src/share/vm/c1/c1_LinearScan.cpp

Thu, 19 Mar 2009 09:13:24 -0700

author
kvn
date
Thu, 19 Mar 2009 09:13:24 -0700
changeset 1082
bd441136a5ce
parent 772
9ee9cf798b59
child 1157
a134d9824964
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_c1_LinearScan.cpp.incl"
    29 #ifndef PRODUCT
    31   static LinearScanStatistic _stat_before_alloc;
    32   static LinearScanStatistic _stat_after_asign;
    33   static LinearScanStatistic _stat_final;
    35   static LinearScanTimers _total_timer;
    37   // helper macro for short definition of timer
    38   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
    40   // helper macro for short definition of trace-output inside code
    41   #define TRACE_LINEAR_SCAN(level, code)       \
    42     if (TraceLinearScanLevel >= level) {       \
    43       code;                                    \
    44     }
    46 #else
    48   #define TIME_LINEAR_SCAN(timer_name)
    49   #define TRACE_LINEAR_SCAN(level, code)
    51 #endif
    53 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
    54 #ifdef _LP64
    55 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 1, -1};
    56 #else
    57 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1};
    58 #endif
    61 // Implementation of LinearScan
    63 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
    64  : _compilation(ir->compilation())
    65  , _ir(ir)
    66  , _gen(gen)
    67  , _frame_map(frame_map)
    68  , _num_virtual_regs(gen->max_virtual_register_number())
    69  , _has_fpu_registers(false)
    70  , _num_calls(-1)
    71  , _max_spills(0)
    72  , _unused_spill_slot(-1)
    73  , _intervals(0)   // initialized later with correct length
    74  , _new_intervals_from_allocation(new IntervalList())
    75  , _sorted_intervals(NULL)
    76  , _lir_ops(0)     // initialized later with correct length
    77  , _block_of_op(0) // initialized later with correct length
    78  , _has_info(0)
    79  , _has_call(0)
    80  , _scope_value_cache(0) // initialized later with correct length
    81  , _interval_in_loop(0, 0) // initialized later with correct length
    82  , _cached_blocks(*ir->linear_scan_order())
    83 #ifdef X86
    84  , _fpu_stack_allocator(NULL)
    85 #endif
    86 {
    87   // note: to use more than on instance of LinearScan at a time this function call has to
    88   //       be moved somewhere outside of this constructor:
    89   Interval::initialize();
    91   assert(this->ir() != NULL,          "check if valid");
    92   assert(this->compilation() != NULL, "check if valid");
    93   assert(this->gen() != NULL,         "check if valid");
    94   assert(this->frame_map() != NULL,   "check if valid");
    95 }
    98 // ********** functions for converting LIR-Operands to register numbers
    99 //
   100 // Emulate a flat register file comprising physical integer registers,
   101 // physical floating-point registers and virtual registers, in that order.
   102 // Virtual registers already have appropriate numbers, since V0 is
   103 // the number of physical registers.
   104 // Returns -1 for hi word if opr is a single word operand.
   105 //
   106 // Note: the inverse operation (calculating an operand for register numbers)
   107 //       is done in calc_operand_for_interval()
   109 int LinearScan::reg_num(LIR_Opr opr) {
   110   assert(opr->is_register(), "should not call this otherwise");
   112   if (opr->is_virtual_register()) {
   113     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
   114     return opr->vreg_number();
   115   } else if (opr->is_single_cpu()) {
   116     return opr->cpu_regnr();
   117   } else if (opr->is_double_cpu()) {
   118     return opr->cpu_regnrLo();
   119 #ifdef X86
   120   } else if (opr->is_single_xmm()) {
   121     return opr->fpu_regnr() + pd_first_xmm_reg;
   122   } else if (opr->is_double_xmm()) {
   123     return opr->fpu_regnrLo() + pd_first_xmm_reg;
   124 #endif
   125   } else if (opr->is_single_fpu()) {
   126     return opr->fpu_regnr() + pd_first_fpu_reg;
   127   } else if (opr->is_double_fpu()) {
   128     return opr->fpu_regnrLo() + pd_first_fpu_reg;
   129   } else {
   130     ShouldNotReachHere();
   131     return -1;
   132   }
   133 }
   135 int LinearScan::reg_numHi(LIR_Opr opr) {
   136   assert(opr->is_register(), "should not call this otherwise");
   138   if (opr->is_virtual_register()) {
   139     return -1;
   140   } else if (opr->is_single_cpu()) {
   141     return -1;
   142   } else if (opr->is_double_cpu()) {
   143     return opr->cpu_regnrHi();
   144 #ifdef X86
   145   } else if (opr->is_single_xmm()) {
   146     return -1;
   147   } else if (opr->is_double_xmm()) {
   148     return -1;
   149 #endif
   150   } else if (opr->is_single_fpu()) {
   151     return -1;
   152   } else if (opr->is_double_fpu()) {
   153     return opr->fpu_regnrHi() + pd_first_fpu_reg;
   154   } else {
   155     ShouldNotReachHere();
   156     return -1;
   157   }
   158 }
   161 // ********** functions for classification of intervals
   163 bool LinearScan::is_precolored_interval(const Interval* i) {
   164   return i->reg_num() < LinearScan::nof_regs;
   165 }
   167 bool LinearScan::is_virtual_interval(const Interval* i) {
   168   return i->reg_num() >= LIR_OprDesc::vreg_base;
   169 }
   171 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
   172   return i->reg_num() < LinearScan::nof_cpu_regs;
   173 }
   175 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
   176   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
   177 }
   179 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
   180   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
   181 }
   183 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
   184   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
   185 }
   187 bool LinearScan::is_in_fpu_register(const Interval* i) {
   188   // fixed intervals not needed for FPU stack allocation
   189   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
   190 }
   192 bool LinearScan::is_oop_interval(const Interval* i) {
   193   // fixed intervals never contain oops
   194   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
   195 }
   198 // ********** General helper functions
   200 // compute next unused stack index that can be used for spilling
   201 int LinearScan::allocate_spill_slot(bool double_word) {
   202   int spill_slot;
   203   if (double_word) {
   204     if ((_max_spills & 1) == 1) {
   205       // alignment of double-word values
   206       // the hole because of the alignment is filled with the next single-word value
   207       assert(_unused_spill_slot == -1, "wasting a spill slot");
   208       _unused_spill_slot = _max_spills;
   209       _max_spills++;
   210     }
   211     spill_slot = _max_spills;
   212     _max_spills += 2;
   214   } else if (_unused_spill_slot != -1) {
   215     // re-use hole that was the result of a previous double-word alignment
   216     spill_slot = _unused_spill_slot;
   217     _unused_spill_slot = -1;
   219   } else {
   220     spill_slot = _max_spills;
   221     _max_spills++;
   222   }
   224   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
   226   // the class OopMapValue uses only 11 bits for storing the name of the
   227   // oop location. So a stack slot bigger than 2^11 leads to an overflow
   228   // that is not reported in product builds. Prevent this by checking the
   229   // spill slot here (altough this value and the later used location name
   230   // are slightly different)
   231   if (result > 2000) {
   232     bailout("too many stack slots used");
   233   }
   235   return result;
   236 }
   238 void LinearScan::assign_spill_slot(Interval* it) {
   239   // assign the canonical spill slot of the parent (if a part of the interval
   240   // is already spilled) or allocate a new spill slot
   241   if (it->canonical_spill_slot() >= 0) {
   242     it->assign_reg(it->canonical_spill_slot());
   243   } else {
   244     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
   245     it->set_canonical_spill_slot(spill);
   246     it->assign_reg(spill);
   247   }
   248 }
   250 void LinearScan::propagate_spill_slots() {
   251   if (!frame_map()->finalize_frame(max_spills())) {
   252     bailout("frame too large");
   253   }
   254 }
   256 // create a new interval with a predefined reg_num
   257 // (only used for parent intervals that are created during the building phase)
   258 Interval* LinearScan::create_interval(int reg_num) {
   259   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
   261   Interval* interval = new Interval(reg_num);
   262   _intervals.at_put(reg_num, interval);
   264   // assign register number for precolored intervals
   265   if (reg_num < LIR_OprDesc::vreg_base) {
   266     interval->assign_reg(reg_num);
   267   }
   268   return interval;
   269 }
   271 // assign a new reg_num to the interval and append it to the list of intervals
   272 // (only used for child intervals that are created during register allocation)
   273 void LinearScan::append_interval(Interval* it) {
   274   it->set_reg_num(_intervals.length());
   275   _intervals.append(it);
   276   _new_intervals_from_allocation->append(it);
   277 }
   279 // copy the vreg-flags if an interval is split
   280 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
   281   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
   282     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
   283   }
   284   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
   285     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
   286   }
   288   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
   289   //       intervals (only the very beginning of the interval must be in memory)
   290 }
   293 // ********** spill move optimization
   294 // eliminate moves from register to stack if stack slot is known to be correct
   296 // called during building of intervals
   297 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
   298   assert(interval->is_split_parent(), "can only be called for split parents");
   300   switch (interval->spill_state()) {
   301     case noDefinitionFound:
   302       assert(interval->spill_definition_pos() == -1, "must no be set before");
   303       interval->set_spill_definition_pos(def_pos);
   304       interval->set_spill_state(oneDefinitionFound);
   305       break;
   307     case oneDefinitionFound:
   308       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
   309       if (def_pos < interval->spill_definition_pos() - 2) {
   310         // second definition found, so no spill optimization possible for this interval
   311         interval->set_spill_state(noOptimization);
   312       } else {
   313         // two consecutive definitions (because of two-operand LIR form)
   314         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
   315       }
   316       break;
   318     case noOptimization:
   319       // nothing to do
   320       break;
   322     default:
   323       assert(false, "other states not allowed at this time");
   324   }
   325 }
   327 // called during register allocation
   328 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
   329   switch (interval->spill_state()) {
   330     case oneDefinitionFound: {
   331       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
   332       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
   334       if (def_loop_depth < spill_loop_depth) {
   335         // the loop depth of the spilling position is higher then the loop depth
   336         // at the definition of the interval -> move write to memory out of loop
   337         // by storing at definitin of the interval
   338         interval->set_spill_state(storeAtDefinition);
   339       } else {
   340         // the interval is currently spilled only once, so for now there is no
   341         // reason to store the interval at the definition
   342         interval->set_spill_state(oneMoveInserted);
   343       }
   344       break;
   345     }
   347     case oneMoveInserted: {
   348       // the interval is spilled more then once, so it is better to store it to
   349       // memory at the definition
   350       interval->set_spill_state(storeAtDefinition);
   351       break;
   352     }
   354     case storeAtDefinition:
   355     case startInMemory:
   356     case noOptimization:
   357     case noDefinitionFound:
   358       // nothing to do
   359       break;
   361     default:
   362       assert(false, "other states not allowed at this time");
   363   }
   364 }
   367 bool LinearScan::must_store_at_definition(const Interval* i) {
   368   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
   369 }
   371 // called once before asignment of register numbers
   372 void LinearScan::eliminate_spill_moves() {
   373   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
   374   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
   376   // collect all intervals that must be stored after their definion.
   377   // the list is sorted by Interval::spill_definition_pos
   378   Interval* interval;
   379   Interval* temp_list;
   380   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
   382 #ifdef ASSERT
   383   Interval* prev = NULL;
   384   Interval* temp = interval;
   385   while (temp != Interval::end()) {
   386     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
   387     if (prev != NULL) {
   388       assert(temp->from() >= prev->from(), "intervals not sorted");
   389       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
   390     }
   392     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
   393     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
   394     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
   396     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
   398     temp = temp->next();
   399   }
   400 #endif
   402   LIR_InsertionBuffer insertion_buffer;
   403   int num_blocks = block_count();
   404   for (int i = 0; i < num_blocks; i++) {
   405     BlockBegin* block = block_at(i);
   406     LIR_OpList* instructions = block->lir()->instructions_list();
   407     int         num_inst = instructions->length();
   408     bool        has_new = false;
   410     // iterate all instructions of the block. skip the first because it is always a label
   411     for (int j = 1; j < num_inst; j++) {
   412       LIR_Op* op = instructions->at(j);
   413       int op_id = op->id();
   415       if (op_id == -1) {
   416         // remove move from register to stack if the stack slot is guaranteed to be correct.
   417         // only moves that have been inserted by LinearScan can be removed.
   418         assert(op->code() == lir_move, "only moves can have a op_id of -1");
   419         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
   420         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
   422         LIR_Op1* op1 = (LIR_Op1*)op;
   423         Interval* interval = interval_at(op1->result_opr()->vreg_number());
   425         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
   426           // move target is a stack slot that is always correct, so eliminate instruction
   427           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
   428           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
   429         }
   431       } else {
   432         // insert move from register to stack just after the beginning of the interval
   433         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
   434         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
   436         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
   437           if (!has_new) {
   438             // prepare insertion buffer (appended when all instructions of the block are processed)
   439             insertion_buffer.init(block->lir());
   440             has_new = true;
   441           }
   443           LIR_Opr from_opr = operand_for_interval(interval);
   444           LIR_Opr to_opr = canonical_spill_opr(interval);
   445           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
   446           assert(to_opr->is_stack(), "to operand must be a stack slot");
   448           insertion_buffer.move(j, from_opr, to_opr);
   449           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
   451           interval = interval->next();
   452         }
   453       }
   454     } // end of instruction iteration
   456     if (has_new) {
   457       block->lir()->append(&insertion_buffer);
   458     }
   459   } // end of block iteration
   461   assert(interval == Interval::end(), "missed an interval");
   462 }
   465 // ********** Phase 1: number all instructions in all blocks
   466 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
   468 void LinearScan::number_instructions() {
   469   {
   470     // dummy-timer to measure the cost of the timer itself
   471     // (this time is then subtracted from all other timers to get the real value)
   472     TIME_LINEAR_SCAN(timer_do_nothing);
   473   }
   474   TIME_LINEAR_SCAN(timer_number_instructions);
   476   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
   477   int num_blocks = block_count();
   478   int num_instructions = 0;
   479   int i;
   480   for (i = 0; i < num_blocks; i++) {
   481     num_instructions += block_at(i)->lir()->instructions_list()->length();
   482   }
   484   // initialize with correct length
   485   _lir_ops = LIR_OpArray(num_instructions);
   486   _block_of_op = BlockBeginArray(num_instructions);
   488   int op_id = 0;
   489   int idx = 0;
   491   for (i = 0; i < num_blocks; i++) {
   492     BlockBegin* block = block_at(i);
   493     block->set_first_lir_instruction_id(op_id);
   494     LIR_OpList* instructions = block->lir()->instructions_list();
   496     int num_inst = instructions->length();
   497     for (int j = 0; j < num_inst; j++) {
   498       LIR_Op* op = instructions->at(j);
   499       op->set_id(op_id);
   501       _lir_ops.at_put(idx, op);
   502       _block_of_op.at_put(idx, block);
   503       assert(lir_op_with_id(op_id) == op, "must match");
   505       idx++;
   506       op_id += 2; // numbering of lir_ops by two
   507     }
   508     block->set_last_lir_instruction_id(op_id - 2);
   509   }
   510   assert(idx == num_instructions, "must match");
   511   assert(idx * 2 == op_id, "must match");
   513   _has_call = BitMap(num_instructions); _has_call.clear();
   514   _has_info = BitMap(num_instructions); _has_info.clear();
   515 }
   518 // ********** Phase 2: compute local live sets separately for each block
   519 // (sets live_gen and live_kill for each block)
   521 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
   522   LIR_Opr opr = value->operand();
   523   Constant* con = value->as_Constant();
   525   // check some asumptions about debug information
   526   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
   527   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
   528   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
   530   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
   531     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   532     int reg = opr->vreg_number();
   533     if (!live_kill.at(reg)) {
   534       live_gen.set_bit(reg);
   535       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
   536     }
   537   }
   538 }
   541 void LinearScan::compute_local_live_sets() {
   542   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
   544   int  num_blocks = block_count();
   545   int  live_size = live_set_size();
   546   bool local_has_fpu_registers = false;
   547   int  local_num_calls = 0;
   548   LIR_OpVisitState visitor;
   550   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
   551   local_interval_in_loop.clear();
   553   // iterate all blocks
   554   for (int i = 0; i < num_blocks; i++) {
   555     BlockBegin* block = block_at(i);
   557     BitMap live_gen(live_size);  live_gen.clear();
   558     BitMap live_kill(live_size); live_kill.clear();
   560     if (block->is_set(BlockBegin::exception_entry_flag)) {
   561       // Phi functions at the begin of an exception handler are
   562       // implicitly defined (= killed) at the beginning of the block.
   563       for_each_phi_fun(block, phi,
   564         live_kill.set_bit(phi->operand()->vreg_number())
   565       );
   566     }
   568     LIR_OpList* instructions = block->lir()->instructions_list();
   569     int num_inst = instructions->length();
   571     // iterate all instructions of the block. skip the first because it is always a label
   572     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
   573     for (int j = 1; j < num_inst; j++) {
   574       LIR_Op* op = instructions->at(j);
   576       // visit operation to collect all operands
   577       visitor.visit(op);
   579       if (visitor.has_call()) {
   580         _has_call.set_bit(op->id() >> 1);
   581         local_num_calls++;
   582       }
   583       if (visitor.info_count() > 0) {
   584         _has_info.set_bit(op->id() >> 1);
   585       }
   587       // iterate input operands of instruction
   588       int k, n, reg;
   589       n = visitor.opr_count(LIR_OpVisitState::inputMode);
   590       for (k = 0; k < n; k++) {
   591         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
   592         assert(opr->is_register(), "visitor should only return register operands");
   594         if (opr->is_virtual_register()) {
   595           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   596           reg = opr->vreg_number();
   597           if (!live_kill.at(reg)) {
   598             live_gen.set_bit(reg);
   599             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
   600           }
   601           if (block->loop_index() >= 0) {
   602             local_interval_in_loop.set_bit(reg, block->loop_index());
   603           }
   604           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   605         }
   607 #ifdef ASSERT
   608         // fixed intervals are never live at block boundaries, so
   609         // they need not be processed in live sets.
   610         // this is checked by these assertions to be sure about it.
   611         // the entry block may have incoming values in registers, which is ok.
   612         if (!opr->is_virtual_register() && block != ir()->start()) {
   613           reg = reg_num(opr);
   614           if (is_processed_reg_num(reg)) {
   615             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
   616           }
   617           reg = reg_numHi(opr);
   618           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   619             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
   620           }
   621         }
   622 #endif
   623       }
   625       // Add uses of live locals from interpreter's point of view for proper debug information generation
   626       n = visitor.info_count();
   627       for (k = 0; k < n; k++) {
   628         CodeEmitInfo* info = visitor.info_at(k);
   629         ValueStack* stack = info->stack();
   630         for_each_state_value(stack, value,
   631           set_live_gen_kill(value, op, live_gen, live_kill)
   632         );
   633       }
   635       // iterate temp operands of instruction
   636       n = visitor.opr_count(LIR_OpVisitState::tempMode);
   637       for (k = 0; k < n; k++) {
   638         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
   639         assert(opr->is_register(), "visitor should only return register operands");
   641         if (opr->is_virtual_register()) {
   642           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   643           reg = opr->vreg_number();
   644           live_kill.set_bit(reg);
   645           if (block->loop_index() >= 0) {
   646             local_interval_in_loop.set_bit(reg, block->loop_index());
   647           }
   648           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   649         }
   651 #ifdef ASSERT
   652         // fixed intervals are never live at block boundaries, so
   653         // they need not be processed in live sets
   654         // process them only in debug mode so that this can be checked
   655         if (!opr->is_virtual_register()) {
   656           reg = reg_num(opr);
   657           if (is_processed_reg_num(reg)) {
   658             live_kill.set_bit(reg_num(opr));
   659           }
   660           reg = reg_numHi(opr);
   661           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   662             live_kill.set_bit(reg);
   663           }
   664         }
   665 #endif
   666       }
   668       // iterate output operands of instruction
   669       n = visitor.opr_count(LIR_OpVisitState::outputMode);
   670       for (k = 0; k < n; k++) {
   671         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
   672         assert(opr->is_register(), "visitor should only return register operands");
   674         if (opr->is_virtual_register()) {
   675           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   676           reg = opr->vreg_number();
   677           live_kill.set_bit(reg);
   678           if (block->loop_index() >= 0) {
   679             local_interval_in_loop.set_bit(reg, block->loop_index());
   680           }
   681           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   682         }
   684 #ifdef ASSERT
   685         // fixed intervals are never live at block boundaries, so
   686         // they need not be processed in live sets
   687         // process them only in debug mode so that this can be checked
   688         if (!opr->is_virtual_register()) {
   689           reg = reg_num(opr);
   690           if (is_processed_reg_num(reg)) {
   691             live_kill.set_bit(reg_num(opr));
   692           }
   693           reg = reg_numHi(opr);
   694           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   695             live_kill.set_bit(reg);
   696           }
   697         }
   698 #endif
   699       }
   700     } // end of instruction iteration
   702     block->set_live_gen (live_gen);
   703     block->set_live_kill(live_kill);
   704     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
   705     block->set_live_out (BitMap(live_size)); block->live_out().clear();
   707     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
   708     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
   709   } // end of block iteration
   711   // propagate local calculated information into LinearScan object
   712   _has_fpu_registers = local_has_fpu_registers;
   713   compilation()->set_has_fpu_code(local_has_fpu_registers);
   715   _num_calls = local_num_calls;
   716   _interval_in_loop = local_interval_in_loop;
   717 }
   720 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
   721 // (sets live_in and live_out for each block)
   723 void LinearScan::compute_global_live_sets() {
   724   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
   726   int  num_blocks = block_count();
   727   bool change_occurred;
   728   bool change_occurred_in_block;
   729   int  iteration_count = 0;
   730   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
   732   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
   733   // The loop is executed until a fixpoint is reached (no changes in an iteration)
   734   // Exception handlers must be processed because not all live values are
   735   // present in the state array, e.g. because of global value numbering
   736   do {
   737     change_occurred = false;
   739     // iterate all blocks in reverse order
   740     for (int i = num_blocks - 1; i >= 0; i--) {
   741       BlockBegin* block = block_at(i);
   743       change_occurred_in_block = false;
   745       // live_out(block) is the union of live_in(sux), for successors sux of block
   746       int n = block->number_of_sux();
   747       int e = block->number_of_exception_handlers();
   748       if (n + e > 0) {
   749         // block has successors
   750         if (n > 0) {
   751           live_out.set_from(block->sux_at(0)->live_in());
   752           for (int j = 1; j < n; j++) {
   753             live_out.set_union(block->sux_at(j)->live_in());
   754           }
   755         } else {
   756           live_out.clear();
   757         }
   758         for (int j = 0; j < e; j++) {
   759           live_out.set_union(block->exception_handler_at(j)->live_in());
   760         }
   762         if (!block->live_out().is_same(live_out)) {
   763           // A change occurred.  Swap the old and new live out sets to avoid copying.
