _scan_only_head = ret;
   207       _curr_scan_only = ret;
   208     } else {
   209       guarantee( _scan_only_head != NULL, "invariant" );
   210       _scan_only_tail->set_next_young_region(ret);
   211     }
   212     guarantee( ret->get_next_young_region() == NULL, "invariant" );
   213     _scan_only_tail = ret;
   215     // no need to be tagged as scan-only any more
   216     ret->set_young();
   218     ++_scan_only_length;
   219   }
   220   assert( length() == 0, "list should be empty" );
   221   return NULL;
   222 }
   224 void YoungList::empty_list(HeapRegion* list) {
   225   while (list != NULL) {
   226     HeapRegion* next = list->get_next_young_region();
   227     list->set_next_young_region(NULL);
   228     list->uninstall_surv_rate_group();
   229     list->set_not_young();
   230     list = next;
   231   }
   232 }
   234 void YoungList::empty_list() {
   235   assert(check_list_well_formed(), "young list should be well formed");
   237   empty_list(_head);
   238   _head = NULL;
   239   _length = 0;
   241   empty_list(_scan_only_head);
   242   _scan_only_head = NULL;
   243   _scan_only_tail = NULL;
   244   _scan_only_length = 0;
   245   _curr_scan_only = NULL;
   247   empty_list(_survivor_head);
   248   _survivor_head = NULL;
   249   _survivor_tail = NULL;
   250   _survivor_length = 0;
   252   _last_sampled_rs_lengths = 0;
   254   assert(check_list_empty(false), "just making sure...");
   255 }
   257 bool YoungList::check_list_well_formed() {
   258   bool ret = true;
   260   size_t length = 0;
   261   HeapRegion* curr = _head;
   262   HeapRegion* last = NULL;
   263   while (curr != NULL) {
   264     if (!curr->is_young() || curr->is_scan_only()) {
   265       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   266                              "incorrectly tagged (%d, %d)",
   267                              curr->bottom(), curr->end(),
   268                              curr->is_young(), curr->is_scan_only());
   269       ret = false;
   270     }
   271     ++length;
   272     last = curr;
   273     curr = curr->get_next_young_region();
   274   }
   275   ret = ret && (length == _length);
   277   if (!ret) {
   278     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   279     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   280                            length, _length);
   281   }
   283   bool scan_only_ret = true;
   284   length = 0;
   285   curr = _scan_only_head;
   286   last = NULL;
   287   while (curr != NULL) {
   288     if (!curr->is_young() || curr->is_scan_only()) {
   289       gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
   290                              "incorrectly tagged (%d, %d)",
   291                              curr->bottom(), curr->end(),
   292                              curr->is_young(), curr->is_scan_only());
   293       scan_only_ret = false;
   294     }
   295     ++length;
   296     last = curr;
   297     curr = curr->get_next_young_region();
   298   }
   299   scan_only_ret = scan_only_ret && (length == _scan_only_length);
   301   if ( (last != _scan_only_tail) ||
   302        (_scan_only_head == NULL && _scan_only_tail != NULL) ||
   303        (_scan_only_head != NULL && _scan_only_tail == NULL) ) {
   304      gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
   305      scan_only_ret = false;
   306   }
   308   if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
   309     gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
   310     scan_only_ret = false;
   311    }
   313   if (!scan_only_ret) {
   314     gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
   315     gclog_or_tty->print_cr("###   list has %d entries, _scan_only_length is %d",
   316                   length, _scan_only_length);
   317   }
   319   return ret && scan_only_ret;
   320 }
   322 bool YoungList::check_list_empty(bool ignore_scan_only_list,
   323                                  bool check_sample) {
   324   bool ret = true;
   326   if (_length != 0) {
   327     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   328                   _length);
   329     ret = false;
   330   }
   331   if (check_sample && _last_sampled_rs_lengths != 0) {
   332     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   333     ret = false;
   334   }
   335   if (_head != NULL) {
   336     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   337     ret = false;
   338   }
   339   if (!ret) {
   340     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   341   }
   343   if (ignore_scan_only_list)
   344     return ret;
   346   bool scan_only_ret = true;
   347   if (_scan_only_length != 0) {
   348     gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
   349                   _scan_only_length);
   350     scan_only_ret = false;
   351   }
   352   if (_scan_only_head != NULL) {
   353     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
   354      scan_only_ret = false;
   355   }
   356   if (_scan_only_tail != NULL) {
   357     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
   358     scan_only_ret = false;
   359   }
   360   if (!scan_only_ret) {
   361     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
   362   }
   364   return ret && scan_only_ret;
   365 }
   367 void
   368 YoungList::rs_length_sampling_init() {
   369   _sampled_rs_lengths = 0;
   370   _curr               = _head;
   371 }
   373 bool
   374 YoungList::rs_length_sampling_more() {
   375   return _curr != NULL;
   376 }
   378 void
   379 YoungList::rs_length_sampling_next() {
   380   assert( _curr != NULL, "invariant" );
   381   _sampled_rs_lengths += _curr->rem_set()->occupied();
   382   _curr = _curr->get_next_young_region();
   383   if (_curr == NULL) {
   384     _last_sampled_rs_lengths = _sampled_rs_lengths;
   385     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   386   }
   387 }
   389 void
   390 YoungList::reset_auxilary_lists() {
   391   // We could have just "moved" the scan-only list to the young list.
   392   // However, the scan-only list is ordered according to the region
   393   // age in descending order, so, by moving one entry at a time, we
   394   // ensure that it is recreated in ascending order.
   396   guarantee( is_empty(), "young list should be empty" );
   397   assert(check_list_well_formed(), "young list should be well formed");
   399   // Add survivor regions to SurvRateGroup.
   400   _g1h->g1_policy()->note_start_adding_survivor_regions();
   401   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   402   for (HeapRegion* curr = _survivor_head;
   403        curr != NULL;
   404        curr = curr->get_next_young_region()) {
   405     _g1h->g1_policy()->set_region_survivors(curr);
   406   }
   407   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   409   if (_survivor_head != NULL) {
   410     _head           = _survivor_head;
   411     _length         = _survivor_length + _scan_only_length;
   412     _survivor_tail->set_next_young_region(_scan_only_head);
   413   } else {
   414     _head           = _scan_only_head;
   415     _length         = _scan_only_length;
   416   }
   418   for (HeapRegion* curr = _scan_only_head;
   419        curr != NULL;
   420        curr = curr->get_next_young_region()) {
   421     curr->recalculate_age_in_surv_rate_group();
   422   }
   423   _scan_only_head   = NULL;
   424   _scan_only_tail   = NULL;
   425   _scan_only_length = 0;
   426   _curr_scan_only   = NULL;
   428   _survivor_head    = NULL;
   429   _survivor_tail   = NULL;
   430   _survivor_length  = 0;
   431   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   433   assert(check_list_well_formed(), "young list should be well formed");
   434 }
   436 void YoungList::print() {
   437   HeapRegion* lists[] = {_head,   _scan_only_head, _survivor_head};
   438   const char* names[] = {"YOUNG", "SCAN-ONLY",     "SURVIVOR"};
   440   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   441     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   442     HeapRegion *curr = lists[list];
   443     if (curr == NULL)
   444       gclog_or_tty->print_cr("  empty");
   445     while (curr != NULL) {
   446       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   447                              "age: %4d, y: %d, s-o: %d, surv: %d",
   448                              curr->bottom(), curr->end(),
   449                              curr->top(),
   450                              curr->prev_top_at_mark_start(),
   451                              curr->next_top_at_mark_start(),
   452                              curr->top_at_conc_mark_count(),
   453                              curr->age_in_surv_rate_group_cond(),
   454                              curr->is_young(),
   455                              curr->is_scan_only(),
   456                              curr->is_survivor());
   457       curr = curr->get_next_young_region();
   458     }
   459   }
   461   gclog_or_tty->print_cr("");
   462 }
   464 void G1CollectedHeap::stop_conc_gc_threads() {
   465   _cg1r->cg1rThread()->stop();
   466   _czft->stop();
   467   _cmThread->stop();
   468 }
   471 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   472   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   473   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   475   // Count the dirty cards at the start.
   476   CountNonCleanMemRegionClosure count1(this);
   477   ct_bs->mod_card_iterate(&count1);
   478   int orig_count = count1.n();
   480   // First clear the logged cards.
   481   ClearLoggedCardTableEntryClosure clear;
   482   dcqs.set_closure(&clear);
   483   dcqs.apply_closure_to_all_completed_buffers();
   484   dcqs.iterate_closure_all_threads(false);
   485   clear.print_histo();
   487   // Now ensure that there's no dirty cards.
   488   CountNonCleanMemRegionClosure count2(this);
   489   ct_bs->mod_card_iterate(&count2);
   490   if (count2.n() != 0) {
   491     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   492                            count2.n(), orig_count);
   493   }
   494   guarantee(count2.n() == 0, "Card table should be clean.");
   496   RedirtyLoggedCardTableEntryClosure redirty;
   497   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   498   dcqs.apply_closure_to_all_completed_buffers();
   499   dcqs.iterate_closure_all_threads(false);
   500   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   501                          clear.calls(), orig_count);
   502   guarantee(redirty.calls() == clear.calls(),
   503             "Or else mechanism is broken.");
   505   CountNonCleanMemRegionClosure count3(this);
   506   ct_bs->mod_card_iterate(&count3);
   507   if (count3.n() != orig_count) {
   508     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   509                            orig_count, count3.n());
   510     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   511   }
   513   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   514 }
   516 // Private class members.
   518 G1CollectedHeap* G1CollectedHeap::_g1h;
   520 // Private methods.
   522 // Finds a HeapRegion that can be used to allocate a given size of block.
   525 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
   526                                                  bool do_expand,
   527                                                  bool zero_filled) {
   528   ConcurrentZFThread::note_region_alloc();
   529   HeapRegion* res = alloc_free_region_from_lists(zero_filled);
   530   if (res == NULL && do_expand) {
   531     expand(word_size * HeapWordSize);
   532     res = alloc_free_region_from_lists(zero_filled);
   533     assert(res == NULL ||
   534            (!res->isHumongous() &&
   535             (!zero_filled ||
   536              res->zero_fill_state() == HeapRegion::Allocated)),
   537            "Alloc Regions must be zero filled (and non-H)");
   538   }
   539   if (res != NULL && res->is_empty()) _free_regions--;
   540   assert(res == NULL ||
   541          (!res->isHumongous() &&
   542           (!zero_filled ||
   543            res->zero_fill_state() == HeapRegion::Allocated)),
   544          "Non-young alloc Regions must be zero filled (and non-H)");
   546   if (G1TraceRegions) {
   547     if (res != NULL) {
   548       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
   549                              "top "PTR_FORMAT,
   550                              res->hrs_index(), res->bottom(), res->end(), res->top());
   551     }
   552   }
   554   return res;
   555 }
   557 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
   558                                                          size_t word_size,
   559                                                          bool zero_filled) {
   560   HeapRegion* alloc_region = NULL;
   561   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
   562     alloc_region = newAllocRegion_work(word_size, true, zero_filled);
   563     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
   564       alloc_region->set_survivor();
   565     }
   566     ++_gc_alloc_region_counts[purpose];
   567   } else {
   568     g1_policy()->note_alloc_region_limit_reached(purpose);
   569   }
   570   return alloc_region;
   571 }
   573 // If could fit into free regions w/o expansion, try.
   574 // Otherwise, if can expand, do so.
   575 // Otherwise, if using ex regions might help, try with ex given back.
   576 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
   577   assert(regions_accounted_for(), "Region leakage!");
   579   // We can't allocate H regions while cleanupComplete is running, since
   580   // some of the regions we find to be empty might not yet be added to the
   581   // unclean list.  (If we're already at a safepoint, this call is
   582   // unnecessary, not to mention wrong.)
   583   if (!SafepointSynchronize::is_at_safepoint())
   584     wait_for_cleanup_complete();
   586   size_t num_regions =
   587     round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   589   // Special case if < one region???
   591   // Remember the ft size.
   592   size_t x_size = expansion_regions();
   594   HeapWord* res = NULL;
   595   bool eliminated_allocated_from_lists = false;
   597   // Can the allocation potentially fit in the free regions?
   598   if (free_regions() >= num_regions) {
   599     res = _hrs->obj_allocate(word_size);
   600   }
   601   if (res == NULL) {
   602     // Try expansion.
   603     size_t fs = _hrs->free_suffix();
   604     if (fs + x_size >= num_regions) {
   605       expand((num_regions - fs) * HeapRegion::GrainBytes);
   606       res = _hrs->obj_allocate(word_size);
   607       assert(res != NULL, "This should have worked.");
   608     } else {
   609       // Expansion won't help.  Are there enough free regions if we get rid
   610       // of reservations?
   611       size_t avail = free_regions();
   612       if (avail >= num_regions) {
   613         res = _hrs->obj_allocate(word_size);
   614         if (res != NULL) {
   615           remove_allocated_regions_from_lists();
   616           eliminated_allocated_from_lists = true;
   617         }
   618       }
   619     }
   620   }
   621   if (res != NULL) {
   622     // Increment by the number of regions allocated.
   623     // FIXME: Assumes regions all of size GrainBytes.
   624 #ifndef PRODUCT
   625     mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
   626                                            HeapRegion::GrainWords));
   627 #endif
   628     if (!eliminated_allocated_from_lists)
   629       remove_allocated_regions_from_lists();
   630     _summary_bytes_used += word_size * HeapWordSize;
   631     _free_regions -= num_regions;
   632     _num_humongous_regions += (int) num_regions;
   633   }
   634   assert(regions_accounted_for(), "Region Leakage");
   635   return res;
   636 }
   638 HeapWord*
   639 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   640                                          bool permit_collection_pause) {
   641   HeapWord* res = NULL;
   642   HeapRegion* allocated_young_region = NULL;
   644   assert( SafepointSynchronize::is_at_safepoint() ||
   645           Heap_lock->owned_by_self(), "pre condition of the call" );
   647   if (isHumongous(word_size)) {
   648     // Allocation of a humongous object can, in a sense, complete a
   649     // partial region, if the previous alloc was also humongous, and
   650     // caused the test below to succeed.
   651     if (permit_collection_pause)
   652       do_collection_pause_if_appropriate(word_size);
   653     res = humongousObjAllocate(word_size);
   654     assert(_cur_alloc_region == NULL
   655            || !_cur_alloc_region->isHumongous(),
   656            "Prevent a regression of this bug.");
   658   } else {
   659     // We may have concurrent cleanup working at the time. Wait for it
   660     // to complete. In the future we would probably want to make the
   661     // concurrent cleanup truly concurrent by decoupling it from the
   662     // allocation.
   663     if (!SafepointSynchronize::is_at_safepoint())
   664       wait_for_cleanup_complete();
   665     // If we do a collection pause, this will be reset to a non-NULL
   666     // value.  If we don't, nulling here ensures that we allocate a new
   667     // region below.
   668     if (_cur_alloc_region != NULL) {
   669       // We're finished with the _cur_alloc_region.
   670       _summary_bytes_used += _cur_alloc_region->used();
   671       _cur_alloc_region = NULL;
   672     }
   673     assert(_cur_alloc_region == NULL, "Invariant.");
   674     // Completion of a heap region is perhaps a good point at which to do
   675     // a collection pause.
   676     if (permit_collection_pause)
   677       do_collection_pause_if_appropriate(word_size);
   678     // Make sure we have an allocation region available.
   679     if (_cur_alloc_region == NULL) {
   680       if (!SafepointSynchronize::is_at_safepoint())
   681         wait_for_cleanup_complete();
   682       bool next_is_young = should_set_young_locked();
   683       // If the next region is not young, make sure it's zero-filled.
   684       _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
   685       if (_cur_alloc_region != NULL) {
   686         _summary_bytes_used -= _cur_alloc_region->used();
   687         if (next_is_young) {
   688           set_region_short_lived_locked(_cur_alloc_region);
   689           allocated_young_region = _cur_alloc_region;
   690         }
   691       }
   692     }
   693     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
   694            "Prevent a regression of this bug.");
   696     // Now retry the allocation.
   697     if (_cur_alloc_region != NULL) {
   698       res = _cur_alloc_region->allocate(word_size);
   699     }
   700   }
   702   // NOTE: fails frequently in PRT
   703   assert(regions_accounted_for(), "Region leakage!");
   705   if (res != NULL) {
   706     if (!SafepointSynchronize::is_at_safepoint()) {
   707       assert( permit_collection_pause, "invariant" );
   708       assert( Heap_lock->owned_by_self(), "invariant" );
   709       Heap_lock->unlock();
   710     }
   712     if (allocated_young_region != NULL) {
   713       HeapRegion* hr = allocated_young_region;
   714       HeapWord* bottom = hr->bottom();
   715       HeapWord* end = hr->end();
   716       MemRegion mr(bottom, end);
   717       ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
   718     }
   719   }
   721   assert( SafepointSynchronize::is_at_safepoint() ||
   722           (res == NULL && Heap_lock->owned_by_self()) ||
   723           (res != NULL && !Heap_lock->owned_by_self()),
   724           "post condition of the call" );
   726   return res;
   727 }
   729 HeapWord*
   730 G1CollectedHeap::mem_allocate(size_t word_size,
   731                               bool   is_noref,
   732                               bool   is_tlab,
   733                               bool* gc_overhead_limit_was_exceeded) {
   734   debug_only(check_for_valid_allocation_state());
   735   assert(no_gc_in_progress(), "Allocation during gc not allowed");
   736   HeapWord* result = NULL;
   738   // Loop until the allocation is satisified,
   739   // or unsatisfied after GC.
   740   for (int try_count = 1; /* return or throw */; try_count += 1) {
   741     int gc_count_before;
   742     {
   743       Heap_lock->lock();
   744       result = attempt_allocation(word_size);
   745       if (result != NULL) {
   746         // attempt_allocation should have unlocked the heap lock
   747         assert(is_in(result), "result not in heap");
   748         return result;
   749       }
   750       // Read the gc count while the heap lock is held.
   751       gc_count_before = SharedHeap::heap()->total_collections();
   752       Heap_lock->unlock();
   753     }
   755     // Create the garbage collection operation...
   756     VM_G1CollectForAllocation op(word_size,
   757                                  gc_count_before);
   759     // ...and get the VM thread to execute it.
   760     VMThread::execute(&op);
   761     if (op.prologue_succeeded()) {
   762       result = op.result();
   763       assert(result == NULL || is_in(result), "result not in heap");
   764       return result;
   765     }
   767     // Give a warning if we seem to be looping forever.
   768     if ((QueuedAllocationWarningCount > 0) &&
   769         (try_count % QueuedAllocationWarningCount == 0)) {
   770       warning("G1CollectedHeap::mem_allocate_work retries %d times",
   771               try_count);
   772     }
   773   }
   774 }
   776 void G1CollectedHeap::abandon_cur_alloc_region() {
   777   if (_cur_alloc_region != NULL) {
   778     // We're finished with the _cur_alloc_region.
   779     if (_cur_alloc_region->is_empty()) {
   780       _free_regions++;
   781       free_region(_cur_alloc_region);
   782     } else {
   783       _summary_bytes_used += _cur_alloc_region->used();
   784     }
   785     _cur_alloc_region = NULL;
   786   }
   787 }
   789 void G1CollectedHeap::abandon_gc_alloc_regions() {
   790   // first, make sure that the GC alloc region list is empty (it should!)
   791   assert(_gc_alloc_region_list == NULL, "invariant");
   792   release_gc_alloc_regions(true /* totally */);
   793 }
   795 class PostMCRemSetClearClosure: public HeapRegionClosure {
   796   ModRefBarrierSet* _mr_bs;
   797 public:
   798   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   799   bool doHeapRegion(HeapRegion* r) {
   800     r->reset_gc_time_stamp();
   801     if (r->continuesHumongous())
   802       return false;
   803     HeapRegionRemSet* hrrs = r->rem_set();
   804     if (hrrs != NULL) hrrs->clear();
   805     // You might think here that we could clear just the cards
   806     // corresponding to the used region.  But no: if we leave a dirty card
   807     // in a region we might allocate into, then it would prevent that card
   808     // from being enqueued, and cause it to be missed.
   809     // Re: the performance cost: we shouldn't be doing full GC anyway!
   810     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
   811     return false;
   812   }
   813 };
   816 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
   817   ModRefBarrierSet* _mr_bs;
   818 public:
   819   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   820   bool doHeapRegion(HeapRegion* r) {
   821     if (r->continuesHumongous()) return false;
   822     if (r->used_region().word_size() != 0) {
   823       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
   824     }
   825     return false;
   826   }
   827 };
   829 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
   830   G1CollectedHeap*   _g1h;
   831   UpdateRSOopClosure _cl;
   832   int                _worker_i;
   833 public:
   834   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
   835     _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
   836     _worker_i(worker_i),
   837     _g1h(g1)
   838   { }
   839   bool doHeapRegion(HeapRegion* r) {
   840     if (!r->continuesHumongous()) {
   841       _cl.set_from(r);
   842       r->oop_iterate(&_cl);
   843     }
   844     return false;
   845   }
   846 };
   848 class ParRebuildRSTask: public AbstractGangTask {
   849   G1CollectedHeap* _g1;
   850 public:
   851   ParRebuildRSTask(G1CollectedHeap* g1)
   852     : AbstractGangTask("ParRebuildRSTask"),
   853       _g1(g1)
   854   { }
   856   void work(int i) {
   857     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
   858     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
   859                                          HeapRegion::RebuildRSClaimValue);
   860   }
   861 };
   863 void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
   864                                     size_t word_size) {
   865   ResourceMark rm;
   867   if (full && DisableExplicitGC) {
   868     gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
   869     return;
   870   }
   872   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   873   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
   875   if (GC_locker::is_active()) {
   876     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   877   }
   879   {
   880     IsGCActiveMark x;
   882     // Timing
   883     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   884     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   885     TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
   887     double start = os::elapsedTime();
   888     GCOverheadReporter::recordSTWStart(start);
   889     g1_policy()->record_full_collection_start();
   891     gc_prologue(true);
   892     increment_total_collections();
   894     size_t g1h_prev_used = used();
   895     assert(used() == recalculate_used(), "Should be equal");
   897     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
   898       HandleMark hm;  // Discard invalid handles created during verification
   899       prepare_for_verify();
   900       gclog_or_tty->print(" VerifyBeforeGC:");
   901       Universe::verify(true);
   902     }
   903     assert(regions_accounted_for(), "Region leakage!");
   905     COMPILER2_PRESENT(DerivedPointerTable::clear());
   907     // We want to discover references, but not process them yet.
   908     // This mode is disabled in
   909     // instanceRefKlass::process_discovered_references if the
   910     // generation does some collection work, or
   911     // instanceRefKlass::enqueue_discovered_references if the
   912     // generation returns without doing any work.
   913     ref_processor()->disable_discovery();
   914     ref_processor()->abandon_partial_discovery();
   915     ref_processor()->verify_no_references_recorded();
   917     // Abandon current iterations of concurrent marking and concurrent
   918     // refinement, if any are in progress.
   919     concurrent_mark()->abort();
   921     // Make sure we'll choose a new allocation region afterwards.
   922     abandon_cur_alloc_region();
   923     abandon_gc_alloc_regions();
   924     assert(_cur_alloc_region == NULL, "Invariant.");
   925     g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
   926     tear_down_region_lists();
   927     set_used_regions_to_need_zero_fill();
   928     if (g1_policy()->in_young_gc_mode()) {
   929       empty_young_list();
   930       g1_policy()->set_full_young_gcs(true);
   931     }
   933     // Temporarily make reference _discovery_ single threaded (non-MT).