   764           BitMap temp = block->live_out();
   765           block->set_live_out(live_out);
   766           live_out = temp;
   768           change_occurred = true;
   769           change_occurred_in_block = true;
   770         }
   771       }
   773       if (iteration_count == 0 || change_occurred_in_block) {
   774         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
   775         // note: live_in has to be computed only in first iteration or if live_out has changed!
   776         BitMap live_in = block->live_in();
   777         live_in.set_from(block->live_out());
   778         live_in.set_difference(block->live_kill());
   779         live_in.set_union(block->live_gen());
   780       }
   782 #ifndef PRODUCT
   783       if (TraceLinearScanLevel >= 4) {
   784         char c = ' ';
   785         if (iteration_count == 0 || change_occurred_in_block) {
   786           c = '*';
   787         }
   788         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
   789         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
   790       }
   791 #endif
   792     }
   793     iteration_count++;
   795     if (change_occurred && iteration_count > 50) {
   796       BAILOUT("too many iterations in compute_global_live_sets");
   797     }
   798   } while (change_occurred);
   801 #ifdef ASSERT
   802   // check that fixed intervals are not live at block boundaries
   803   // (live set must be empty at fixed intervals)
   804   for (int i = 0; i < num_blocks; i++) {
   805     BlockBegin* block = block_at(i);
   806     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
   807       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
   808       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
   809       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
   810     }
   811   }
   812 #endif
   814   // check that the live_in set of the first block is empty
   815   BitMap live_in_args(ir()->start()->live_in().size());
   816   live_in_args.clear();
   817   if (!ir()->start()->live_in().is_same(live_in_args)) {
   818 #ifdef ASSERT
   819     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
   820     tty->print_cr("affected registers:");
   821     print_bitmap(ir()->start()->live_in());
   823     // print some additional information to simplify debugging
   824     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
   825       if (ir()->start()->live_in().at(i)) {
   826         Instruction* instr = gen()->instruction_for_vreg(i);
   827         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
   829         for (int j = 0; j < num_blocks; j++) {
   830           BlockBegin* block = block_at(j);
   831           if (block->live_gen().at(i)) {
   832             tty->print_cr("  used in block B%d", block->block_id());
   833           }
   834           if (block->live_kill().at(i)) {
   835             tty->print_cr("  defined in block B%d", block->block_id());
   836           }
   837         }
   838       }
   839     }
   841 #endif
   842     // when this fails, virtual registers are used before they are defined.
   843     assert(false, "live_in set of first block must be empty");
   844     // bailout of if this occurs in product mode.
   845     bailout("live_in set of first block not empty");
   846   }
   847 }
   850 // ********** Phase 4: build intervals
   851 // (fills the list _intervals)
   853 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
   854   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
   855   LIR_Opr opr = value->operand();
   856   Constant* con = value->as_Constant();
   858   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
   859     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   860     add_use(opr, from, to, use_kind);
   861   }
   862 }
   865 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
   866   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
   867   assert(opr->is_register(), "should not be called otherwise");
   869   if (opr->is_virtual_register()) {
   870     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   871     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
   873   } else {
   874     int reg = reg_num(opr);
   875     if (is_processed_reg_num(reg)) {
   876       add_def(reg, def_pos, use_kind, opr->type_register());
   877     }
   878     reg = reg_numHi(opr);
   879     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   880       add_def(reg, def_pos, use_kind, opr->type_register());
   881     }
   882   }
   883 }
   885 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
   886   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
   887   assert(opr->is_register(), "should not be called otherwise");
   889   if (opr->is_virtual_register()) {
   890     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   891     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
   893   } else {
   894     int reg = reg_num(opr);
   895     if (is_processed_reg_num(reg)) {
   896       add_use(reg, from, to, use_kind, opr->type_register());
   897     }
   898     reg = reg_numHi(opr);
   899     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   900       add_use(reg, from, to, use_kind, opr->type_register());
   901     }
   902   }
   903 }
   905 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
   906   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
   907   assert(opr->is_register(), "should not be called otherwise");
   909   if (opr->is_virtual_register()) {
   910     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   911     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
   913   } else {
   914     int reg = reg_num(opr);
   915     if (is_processed_reg_num(reg)) {
   916       add_temp(reg, temp_pos, use_kind, opr->type_register());
   917     }
   918     reg = reg_numHi(opr);
   919     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   920       add_temp(reg, temp_pos, use_kind, opr->type_register());
   921     }
   922   }
   923 }
   926 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
   927   Interval* interval = interval_at(reg_num);
   928   if (interval != NULL) {
   929     assert(interval->reg_num() == reg_num, "wrong interval");
   931     if (type != T_ILLEGAL) {
   932       interval->set_type(type);
   933     }
   935     Range* r = interval->first();
   936     if (r->from() <= def_pos) {
   937       // Update the starting point (when a range is first created for a use, its
   938       // start is the beginning of the current block until a def is encountered.)
   939       r->set_from(def_pos);
   940       interval->add_use_pos(def_pos, use_kind);
   942     } else {
   943       // Dead value - make vacuous interval
   944       // also add use_kind for dead intervals
   945       interval->add_range(def_pos, def_pos + 1);
   946       interval->add_use_pos(def_pos, use_kind);
   947       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
   948     }
   950   } else {
   951     // Dead value - make vacuous interval
   952     // also add use_kind for dead intervals
   953     interval = create_interval(reg_num);
   954     if (type != T_ILLEGAL) {
   955       interval->set_type(type);
   956     }
   958     interval->add_range(def_pos, def_pos + 1);
   959     interval->add_use_pos(def_pos, use_kind);
   960     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
   961   }
   963   change_spill_definition_pos(interval, def_pos);
   964   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
   965         // detection of method-parameters and roundfp-results
   966         // TODO: move this directly to position where use-kind is computed
   967     interval->set_spill_state(startInMemory);
   968   }
   969 }
   971 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
   972   Interval* interval = interval_at(reg_num);
   973   if (interval == NULL) {
   974     interval = create_interval(reg_num);
   975   }
   976   assert(interval->reg_num() == reg_num, "wrong interval");
   978   if (type != T_ILLEGAL) {
   979     interval->set_type(type);
   980   }
   982   interval->add_range(from, to);
   983   interval->add_use_pos(to, use_kind);
   984 }
   986 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
   987   Interval* interval = interval_at(reg_num);
   988   if (interval == NULL) {
   989     interval = create_interval(reg_num);
   990   }
   991   assert(interval->reg_num() == reg_num, "wrong interval");
   993   if (type != T_ILLEGAL) {
   994     interval->set_type(type);
   995   }
   997   interval->add_range(temp_pos, temp_pos + 1);
   998   interval->add_use_pos(temp_pos, use_kind);
   999 }
  1002 // the results of this functions are used for optimizing spilling and reloading
  1003 // if the functions return shouldHaveRegister and the interval is spilled,
  1004 // it is not reloaded to a register.
  1005 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
  1006   if (op->code() == lir_move) {
  1007     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
  1008     LIR_Op1* move = (LIR_Op1*)op;
  1009     LIR_Opr res = move->result_opr();
  1010     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
  1012     if (result_in_memory) {
  1013       // Begin of an interval with must_start_in_memory set.
  1014       // This interval will always get a stack slot first, so return noUse.
  1015       return noUse;
  1017     } else if (move->in_opr()->is_stack()) {
  1018       // method argument (condition must be equal to handle_method_arguments)
  1019       return noUse;
  1021     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
  1022       // Move from register to register
  1023       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
  1024         // special handling of phi-function moves inside osr-entry blocks
  1025         // input operand must have a register instead of output operand (leads to better register allocation)
  1026         return shouldHaveRegister;
  1031   if (opr->is_virtual() &&
  1032       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
  1033     // result is a stack-slot, so prevent immediate reloading
  1034     return noUse;
  1037   // all other operands require a register
  1038   return mustHaveRegister;
  1041 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
  1042   if (op->code() == lir_move) {
  1043     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
  1044     LIR_Op1* move = (LIR_Op1*)op;
  1045     LIR_Opr res = move->result_opr();
  1046     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
  1048     if (result_in_memory) {
  1049       // Move to an interval with must_start_in_memory set.
  1050       // To avoid moves from stack to stack (not allowed) force the input operand to a register
  1051       return mustHaveRegister;
  1053     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
  1054       // Move from register to register
  1055       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
  1056         // special handling of phi-function moves inside osr-entry blocks
  1057         // input operand must have a register instead of output operand (leads to better register allocation)
  1058         return mustHaveRegister;
  1061       // The input operand is not forced to a register (moves from stack to register are allowed),
  1062       // but it is faster if the input operand is in a register
  1063       return shouldHaveRegister;
  1068 #ifdef X86
  1069   if (op->code() == lir_cmove) {
  1070     // conditional moves can handle stack operands
  1071     assert(op->result_opr()->is_register(), "result must always be in a register");
  1072     return shouldHaveRegister;
  1075   // optimizations for second input operand of arithmehtic operations on Intel
  1076   // this operand is allowed to be on the stack in some cases
  1077   BasicType opr_type = opr->type_register();
  1078   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
  1079     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
  1080       // SSE float instruction (T_DOUBLE only supported with SSE2)
  1081       switch (op->code()) {
  1082         case lir_cmp:
  1083         case lir_add:
  1084         case lir_sub:
  1085         case lir_mul:
  1086         case lir_div:
  1088           assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1089           LIR_Op2* op2 = (LIR_Op2*)op;
  1090           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1091             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1092             return shouldHaveRegister;
  1096     } else {
  1097       // FPU stack float instruction
  1098       switch (op->code()) {
  1099         case lir_add:
  1100         case lir_sub:
  1101         case lir_mul:
  1102         case lir_div:
  1104           assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1105           LIR_Op2* op2 = (LIR_Op2*)op;
  1106           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1107             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1108             return shouldHaveRegister;
  1114   } else if (opr_type != T_LONG) {
  1115     // integer instruction (note: long operands must always be in register)
  1116     switch (op->code()) {
  1117       case lir_cmp:
  1118       case lir_add:
  1119       case lir_sub:
  1120       case lir_logic_and:
  1121       case lir_logic_or:
  1122       case lir_logic_xor:
  1124         assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1125         LIR_Op2* op2 = (LIR_Op2*)op;
  1126         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1127           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1128           return shouldHaveRegister;
  1133 #endif // X86
  1135   // all other operands require a register
  1136   return mustHaveRegister;
  1140 void LinearScan::handle_method_arguments(LIR_Op* op) {
  1141   // special handling for method arguments (moves from stack to virtual register):
  1142   // the interval gets no register assigned, but the stack slot.
  1143   // it is split before the first use by the register allocator.
  1145   if (op->code() == lir_move) {
  1146     assert(op->as_Op1() != NULL, "must be LIR_Op1");
  1147     LIR_Op1* move = (LIR_Op1*)op;
  1149     if (move->in_opr()->is_stack()) {
  1150 #ifdef ASSERT
  1151       int arg_size = compilation()->method()->arg_size();
  1152       LIR_Opr o = move->in_opr();
  1153       if (o->is_single_stack()) {
  1154         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
  1155       } else if (o->is_double_stack()) {
  1156         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
  1157       } else {
  1158         ShouldNotReachHere();
  1161       assert(move->id() > 0, "invalid id");
  1162       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
  1163       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
  1165       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
  1166 #endif
  1168       Interval* interval = interval_at(reg_num(move->result_opr()));
  1170       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
  1171       interval->set_canonical_spill_slot(stack_slot);
  1172       interval->assign_reg(stack_slot);
  1177 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
  1178   // special handling for doubleword move from memory to register:
  1179   // in this case the registers of the input address and the result
  1180   // registers must not overlap -> add a temp range for the input registers
  1181   if (op->code() == lir_move) {
  1182     assert(op->as_Op1() != NULL, "must be LIR_Op1");
  1183     LIR_Op1* move = (LIR_Op1*)op;
  1185     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
  1186       LIR_Address* address = move->in_opr()->as_address_ptr();
  1187       if (address != NULL) {
  1188         if (address->base()->is_valid()) {
  1189           add_temp(address->base(), op->id(), noUse);
  1191         if (address->index()->is_valid()) {
  1192           add_temp(address->index(), op->id(), noUse);
  1199 void LinearScan::add_register_hints(LIR_Op* op) {
  1200   switch (op->code()) {
  1201     case lir_move:      // fall through
  1202     case lir_convert: {
  1203       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
  1204       LIR_Op1* move = (LIR_Op1*)op;
  1206       LIR_Opr move_from = move->in_opr();
  1207       LIR_Opr move_to = move->result_opr();
  1209       if (move_to->is_register() && move_from->is_register()) {
  1210         Interval* from = interval_at(reg_num(move_from));
  1211         Interval* to = interval_at(reg_num(move_to));
  1212         if (from != NULL && to != NULL) {
  1213           to->set_register_hint(from);
  1214           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
  1217       break;
  1219     case lir_cmove: {
  1220       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
  1221       LIR_Op2* cmove = (LIR_Op2*)op;
  1223       LIR_Opr move_from = cmove->in_opr1();
  1224       LIR_Opr move_to = cmove->result_opr();
  1226       if (move_to->is_register() && move_from->is_register()) {
  1227         Interval* from = interval_at(reg_num(move_from));
  1228         Interval* to = interval_at(reg_num(move_to));
  1229         if (from != NULL && to != NULL) {
  1230           to->set_register_hint(from);
  1231           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
  1234       break;
  1240 void LinearScan::build_intervals() {
  1241   TIME_LINEAR_SCAN(timer_build_intervals);
  1243   // initialize interval list with expected number of intervals
  1244   // (32 is added to have some space for split children without having to resize the list)
  1245   _intervals = IntervalList(num_virtual_regs() + 32);
  1246   // initialize all slots that are used by build_intervals
  1247   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
  1249   // create a list with all caller-save registers (cpu, fpu, xmm)
  1250   // when an instruction is a call, a temp range is created for all these registers
  1251   int num_caller_save_registers = 0;
  1252   int caller_save_registers[LinearScan::nof_regs];
  1254   int i;
  1255   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs; i++) {
  1256     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
  1257     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1258     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1259     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1262   // temp ranges for fpu registers are only created when the method has
  1263   // virtual fpu operands. Otherwise no allocation for fpu registers is
  1264   // perfomed and so the temp ranges would be useless
  1265   if (has_fpu_registers()) {
  1266 #ifdef X86
  1267     if (UseSSE < 2) {
  1268 #endif
  1269       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
  1270         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
  1271         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1272         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1273         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1275 #ifdef X86
  1277     if (UseSSE > 0) {
  1278       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
  1279         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
  1280         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1281         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1282         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1285 #endif
  1287   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
  1290   LIR_OpVisitState visitor;
  1292   // iterate all blocks in reverse order
  1293   for (i = block_count() - 1; i >= 0; i--) {
  1294     BlockBegin* block = block_at(i);
  1295     LIR_OpList* instructions = block->lir()->instructions_list();
  1296     int         block_from =   block->first_lir_instruction_id();
  1297     int         block_to =     block->last_lir_instruction_id();
  1299     assert(block_from == instructions->at(0)->id(), "must be");
  1300     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
  1302     // Update intervals for registers live at the end of this block;
  1303     BitMap live = block->live_out();
  1304     int size = (int)live.size();
  1305     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
  1306       assert(live.at(number), "should not stop here otherwise");
  1307       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
  1308       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
  1310       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
  1312       // add special use positions for loop-end blocks when the
  1313       // interval is used anywhere inside this loop.  It's possible
  1314       // that the block was part of a non-natural loop, so it might
  1315       // have an invalid loop index.
  1316       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
  1317           block->loop_index() != -1 &&
  1318           is_interval_in_loop(number, block->loop_index())) {
  1319         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
  1323     // iterate all instructions of the block in reverse order.
  1324     // skip the first instruction because it is always a label
  1325     // definitions of intervals are processed before uses
  1326     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
  1327     for (int j = instructions->length() - 1; j >= 1; j--) {
  1328       LIR_Op* op = instructions->at(j);
  1329       int op_id = op->id();
  1331       // visit operation to collect all operands
  1332       visitor.visit(op);
  1334       // add a temp range for each register if operation destroys caller-save registers
  1335       if (visitor.has_call()) {
  1336         for (int k = 0; k < num_caller_save_registers; k++) {
  1337           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
  1339         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
  1342       // Add any platform dependent temps
  1343       pd_add_temps(op);
  1345       // visit definitions (output and temp operands)
  1346       int k, n;
  1347       n = visitor.opr_count(LIR_OpVisitState::outputMode);
  1348       for (k = 0; k < n; k++) {
  1349         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
  1350         assert(opr->is_register(), "visitor should only return register operands");
  1351         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
  1354       n = visitor.opr_count(LIR_OpVisitState::tempMode);
  1355       for (k = 0; k < n; k++) {
  1356         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
  1357         assert(opr->is_register(), "visitor should only return register operands");
  1358         add_temp(opr, op_id, mustHaveRegister);
  1361       // visit uses (input operands)
  1362       n = visitor.opr_count(LIR_OpVisitState::inputMode);
  1363       for (k = 0; k < n; k++) {
  1364         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
  1365         assert(opr->is_register(), "visitor should only return register operands");
  1366         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
  1369       // Add uses of live locals from interpreter's point of view for proper
  1370       // debug information generation
  1371       // Treat these operands as temp values (if the life range is extended
  1372       // to a call site, the value would be in a register at the call otherwise)
  1373       n = visitor.info_count();
  1374       for (k = 0; k < n; k++) {
  1375         CodeEmitInfo* info = visitor.info_at(k);
  1376         ValueStack* stack = info->stack();
  1377         for_each_state_value(stack, value,
  1378           add_use(value, block_from, op_id + 1, noUse);
  1379         );
  1382       // special steps for some instructions (especially moves)
  1383       handle_method_arguments(op);
  1384       handle_doubleword_moves(op);
  1385       add_register_hints(op);
  1387     } // end of instruction iteration
  1388   } // end of block iteration
  1391   // add the range [0, 1[ to all fixed intervals
  1392   // -> the register allocator need not handle unhandled fixed intervals
  1393   for (int n = 0; n < LinearScan::nof_regs; n++) {
  1394     Interval* interval = interval_at(n);
  1395     if (interval != NULL) {
  1396       interval->add_range(0, 1);
  1402 // ********** Phase 5: actual register allocation
  1404 int LinearScan::interval_cmp(Interval** a, Interval** b) {
  1405   if (*a != NULL) {
  1406     if (*b != NULL) {
  1407       return (*a)->from() - (*b)->from();
  1408     } else {
  1409       return -1;
  1411   } else {
  1412     if (*b != NULL) {
  1413       return 1;
  1414     } else {
  1415       return 0;
  1420 #ifndef PRODUCT
  1421 bool LinearScan::is_sorted(IntervalArray* intervals) {
  1422   int from = -1;
  1423   int i, j;
  1424   for (i = 0; i < intervals->length(); i ++) {
  1425     Interval* it = intervals->at(i);
  1426     if (it != NULL) {
  1427       if (from > it->from()) {
  1428         assert(false, "");
  1429         return false;
  1431       from = it->from();
  1435   // check in both directions if sorted list and unsorted list contain same intervals
  1436   for (i = 0; i < interval_count(); i++) {
  1437     if (interval_at(i) != NULL) {
  1438       int num_found = 0;
  1439       for (j = 0; j < intervals->length(); j++) {
  1440         if (interval_at(i) == intervals->at(j)) {
  1441           num_found++;
  1444       assert(num_found == 1, "lists do not contain same intervals");
  1447   for (j = 0; j < intervals->length(); j++) {
  1448     int num_found = 0;
  1449     for (i = 0; i < interval_count(); i++) {
  1450       if (interval_at(i) == intervals->at(j)) {
  1451         num_found++;
  1454     assert(num_found == 1, "lists do not contain same intervals");
  1457   return true;
  1459 #endif
  1461 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
  1462   if (*prev != NULL) {
  1463     (*prev)->set_next(interval);
  1464   } else {
  1465     *first = interval;
  1467   *prev = interval;
  1470 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
  1471   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
  1473   *list1 = *list2 = Interval::end();
  1475   Interval* list1_prev = NULL;
  1476   Interval* list2_prev = NULL;
  1477   Interval* v;
  1479   const int n = _sorted_intervals->length();
  1480   for (int i = 0; i < n; i++) {
  1481     v = _sorted_intervals->at(i);
  1482     if (v == NULL) continue;
  1484     if (is_list1(v)) {
  1485       add_to_list(list1, &list1_prev, v);
  1486     } else if (is_list2 == NULL || is_list2(v)) {
  1487       add_to_list(list2, &list2_prev, v);
  1491   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
  1492   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
  1494   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
  1495   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
  1499 void LinearScan::sort_intervals_before_allocation() {
  1500   TIME_LINEAR_SCAN(timer_sort_intervals_before);
  1502   IntervalList* unsorted_list = &_intervals;
  1503   int unsorted_len = unsorted_list->length();
  1504   int sorted_len = 0;
  1505   int unsorted_idx;
  1506   int sorted_idx = 0;
  1507   int sorted_from_max = -1;
  1509   // calc number of items for sorted list (sorted list must not contain NULL values)
  1510   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
  1511     if (unsorted_list->at(unsorted_idx) != NULL) {
  1512       sorted_len++;
  1515   IntervalArray* sorted_list = new IntervalArray(sorted_len);
  1517   // special sorting algorithm: the original interval-list is almost sorted,
  1518   // only some intervals are swapped. So this is much faster than a complete QuickSort
  1519   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
  1520     Interval* cur_interval = unsorted_list->at(unsorted_idx);
  1522     if (cur_interval != NULL) {
  1523       int cur_from = cur_interval->from();
  1525       if (sorted_from_max <= cur_from) {
  1526         sorted_list->at_put(sorted_idx++, cur_interval);
  1527         sorted_from_max = cur_interval->from();
  1528       } else {
  1529         // the asumption that the intervals are already sorted failed,
  1530         // so this interval must be sorted in manually
  1531         int j;
  1532         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
  1533           sorted_list->at_put(j + 1, sorted_list->at(j));
  1535         sorted_list->at_put(j + 1, cur_interval);
  1536         sorted_idx++;
  1540   _sorted_intervals = sorted_list;
  1543 void LinearScan::sort_intervals_after_allocation() {
  1544   TIME_LINEAR_SCAN(timer_sort_intervals_after);
  1546   IntervalArray* old_list      = _sorted_intervals;
  1547   IntervalList*  new_list      = _new_intervals_from_allocation;
  1548   int old_len = old_list->length();
  1549   int new_len = new_list->length();
  1551   if (new_len == 0) {
  1552     // no intervals have been added during allocation, so sorted list is already up to date
  1553     return;
  1556   // conventional sort-algorithm for new intervals
  1557   new_list->sort(interval_cmp);
  1559   // merge old and new list (both already sorted) into one combined list
  1560   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
  1561   int old_idx = 0;
  1562   int new_idx = 0;
  1564   while (old_idx + new_idx < old_len + new_len) {
  1565     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
  1566       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
  1567       old_idx++;
  1568     } else {
  1569       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
  1570       new_idx++;
  1574   _sorted_intervals = combined_list;
  1578 void LinearScan::allocate_registers() {
  1579   TIME_LINEAR_SCAN(timer_allocate_registers);
  1581   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
  1582   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
  1584   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
  1585   if (has_fpu_registers()) {
  1586     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
  1587 #ifdef ASSERT
  1588   } else {
  1589     // fpu register allocation is omitted because no virtual fpu registers are present
  1590     // just check this again...