   934     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
   936     // Temporarily make refs discovery atomic
   937     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
   939     // Temporarily clear _is_alive_non_header
   940     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
   942     ref_processor()->enable_discovery();
   943     ref_processor()->setup_policy(clear_all_soft_refs);
   945     // Do collection work
   946     {
   947       HandleMark hm;  // Discard invalid handles created during gc
   948       G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
   949     }
   950     // Because freeing humongous regions may have added some unclean
   951     // regions, it is necessary to tear down again before rebuilding.
   952     tear_down_region_lists();
   953     rebuild_region_lists();
   955     _summary_bytes_used = recalculate_used();
   957     ref_processor()->enqueue_discovered_references();
   959     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   961     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
   962       HandleMark hm;  // Discard invalid handles created during verification
   963       gclog_or_tty->print(" VerifyAfterGC:");
   964       prepare_for_verify();
   965       Universe::verify(false);
   966     }
   967     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   969     reset_gc_time_stamp();
   970     // Since everything potentially moved, we will clear all remembered
   971     // sets, and clear all cards.  Later we will rebuild remebered
   972     // sets. We will also reset the GC time stamps of the regions.
   973     PostMCRemSetClearClosure rs_clear(mr_bs());
   974     heap_region_iterate(&rs_clear);
   976     // Resize the heap if necessary.
   977     resize_if_necessary_after_full_collection(full ? 0 : word_size);
   979     if (_cg1r->use_cache()) {
   980       _cg1r->clear_and_record_card_counts();
   981       _cg1r->clear_hot_cache();
   982     }
   984     // Rebuild remembered sets of all regions.
   985     if (ParallelGCThreads > 0) {
   986       ParRebuildRSTask rebuild_rs_task(this);
   987       assert(check_heap_region_claim_values(
   988              HeapRegion::InitialClaimValue), "sanity check");
   989       set_par_threads(workers()->total_workers());
   990       workers()->run_task(&rebuild_rs_task);
   991       set_par_threads(0);
   992       assert(check_heap_region_claim_values(
   993              HeapRegion::RebuildRSClaimValue), "sanity check");
   994       reset_heap_region_claim_values();
   995     } else {
   996       RebuildRSOutOfRegionClosure rebuild_rs(this);
   997       heap_region_iterate(&rebuild_rs);
   998     }
  1000     if (PrintGC) {
  1001       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1004     if (true) { // FIXME
  1005       // Ask the permanent generation to adjust size for full collections
  1006       perm()->compute_new_size();
  1009     double end = os::elapsedTime();
  1010     GCOverheadReporter::recordSTWEnd(end);
  1011     g1_policy()->record_full_collection_end();
  1013 #ifdef TRACESPINNING
  1014     ParallelTaskTerminator::print_termination_counts();
  1015 #endif
  1017     gc_epilogue(true);
  1019     // Abandon concurrent refinement.  This must happen last: in the
  1020     // dirty-card logging system, some cards may be dirty by weak-ref
  1021     // processing, and may be enqueued.  But the whole card table is
  1022     // dirtied, so this should abandon those logs, and set "do_traversal"
  1023     // to true.
  1024     concurrent_g1_refine()->set_pya_restart();
  1025     assert(!G1DeferredRSUpdate
  1026            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1027     assert(regions_accounted_for(), "Region leakage!");
  1030   if (g1_policy()->in_young_gc_mode()) {
  1031     _young_list->reset_sampled_info();
  1032     assert( check_young_list_empty(false, false),
  1033             "young list should be empty at this point");
  1037 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1038   do_collection(true, clear_all_soft_refs, 0);
  1041 // This code is mostly copied from TenuredGeneration.
  1042 void
  1043 G1CollectedHeap::
  1044 resize_if_necessary_after_full_collection(size_t word_size) {
  1045   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1047   // Include the current allocation, if any, and bytes that will be
  1048   // pre-allocated to support collections, as "used".
  1049   const size_t used_after_gc = used();
  1050   const size_t capacity_after_gc = capacity();
  1051   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1053   // We don't have floating point command-line arguments
  1054   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
  1055   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1056   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
  1057   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1059   size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
  1060   size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);
  1062   // Don't shrink less than the initial size.
  1063   minimum_desired_capacity =
  1064     MAX2(minimum_desired_capacity,
  1065          collector_policy()->initial_heap_byte_size());
  1066   maximum_desired_capacity =
  1067     MAX2(maximum_desired_capacity,
  1068          collector_policy()->initial_heap_byte_size());
  1070   // We are failing here because minimum_desired_capacity is
  1071   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
  1072   assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");
  1074   if (PrintGC && Verbose) {
  1075     const double free_percentage = ((double)free_after_gc) / capacity();
  1076     gclog_or_tty->print_cr("Computing new size after full GC ");
  1077     gclog_or_tty->print_cr("  "
  1078                            "  minimum_free_percentage: %6.2f",
  1079                            minimum_free_percentage);
  1080     gclog_or_tty->print_cr("  "
  1081                            "  maximum_free_percentage: %6.2f",
  1082                            maximum_free_percentage);
  1083     gclog_or_tty->print_cr("  "
  1084                            "  capacity: %6.1fK"
  1085                            "  minimum_desired_capacity: %6.1fK"
  1086                            "  maximum_desired_capacity: %6.1fK",
  1087                            capacity() / (double) K,
  1088                            minimum_desired_capacity / (double) K,
  1089                            maximum_desired_capacity / (double) K);
  1090     gclog_or_tty->print_cr("  "
  1091                            "   free_after_gc   : %6.1fK"
  1092                            "   used_after_gc   : %6.1fK",
  1093                            free_after_gc / (double) K,
  1094                            used_after_gc / (double) K);
  1095     gclog_or_tty->print_cr("  "
  1096                            "   free_percentage: %6.2f",
  1097                            free_percentage);
  1099   if (capacity() < minimum_desired_capacity) {
  1100     // Don't expand unless it's significant
  1101     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1102     expand(expand_bytes);
  1103     if (PrintGC && Verbose) {
  1104       gclog_or_tty->print_cr("    expanding:"
  1105                              "  minimum_desired_capacity: %6.1fK"
  1106                              "  expand_bytes: %6.1fK",
  1107                              minimum_desired_capacity / (double) K,
  1108                              expand_bytes / (double) K);
  1111     // No expansion, now see if we want to shrink
  1112   } else if (capacity() > maximum_desired_capacity) {
  1113     // Capacity too large, compute shrinking size
  1114     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1115     shrink(shrink_bytes);
  1116     if (PrintGC && Verbose) {
  1117       gclog_or_tty->print_cr("  "
  1118                              "  shrinking:"
  1119                              "  initSize: %.1fK"
  1120                              "  maximum_desired_capacity: %.1fK",
  1121                              collector_policy()->initial_heap_byte_size() / (double) K,
  1122                              maximum_desired_capacity / (double) K);
  1123       gclog_or_tty->print_cr("  "
  1124                              "  shrink_bytes: %.1fK",
  1125                              shrink_bytes / (double) K);
  1131 HeapWord*
  1132 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
  1133   HeapWord* result = NULL;
  1135   // In a G1 heap, we're supposed to keep allocation from failing by
  1136   // incremental pauses.  Therefore, at least for now, we'll favor
  1137   // expansion over collection.  (This might change in the future if we can
  1138   // do something smarter than full collection to satisfy a failed alloc.)
  1140   result = expand_and_allocate(word_size);
  1141   if (result != NULL) {
  1142     assert(is_in(result), "result not in heap");
  1143     return result;
  1146   // OK, I guess we have to try collection.
  1148   do_collection(false, false, word_size);
  1150   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1152   if (result != NULL) {
  1153     assert(is_in(result), "result not in heap");
  1154     return result;
  1157   // Try collecting soft references.
  1158   do_collection(false, true, word_size);
  1159   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1160   if (result != NULL) {
  1161     assert(is_in(result), "result not in heap");
  1162     return result;
  1165   // What else?  We might try synchronous finalization later.  If the total
  1166   // space available is large enough for the allocation, then a more
  1167   // complete compaction phase than we've tried so far might be
  1168   // appropriate.
  1169   return NULL;
  1172 // Attempting to expand the heap sufficiently
  1173 // to support an allocation of the given "word_size".  If
  1174 // successful, perform the allocation and return the address of the
  1175 // allocated block, or else "NULL".
  1177 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1178   size_t expand_bytes = word_size * HeapWordSize;
  1179   if (expand_bytes < MinHeapDeltaBytes) {
  1180     expand_bytes = MinHeapDeltaBytes;
  1182   expand(expand_bytes);
  1183   assert(regions_accounted_for(), "Region leakage!");
  1184   HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
  1185   return result;
  1188 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
  1189   size_t pre_used = 0;
  1190   size_t cleared_h_regions = 0;
  1191   size_t freed_regions = 0;
  1192   UncleanRegionList local_list;
  1193   free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
  1194                                     freed_regions, &local_list);
  1196   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  1197                           &local_list);
  1198   return pre_used;
  1201 void
  1202 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
  1203                                                    size_t& pre_used,
  1204                                                    size_t& cleared_h,
  1205                                                    size_t& freed_regions,
  1206                                                    UncleanRegionList* list,
  1207                                                    bool par) {
  1208   assert(!hr->continuesHumongous(), "should have filtered these out");
  1209   size_t res = 0;
  1210   if (!hr->popular() && hr->used() > 0 && hr->garbage_bytes() == hr->used()) {
  1211     if (!hr->is_young()) {
  1212       if (G1PolicyVerbose > 0)
  1213         gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
  1214                                " during cleanup", hr, hr->used());
  1215       free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
  1220 // FIXME: both this and shrink could probably be more efficient by
  1221 // doing one "VirtualSpace::expand_by" call rather than several.
  1222 void G1CollectedHeap::expand(size_t expand_bytes) {
  1223   size_t old_mem_size = _g1_storage.committed_size();
  1224   // We expand by a minimum of 1K.
  1225   expand_bytes = MAX2(expand_bytes, (size_t)K);
  1226   size_t aligned_expand_bytes =
  1227     ReservedSpace::page_align_size_up(expand_bytes);
  1228   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1229                                        HeapRegion::GrainBytes);
  1230   expand_bytes = aligned_expand_bytes;
  1231   while (expand_bytes > 0) {
  1232     HeapWord* base = (HeapWord*)_g1_storage.high();
  1233     // Commit more storage.
  1234     bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
  1235     if (!successful) {
  1236         expand_bytes = 0;
  1237     } else {
  1238       expand_bytes -= HeapRegion::GrainBytes;
  1239       // Expand the committed region.
  1240       HeapWord* high = (HeapWord*) _g1_storage.high();
  1241       _g1_committed.set_end(high);
  1242       // Create a new HeapRegion.
  1243       MemRegion mr(base, high);
  1244       bool is_zeroed = !_g1_max_committed.contains(base);
  1245       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
  1247       // Now update max_committed if necessary.
  1248       _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
  1250       // Add it to the HeapRegionSeq.
  1251       _hrs->insert(hr);
  1252       // Set the zero-fill state, according to whether it's already
  1253       // zeroed.
  1255         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  1256         if (is_zeroed) {
  1257           hr->set_zero_fill_complete();
  1258           put_free_region_on_list_locked(hr);
  1259         } else {
  1260           hr->set_zero_fill_needed();
  1261           put_region_on_unclean_list_locked(hr);
  1264       _free_regions++;
  1265       // And we used up an expansion region to create it.
  1266       _expansion_regions--;
  1267       // Tell the cardtable about it.
  1268       Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1269       // And the offset table as well.
  1270       _bot_shared->resize(_g1_committed.word_size());
  1273   if (Verbose && PrintGC) {
  1274     size_t new_mem_size = _g1_storage.committed_size();
  1275     gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
  1276                            old_mem_size/K, aligned_expand_bytes/K,
  1277                            new_mem_size/K);
  1281 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
  1283   size_t old_mem_size = _g1_storage.committed_size();
  1284   size_t aligned_shrink_bytes =
  1285     ReservedSpace::page_align_size_down(shrink_bytes);
  1286   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1287                                          HeapRegion::GrainBytes);
  1288   size_t num_regions_deleted = 0;
  1289   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
  1291   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1292   if (mr.byte_size() > 0)
  1293     _g1_storage.shrink_by(mr.byte_size());
  1294   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1296   _g1_committed.set_end(mr.start());
  1297   _free_regions -= num_regions_deleted;
  1298   _expansion_regions += num_regions_deleted;
  1300   // Tell the cardtable about it.
  1301   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1303   // And the offset table as well.
  1304   _bot_shared->resize(_g1_committed.word_size());
  1306   HeapRegionRemSet::shrink_heap(n_regions());
  1308   if (Verbose && PrintGC) {
  1309     size_t new_mem_size = _g1_storage.committed_size();
  1310     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
  1311                            old_mem_size/K, aligned_shrink_bytes/K,
  1312                            new_mem_size/K);
  1316 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1317   release_gc_alloc_regions(true /* totally */);
  1318   tear_down_region_lists();  // We will rebuild them in a moment.
  1319   shrink_helper(shrink_bytes);
  1320   rebuild_region_lists();
  1323 // Public methods.
  1325 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1326 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1327 #endif // _MSC_VER
  1330 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1331   SharedHeap(policy_),
  1332   _g1_policy(policy_),
  1333   _ref_processor(NULL),
  1334   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1335   _bot_shared(NULL),
  1336   _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
  1337   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1338   _evac_failure_scan_stack(NULL) ,
  1339   _mark_in_progress(false),
  1340   _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
  1341   _cur_alloc_region(NULL),
  1342   _refine_cte_cl(NULL),
  1343   _free_region_list(NULL), _free_region_list_size(0),
  1344   _free_regions(0),
  1345   _popular_object_boundary(NULL),
  1346   _cur_pop_hr_index(0),
  1347   _popular_regions_to_be_evacuated(NULL),
  1348   _pop_obj_rc_at_copy(),
  1349   _full_collection(false),
  1350   _unclean_region_list(),
  1351   _unclean_regions_coming(false),
  1352   _young_list(new YoungList(this)),
  1353   _gc_time_stamp(0),
  1354   _surviving_young_words(NULL),
  1355   _in_cset_fast_test(NULL),
  1356   _in_cset_fast_test_base(NULL) {
  1357   _g1h = this; // To catch bugs.
  1358   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1359     vm_exit_during_initialization("Failed necessary allocation.");
  1361   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1362   _task_queues = new RefToScanQueueSet(n_queues);
  1364   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1365   assert(n_rem_sets > 0, "Invariant.");
  1367   HeapRegionRemSetIterator** iter_arr =
  1368     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1369   for (int i = 0; i < n_queues; i++) {
  1370     iter_arr[i] = new HeapRegionRemSetIterator();
  1372   _rem_set_iterator = iter_arr;
  1374   for (int i = 0; i < n_queues; i++) {
  1375     RefToScanQueue* q = new RefToScanQueue();
  1376     q->initialize();
  1377     _task_queues->register_queue(i, q);
  1380   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1381     _gc_alloc_regions[ap]          = NULL;
  1382     _gc_alloc_region_counts[ap]    = 0;
  1383     _retained_gc_alloc_regions[ap] = NULL;
  1384     // by default, we do not retain a GC alloc region for each ap;
  1385     // we'll override this, when appropriate, below
  1386     _retain_gc_alloc_region[ap]    = false;
  1389   // We will try to remember the last half-full tenured region we
  1390   // allocated to at the end of a collection so that we can re-use it
  1391   // during the next collection.
  1392   _retain_gc_alloc_region[GCAllocForTenured]  = true;
  1394   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1397 jint G1CollectedHeap::initialize() {
  1398   os::enable_vtime();
  1400   // Necessary to satisfy locking discipline assertions.
  1402   MutexLocker x(Heap_lock);
  1404   // While there are no constraints in the GC code that HeapWordSize
  1405   // be any particular value, there are multiple other areas in the
  1406   // system which believe this to be true (e.g. oop->object_size in some
  1407   // cases incorrectly returns the size in wordSize units rather than
  1408   // HeapWordSize).
  1409   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1411   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1412   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1414   // Ensure that the sizes are properly aligned.
  1415   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1416   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1418   // We allocate this in any case, but only do no work if the command line
  1419   // param is off.
  1420   _cg1r = new ConcurrentG1Refine();
  1422   // Reserve the maximum.
  1423   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1424   // Includes the perm-gen.
  1426   const size_t total_reserved = max_byte_size + pgs->max_size();
  1427   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1429   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
  1430                         HeapRegion::GrainBytes,
  1431                         false /*ism*/, addr);
  1433   if (UseCompressedOops) {
  1434     if (addr != NULL && !heap_rs.is_reserved()) {
  1435       // Failed to reserve at specified address - the requested memory
  1436       // region is taken already, for example, by 'java' launcher.
  1437       // Try again to reserver heap higher.
  1438       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1439       ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1440                              false /*ism*/, addr);
  1441       if (addr != NULL && !heap_rs0.is_reserved()) {
  1442         // Failed to reserve at specified address again - give up.
  1443         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1444         assert(addr == NULL, "");
  1445         ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1446                                false /*ism*/, addr);
  1447         heap_rs = heap_rs1;
  1448       } else {
  1449         heap_rs = heap_rs0;
  1454   if (!heap_rs.is_reserved()) {
  1455     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1456     return JNI_ENOMEM;
  1459   // It is important to do this in a way such that concurrent readers can't
  1460   // temporarily think somethings in the heap.  (I've actually seen this
  1461   // happen in asserts: DLD.)
  1462   _reserved.set_word_size(0);
  1463   _reserved.set_start((HeapWord*)heap_rs.base());
  1464   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1466   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1468   _num_humongous_regions = 0;
  1470   // Create the gen rem set (and barrier set) for the entire reserved region.
  1471   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1472   set_barrier_set(rem_set()->bs());
  1473   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1474     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1475   } else {
  1476     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1477     return JNI_ENOMEM;
  1480   // Also create a G1 rem set.
  1481   if (G1UseHRIntoRS) {
  1482     if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1483       _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1484     } else {
  1485       vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1486       return JNI_ENOMEM;
  1488   } else {
  1489     _g1_rem_set = new StupidG1RemSet(this);
  1492   // Carve out the G1 part of the heap.
  1494   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1495   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1496                            g1_rs.size()/HeapWordSize);
  1497   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1499   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1501   _g1_storage.initialize(g1_rs, 0);
  1502   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1503   _g1_max_committed = _g1_committed;
  1504   _hrs = new HeapRegionSeq(_expansion_regions);
  1505   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  1506   guarantee(_cur_alloc_region == NULL, "from constructor");
  1508   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1509                                              heap_word_size(init_byte_size));
  1511   _g1h = this;
  1513   // Create the ConcurrentMark data structure and thread.
  1514   // (Must do this late, so that "max_regions" is defined.)
  1515   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  1516   _cmThread = _cm->cmThread();
  1518   // ...and the concurrent zero-fill thread, if necessary.
  1519   if (G1ConcZeroFill) {
  1520     _czft = new ConcurrentZFThread();
  1525   // Allocate the popular regions; take them off free lists.
  1526   size_t pop_byte_size = G1NumPopularRegions * HeapRegion::GrainBytes;
  1527   expand(pop_byte_size);
  1528   _popular_object_boundary =
  1529     _g1_reserved.start() + (G1NumPopularRegions * HeapRegion::GrainWords);
  1530   for (int i = 0; i < G1NumPopularRegions; i++) {
  1531     HeapRegion* hr = newAllocRegion(HeapRegion::GrainWords);
  1532     //    assert(hr != NULL && hr->bottom() < _popular_object_boundary,
  1533     //     "Should be enough, and all should be below boundary.");
  1534     hr->set_popular(true);
  1536   assert(_cur_pop_hr_index == 0, "Start allocating at the first region.");
  1538   // Initialize the from_card cache structure of HeapRegionRemSet.
  1539   HeapRegionRemSet::init_heap(max_regions());
  1541   // Now expand into the rest of the initial heap size.
  1542   expand(init_byte_size - pop_byte_size);
  1544   // Perform any initialization actions delegated to the policy.
  1545   g1_policy()->init();
  1547   g1_policy()->note_start_of_mark_thread();
  1549   _refine_cte_cl =
  1550     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  1551                                     g1_rem_set(),
  1552                                     concurrent_g1_refine());
  1553   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  1555   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  1556                                                SATB_Q_FL_lock,
  1557                                                0,
  1558                                                Shared_SATB_Q_lock);
  1559   if (G1RSBarrierUseQueue) {
  1560     JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1561                                                   DirtyCardQ_FL_lock,
  1562                                                   G1DirtyCardQueueMax,
  1563                                                   Shared_DirtyCardQ_lock);
  1565   if (G1DeferredRSUpdate) {
  1566     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1567                                       DirtyCardQ_FL_lock,
  1568                                       0,
  1569                                       Shared_DirtyCardQ_lock,
  1570                                       &JavaThread::dirty_card_queue_set());
  1572   // In case we're keeping closure specialization stats, initialize those
  1573   // counts and that mechanism.
  1574   SpecializationStats::clear();
  1576   _gc_alloc_region_list = NULL;
  1578   // Do later initialization work for concurrent refinement.
  1579   _cg1r->init();
  1581   const char* group_names[] = { "CR", "ZF", "CM", "CL" };
  1582   GCOverheadReporter::initGCOverheadReporter(4, group_names);
  1584   return JNI_OK;
  1587 void G1CollectedHeap::ref_processing_init() {
  1588   SharedHeap::ref_processing_init();
  1589   MemRegion mr = reserved_region();
  1590   _ref_processor = ReferenceProcessor::create_ref_processor(
  1591                                          mr,    // span
  1592                                          false, // Reference discovery is not atomic
  1593                                                 // (though it shouldn't matter here.)
  1594                                          true,  // mt_discovery
  1595                                          NULL,  // is alive closure: need to fill this in for efficiency
  1596                                          ParallelGCThreads,
  1597                                          ParallelRefProcEnabled,
  1598                                          true); // Setting next fields of discovered
  1599                                                 // lists requires a barrier.
  1602 size_t G1CollectedHeap::capacity() const {
  1603   return _g1_committed.byte_size();
  1606 void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
  1607                                                  int worker_i) {
  1608   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1609   int n_completed_buffers = 0;
  1610   while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
  1611     n_completed_buffers++;
  1613   g1_policy()->record_update_rs_processed_buffers(worker_i,
  1614                                                   (double) n_completed_buffers);
  1615   dcqs.clear_n_completed_buffers();
  1616   // Finish up the queue...
  1617   if (worker_i == 0) concurrent_g1_refine()->clean_up_cache(worker_i,
  1618                                                             g1_rem_set());
  1619   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  1623 // Computes the sum of the storage used by the various regions.
  1625 size_t G1CollectedHeap::used() const {
  1626   assert(Heap_lock->owner() != NULL,
  1627          "Should be owned on this thread's behalf.");
  1628   size_t result = _summary_bytes_used;
  1629   if (_cur_alloc_region != NULL)
  1630     result += _cur_alloc_region->used();
  1631   return result;
  1634 class SumUsedClosure: public HeapRegionClosure {
  1635   size_t _used;
  1636 public:
  1637   SumUsedClosure() : _used(0) {}
  1638   bool doHeapRegion(HeapRegion* r) {
  1639     if (!r->continuesHumongous()) {
  1640       _used += r->used();
  1642     return false;
  1644   size_t result() { return _used; }
  1645 };
  1647 size_t G1CollectedHeap::recalculate_used() const {
  1648   SumUsedClosure blk;
  1649   _hrs->iterate(&blk);
  1650   return blk.result();
  1653 #ifndef PRODUCT
  1654 class SumUsedRegionsClosure: public HeapRegionClosure {
  1655   size_t _num;
  1656 public:
  1657   // _num is set to 1 to account for the popular region
  1658   SumUsedRegionsClosure() : _num(G1NumPopularRegions) {}
  1659   bool doHeapRegion(HeapRegion* r) {
  1660     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
  1661       _num += 1;
  1663     return false;
  1665   size_t result() { return _num; }
  1666 };
  1668 size_t G1CollectedHeap::recalculate_used_regions() const {
  1669   SumUsedRegionsClosure blk;
  1670   _hrs->iterate(&blk);
  1671   return blk.result();
  1673 #endif // PRODUCT
  1675 size_t G1CollectedHeap::unsafe_max_alloc() {
  1676   if (_free_regions > 0) return HeapRegion::GrainBytes;
  1677   // otherwise, is there space in the current allocation region?
  1679   // We need to store the current allocation region in a local variable
  1680   // here. The problem is that this method doesn't take any locks and
  1681   // there may be other threads which overwrite the current allocation
  1682   // region field. attempt_allocation(), for example, sets it to NULL
  1683   // and this can happen *after* the NULL check here but before the call
  1684   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  1685   // to be a problem in the optimized build, since the two loads of the
  1686   // current allocation region field are optimized away.
  1687   HeapRegion* car = _cur_alloc_region;
  1689   // FIXME: should iterate over all regions?
  1690   if (car == NULL) {
  1691     return 0;
  1693   return car->free();
  1696 void G1CollectedHeap::collect(GCCause::Cause cause) {
  1697   // The caller doesn't have the Heap_lock
  1698   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  1699   MutexLocker ml(Heap_lock);
  1700   collect_locked(cause);
  1703 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  1704   assert(Thread::current()->is_VM_thread(), "Precondition#1");
  1705   assert(Heap_lock->is_locked(), "Precondition#2");
  1706   GCCauseSetter gcs(this, cause);
  1707   switch (cause) {
  1708     case GCCause::_heap_inspection:
  1709     case GCCause::_heap_dump: {
  1710       HandleMark hm;
  1711       do_full_collection(false);         // don't clear all soft refs
  1712       break;
  1714     default: // XXX FIX ME
  1715       ShouldNotReachHere(); // Unexpected use of this function
  1720 void G1CollectedHeap::collect_locked(GCCause::Cause cause) {
  1721   // Don't want to do a GC until cleanup is completed.
  1722   wait_for_cleanup_complete();
  1724   // Read the GC count while holding the Heap_lock
  1725   int gc_count_before = SharedHeap::heap()->total_collections();
  1727     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  1728     VM_G1CollectFull op(gc_count_before, cause);
  1729     VMThread::execute(&op);
  1733 bool G1CollectedHeap::is_in(const void* p) const {
  1734   if (_g1_committed.contains(p)) {
  1735     HeapRegion* hr = _hrs->addr_to_region(p);
  1736     return hr->is_in(p);
  1737   } else {
  1738     return _perm_gen->as_gen()->is_in(p);
  1742 // Iteration functions.
  1744 // Iterates an OopClosure over all ref-containing fields of objects
  1745 // within a HeapRegion.
  1747 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  1748   MemRegion _mr;
  1749   OopClosure* _cl;
  1750 public:
  1751   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  1752     : _mr(mr), _cl(cl) {}
  1753   bool doHeapRegion(HeapRegion* r) {
  1754     if (! r->continuesHumongous()) {
  1755       r->oop_iterate(_cl);
  1757     return false;
  1759 };
  1761 void G1CollectedHeap::oop_iterate(OopClosure* cl) {
  1762   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  1763   _hrs->iterate(&blk);
  1766 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
  1767   IterateOopClosureRegionClosure blk(mr, cl);
  1768   _hrs->iterate(&blk);
  1771 // Iterates an ObjectClosure over all objects within a HeapRegion.
  1773 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  1774   ObjectClosure* _cl;
  1775 public:
  1776   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  1777   bool doHeapRegion(HeapRegion* r) {
  1778     if (! r->continuesHumongous()) {
  1779       r->object_iterate(_cl);
  1781     return false;
  1783 };
  1785 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  1786   IterateObjectClosureRegionClosure blk(cl);
  1787   _hrs->iterate(&blk);
  1790 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  1791   // FIXME: is this right?
  1792   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  1795 // Calls a SpaceClosure on a HeapRegion.
  1797 class SpaceClosureRegionClosure: public HeapRegionClosure {
  1798   SpaceClosure* _cl;
  1799 public:
  1800   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  1801   bool doHeapRegion(HeapRegion* r) {
  1802     _cl->do_space(r);
  1803     return false;
  1805 };
  1807 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  1808   SpaceClosureRegionClosure blk(cl);
  1809   _hrs->iterate(&blk);
  1812 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  1813   _hrs->iterate(cl);
  1816 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  1817                                                HeapRegionClosure* cl) {
  1818   _hrs->iterate_from(r, cl);
  1821 void
  1822 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  1823   _hrs->iterate_from(idx, cl);
  1826 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
  1828 void
  1829 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  1830                                                  int worker,
  1831                                                  jint claim_value) {
  1832   const size_t regions = n_regions();
  1833   const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
  1834   // try to spread out the starting points of the workers
  1835   const size_t start_index = regions / worker_num * (size_t) worker;
  1837   // each worker will actually look at all regions
  1838   for (size_t count = 0; count < regions; ++count) {
  1839     const size_t index = (start_index + count) % regions;
  1840     assert(0 <= index && index < regions, "sanity");
  1841     HeapRegion* r = region_at(index);
  1842     // we'll ignore "continues humongous" regions (we'll process them
  1843     // when we come across their corresponding "start humongous"
  1844     // region) and regions already claimed
  1845     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  1846       continue;
  1848     // OK, try to claim it
  1849     if (r->claimHeapRegion(claim_value)) {
  1850       // success!
  1851       assert(!r->continuesHumongous(), "sanity");
  1852       if (r->startsHumongous()) {
  1853         // If the region is "starts humongous" we'll iterate over its
  1854         // "continues humongous" first; in fact we'll do them
  1855         // first. The order is important. In on case, calling the
  1856         // closure on the "starts humongous" region might de-allocate
  1857         // and clear all its "continues humongous" regions and, as a
  1858         // result, we might end up processing them twice. So, we'll do
  1859         // them first (notice: most closures will ignore them anyway) and
  1860         // then we'll do the "starts humongous" region.
  1861         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  1862           HeapRegion* chr = region_at(ch_index);
  1864           // if the region has already been claimed or it's not
  1865           // "continues humongous" we're done
  1866           if (chr->claim_value() == claim_value ||
  1867               !chr->continuesHumongous()) {
  1868             break;
  1871           // Noone should have claimed it directly. We can given
  1872           // that we claimed its "starts humongous" region.
  1873           assert(chr->claim_value() != claim_value, "sanity");
  1874           assert(chr->humongous_start_region() == r, "sanity");
  1876           if (chr->claimHeapRegion(claim_value)) {
  1877             // we should always be able to claim it; noone else should
  1878             // be trying to claim this region
  1880             bool res2 = cl->doHeapRegion(chr);
  1881             assert(!res2, "Should not abort");
  1883             // Right now, this holds (i.e., no closure that actually
  1884             // does something with "continues humongous" regions
  1885             // clears them). We might have to weaken it in the future,
  1886             // but let's leave these two asserts here for extra safety.
  1887             assert(chr->continuesHumongous(), "should still be the case");
  1888             assert(chr->humongous_start_region() == r, "sanity");
  1889           } else {
  1890             guarantee(false, "we should not reach here");
  1895       assert(!r->continuesHumongous(), "sanity");
  1896       bool res = cl->doHeapRegion(r);
  1897       assert(!res, "Should not abort");
  1902 class ResetClaimValuesClosure: public HeapRegionClosure {
  1903 public:
  1904   bool doHeapRegion(HeapRegion* r) {
  1905     r->set_claim_value(HeapRegion::InitialClaimValue);
  1906     return false;
  1908 };
  1910 void
  1911 G1CollectedHeap::reset_heap_region_claim_values() {
  1912   ResetClaimValuesClosure blk;
  1913   heap_region_iterate(&blk);
  1916 #ifdef ASSERT
  1917 // This checks whether all regions in the heap have the correct claim
  1918 // value. I also piggy-backed on this a check to ensure that the
  1919 // humongous_start_region() information on "continues humongous"
  1920 // regions is correct.
  1922 class CheckClaimValuesClosure : public HeapRegionClosure {
  1923 private:
  1924   jint _claim_value;
  1925   size_t _failures;
  1926   HeapRegion* _sh_region;
  1927 public:
  1928   CheckClaimValuesClosure(jint claim_value) :
  1929     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  1930   bool doHeapRegion(HeapRegion* r) {
  1931     if (r->claim_value() != _claim_value) {
  1932       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1933                              "claim value = %d, should be %d",
  1934                              r->bottom(), r->end(), r->claim_value(),
  1935                              _claim_value);
  1936       ++_failures;
  1938     if (!r->isHumongous()) {
  1939       _sh_region = NULL;
  1940     } else if (r->startsHumongous()) {
  1941       _sh_region = r;
  1942     } else if (r->continuesHumongous()) {
  1943       if (r->humongous_start_region() != _sh_region) {
  1944         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1945                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  1946                                r->bottom(), r->end(),
  1947                                r->humongous_start_region(),
  1948                                _sh_region);
  1949         ++_failures;
  1952     return false;
  1954   size_t failures() {
  1955     return _failures;
  1957 };
  1959 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  1960   CheckClaimValuesClosure cl(claim_value);
  1961   heap_region_iterate(&cl);
  1962   return cl.failures() == 0;
  1964 #endif // ASSERT
  1966 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  1967   HeapRegion* r = g1_policy()->collection_set();
  1968   while (r != NULL) {
  1969     HeapRegion* next = r->next_in_collection_set();
  1970     if (cl->doHeapRegion(r)) {
  1971       cl->incomplete();
  1972       return;
  1974     r = next;
  1978 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  1979                                                   HeapRegionClosure *cl) {
  1980   assert(r->in_collection_set(),
  1981          "Start region must be a member of the collection set.");
  1982   HeapRegion* cur = r;
  1983   while (cur != NULL) {
  1984     HeapRegion* next = cur->next_in_collection_set();
  1985     if (cl->doHeapRegion(cur) && false) {
  1986       cl->incomplete();
  1987       return;
  1989     cur = next;
  1991   cur = g1_policy()->collection_set();
  1992   while (cur != r) {
  1993     HeapRegion* next = cur->next_in_collection_set();
  1994     if (cl->doHeapRegion(cur) && false) {
  1995       cl->incomplete();
  1996       return;
  1998     cur = next;
  2002 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2003   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
  2007 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2008   Space* res = heap_region_containing(addr);
  2009   if (res == NULL)
  2010     res = perm_gen()->space_containing(addr);
  2011   return res;
  2014 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2015   Space* sp = space_containing(addr);
  2016   if (sp != NULL) {
  2017     return sp->block_start(addr);
  2019   return NULL;
  2022 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2023   Space* sp = space_containing(addr);
  2024   assert(sp != NULL, "block_size of address outside of heap");
  2025   return sp->block_size(addr);
  2028 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2029   Space* sp = space_containing(addr);
  2030   return sp->block_is_obj(addr);
  2033 bool G1CollectedHeap::supports_tlab_allocation() const {
  2034   return true;
  2037 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2038   return HeapRegion::GrainBytes;
  2041 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2042   // Return the remaining space in the cur alloc region, but not less than
  2043   // the min TLAB size.
  2044   // Also, no more than half the region size, since we can't allow tlabs to
  2045   // grow big enough to accomodate humongous objects.
  2047   // We need to story it locally, since it might change between when we
  2048   // test for NULL and when we use it later.
  2049   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
  2050   if (cur_alloc_space == NULL) {
  2051     return HeapRegion::GrainBytes/2;
  2052   } else {
  2053     return MAX2(MIN2(cur_alloc_space->free(),
  2054                      (size_t)(HeapRegion::GrainBytes/2)),
  2055                 (size_t)MinTLABSize);
  2059 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
  2060   bool dummy;
  2061   return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
  2064 bool G1CollectedHeap::allocs_are_zero_filled() {
  2065   return false;
  2068 size_t G1CollectedHeap::large_typearray_limit() {
  2069   // FIXME
  2070   return HeapRegion::GrainBytes/HeapWordSize;
  2073 size_t G1CollectedHeap::max_capacity() const {
  2074   return _g1_committed.byte_size();
  2077 jlong G1CollectedHeap::millis_since_last_gc() {
  2078   // assert(false, "NYI");
  2079   return 0;
  2083 void G1CollectedHeap::prepare_for_verify() {
  2084   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2085     ensure_parsability(false);
  2087   g1_rem_set()->prepare_for_verify();
  2090 class VerifyLivenessOopClosure: public OopClosure {
  2091   G1CollectedHeap* g1h;
  2092 public:
  2093   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
  2094     g1h = _g1h;
  2096   void do_oop(narrowOop *p) {
  2097     guarantee(false, "NYI");
  2099   void do_oop(oop *p) {
  2100     oop obj = *p;
  2101     assert(obj == NULL || !g1h->is_obj_dead(obj),
  2102            "Dead object referenced by a not dead object");
  2104 };
  2106 class VerifyObjsInRegionClosure: public ObjectClosure {
  2107   G1CollectedHeap* _g1h;
  2108   size_t _live_bytes;
  2109   HeapRegion *_hr;
  2110 public:
  2111   VerifyObjsInRegionClosure(HeapRegion *hr) : _live_bytes(0), _hr(hr) {
  2112     _g1h = G1CollectedHeap::heap();
  2114   void do_object(oop o) {
  2115     VerifyLivenessOopClosure isLive(_g1h);
  2116     assert(o != NULL, "Huh?");
  2117     if (!_g1h->is_obj_dead(o)) {
  2118       o->oop_iterate(&isLive);
  2119       if (!_hr->obj_allocated_since_prev_marking(o))
  2120         _live_bytes += (o->size() * HeapWordSize);
  2123   size_t live_bytes() { return _live_bytes; }
  2124 };
  2126 class PrintObjsInRegionClosure : public ObjectClosure {
  2127   HeapRegion *_hr;
  2128   G1CollectedHeap *_g1;
  2129 public:
  2130   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2131     _g1 = G1CollectedHeap::heap();
  2132   };
  2134   void do_object(oop o) {
  2135     if (o != NULL) {
  2136       HeapWord *start = (HeapWord *) o;
  2137       size_t word_sz = o->size();
  2138       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2139                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2140                           (void*) o, word_sz,
  2141                           _g1->isMarkedPrev(o),
  2142                           _g1->isMarkedNext(o),
  2143                           _hr->obj_allocated_since_prev_marking(o));
  2144       HeapWord *end = start + word_sz;
  2145       HeapWord *cur;
  2146       int *val;
  2147       for (cur = start; cur < end; cur++) {
  2148         val = (int *) cur;
  2149         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2153 };
  2155 class VerifyRegionClosure: public HeapRegionClosure {
  2156 public:
  2157   bool _allow_dirty;
  2158   bool _par;
  2159   VerifyRegionClosure(bool allow_dirty, bool par = false)
  2160     : _allow_dirty(allow_dirty), _par(par) {}
  2161   bool doHeapRegion(HeapRegion* r) {
  2162     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2163               "Should be unclaimed at verify points.");
  2164     if (!r->continuesHumongous()) {
  2165       VerifyObjsInRegionClosure not_dead_yet_cl(r);
  2166       r->verify(_allow_dirty);
  2167       r->object_iterate(&not_dead_yet_cl);
  2168       guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(),
  2169                 "More live objects than counted in last complete marking.");
  2171     return false;
  2173 };
  2175 class VerifyRootsClosure: public OopsInGenClosure {
  2176 private:
  2177   G1CollectedHeap* _g1h;
  2178   bool             _failures;
  2180 public:
  2181   VerifyRootsClosure() :
  2182     _g1h(G1CollectedHeap::heap()), _failures(false) { }
  2184   bool failures() { return _failures; }
  2186   void do_oop(narrowOop* p) {
  2187     guarantee(false, "NYI");
  2190   void do_oop(oop* p) {
  2191     oop obj = *p;
  2192     if (obj != NULL) {
  2193       if (_g1h->is_obj_dead(obj)) {
  2194         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2195                                "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2196         obj->print_on(gclog_or_tty);
  2197         _failures = true;
  2201 };
  2203 // This is the task used for parallel heap verification.
  2205 class G1ParVerifyTask: public AbstractGangTask {
  2206 private:
  2207   G1CollectedHeap* _g1h;
  2208   bool _allow_dirty;
  2210 public:
  2211   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty) :
  2212     AbstractGangTask("Parallel verify task"),
  2213     _g1h(g1h), _allow_dirty(allow_dirty) { }
  2215   void work(int worker_i) {
  2216     HandleMark hm;
  2217     VerifyRegionClosure blk(_allow_dirty, true);
  2218     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2219                                           HeapRegion::ParVerifyClaimValue);
  2221 };
  2223 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2224   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2225     if (!silent) { gclog_or_tty->print("roots "); }
  2226     VerifyRootsClosure rootsCl;
  2227     process_strong_roots(false,
  2228                          SharedHeap::SO_AllClasses,
  2229                          &rootsCl,
  2230                          &rootsCl);
  2231     rem_set()->invalidate(perm_gen()->used_region(), false);
  2232     if (!silent) { gclog_or_tty->print("heapRegions "); }
  2233     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2234       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2235              "sanity check");
  2237       G1ParVerifyTask task(this, allow_dirty);
  2238       int n_workers = workers()->total_workers();
  2239       set_par_threads(n_workers);
  2240       workers()->run_task(&task);
  2241       set_par_threads(0);
  2243       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2244              "sanity check");
  2246       reset_heap_region_claim_values();
  2248       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2249              "sanity check");
  2250     } else {
  2251       VerifyRegionClosure blk(allow_dirty);
  2252       _hrs->iterate(&blk);
  2254     if (!silent) gclog_or_tty->print("remset ");
  2255     rem_set()->verify();
  2256     guarantee(!rootsCl.failures(), "should not have had failures");
  2257   } else {
  2258     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  2262 class PrintRegionClosure: public HeapRegionClosure {
  2263   outputStream* _st;
  2264 public:
  2265   PrintRegionClosure(outputStream* st) : _st(st) {}
  2266   bool doHeapRegion(HeapRegion* r) {
  2267     r->print_on(_st);
  2268     return false;
  2270 };
  2272 void G1CollectedHeap::print() const { print_on(gclog_or_tty); }
  2274 void G1CollectedHeap::print_on(outputStream* st) const {
  2275   PrintRegionClosure blk(st);
  2276   _hrs->iterate(&blk);
  2279 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  2280   if (ParallelGCThreads > 0) {
  2281     workers()->print_worker_threads();
  2283   st->print("\"G1 concurrent mark GC Thread\" ");
  2284   _cmThread->print();
  2285   st->cr();
  2286   st->print("\"G1 concurrent refinement GC Thread\" ");
  2287   _cg1r->cg1rThread()->print_on(st);
  2288   st->cr();
  2289   st->print("\"G1 zero-fill GC Thread\" ");
  2290   _czft->print_on(st);
  2291   st->cr();
  2294 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  2295   if (ParallelGCThreads > 0) {
  2296     workers()->threads_do(tc);
  2298   tc->do_thread(_cmThread);
  2299   tc->do_thread(_cg1r->cg1rThread());
  2300   tc->do_thread(_czft);
  2303 void G1CollectedHeap::print_tracing_info() const {
  2304   concurrent_g1_refine()->print_final_card_counts();
  2306   // We'll overload this to mean "trace GC pause statistics."
  2307   if (TraceGen0Time || TraceGen1Time) {
  2308     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  2309     // to that.
  2310     g1_policy()->print_tracing_info();
  2312   if (SummarizeG1RSStats) {
  2313     g1_rem_set()->print_summary_info();
  2315   if (SummarizeG1ConcMark) {
  2316     concurrent_mark()->print_summary_info();
  2318   if (SummarizeG1ZFStats) {
  2319     ConcurrentZFThread::print_summary_info();
  2321   if (G1SummarizePopularity) {
  2322     print_popularity_summary_info();
  2324   g1_policy()->print_yg_surv_rate_info();
  2326   GCOverheadReporter::printGCOverhead();
  2328   SpecializationStats::print();
  2332 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  2333   HeapRegion* hr = heap_region_containing(addr);
  2334   if (hr == NULL) {
  2335     return 0;
  2336   } else {
  2337     return 1;
  2341 G1CollectedHeap* G1CollectedHeap::heap() {
  2342   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  2343          "not a garbage-first heap");
  2344   return _g1h;
  2347 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  2348   if (PrintHeapAtGC){
  2349     gclog_or_tty->print_cr(" {Heap before GC collections=%d:", total_collections());
  2350     Universe::print();
  2352   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  2353   // Call allocation profiler
  2354   AllocationProfiler::iterate_since_last_gc();
  2355   // Fill TLAB's and such
  2356   ensure_parsability(true);
  2359 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  2360   // FIXME: what is this about?
  2361   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  2362   // is set.
  2363   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  2364                         "derived pointer present"));
  2366   if (PrintHeapAtGC){
  2367     gclog_or_tty->print_cr(" Heap after GC collections=%d:", total_collections());
  2368     Universe::print();
  2369     gclog_or_tty->print("} ");
  2373 void G1CollectedHeap::do_collection_pause() {
  2374   // Read the GC count while holding the Heap_lock
  2375   // we need to do this _before_ wait_for_cleanup_complete(), to
  2376   // ensure that we do not give up the heap lock and potentially
  2377   // pick up the wrong count
  2378   int gc_count_before = SharedHeap::heap()->total_collections();
  2380   // Don't want to do a GC pause while cleanup is being completed!