  1591     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
  1592     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
  1593 #endif
  1596   // allocate cpu registers
  1597   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
  1598   cpu_lsw.walk();
  1599   cpu_lsw.finish_allocation();
  1601   if (has_fpu_registers()) {
  1602     // allocate fpu registers
  1603     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
  1604     fpu_lsw.walk();
  1605     fpu_lsw.finish_allocation();
  1610 // ********** Phase 6: resolve data flow
  1611 // (insert moves at edges between blocks if intervals have been split)
  1613 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
  1614 // instead of returning NULL
  1615 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
  1616   Interval* result = interval->split_child_at_op_id(op_id, mode);
  1617   if (result != NULL) {
  1618     return result;
  1621   assert(false, "must find an interval, but do a clean bailout in product mode");
  1622   result = new Interval(LIR_OprDesc::vreg_base);
  1623   result->assign_reg(0);
  1624   result->set_type(T_INT);
  1625   BAILOUT_("LinearScan: interval is NULL", result);
  1629 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
  1630   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1631   assert(interval_at(reg_num) != NULL, "no interval found");
  1633   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
  1636 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
  1637   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1638   assert(interval_at(reg_num) != NULL, "no interval found");
  1640   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
  1643 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
  1644   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1645   assert(interval_at(reg_num) != NULL, "no interval found");
  1647   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
  1651 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
  1652   DEBUG_ONLY(move_resolver.check_empty());
  1654   const int num_regs = num_virtual_regs();
  1655   const int size = live_set_size();
  1656   const BitMap live_at_edge = to_block->live_in();
  1658   // visit all registers where the live_at_edge bit is set
  1659   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
  1660     assert(r < num_regs, "live information set for not exisiting interval");
  1661     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
  1663     Interval* from_interval = interval_at_block_end(from_block, r);
  1664     Interval* to_interval = interval_at_block_begin(to_block, r);
  1666     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
  1667       // need to insert move instruction
  1668       move_resolver.add_mapping(from_interval, to_interval);
  1674 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
  1675   if (from_block->number_of_sux() <= 1) {
  1676     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
  1678     LIR_OpList* instructions = from_block->lir()->instructions_list();
  1679     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
  1680     if (branch != NULL) {
  1681       // insert moves before branch
  1682       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
  1683       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
  1684     } else {
  1685       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
  1688   } else {
  1689     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
  1690 #ifdef ASSERT
  1691     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
  1693     // because the number of predecessor edges matches the number of
  1694     // successor edges, blocks which are reached by switch statements
  1695     // may have be more than one predecessor but it will be guaranteed
  1696     // that all predecessors will be the same.
  1697     for (int i = 0; i < to_block->number_of_preds(); i++) {
  1698       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
  1700 #endif
  1702     move_resolver.set_insert_position(to_block->lir(), 0);
  1707 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
  1708 void LinearScan::resolve_data_flow() {
  1709   TIME_LINEAR_SCAN(timer_resolve_data_flow);
  1711   int num_blocks = block_count();
  1712   MoveResolver move_resolver(this);
  1713   BitMap block_completed(num_blocks);  block_completed.clear();
  1714   BitMap already_resolved(num_blocks); already_resolved.clear();
  1716   int i;
  1717   for (i = 0; i < num_blocks; i++) {
  1718     BlockBegin* block = block_at(i);
  1720     // check if block has only one predecessor and only one successor
  1721     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
  1722       LIR_OpList* instructions = block->lir()->instructions_list();
  1723       assert(instructions->at(0)->code() == lir_label, "block must start with label");
  1724       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
  1725       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
  1727       // check if block is empty (only label and branch)
  1728       if (instructions->length() == 2) {
  1729         BlockBegin* pred = block->pred_at(0);
  1730         BlockBegin* sux = block->sux_at(0);
  1732         // prevent optimization of two consecutive blocks
  1733         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
  1734           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
  1735           block_completed.set_bit(block->linear_scan_number());
  1737           // directly resolve between pred and sux (without looking at the empty block between)
  1738           resolve_collect_mappings(pred, sux, move_resolver);
  1739           if (move_resolver.has_mappings()) {
  1740             move_resolver.set_insert_position(block->lir(), 0);
  1741             move_resolver.resolve_and_append_moves();
  1749   for (i = 0; i < num_blocks; i++) {
  1750     if (!block_completed.at(i)) {
  1751       BlockBegin* from_block = block_at(i);
  1752       already_resolved.set_from(block_completed);
  1754       int num_sux = from_block->number_of_sux();
  1755       for (int s = 0; s < num_sux; s++) {
  1756         BlockBegin* to_block = from_block->sux_at(s);
  1758         // check for duplicate edges between the same blocks (can happen with switch blocks)
  1759         if (!already_resolved.at(to_block->linear_scan_number())) {
  1760           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
  1761           already_resolved.set_bit(to_block->linear_scan_number());
  1763           // collect all intervals that have been split between from_block and to_block
  1764           resolve_collect_mappings(from_block, to_block, move_resolver);
  1765           if (move_resolver.has_mappings()) {
  1766             resolve_find_insert_pos(from_block, to_block, move_resolver);
  1767             move_resolver.resolve_and_append_moves();
  1776 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
  1777   if (interval_at(reg_num) == NULL) {
  1778     // if a phi function is never used, no interval is created -> ignore this
  1779     return;
  1782   Interval* interval = interval_at_block_begin(block, reg_num);
  1783   int reg = interval->assigned_reg();
  1784   int regHi = interval->assigned_regHi();
  1786   if ((reg < nof_regs && interval->always_in_memory()) ||
  1787       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
  1788     // the interval is split to get a short range that is located on the stack
  1789     // in the following two cases:
  1790     // * the interval started in memory (e.g. method parameter), but is currently in a register
  1791     //   this is an optimization for exception handling that reduces the number of moves that
  1792     //   are necessary for resolving the states when an exception uses this exception handler
  1793     // * the interval would be on the fpu stack at the begin of the exception handler
  1794     //   this is not allowed because of the complicated fpu stack handling on Intel
  1796     // range that will be spilled to memory
  1797     int from_op_id = block->first_lir_instruction_id();
  1798     int to_op_id = from_op_id + 1;  // short live range of length 1
  1799     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
  1800            "no split allowed between exception entry and first instruction");
  1802     if (interval->from() != from_op_id) {
  1803       // the part before from_op_id is unchanged
  1804       interval = interval->split(from_op_id);
  1805       interval->assign_reg(reg, regHi);
  1806       append_interval(interval);
  1808     assert(interval->from() == from_op_id, "must be true now");
  1810     Interval* spilled_part = interval;
  1811     if (interval->to() != to_op_id) {
  1812       // the part after to_op_id is unchanged
  1813       spilled_part = interval->split_from_start(to_op_id);
  1814       append_interval(spilled_part);
  1815       move_resolver.add_mapping(spilled_part, interval);
  1817     assign_spill_slot(spilled_part);
  1819     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
  1823 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
  1824   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
  1825   DEBUG_ONLY(move_resolver.check_empty());
  1827   // visit all registers where the live_in bit is set
  1828   int size = live_set_size();
  1829   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
  1830     resolve_exception_entry(block, r, move_resolver);
  1833   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
  1834   for_each_phi_fun(block, phi,
  1835     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
  1836   );
  1838   if (move_resolver.has_mappings()) {
  1839     // insert moves after first instruction
  1840     move_resolver.set_insert_position(block->lir(), 1);
  1841     move_resolver.resolve_and_append_moves();
  1846 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
  1847   if (interval_at(reg_num) == NULL) {
  1848     // if a phi function is never used, no interval is created -> ignore this
  1849     return;
  1852   // the computation of to_interval is equal to resolve_collect_mappings,
  1853   // but from_interval is more complicated because of phi functions
  1854   BlockBegin* to_block = handler->entry_block();
  1855   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
  1857   if (phi != NULL) {
  1858     // phi function of the exception entry block
  1859     // no moves are created for this phi function in the LIR_Generator, so the
  1860     // interval at the throwing instruction must be searched using the operands
  1861     // of the phi function
  1862     Value from_value = phi->operand_at(handler->phi_operand());
  1864     // with phi functions it can happen that the same from_value is used in
  1865     // multiple mappings, so notify move-resolver that this is allowed
  1866     move_resolver.set_multiple_reads_allowed();
  1868     Constant* con = from_value->as_Constant();
  1869     if (con != NULL && !con->is_pinned()) {
  1870       // unpinned constants may have no register, so add mapping from constant to interval
  1871       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
  1872     } else {
  1873       // search split child at the throwing op_id
  1874       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
  1875       move_resolver.add_mapping(from_interval, to_interval);
  1878   } else {
  1879     // no phi function, so use reg_num also for from_interval
  1880     // search split child at the throwing op_id
  1881     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
  1882     if (from_interval != to_interval) {
  1883       // optimization to reduce number of moves: when to_interval is on stack and
  1884       // the stack slot is known to be always correct, then no move is necessary
  1885       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
  1886         move_resolver.add_mapping(from_interval, to_interval);
  1892 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
  1893   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
  1895   DEBUG_ONLY(move_resolver.check_empty());
  1896   assert(handler->lir_op_id() == -1, "already processed this xhandler");
  1897   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
  1898   assert(handler->entry_code() == NULL, "code already present");
  1900   // visit all registers where the live_in bit is set
  1901   BlockBegin* block = handler->entry_block();
  1902   int size = live_set_size();
  1903   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
  1904     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
  1907   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
  1908   for_each_phi_fun(block, phi,
  1909     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
  1910   );
  1912   if (move_resolver.has_mappings()) {
  1913     LIR_List* entry_code = new LIR_List(compilation());
  1914     move_resolver.set_insert_position(entry_code, 0);
  1915     move_resolver.resolve_and_append_moves();
  1917     entry_code->jump(handler->entry_block());
  1918     handler->set_entry_code(entry_code);
  1923 void LinearScan::resolve_exception_handlers() {
  1924   MoveResolver move_resolver(this);
  1925   LIR_OpVisitState visitor;
  1926   int num_blocks = block_count();
  1928   int i;
  1929   for (i = 0; i < num_blocks; i++) {
  1930     BlockBegin* block = block_at(i);
  1931     if (block->is_set(BlockBegin::exception_entry_flag)) {
  1932       resolve_exception_entry(block, move_resolver);
  1936   for (i = 0; i < num_blocks; i++) {
  1937     BlockBegin* block = block_at(i);
  1938     LIR_List* ops = block->lir();
  1939     int num_ops = ops->length();
  1941     // iterate all instructions of the block. skip the first because it is always a label
  1942     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
  1943     for (int j = 1; j < num_ops; j++) {
  1944       LIR_Op* op = ops->at(j);
  1945       int op_id = op->id();
  1947       if (op_id != -1 && has_info(op_id)) {
  1948         // visit operation to collect all operands
  1949         visitor.visit(op);
  1950         assert(visitor.info_count() > 0, "should not visit otherwise");
  1952         XHandlers* xhandlers = visitor.all_xhandler();
  1953         int n = xhandlers->length();
  1954         for (int k = 0; k < n; k++) {
  1955           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
  1958 #ifdef ASSERT
  1959       } else {
  1960         visitor.visit(op);
  1961         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
  1962 #endif
  1969 // ********** Phase 7: assign register numbers back to LIR
  1970 // (includes computation of debug information and oop maps)
  1972 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
  1973   VMReg reg = interval->cached_vm_reg();
  1974   if (!reg->is_valid() ) {
  1975     reg = vm_reg_for_operand(operand_for_interval(interval));
  1976     interval->set_cached_vm_reg(reg);
  1978   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
  1979   return reg;
  1982 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
  1983   assert(opr->is_oop(), "currently only implemented for oop operands");
  1984   return frame_map()->regname(opr);
  1988 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
  1989   LIR_Opr opr = interval->cached_opr();
  1990   if (opr->is_illegal()) {
  1991     opr = calc_operand_for_interval(interval);
  1992     interval->set_cached_opr(opr);
  1995   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
  1996   return opr;
  1999 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
  2000   int assigned_reg = interval->assigned_reg();
  2001   BasicType type = interval->type();
  2003   if (assigned_reg >= nof_regs) {
  2004     // stack slot
  2005     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2006     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
  2008   } else {
  2009     // register
  2010     switch (type) {
  2011       case T_OBJECT: {
  2012         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2013         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2014         return LIR_OprFact::single_cpu_oop(assigned_reg);
  2017       case T_INT: {
  2018         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2019         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2020         return LIR_OprFact::single_cpu(assigned_reg);
  2023       case T_LONG: {
  2024         int assigned_regHi = interval->assigned_regHi();
  2025         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2026         assert(num_physical_regs(T_LONG) == 1 ||
  2027                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
  2029         assert(assigned_reg != assigned_regHi, "invalid allocation");
  2030         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
  2031                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
  2032         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
  2033         if (requires_adjacent_regs(T_LONG)) {
  2034           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
  2037 #ifdef _LP64
  2038         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
  2039 #else
  2040 #ifdef SPARC
  2041         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
  2042 #else
  2043         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
  2044 #endif // SPARC
  2045 #endif // LP64
  2048       case T_FLOAT: {
  2049 #ifdef X86
  2050         if (UseSSE >= 1) {
  2051           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
  2052           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2053           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
  2055 #endif
  2057         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2058         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2059         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
  2062       case T_DOUBLE: {
  2063 #ifdef X86
  2064         if (UseSSE >= 2) {
  2065           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
  2066           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
  2067           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
  2069 #endif
  2071 #ifdef SPARC
  2072         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2073         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
  2074         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
  2075         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
  2076 #else
  2077         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2078         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
  2079         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
  2080 #endif
  2081         return result;
  2084       default: {
  2085         ShouldNotReachHere();
  2086         return LIR_OprFact::illegalOpr;
  2092 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
  2093   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
  2094   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
  2097 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
  2098   assert(opr->is_virtual(), "should not call this otherwise");
  2100   Interval* interval = interval_at(opr->vreg_number());
  2101   assert(interval != NULL, "interval must exist");
  2103   if (op_id != -1) {
  2104 #ifdef ASSERT
  2105     BlockBegin* block = block_of_op_with_id(op_id);
  2106     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
  2107       // check if spill moves could have been appended at the end of this block, but
  2108       // before the branch instruction. So the split child information for this branch would
  2109       // be incorrect.
  2110       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
  2111       if (branch != NULL) {
  2112         if (block->live_out().at(opr->vreg_number())) {
  2113           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
  2114           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
  2118 #endif
  2120     // operands are not changed when an interval is split during allocation,
  2121     // so search the right interval here
  2122     interval = split_child_at_op_id(interval, op_id, mode);
  2125   LIR_Opr res = operand_for_interval(interval);
  2127 #ifdef X86
  2128   // new semantic for is_last_use: not only set on definite end of interval,
  2129   // but also before hole
  2130   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
  2131   // last use information is completely correct
  2132   // information is only needed for fpu stack allocation
  2133   if (res->is_fpu_register()) {
  2134     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
  2135       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
  2136       res = res->make_last_use();
  2139 #endif
  2141   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
  2143   return res;
  2147 #ifdef ASSERT
  2148 // some methods used to check correctness of debug information
  2150 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
  2151   if (values == NULL) {
  2152     return;
  2155   for (int i = 0; i < values->length(); i++) {
  2156     ScopeValue* value = values->at(i);
  2158     if (value->is_location()) {
  2159       Location location = ((LocationValue*)value)->location();
  2160       assert(location.where() == Location::on_stack, "value is in register");
  2165 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
  2166   if (values == NULL) {
  2167     return;
  2170   for (int i = 0; i < values->length(); i++) {
  2171     MonitorValue* value = values->at(i);
  2173     if (value->owner()->is_location()) {
  2174       Location location = ((LocationValue*)value->owner())->location();
  2175       assert(location.where() == Location::on_stack, "owner is in register");
  2177     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
  2181 void assert_equal(Location l1, Location l2) {
  2182   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
  2185 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
  2186   if (v1->is_location()) {
  2187     assert(v2->is_location(), "");
  2188     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
  2189   } else if (v1->is_constant_int()) {
  2190     assert(v2->is_constant_int(), "");
  2191     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
  2192   } else if (v1->is_constant_double()) {
  2193     assert(v2->is_constant_double(), "");
  2194     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
  2195   } else if (v1->is_constant_long()) {
  2196     assert(v2->is_constant_long(), "");
  2197     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
  2198   } else if (v1->is_constant_oop()) {
  2199     assert(v2->is_constant_oop(), "");
  2200     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
  2201   } else {
  2202     ShouldNotReachHere();
  2206 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
  2207   assert_equal(m1->owner(), m2->owner());
  2208   assert_equal(m1->basic_lock(), m2->basic_lock());
  2211 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
  2212   assert(d1->scope() == d2->scope(), "not equal");
  2213   assert(d1->bci() == d2->bci(), "not equal");
  2215   if (d1->locals() != NULL) {
  2216     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
  2217     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
  2218     for (int i = 0; i < d1->locals()->length(); i++) {
  2219       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
  2221   } else {
  2222     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
  2225   if (d1->expressions() != NULL) {
  2226     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
  2227     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
  2228     for (int i = 0; i < d1->expressions()->length(); i++) {
  2229       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
  2231   } else {
  2232     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
  2235   if (d1->monitors() != NULL) {
  2236     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
  2237     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
  2238     for (int i = 0; i < d1->monitors()->length(); i++) {
  2239       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
  2241   } else {
  2242     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
  2245   if (d1->caller() != NULL) {
  2246     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
  2247     assert_equal(d1->caller(), d2->caller());
  2248   } else {
  2249     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
  2253 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
  2254   if (info->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
  2255     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->bci());
  2256     switch (code) {
  2257       case Bytecodes::_ifnull    : // fall through
  2258       case Bytecodes::_ifnonnull : // fall through
  2259       case Bytecodes::_ifeq      : // fall through
  2260       case Bytecodes::_ifne      : // fall through
  2261       case Bytecodes::_iflt      : // fall through
  2262       case Bytecodes::_ifge      : // fall through
  2263       case Bytecodes::_ifgt      : // fall through
  2264       case Bytecodes::_ifle      : // fall through
  2265       case Bytecodes::_if_icmpeq : // fall through
  2266       case Bytecodes::_if_icmpne : // fall through
  2267       case Bytecodes::_if_icmplt : // fall through
  2268       case Bytecodes::_if_icmpge : // fall through
  2269       case Bytecodes::_if_icmpgt : // fall through
  2270       case Bytecodes::_if_icmple : // fall through
  2271       case Bytecodes::_if_acmpeq : // fall through
  2272       case Bytecodes::_if_acmpne :
  2273         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
  2274         break;
  2279 #endif // ASSERT
  2282 IntervalWalker* LinearScan::init_compute_oop_maps() {
  2283   // setup lists of potential oops for walking
  2284   Interval* oop_intervals;
  2285   Interval* non_oop_intervals;
  2287   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
  2289   // intervals that have no oops inside need not to be processed
  2290   // to ensure a walking until the last instruction id, add a dummy interval
  2291   // with a high operation id
  2292   non_oop_intervals = new Interval(any_reg);
  2293   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
  2295   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
  2299 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
  2300   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
  2302   // walk before the current operation -> intervals that start at
  2303   // the operation (= output operands of the operation) are not
  2304   // included in the oop map
  2305   iw->walk_before(op->id());
  2307   int frame_size = frame_map()->framesize();
  2308   int arg_count = frame_map()->oop_map_arg_count();
  2309   OopMap* map = new OopMap(frame_size, arg_count);
  2311   // Check if this is a patch site.