  2381   wait_for_cleanup_complete();
  2383   g1_policy()->record_stop_world_start();
  2385     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  2386     VM_G1IncCollectionPause op(gc_count_before);
  2387     VMThread::execute(&op);
  2391 void
  2392 G1CollectedHeap::doConcurrentMark() {
  2393   if (G1ConcMark) {
  2394     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2395     if (!_cmThread->in_progress()) {
  2396       _cmThread->set_started();
  2397       CGC_lock->notify();
  2402 class VerifyMarkedObjsClosure: public ObjectClosure {
  2403     G1CollectedHeap* _g1h;
  2404     public:
  2405     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
  2406     void do_object(oop obj) {
  2407       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
  2408              "markandsweep mark should agree with concurrent deadness");
  2410 };
  2412 void
  2413 G1CollectedHeap::checkConcurrentMark() {
  2414     VerifyMarkedObjsClosure verifycl(this);
  2415     //    MutexLockerEx x(getMarkBitMapLock(),
  2416     //              Mutex::_no_safepoint_check_flag);
  2417     object_iterate(&verifycl);
  2420 void G1CollectedHeap::do_sync_mark() {
  2421   _cm->checkpointRootsInitial();
  2422   _cm->markFromRoots();
  2423   _cm->checkpointRootsFinal(false);
  2426 // <NEW PREDICTION>
  2428 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  2429                                                        bool young) {
  2430   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  2433 void G1CollectedHeap::check_if_region_is_too_expensive(double
  2434                                                            predicted_time_ms) {
  2435   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  2438 size_t G1CollectedHeap::pending_card_num() {
  2439   size_t extra_cards = 0;
  2440   JavaThread *curr = Threads::first();
  2441   while (curr != NULL) {
  2442     DirtyCardQueue& dcq = curr->dirty_card_queue();
  2443     extra_cards += dcq.size();
  2444     curr = curr->next();
  2446   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2447   size_t buffer_size = dcqs.buffer_size();
  2448   size_t buffer_num = dcqs.completed_buffers_num();
  2449   return buffer_size * buffer_num + extra_cards;
  2452 size_t G1CollectedHeap::max_pending_card_num() {
  2453   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2454   size_t buffer_size = dcqs.buffer_size();
  2455   size_t buffer_num  = dcqs.completed_buffers_num();
  2456   int thread_num  = Threads::number_of_threads();
  2457   return (buffer_num + thread_num) * buffer_size;
  2460 size_t G1CollectedHeap::cards_scanned() {
  2461   HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
  2462   return g1_rset->cardsScanned();
  2465 void
  2466 G1CollectedHeap::setup_surviving_young_words() {
  2467   guarantee( _surviving_young_words == NULL, "pre-condition" );
  2468   size_t array_length = g1_policy()->young_cset_length();
  2469   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  2470   if (_surviving_young_words == NULL) {
  2471     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  2472                           "Not enough space for young surv words summary.");
  2474   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  2475   for (size_t i = 0;  i < array_length; ++i) {
  2476     guarantee( _surviving_young_words[i] == 0, "invariant" );
  2480 void
  2481 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  2482   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2483   size_t array_length = g1_policy()->young_cset_length();
  2484   for (size_t i = 0; i < array_length; ++i)
  2485     _surviving_young_words[i] += surv_young_words[i];
  2488 void
  2489 G1CollectedHeap::cleanup_surviving_young_words() {
  2490   guarantee( _surviving_young_words != NULL, "pre-condition" );
  2491   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  2492   _surviving_young_words = NULL;
  2495 // </NEW PREDICTION>
  2497 void
  2498 G1CollectedHeap::do_collection_pause_at_safepoint(HeapRegion* popular_region) {
  2499   char verbose_str[128];
  2500   sprintf(verbose_str, "GC pause ");
  2501   if (popular_region != NULL)
  2502     strcat(verbose_str, "(popular)");
  2503   else if (g1_policy()->in_young_gc_mode()) {
  2504     if (g1_policy()->full_young_gcs())
  2505       strcat(verbose_str, "(young)");
  2506     else
  2507       strcat(verbose_str, "(partial)");
  2509   bool reset_should_initiate_conc_mark = false;
  2510   if (popular_region != NULL && g1_policy()->should_initiate_conc_mark()) {
  2511     // we currently do not allow an initial mark phase to be piggy-backed
  2512     // on a popular pause
  2513     reset_should_initiate_conc_mark = true;
  2514     g1_policy()->unset_should_initiate_conc_mark();
  2516   if (g1_policy()->should_initiate_conc_mark())
  2517     strcat(verbose_str, " (initial-mark)");
  2519   GCCauseSetter x(this, (popular_region == NULL ?
  2520                          GCCause::_g1_inc_collection_pause :
  2521                          GCCause::_g1_pop_region_collection_pause));
  2523   // if PrintGCDetails is on, we'll print long statistics information
  2524   // in the collector policy code, so let's not print this as the output
  2525   // is messy if we do.
  2526   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2527   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2528   TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  2530   ResourceMark rm;
  2531   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  2532   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
  2533   guarantee(!is_gc_active(), "collection is not reentrant");
  2534   assert(regions_accounted_for(), "Region leakage!");
  2536   increment_gc_time_stamp();
  2538   if (g1_policy()->in_young_gc_mode()) {
  2539     assert(check_young_list_well_formed(),
  2540                 "young list should be well formed");
  2543   if (GC_locker::is_active()) {
  2544     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  2547   bool abandoned = false;
  2548   { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  2549     IsGCActiveMark x;
  2551     gc_prologue(false);
  2552     increment_total_collections();
  2554 #if G1_REM_SET_LOGGING
  2555     gclog_or_tty->print_cr("\nJust chose CS, heap:");
  2556     print();
  2557 #endif
  2559     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  2560       HandleMark hm;  // Discard invalid handles created during verification
  2561       prepare_for_verify();
  2562       gclog_or_tty->print(" VerifyBeforeGC:");
  2563       Universe::verify(false);
  2566     COMPILER2_PRESENT(DerivedPointerTable::clear());
  2568     // We want to turn off ref discovery, if necessary, and turn it back on
  2569     // on again later if we do.
  2570     bool was_enabled = ref_processor()->discovery_enabled();
  2571     if (was_enabled) ref_processor()->disable_discovery();
  2573     // Forget the current alloc region (we might even choose it to be part
  2574     // of the collection set!).
  2575     abandon_cur_alloc_region();
  2577     // The elapsed time induced by the start time below deliberately elides
  2578     // the possible verification above.
  2579     double start_time_sec = os::elapsedTime();
  2580     GCOverheadReporter::recordSTWStart(start_time_sec);
  2581     size_t start_used_bytes = used();
  2582     if (!G1ConcMark) {
  2583       do_sync_mark();
  2586     g1_policy()->record_collection_pause_start(start_time_sec,
  2587                                                start_used_bytes);
  2589     guarantee(_in_cset_fast_test == NULL, "invariant");
  2590     guarantee(_in_cset_fast_test_base == NULL, "invariant");
  2591     _in_cset_fast_test_length = max_regions();
  2592     _in_cset_fast_test_base =
  2593                              NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  2594     memset(_in_cset_fast_test_base, false,
  2595                                      _in_cset_fast_test_length * sizeof(bool));
  2596     // We're biasing _in_cset_fast_test to avoid subtracting the
  2597     // beginning of the heap every time we want to index; basically
  2598     // it's the same with what we do with the card table.
  2599     _in_cset_fast_test = _in_cset_fast_test_base -
  2600               ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2602 #if SCAN_ONLY_VERBOSE
  2603     _young_list->print();
  2604 #endif // SCAN_ONLY_VERBOSE
  2606     if (g1_policy()->should_initiate_conc_mark()) {
  2607       concurrent_mark()->checkpointRootsInitialPre();
  2609     save_marks();
  2611     // We must do this before any possible evacuation that should propagate
  2612     // marks, including evacuation of popular objects in a popular pause.
  2613     if (mark_in_progress()) {
  2614       double start_time_sec = os::elapsedTime();
  2616       _cm->drainAllSATBBuffers();
  2617       double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  2618       g1_policy()->record_satb_drain_time(finish_mark_ms);
  2621     // Record the number of elements currently on the mark stack, so we
  2622     // only iterate over these.  (Since evacuation may add to the mark
  2623     // stack, doing more exposes race conditions.)  If no mark is in
  2624     // progress, this will be zero.
  2625     _cm->set_oops_do_bound();
  2627     assert(regions_accounted_for(), "Region leakage.");
  2629     bool abandoned = false;
  2631     if (mark_in_progress())
  2632       concurrent_mark()->newCSet();
  2634     // Now choose the CS.
  2635     if (popular_region == NULL) {
  2636       g1_policy()->choose_collection_set();
  2637     } else {
  2638       // We may be evacuating a single region (for popularity).
  2639       g1_policy()->record_popular_pause_preamble_start();
  2640       popularity_pause_preamble(popular_region);
  2641       g1_policy()->record_popular_pause_preamble_end();
  2642       abandoned = (g1_policy()->collection_set() == NULL);
  2643       // Now we allow more regions to be added (we have to collect
  2644       // all popular regions).
  2645       if (!abandoned) {
  2646         g1_policy()->choose_collection_set(popular_region);
  2649     // We may abandon a pause if we find no region that will fit in the MMU
  2650     // pause.
  2651     abandoned = (g1_policy()->collection_set() == NULL);
  2653     // Nothing to do if we were unable to choose a collection set.
  2654     if (!abandoned) {
  2655 #if G1_REM_SET_LOGGING
  2656       gclog_or_tty->print_cr("\nAfter pause, heap:");
  2657       print();
  2658 #endif
  2660       setup_surviving_young_words();
  2662       // Set up the gc allocation regions.
  2663       get_gc_alloc_regions();
  2665       // Actually do the work...
  2666       evacuate_collection_set();
  2667       free_collection_set(g1_policy()->collection_set());
  2668       g1_policy()->clear_collection_set();
  2670       FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
  2671       // this is more for peace of mind; we're nulling them here and
  2672       // we're expecting them to be null at the beginning of the next GC
  2673       _in_cset_fast_test = NULL;
  2674       _in_cset_fast_test_base = NULL;
  2676       if (popular_region != NULL) {
  2677         // We have to wait until now, because we don't want the region to
  2678         // be rescheduled for pop-evac during RS update.
  2679         popular_region->set_popular_pending(false);
  2682       release_gc_alloc_regions(false /* totally */);
  2684       cleanup_surviving_young_words();
  2686       if (g1_policy()->in_young_gc_mode()) {
  2687         _young_list->reset_sampled_info();
  2688         assert(check_young_list_empty(true),
  2689                "young list should be empty");
  2691 #if SCAN_ONLY_VERBOSE
  2692         _young_list->print();
  2693 #endif // SCAN_ONLY_VERBOSE
  2695         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  2696                                              _young_list->first_survivor_region(),
  2697                                              _young_list->last_survivor_region());
  2698         _young_list->reset_auxilary_lists();
  2700     } else {
  2701       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  2704     if (evacuation_failed()) {
  2705       _summary_bytes_used = recalculate_used();
  2706     } else {
  2707       // The "used" of the the collection set have already been subtracted
  2708       // when they were freed.  Add in the bytes evacuated.
  2709       _summary_bytes_used += g1_policy()->bytes_in_to_space();
  2712     if (g1_policy()->in_young_gc_mode() &&
  2713         g1_policy()->should_initiate_conc_mark()) {
  2714       concurrent_mark()->checkpointRootsInitialPost();
  2715       set_marking_started();
  2716       doConcurrentMark();
  2719 #if SCAN_ONLY_VERBOSE
  2720     _young_list->print();
  2721 #endif // SCAN_ONLY_VERBOSE
  2723     double end_time_sec = os::elapsedTime();
  2724     double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  2725     g1_policy()->record_pause_time_ms(pause_time_ms);
  2726     GCOverheadReporter::recordSTWEnd(end_time_sec);
  2727     g1_policy()->record_collection_pause_end(popular_region != NULL,
  2728                                              abandoned);
  2730     assert(regions_accounted_for(), "Region leakage.");
  2732     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  2733       HandleMark hm;  // Discard invalid handles created during verification
  2734       gclog_or_tty->print(" VerifyAfterGC:");
  2735       prepare_for_verify();
  2736       Universe::verify(false);
  2739     if (was_enabled) ref_processor()->enable_discovery();
  2742       size_t expand_bytes = g1_policy()->expansion_amount();
  2743       if (expand_bytes > 0) {
  2744         size_t bytes_before = capacity();
  2745         expand(expand_bytes);
  2749     if (mark_in_progress()) {
  2750       concurrent_mark()->update_g1_committed();
  2753 #ifdef TRACESPINNING
  2754     ParallelTaskTerminator::print_termination_counts();
  2755 #endif
  2757     gc_epilogue(false);
  2760   assert(verify_region_lists(), "Bad region lists.");
  2762   if (reset_should_initiate_conc_mark)
  2763     g1_policy()->set_should_initiate_conc_mark();
  2765   if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  2766     gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  2767     print_tracing_info();
  2768     vm_exit(-1);
  2772 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  2773   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
  2774   // make sure we don't call set_gc_alloc_region() multiple times on
  2775   // the same region
  2776   assert(r == NULL || !r->is_gc_alloc_region(),
  2777          "shouldn't already be a GC alloc region");
  2778   HeapWord* original_top = NULL;
  2779   if (r != NULL)
  2780     original_top = r->top();
  2782   // We will want to record the used space in r as being there before gc.
  2783   // One we install it as a GC alloc region it's eligible for allocation.
  2784   // So record it now and use it later.
  2785   size_t r_used = 0;
  2786   if (r != NULL) {
  2787     r_used = r->used();
  2789     if (ParallelGCThreads > 0) {
  2790       // need to take the lock to guard against two threads calling
  2791       // get_gc_alloc_region concurrently (very unlikely but...)
  2792       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2793       r->save_marks();
  2796   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  2797   _gc_alloc_regions[purpose] = r;
  2798   if (old_alloc_region != NULL) {
  2799     // Replace aliases too.
  2800     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2801       if (_gc_alloc_regions[ap] == old_alloc_region) {
  2802         _gc_alloc_regions[ap] = r;
  2806   if (r != NULL) {
  2807     push_gc_alloc_region(r);
  2808     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
  2809       // We are using a region as a GC alloc region after it has been used
  2810       // as a mutator allocation region during the current marking cycle.
  2811       // The mutator-allocated objects are currently implicitly marked, but
  2812       // when we move hr->next_top_at_mark_start() forward at the the end
  2813       // of the GC pause, they won't be.  We therefore mark all objects in
  2814       // the "gap".  We do this object-by-object, since marking densely
  2815       // does not currently work right with marking bitmap iteration.  This
  2816       // means we rely on TLAB filling at the start of pauses, and no
  2817       // "resuscitation" of filled TLAB's.  If we want to do this, we need
  2818       // to fix the marking bitmap iteration.
  2819       HeapWord* curhw = r->next_top_at_mark_start();
  2820       HeapWord* t = original_top;
  2822       while (curhw < t) {
  2823         oop cur = (oop)curhw;
  2824         // We'll assume parallel for generality.  This is rare code.
  2825         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
  2826         curhw = curhw + cur->size();
  2828       assert(curhw == t, "Should have parsed correctly.");
  2830     if (G1PolicyVerbose > 1) {
  2831       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
  2832                           "for survivors:", r->bottom(), original_top, r->end());
  2833       r->print();
  2835     g1_policy()->record_before_bytes(r_used);
  2839 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  2840   assert(Thread::current()->is_VM_thread() ||
  2841          par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
  2842   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
  2843          "Precondition.");
  2844   hr->set_is_gc_alloc_region(true);
  2845   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  2846   _gc_alloc_region_list = hr;
  2849 #ifdef G1_DEBUG
  2850 class FindGCAllocRegion: public HeapRegionClosure {
  2851 public:
  2852   bool doHeapRegion(HeapRegion* r) {
  2853     if (r->is_gc_alloc_region()) {
  2854       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
  2855                              r->hrs_index(), r->bottom());
  2857     return false;
  2859 };
  2860 #endif // G1_DEBUG
  2862 void G1CollectedHeap::forget_alloc_region_list() {
  2863   assert(Thread::current()->is_VM_thread(), "Precondition");
  2864   while (_gc_alloc_region_list != NULL) {
  2865     HeapRegion* r = _gc_alloc_region_list;
  2866     assert(r->is_gc_alloc_region(), "Invariant.");
  2867     // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
  2868     // newly allocated data in order to be able to apply deferred updates
  2869     // before the GC is done for verification purposes (i.e to allow
  2870     // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
  2871     // collection.
  2872     r->ContiguousSpace::set_saved_mark();
  2873     _gc_alloc_region_list = r->next_gc_alloc_region();
  2874     r->set_next_gc_alloc_region(NULL);
  2875     r->set_is_gc_alloc_region(false);
  2876     if (r->is_survivor()) {
  2877       if (r->is_empty()) {
  2878         r->set_not_young();
  2879       } else {
  2880         _young_list->add_survivor_region(r);
  2883     if (r->is_empty()) {
  2884       ++_free_regions;
  2887 #ifdef G1_DEBUG
  2888   FindGCAllocRegion fa;
  2889   heap_region_iterate(&fa);
  2890 #endif // G1_DEBUG
  2894 bool G1CollectedHeap::check_gc_alloc_regions() {
  2895   // TODO: allocation regions check
  2896   return true;
  2899 void G1CollectedHeap::get_gc_alloc_regions() {
  2900   // First, let's check that the GC alloc region list is empty (it should)
  2901   assert(_gc_alloc_region_list == NULL, "invariant");
  2903   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2904     assert(_gc_alloc_regions[ap] == NULL, "invariant");
  2906     // Create new GC alloc regions.
  2907     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
  2908     _retained_gc_alloc_regions[ap] = NULL;
  2910     if (alloc_region != NULL) {
  2911       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
  2913       // let's make sure that the GC alloc region is not tagged as such
  2914       // outside a GC operation
  2915       assert(!alloc_region->is_gc_alloc_region(), "sanity");
  2917       if (alloc_region->in_collection_set() ||
  2918           alloc_region->top() == alloc_region->end() ||
  2919           alloc_region->top() == alloc_region->bottom()) {
  2920         // we will discard the current GC alloc region if it's in the
  2921         // collection set (it can happen!), if it's already full (no
  2922         // point in using it), or if it's empty (this means that it
  2923         // was emptied during a cleanup and it should be on the free
  2924         // list now).
  2926         alloc_region = NULL;
  2930     if (alloc_region == NULL) {
  2931       // we will get a new GC alloc region
  2932       alloc_region = newAllocRegionWithExpansion(ap, 0);
  2935     if (alloc_region != NULL) {
  2936       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
  2937       set_gc_alloc_region(ap, alloc_region);
  2940     assert(_gc_alloc_regions[ap] == NULL ||
  2941            _gc_alloc_regions[ap]->is_gc_alloc_region(),
  2942            "the GC alloc region should be tagged as such");
  2943     assert(_gc_alloc_regions[ap] == NULL ||
  2944            _gc_alloc_regions[ap] == _gc_alloc_region_list,
  2945            "the GC alloc region should be the same as the GC alloc list head");
  2947   // Set alternative regions for allocation purposes that have reached
  2948   // their limit.
  2949   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2950     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
  2951     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
  2952       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
  2955   assert(check_gc_alloc_regions(), "alloc regions messed up");
  2958 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
  2959   // We keep a separate list of all regions that have been alloc regions in
  2960   // the current collection pause. Forget that now. This method will
  2961   // untag the GC alloc regions and tear down the GC alloc region
  2962   // list. It's desirable that no regions are tagged as GC alloc
  2963   // outside GCs.
  2964   forget_alloc_region_list();
  2966   // The current alloc regions contain objs that have survived
  2967   // collection. Make them no longer GC alloc regions.
  2968   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2969     HeapRegion* r = _gc_alloc_regions[ap];
  2970     _retained_gc_alloc_regions[ap] = NULL;
  2972     if (r != NULL) {
  2973       // we retain nothing on _gc_alloc_regions between GCs
  2974       set_gc_alloc_region(ap, NULL);
  2975       _gc_alloc_region_counts[ap] = 0;
  2977       if (r->is_empty()) {
  2978         // we didn't actually allocate anything in it; let's just put
  2979         // it on the free list
  2980         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  2981         r->set_zero_fill_complete();
  2982         put_free_region_on_list_locked(r);
  2983       } else if (_retain_gc_alloc_region[ap] && !totally) {
  2984         // retain it so that we can use it at the beginning of the next GC
  2985         _retained_gc_alloc_regions[ap] = r;
  2991 #ifndef PRODUCT
  2992 // Useful for debugging
  2994 void G1CollectedHeap::print_gc_alloc_regions() {
  2995   gclog_or_tty->print_cr("GC alloc regions");
  2996   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2997     HeapRegion* r = _gc_alloc_regions[ap];
  2998     if (r == NULL) {
  2999       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
  3000     } else {
  3001       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
  3002                              ap, r->bottom(), r->used());
  3006 #endif // PRODUCT
  3008 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  3009   _drain_in_progress = false;
  3010   set_evac_failure_closure(cl);
  3011   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3014 void G1CollectedHeap::finalize_for_evac_failure() {
  3015   assert(_evac_failure_scan_stack != NULL &&
  3016          _evac_failure_scan_stack->length() == 0,
  3017          "Postcondition");
  3018   assert(!_drain_in_progress, "Postcondition");
  3019   // Don't have to delete, since the scan stack is a resource object.
  3020   _evac_failure_scan_stack = NULL;
  3025 // *** Sequential G1 Evacuation
  3027 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
  3028   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3029   // let the caller handle alloc failure
  3030   if (alloc_region == NULL) return NULL;
  3031   assert(isHumongous(word_size) || !alloc_region->isHumongous(),
  3032          "Either the object is humongous or the region isn't");
  3033   HeapWord* block = alloc_region->allocate(word_size);
  3034   if (block == NULL) {
  3035     block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
  3037   return block;
  3040 class G1IsAliveClosure: public BoolObjectClosure {
  3041   G1CollectedHeap* _g1;
  3042 public:
  3043   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3044   void do_object(oop p) { assert(false, "Do not call."); }
  3045   bool do_object_b(oop p) {
  3046     // It is reachable if it is outside the collection set, or is inside
  3047     // and forwarded.
  3049 #ifdef G1_DEBUG
  3050     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
  3051                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
  3052                            !_g1->obj_in_cs(p) || p->is_forwarded());
  3053 #endif // G1_DEBUG
  3055     return !_g1->obj_in_cs(p) || p->is_forwarded();
  3057 };
  3059 class G1KeepAliveClosure: public OopClosure {
  3060   G1CollectedHeap* _g1;
  3061 public:
  3062   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3063   void do_oop(narrowOop* p) {
  3064     guarantee(false, "NYI");
  3066   void do_oop(oop* p) {
  3067     oop obj = *p;
  3068 #ifdef G1_DEBUG
  3069     if (PrintGC && Verbose) {
  3070       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
  3071                              p, (void*) obj, (void*) *p);
  3073 #endif // G1_DEBUG
  3075     if (_g1->obj_in_cs(obj)) {
  3076       assert( obj->is_forwarded(), "invariant" );
  3077       *p = obj->forwardee();
  3079 #ifdef G1_DEBUG
  3080       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
  3081                              (void*) obj, (void*) *p);
  3082 #endif // G1_DEBUG
  3085 };
  3087 class UpdateRSetImmediate : public OopsInHeapRegionClosure {
  3088 private:
  3089   G1CollectedHeap* _g1;
  3090   G1RemSet* _g1_rem_set;
  3091 public:
  3092   UpdateRSetImmediate(G1CollectedHeap* g1) :
  3093     _g1(g1), _g1_rem_set(g1->g1_rem_set()) {}
  3095   void do_oop(narrowOop* p) {
  3096     guarantee(false, "NYI");
  3098   void do_oop(oop* p) {
  3099     assert(_from->is_in_reserved(p), "paranoia");
  3100     if (*p != NULL && !_from->is_survivor()) {
  3101       _g1_rem_set->par_write_ref(_from, p, 0);
  3104 };
  3106 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3107 private:
  3108   G1CollectedHeap* _g1;
  3109   DirtyCardQueue *_dcq;
  3110   CardTableModRefBS* _ct_bs;
  3112 public:
  3113   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3114     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3116   void do_oop(narrowOop* p) {
  3117     guarantee(false, "NYI");
  3119   void do_oop(oop* p) {
  3120     assert(_from->is_in_reserved(p), "paranoia");
  3121     if (!_from->is_in_reserved(*p) && !_from->is_survivor()) {
  3122       size_t card_index = _ct_bs->index_for(p);
  3123       if (_ct_bs->mark_card_deferred(card_index)) {
  3124         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3128 };
  3132 class RemoveSelfPointerClosure: public ObjectClosure {
  3133 private:
  3134   G1CollectedHeap* _g1;
  3135   ConcurrentMark* _cm;
  3136   HeapRegion* _hr;
  3137   size_t _prev_marked_bytes;
  3138   size_t _next_marked_bytes;
  3139   OopsInHeapRegionClosure *_cl;
  3140 public:
  3141   RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
  3142     _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3143     _next_marked_bytes(0), _cl(cl) {}
  3145   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3146   size_t next_marked_bytes() { return _next_marked_bytes; }
  3148   // The original idea here was to coalesce evacuated and dead objects.
  3149   // However that caused complications with the block offset table (BOT).
  3150   // In particular if there were two TLABs, one of them partially refined.
  3151   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3152   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3153   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3154   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3155   // would point into middle of the filler object.
  3156   //
  3157   // The current approach is to not coalesce and leave the BOT contents intact.
  3158   void do_object(oop obj) {
  3159     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3160       // The object failed to move.
  3161       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3162       _cm->markPrev(obj);
  3163       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3164       _prev_marked_bytes += (obj->size() * HeapWordSize);
  3165       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3166         _cm->markAndGrayObjectIfNecessary(obj);
  3168       obj->set_mark(markOopDesc::prototype());
  3169       // While we were processing RSet buffers during the
  3170       // collection, we actually didn't scan any cards on the
  3171       // collection set, since we didn't want to update remebered
  3172       // sets with entries that point into the collection set, given
  3173       // that live objects fromthe collection set are about to move
  3174       // and such entries will be stale very soon. This change also
  3175       // dealt with a reliability issue which involved scanning a
  3176       // card in the collection set and coming across an array that
  3177       // was being chunked and looking malformed. The problem is
  3178       // that, if evacuation fails, we might have remembered set
  3179       // entries missing given that we skipped cards on the
  3180       // collection set. So, we'll recreate such entries now.
  3181       obj->oop_iterate(_cl);
  3182       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3183     } else {
  3184       // The object has been either evacuated or is dead. Fill it with a
  3185       // dummy object.
  3186       MemRegion mr((HeapWord*)obj, obj->size());
  3187       CollectedHeap::fill_with_object(mr);
  3188       _cm->clearRangeBothMaps(mr);
  3191 };
  3193 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3194   UpdateRSetImmediate immediate_update(_g1h);
  3195   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3196   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3197   OopsInHeapRegionClosure *cl;
  3198   if (G1DeferredRSUpdate) {
  3199     cl = &deferred_update;
  3200   } else {
  3201     cl = &immediate_update;
  3203   HeapRegion* cur = g1_policy()->collection_set();
  3204   while (cur != NULL) {
  3205     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3207     RemoveSelfPointerClosure rspc(_g1h, cl);
  3208     if (cur->evacuation_failed()) {
  3209       assert(cur->in_collection_set(), "bad CS");
  3210       cl->set_region(cur);
  3211       cur->object_iterate(&rspc);
  3213       // A number of manipulations to make the TAMS be the current top,
  3214       // and the marked bytes be the ones observed in the iteration.
  3215       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3216         // The comments below are the postconditions achieved by the
  3217         // calls.  Note especially the last such condition, which says that
  3218         // the count of marked bytes has been properly restored.
  3219         cur->note_start_of_marking(false);
  3220         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3221         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3222         // _next_marked_bytes == prev_marked_bytes.
  3223         cur->note_end_of_marking();
  3224         // _prev_top_at_mark_start == top(),
  3225         // _prev_marked_bytes == prev_marked_bytes
  3227       // If there is no mark in progress, we modified the _next variables
  3228       // above needlessly, but harmlessly.
  3229       if (_g1h->mark_in_progress()) {
  3230         cur->note_start_of_marking(false);
  3231         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3232         // _next_marked_bytes == next_marked_bytes.
  3235       // Now make sure the region has the right index in the sorted array.
  3236       g1_policy()->note_change_in_marked_bytes(cur);
  3238     cur = cur->next_in_collection_set();
  3240   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3242   // Now restore saved marks, if any.
  3243   if (_objs_with_preserved_marks != NULL) {
  3244     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3245     assert(_objs_with_preserved_marks->length() ==
  3246            _preserved_marks_of_objs->length(), "Both or none.");
  3247     guarantee(_objs_with_preserved_marks->length() ==
  3248               _preserved_marks_of_objs->length(), "Both or none.");
  3249     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3250       oop obj   = _objs_with_preserved_marks->at(i);
  3251       markOop m = _preserved_marks_of_objs->at(i);
  3252       obj->set_mark(m);
  3254     // Delete the preserved marks growable arrays (allocated on the C heap).
  3255     delete _objs_with_preserved_marks;
  3256     delete _preserved_marks_of_objs;
  3257     _objs_with_preserved_marks = NULL;
  3258     _preserved_marks_of_objs = NULL;
  3262 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3263   _evac_failure_scan_stack->push(obj);
  3266 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3267   assert(_evac_failure_scan_stack != NULL, "precondition");
  3269   while (_evac_failure_scan_stack->length() > 0) {
  3270      oop obj = _evac_failure_scan_stack->pop();
  3271      _evac_failure_closure->set_region(heap_region_containing(obj));
  3272      obj->oop_iterate_backwards(_evac_failure_closure);
  3276 void G1CollectedHeap::handle_evacuation_failure(oop old) {
  3277   markOop m = old->mark();
  3278   // forward to self
  3279   assert(!old->is_forwarded(), "precondition");
  3281   old->forward_to(old);
  3282   handle_evacuation_failure_common(old, m);
  3285 oop
  3286 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  3287                                                oop old) {
  3288   markOop m = old->mark();
  3289   oop forward_ptr = old->forward_to_atomic(old);
  3290   if (forward_ptr == NULL) {
  3291     // Forward-to-self succeeded.
  3292     if (_evac_failure_closure != cl) {
  3293       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  3294       assert(!_drain_in_progress,
  3295              "Should only be true while someone holds the lock.");
  3296       // Set the global evac-failure closure to the current thread's.
  3297       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  3298       set_evac_failure_closure(cl);
  3299       // Now do the common part.
  3300       handle_evacuation_failure_common(old, m);
  3301       // Reset to NULL.
  3302       set_evac_failure_closure(NULL);
  3303     } else {
  3304       // The lock is already held, and this is recursive.
  3305       assert(_drain_in_progress, "This should only be the recursive case.");
  3306       handle_evacuation_failure_common(old, m);
  3308     return old;
  3309   } else {
  3310     // Someone else had a place to copy it.
  3311     return forward_ptr;
  3315 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  3316   set_evacuation_failed(true);
  3318   preserve_mark_if_necessary(old, m);
  3320   HeapRegion* r = heap_region_containing(old);
  3321   if (!r->evacuation_failed()) {
  3322     r->set_evacuation_failed(true);
  3323     if (G1TraceRegions) {
  3324       gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
  3325                           "["PTR_FORMAT","PTR_FORMAT")\n",
  3326                           r, r->bottom(), r->end());
  3330   push_on_evac_failure_scan_stack(old);
  3332   if (!_drain_in_progress) {
  3333     // prevent recursion in copy_to_survivor_space()
  3334     _drain_in_progress = true;
  3335     drain_evac_failure_scan_stack();
  3336     _drain_in_progress = false;
  3340 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  3341   if (m != markOopDesc::prototype()) {
  3342     if (_objs_with_preserved_marks == NULL) {
  3343       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  3344       _objs_with_preserved_marks =
  3345         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3346       _preserved_marks_of_objs =
  3347         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  3349     _objs_with_preserved_marks->push(obj);
  3350     _preserved_marks_of_objs->push(m);
  3354 // *** Parallel G1 Evacuation
  3356 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  3357                                                   size_t word_size) {
  3358   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3359   // let the caller handle alloc failure
  3360   if (alloc_region == NULL) return NULL;
  3362   HeapWord* block = alloc_region->par_allocate(word_size);
  3363   if (block == NULL) {
  3364     MutexLockerEx x(par_alloc_during_gc_lock(),
  3365                     Mutex::_no_safepoint_check_flag);
  3366     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  3368   return block;
  3371 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
  3372                                             bool par) {
  3373   // Another thread might have obtained alloc_region for the given
  3374   // purpose, and might be attempting to allocate in it, and might
  3375   // succeed.  Therefore, we can't do the "finalization" stuff on the
  3376   // region below until we're sure the last allocation has happened.
  3377   // We ensure this by allocating the remaining space with a garbage
  3378   // object.
  3379   if (par) par_allocate_remaining_space(alloc_region);
  3380   // Now we can do the post-GC stuff on the region.
  3381   alloc_region->note_end_of_copying();
  3382   g1_policy()->record_after_bytes(alloc_region->used());
  3385 HeapWord*
  3386 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
  3387                                          HeapRegion*    alloc_region,
  3388                                          bool           par,
  3389                                          size_t         word_size) {
  3390   HeapWord* block = NULL;
  3391   // In the parallel case, a previous thread to obtain the lock may have
  3392   // already assigned a new gc_alloc_region.
  3393   if (alloc_region != _gc_alloc_regions[purpose]) {
  3394     assert(par, "But should only happen in parallel case.");
  3395     alloc_region = _gc_alloc_regions[purpose];
  3396     if (alloc_region == NULL) return NULL;
  3397     block = alloc_region->par_allocate(word_size);
  3398     if (block != NULL) return block;
  3399     // Otherwise, continue; this new region is empty, too.
  3401   assert(alloc_region != NULL, "We better have an allocation region");
  3402   retire_alloc_region(alloc_region, par);
  3404   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
  3405     // Cannot allocate more regions for the given purpose.
  3406     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
  3407     // Is there an alternative?
  3408     if (purpose != alt_purpose) {
  3409       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
  3410       // Has not the alternative region been aliased?
  3411       if (alloc_region != alt_region && alt_region != NULL) {
  3412         // Try to allocate in the alternative region.
  3413         if (par) {
  3414           block = alt_region->par_allocate(word_size);
  3415         } else {
  3416           block = alt_region->allocate(word_size);
  3418         // Make an alias.
  3419         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
  3420         if (block != NULL) {
  3421           return block;
  3423         retire_alloc_region(alt_region, par);
  3425       // Both the allocation region and the alternative one are full
  3426       // and aliased, replace them with a new allocation region.
  3427       purpose = alt_purpose;
  3428     } else {
  3429       set_gc_alloc_region(purpose, NULL);
  3430       return NULL;
  3434   // Now allocate a new region for allocation.
  3435   alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
  3437   // let the caller handle alloc failure
  3438   if (alloc_region != NULL) {
  3440     assert(check_gc_alloc_regions(), "alloc regions messed up");
  3441     assert(alloc_region->saved_mark_at_top(),
  3442            "Mark should have been saved already.");
  3443     // We used to assert that the region was zero-filled here, but no
  3444     // longer.
  3446     // This must be done last: once it's installed, other regions may
  3447     // allocate in it (without holding the lock.)
  3448     set_gc_alloc_region(purpose, alloc_region);
  3450     if (par) {
  3451       block = alloc_region->par_allocate(word_size);
  3452     } else {
  3453       block = alloc_region->allocate(word_size);
  3455     // Caller handles alloc failure.
  3456   } else {
  3457     // This sets other apis using the same old alloc region to NULL, also.
  3458     set_gc_alloc_region(purpose, NULL);
  3460   return block;  // May be NULL.
  3463 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  3464   HeapWord* block = NULL;
  3465   size_t free_words;
  3466   do {
  3467     free_words = r->free()/HeapWordSize;
  3468     // If there's too little space, no one can allocate, so we're done.
  3469     if (free_words < (size_t)oopDesc::header_size()) return;
  3470     // Otherwise, try to claim it.
  3471     block = r->par_allocate(free_words);
  3472   } while (block == NULL);
  3473   fill_with_object(block, free_words);
  3476 #define use_local_bitmaps         1
  3477 #define verify_local_bitmaps      0
  3479 #ifndef PRODUCT
  3481 class GCLabBitMap;
  3482 class GCLabBitMapClosure: public BitMapClosure {
  3483 private:
  3484   ConcurrentMark* _cm;
  3485   GCLabBitMap*    _bitmap;
  3487 public:
  3488   GCLabBitMapClosure(ConcurrentMark* cm,
  3489                      GCLabBitMap* bitmap) {
  3490     _cm     = cm;
  3491     _bitmap = bitmap;
  3494   virtual bool do_bit(size_t offset);
  3495 };
  3497 #endif // PRODUCT
  3499 #define oop_buffer_length 256
  3501 class GCLabBitMap: public BitMap {
  3502 private:
  3503   ConcurrentMark* _cm;
  3505   int       _shifter;
  3506   size_t    _bitmap_word_covers_words;
  3508   // beginning of the heap
  3509   HeapWord* _heap_start;
  3511   // this is the actual start of the GCLab
  3512   HeapWord* _real_start_word;
  3514   // this is the actual end of the GCLab
  3515   HeapWord* _real_end_word;
  3517   // this is the first word, possibly located before the actual start
  3518   // of the GCLab, that corresponds to the first bit of the bitmap
  3519   HeapWord* _start_word;
  3521   // size of a GCLab in words
  3522   size_t _gclab_word_size;
  3524   static int shifter() {
  3525     return MinObjAlignment - 1;
  3528   // how many heap words does a single bitmap word corresponds to?
  3529   static size_t bitmap_word_covers_words() {
  3530     return BitsPerWord << shifter();
  3533   static size_t gclab_word_size() {
  3534     return ParallelGCG1AllocBufferSize / HeapWordSize;
  3537   static size_t bitmap_size_in_bits() {
  3538     size_t bits_in_bitmap = gclab_word_size() >> shifter();
  3539     // We are going to ensure that the beginning of a word in this
  3540     // bitmap also corresponds to the beginning of a word in the
  3541     // global marking bitmap. To handle the case where a GCLab
  3542     // starts from the middle of the bitmap, we need to add enough
  3543     // space (i.e. up to a bitmap word) to ensure that we have
  3544     // enough bits in the bitmap.
  3545     return bits_in_bitmap + BitsPerWord - 1;
  3547 public:
  3548   GCLabBitMap(HeapWord* heap_start)
  3549     : BitMap(bitmap_size_in_bits()),
  3550       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  3551       _shifter(shifter()),
  3552       _bitmap_word_covers_words(bitmap_word_covers_words()),
  3553       _heap_start(heap_start),
  3554       _gclab_word_size(gclab_word_size()),
  3555       _real_start_word(NULL),
  3556       _real_end_word(NULL),
  3557       _start_word(NULL)
  3559     guarantee( size_in_words() >= bitmap_size_in_words(),
  3560                "just making sure");
  3563   inline unsigned heapWordToOffset(HeapWord* addr) {
  3564     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  3565     assert(offset < size(), "offset should be within bounds");
  3566     return offset;
  3569   inline HeapWord* offsetToHeapWord(size_t offset) {
  3570     HeapWord* addr =  _start_word + (offset << _shifter);
  3571     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  3572     return addr;
  3575   bool fields_well_formed() {
  3576     bool ret1 = (_real_start_word == NULL) &&
  3577                 (_real_end_word == NULL) &&
  3578                 (_start_word == NULL);
  3579     if (ret1)
  3580       return true;
  3582     bool ret2 = _real_start_word >= _start_word &&
  3583       _start_word < _real_end_word &&
  3584       (_real_start_word + _gclab_word_size) == _real_end_word &&
  3585       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  3586                                                               > _real_end_word;
  3587     return ret2;
  3590   inline bool mark(HeapWord* addr) {
  3591     guarantee(use_local_bitmaps, "invariant");
  3592     assert(fields_well_formed(), "invariant");
  3594     if (addr >= _real_start_word && addr < _real_end_word) {
  3595       assert(!isMarked(addr), "should not have already been marked");
  3597       // first mark it on the bitmap
  3598       at_put(heapWordToOffset(addr), true);
  3600       return true;
  3601     } else {
  3602       return false;
  3606   inline bool isMarked(HeapWord* addr) {
  3607     guarantee(use_local_bitmaps, "invariant");
  3608     assert(fields_well_formed(), "invariant");
  3610     return at(heapWordToOffset(addr));
  3613   void set_buffer(HeapWord* start) {
  3614     guarantee(use_local_bitmaps, "invariant");
  3615     clear();
  3617     assert(start != NULL, "invariant");
  3618     _real_start_word = start;
  3619     _real_end_word   = start + _gclab_word_size;
  3621     size_t diff =
  3622       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  3623     _start_word = start - diff;
  3625     assert(fields_well_formed(), "invariant");
  3628 #ifndef PRODUCT
  3629   void verify() {
  3630     // verify that the marks have been propagated
  3631     GCLabBitMapClosure cl(_cm, this);
  3632     iterate(&cl);
  3634 #endif // PRODUCT
  3636   void retire() {
  3637     guarantee(use_local_bitmaps, "invariant");
  3638     assert(fields_well_formed(), "invariant");
  3640     if (_start_word != NULL) {
  3641       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  3643       // this means that the bitmap was set up for the GCLab
  3644       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  3646       mark_bitmap->mostly_disjoint_range_union(this,
  3647                                 0, // always start from the start of the bitmap
  3648                                 _start_word,
  3649                                 size_in_words());
  3650       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  3652 #ifndef PRODUCT
  3653       if (use_local_bitmaps && verify_local_bitmaps)
  3654         verify();
  3655 #endif // PRODUCT
  3656     } else {
  3657       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  3661   static size_t bitmap_size_in_words() {
  3662     return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord;
  3664 };
  3666 #ifndef PRODUCT
  3668 bool GCLabBitMapClosure::do_bit(size_t offset) {
  3669   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  3670   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  3671   return true;
  3674 #endif // PRODUCT
  3676 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  3677 private:
  3678   bool        _retired;
  3679   bool        _during_marking;
  3680   GCLabBitMap _bitmap;
  3682 public:
  3683   G1ParGCAllocBuffer() :
  3684     ParGCAllocBuffer(ParallelGCG1AllocBufferSize / HeapWordSize),
  3685     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  3686     _bitmap(G1CollectedHeap::heap()->reserved_region().start()),
  3687     _retired(false)
  3688   { }
  3690   inline bool mark(HeapWord* addr) {
  3691     guarantee(use_local_bitmaps, "invariant");
  3692     assert(_during_marking, "invariant");
  3693     return _bitmap.mark(addr);
  3696   inline void set_buf(HeapWord* buf) {
  3697     if (use_local_bitmaps && _during_marking)
  3698       _bitmap.set_buffer(buf);
  3699     ParGCAllocBuffer::set_buf(buf);
  3700     _retired = false;
  3703   inline void retire(bool end_of_gc, bool retain) {
  3704     if (_retired)
  3705       return;
  3706     if (use_local_bitmaps && _during_marking) {
  3707       _bitmap.retire();
  3709     ParGCAllocBuffer::retire(end_of_gc, retain);
  3710     _retired = true;
  3712 };
  3715 class G1ParScanThreadState : public StackObj {
  3716 protected:
  3717   G1CollectedHeap* _g1h;
  3718   RefToScanQueue*  _refs;
  3719   DirtyCardQueue   _dcq;
  3720   CardTableModRefBS* _ct_bs;
  3721   G1RemSet* _g1_rem;
  3723   typedef GrowableArray<oop*> OverflowQueue;
  3724   OverflowQueue* _overflowed_refs;
  3726   G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
  3727   ageTable           _age_table;
  3729   size_t           _alloc_buffer_waste;
  3730   size_t           _undo_waste;
  3732   OopsInHeapRegionClosure*      _evac_failure_cl;
  3733   G1ParScanHeapEvacClosure*     _evac_cl;
  3734   G1ParScanPartialArrayClosure* _partial_scan_cl;
  3736   int _hash_seed;
  3737   int _queue_num;
  3739   int _term_attempts;
  3740 #if G1_DETAILED_STATS
  3741   int _pushes, _pops, _steals, _steal_attempts;
  3742   int _overflow_pushes;
  3743 #endif
  3745   double _start;
  3746   double _start_strong_roots;
  3747   double _strong_roots_time;
  3748   double _start_term;
  3749   double _term_time;
  3751   // Map from young-age-index (0 == not young, 1 is youngest) to
  3752   // surviving words. base is what we get back from the malloc call
  3753   size_t* _surviving_young_words_base;
  3754   // this points into the array, as we use the first few entries for padding
  3755   size_t* _surviving_young_words;
  3757 #define PADDING_ELEM_NUM (64 / sizeof(size_t))
  3759   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  3761   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  3763   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  3764   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  3766   void immediate_rs_update(HeapRegion* from, oop* p, int tid) {
  3767     if (!from->is_survivor()) {
  3768       _g1_rem->par_write_ref(from, p, tid);
  3772   void deferred_rs_update(HeapRegion* from, oop* p, int tid) {
  3773     // If the new value of the field points to the same region or
  3774     // is the to-space, we don't need to include it in the Rset updates.
  3775     if (!from->is_in_reserved(*p) && !from->is_survivor()) {
  3776       size_t card_index = ctbs()->index_for(p);
  3777       // If the card hasn't been added to the buffer, do it.
  3778       if (ctbs()->mark_card_deferred(card_index)) {
  3779         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  3784 public:
  3785   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  3786     : _g1h(g1h),
  3787       _refs(g1h->task_queue(queue_num)),
  3788       _dcq(&g1h->dirty_card_queue_set()),
  3789       _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  3790       _g1_rem(g1h->g1_rem_set()),
  3791       _hash_seed(17), _queue_num(queue_num),
  3792       _term_attempts(0),
  3793       _age_table(false),
  3794 #if G1_DETAILED_STATS
  3795       _pushes(0), _pops(0), _steals(0),
  3796       _steal_attempts(0),  _overflow_pushes(0),
  3797 #endif
  3798       _strong_roots_time(0), _term_time(0),
  3799       _alloc_buffer_waste(0), _undo_waste(0)
  3801     // we allocate G1YoungSurvRateNumRegions plus one entries, since
  3802     // we "sacrifice" entry 0 to keep track of surviving bytes for
  3803     // non-young regions (where the age is -1)
  3804     // We also add a few elements at the beginning and at the end in
  3805     // an attempt to eliminate cache contention
  3806     size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  3807     size_t array_length = PADDING_ELEM_NUM +
  3808                           real_length +
  3809                           PADDING_ELEM_NUM;
  3810     _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  3811     if (_surviving_young_words_base == NULL)
  3812       vm_exit_out_of_memory(array_length * sizeof(size_t),
  3813                             "Not enough space for young surv histo.");
  3814     _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  3815     memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  3817     _overflowed_refs = new OverflowQueue(10);
  3819     _start = os::elapsedTime();
  3822   ~G1ParScanThreadState() {
  3823     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  3826   RefToScanQueue*   refs()            { return _refs;             }
  3827   OverflowQueue*    overflowed_refs() { return _overflowed_refs;  }
  3828   ageTable*         age_table()       { return &_age_table;       }
  3830   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  3831     return &_alloc_buffers[purpose];
  3834   size_t alloc_buffer_waste()                    { return _alloc_buffer_waste; }
  3835   size_t undo_waste()                            { return _undo_waste; }
  3837   void push_on_queue(oop* ref) {
  3838     assert(ref != NULL, "invariant");
  3839     assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref), "invariant");
  3841     if (!refs()->push(ref)) {
  3842       overflowed_refs()->push(ref);
  3843       IF_G1_DETAILED_STATS(note_overflow_push());
  3844     } else {
  3845       IF_G1_DETAILED_STATS(note_push());
  3849   void pop_from_queue(oop*& ref) {
  3850     if (!refs()->pop_local(ref)) {
  3851       ref = NULL;
  3852     } else {
  3853       assert(ref != NULL, "invariant");
  3854       assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref),
  3855              "invariant");
  3857       IF_G1_DETAILED_STATS(note_pop());
  3861   void pop_from_overflow_queue(oop*& ref) {
  3862     ref = overflowed_refs()->pop();
  3865   int refs_to_scan()                             { return refs()->size();                 }
  3866   int overflowed_refs_to_scan()                  { return overflowed_refs()->length();    }
  3868   void update_rs(HeapRegion* from, oop* p, int tid) {
  3869     if (G1DeferredRSUpdate) {
  3870       deferred_rs_update(from, p, tid);
  3871     } else {
  3872       immediate_rs_update(from, p, tid);
  3876   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  3878     HeapWord* obj = NULL;
  3879     if (word_sz * 100 <
  3880         (size_t)(ParallelGCG1AllocBufferSize / HeapWordSize) *
  3881                                                   ParallelGCBufferWastePct) {
  3882       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  3883       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  3884       alloc_buf->retire(false, false);
  3886       HeapWord* buf =
  3887         _g1h->par_allocate_during_gc(purpose, ParallelGCG1AllocBufferSize / HeapWordSize);
  3888       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  3889       // Otherwise.