  2312   bool is_patch_info = false;
  2313   if (op->code() == lir_move) {
  2314     assert(!is_call_site, "move must not be a call site");
  2315     assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  2316     LIR_Op1* move = (LIR_Op1*)op;
  2318     is_patch_info = move->patch_code() != lir_patch_none;
  2321   // Iterate through active intervals
  2322   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
  2323     int assigned_reg = interval->assigned_reg();
  2325     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
  2326     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
  2327     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
  2329     // Check if this range covers the instruction. Intervals that
  2330     // start or end at the current operation are not included in the
  2331     // oop map, except in the case of patching moves.  For patching
  2332     // moves, any intervals which end at this instruction are included
  2333     // in the oop map since we may safepoint while doing the patch
  2334     // before we've consumed the inputs.
  2335     if (is_patch_info || op->id() < interval->current_to()) {
  2337       // caller-save registers must not be included into oop-maps at calls
  2338       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
  2340       VMReg name = vm_reg_for_interval(interval);
  2341       map->set_oop(name);
  2343       // Spill optimization: when the stack value is guaranteed to be always correct,
  2344       // then it must be added to the oop map even if the interval is currently in a register
  2345       if (interval->always_in_memory() &&
  2346           op->id() > interval->spill_definition_pos() &&
  2347           interval->assigned_reg() != interval->canonical_spill_slot()) {
  2348         assert(interval->spill_definition_pos() > 0, "position not set correctly");
  2349         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
  2350         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
  2352         map->set_oop(frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
  2357   // add oops from lock stack
  2358   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
  2359   int locks_count = info->stack()->locks_size();
  2360   for (int i = 0; i < locks_count; i++) {
  2361     map->set_oop(frame_map()->monitor_object_regname(i));
  2364   return map;
  2368 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
  2369   assert(visitor.info_count() > 0, "no oop map needed");
  2371   // compute oop_map only for first CodeEmitInfo
  2372   // because it is (in most cases) equal for all other infos of the same operation
  2373   CodeEmitInfo* first_info = visitor.info_at(0);
  2374   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
  2376   for (int i = 0; i < visitor.info_count(); i++) {
  2377     CodeEmitInfo* info = visitor.info_at(i);
  2378     OopMap* oop_map = first_oop_map;
  2380     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
  2381       // this info has a different number of locks then the precomputed oop map
  2382       // (possible for lock and unlock instructions) -> compute oop map with
  2383       // correct lock information
  2384       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
  2387     if (info->_oop_map == NULL) {
  2388       info->_oop_map = oop_map;
  2389     } else {
  2390       // a CodeEmitInfo can not be shared between different LIR-instructions
  2391       // because interval splitting can occur anywhere between two instructions
  2392       // and so the oop maps must be different
  2393       // -> check if the already set oop_map is exactly the one calculated for this operation
  2394       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
  2400 // frequently used constants
  2401 ConstantOopWriteValue LinearScan::_oop_null_scope_value = ConstantOopWriteValue(NULL);
  2402 ConstantIntValue      LinearScan::_int_m1_scope_value = ConstantIntValue(-1);
  2403 ConstantIntValue      LinearScan::_int_0_scope_value =  ConstantIntValue(0);
  2404 ConstantIntValue      LinearScan::_int_1_scope_value =  ConstantIntValue(1);
  2405 ConstantIntValue      LinearScan::_int_2_scope_value =  ConstantIntValue(2);
  2406 LocationValue         _illegal_value = LocationValue(Location());
  2408 void LinearScan::init_compute_debug_info() {
  2409   // cache for frequently used scope values
  2410   // (cpu registers and stack slots)
  2411   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
  2414 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
  2415   Location loc;
  2416   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
  2417     bailout("too large frame");
  2419   ScopeValue* object_scope_value = new LocationValue(loc);
  2421   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
  2422     bailout("too large frame");
  2424   return new MonitorValue(object_scope_value, loc);
  2427 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
  2428   Location loc;
  2429   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
  2430     bailout("too large frame");
  2432   return new LocationValue(loc);
  2436 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
  2437   assert(opr->is_constant(), "should not be called otherwise");
  2439   LIR_Const* c = opr->as_constant_ptr();
  2440   BasicType t = c->type();
  2441   switch (t) {
  2442     case T_OBJECT: {
  2443       jobject value = c->as_jobject();
  2444       if (value == NULL) {
  2445         scope_values->append(&_oop_null_scope_value);
  2446       } else {
  2447         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
  2449       return 1;
  2452     case T_INT: // fall through
  2453     case T_FLOAT: {
  2454       int value = c->as_jint_bits();
  2455       switch (value) {
  2456         case -1: scope_values->append(&_int_m1_scope_value); break;
  2457         case 0:  scope_values->append(&_int_0_scope_value); break;
  2458         case 1:  scope_values->append(&_int_1_scope_value); break;
  2459         case 2:  scope_values->append(&_int_2_scope_value); break;
  2460         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
  2462       return 1;
  2465     case T_LONG: // fall through
  2466     case T_DOUBLE: {
  2467       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
  2468         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
  2469         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
  2470       } else {
  2471         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
  2472         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
  2475       return 2;
  2478     default:
  2479       ShouldNotReachHere();
  2480       return -1;
  2484 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
  2485   if (opr->is_single_stack()) {
  2486     int stack_idx = opr->single_stack_ix();
  2487     bool is_oop = opr->is_oop_register();
  2488     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
  2490     ScopeValue* sv = _scope_value_cache.at(cache_idx);
  2491     if (sv == NULL) {
  2492       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
  2493       sv = location_for_name(stack_idx, loc_type);
  2494       _scope_value_cache.at_put(cache_idx, sv);
  2497     // check if cached value is correct
  2498     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
  2500     scope_values->append(sv);
  2501     return 1;
  2503   } else if (opr->is_single_cpu()) {
  2504     bool is_oop = opr->is_oop_register();
  2505     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
  2507     ScopeValue* sv = _scope_value_cache.at(cache_idx);
  2508     if (sv == NULL) {
  2509       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
  2510       VMReg rname = frame_map()->regname(opr);
  2511       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
  2512       _scope_value_cache.at_put(cache_idx, sv);
  2515     // check if cached value is correct
  2516     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : Location::normal, frame_map()->regname(opr)))));
  2518     scope_values->append(sv);
  2519     return 1;
  2521 #ifdef X86
  2522   } else if (opr->is_single_xmm()) {
  2523     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
  2524     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
  2526     scope_values->append(sv);
  2527     return 1;
  2528 #endif
  2530   } else if (opr->is_single_fpu()) {
  2531 #ifdef X86
  2532     // the exact location of fpu stack values is only known
  2533     // during fpu stack allocation, so the stack allocator object
  2534     // must be present
  2535     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
  2536     assert(_fpu_stack_allocator != NULL, "must be present");
  2537     opr = _fpu_stack_allocator->to_fpu_stack(opr);
  2538 #endif
  2540     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
  2541     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
  2542     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
  2544     scope_values->append(sv);
  2545     return 1;
  2547   } else {
  2548     // double-size operands
  2550     ScopeValue* first;
  2551     ScopeValue* second;
  2553     if (opr->is_double_stack()) {
  2554 #ifdef _LP64
  2555       Location loc1;
  2556       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
  2557       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
  2558         bailout("too large frame");
  2560       // Does this reverse on x86 vs. sparc?
  2561       first =  new LocationValue(loc1);
  2562       second = &_int_0_scope_value;
  2563 #else
  2564       Location loc1, loc2;
  2565       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
  2566         bailout("too large frame");
  2568       first =  new LocationValue(loc1);
  2569       second = new LocationValue(loc2);
  2570 #endif // _LP64
  2572     } else if (opr->is_double_cpu()) {
  2573 #ifdef _LP64
  2574       VMReg rname_first = opr->as_register_lo()->as_VMReg();
  2575       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
  2576       second = &_int_0_scope_value;
  2577 #else
  2578       VMReg rname_first = opr->as_register_lo()->as_VMReg();
  2579       VMReg rname_second = opr->as_register_hi()->as_VMReg();
  2581       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
  2582         // lo/hi and swapped relative to first and second, so swap them
  2583         VMReg tmp = rname_first;
  2584         rname_first = rname_second;
  2585         rname_second = tmp;
  2588       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2589       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2590 #endif //_LP64
  2593 #ifdef X86
  2594     } else if (opr->is_double_xmm()) {
  2595       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
  2596       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
  2597       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2598       // %%% This is probably a waste but we'll keep things as they were for now
  2599       if (true) {
  2600         VMReg rname_second = rname_first->next();
  2601         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2603 #endif
  2605     } else if (opr->is_double_fpu()) {
  2606       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
  2607       // the double as float registers in the native ordering. On X86,
  2608       // fpu_regnrLo is a FPU stack slot whose VMReg represents
  2609       // the low-order word of the double and fpu_regnrLo + 1 is the
  2610       // name for the other half.  *first and *second must represent the
  2611       // least and most significant words, respectively.
  2613 #ifdef X86
  2614       // the exact location of fpu stack values is only known
  2615       // during fpu stack allocation, so the stack allocator object
  2616       // must be present
  2617       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
  2618       assert(_fpu_stack_allocator != NULL, "must be present");
  2619       opr = _fpu_stack_allocator->to_fpu_stack(opr);
  2621       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
  2622 #endif
  2623 #ifdef SPARC
  2624       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
  2625 #endif
  2627       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
  2629       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2630       // %%% This is probably a waste but we'll keep things as they were for now
  2631       if (true) {
  2632         VMReg rname_second = rname_first->next();
  2633         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2636     } else {
  2637       ShouldNotReachHere();
  2638       first = NULL;
  2639       second = NULL;
  2642     assert(first != NULL && second != NULL, "must be set");
  2643     // The convention the interpreter uses is that the second local
  2644     // holds the first raw word of the native double representation.
  2645     // This is actually reasonable, since locals and stack arrays
  2646     // grow downwards in all implementations.
  2647     // (If, on some machine, the interpreter's Java locals or stack
  2648     // were to grow upwards, the embedded doubles would be word-swapped.)
  2649     scope_values->append(second);
  2650     scope_values->append(first);
  2651     return 2;
  2656 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
  2657   if (value != NULL) {
  2658     LIR_Opr opr = value->operand();
  2659     Constant* con = value->as_Constant();
  2661     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
  2662     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
  2664     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
  2665       // Unpinned constants may have a virtual operand for a part of the lifetime
  2666       // or may be illegal when it was optimized away,
  2667       // so always use a constant operand
  2668       opr = LIR_OprFact::value_type(con->type());
  2670     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
  2672     if (opr->is_virtual()) {
  2673       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
  2675       BlockBegin* block = block_of_op_with_id(op_id);
  2676       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
  2677         // generating debug information for the last instruction of a block.
  2678         // if this instruction is a branch, spill moves are inserted before this branch
  2679         // and so the wrong operand would be returned (spill moves at block boundaries are not
  2680         // considered in the live ranges of intervals)
  2681         // Solution: use the first op_id of the branch target block instead.
  2682         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
  2683           if (block->live_out().at(opr->vreg_number())) {
  2684             op_id = block->sux_at(0)->first_lir_instruction_id();
  2685             mode = LIR_OpVisitState::outputMode;
  2690       // Get current location of operand
  2691       // The operand must be live because debug information is considered when building the intervals
  2692       // if the interval is not live, color_lir_opr will cause an assertion failure
  2693       opr = color_lir_opr(opr, op_id, mode);
  2694       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
  2696       // Append to ScopeValue array
  2697       return append_scope_value_for_operand(opr, scope_values);
  2699     } else {
  2700       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
  2701       assert(opr->is_constant(), "operand must be constant");
  2703       return append_scope_value_for_constant(opr, scope_values);
  2705   } else {
  2706     // append a dummy value because real value not needed
  2707     scope_values->append(&_illegal_value);
  2708     return 1;
  2713 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state, int cur_bci, int stack_end, int locks_end) {
  2714   IRScopeDebugInfo* caller_debug_info = NULL;
  2715   int stack_begin, locks_begin;
  2717   ValueStack* caller_state = cur_scope->caller_state();
  2718   if (caller_state != NULL) {
  2719     // process recursively to compute outermost scope first
  2720     stack_begin = caller_state->stack_size();
  2721     locks_begin = caller_state->locks_size();
  2722     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state, cur_scope->caller_bci(), stack_begin, locks_begin);
  2723   } else {
  2724     stack_begin = 0;
  2725     locks_begin = 0;
  2728   // initialize these to null.
  2729   // If we don't need deopt info or there are no locals, expressions or monitors,
  2730   // then these get recorded as no information and avoids the allocation of 0 length arrays.
  2731   GrowableArray<ScopeValue*>*   locals      = NULL;
  2732   GrowableArray<ScopeValue*>*   expressions = NULL;
  2733   GrowableArray<MonitorValue*>* monitors    = NULL;
  2735   // describe local variable values
  2736   int nof_locals = cur_scope->method()->max_locals();
  2737   if (nof_locals > 0) {
  2738     locals = new GrowableArray<ScopeValue*>(nof_locals);
  2740     int pos = 0;
  2741     while (pos < nof_locals) {
  2742       assert(pos < cur_state->locals_size(), "why not?");
  2744       Value local = cur_state->local_at(pos);
  2745       pos += append_scope_value(op_id, local, locals);
  2747       assert(locals->length() == pos, "must match");
  2749     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
  2750     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
  2754   // describe expression stack
  2755   //
  2756   // When we inline methods containing exception handlers, the
  2757   // "lock_stacks" are changed to preserve expression stack values
  2758   // in caller scopes when exception handlers are present. This
  2759   // can cause callee stacks to be smaller than caller stacks.
  2760   if (stack_end > innermost_state->stack_size()) {
  2761     stack_end = innermost_state->stack_size();
  2766   int nof_stack = stack_end - stack_begin;
  2767   if (nof_stack > 0) {
  2768     expressions = new GrowableArray<ScopeValue*>(nof_stack);
  2770     int pos = stack_begin;
  2771     while (pos < stack_end) {
  2772       Value expression = innermost_state->stack_at_inc(pos);
  2773       append_scope_value(op_id, expression, expressions);
  2775       assert(expressions->length() + stack_begin == pos, "must match");
  2779   // describe monitors
  2780   assert(locks_begin <= locks_end, "error in scope iteration");
  2781   int nof_locks = locks_end - locks_begin;
  2782   if (nof_locks > 0) {
  2783     monitors = new GrowableArray<MonitorValue*>(nof_locks);
  2784     for (int i = locks_begin; i < locks_end; i++) {
  2785       monitors->append(location_for_monitor_index(i));
  2789   return new IRScopeDebugInfo(cur_scope, cur_bci, locals, expressions, monitors, caller_debug_info);
  2793 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
  2794   if (!compilation()->needs_debug_information()) {
  2795     return;
  2797   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
  2799   IRScope* innermost_scope = info->scope();
  2800   ValueStack* innermost_state = info->stack();
  2802   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
  2804   int stack_end = innermost_state->stack_size();
  2805   int locks_end = innermost_state->locks_size();
  2807   DEBUG_ONLY(check_stack_depth(info, stack_end));
  2809   if (info->_scope_debug_info == NULL) {
  2810     // compute debug information
  2811     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end);
  2812   } else {
  2813     // debug information already set. Check that it is correct from the current point of view
  2814     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end)));
  2819 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
  2820   LIR_OpVisitState visitor;
  2821   int num_inst = instructions->length();
  2822   bool has_dead = false;
  2824   for (int j = 0; j < num_inst; j++) {
  2825     LIR_Op* op = instructions->at(j);
  2826     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
  2827       has_dead = true;
  2828       continue;
  2830     int op_id = op->id();
  2832     // visit instruction to get list of operands
  2833     visitor.visit(op);
  2835     // iterate all modes of the visitor and process all virtual operands
  2836     for_each_visitor_mode(mode) {
  2837       int n = visitor.opr_count(mode);
  2838       for (int k = 0; k < n; k++) {
  2839         LIR_Opr opr = visitor.opr_at(mode, k);
  2840         if (opr->is_virtual_register()) {
  2841           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
  2846     if (visitor.info_count() > 0) {
  2847       // exception handling
  2848       if (compilation()->has_exception_handlers()) {
  2849         XHandlers* xhandlers = visitor.all_xhandler();
  2850         int n = xhandlers->length();
  2851         for (int k = 0; k < n; k++) {
  2852           XHandler* handler = xhandlers->handler_at(k);
  2853           if (handler->entry_code() != NULL) {
  2854             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
  2857       } else {
  2858         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
  2861       // compute oop map
  2862       assert(iw != NULL, "needed for compute_oop_map");
  2863       compute_oop_map(iw, visitor, op);
  2865       // compute debug information
  2866       if (!use_fpu_stack_allocation()) {
  2867         // compute debug information if fpu stack allocation is not needed.
  2868         // when fpu stack allocation is needed, the debug information can not
  2869         // be computed here because the exact location of fpu operands is not known
  2870         // -> debug information is created inside the fpu stack allocator
  2871         int n = visitor.info_count();
  2872         for (int k = 0; k < n; k++) {
  2873           compute_debug_info(visitor.info_at(k), op_id);
  2878 #ifdef ASSERT
  2879     // make sure we haven't made the op invalid.
  2880     op->verify();
  2881 #endif
  2883     // remove useless moves
  2884     if (op->code() == lir_move) {
  2885       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  2886       LIR_Op1* move = (LIR_Op1*)op;
  2887       LIR_Opr src = move->in_opr();
  2888       LIR_Opr dst = move->result_opr();
  2889       if (dst == src ||
  2890           !dst->is_pointer() && !src->is_pointer() &&
  2891           src->is_same_register(dst)) {
  2892         instructions->at_put(j, NULL);
  2893         has_dead = true;
  2898   if (has_dead) {
  2899     // iterate all instructions of the block and remove all null-values.