  3890       alloc_buf->set_buf(buf);
  3892       obj = alloc_buf->allocate(word_sz);
  3893       assert(obj != NULL, "buffer was definitely big enough...");
  3894     } else {
  3895       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  3897     return obj;
  3900   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  3901     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  3902     if (obj != NULL) return obj;
  3903     return allocate_slow(purpose, word_sz);
  3906   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  3907     if (alloc_buffer(purpose)->contains(obj)) {
  3908       guarantee(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  3909                 "should contain whole object");
  3910       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  3911     } else {
  3912       CollectedHeap::fill_with_object(obj, word_sz);
  3913       add_to_undo_waste(word_sz);
  3917   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  3918     _evac_failure_cl = evac_failure_cl;
  3920   OopsInHeapRegionClosure* evac_failure_closure() {
  3921     return _evac_failure_cl;
  3924   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  3925     _evac_cl = evac_cl;
  3928   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  3929     _partial_scan_cl = partial_scan_cl;
  3932   int* hash_seed() { return &_hash_seed; }
  3933   int  queue_num() { return _queue_num; }
  3935   int term_attempts()   { return _term_attempts; }
  3936   void note_term_attempt()  { _term_attempts++; }
  3938 #if G1_DETAILED_STATS
  3939   int pushes()          { return _pushes; }
  3940   int pops()            { return _pops; }
  3941   int steals()          { return _steals; }
  3942   int steal_attempts()  { return _steal_attempts; }
  3943   int overflow_pushes() { return _overflow_pushes; }
  3945   void note_push()          { _pushes++; }
  3946   void note_pop()           { _pops++; }
  3947   void note_steal()         { _steals++; }
  3948   void note_steal_attempt() { _steal_attempts++; }
  3949   void note_overflow_push() { _overflow_pushes++; }
  3950 #endif
  3952   void start_strong_roots() {
  3953     _start_strong_roots = os::elapsedTime();
  3955   void end_strong_roots() {
  3956     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  3958   double strong_roots_time() { return _strong_roots_time; }
  3960   void start_term_time() {
  3961     note_term_attempt();
  3962     _start_term = os::elapsedTime();
  3964   void end_term_time() {
  3965     _term_time += (os::elapsedTime() - _start_term);
  3967   double term_time() { return _term_time; }
  3969   double elapsed() {
  3970     return os::elapsedTime() - _start;
  3973   size_t* surviving_young_words() {
  3974     // We add on to hide entry 0 which accumulates surviving words for
  3975     // age -1 regions (i.e. non-young ones)
  3976     return _surviving_young_words;
  3979   void retire_alloc_buffers() {
  3980     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3981       size_t waste = _alloc_buffers[ap].words_remaining();
  3982       add_to_alloc_buffer_waste(waste);
  3983       _alloc_buffers[ap].retire(true, false);
  3987 private:
  3988   void deal_with_reference(oop* ref_to_scan) {
  3989     if (has_partial_array_mask(ref_to_scan)) {
  3990       _partial_scan_cl->do_oop_nv(ref_to_scan);
  3991     } else {
  3992       // Note: we can use "raw" versions of "region_containing" because
  3993       // "obj_to_scan" is definitely in the heap, and is not in a
  3994       // humongous region.
  3995       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  3996       _evac_cl->set_region(r);
  3997       _evac_cl->do_oop_nv(ref_to_scan);
  4001 public:
  4002   void trim_queue() {
  4003     // I've replicated the loop twice, first to drain the overflow
  4004     // queue, second to drain the task queue. This is better than
  4005     // having a single loop, which checks both conditions and, inside
  4006     // it, either pops the overflow queue or the task queue, as each
  4007     // loop is tighter. Also, the decision to drain the overflow queue
  4008     // first is not arbitrary, as the overflow queue is not visible
  4009     // to the other workers, whereas the task queue is. So, we want to
  4010     // drain the "invisible" entries first, while allowing the other
  4011     // workers to potentially steal the "visible" entries.
  4013     while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
  4014       while (overflowed_refs_to_scan() > 0) {
  4015         oop *ref_to_scan = NULL;
  4016         pop_from_overflow_queue(ref_to_scan);
  4017         assert(ref_to_scan != NULL, "invariant");
  4018         // We shouldn't have pushed it on the queue if it was not
  4019         // pointing into the CSet.
  4020         assert(ref_to_scan != NULL, "sanity");
  4021         assert(has_partial_array_mask(ref_to_scan) ||
  4022                                       _g1h->obj_in_cs(*ref_to_scan), "sanity");
  4024         deal_with_reference(ref_to_scan);
  4027       while (refs_to_scan() > 0) {
  4028         oop *ref_to_scan = NULL;
  4029         pop_from_queue(ref_to_scan);
  4031         if (ref_to_scan != NULL) {
  4032           // We shouldn't have pushed it on the queue if it was not
  4033           // pointing into the CSet.
  4034           assert(has_partial_array_mask(ref_to_scan) ||
  4035                                       _g1h->obj_in_cs(*ref_to_scan), "sanity");
  4037           deal_with_reference(ref_to_scan);
  4042 };
  4044 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  4045   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4046   _par_scan_state(par_scan_state) { }
  4048 // This closure is applied to the fields of the objects that have just been copied.
  4049 // Should probably be made inline and moved in g1OopClosures.inline.hpp.
  4050 void G1ParScanClosure::do_oop_nv(oop* p) {
  4051   oop obj = *p;
  4053   if (obj != NULL) {
  4054     if (_g1->in_cset_fast_test(obj)) {
  4055       // We're not going to even bother checking whether the object is
  4056       // already forwarded or not, as this usually causes an immediate
  4057       // stall. We'll try to prefetch the object (for write, given that
  4058       // we might need to install the forwarding reference) and we'll
  4059       // get back to it when pop it from the queue
  4060       Prefetch::write(obj->mark_addr(), 0);
  4061       Prefetch::read(obj->mark_addr(), (HeapWordSize*2));
  4063       // slightly paranoid test; I'm trying to catch potential
  4064       // problems before we go into push_on_queue to know where the
  4065       // problem is coming from
  4066       assert(obj == *p, "the value of *p should not have changed");
  4067       _par_scan_state->push_on_queue(p);
  4068     } else {
  4069       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4074 void G1ParCopyHelper::mark_forwardee(oop* p) {
  4075   // This is called _after_ do_oop_work has been called, hence after
  4076   // the object has been relocated to its new location and *p points
  4077   // to its new location.
  4079   oop thisOop = *p;
  4080   if (thisOop != NULL) {
  4081     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(thisOop)),
  4082            "shouldn't still be in the CSet if evacuation didn't fail.");
  4083     HeapWord* addr = (HeapWord*)thisOop;
  4084     if (_g1->is_in_g1_reserved(addr))
  4085       _cm->grayRoot(oop(addr));
  4089 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  4090   size_t    word_sz = old->size();
  4091   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4092   // +1 to make the -1 indexes valid...
  4093   int       young_index = from_region->young_index_in_cset()+1;
  4094   assert( (from_region->is_young() && young_index > 0) ||
  4095           (!from_region->is_young() && young_index == 0), "invariant" );
  4096   G1CollectorPolicy* g1p = _g1->g1_policy();
  4097   markOop m = old->mark();
  4098   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4099                                            : m->age();
  4100   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4101                                                              word_sz);
  4102   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4103   oop       obj     = oop(obj_ptr);
  4105   if (obj_ptr == NULL) {
  4106     // This will either forward-to-self, or detect that someone else has
  4107     // installed a forwarding pointer.
  4108     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4109     return _g1->handle_evacuation_failure_par(cl, old);
  4112   // We're going to allocate linearly, so might as well prefetch ahead.
  4113   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4115   oop forward_ptr = old->forward_to_atomic(obj);
  4116   if (forward_ptr == NULL) {
  4117     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4118     if (g1p->track_object_age(alloc_purpose)) {
  4119       // We could simply do obj->incr_age(). However, this causes a
  4120       // performance issue. obj->incr_age() will first check whether
  4121       // the object has a displaced mark by checking its mark word;
  4122       // getting the mark word from the new location of the object
  4123       // stalls. So, given that we already have the mark word and we
  4124       // are about to install it anyway, it's better to increase the
  4125       // age on the mark word, when the object does not have a
  4126       // displaced mark word. We're not expecting many objects to have
  4127       // a displaced marked word, so that case is not optimized
  4128       // further (it could be...) and we simply call obj->incr_age().
  4130       if (m->has_displaced_mark_helper()) {
  4131         // in this case, we have to install the mark word first,
  4132         // otherwise obj looks to be forwarded (the old mark word,
  4133         // which contains the forward pointer, was copied)
  4134         obj->set_mark(m);
  4135         obj->incr_age();
  4136       } else {
  4137         m = m->incr_age();
  4138         obj->set_mark(m);
  4140       _par_scan_state->age_table()->add(obj, word_sz);
  4141     } else {
  4142       obj->set_mark(m);
  4145     // preserve "next" mark bit
  4146     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
  4147       if (!use_local_bitmaps ||
  4148           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  4149         // if we couldn't mark it on the local bitmap (this happens when
  4150         // the object was not allocated in the GCLab), we have to bite
  4151         // the bullet and do the standard parallel mark
  4152         _cm->markAndGrayObjectIfNecessary(obj);
  4154 #if 1
  4155       if (_g1->isMarkedNext(old)) {
  4156         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  4158 #endif
  4161     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4162     surv_young_words[young_index] += word_sz;
  4164     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4165       arrayOop(old)->set_length(0);
  4166       _par_scan_state->push_on_queue(set_partial_array_mask(old));
  4167     } else {
  4168       // No point in using the slower heap_region_containing() method,
  4169       // given that we know obj is in the heap.
  4170       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  4171       obj->oop_iterate_backwards(_scanner);
  4173   } else {
  4174     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4175     obj = forward_ptr;
  4177   return obj;
  4180 template<bool do_gen_barrier, G1Barrier barrier,
  4181          bool do_mark_forwardee, bool skip_cset_test>
  4182 void G1ParCopyClosure<do_gen_barrier, barrier,
  4183                       do_mark_forwardee, skip_cset_test>::do_oop_work(oop* p) {
  4184   oop obj = *p;
  4185   assert(barrier != G1BarrierRS || obj != NULL,
  4186          "Precondition: G1BarrierRS implies obj is nonNull");
  4188   // The only time we skip the cset test is when we're scanning
  4189   // references popped from the queue. And we only push on the queue
  4190   // references that we know point into the cset, so no point in
  4191   // checking again. But we'll leave an assert here for peace of mind.
  4192   assert(!skip_cset_test || _g1->obj_in_cs(obj), "invariant");
  4194   // here the null check is implicit in the cset_fast_test() test
  4195   if (skip_cset_test || _g1->in_cset_fast_test(obj)) {
  4196 #if G1_REM_SET_LOGGING
  4197     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
  4198                            "into CS.", p, (void*) obj);
  4199 #endif
  4200     if (obj->is_forwarded()) {
  4201       *p = obj->forwardee();
  4202     } else {
  4203       *p = copy_to_survivor_space(obj);
  4205     // When scanning the RS, we only care about objs in CS.
  4206     if (barrier == G1BarrierRS) {
  4207       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4211   // When scanning moved objs, must look at all oops.
  4212   if (barrier == G1BarrierEvac && obj != NULL) {
  4213     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4216   if (do_gen_barrier && obj != NULL) {
  4217     par_do_barrier(p);
  4221 template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(oop* p);
  4223 template<class T> void G1ParScanPartialArrayClosure::process_array_chunk(
  4224   oop obj, int start, int end) {
  4225   // process our set of indices (include header in first chunk)
  4226   assert(start < end, "invariant");
  4227   T* const base      = (T*)objArrayOop(obj)->base();
  4228   T* const start_addr = (start == 0) ? (T*) obj : base + start;
  4229   T* const end_addr   = base + end;
  4230   MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr);
  4231   _scanner.set_region(_g1->heap_region_containing(obj));
  4232   obj->oop_iterate(&_scanner, mr);
  4235 void G1ParScanPartialArrayClosure::do_oop_nv(oop* p) {
  4236   assert(!UseCompressedOops, "Needs to be fixed to work with compressed oops");
  4237   assert(has_partial_array_mask(p), "invariant");
  4238   oop old = clear_partial_array_mask(p);
  4239   assert(old->is_objArray(), "must be obj array");
  4240   assert(old->is_forwarded(), "must be forwarded");
  4241   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  4243   objArrayOop obj = objArrayOop(old->forwardee());
  4244   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  4245   // Process ParGCArrayScanChunk elements now
  4246   // and push the remainder back onto queue
  4247   int start     = arrayOop(old)->length();
  4248   int end       = obj->length();
  4249   int remainder = end - start;
  4250   assert(start <= end, "just checking");
  4251   if (remainder > 2 * ParGCArrayScanChunk) {
  4252     // Test above combines last partial chunk with a full chunk
  4253     end = start + ParGCArrayScanChunk;
  4254     arrayOop(old)->set_length(end);
  4255     // Push remainder.
  4256     _par_scan_state->push_on_queue(set_partial_array_mask(old));
  4257   } else {
  4258     // Restore length so that the heap remains parsable in
  4259     // case of evacuation failure.
  4260     arrayOop(old)->set_length(end);
  4263   // process our set of indices (include header in first chunk)
  4264   process_array_chunk<oop>(obj, start, end);
  4267 int G1ScanAndBalanceClosure::_nq = 0;
  4269 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4270 protected:
  4271   G1CollectedHeap*              _g1h;
  4272   G1ParScanThreadState*         _par_scan_state;
  4273   RefToScanQueueSet*            _queues;
  4274   ParallelTaskTerminator*       _terminator;
  4276   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4277   RefToScanQueueSet*      queues()         { return _queues; }
  4278   ParallelTaskTerminator* terminator()     { return _terminator; }
  4280 public:
  4281   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4282                                 G1ParScanThreadState* par_scan_state,
  4283                                 RefToScanQueueSet* queues,
  4284                                 ParallelTaskTerminator* terminator)
  4285     : _g1h(g1h), _par_scan_state(par_scan_state),
  4286       _queues(queues), _terminator(terminator) {}
  4288   void do_void() {
  4289     G1ParScanThreadState* pss = par_scan_state();
  4290     while (true) {
  4291       oop* ref_to_scan;
  4292       pss->trim_queue();
  4293       IF_G1_DETAILED_STATS(pss->note_steal_attempt());
  4294       if (queues()->steal(pss->queue_num(),
  4295                           pss->hash_seed(),
  4296                           ref_to_scan)) {
  4297         IF_G1_DETAILED_STATS(pss->note_steal());
  4299         // slightly paranoid tests; I'm trying to catch potential
  4300         // problems before we go into push_on_queue to know where the
  4301         // problem is coming from
  4302         assert(ref_to_scan != NULL, "invariant");
  4303         assert(has_partial_array_mask(ref_to_scan) ||
  4304                                    _g1h->obj_in_cs(*ref_to_scan), "invariant");
  4305         pss->push_on_queue(ref_to_scan);
  4306         continue;
  4308       pss->start_term_time();
  4309       if (terminator()->offer_termination()) break;
  4310       pss->end_term_time();
  4312     pss->end_term_time();
  4313     pss->retire_alloc_buffers();
  4315 };
  4317 class G1ParTask : public AbstractGangTask {
  4318 protected:
  4319   G1CollectedHeap*       _g1h;
  4320   RefToScanQueueSet      *_queues;
  4321   ParallelTaskTerminator _terminator;
  4323   Mutex _stats_lock;
  4324   Mutex* stats_lock() { return &_stats_lock; }
  4326   size_t getNCards() {
  4327     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4328       / G1BlockOffsetSharedArray::N_bytes;
  4331 public:
  4332   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  4333     : AbstractGangTask("G1 collection"),
  4334       _g1h(g1h),
  4335       _queues(task_queues),
  4336       _terminator(workers, _queues),
  4337       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4338   {}
  4340   RefToScanQueueSet* queues() { return _queues; }
  4342   RefToScanQueue *work_queue(int i) {
  4343     return queues()->queue(i);
  4346   void work(int i) {
  4347     ResourceMark rm;
  4348     HandleMark   hm;
  4350     G1ParScanThreadState            pss(_g1h, i);
  4351     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  4352     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  4353     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  4355     pss.set_evac_closure(&scan_evac_cl);
  4356     pss.set_evac_failure_closure(&evac_failure_cl);
  4357     pss.set_partial_scan_closure(&partial_scan_cl);
  4359     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  4360     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  4361     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  4363     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  4364     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  4365     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  4367     OopsInHeapRegionClosure        *scan_root_cl;
  4368     OopsInHeapRegionClosure        *scan_perm_cl;
  4369     OopsInHeapRegionClosure        *scan_so_cl;
  4371     if (_g1h->g1_policy()->should_initiate_conc_mark()) {
  4372       scan_root_cl = &scan_mark_root_cl;
  4373       scan_perm_cl = &scan_mark_perm_cl;
  4374       scan_so_cl   = &scan_mark_heap_rs_cl;
  4375     } else {
  4376       scan_root_cl = &only_scan_root_cl;
  4377       scan_perm_cl = &only_scan_perm_cl;
  4378       scan_so_cl   = &only_scan_heap_rs_cl;
  4381     pss.start_strong_roots();
  4382     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4383                                   SharedHeap::SO_AllClasses,
  4384                                   scan_root_cl,
  4385                                   &only_scan_heap_rs_cl,
  4386                                   scan_so_cl,
  4387                                   scan_perm_cl,
  4388                                   i);
  4389     pss.end_strong_roots();
  4391       double start = os::elapsedTime();
  4392       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4393       evac.do_void();
  4394       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4395       double term_ms = pss.term_time()*1000.0;
  4396       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  4397       _g1h->g1_policy()->record_termination_time(i, term_ms);
  4399     if (G1UseSurvivorSpace) {
  4400       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4402     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4404     // Clean up any par-expanded rem sets.
  4405     HeapRegionRemSet::par_cleanup();
  4407     MutexLocker x(stats_lock());
  4408     if (ParallelGCVerbose) {
  4409       gclog_or_tty->print("Thread %d complete:\n", i);
  4410 #if G1_DETAILED_STATS
  4411       gclog_or_tty->print("  Pushes: %7d    Pops: %7d   Overflows: %7d   Steals %7d (in %d attempts)\n",
  4412                           pss.pushes(),
  4413                           pss.pops(),
  4414                           pss.overflow_pushes(),
  4415                           pss.steals(),
  4416                           pss.steal_attempts());
  4417 #endif
  4418       double elapsed      = pss.elapsed();
  4419       double strong_roots = pss.strong_roots_time();
  4420       double term         = pss.term_time();
  4421       gclog_or_tty->print("  Elapsed: %7.2f ms.\n"
  4422                           "    Strong roots: %7.2f ms (%6.2f%%)\n"
  4423                           "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
  4424                           elapsed * 1000.0,
  4425                           strong_roots * 1000.0, (strong_roots*100.0/elapsed),
  4426                           term * 1000.0, (term*100.0/elapsed),
  4427                           pss.term_attempts());
  4428       size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
  4429       gclog_or_tty->print("  Waste: %8dK\n"
  4430                  "    Alloc Buffer: %8dK\n"
  4431                  "    Undo: %8dK\n",
  4432                  (total_waste * HeapWordSize) / K,
  4433                  (pss.alloc_buffer_waste() * HeapWordSize) / K,
  4434                  (pss.undo_waste() * HeapWordSize) / K);
  4437     assert(pss.refs_to_scan() == 0, "Task queue should be empty");
  4438     assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
  4440 };
  4442 // *** Common G1 Evacuation Stuff
  4444 class G1CountClosure: public OopsInHeapRegionClosure {
  4445 public:
  4446   int n;
  4447   G1CountClosure() : n(0) {}
  4448   void do_oop(narrowOop* p) {
  4449     guarantee(false, "NYI");
  4451   void do_oop(oop* p) {
  4452     oop obj = *p;
  4453     assert(obj != NULL && G1CollectedHeap::heap()->obj_in_cs(obj),
  4454            "Rem set closure called on non-rem-set pointer.");
  4455     n++;
  4457 };
  4459 static G1CountClosure count_closure;
  4461 void
  4462 G1CollectedHeap::
  4463 g1_process_strong_roots(bool collecting_perm_gen,
  4464                         SharedHeap::ScanningOption so,
  4465                         OopClosure* scan_non_heap_roots,
  4466                         OopsInHeapRegionClosure* scan_rs,
  4467                         OopsInHeapRegionClosure* scan_so,
  4468                         OopsInGenClosure* scan_perm,
  4469                         int worker_i) {
  4470   // First scan the strong roots, including the perm gen.
  4471   double ext_roots_start = os::elapsedTime();
  4472   double closure_app_time_sec = 0.0;
  4474   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4475   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4476   buf_scan_perm.set_generation(perm_gen());
  4478   process_strong_roots(collecting_perm_gen, so,
  4479                        &buf_scan_non_heap_roots,
  4480                        &buf_scan_perm);
  4481   // Finish up any enqueued closure apps.
  4482   buf_scan_non_heap_roots.done();
  4483   buf_scan_perm.done();
  4484   double ext_roots_end = os::elapsedTime();
  4485   g1_policy()->reset_obj_copy_time(worker_i);
  4486   double obj_copy_time_sec =
  4487     buf_scan_non_heap_roots.closure_app_seconds() +
  4488     buf_scan_perm.closure_app_seconds();
  4489   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4490   double ext_root_time_ms =
  4491     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4492   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4494   // Scan strong roots in mark stack.
  4495   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4496     concurrent_mark()->oops_do(scan_non_heap_roots);
  4498   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4499   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4501   // XXX What should this be doing in the parallel case?