  2900     int insert_point = 0;
  2901     for (int j = 0; j < num_inst; j++) {
  2902       LIR_Op* op = instructions->at(j);
  2903       if (op != NULL) {
  2904         if (insert_point != j) {
  2905           instructions->at_put(insert_point, op);
  2907         insert_point++;
  2910     instructions->truncate(insert_point);
  2914 void LinearScan::assign_reg_num() {
  2915   TIME_LINEAR_SCAN(timer_assign_reg_num);
  2917   init_compute_debug_info();
  2918   IntervalWalker* iw = init_compute_oop_maps();
  2920   int num_blocks = block_count();
  2921   for (int i = 0; i < num_blocks; i++) {
  2922     BlockBegin* block = block_at(i);
  2923     assign_reg_num(block->lir()->instructions_list(), iw);
  2928 void LinearScan::do_linear_scan() {
  2929   NOT_PRODUCT(_total_timer.begin_method());
  2931   number_instructions();
  2933   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
  2935   compute_local_live_sets();
  2936   compute_global_live_sets();
  2937   CHECK_BAILOUT();
  2939   build_intervals();
  2940   CHECK_BAILOUT();
  2941   sort_intervals_before_allocation();
  2943   NOT_PRODUCT(print_intervals("Before Register Allocation"));
  2944   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
  2946   allocate_registers();
  2947   CHECK_BAILOUT();
  2949   resolve_data_flow();
  2950   if (compilation()->has_exception_handlers()) {
  2951     resolve_exception_handlers();
  2953   // fill in number of spill slots into frame_map
  2954   propagate_spill_slots();
  2955   CHECK_BAILOUT();
  2957   NOT_PRODUCT(print_intervals("After Register Allocation"));
  2958   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
  2959   DEBUG_ONLY(verify());
  2961   sort_intervals_after_allocation();
  2962   eliminate_spill_moves();
  2963   assign_reg_num();
  2964   CHECK_BAILOUT();
  2966   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
  2967   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
  2969   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
  2971     if (use_fpu_stack_allocation()) {
  2972       allocate_fpu_stack(); // Only has effect on Intel
  2973       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
  2977   { TIME_LINEAR_SCAN(timer_optimize_lir);
  2979     EdgeMoveOptimizer::optimize(ir()->code());
  2980     ControlFlowOptimizer::optimize(ir()->code());
  2981     // check that cfg is still correct after optimizations
  2982     ir()->verify();
  2985   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
  2986   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
  2987   NOT_PRODUCT(_total_timer.end_method(this));
  2991 // ********** Printing functions
  2993 #ifndef PRODUCT
  2995 void LinearScan::print_timers(double total) {
  2996   _total_timer.print(total);
  2999 void LinearScan::print_statistics() {
  3000   _stat_before_alloc.print("before allocation");
  3001   _stat_after_asign.print("after assignment of register");
  3002   _stat_final.print("after optimization");
  3005 void LinearScan::print_bitmap(BitMap& b) {
  3006   for (unsigned int i = 0; i < b.size(); i++) {
  3007     if (b.at(i)) tty->print("%d ", i);
  3009   tty->cr();
  3012 void LinearScan::print_intervals(const char* label) {
  3013   if (TraceLinearScanLevel >= 1) {
  3014     int i;
  3015     tty->cr();
  3016     tty->print_cr("%s", label);
  3018     for (i = 0; i < interval_count(); i++) {
  3019       Interval* interval = interval_at(i);
  3020       if (interval != NULL) {
  3021         interval->print();
  3025     tty->cr();
  3026     tty->print_cr("--- Basic Blocks ---");
  3027     for (i = 0; i < block_count(); i++) {
  3028       BlockBegin* block = block_at(i);
  3029       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
  3031     tty->cr();
  3032     tty->cr();
  3035   if (PrintCFGToFile) {
  3036     CFGPrinter::print_intervals(&_intervals, label);
  3040 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
  3041   if (TraceLinearScanLevel >= level) {
  3042     tty->cr();
  3043     tty->print_cr("%s", label);
  3044     print_LIR(ir()->linear_scan_order());
  3045     tty->cr();
  3048   if (level == 1 && PrintCFGToFile) {
  3049     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
  3053 #endif //PRODUCT
  3056 // ********** verification functions for allocation
  3057 // (check that all intervals have a correct register and that no registers are overwritten)
  3058 #ifdef ASSERT
  3060 void LinearScan::verify() {
  3061   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
  3062   verify_intervals();
  3064   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
  3065   verify_no_oops_in_fixed_intervals();
  3067   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
  3068   verify_constants();
  3070   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
  3071   verify_registers();
  3073   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
  3076 void LinearScan::verify_intervals() {
  3077   int len = interval_count();
  3078   bool has_error = false;
  3080   for (int i = 0; i < len; i++) {
  3081     Interval* i1 = interval_at(i);
  3082     if (i1 == NULL) continue;
  3084     i1->check_split_children();
  3086     if (i1->reg_num() != i) {
  3087       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
  3088       has_error = true;
  3091     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
  3092       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
  3093       has_error = true;
  3096     if (i1->assigned_reg() == any_reg) {
  3097       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
  3098       has_error = true;
  3101     if (i1->assigned_reg() == i1->assigned_regHi()) {
  3102       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
  3103       has_error = true;
  3106     if (!is_processed_reg_num(i1->assigned_reg())) {
  3107       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
  3108       has_error = true;
  3111     if (i1->first() == Range::end()) {
  3112       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
  3113       has_error = true;
  3116     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
  3117       if (r->from() >= r->to()) {
  3118         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
  3119         has_error = true;
  3123     for (int j = i + 1; j < len; j++) {
  3124       Interval* i2 = interval_at(j);
  3125       if (i2 == NULL) continue;
  3127       // special intervals that are created in MoveResolver
  3128       // -> ignore them because the range information has no meaning there
  3129       if (i1->from() == 1 && i1->to() == 2) continue;
  3130       if (i2->from() == 1 && i2->to() == 2) continue;
  3132       int r1 = i1->assigned_reg();
  3133       int r1Hi = i1->assigned_regHi();
  3134       int r2 = i2->assigned_reg();
  3135       int r2Hi = i2->assigned_regHi();
  3136       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
  3137         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
  3138         i1->print(); tty->cr();
  3139         i2->print(); tty->cr();
  3140         has_error = true;
  3145   assert(has_error == false, "register allocation invalid");
  3149 void LinearScan::verify_no_oops_in_fixed_intervals() {
  3150   LIR_OpVisitState visitor;
  3151   for (int i = 0; i < block_count(); i++) {
  3152     BlockBegin* block = block_at(i);
  3154     LIR_OpList* instructions = block->lir()->instructions_list();
  3156     for (int j = 0; j < instructions->length(); j++) {
  3157       LIR_Op* op = instructions->at(j);
  3158       int op_id = op->id();
  3160       visitor.visit(op);
  3162       // oop-maps at calls do not contain registers, so check is not needed
  3163       if (!visitor.has_call()) {
  3165         for_each_visitor_mode(mode) {
  3166           int n = visitor.opr_count(mode);
  3167           for (int k = 0; k < n; k++) {
  3168             LIR_Opr opr = visitor.opr_at(mode, k);
  3170             if (opr->is_fixed_cpu() && opr->is_oop()) {
  3171               // operand is a non-virtual cpu register and contains an oop
  3172               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
  3174               Interval* interval = interval_at(reg_num(opr));
  3175               assert(interval != NULL, "no interval");
  3177               if (mode == LIR_OpVisitState::inputMode) {
  3178                 if (interval->to() >= op_id + 1) {
  3179                   assert(interval->to() < op_id + 2 ||
  3180                          interval->has_hole_between(op_id, op_id + 2),
  3181                          "oop input operand live after instruction");
  3183               } else if (mode == LIR_OpVisitState::outputMode) {
  3184                 if (interval->from() <= op_id - 1) {
  3185                   assert(interval->has_hole_between(op_id - 1, op_id),
  3186                          "oop input operand live after instruction");
  3198 void LinearScan::verify_constants() {
  3199   int num_regs = num_virtual_regs();
  3200   int size = live_set_size();
  3201   int num_blocks = block_count();
  3203   for (int i = 0; i < num_blocks; i++) {
  3204     BlockBegin* block = block_at(i);
  3205     BitMap live_at_edge = block->live_in();
  3207     // visit all registers where the live_at_edge bit is set
  3208     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
  3209       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
  3211       Value value = gen()->instruction_for_vreg(r);
  3213       assert(value != NULL, "all intervals live across block boundaries must have Value");
  3214       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
  3215       assert(value->operand()->vreg_number() == r, "register number must match");
  3216       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
  3222 class RegisterVerifier: public StackObj {
  3223  private:
  3224   LinearScan*   _allocator;
  3225   BlockList     _work_list;      // all blocks that must be processed
  3226   IntervalsList _saved_states;   // saved information of previous check
  3228   // simplified access to methods of LinearScan
  3229   Compilation*  compilation() const              { return _allocator->compilation(); }
  3230   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
  3231   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
  3233   // currently, only registers are processed
  3234   int           state_size()                     { return LinearScan::nof_regs; }
  3236   // accessors
  3237   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
  3238   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
  3239   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
  3241   // helper functions
  3242   IntervalList* copy(IntervalList* input_state);
  3243   void          state_put(IntervalList* input_state, int reg, Interval* interval);
  3244   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
  3246   void process_block(BlockBegin* block);
  3247   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
  3248   void process_successor(BlockBegin* block, IntervalList* input_state);
  3249   void process_operations(LIR_List* ops, IntervalList* input_state);
  3251  public:
  3252   RegisterVerifier(LinearScan* allocator)
  3253     : _allocator(allocator)
  3254     , _work_list(16)
  3255     , _saved_states(BlockBegin::number_of_blocks(), NULL)
  3256   { }
  3258   void verify(BlockBegin* start);
  3259 };
  3262 // entry function from LinearScan that starts the verification
  3263 void LinearScan::verify_registers() {
  3264   RegisterVerifier verifier(this);
  3265   verifier.verify(block_at(0));
  3269 void RegisterVerifier::verify(BlockBegin* start) {
  3270   // setup input registers (method arguments) for first block
  3271   IntervalList* input_state = new IntervalList(state_size(), NULL);
  3272   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  3273   for (int n = 0; n < args->length(); n++) {
  3274     LIR_Opr opr = args->at(n);
  3275     if (opr->is_register()) {
  3276       Interval* interval = interval_at(reg_num(opr));
  3278       if (interval->assigned_reg() < state_size()) {
  3279         input_state->at_put(interval->assigned_reg(), interval);
  3281       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
  3282         input_state->at_put(interval->assigned_regHi(), interval);
  3287   set_state_for_block(start, input_state);
  3288   add_to_work_list(start);
  3290   // main loop for verification
  3291   do {
  3292     BlockBegin* block = _work_list.at(0);
  3293     _work_list.remove_at(0);
  3295     process_block(block);
  3296   } while (!_work_list.is_empty());
  3299 void RegisterVerifier::process_block(BlockBegin* block) {
  3300   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
  3302   // must copy state because it is modified
  3303   IntervalList* input_state = copy(state_for_block(block));
  3305   if (TraceLinearScanLevel >= 4) {
  3306     tty->print_cr("Input-State of intervals:");
  3307     tty->print("    ");
  3308     for (int i = 0; i < state_size(); i++) {
  3309       if (input_state->at(i) != NULL) {
  3310         tty->print(" %4d", input_state->at(i)->reg_num());
  3311       } else {
  3312         tty->print("   __");
  3315     tty->cr();
  3316     tty->cr();
  3319   // process all operations of the block
  3320   process_operations(block->lir(), input_state);
  3322   // iterate all successors
  3323   for (int i = 0; i < block->number_of_sux(); i++) {
  3324     process_successor(block->sux_at(i), input_state);
  3328 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
  3329   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
  3331   // must copy state because it is modified
  3332   input_state = copy(input_state);
  3334   if (xhandler->entry_code() != NULL) {
  3335     process_operations(xhandler->entry_code(), input_state);
  3337   process_successor(xhandler->entry_block(), input_state);
  3340 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
  3341   IntervalList* saved_state = state_for_block(block);
  3343   if (saved_state != NULL) {
  3344     // this block was already processed before.
  3345     // check if new input_state is consistent with saved_state
  3347     bool saved_state_correct = true;
  3348     for (int i = 0; i < state_size(); i++) {
  3349       if (input_state->at(i) != saved_state->at(i)) {
  3350         // current input_state and previous saved_state assume a different
  3351         // interval in this register -> assume that this register is invalid
  3352         if (saved_state->at(i) != NULL) {
  3353           // invalidate old calculation only if it assumed that
  3354           // register was valid. when the register was already invalid,
  3355           // then the old calculation was correct.
  3356           saved_state_correct = false;
  3357           saved_state->at_put(i, NULL);
  3359           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
  3364     if (saved_state_correct) {
  3365       // already processed block with correct input_state
  3366       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
  3367     } else {
  3368       // must re-visit this block
  3369       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
  3370       add_to_work_list(block);
  3373   } else {
  3374     // block was not processed before, so set initial input_state
  3375     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
  3377     set_state_for_block(block, copy(input_state));
  3378     add_to_work_list(block);
  3383 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
  3384   IntervalList* copy_state = new IntervalList(input_state->length());
  3385   copy_state->push_all(input_state);
  3386   return copy_state;
  3389 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
  3390   if (reg != LinearScan::any_reg && reg < state_size()) {
  3391     if (interval != NULL) {
  3392       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
  3393     } else if (input_state->at(reg) != NULL) {
  3394       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
  3397     input_state->at_put(reg, interval);
  3401 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
  3402   if (reg != LinearScan::any_reg && reg < state_size()) {
  3403     if (input_state->at(reg) != interval) {
  3404       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
  3405       return true;
  3408   return false;
  3411 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
  3412   // visit all instructions of the block
  3413   LIR_OpVisitState visitor;
  3414   bool has_error = false;
  3416   for (int i = 0; i < ops->length(); i++) {
  3417     LIR_Op* op = ops->at(i);
  3418     visitor.visit(op);
  3420     TRACE_LINEAR_SCAN(4, op->print_on(tty));
  3422     // check if input operands are correct
  3423     int j;
  3424     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
  3425     for (j = 0; j < n; j++) {
  3426       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
  3427       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3428         Interval* interval = interval_at(reg_num(opr));
  3429         if (op->id() != -1) {
  3430           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
  3433         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
  3434         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
  3436         // When an operand is marked with is_last_use, then the fpu stack allocator
  3437         // removes the register from the fpu stack -> the register contains no value
  3438         if (opr->is_last_use()) {
  3439           state_put(input_state, interval->assigned_reg(),   NULL);
  3440           state_put(input_state, interval->assigned_regHi(), NULL);
  3445     // invalidate all caller save registers at calls
  3446     if (visitor.has_call()) {
  3447       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs; j++) {
  3448         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
  3450       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
  3451         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
  3454 #ifdef X86
  3455       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
  3456         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
  3458 #endif
  3461     // process xhandler before output and temp operands
  3462     XHandlers* xhandlers = visitor.all_xhandler();
  3463     n = xhandlers->length();
  3464     for (int k = 0; k < n; k++) {
  3465       process_xhandler(xhandlers->handler_at(k), input_state);
  3468     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
  3469     n = visitor.opr_count(LIR_OpVisitState::tempMode);
  3470     for (j = 0; j < n; j++) {
  3471       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
  3472       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3473         Interval* interval = interval_at(reg_num(opr));
  3474         if (op->id() != -1) {
  3475           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
  3478         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
  3479         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
  3483     // set output operands
  3484     n = visitor.opr_count(LIR_OpVisitState::outputMode);
  3485     for (j = 0; j < n; j++) {
  3486       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
  3487       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3488         Interval* interval = interval_at(reg_num(opr));
  3489         if (op->id() != -1) {
  3490           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
  3493         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
  3494         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
  3498   assert(has_error == false, "Error in register allocation");
  3501 #endif // ASSERT
  3505 // **** Implementation of MoveResolver ******************************
  3507 MoveResolver::MoveResolver(LinearScan* allocator) :
  3508   _allocator(allocator),
  3509   _multiple_reads_allowed(false),
  3510   _mapping_from(8),
  3511   _mapping_from_opr(8),
  3512   _mapping_to(8),
  3513   _insert_list(NULL),
  3514   _insert_idx(-1),
  3515   _insertion_buffer()
  3517   for (int i = 0; i < LinearScan::nof_regs; i++) {
  3518     _register_blocked[i] = 0;
  3520   DEBUG_ONLY(check_empty());
  3524 #ifdef ASSERT
  3526 void MoveResolver::check_empty() {
  3527   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
  3528   for (int i = 0; i < LinearScan::nof_regs; i++) {
  3529     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
  3531   assert(_multiple_reads_allowed == false, "must have default value");
  3534 void MoveResolver::verify_before_resolve() {
  3535   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
  3536   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
  3537   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
  3539   int i, j;
  3540   if (!_multiple_reads_allowed) {
  3541     for (i = 0; i < _mapping_from.length(); i++) {
  3542       for (j = i + 1; j < _mapping_from.length(); j++) {
  3543         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
  3548   for (i = 0; i < _mapping_to.length(); i++) {
  3549     for (j = i + 1; j < _mapping_to.length(); j++) {
  3550       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
  3555   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
  3556   used_regs.clear();
  3557   if (!_multiple_reads_allowed) {
  3558     for (i = 0; i < _mapping_from.length(); i++) {
  3559       Interval* it = _mapping_from.at(i);
  3560       if (it != NULL) {
  3561         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
  3562         used_regs.set_bit(it->assigned_reg());
  3564         if (it->assigned_regHi() != LinearScan::any_reg) {
  3565           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
  3566           used_regs.set_bit(it->assigned_regHi());
  3572   used_regs.clear();
  3573   for (i = 0; i < _mapping_to.length(); i++) {
  3574     Interval* it = _mapping_to.at(i);
  3575     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
  3576     used_regs.set_bit(it->assigned_reg());
  3578     if (it->assigned_regHi() != LinearScan::any_reg) {
  3579       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
  3580       used_regs.set_bit(it->assigned_regHi());
  3584   used_regs.clear();
  3585   for (i = 0; i < _mapping_from.length(); i++) {
  3586     Interval* it = _mapping_from.at(i);
  3587     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
  3588       used_regs.set_bit(it->assigned_reg());
  3591   for (i = 0; i < _mapping_to.length(); i++) {
  3592     Interval* it = _mapping_to.at(i);
  3593     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
  3597 #endif // ASSERT
  3600 // mark assigned_reg and assigned_regHi of the interval as blocked
  3601 void MoveResolver::block_registers(Interval* it) {
  3602   int reg = it->assigned_reg();
  3603   if (reg < LinearScan::nof_regs) {
  3604     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
  3605     set_register_blocked(reg, 1);
  3607   reg = it->assigned_regHi();
  3608   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3609     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
  3610     set_register_blocked(reg, 1);
  3614 // mark assigned_reg and assigned_regHi of the interval as unblocked
  3615 void MoveResolver::unblock_registers(Interval* it) {
  3616   int reg = it->assigned_reg();
  3617   if (reg < LinearScan::nof_regs) {
  3618     assert(register_blocked(reg) > 0, "register already marked as unused");
  3619     set_register_blocked(reg, -1);
  3621   reg = it->assigned_regHi();
  3622   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3623     assert(register_blocked(reg) > 0, "register already marked as unused");
  3624     set_register_blocked(reg, -1);
  3628 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
  3629 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
  3630   int from_reg = -1;
  3631   int from_regHi = -1;
  3632   if (from != NULL) {
  3633     from_reg = from->assigned_reg();
  3634     from_regHi = from->assigned_regHi();
  3637   int reg = to->assigned_reg();
  3638   if (reg < LinearScan::nof_regs) {
  3639     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
  3640       return false;
  3643   reg = to->assigned_regHi();
  3644   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3645     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
  3646       return false;
  3650   return true;
  3654 void MoveResolver::create_insertion_buffer(LIR_List* list) {
  3655   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
  3656   _insertion_buffer.init(list);
  3659 void MoveResolver::append_insertion_buffer() {
  3660   if (_insertion_buffer.initialized()) {
  3661     _insertion_buffer.lir_list()->append(&_insertion_buffer);
  3663   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
  3665   _insert_list = NULL;
  3666   _insert_idx = -1;
  3669 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
  3670   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
  3671   assert(from_interval->type() == to_interval->type(), "move between different types");
  3672   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
  3673   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
  3675   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
  3676   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
  3678   if (!_multiple_reads_allowed) {
  3679     // the last_use flag is an optimization for FPU stack allocation. When the same
  3680     // input interval is used in more than one move, then it is too difficult to determine
  3681     // if this move is really the last use.
  3682     from_opr = from_opr->make_last_use();
  3684   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
  3686   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3689 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
  3690   assert(from_opr->type() == to_interval->type(), "move between different types");
  3691   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
  3692   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
  3694   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
  3695   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
  3697   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3701 void MoveResolver::resolve_mappings() {
  3702   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
  3703   DEBUG_ONLY(verify_before_resolve());
  3705   // Block all registers that are used as input operands of a move.
  3706   // When a register is blocked, no move to this register is emitted.
  3707   // This is necessary for detecting cycles in moves.