  4502   g1_policy()->record_collection_pause_end_CH_strong_roots();
  4503   if (G1VerifyRemSet) {
  4504     // :::: FIXME ::::
  4505     // The stupid remembered set doesn't know how to filter out dead
  4506     // objects, which the smart one does, and so when it is created
  4507     // and then compared the number of entries in each differs and
  4508     // the verification code fails.
  4509     guarantee(false, "verification code is broken, see note");
  4511     // Let's make sure that the current rem set agrees with the stupidest
  4512     // one possible!
  4513     bool refs_enabled = ref_processor()->discovery_enabled();
  4514     if (refs_enabled) ref_processor()->disable_discovery();
  4515     StupidG1RemSet stupid(this);
  4516     count_closure.n = 0;
  4517     stupid.oops_into_collection_set_do(&count_closure, worker_i);
  4518     int stupid_n = count_closure.n;
  4519     count_closure.n = 0;
  4520     g1_rem_set()->oops_into_collection_set_do(&count_closure, worker_i);
  4521     guarantee(count_closure.n == stupid_n, "Old and new rem sets differ.");
  4522     gclog_or_tty->print_cr("\nFound %d pointers in heap RS.", count_closure.n);
  4523     if (refs_enabled) ref_processor()->enable_discovery();
  4525   if (scan_so != NULL) {
  4526     scan_scan_only_set(scan_so, worker_i);
  4528   // Now scan the complement of the collection set.
  4529   if (scan_rs != NULL) {
  4530     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4532   // Finish with the ref_processor roots.
  4533   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4534     ref_processor()->oops_do(scan_non_heap_roots);
  4536   g1_policy()->record_collection_pause_end_G1_strong_roots();
  4537   _process_strong_tasks->all_tasks_completed();
  4540 void
  4541 G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
  4542                                        OopsInHeapRegionClosure* oc,
  4543                                        int worker_i) {
  4544   HeapWord* startAddr = r->bottom();
  4545   HeapWord* endAddr = r->used_region().end();
  4547   oc->set_region(r);
  4549   HeapWord* p = r->bottom();
  4550   HeapWord* t = r->top();
  4551   guarantee( p == r->next_top_at_mark_start(), "invariant" );
  4552   while (p < t) {
  4553     oop obj = oop(p);
  4554     p += obj->oop_iterate(oc);
  4558 void
  4559 G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
  4560                                     int worker_i) {
  4561   double start = os::elapsedTime();
  4563   BufferingOopsInHeapRegionClosure boc(oc);
  4565   FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
  4566   FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
  4568   OopsInHeapRegionClosure *foc;
  4569   if (g1_policy()->should_initiate_conc_mark())
  4570     foc = &scan_and_mark;
  4571   else
  4572     foc = &scan_only;
  4574   HeapRegion* hr;
  4575   int n = 0;
  4576   while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
  4577     scan_scan_only_region(hr, foc, worker_i);
  4578     ++n;
  4580   boc.done();
  4582   double closure_app_s = boc.closure_app_seconds();
  4583   g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
  4584   double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
  4585   g1_policy()->record_scan_only_time(worker_i, ms, n);
  4588 void
  4589 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4590                                        OopClosure* non_root_closure) {
  4591   SharedHeap::process_weak_roots(root_closure, non_root_closure);
  4595 class SaveMarksClosure: public HeapRegionClosure {
  4596 public:
  4597   bool doHeapRegion(HeapRegion* r) {
  4598     r->save_marks();
  4599     return false;
  4601 };
  4603 void G1CollectedHeap::save_marks() {
  4604   if (ParallelGCThreads == 0) {
  4605     SaveMarksClosure sm;
  4606     heap_region_iterate(&sm);
  4608   // We do this even in the parallel case
  4609   perm_gen()->save_marks();
  4612 void G1CollectedHeap::evacuate_collection_set() {
  4613   set_evacuation_failed(false);
  4615   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4616   concurrent_g1_refine()->set_use_cache(false);
  4617   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4618   set_par_threads(n_workers);
  4619   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4621   init_for_evac_failure(NULL);
  4623   change_strong_roots_parity();  // In preparation for parallel strong roots.
  4624   rem_set()->prepare_for_younger_refs_iterate(true);
  4626   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4627   double start_par = os::elapsedTime();
  4628   if (ParallelGCThreads > 0) {
  4629     // The individual threads will set their evac-failure closures.
  4630     workers()->run_task(&g1_par_task);
  4631   } else {
  4632     g1_par_task.work(0);
  4635   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4636   g1_policy()->record_par_time(par_time);
  4637   set_par_threads(0);
  4638   // Is this the right thing to do here?  We don't save marks
  4639   // on individual heap regions when we allocate from
  4640   // them in parallel, so this seems like the correct place for this.
  4641   retire_all_alloc_regions();
  4643     G1IsAliveClosure is_alive(this);
  4644     G1KeepAliveClosure keep_alive(this);
  4645     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4647   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4649   concurrent_g1_refine()->set_use_cache(true);
  4651   finalize_for_evac_failure();
  4653   // Must do this before removing self-forwarding pointers, which clears
  4654   // the per-region evac-failure flags.
  4655   concurrent_mark()->complete_marking_in_collection_set();
  4657   if (evacuation_failed()) {
  4658     remove_self_forwarding_pointers();
  4659     if (PrintGCDetails) {
  4660       gclog_or_tty->print(" (evacuation failed)");
  4661     } else if (PrintGC) {
  4662       gclog_or_tty->print("--");
  4666   if (G1DeferredRSUpdate) {
  4667     RedirtyLoggedCardTableEntryFastClosure redirty;
  4668     dirty_card_queue_set().set_closure(&redirty);
  4669     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4670     JavaThread::dirty_card_queue_set().merge_bufferlists(&dirty_card_queue_set());
  4671     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4674   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4677 void G1CollectedHeap::free_region(HeapRegion* hr) {
  4678   size_t pre_used = 0;
  4679   size_t cleared_h_regions = 0;
  4680   size_t freed_regions = 0;
  4681   UncleanRegionList local_list;
  4683   HeapWord* start = hr->bottom();
  4684   HeapWord* end   = hr->prev_top_at_mark_start();
  4685   size_t used_bytes = hr->used();
  4686   size_t live_bytes = hr->max_live_bytes();
  4687   if (used_bytes > 0) {
  4688     guarantee( live_bytes <= used_bytes, "invariant" );
  4689   } else {
  4690     guarantee( live_bytes == 0, "invariant" );
  4693   size_t garbage_bytes = used_bytes - live_bytes;
  4694   if (garbage_bytes > 0)
  4695     g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
  4697   free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
  4698                    &local_list);
  4699   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  4700                           &local_list);
  4703 void
  4704 G1CollectedHeap::free_region_work(HeapRegion* hr,
  4705                                   size_t& pre_used,
  4706                                   size_t& cleared_h_regions,
  4707                                   size_t& freed_regions,
  4708                                   UncleanRegionList* list,
  4709                                   bool par) {
  4710   assert(!hr->popular(), "should not free popular regions");
  4711   pre_used += hr->used();
  4712   if (hr->isHumongous()) {
  4713     assert(hr->startsHumongous(),
  4714            "Only the start of a humongous region should be freed.");
  4715     int ind = _hrs->find(hr);
  4716     assert(ind != -1, "Should have an index.");
  4717     // Clear the start region.
  4718     hr->hr_clear(par, true /*clear_space*/);
  4719     list->insert_before_head(hr);
  4720     cleared_h_regions++;
  4721     freed_regions++;
  4722     // Clear any continued regions.
  4723     ind++;
  4724     while ((size_t)ind < n_regions()) {
  4725       HeapRegion* hrc = _hrs->at(ind);
  4726       if (!hrc->continuesHumongous()) break;
  4727       // Otherwise, does continue the H region.
  4728       assert(hrc->humongous_start_region() == hr, "Huh?");
  4729       hrc->hr_clear(par, true /*clear_space*/);
  4730       cleared_h_regions++;
  4731       freed_regions++;
  4732       list->insert_before_head(hrc);
  4733       ind++;
  4735   } else {
  4736     hr->hr_clear(par, true /*clear_space*/);
  4737     list->insert_before_head(hr);
  4738     freed_regions++;
  4739     // If we're using clear2, this should not be enabled.
  4740     // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
  4744 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
  4745                                               size_t cleared_h_regions,
  4746                                               size_t freed_regions,
  4747                                               UncleanRegionList* list) {
  4748   if (list != NULL && list->sz() > 0) {
  4749     prepend_region_list_on_unclean_list(list);
  4751   // Acquire a lock, if we're parallel, to update possibly-shared
  4752   // variables.
  4753   Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
  4755     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  4756     _summary_bytes_used -= pre_used;
  4757     _num_humongous_regions -= (int) cleared_h_regions;
  4758     _free_regions += freed_regions;
  4763 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  4764   while (list != NULL) {
  4765     guarantee( list->is_young(), "invariant" );
  4767     HeapWord* bottom = list->bottom();
  4768     HeapWord* end = list->end();
  4769     MemRegion mr(bottom, end);
  4770     ct_bs->dirty(mr);
  4772     list = list->get_next_young_region();
  4776 void G1CollectedHeap::cleanUpCardTable() {
  4777   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4778   double start = os::elapsedTime();
  4780   ct_bs->clear(_g1_committed);
  4782   // now, redirty the cards of the scan-only and survivor regions
  4783   // (it seemed faster to do it this way, instead of iterating over
  4784   // all regions and then clearing / dirtying as approprite)
  4785   dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
  4786   dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
  4788   double elapsed = os::elapsedTime() - start;
  4789   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  4793 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
  4794   // First do any popular regions.
  4795   HeapRegion* hr;
  4796   while ((hr = popular_region_to_evac()) != NULL) {
  4797     evac_popular_region(hr);
  4799   // Now do heuristic pauses.
  4800   if (g1_policy()->should_do_collection_pause(word_size)) {
  4801     do_collection_pause();
  4805 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  4806   double young_time_ms     = 0.0;
  4807   double non_young_time_ms = 0.0;
  4809   G1CollectorPolicy* policy = g1_policy();
  4811   double start_sec = os::elapsedTime();
  4812   bool non_young = true;
  4814   HeapRegion* cur = cs_head;
  4815   int age_bound = -1;
  4816   size_t rs_lengths = 0;
  4818   while (cur != NULL) {
  4819     if (non_young) {
  4820       if (cur->is_young()) {
  4821         double end_sec = os::elapsedTime();
  4822         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4823         non_young_time_ms += elapsed_ms;
  4825         start_sec = os::elapsedTime();
  4826         non_young = false;
  4828     } else {
  4829       if (!cur->is_on_free_list()) {
  4830         double end_sec = os::elapsedTime();
  4831         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4832         young_time_ms += elapsed_ms;
  4834         start_sec = os::elapsedTime();
  4835         non_young = true;
  4839     rs_lengths += cur->rem_set()->occupied();
  4841     HeapRegion* next = cur->next_in_collection_set();
  4842     assert(cur->in_collection_set(), "bad CS");
  4843     cur->set_next_in_collection_set(NULL);
  4844     cur->set_in_collection_set(false);
  4846     if (cur->is_young()) {
  4847       int index = cur->young_index_in_cset();
  4848       guarantee( index != -1, "invariant" );
  4849       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  4850       size_t words_survived = _surviving_young_words[index];
  4851       cur->record_surv_words_in_group(words_survived);
  4852     } else {
  4853       int index = cur->young_index_in_cset();
  4854       guarantee( index == -1, "invariant" );
  4857     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  4858             (!cur->is_young() && cur->young_index_in_cset() == -1),
  4859             "invariant" );
  4861     if (!cur->evacuation_failed()) {
  4862       // And the region is empty.
  4863       assert(!cur->is_empty(),
  4864              "Should not have empty regions in a CS.");
  4865       free_region(cur);
  4866     } else {
  4867       guarantee( !cur->is_scan_only(), "should not be scan only" );
  4868       cur->uninstall_surv_rate_group();
  4869       if (cur->is_young())
  4870         cur->set_young_index_in_cset(-1);
  4871       cur->set_not_young();
  4872       cur->set_evacuation_failed(false);
  4874     cur = next;
  4877   policy->record_max_rs_lengths(rs_lengths);
  4878   policy->cset_regions_freed();
  4880   double end_sec = os::elapsedTime();
  4881   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4882   if (non_young)
  4883     non_young_time_ms += elapsed_ms;
  4884   else
  4885     young_time_ms += elapsed_ms;
  4887   policy->record_young_free_cset_time_ms(young_time_ms);
  4888   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  4891 HeapRegion*
  4892 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
  4893   assert(ZF_mon->owned_by_self(), "Precondition");
  4894   HeapRegion* res = pop_unclean_region_list_locked();
  4895   if (res != NULL) {
  4896     assert(!res->continuesHumongous() &&
  4897            res->zero_fill_state() != HeapRegion::Allocated,
  4898            "Only free regions on unclean list.");
  4899     if (zero_filled) {
  4900       res->ensure_zero_filled_locked();
  4901       res->set_zero_fill_allocated();
  4904   return res;
  4907 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
  4908   MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
  4909   return alloc_region_from_unclean_list_locked(zero_filled);
  4912 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
  4913   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4914   put_region_on_unclean_list_locked(r);
  4915   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4918 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
  4919   MutexLockerEx x(Cleanup_mon);
  4920   set_unclean_regions_coming_locked(b);
  4923 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
  4924   assert(Cleanup_mon->owned_by_self(), "Precondition");
  4925   _unclean_regions_coming = b;
  4926   // Wake up mutator threads that might be waiting for completeCleanup to
  4927   // finish.
  4928   if (!b) Cleanup_mon->notify_all();
  4931 void G1CollectedHeap::wait_for_cleanup_complete() {
  4932   MutexLockerEx x(Cleanup_mon);
  4933   wait_for_cleanup_complete_locked();
  4936 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
  4937   assert(Cleanup_mon->owned_by_self(), "precondition");
  4938   while (_unclean_regions_coming) {
  4939     Cleanup_mon->wait();
  4943 void
  4944 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
  4945   assert(ZF_mon->owned_by_self(), "precondition.");
  4946   _unclean_region_list.insert_before_head(r);
  4949 void
  4950 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
  4951   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4952   prepend_region_list_on_unclean_list_locked(list);
  4953   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4956 void
  4957 G1CollectedHeap::
  4958 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
  4959   assert(ZF_mon->owned_by_self(), "precondition.");
  4960   _unclean_region_list.prepend_list(list);
  4963 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
  4964   assert(ZF_mon->owned_by_self(), "precondition.");
  4965   HeapRegion* res = _unclean_region_list.pop();
  4966   if (res != NULL) {
  4967     // Inform ZF thread that there's a new unclean head.
  4968     if (_unclean_region_list.hd() != NULL && should_zf())
  4969       ZF_mon->notify_all();
  4971   return res;
  4974 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
  4975   assert(ZF_mon->owned_by_self(), "precondition.");
  4976   return _unclean_region_list.hd();
  4980 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
  4981   assert(ZF_mon->owned_by_self(), "Precondition");
  4982   HeapRegion* r = peek_unclean_region_list_locked();
  4983   if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
  4984     // Result of below must be equal to "r", since we hold the lock.
  4985     (void)pop_unclean_region_list_locked();
  4986     put_free_region_on_list_locked(r);
  4987     return true;
  4988   } else {
  4989     return false;
  4993 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
  4994   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4995   return move_cleaned_region_to_free_list_locked();
  4999 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
  5000   assert(ZF_mon->owned_by_self(), "precondition.");
  5001   assert(_free_region_list_size == free_region_list_length(), "Inv");
  5002   assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
  5003         "Regions on free list must be zero filled");
  5004   assert(!r->isHumongous(), "Must not be humongous.");
  5005   assert(r->is_empty(), "Better be empty");
  5006   assert(!r->is_on_free_list(),
  5007          "Better not already be on free list");
  5008   assert(!r->is_on_unclean_list(),
  5009          "Better not already be on unclean list");
  5010   r->set_on_free_list(true);
  5011   r->set_next_on_free_list(_free_region_list);
  5012   _free_region_list = r;
  5013   _free_region_list_size++;
  5014   assert(_free_region_list_size == free_region_list_length(), "Inv");
  5017 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
  5018   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5019   put_free_region_on_list_locked(r);
  5022 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
  5023   assert(ZF_mon->owned_by_self(), "precondition.");
  5024   assert(_free_region_list_size == free_region_list_length(), "Inv");
  5025   HeapRegion* res = _free_region_list;
  5026   if (res != NULL) {
  5027     _free_region_list = res->next_from_free_list();
  5028     _free_region_list_size--;
  5029     res->set_on_free_list(false);
  5030     res->set_next_on_free_list(NULL);
  5031     assert(_free_region_list_size == free_region_list_length(), "Inv");
  5033   return res;
  5037 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
  5038   // By self, or on behalf of self.
  5039   assert(Heap_lock->is_locked(), "Precondition");
  5040   HeapRegion* res = NULL;
  5041   bool first = true;
  5042   while (res == NULL) {
  5043     if (zero_filled || !first) {
  5044       MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5045       res = pop_free_region_list_locked();
  5046       if (res != NULL) {
  5047         assert(!res->zero_fill_is_allocated(),
  5048                "No allocated regions on free list.");
  5049         res->set_zero_fill_allocated();
  5050       } else if (!first) {
  5051         break;  // We tried both, time to return NULL.
  5055     if (res == NULL) {
  5056       res = alloc_region_from_unclean_list(zero_filled);
  5058     assert(res == NULL ||
  5059            !zero_filled ||
  5060            res->zero_fill_is_allocated(),
  5061            "We must have allocated the region we're returning");
  5062     first = false;
  5064   return res;
  5067 void G1CollectedHeap::remove_allocated_regions_from_lists() {
  5068   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5070     HeapRegion* prev = NULL;
  5071     HeapRegion* cur = _unclean_region_list.hd();
  5072     while (cur != NULL) {
  5073       HeapRegion* next = cur->next_from_unclean_list();
  5074       if (cur->zero_fill_is_allocated()) {
  5075         // Remove from the list.
  5076         if (prev == NULL) {
  5077           (void)_unclean_region_list.pop();
  5078         } else {
  5079           _unclean_region_list.delete_after(prev);
  5081         cur->set_on_unclean_list(false);
  5082         cur->set_next_on_unclean_list(NULL);
  5083       } else {
  5084         prev = cur;
  5086       cur = next;
  5088     assert(_unclean_region_list.sz() == unclean_region_list_length(),
  5089            "Inv");
  5093     HeapRegion* prev = NULL;
  5094     HeapRegion* cur = _free_region_list;
  5095     while (cur != NULL) {
  5096       HeapRegion* next = cur->next_from_free_list();
  5097       if (cur->zero_fill_is_allocated()) {
  5098         // Remove from the list.
  5099         if (prev == NULL) {
  5100           _free_region_list = cur->next_from_free_list();
  5101         } else {
  5102           prev->set_next_on_free_list(cur->next_from_free_list());
  5104         cur->set_on_free_list(false);
  5105         cur->set_next_on_free_list(NULL);
  5106         _free_region_list_size--;
  5107       } else {
  5108         prev = cur;
  5110       cur = next;
  5112     assert(_free_region_list_size == free_region_list_length(), "Inv");
  5116 bool G1CollectedHeap::verify_region_lists() {
  5117   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5118   return verify_region_lists_locked();
  5121 bool G1CollectedHeap::verify_region_lists_locked() {
  5122   HeapRegion* unclean = _unclean_region_list.hd();
  5123   while (unclean != NULL) {
  5124     guarantee(unclean->is_on_unclean_list(), "Well, it is!");
  5125     guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
  5126     guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
  5127               "Everything else is possible.");
  5128     unclean = unclean->next_from_unclean_list();
  5130   guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
  5132   HeapRegion* free_r = _free_region_list;
  5133   while (free_r != NULL) {
  5134     assert(free_r->is_on_free_list(), "Well, it is!");
  5135     assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
  5136     switch (free_r->zero_fill_state()) {
  5137     case HeapRegion::NotZeroFilled:
  5138     case HeapRegion::ZeroFilling:
  5139       guarantee(false, "Should not be on free list.");
  5140       break;
  5141     default:
  5142       // Everything else is possible.
  5143       break;
  5145     free_r = free_r->next_from_free_list();
  5147   guarantee(_free_region_list_size == free_region_list_length(), "Inv");
  5148   // If we didn't do an assertion...
  5149   return true;
  5152 size_t G1CollectedHeap::free_region_list_length() {
  5153   assert(ZF_mon->owned_by_self(), "precondition.");
  5154   size_t len = 0;
  5155   HeapRegion* cur = _free_region_list;
  5156   while (cur != NULL) {
  5157     len++;
  5158     cur = cur->next_from_free_list();
  5160   return len;
  5163 size_t G1CollectedHeap::unclean_region_list_length() {
  5164   assert(ZF_mon->owned_by_self(), "precondition.");
  5165   return _unclean_region_list.length();
  5168 size_t G1CollectedHeap::n_regions() {
  5169   return _hrs->length();
  5172 size_t G1CollectedHeap::max_regions() {
  5173   return
  5174     (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
  5175     HeapRegion::GrainBytes;
  5178 size_t G1CollectedHeap::free_regions() {
  5179   /* Possibly-expensive assert.
  5180   assert(_free_regions == count_free_regions(),
  5181          "_free_regions is off.");
  5182   */
  5183   return _free_regions;
  5186 bool G1CollectedHeap::should_zf() {
  5187   return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
  5190 class RegionCounter: public HeapRegionClosure {
  5191   size_t _n;
  5192 public:
  5193   RegionCounter() : _n(0) {}
  5194   bool doHeapRegion(HeapRegion* r) {
  5195     if (r->is_empty() && !r->popular()) {
  5196       assert(!r->isHumongous(), "H regions should not be empty.");
  5197       _n++;
  5199     return false;
  5201   int res() { return (int) _n; }
  5202 };
  5204 size_t G1CollectedHeap::count_free_regions() {
  5205   RegionCounter rc;
  5206   heap_region_iterate(&rc);
  5207   size_t n = rc.res();
  5208   if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
  5209     n--;
  5210   return n;
  5213 size_t G1CollectedHeap::count_free_regions_list() {
  5214   size_t n = 0;
  5215   size_t o = 0;
  5216   ZF_mon->lock_without_safepoint_check();
  5217   HeapRegion* cur = _free_region_list;
  5218   while (cur != NULL) {
  5219     cur = cur->next_from_free_list();
  5220     n++;
  5222   size_t m = unclean_region_list_length();
  5223   ZF_mon->unlock();
  5224   return n + m;
  5227 bool G1CollectedHeap::should_set_young_locked() {
  5228   assert(heap_lock_held_for_gc(),
  5229               "the heap lock should already be held by or for this thread");
  5230   return  (g1_policy()->in_young_gc_mode() &&
  5231            g1_policy()->should_add_next_region_to_young_list());
  5234 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5235   assert(heap_lock_held_for_gc(),
  5236               "the heap lock should already be held by or for this thread");
  5237   _young_list->push_region(hr);
  5238   g1_policy()->set_region_short_lived(hr);
  5241 class NoYoungRegionsClosure: public HeapRegionClosure {
  5242 private:
  5243   bool _success;
  5244 public:
  5245   NoYoungRegionsClosure() : _success(true) { }
  5246   bool doHeapRegion(HeapRegion* r) {
  5247     if (r->is_young()) {
  5248       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5249                              r->bottom(), r->end());
  5250       _success = false;
  5252     return false;
  5254   bool success() { return _success; }
  5255 };
  5257 bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
  5258                                              bool check_sample) {
  5259   bool ret = true;
  5261   ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
  5262   if (!ignore_scan_only_list) {
  5263     NoYoungRegionsClosure closure;
  5264     heap_region_iterate(&closure);
  5265     ret = ret && closure.success();
  5268   return ret;
  5271 void G1CollectedHeap::empty_young_list() {
  5272   assert(heap_lock_held_for_gc(),
  5273               "the heap lock should already be held by or for this thread");
  5274   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
  5276   _young_list->empty_list();
  5279 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  5280   bool no_allocs = true;
  5281   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
  5282     HeapRegion* r = _gc_alloc_regions[ap];
  5283     no_allocs = r == NULL || r->saved_mark_at_top();
  5285   return no_allocs;
  5288 void G1CollectedHeap::retire_all_alloc_regions() {
  5289   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  5290     HeapRegion* r = _gc_alloc_regions[ap];
  5291     if (r != NULL) {
  5292       // Check for aliases.