  3708   int i;
  3709   for (i = _mapping_from.length() - 1; i >= 0; i--) {
  3710     Interval* from_interval = _mapping_from.at(i);
  3711     if (from_interval != NULL) {
  3712       block_registers(from_interval);
  3716   int spill_candidate = -1;
  3717   while (_mapping_from.length() > 0) {
  3718     bool processed_interval = false;
  3720     for (i = _mapping_from.length() - 1; i >= 0; i--) {
  3721       Interval* from_interval = _mapping_from.at(i);
  3722       Interval* to_interval = _mapping_to.at(i);
  3724       if (save_to_process_move(from_interval, to_interval)) {
  3725         // this inverval can be processed because target is free
  3726         if (from_interval != NULL) {
  3727           insert_move(from_interval, to_interval);
  3728           unblock_registers(from_interval);
  3729         } else {
  3730           insert_move(_mapping_from_opr.at(i), to_interval);
  3732         _mapping_from.remove_at(i);
  3733         _mapping_from_opr.remove_at(i);
  3734         _mapping_to.remove_at(i);
  3736         processed_interval = true;
  3737       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
  3738         // this interval cannot be processed now because target is not free
  3739         // it starts in a register, so it is a possible candidate for spilling
  3740         spill_candidate = i;
  3744     if (!processed_interval) {
  3745       // no move could be processed because there is a cycle in the move list
  3746       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
  3747       assert(spill_candidate != -1, "no interval in register for spilling found");
  3749       // create a new spill interval and assign a stack slot to it
  3750       Interval* from_interval = _mapping_from.at(spill_candidate);
  3751       Interval* spill_interval = new Interval(-1);
  3752       spill_interval->set_type(from_interval->type());
  3754       // add a dummy range because real position is difficult to calculate
  3755       // Note: this range is a special case when the integrity of the allocation is checked
  3756       spill_interval->add_range(1, 2);
  3758       //       do not allocate a new spill slot for temporary interval, but
  3759       //       use spill slot assigned to from_interval. Otherwise moves from
  3760       //       one stack slot to another can happen (not allowed by LIR_Assembler
  3761       int spill_slot = from_interval->canonical_spill_slot();
  3762       if (spill_slot < 0) {
  3763         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
  3764         from_interval->set_canonical_spill_slot(spill_slot);
  3766       spill_interval->assign_reg(spill_slot);
  3767       allocator()->append_interval(spill_interval);
  3769       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
  3771       // insert a move from register to stack and update the mapping
  3772       insert_move(from_interval, spill_interval);
  3773       _mapping_from.at_put(spill_candidate, spill_interval);
  3774       unblock_registers(from_interval);
  3778   // reset to default value
  3779   _multiple_reads_allowed = false;
  3781   // check that all intervals have been processed
  3782   DEBUG_ONLY(check_empty());
  3786 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
  3787   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
  3788   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
  3790   create_insertion_buffer(insert_list);
  3791   _insert_list = insert_list;
  3792   _insert_idx = insert_idx;
  3795 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
  3796   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
  3798   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
  3799     // insert position changed -> resolve current mappings
  3800     resolve_mappings();
  3803   if (insert_list != _insert_list) {
  3804     // block changed -> append insertion_buffer because it is
  3805     // bound to a specific block and create a new insertion_buffer
  3806     append_insertion_buffer();
  3807     create_insertion_buffer(insert_list);
  3810   _insert_list = insert_list;
  3811   _insert_idx = insert_idx;
  3814 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
  3815   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3817   _mapping_from.append(from_interval);
  3818   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
  3819   _mapping_to.append(to_interval);
  3823 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
  3824   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3825   assert(from_opr->is_constant(), "only for constants");
  3827   _mapping_from.append(NULL);
  3828   _mapping_from_opr.append(from_opr);
  3829   _mapping_to.append(to_interval);
  3832 void MoveResolver::resolve_and_append_moves() {
  3833   if (has_mappings()) {
  3834     resolve_mappings();
  3836   append_insertion_buffer();
  3841 // **** Implementation of Range *************************************
  3843 Range::Range(int from, int to, Range* next) :
  3844   _from(from),
  3845   _to(to),
  3846   _next(next)
  3850 // initialize sentinel
  3851 Range* Range::_end = NULL;
  3852 void Range::initialize() {
  3853   _end = new Range(max_jint, max_jint, NULL);
  3856 int Range::intersects_at(Range* r2) const {
  3857   const Range* r1 = this;
  3859   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
  3860   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
  3862   do {
  3863     if (r1->from() < r2->from()) {
  3864       if (r1->to() <= r2->from()) {
  3865         r1 = r1->next(); if (r1 == _end) return -1;
  3866       } else {
  3867         return r2->from();
  3869     } else if (r2->from() < r1->from()) {
  3870       if (r2->to() <= r1->from()) {
  3871         r2 = r2->next(); if (r2 == _end) return -1;
  3872       } else {
  3873         return r1->from();
  3875     } else { // r1->from() == r2->from()
  3876       if (r1->from() == r1->to()) {
  3877         r1 = r1->next(); if (r1 == _end) return -1;
  3878       } else if (r2->from() == r2->to()) {
  3879         r2 = r2->next(); if (r2 == _end) return -1;
  3880       } else {
  3881         return r1->from();
  3884   } while (true);
  3887 #ifndef PRODUCT
  3888 void Range::print(outputStream* out) const {
  3889   out->print("[%d, %d[ ", _from, _to);
  3891 #endif
  3895 // **** Implementation of Interval **********************************
  3897 // initialize sentinel
  3898 Interval* Interval::_end = NULL;
  3899 void Interval::initialize() {
  3900   Range::initialize();
  3901   _end = new Interval(-1);
  3904 Interval::Interval(int reg_num) :
  3905   _reg_num(reg_num),
  3906   _type(T_ILLEGAL),
  3907   _first(Range::end()),
  3908   _use_pos_and_kinds(12),
  3909   _current(Range::end()),
  3910   _next(_end),
  3911   _state(invalidState),
  3912   _assigned_reg(LinearScan::any_reg),
  3913   _assigned_regHi(LinearScan::any_reg),
  3914   _cached_to(-1),
  3915   _cached_opr(LIR_OprFact::illegalOpr),
  3916   _cached_vm_reg(VMRegImpl::Bad()),
  3917   _split_children(0),
  3918   _canonical_spill_slot(-1),
  3919   _insert_move_when_activated(false),
  3920   _register_hint(NULL),
  3921   _spill_state(noDefinitionFound),
  3922   _spill_definition_pos(-1)
  3924   _split_parent = this;
  3925   _current_split_child = this;
  3928 int Interval::calc_to() {
  3929   assert(_first != Range::end(), "interval has no range");
  3931   Range* r = _first;
  3932   while (r->next() != Range::end()) {
  3933     r = r->next();
  3935   return r->to();
  3939 #ifdef ASSERT
  3940 // consistency check of split-children
  3941 void Interval::check_split_children() {
  3942   if (_split_children.length() > 0) {
  3943     assert(is_split_parent(), "only split parents can have children");
  3945     for (int i = 0; i < _split_children.length(); i++) {
  3946       Interval* i1 = _split_children.at(i);
  3948       assert(i1->split_parent() == this, "not a split child of this interval");
  3949       assert(i1->type() == type(), "must be equal for all split children");
  3950       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
  3952       for (int j = i + 1; j < _split_children.length(); j++) {
  3953         Interval* i2 = _split_children.at(j);
  3955         assert(i1->reg_num() != i2->reg_num(), "same register number");
  3957         if (i1->from() < i2->from()) {
  3958           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
  3959         } else {
  3960           assert(i2->from() < i1->from(), "intervals start at same op_id");
  3961           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
  3967 #endif // ASSERT
  3969 Interval* Interval::register_hint(bool search_split_child) const {
  3970   if (!search_split_child) {
  3971     return _register_hint;
  3974   if (_register_hint != NULL) {
  3975     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
  3977     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
  3978       return _register_hint;
  3980     } else if (_register_hint->_split_children.length() > 0) {
  3981       // search the first split child that has a register assigned
  3982       int len = _register_hint->_split_children.length();
  3983       for (int i = 0; i < len; i++) {
  3984         Interval* cur = _register_hint->_split_children.at(i);
  3986         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
  3987           return cur;
  3993   // no hint interval found that has a register assigned
  3994   return NULL;
  3998 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
  3999   assert(is_split_parent(), "can only be called for split parents");
  4000   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
  4002   Interval* result;
  4003   if (_split_children.length() == 0) {
  4004     result = this;
  4005   } else {
  4006     result = NULL;
  4007     int len = _split_children.length();
  4009     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
  4010     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
  4012     int i;
  4013     for (i = 0; i < len; i++) {
  4014       Interval* cur = _split_children.at(i);
  4015       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
  4016         if (i > 0) {
  4017           // exchange current split child to start of list (faster access for next call)
  4018           _split_children.at_put(i, _split_children.at(0));
  4019           _split_children.at_put(0, cur);
  4022         // interval found
  4023         result = cur;
  4024         break;
  4028 #ifdef ASSERT
  4029     for (i = 0; i < len; i++) {
  4030       Interval* tmp = _split_children.at(i);
  4031       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
  4032         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
  4033         result->print();
  4034         tmp->print();
  4035         assert(false, "two valid result intervals found");
  4038 #endif
  4041   assert(result != NULL, "no matching interval found");
  4042   assert(result->covers(op_id, mode), "op_id not covered by interval");
  4044   return result;
  4048 // returns the last split child that ends before the given op_id
  4049 Interval* Interval::split_child_before_op_id(int op_id) {
  4050   assert(op_id >= 0, "invalid op_id");
  4052   Interval* parent = split_parent();
  4053   Interval* result = NULL;
  4055   int len = parent->_split_children.length();
  4056   assert(len > 0, "no split children available");
  4058   for (int i = len - 1; i >= 0; i--) {
  4059     Interval* cur = parent->_split_children.at(i);
  4060     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
  4061       result = cur;
  4065   assert(result != NULL, "no split child found");
  4066   return result;
  4070 // checks if op_id is covered by any split child
  4071 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
  4072   assert(is_split_parent(), "can only be called for split parents");
  4073   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
  4075   if (_split_children.length() == 0) {
  4076     // simple case if interval was not split
  4077     return covers(op_id, mode);
  4079   } else {
  4080     // extended case: check all split children
  4081     int len = _split_children.length();
  4082     for (int i = 0; i < len; i++) {
  4083       Interval* cur = _split_children.at(i);
  4084       if (cur->covers(op_id, mode)) {
  4085         return true;
  4088     return false;
  4093 // Note: use positions are sorted descending -> first use has highest index
  4094 int Interval::first_usage(IntervalUseKind min_use_kind) const {
  4095   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4097   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4098     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4099       return _use_pos_and_kinds.at(i);
  4102   return max_jint;
  4105 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
  4106   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4108   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4109     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4110       return _use_pos_and_kinds.at(i);
  4113   return max_jint;
  4116 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
  4117   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4119   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4120     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
  4121       return _use_pos_and_kinds.at(i);
  4124   return max_jint;
  4127 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
  4128   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4130   int prev = 0;
  4131   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4132     if (_use_pos_and_kinds.at(i) > from) {
  4133       return prev;
  4135     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4136       prev = _use_pos_and_kinds.at(i);
  4139   return prev;
  4142 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
  4143   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
  4145   // do not add use positions for precolored intervals because
  4146   // they are never used
  4147   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
  4148 #ifdef ASSERT
  4149     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
  4150     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
  4151       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
  4152       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4153       if (i > 0) {
  4154         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
  4157 #endif
  4159     // Note: add_use is called in descending order, so list gets sorted
  4160     //       automatically by just appending new use positions
  4161     int len = _use_pos_and_kinds.length();
  4162     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
  4163       _use_pos_and_kinds.append(pos);
  4164       _use_pos_and_kinds.append(use_kind);
  4165     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
  4166       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
  4167       _use_pos_and_kinds.at_put(len - 1, use_kind);
  4172 void Interval::add_range(int from, int to) {
  4173   assert(from < to, "invalid range");
  4174   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
  4175   assert(from <= first()->to(), "not inserting at begin of interval");
  4177   if (first()->from() <= to) {
  4178     // join intersecting ranges
  4179     first()->set_from(MIN2(from, first()->from()));
  4180     first()->set_to  (MAX2(to,   first()->to()));
  4181   } else {
  4182     // insert new range
  4183     _first = new Range(from, to, first());
  4187 Interval* Interval::new_split_child() {
  4188   // allocate new interval
  4189   Interval* result = new Interval(-1);
  4190   result->set_type(type());
  4192   Interval* parent = split_parent();
  4193   result->_split_parent = parent;
  4194   result->set_register_hint(parent);
  4196   // insert new interval in children-list of parent
  4197   if (parent->_split_children.length() == 0) {
  4198     assert(is_split_parent(), "list must be initialized at first split");
  4200     parent->_split_children = IntervalList(4);
  4201     parent->_split_children.append(this);
  4203   parent->_split_children.append(result);
  4205   return result;
  4208 // split this interval at the specified position and return
  4209 // the remainder as a new interval.
  4210 //
  4211 // when an interval is split, a bi-directional link is established between the original interval
  4212 // (the split parent) and the intervals that are split off this interval (the split children)
  4213 // When a split child is split again, the new created interval is also a direct child
  4214 // of the original parent (there is no tree of split children stored, but a flat list)
  4215 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
  4216 //
  4217 // Note: The new interval has no valid reg_num
  4218 Interval* Interval::split(int split_pos) {
  4219   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
  4221   // allocate new interval
  4222   Interval* result = new_split_child();
  4224   // split the ranges
  4225   Range* prev = NULL;
  4226   Range* cur = _first;
  4227   while (cur != Range::end() && cur->to() <= split_pos) {
  4228     prev = cur;
  4229     cur = cur->next();
  4231   assert(cur != Range::end(), "split interval after end of last range");
  4233   if (cur->from() < split_pos) {
  4234     result->_first = new Range(split_pos, cur->to(), cur->next());
  4235     cur->set_to(split_pos);
  4236     cur->set_next(Range::end());
  4238   } else {
  4239     assert(prev != NULL, "split before start of first range");
  4240     result->_first = cur;
  4241     prev->set_next(Range::end());
  4243   result->_current = result->_first;
  4244   _cached_to = -1; // clear cached value
  4246   // split list of use positions
  4247   int total_len = _use_pos_and_kinds.length();
  4248   int start_idx = total_len - 2;
  4249   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
  4250     start_idx -= 2;
  4253   intStack new_use_pos_and_kinds(total_len - start_idx);
  4254   int i;
  4255   for (i = start_idx + 2; i < total_len; i++) {
  4256     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
  4259   _use_pos_and_kinds.truncate(start_idx + 2);
  4260   result->_use_pos_and_kinds = _use_pos_and_kinds;
  4261   _use_pos_and_kinds = new_use_pos_and_kinds;
  4263 #ifdef ASSERT
  4264   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
  4265   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
  4266   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
  4268   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
  4269     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
  4270     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4272   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
  4273     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
  4274     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4276 #endif
  4278   return result;
  4281 // split this interval at the specified position and return
  4282 // the head as a new interval (the original interval is the tail)
  4283 //
  4284 // Currently, only the first range can be split, and the new interval
  4285 // must not have split positions
  4286 Interval* Interval::split_from_start(int split_pos) {
  4287   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
  4288   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
  4289   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
  4290   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
  4292   // allocate new interval
  4293   Interval* result = new_split_child();
  4295   // the new created interval has only one range (checked by assertion above),
  4296   // so the splitting of the ranges is very simple
  4297   result->add_range(_first->from(), split_pos);
  4299   if (split_pos == _first->to()) {
  4300     assert(_first->next() != Range::end(), "must not be at end");
  4301     _first = _first->next();
  4302   } else {
  4303     _first->set_from(split_pos);
  4306   return result;
  4310 // returns true if the op_id is inside the interval
  4311 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
  4312   Range* cur  = _first;
  4314   while (cur != Range::end() && cur->to() < op_id) {
  4315     cur = cur->next();
  4317   if (cur != Range::end()) {
  4318     assert(cur->to() != cur->next()->from(), "ranges not separated");
  4320     if (mode == LIR_OpVisitState::outputMode) {
  4321       return cur->from() <= op_id && op_id < cur->to();
  4322     } else {
  4323       return cur->from() <= op_id && op_id <= cur->to();
  4326   return false;
  4329 // returns true if the interval has any hole between hole_from and hole_to
  4330 // (even if the hole has only the length 1)
  4331 bool Interval::has_hole_between(int hole_from, int hole_to) {
  4332   assert(hole_from < hole_to, "check");
  4333   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
  4335   Range* cur  = _first;
  4336   while (cur != Range::end()) {
  4337     assert(cur->to() < cur->next()->from(), "no space between ranges");
  4339     // hole-range starts before this range -> hole
  4340     if (hole_from < cur->from()) {
  4341       return true;
  4343     // hole-range completely inside this range -> no hole
  4344     } else if (hole_to <= cur->to()) {
  4345       return false;
  4347     // overlapping of hole-range with this range -> hole
  4348     } else if (hole_from <= cur->to()) {
  4349       return true;
  4352     cur = cur->next();
  4355   return false;
  4359 #ifndef PRODUCT
  4360 void Interval::print(outputStream* out) const {
  4361   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
  4362   const char* UseKind2Name[] = { "N", "L", "S", "M" };
  4364   const char* type_name;
  4365   LIR_Opr opr = LIR_OprFact::illegal();
  4366   if (reg_num() < LIR_OprDesc::vreg_base) {
  4367     type_name = "fixed";
  4368     // need a temporary operand for fixed intervals because type() cannot be called
  4369     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
  4370       opr = LIR_OprFact::single_cpu(assigned_reg());
  4371     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
  4372       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
  4373 #ifdef X86
  4374     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
  4375       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
  4376 #endif
  4377     } else {
  4378       ShouldNotReachHere();
  4380   } else {
  4381     type_name = type2name(type());
  4382     if (assigned_reg() != -1) {
  4383       opr = LinearScan::calc_operand_for_interval(this);
  4387   out->print("%d %s ", reg_num(), type_name);
  4388   if (opr->is_valid()) {
  4389     out->print("\"");
  4390     opr->print(out);
  4391     out->print("\" ");
  4393   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
  4395   // print ranges
  4396   Range* cur = _first;
  4397   while (cur != Range::end()) {
  4398     cur->print(out);
  4399     cur = cur->next();
  4400     assert(cur != NULL, "range list not closed with range sentinel");
  4403   // print use positions
  4404   int prev = 0;
  4405   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
  4406   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4407     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4408     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
  4410     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
  4411     prev = _use_pos_and_kinds.at(i);
  4414   out->print(" \"%s\"", SpillState2Name[spill_state()]);
  4415   out->cr();
  4417 #endif
  4421 // **** Implementation of IntervalWalker ****************************
  4423 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
  4424  : _compilation(allocator->compilation())
  4425  , _allocator(allocator)
  4427   _unhandled_first[fixedKind] = unhandled_fixed_first;
  4428   _unhandled_first[anyKind]   = unhandled_any_first;
  4429   _active_first[fixedKind]    = Interval::end();
  4430   _inactive_first[fixedKind]  = Interval::end();
  4431   _active_first[anyKind]      = Interval::end();
  4432   _inactive_first[anyKind]    = Interval::end();
  4433   _current_position = -1;
  4434   _current = NULL;
  4435   next_interval();
  4439 // append interval at top of list
  4440 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
  4441   interval->set_next(*list); *list = interval;
  4445 // append interval in order of current range from()
  4446 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
  4447   Interval* prev = NULL;
  4448   Interval* cur  = *list;
  4449   while (cur->current_from() < interval->current_from()) {
  4450     prev = cur; cur = cur->next();
  4452   if (prev == NULL) {
  4453     *list = interval;
  4454   } else {
  4455     prev->set_next(interval);
  4457   interval->set_next(cur);
  4460 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
  4461   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
  4463   Interval* prev = NULL;
  4464   Interval* cur  = *list;
  4465   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
  4466     prev = cur; cur = cur->next();
  4468   if (prev == NULL) {
  4469     *list = interval;
  4470   } else {
  4471     prev->set_next(interval);
  4473   interval->set_next(cur);
  4477 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
  4478   while (*list != Interval::end() && *list != i) {
  4479     list = (*list)->next_addr();
  4481   if (*list != Interval::end()) {
  4482     assert(*list == i, "check");
  4483     *list = (*list)->next();
  4484     return true;
  4485   } else {
  4486     return false;
  4490 void IntervalWalker::remove_from_list(Interval* i) {
  4491   bool deleted;
  4493   if (i->state() == activeState) {
  4494     deleted = remove_from_list(active_first_addr(anyKind), i);
  4495   } else {
  4496     assert(i->state() == inactiveState, "invalid state");
  4497     deleted = remove_from_list(inactive_first_addr(anyKind), i);
  4500   assert(deleted, "interval has not been found in list");
  4504 void IntervalWalker::walk_to(IntervalState state, int from) {
  4505   assert (state == activeState || state == inactiveState, "wrong state");
  4506   for_each_interval_kind(kind) {
  4507     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
  4508     Interval* next   = *prev;
  4509     while (next->current_from() <= from) {
  4510       Interval* cur = next;
  4511       next = cur->next();
  4513       bool range_has_changed = false;
  4514       while (cur->current_to() <= from) {
  4515         cur->next_range();
  4516         range_has_changed = true;
  4519       // also handle move from inactive list to active list
  4520       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
  4522       if (range_has_changed) {
  4523         // remove cur from list
  4524         *prev = next;
  4525         if (cur->current_at_end()) {
  4526           // move to handled state (not maintained as a list)
  4527           cur->set_state(handledState);
  4528           interval_moved(cur, kind, state, handledState);
  4529         } else if (cur->current_from() <= from){
  4530           // sort into active list
  4531           append_sorted(active_first_addr(kind), cur);
  4532           cur->set_state(activeState);
  4533           if (*prev == cur) {
  4534             assert(state == activeState, "check");
  4535             prev = cur->next_addr();
  4537           interval_moved(cur, kind, state, activeState);
  4538         } else {
  4539           // sort into inactive list
  4540           append_sorted(inactive_first_addr(kind), cur);
  4541           cur->set_state(inactiveState);
  4542           if (*prev == cur) {
  4543             assert(state == inactiveState, "check");
  4544             prev = cur->next_addr();
  4546           interval_moved(cur, kind, state, inactiveState);
  4548       } else {
  4549         prev = cur->next_addr();
  4550         continue;
  4557 void IntervalWalker::next_interval() {
  4558   IntervalKind kind;
  4559   Interval* any   = _unhandled_first[anyKind];
  4560   Interval* fixed = _unhandled_first[fixedKind];
  4562   if (any != Interval::end()) {
  4563     // intervals may start at same position -> prefer fixed interval
  4564     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
  4566     assert (kind == fixedKind && fixed->from() <= any->from() ||
  4567             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
  4568     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
  4570   } else if (fixed != Interval::end()) {
  4571     kind = fixedKind;
  4572   } else {
  4573     _current = NULL; return;
  4575   _current_kind = kind;
  4576   _current = _unhandled_first[kind];
  4577   _unhandled_first[kind] = _current->next();
  4578   _current->set_next(Interval::end());
  4579   _current->rewind_range();
  4583 void IntervalWalker::walk_to(int lir_op_id) {
  4584   assert(_current_position <= lir_op_id, "can not walk backwards");
  4585   while (current() != NULL) {
  4586     bool is_active = current()->from() <= lir_op_id;
  4587     int id = is_active ? current()->from() : lir_op_id;
  4589     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
  4591     // set _current_position prior to call of walk_to
  4592     _current_position = id;
  4594     // call walk_to even if _current_position == id
  4595     walk_to(activeState, id);
  4596     walk_to(inactiveState, id);
  4598     if (is_active) {
  4599       current()->set_state(activeState);
  4600       if (activate_current()) {
  4601         append_sorted(active_first_addr(current_kind()), current());
  4602         interval_moved(current(), current_kind(), unhandledState, activeState);
  4605       next_interval();
  4606     } else {
  4607       return;
  4612 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
  4613 #ifndef PRODUCT
  4614   if (TraceLinearScanLevel >= 4) {
  4615     #define print_state(state) \
  4616     switch(state) {\
  4617       case unhandledState: tty->print("unhandled"); break;\
  4618       case activeState: tty->print("active"); break;\
  4619       case inactiveState: tty->print("inactive"); break;\
  4620       case handledState: tty->print("handled"); break;\
  4621       default: ShouldNotReachHere(); \
  4624     print_state(from); tty->print(" to "); print_state(to);
  4625     tty->fill_to(23);
  4626     interval->print();
  4628     #undef print_state
  4630 #endif
  4635 // **** Implementation of LinearScanWalker **************************
  4637 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
  4638   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
  4639   , _move_resolver(allocator)
  4641   for (int i = 0; i < LinearScan::nof_regs; i++) {
  4642     _spill_intervals[i] = new IntervalList(2);
  4647 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
  4648   for (int i = _first_reg; i <= _last_reg; i++) {
  4649     _use_pos[i] = max_jint;
  4651     if (!only_process_use_pos) {
  4652       _block_pos[i] = max_jint;
  4653       _spill_intervals[i]->clear();
  4658 inline void LinearScanWalker::exclude_from_use(int reg) {
  4659   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
  4660   if (reg >= _first_reg && reg <= _last_reg) {
  4661     _use_pos[reg] = 0;
  4664 inline void LinearScanWalker::exclude_from_use(Interval* i) {
  4665   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4667   exclude_from_use(i->assigned_reg());
  4668   exclude_from_use(i->assigned_regHi());
  4671 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
  4672   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
  4674   if (reg >= _first_reg && reg <= _last_reg) {
  4675     if (_use_pos[reg] > use_pos) {
  4676       _use_pos[reg] = use_pos;
  4678     if (!only_process_use_pos) {
  4679       _spill_intervals[reg]->append(i);
  4683 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
  4684   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4685   if (use_pos != -1) {
  4686     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
  4687     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
  4691 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
  4692   if (reg >= _first_reg && reg <= _last_reg) {
  4693     if (_block_pos[reg] > block_pos) {
  4694       _block_pos[reg] = block_pos;
  4696     if (_use_pos[reg] > block_pos) {
  4697       _use_pos[reg] = block_pos;
  4701 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
  4702   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4703   if (block_pos != -1) {
  4704     set_block_pos(i->assigned_reg(), i, block_pos);
  4705     set_block_pos(i->assigned_regHi(), i, block_pos);
  4710 void LinearScanWalker::free_exclude_active_fixed() {
  4711   Interval* list = active_first(fixedKind);
  4712   while (list != Interval::end()) {
  4713     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
  4714     exclude_from_use(list);
  4715     list = list->next();
  4719 void LinearScanWalker::free_exclude_active_any() {
  4720   Interval* list = active_first(anyKind);
  4721   while (list != Interval::end()) {
  4722     exclude_from_use(list);
  4723     list = list->next();
  4727 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
  4728   Interval* list = inactive_first(fixedKind);
  4729   while (list != Interval::end()) {
  4730     if (cur->to() <= list->current_from()) {
  4731       assert(list->current_intersects_at(cur) == -1, "must not intersect");
  4732       set_use_pos(list, list->current_from(), true);
  4733     } else {
  4734       set_use_pos(list, list->current_intersects_at(cur), true);
  4736     list = list->next();
  4740 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
  4741   Interval* list = inactive_first(anyKind);
  4742   while (list != Interval::end()) {
  4743     set_use_pos(list, list->current_intersects_at(cur), true);
  4744     list = list->next();
  4748 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
  4749   Interval* list = unhandled_first(kind);
  4750   while (list != Interval::end()) {
  4751     set_use_pos(list, list->intersects_at(cur), true);
  4752     if (kind == fixedKind && cur->to() <= list->from()) {
  4753       set_use_pos(list, list->from(), true);
  4755     list = list->next();
  4759 void LinearScanWalker::spill_exclude_active_fixed() {
  4760   Interval* list = active_first(fixedKind);
  4761   while (list != Interval::end()) {
  4762     exclude_from_use(list);
  4763     list = list->next();
  4767 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
  4768   Interval* list = unhandled_first(fixedKind);
  4769   while (list != Interval::end()) {
  4770     set_block_pos(list, list->intersects_at(cur));
  4771     list = list->next();
  4775 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
  4776   Interval* list = inactive_first(fixedKind);
  4777   while (list != Interval::end()) {
  4778     if (cur->to() > list->current_from()) {
  4779       set_block_pos(list, list->current_intersects_at(cur));
  4780     } else {
  4781       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
  4784     list = list->next();
  4788 void LinearScanWalker::spill_collect_active_any() {
  4789   Interval* list = active_first(anyKind);
  4790   while (list != Interval::end()) {
  4791     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
  4792     list = list->next();
  4796 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
  4797   Interval* list = inactive_first(anyKind);
  4798   while (list != Interval::end()) {
  4799     if (list->current_intersects(cur)) {
  4800       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
  4802     list = list->next();
  4807 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
  4808   // output all moves here. When source and target are equal, the move is
  4809   // optimized away later in assign_reg_nums
  4811   op_id = (op_id + 1) & ~1;
  4812   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
  4813   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
  4815   // calculate index of instruction inside instruction list of current block
  4816   // the minimal index (for a block with no spill moves) can be calculated because the
  4817   // numbering of instructions is known.