  5293       bool has_processed_alias = false;
  5294       for (int i = 0; i < ap; ++i) {
  5295         if (_gc_alloc_regions[i] == r) {
  5296           has_processed_alias = true;
  5297           break;
  5300       if (!has_processed_alias) {
  5301         retire_alloc_region(r, false /* par */);
  5308 // Done at the start of full GC.
  5309 void G1CollectedHeap::tear_down_region_lists() {
  5310   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5311   while (pop_unclean_region_list_locked() != NULL) ;
  5312   assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
  5313          "Postconditions of loop.")
  5314   while (pop_free_region_list_locked() != NULL) ;
  5315   assert(_free_region_list == NULL, "Postcondition of loop.");
  5316   if (_free_region_list_size != 0) {
  5317     gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
  5318     print();
  5320   assert(_free_region_list_size == 0, "Postconditions of loop.");
  5324 class RegionResetter: public HeapRegionClosure {
  5325   G1CollectedHeap* _g1;
  5326   int _n;
  5327 public:
  5328   RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5329   bool doHeapRegion(HeapRegion* r) {
  5330     if (r->continuesHumongous()) return false;
  5331     if (r->top() > r->bottom()) {
  5332       if (r->top() < r->end()) {
  5333         Copy::fill_to_words(r->top(),
  5334                           pointer_delta(r->end(), r->top()));
  5336       r->set_zero_fill_allocated();
  5337     } else {
  5338       assert(r->is_empty(), "tautology");
  5339       if (r->popular()) {
  5340         if (r->zero_fill_state() != HeapRegion::Allocated) {
  5341           r->ensure_zero_filled_locked();
  5342           r->set_zero_fill_allocated();
  5344       } else {
  5345         _n++;
  5346         switch (r->zero_fill_state()) {
  5347         case HeapRegion::NotZeroFilled:
  5348         case HeapRegion::ZeroFilling:
  5349           _g1->put_region_on_unclean_list_locked(r);
  5350           break;
  5351         case HeapRegion::Allocated:
  5352           r->set_zero_fill_complete();
  5353           // no break; go on to put on free list.
  5354         case HeapRegion::ZeroFilled:
  5355           _g1->put_free_region_on_list_locked(r);
  5356           break;
  5360     return false;
  5363   int getFreeRegionCount() {return _n;}
  5364 };
  5366 // Done at the end of full GC.
  5367 void G1CollectedHeap::rebuild_region_lists() {
  5368   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5369   // This needs to go at the end of the full GC.
  5370   RegionResetter rs;
  5371   heap_region_iterate(&rs);
  5372   _free_regions = rs.getFreeRegionCount();
  5373   // Tell the ZF thread it may have work to do.
  5374   if (should_zf()) ZF_mon->notify_all();
  5377 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
  5378   G1CollectedHeap* _g1;
  5379   int _n;
  5380 public:
  5381   UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5382   bool doHeapRegion(HeapRegion* r) {
  5383     if (r->continuesHumongous()) return false;
  5384     if (r->top() > r->bottom()) {
  5385       // There are assertions in "set_zero_fill_needed()" below that
  5386       // require top() == bottom(), so this is technically illegal.
  5387       // We'll skirt the law here, by making that true temporarily.
  5388       DEBUG_ONLY(HeapWord* save_top = r->top();
  5389                  r->set_top(r->bottom()));
  5390       r->set_zero_fill_needed();
  5391       DEBUG_ONLY(r->set_top(save_top));
  5393     return false;
  5395 };
  5397 // Done at the start of full GC.
  5398 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
  5399   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5400   // This needs to go at the end of the full GC.
  5401   UsedRegionsNeedZeroFillSetter rs;
  5402   heap_region_iterate(&rs);
  5405 class CountObjClosure: public ObjectClosure {
  5406   size_t _n;
  5407 public:
  5408   CountObjClosure() : _n(0) {}
  5409   void do_object(oop obj) { _n++; }
  5410   size_t n() { return _n; }
  5411 };
  5413 size_t G1CollectedHeap::pop_object_used_objs() {
  5414   size_t sum_objs = 0;
  5415   for (int i = 0; i < G1NumPopularRegions; i++) {
  5416     CountObjClosure cl;
  5417     _hrs->at(i)->object_iterate(&cl);
  5418     sum_objs += cl.n();
  5420   return sum_objs;
  5423 size_t G1CollectedHeap::pop_object_used_bytes() {
  5424   size_t sum_bytes = 0;
  5425   for (int i = 0; i < G1NumPopularRegions; i++) {
  5426     sum_bytes += _hrs->at(i)->used();
  5428   return sum_bytes;
  5432 static int nq = 0;
  5434 HeapWord* G1CollectedHeap::allocate_popular_object(size_t word_size) {
  5435   while (_cur_pop_hr_index < G1NumPopularRegions) {
  5436     HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index);
  5437     HeapWord* res = cur_pop_region->allocate(word_size);
  5438     if (res != NULL) {
  5439       // We account for popular objs directly in the used summary:
  5440       _summary_bytes_used += (word_size * HeapWordSize);
  5441       return res;
  5443     // Otherwise, try the next region (first making sure that we remember
  5444     // the last "top" value as the "next_top_at_mark_start", so that
  5445     // objects made popular during markings aren't automatically considered
  5446     // live).
  5447     cur_pop_region->note_end_of_copying();
  5448     // Otherwise, try the next region.
  5449     _cur_pop_hr_index++;
  5451   // XXX: For now !!!
  5452   vm_exit_out_of_memory(word_size,
  5453                         "Not enough pop obj space (To Be Fixed)");
  5454   return NULL;
  5457 class HeapRegionList: public CHeapObj {
  5458   public:
  5459   HeapRegion* hr;
  5460   HeapRegionList* next;
  5461 };
  5463 void G1CollectedHeap::schedule_popular_region_evac(HeapRegion* r) {
  5464   // This might happen during parallel GC, so protect by this lock.
  5465   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  5466   // We don't schedule regions whose evacuations are already pending, or
  5467   // are already being evacuated.
  5468   if (!r->popular_pending() && !r->in_collection_set()) {
  5469     r->set_popular_pending(true);
  5470     if (G1TracePopularity) {
  5471       gclog_or_tty->print_cr("Scheduling region "PTR_FORMAT" "
  5472                              "["PTR_FORMAT", "PTR_FORMAT") for pop-object evacuation.",
  5473                              r, r->bottom(), r->end());
  5475     HeapRegionList* hrl = new HeapRegionList;
  5476     hrl->hr = r;
  5477     hrl->next = _popular_regions_to_be_evacuated;
  5478     _popular_regions_to_be_evacuated = hrl;
  5482 HeapRegion* G1CollectedHeap::popular_region_to_evac() {
  5483   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  5484   HeapRegion* res = NULL;
  5485   while (_popular_regions_to_be_evacuated != NULL && res == NULL) {
  5486     HeapRegionList* hrl = _popular_regions_to_be_evacuated;
  5487     _popular_regions_to_be_evacuated = hrl->next;
  5488     res = hrl->hr;
  5489     // The G1RSPopLimit may have increased, so recheck here...
  5490     if (res->rem_set()->occupied() < (size_t) G1RSPopLimit) {
  5491       // Hah: don't need to schedule.
  5492       if (G1TracePopularity) {
  5493         gclog_or_tty->print_cr("Unscheduling region "PTR_FORMAT" "
  5494                                "["PTR_FORMAT", "PTR_FORMAT") "
  5495                                "for pop-object evacuation (size %d < limit %d)",
  5496                                res, res->bottom(), res->end(),
  5497                                res->rem_set()->occupied(), G1RSPopLimit);
  5499       res->set_popular_pending(false);
  5500       res = NULL;
  5502     // We do not reset res->popular() here; if we did so, it would allow
  5503     // the region to be "rescheduled" for popularity evacuation.  Instead,
  5504     // this is done in the collection pause, with the world stopped.
  5505     // So the invariant is that the regions in the list have the popularity
  5506     // boolean set, but having the boolean set does not imply membership
  5507     // on the list (though there can at most one such pop-pending region
  5508     // not on the list at any time).
  5509     delete hrl;
  5511   return res;
  5514 void G1CollectedHeap::evac_popular_region(HeapRegion* hr) {
  5515   while (true) {
  5516     // Don't want to do a GC pause while cleanup is being completed!
  5517     wait_for_cleanup_complete();
  5519     // Read the GC count while holding the Heap_lock
  5520     int gc_count_before = SharedHeap::heap()->total_collections();
  5521     g1_policy()->record_stop_world_start();
  5524       MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  5525       VM_G1PopRegionCollectionPause op(gc_count_before, hr);
  5526       VMThread::execute(&op);
  5528       // If the prolog succeeded, we didn't do a GC for this.
  5529       if (op.prologue_succeeded()) break;
  5531     // Otherwise we didn't.  We should recheck the size, though, since
  5532     // the limit may have increased...
  5533     if (hr->rem_set()->occupied() < (size_t) G1RSPopLimit) {
  5534       hr->set_popular_pending(false);
  5535       break;
  5540 void G1CollectedHeap::atomic_inc_obj_rc(oop obj) {
  5541   Atomic::inc(obj_rc_addr(obj));
  5544 class CountRCClosure: public OopsInHeapRegionClosure {
  5545   G1CollectedHeap* _g1h;
  5546   bool _parallel;
  5547 public:
  5548   CountRCClosure(G1CollectedHeap* g1h) :
  5549     _g1h(g1h), _parallel(ParallelGCThreads > 0)
  5550   {}
  5551   void do_oop(narrowOop* p) {
  5552     guarantee(false, "NYI");
  5554   void do_oop(oop* p) {
  5555     oop obj = *p;
  5556     assert(obj != NULL, "Precondition.");
  5557     if (_parallel) {
  5558       // We go sticky at the limit to avoid excess contention.
  5559       // If we want to track the actual RC's further, we'll need to keep a
  5560       // per-thread hash table or something for the popular objects.
  5561       if (_g1h->obj_rc(obj) < G1ObjPopLimit) {
  5562         _g1h->atomic_inc_obj_rc(obj);
  5564     } else {
  5565       _g1h->inc_obj_rc(obj);
  5568 };
  5570 class EvacPopObjClosure: public ObjectClosure {
  5571   G1CollectedHeap* _g1h;
  5572   size_t _pop_objs;
  5573   size_t _max_rc;
  5574 public:
  5575   EvacPopObjClosure(G1CollectedHeap* g1h) :
  5576     _g1h(g1h), _pop_objs(0), _max_rc(0) {}
  5578   void do_object(oop obj) {
  5579     size_t rc = _g1h->obj_rc(obj);
  5580     _max_rc = MAX2(rc, _max_rc);
  5581     if (rc >= (size_t) G1ObjPopLimit) {
  5582       _g1h->_pop_obj_rc_at_copy.add((double)rc);
  5583       size_t word_sz = obj->size();
  5584       HeapWord* new_pop_loc = _g1h->allocate_popular_object(word_sz);
  5585       oop new_pop_obj = (oop)new_pop_loc;
  5586       Copy::aligned_disjoint_words((HeapWord*)obj, new_pop_loc, word_sz);
  5587       obj->forward_to(new_pop_obj);
  5588       G1ScanAndBalanceClosure scan_and_balance(_g1h);
  5589       new_pop_obj->oop_iterate_backwards(&scan_and_balance);
  5590       // preserve "next" mark bit if marking is in progress.
  5591       if (_g1h->mark_in_progress() && !_g1h->is_obj_ill(obj)) {
  5592         _g1h->concurrent_mark()->markAndGrayObjectIfNecessary(new_pop_obj);
  5595       if (G1TracePopularity) {
  5596         gclog_or_tty->print_cr("Found obj " PTR_FORMAT " of word size " SIZE_FORMAT
  5597                                " pop (%d), move to " PTR_FORMAT,
  5598                                (void*) obj, word_sz,
  5599                                _g1h->obj_rc(obj), (void*) new_pop_obj);
  5601       _pop_objs++;
  5604   size_t pop_objs() { return _pop_objs; }
  5605   size_t max_rc() { return _max_rc; }
  5606 };
  5608 class G1ParCountRCTask : public AbstractGangTask {
  5609   G1CollectedHeap* _g1h;
  5610   BitMap _bm;
  5612   size_t getNCards() {
  5613     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  5614       / G1BlockOffsetSharedArray::N_bytes;
  5616   CountRCClosure _count_rc_closure;
  5617 public:
  5618   G1ParCountRCTask(G1CollectedHeap* g1h) :
  5619     AbstractGangTask("G1 Par RC Count task"),
  5620     _g1h(g1h), _bm(getNCards()), _count_rc_closure(g1h)
  5621   {}
  5623   void work(int i) {
  5624     ResourceMark rm;
  5625     HandleMark   hm;
  5626     _g1h->g1_rem_set()->oops_into_collection_set_do(&_count_rc_closure, i);
  5628 };
  5630 void G1CollectedHeap::popularity_pause_preamble(HeapRegion* popular_region) {
  5631   // We're evacuating a single region (for popularity).
  5632   if (G1TracePopularity) {
  5633     gclog_or_tty->print_cr("Doing pop region pause for ["PTR_FORMAT", "PTR_FORMAT")",
  5634                            popular_region->bottom(), popular_region->end());
  5636   g1_policy()->set_single_region_collection_set(popular_region);
  5637   size_t max_rc;
  5638   if (!compute_reference_counts_and_evac_popular(popular_region,
  5639                                                  &max_rc)) {
  5640     // We didn't evacuate any popular objects.
  5641     // We increase the RS popularity limit, to prevent this from
  5642     // happening in the future.
  5643     if (G1RSPopLimit < (1 << 30)) {
  5644       G1RSPopLimit *= 2;
  5646     // For now, interesting enough for a message:
  5647 #if 1
  5648     gclog_or_tty->print_cr("In pop region pause for ["PTR_FORMAT", "PTR_FORMAT"), "
  5649                            "failed to find a pop object (max = %d).",
  5650                            popular_region->bottom(), popular_region->end(),
  5651                            max_rc);
  5652     gclog_or_tty->print_cr("Increased G1RSPopLimit to %d.", G1RSPopLimit);
  5653 #endif // 0
  5654     // Also, we reset the collection set to NULL, to make the rest of
  5655     // the collection do nothing.
  5656     assert(popular_region->next_in_collection_set() == NULL,
  5657            "should be single-region.");
  5658     popular_region->set_in_collection_set(false);
  5659     popular_region->set_popular_pending(false);
  5660     g1_policy()->clear_collection_set();
  5664 bool G1CollectedHeap::
  5665 compute_reference_counts_and_evac_popular(HeapRegion* popular_region,
  5666                                           size_t* max_rc) {
  5667   HeapWord* rc_region_bot;
  5668   HeapWord* rc_region_end;
  5670   // Set up the reference count region.
  5671   HeapRegion* rc_region = newAllocRegion(HeapRegion::GrainWords);
  5672   if (rc_region != NULL) {
  5673     rc_region_bot = rc_region->bottom();
  5674     rc_region_end = rc_region->end();
  5675   } else {
  5676     rc_region_bot = NEW_C_HEAP_ARRAY(HeapWord, HeapRegion::GrainWords);
  5677     if (rc_region_bot == NULL) {
  5678       vm_exit_out_of_memory(HeapRegion::GrainWords,
  5679                             "No space for RC region.");
  5681     rc_region_end = rc_region_bot + HeapRegion::GrainWords;
  5684   if (G1TracePopularity)
  5685     gclog_or_tty->print_cr("RC region is ["PTR_FORMAT", "PTR_FORMAT")",
  5686                            rc_region_bot, rc_region_end);
  5687   if (rc_region_bot > popular_region->bottom()) {
  5688     _rc_region_above = true;
  5689     _rc_region_diff =
  5690       pointer_delta(rc_region_bot, popular_region->bottom(), 1);
  5691   } else {
  5692     assert(rc_region_bot < popular_region->bottom(), "Can't be equal.");
  5693     _rc_region_above = false;
  5694     _rc_region_diff =
  5695       pointer_delta(popular_region->bottom(), rc_region_bot, 1);
  5697   g1_policy()->record_pop_compute_rc_start();
  5698   // Count external references.
  5699   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5700   if (ParallelGCThreads > 0) {
  5702     set_par_threads(workers()->total_workers());
  5703     G1ParCountRCTask par_count_rc_task(this);
  5704     workers()->run_task(&par_count_rc_task);
  5705     set_par_threads(0);
  5707   } else {
  5708     CountRCClosure count_rc_closure(this);
  5709     g1_rem_set()->oops_into_collection_set_do(&count_rc_closure, 0);
  5711   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5712   g1_policy()->record_pop_compute_rc_end();
  5714   // Now evacuate popular objects.
  5715   g1_policy()->record_pop_evac_start();
  5716   EvacPopObjClosure evac_pop_obj_cl(this);
  5717   popular_region->object_iterate(&evac_pop_obj_cl);
  5718   *max_rc = evac_pop_obj_cl.max_rc();
  5720   // Make sure the last "top" value of the current popular region is copied
  5721   // as the "next_top_at_mark_start", so that objects made popular during
  5722   // markings aren't automatically considered live.
  5723   HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index);
  5724   cur_pop_region->note_end_of_copying();
  5726   if (rc_region != NULL) {
  5727     free_region(rc_region);
  5728   } else {
  5729     FREE_C_HEAP_ARRAY(HeapWord, rc_region_bot);
  5731   g1_policy()->record_pop_evac_end();
  5733   return evac_pop_obj_cl.pop_objs() > 0;
  5736 class CountPopObjInfoClosure: public HeapRegionClosure {
  5737   size_t _objs;
  5738   size_t _bytes;
  5740   class CountObjClosure: public ObjectClosure {
  5741     int _n;
  5742   public:
  5743     CountObjClosure() : _n(0) {}
  5744     void do_object(oop obj) { _n++; }
  5745     size_t n() { return _n; }
  5746   };
  5748 public:
  5749   CountPopObjInfoClosure() : _objs(0), _bytes(0) {}
  5750   bool doHeapRegion(HeapRegion* r) {
  5751     _bytes += r->used();
  5752     CountObjClosure blk;
  5753     r->object_iterate(&blk);
  5754     _objs += blk.n();
  5755     return false;
  5757   size_t objs() { return _objs; }
  5758   size_t bytes() { return _bytes; }
  5759 };
  5762 void G1CollectedHeap::print_popularity_summary_info() const {
  5763   CountPopObjInfoClosure blk;
  5764   for (int i = 0; i <= _cur_pop_hr_index; i++) {
  5765     blk.doHeapRegion(_hrs->at(i));
  5767   gclog_or_tty->print_cr("\nPopular objects: %d objs, %d bytes.",
  5768                          blk.objs(), blk.bytes());
  5769   gclog_or_tty->print_cr("   RC at copy = [avg = %5.2f, max = %5.2f, sd = %5.2f].",
  5770                 _pop_obj_rc_at_copy.avg(),
  5771                 _pop_obj_rc_at_copy.maximum(),
  5772                 _pop_obj_rc_at_copy.sd());
  5775 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5776   _refine_cte_cl->set_concurrent(concurrent);
  5779 #ifndef PRODUCT
  5781 class PrintHeapRegionClosure: public HeapRegionClosure {
  5782 public:
  5783   bool doHeapRegion(HeapRegion *r) {
  5784     gclog_or_tty->print("Region: "PTR_FORMAT":", r);
  5785     if (r != NULL) {
  5786       if (r->is_on_free_list())
  5787         gclog_or_tty->print("Free ");
  5788       if (r->is_young())
  5789         gclog_or_tty->print("Young ");
  5790       if (r->isHumongous())
  5791         gclog_or_tty->print("Is Humongous ");
  5792       r->print();
  5794     return false;
  5796 };
  5798 class SortHeapRegionClosure : public HeapRegionClosure {
  5799   size_t young_regions,free_regions, unclean_regions;
  5800   size_t hum_regions, count;
  5801   size_t unaccounted, cur_unclean, cur_alloc;
  5802   size_t total_free;
  5803   HeapRegion* cur;
  5804 public:
  5805   SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
  5806     free_regions(0), unclean_regions(0),
  5807     hum_regions(0),
  5808     count(0), unaccounted(0),
  5809     cur_alloc(0), total_free(0)
  5810   {}
  5811   bool doHeapRegion(HeapRegion *r) {
  5812     count++;
  5813     if (r->is_on_free_list()) free_regions++;
  5814     else if (r->is_on_unclean_list()) unclean_regions++;
  5815     else if (r->isHumongous())  hum_regions++;
  5816     else if (r->is_young()) young_regions++;
  5817     else if (r == cur) cur_alloc++;
  5818     else unaccounted++;
  5819     return false;
  5821   void print() {
  5822     total_free = free_regions + unclean_regions;
  5823     gclog_or_tty->print("%d regions\n", count);
  5824     gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
  5825                         total_free, free_regions, unclean_regions);
  5826     gclog_or_tty->print("%d humongous %d young\n",
  5827                         hum_regions, young_regions);
  5828     gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
  5829     gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
  5831 };
  5833 void G1CollectedHeap::print_region_counts() {
  5834   SortHeapRegionClosure sc(_cur_alloc_region);
  5835   PrintHeapRegionClosure cl;
  5836   heap_region_iterate(&cl);
  5837   heap_region_iterate(&sc);
  5838   sc.print();
  5839   print_region_accounting_info();
  5840 };
  5842 bool G1CollectedHeap::regions_accounted_for() {
  5843   // TODO: regions accounting for young/survivor/tenured
  5844   return true;
  5847 bool G1CollectedHeap::print_region_accounting_info() {
  5848   gclog_or_tty->print_cr("P regions: %d.", G1NumPopularRegions);
  5849   gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
  5850                          free_regions(),
  5851                          count_free_regions(), count_free_regions_list(),
  5852                          _free_region_list_size, _unclean_region_list.sz());
  5853   gclog_or_tty->print_cr("cur_alloc: %d.",
  5854                          (_cur_alloc_region == NULL ? 0 : 1));
  5855   gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
  5857   // TODO: check regions accounting for young/survivor/tenured
  5858   return true;
  5861 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5862   HeapRegion* hr = heap_region_containing(p);
  5863   if (hr == NULL) {
  5864     return is_in_permanent(p);
  5865   } else {
  5866     return hr->is_in(p);
  5869 #endif // PRODUCT
  5871 void G1CollectedHeap::g1_unimplemented() {
  5872   // Unimplemented();
  5876 // Local Variables: ***
  5877 // c-indentation-style: gnu ***
  5878 // End: ***

mercurial