  4818   // When the block already contains spill moves, the index must be increased until the
  4819   // correct index is reached.
  4820   LIR_OpList* list = op_block->lir()->instructions_list();
  4821   int index = (op_id - list->at(0)->id()) / 2;
  4822   assert(list->at(index)->id() <= op_id, "error in calculation");
  4824   while (list->at(index)->id() != op_id) {
  4825     index++;
  4826     assert(0 <= index && index < list->length(), "index out of bounds");
  4828   assert(1 <= index && index < list->length(), "index out of bounds");
  4829   assert(list->at(index)->id() == op_id, "error in calculation");
  4831   // insert new instruction before instruction at position index
  4832   _move_resolver.move_insert_position(op_block->lir(), index - 1);
  4833   _move_resolver.add_mapping(src_it, dst_it);
  4837 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
  4838   int from_block_nr = min_block->linear_scan_number();
  4839   int to_block_nr = max_block->linear_scan_number();
  4841   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
  4842   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
  4843   assert(from_block_nr < to_block_nr, "must cross block boundary");
  4845   // Try to split at end of max_block. If this would be after
  4846   // max_split_pos, then use the begin of max_block
  4847   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
  4848   if (optimal_split_pos > max_split_pos) {
  4849     optimal_split_pos = max_block->first_lir_instruction_id();
  4852   int min_loop_depth = max_block->loop_depth();
  4853   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
  4854     BlockBegin* cur = block_at(i);
  4856     if (cur->loop_depth() < min_loop_depth) {
  4857       // block with lower loop-depth found -> split at the end of this block
  4858       min_loop_depth = cur->loop_depth();
  4859       optimal_split_pos = cur->last_lir_instruction_id() + 2;
  4862   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
  4864   return optimal_split_pos;
  4868 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
  4869   int optimal_split_pos = -1;
  4870   if (min_split_pos == max_split_pos) {
  4871     // trivial case, no optimization of split position possible
  4872     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
  4873     optimal_split_pos = min_split_pos;
  4875   } else {
  4876     assert(min_split_pos < max_split_pos, "must be true then");
  4877     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
  4879     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
  4880     // beginning of a block, then min_split_pos is also a possible split position.
  4881     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
  4882     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
  4884     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
  4885     // when an interval ends at the end of the last block of the method
  4886     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
  4887     // block at this op_id)
  4888     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
  4890     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
  4891     if (min_block == max_block) {
  4892       // split position cannot be moved to block boundary, so split as late as possible
  4893       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
  4894       optimal_split_pos = max_split_pos;
  4896     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
  4897       // Do not move split position if the interval has a hole before max_split_pos.
  4898       // Intervals resulting from Phi-Functions have more than one definition (marked
  4899       // as mustHaveRegister) with a hole before each definition. When the register is needed
  4900       // for the second definition, an earlier reloading is unnecessary.
  4901       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
  4902       optimal_split_pos = max_split_pos;
  4904     } else {
  4905       // seach optimal block boundary between min_split_pos and max_split_pos
  4906       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
  4908       if (do_loop_optimization) {
  4909         // Loop optimization: if a loop-end marker is found between min- and max-position,
  4910         // then split before this loop
  4911         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
  4912         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
  4914         assert(loop_end_pos > min_split_pos, "invalid order");
  4915         if (loop_end_pos < max_split_pos) {
  4916           // loop-end marker found between min- and max-position
  4917           // if it is not the end marker for the same loop as the min-position, then move
  4918           // the max-position to this loop block.
  4919           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
  4920           // of the interval (normally, only mustHaveRegister causes a reloading)
  4921           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
  4923           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
  4924           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
  4926           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
  4927           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
  4928             optimal_split_pos = -1;
  4929             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
  4930           } else {
  4931             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
  4936       if (optimal_split_pos == -1) {
  4937         // not calculated by loop optimization
  4938         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
  4942   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
  4944   return optimal_split_pos;
  4948 /*
  4949   split an interval at the optimal position between min_split_pos and
  4950   max_split_pos in two parts:
  4951   1) the left part has already a location assigned
  4952   2) the right part is sorted into to the unhandled-list
  4953 */
  4954 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
  4955   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
  4956   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
  4958   assert(it->from() < min_split_pos,         "cannot split at start of interval");
  4959   assert(current_position() < min_split_pos, "cannot split before current position");
  4960   assert(min_split_pos <= max_split_pos,     "invalid order");
  4961   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
  4963   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
  4965   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
  4966   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
  4967   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
  4969   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
  4970     // the split position would be just before the end of the interval
  4971     // -> no split at all necessary
  4972     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
  4973     return;
  4976   // must calculate this before the actual split is performed and before split position is moved to odd op_id
  4977   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
  4979   if (!allocator()->is_block_begin(optimal_split_pos)) {
  4980     // move position before actual instruction (odd op_id)
  4981     optimal_split_pos = (optimal_split_pos - 1) | 1;
  4984   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
  4985   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
  4986   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
  4988   Interval* split_part = it->split(optimal_split_pos);
  4990   allocator()->append_interval(split_part);
  4991   allocator()->copy_register_flags(it, split_part);
  4992   split_part->set_insert_move_when_activated(move_necessary);
  4993   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
  4995   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
  4996   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
  4997   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
  5000 /*
  5001   split an interval at the optimal position between min_split_pos and
  5002   max_split_pos in two parts:
  5003   1) the left part has already a location assigned
  5004   2) the right part is always on the stack and therefore ignored in further processing
  5005 */
  5006 void LinearScanWalker::split_for_spilling(Interval* it) {
  5007   // calculate allowed range of splitting position
  5008   int max_split_pos = current_position();
  5009   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
  5011   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
  5012   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
  5014   assert(it->state() == activeState,     "why spill interval that is not active?");
  5015   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
  5016   assert(min_split_pos <= max_split_pos, "invalid order");
  5017   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
  5018   assert(current_position() < it->to(),  "interval must not end before current position");
  5020   if (min_split_pos == it->from()) {
  5021     // the whole interval is never used, so spill it entirely to memory
  5022     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
  5023     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
  5025     allocator()->assign_spill_slot(it);
  5026     allocator()->change_spill_state(it, min_split_pos);
  5028     // Also kick parent intervals out of register to memory when they have no use
  5029     // position. This avoids short interval in register surrounded by intervals in
  5030     // memory -> avoid useless moves from memory to register and back
  5031     Interval* parent = it;
  5032     while (parent != NULL && parent->is_split_child()) {
  5033       parent = parent->split_child_before_op_id(parent->from());
  5035       if (parent->assigned_reg() < LinearScan::nof_regs) {
  5036         if (parent->first_usage(shouldHaveRegister) == max_jint) {
  5037           // parent is never used, so kick it out of its assigned register
  5038           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
  5039           allocator()->assign_spill_slot(parent);
  5040         } else {
  5041           // do not go further back because the register is actually used by the interval
  5042           parent = NULL;
  5047   } else {
  5048     // search optimal split pos, split interval and spill only the right hand part
  5049     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
  5051     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
  5052     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
  5053     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
  5055     if (!allocator()->is_block_begin(optimal_split_pos)) {
  5056       // move position before actual instruction (odd op_id)
  5057       optimal_split_pos = (optimal_split_pos - 1) | 1;
  5060     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
  5061     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
  5062     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
  5064     Interval* spilled_part = it->split(optimal_split_pos);
  5065     allocator()->append_interval(spilled_part);
  5066     allocator()->assign_spill_slot(spilled_part);
  5067     allocator()->change_spill_state(spilled_part, optimal_split_pos);
  5069     if (!allocator()->is_block_begin(optimal_split_pos)) {
  5070       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
  5071       insert_move(optimal_split_pos, it, spilled_part);
  5074     // the current_split_child is needed later when moves are inserted for reloading
  5075     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
  5076     spilled_part->make_current_split_child();
  5078     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
  5079     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
  5080     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
  5085 void LinearScanWalker::split_stack_interval(Interval* it) {
  5086   int min_split_pos = current_position() + 1;
  5087   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
  5089   split_before_usage(it, min_split_pos, max_split_pos);
  5092 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
  5093   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
  5094   int max_split_pos = register_available_until;
  5096   split_before_usage(it, min_split_pos, max_split_pos);
  5099 void LinearScanWalker::split_and_spill_interval(Interval* it) {
  5100   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
  5102   int current_pos = current_position();
  5103   if (it->state() == inactiveState) {
  5104     // the interval is currently inactive, so no spill slot is needed for now.
  5105     // when the split part is activated, the interval has a new chance to get a register,
  5106     // so in the best case no stack slot is necessary
  5107     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
  5108     split_before_usage(it, current_pos + 1, current_pos + 1);
  5110   } else {
  5111     // search the position where the interval must have a register and split
  5112     // at the optimal position before.
  5113     // The new created part is added to the unhandled list and will get a register
  5114     // when it is activated
  5115     int min_split_pos = current_pos + 1;
  5116     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
  5118     split_before_usage(it, min_split_pos, max_split_pos);
  5120     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
  5121     split_for_spilling(it);
  5126 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
  5127   int min_full_reg = any_reg;
  5128   int max_partial_reg = any_reg;
  5130   for (int i = _first_reg; i <= _last_reg; i++) {
  5131     if (i == ignore_reg) {
  5132       // this register must be ignored
  5134     } else if (_use_pos[i] >= interval_to) {
  5135       // this register is free for the full interval
  5136       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
  5137         min_full_reg = i;
  5139     } else if (_use_pos[i] > reg_needed_until) {
  5140       // this register is at least free until reg_needed_until
  5141       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
  5142         max_partial_reg = i;
  5147   if (min_full_reg != any_reg) {
  5148     return min_full_reg;
  5149   } else if (max_partial_reg != any_reg) {
  5150     *need_split = true;
  5151     return max_partial_reg;
  5152   } else {
  5153     return any_reg;
  5157 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
  5158   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
  5160   int min_full_reg = any_reg;
  5161   int max_partial_reg = any_reg;
  5163   for (int i = _first_reg; i < _last_reg; i+=2) {
  5164     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
  5165       // this register is free for the full interval
  5166       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
  5167         min_full_reg = i;
  5169     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
  5170       // this register is at least free until reg_needed_until
  5171       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
  5172         max_partial_reg = i;
  5177   if (min_full_reg != any_reg) {
  5178     return min_full_reg;
  5179   } else if (max_partial_reg != any_reg) {
  5180     *need_split = true;
  5181     return max_partial_reg;
  5182   } else {
  5183     return any_reg;
  5188 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
  5189   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
  5191   init_use_lists(true);
  5192   free_exclude_active_fixed();
  5193   free_exclude_active_any();
  5194   free_collect_inactive_fixed(cur);
  5195   free_collect_inactive_any(cur);
  5196 //  free_collect_unhandled(fixedKind, cur);
  5197   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
  5199   // _use_pos contains the start of the next interval that has this register assigned
  5200   // (either as a fixed register or a normal allocated register in the past)
  5201   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
  5202   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
  5203   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
  5205   int hint_reg, hint_regHi;
  5206   Interval* register_hint = cur->register_hint();
  5207   if (register_hint != NULL) {
  5208     hint_reg = register_hint->assigned_reg();
  5209     hint_regHi = register_hint->assigned_regHi();
  5211     if (allocator()->is_precolored_cpu_interval(register_hint)) {
  5212       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
  5213       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
  5215     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
  5217   } else {
  5218     hint_reg = any_reg;
  5219     hint_regHi = any_reg;
  5221   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
  5222   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
  5224   // the register must be free at least until this position
  5225   int reg_needed_until = cur->from() + 1;
  5226   int interval_to = cur->to();
  5228   bool need_split = false;
  5229   int split_pos = -1;
  5230   int reg = any_reg;
  5231   int regHi = any_reg;
  5233   if (_adjacent_regs) {
  5234     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
  5235     regHi = reg + 1;
  5236     if (reg == any_reg) {
  5237       return false;
  5239     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
  5241   } else {
  5242     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
  5243     if (reg == any_reg) {
  5244       return false;
  5246     split_pos = _use_pos[reg];
  5248     if (_num_phys_regs == 2) {
  5249       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
  5251       if (_use_pos[reg] < interval_to && regHi == any_reg) {
  5252         // do not split interval if only one register can be assigned until the split pos
  5253         // (when one register is found for the whole interval, split&spill is only
  5254         // performed for the hi register)
  5255         return false;
  5257       } else if (regHi != any_reg) {
  5258         split_pos = MIN2(split_pos, _use_pos[regHi]);
  5260         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
  5261         if (reg > regHi) {
  5262           int temp = reg;
  5263           reg = regHi;
  5264           regHi = temp;
  5270   cur->assign_reg(reg, regHi);
  5271   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
  5273   assert(split_pos > 0, "invalid split_pos");
  5274   if (need_split) {
  5275     // register not available for full interval, so split it
  5276     split_when_partial_register_available(cur, split_pos);
  5279   // only return true if interval is completely assigned
  5280   return _num_phys_regs == 1 || regHi != any_reg;
  5284 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
  5285   int max_reg = any_reg;
  5287   for (int i = _first_reg; i <= _last_reg; i++) {
  5288     if (i == ignore_reg) {
  5289       // this register must be ignored
  5291     } else if (_use_pos[i] > reg_needed_until) {
  5292       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
  5293         max_reg = i;
  5298   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
  5299     *need_split = true;
  5302   return max_reg;
  5305 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
  5306   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
  5308   int max_reg = any_reg;
  5310   for (int i = _first_reg; i < _last_reg; i+=2) {
  5311     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
  5312       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
  5313         max_reg = i;
  5318   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
  5319     *need_split = true;
  5322   return max_reg;
  5325 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
  5326   assert(reg != any_reg, "no register assigned");
  5328   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
  5329     Interval* it = _spill_intervals[reg]->at(i);
  5330     remove_from_list(it);
  5331     split_and_spill_interval(it);
  5334   if (regHi != any_reg) {
  5335     IntervalList* processed = _spill_intervals[reg];
  5336     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
  5337       Interval* it = _spill_intervals[regHi]->at(i);
  5338       if (processed->index_of(it) == -1) {
  5339         remove_from_list(it);
  5340         split_and_spill_interval(it);
  5347 // Split an Interval and spill it to memory so that cur can be placed in a register
  5348 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
  5349   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
  5351   // collect current usage of registers
  5352   init_use_lists(false);
  5353   spill_exclude_active_fixed();
  5354 //  spill_block_unhandled_fixed(cur);
  5355   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
  5356   spill_block_inactive_fixed(cur);
  5357   spill_collect_active_any();
  5358   spill_collect_inactive_any(cur);
  5360 #ifndef PRODUCT
  5361   if (TraceLinearScanLevel >= 4) {
  5362     tty->print_cr("      state of registers:");
  5363     for (int i = _first_reg; i <= _last_reg; i++) {
  5364       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
  5365       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
  5366         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
  5368       tty->cr();
  5371 #endif
  5373   // the register must be free at least until this position
  5374   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
  5375   int interval_to = cur->to();
  5376   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
  5378   int split_pos = 0;
  5379   int use_pos = 0;
  5380   bool need_split = false;
  5381   int reg, regHi;
  5383   if (_adjacent_regs) {
  5384     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
  5385     regHi = reg + 1;
  5387     if (reg != any_reg) {
  5388       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
  5389       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
  5391   } else {
  5392     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
  5393     regHi = any_reg;
  5395     if (reg != any_reg) {
  5396       use_pos = _use_pos[reg];
  5397       split_pos = _block_pos[reg];
  5399       if (_num_phys_regs == 2) {
  5400         if (cur->assigned_reg() != any_reg) {
  5401           regHi = reg;
  5402           reg = cur->assigned_reg();
  5403         } else {
  5404           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
  5405           if (regHi != any_reg) {
  5406             use_pos = MIN2(use_pos, _use_pos[regHi]);
  5407             split_pos = MIN2(split_pos, _block_pos[regHi]);
  5411         if (regHi != any_reg && reg > regHi) {
  5412           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
  5413           int temp = reg;
  5414           reg = regHi;
  5415           regHi = temp;
  5421   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
  5422     // the first use of cur is later than the spilling position -> spill cur
  5423     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
  5425     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
  5426       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
  5427       // assign a reasonable register and do a bailout in product mode to avoid errors
  5428       allocator()->assign_spill_slot(cur);
  5429       BAILOUT("LinearScan: no register found");
  5432     split_and_spill_interval(cur);
  5433   } else {
  5434     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
  5435     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
  5436     assert(split_pos > 0, "invalid split_pos");
  5437     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
  5439     cur->assign_reg(reg, regHi);
  5440     if (need_split) {
  5441       // register not available for full interval, so split it
  5442       split_when_partial_register_available(cur, split_pos);
  5445     // perform splitting and spilling for all affected intervalls
  5446     split_and_spill_intersecting_intervals(reg, regHi);
  5450 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
  5451 #ifdef X86
  5452   // fast calculation of intervals that can never get a register because the
  5453   // the next instruction is a call that blocks all registers
  5454   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
  5456   // check if this interval is the result of a split operation
  5457   // (an interval got a register until this position)
  5458   int pos = cur->from();
  5459   if ((pos & 1) == 1) {
  5460     // the current instruction is a call that blocks all registers
  5461     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
  5462       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
  5464       // safety check that there is really no register available
  5465       assert(alloc_free_reg(cur) == false, "found a register for this interval");
  5466       return true;
  5470 #endif
  5471   return false;
  5474 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
  5475   BasicType type = cur->type();
  5476   _num_phys_regs = LinearScan::num_physical_regs(type);
  5477   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
  5479   if (pd_init_regs_for_alloc(cur)) {
  5480     // the appropriate register range was selected.
  5481   } else if (type == T_FLOAT || type == T_DOUBLE) {
  5482     _first_reg = pd_first_fpu_reg;
  5483     _last_reg = pd_last_fpu_reg;
  5484   } else {
  5485     _first_reg = pd_first_cpu_reg;
  5486     _last_reg = pd_last_cpu_reg;
  5489   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
  5490   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
  5494 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
  5495   if (op->code() != lir_move) {
  5496     return false;
  5498   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  5500   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
  5501   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
  5502   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
  5505 // optimization (especially for phi functions of nested loops):
  5506 // assign same spill slot to non-intersecting intervals
  5507 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
  5508   if (cur->is_split_child()) {
  5509     // optimization is only suitable for split parents
  5510     return;
  5513   Interval* register_hint = cur->register_hint(false);
  5514   if (register_hint == NULL) {
  5515     // cur is not the target of a move, otherwise register_hint would be set
  5516     return;
  5518   assert(register_hint->is_split_parent(), "register hint must be split parent");
  5520   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
  5521     // combining the stack slots for intervals where spill move optimization is applied
  5522     // is not benefitial and would cause problems
  5523     return;
  5526   int begin_pos = cur->from();
  5527   int end_pos = cur->to();
  5528   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
  5529     // safety check that lir_op_with_id is allowed
  5530     return;
  5533   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
  5534     // cur and register_hint are not connected with two moves
  5535     return;
  5538   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
  5539   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
  5540   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
  5541     // register_hint must be split, otherwise the re-writing of use positions does not work
  5542     return;
  5545   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
  5546   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
  5547   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
  5548   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
  5550   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
  5551     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
  5552     return;
  5554   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
  5556   // modify intervals such that cur gets the same stack slot as register_hint
  5557   // delete use positions to prevent the intervals to get a register at beginning
  5558   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
  5559   cur->remove_first_use_pos();
  5560   end_hint->remove_first_use_pos();
  5564 // allocate a physical register or memory location to an interval
  5565 bool LinearScanWalker::activate_current() {
  5566   Interval* cur = current();
  5567   bool result = true;
  5569   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
  5570   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
  5572   if (cur->assigned_reg() >= LinearScan::nof_regs) {
  5573     // activating an interval that has a stack slot assigned -> split it at first use position
  5574     // used for method parameters
  5575     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
  5577     split_stack_interval(cur);
  5578     result = false;
  5580   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
  5581     // activating an interval that must start in a stack slot, but may get a register later
  5582     // used for lir_roundfp: rounding is done by store to stack and reload later
  5583     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
  5584     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
  5586     allocator()->assign_spill_slot(cur);
  5587     split_stack_interval(cur);
  5588     result = false;
  5590   } else if (cur->assigned_reg() == any_reg) {
  5591     // interval has not assigned register -> normal allocation
  5592     // (this is the normal case for most intervals)
  5593     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
  5595     // assign same spill slot to non-intersecting intervals
  5596     combine_spilled_intervals(cur);
  5598     init_vars_for_alloc(cur);
  5599     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
  5600       // no empty register available.
  5601       // split and spill another interval so that this interval gets a register
  5602       alloc_locked_reg(cur);
  5605     // spilled intervals need not be move to active-list
  5606     if (cur->assigned_reg() >= LinearScan::nof_regs) {
  5607       result = false;
  5611   // load spilled values that become active from stack slot to register
  5612   if (cur->insert_move_when_activated()) {
  5613     assert(cur->is_split_child(), "must be");
  5614     assert(cur->current_split_child() != NULL, "must be");
  5615     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
  5616     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
  5618     insert_move(cur->from(), cur->current_split_child(), cur);
  5620   cur->make_current_split_child();
  5622   return result; // true = interval is moved to active list
  5626 // Implementation of EdgeMoveOptimizer
  5628 EdgeMoveOptimizer::EdgeMoveOptimizer() :
  5629   _edge_instructions(4),
  5630   _edge_instructions_idx(4)
  5634 void EdgeMoveOptimizer::optimize(BlockList* code) {
  5635   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
  5637   // ignore the first block in the list (index 0 is not processed)
  5638   for (int i = code->length() - 1; i >= 1; i--) {
  5639     BlockBegin* block = code->at(i);
  5641     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
  5642       optimizer.optimize_moves_at_block_end(block);
  5644     if (block->number_of_sux() == 2) {
  5645       optimizer.optimize_moves_at_block_begin(block);
  5651 // clear all internal data structures
  5652 void EdgeMoveOptimizer::init_instructions() {
  5653   _edge_instructions.clear();
  5654   _edge_instructions_idx.clear();
  5657 // append a lir-instruction-list and the index of the current operation in to the list
  5658 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
  5659   _edge_instructions.append(instructions);
  5660   _edge_instructions_idx.append(instructions_idx);
  5663 // return the current operation of the given edge (predecessor or successor)
  5664 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
  5665   LIR_OpList* instructions = _edge_instructions.at(edge);
  5666   int idx = _edge_instructions_idx.at(edge);
  5668   if (idx < instructions->length()) {
  5669     return instructions->at(idx);
  5670   } else {
  5671     return NULL;
  5675 // removes the current operation of the given edge (predecessor or successor)
  5676 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
  5677   LIR_OpList* instructions = _edge_instructions.at(edge);
  5678   int idx = _edge_instructions_idx.at(edge);
  5679   instructions->remove_at(idx);
  5681   if (decrement_index) {
  5682     _edge_instructions_idx.at_put(edge, idx - 1);
  5687 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
  5688   if (op1 == NULL || op2 == NULL) {
  5689     // at least one block is already empty -> no optimization possible
  5690     return true;
  5693   if (op1->code() == lir_move && op2->code() == lir_move) {
  5694     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
  5695     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
  5696     LIR_Op1* move1 = (LIR_Op1*)op1;
  5697     LIR_Op1* move2 = (LIR_Op1*)op2;
  5698     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
  5699       // these moves are exactly equal and can be optimized
  5700       return false;
  5703   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
  5704     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
  5705     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
  5706     LIR_Op1* fxch1 = (LIR_Op1*)op1;
  5707     LIR_Op1* fxch2 = (LIR_Op1*)op2;
  5708     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
  5709       // equal FPU stack operations can be optimized
  5710       return false;
  5713   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
  5714     // equal FPU stack operations can be optimized
  5715     return false;
  5718   // no optimization possible
  5719   return true;
  5722 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
  5723   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
  5725   if (block->is_predecessor(block)) {
  5726     // currently we can't handle this correctly.
  5727     return;
  5730   init_instructions();
  5731   int num_preds = block->number_of_preds();
  5732   assert(num_preds > 1, "do not call otherwise");
  5733   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
  5735   // setup a list with the lir-instructions of all predecessors
  5736   int i;
  5737   for (i = 0; i < num_preds; i++) {
  5738     BlockBegin* pred = block->pred_at(i);
  5739     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
  5741     if (pred->number_of_sux() != 1) {
  5742       // this can happen with switch-statements where multiple edges are between
  5743       // the same blocks.
  5744       return;
  5747     assert(pred->number_of_sux() == 1, "can handle only one successor");
  5748     assert(pred->sux_at(0) == block, "invalid control flow");
  5749     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
  5750     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  5751     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
  5753     if (pred_instructions->last()->info() != NULL) {
  5754       // can not optimize instructions when debug info is needed
  5755       return;
  5758     // ignore the unconditional branch at the end of the block
  5759     append_instructions(pred_instructions, pred_instructions->length() - 2);
  5763   // process lir-instructions while all predecessors end with the same instruction
  5764   while (true) {
  5765     LIR_Op* op = instruction_at(0);
  5766     for (i = 1; i < num_preds; i++) {
  5767       if (operations_different(op, instruction_at(i))) {
  5768         // these instructions are different and cannot be optimized ->
  5769         // no further optimization possible
  5770         return;
  5774     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
  5776     // insert the instruction at the beginning of the current block
  5777     block->lir()->insert_before(1, op);
  5779     // delete the instruction at the end of all predecessors
  5780     for (i = 0; i < num_preds; i++) {
  5781       remove_cur_instruction(i, true);
  5787 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
  5788   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
  5790   init_instructions();
  5791   int num_sux = block->number_of_sux();
  5793   LIR_OpList* cur_instructions = block->lir()->instructions_list();
  5795   assert(num_sux == 2, "method should not be called otherwise");
  5796   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
  5797   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  5798   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
  5800   if (cur_instructions->last()->info() != NULL) {
  5801     // can no optimize instructions when debug info is needed
  5802     return;
  5805   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
  5806   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
  5807     // not a valid case for optimization
  5808     // currently, only blocks that end with two branches (conditional branch followed
  5809     // by unconditional branch) are optimized
  5810     return;
  5813   // now it is guaranteed that the block ends with two branch instructions.
  5814   // the instructions are inserted at the end of the block before these two branches
  5815   int insert_idx = cur_instructions->length() - 2;
  5817   int i;
  5818 #ifdef ASSERT
  5819   for (i = insert_idx - 1; i >= 0; i--) {
  5820     LIR_Op* op = cur_instructions->at(i);
  5821     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
  5822       assert(false, "block with two successors can have only two branch instructions");
  5825 #endif
  5827   // setup a list with the lir-instructions of all successors
  5828   for (i = 0; i < num_sux; i++) {
  5829     BlockBegin* sux = block->sux_at(i);
  5830     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
  5832     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
  5834     if (sux->number_of_preds() != 1) {
  5835       // this can happen with switch-statements where multiple edges are between
  5836       // the same blocks.
  5837       return;
  5839     assert(sux->pred_at(0) == block, "invalid control flow");
  5840     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
  5842     // ignore the label at the beginning of the block
  5843     append_instructions(sux_instructions, 1);
  5846   // process lir-instructions while all successors begin with the same instruction
  5847   while (true) {
  5848     LIR_Op* op = instruction_at(0);
  5849     for (i = 1; i < num_sux; i++) {
  5850       if (operations_different(op, instruction_at(i))) {
  5851         // these instructions are different and cannot be optimized ->
  5852         // no further optimization possible
  5853         return;
  5857     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
  5859     // insert instruction at end of current block
  5860     block->lir()->insert_before(insert_idx, op);
  5861     insert_idx++;
  5863     // delete the instructions at the beginning of all successors
  5864     for (i = 0; i < num_sux; i++) {
  5865       remove_cur_instruction(i, false);
  5871 // Implementation of ControlFlowOptimizer
  5873 ControlFlowOptimizer::ControlFlowOptimizer() :
  5874   _original_preds(4)
  5878 void ControlFlowOptimizer::optimize(BlockList* code) {
  5879   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
  5881   // push the OSR entry block to the end so that we're not jumping over it.
  5882   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
  5883   if (osr_entry) {
  5884     int index = osr_entry->linear_scan_number();
  5885     assert(code->at(index) == osr_entry, "wrong index");
  5886     code->remove_at(index);
  5887     code->append(osr_entry);
  5890   optimizer.reorder_short_loops(code);
  5891   optimizer.delete_empty_blocks(code);
  5892   optimizer.delete_unnecessary_jumps(code);
  5893   optimizer.delete_jumps_to_return(code);
  5896 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
  5897   int i = header_idx + 1;
  5898   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
  5899   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
  5900     i++;
  5903   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
  5904     int end_idx = i - 1;
  5905     BlockBegin* end_block = code->at(end_idx);
  5907     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
  5908       // short loop from header_idx to end_idx found -> reorder blocks such that
  5909       // the header_block is the last block instead of the first block of the loop
  5910       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
  5911                                          end_idx - header_idx + 1,
  5912                                          header_block->block_id(), end_block->block_id()));
  5914       for (int j = header_idx; j < end_idx; j++) {
  5915         code->at_put(j, code->at(j + 1));
  5917       code->at_put(end_idx, header_block);
  5919       // correct the flags so that any loop alignment occurs in the right place.
  5920       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
  5921       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
  5922       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
  5927 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
  5928   for (int i = code->length() - 1; i >= 0; i--) {
  5929     BlockBegin* block = code->at(i);
  5931     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
  5932       reorder_short_loop(code, block, i);
  5936   DEBUG_ONLY(verify(code));
  5939 // only blocks with exactly one successor can be deleted. Such blocks
  5940 // must always end with an unconditional branch to this successor
  5941 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
  5942   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
  5943     return false;
  5946   LIR_OpList* instructions = block->lir()->instructions_list();
  5948   assert(instructions->length() >= 2, "block must have label and branch");
  5949   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  5950   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
  5951   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
  5952   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
  5954   // block must have exactly one successor
  5956   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
  5957     return true;
  5959   return false;
  5962 // substitute branch targets in all branch-instructions of this blocks
  5963 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
  5964   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
  5966   LIR_OpList* instructions = block->lir()->instructions_list();
  5968   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  5969   for (int i = instructions->length() - 1; i >= 1; i--) {
  5970     LIR_Op* op = instructions->at(i);
  5972     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
  5973       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  5974       LIR_OpBranch* branch = (LIR_OpBranch*)op;
  5976       if (branch->block() == target_from) {
  5977         branch->change_block(target_to);
  5979       if (branch->ublock() == target_from) {
  5980         branch->change_ublock(target_to);
  5986 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
  5987   int old_pos = 0;
  5988   int new_pos = 0;
  5989   int num_blocks = code->length();
  5991   while (old_pos < num_blocks) {
  5992     BlockBegin* block = code->at(old_pos);
  5994     if (can_delete_block(block)) {
  5995       BlockBegin* new_target = block->sux_at(0);
  5997       // propagate backward branch target flag for correct code alignment
  5998       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
  5999         new_target->set(BlockBegin::backward_branch_target_flag);
  6002       // collect a list with all predecessors that contains each predecessor only once
  6003       // the predecessors of cur are changed during the substitution, so a copy of the
  6004       // predecessor list is necessary
  6005       int j;
  6006       _original_preds.clear();
  6007       for (j = block->number_of_preds() - 1; j >= 0; j--) {
  6008         BlockBegin* pred = block->pred_at(j);
  6009         if (_original_preds.index_of(pred) == -1) {
  6010           _original_preds.append(pred);
  6014       for (j = _original_preds.length() - 1; j >= 0; j--) {
  6015         BlockBegin* pred = _original_preds.at(j);
  6016         substitute_branch_target(pred, block, new_target);
  6017         pred->substitute_sux(block, new_target);
  6019     } else {
  6020       // adjust position of this block in the block list if blocks before
  6021       // have been deleted
  6022       if (new_pos != old_pos) {
  6023         code->at_put(new_pos, code->at(old_pos));
  6025       new_pos++;
  6027     old_pos++;
  6029   code->truncate(new_pos);
  6031   DEBUG_ONLY(verify(code));
  6034 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
  6035   // skip the last block because there a branch is always necessary
  6036   for (int i = code->length() - 2; i >= 0; i--) {
  6037     BlockBegin* block = code->at(i);
  6038     LIR_OpList* instructions = block->lir()->instructions_list();
  6040     LIR_Op* last_op = instructions->last();
  6041     if (last_op->code() == lir_branch) {
  6042       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6043       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
  6045       assert(last_branch->block() != NULL, "last branch must always have a block as target");
  6046       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
  6048       if (last_branch->info() == NULL) {
  6049         if (last_branch->block() == code->at(i + 1)) {
  6051           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
  6053           // delete last branch instruction
  6054           instructions->truncate(instructions->length() - 1);
  6056         } else {
  6057           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
  6058           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
  6059             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6060             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
  6062             if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
  6064               TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
  6066               // eliminate a conditional branch to the immediate successor
  6067               prev_branch->change_block(last_branch->block());
  6068               prev_branch->negate_cond();
  6069               instructions->truncate(instructions->length() - 1);
  6077   DEBUG_ONLY(verify(code));
  6080 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
  6081 #ifdef ASSERT
  6082   BitMap return_converted(BlockBegin::number_of_blocks());
  6083   return_converted.clear();
  6084 #endif
  6086   for (int i = code->length() - 1; i >= 0; i--) {
  6087     BlockBegin* block = code->at(i);
  6088     LIR_OpList* cur_instructions = block->lir()->instructions_list();
  6089     LIR_Op*     cur_last_op = cur_instructions->last();
  6091     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6092     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
  6093       // the block contains only a label and a return
  6094       // if a predecessor ends with an unconditional jump to this block, then the jump
  6095       // can be replaced with a return instruction
  6096       //
  6097       // Note: the original block with only a return statement cannot be deleted completely
  6098       //       because the predecessors might have other (conditional) jumps to this block
  6099       //       -> this may lead to unnecesary return instructions in the final code
  6101       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
  6102       assert(block->number_of_sux() == 0 ||
  6103              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
  6104              "blocks that end with return must not have successors");
  6106       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
  6107       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
  6109       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
  6110         BlockBegin* pred = block->pred_at(j);
  6111         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
  6112         LIR_Op*     pred_last_op = pred_instructions->last();
  6114         if (pred_last_op->code() == lir_branch) {
  6115           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  6116           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
  6118           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
  6119             // replace the jump to a return with a direct return
  6120             // Note: currently the edge between the blocks is not deleted
  6121             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
  6122 #ifdef ASSERT
  6123             return_converted.set_bit(pred->block_id());
  6124 #endif
  6133 #ifdef ASSERT
  6134 void ControlFlowOptimizer::verify(BlockList* code) {
  6135   for (int i = 0; i < code->length(); i++) {
  6136     BlockBegin* block = code->at(i);
  6137     LIR_OpList* instructions = block->lir()->instructions_list();
  6139     int j;
  6140     for (j = 0; j < instructions->length(); j++) {
  6141       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
  6143       if (op_branch != NULL) {
  6144         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
  6145         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
  6149     for (j = 0; j < block->number_of_sux() - 1; j++) {
  6150       BlockBegin* sux = block->sux_at(j);
  6151       assert(code->index_of(sux) != -1, "successor not valid");
  6154     for (j = 0; j < block->number_of_preds() - 1; j++) {
  6155       BlockBegin* pred = block->pred_at(j);
  6156       assert(code->index_of(pred) != -1, "successor not valid");
  6160 #endif
  6163 #ifndef PRODUCT
  6165 // Implementation of LinearStatistic
  6167 const char* LinearScanStatistic::counter_name(int counter_idx) {
  6168   switch (counter_idx) {
  6169     case counter_method:          return "compiled methods";
  6170     case counter_fpu_method:      return "methods using fpu";
  6171     case counter_loop_method:     return "methods with loops";
  6172     case counter_exception_method:return "methods with xhandler";
  6174     case counter_loop:            return "loops";
  6175     case counter_block:           return "blocks";
  6176     case counter_loop_block:      return "blocks inside loop";
  6177     case counter_exception_block: return "exception handler entries";
  6178     case counter_interval:        return "intervals";
  6179     case counter_fixed_interval:  return "fixed intervals";
  6180     case counter_range:           return "ranges";
  6181     case counter_fixed_range:     return "fixed ranges";
  6182     case counter_use_pos:         return "use positions";
  6183     case counter_fixed_use_pos:   return "fixed use positions";
  6184     case counter_spill_slots:     return "spill slots";
  6186     // counter for classes of lir instructions
  6187     case counter_instruction:     return "total instructions";
  6188     case counter_label:           return "labels";
  6189     case counter_entry:           return "method entries";
  6190     case counter_return:          return "method returns";
  6191     case counter_call:            return "method calls";
  6192     case counter_move:            return "moves";
  6193     case counter_cmp:             return "compare";
  6194     case counter_cond_branch:     return "conditional branches";
  6195     case counter_uncond_branch:   return "unconditional branches";
  6196     case counter_stub_branch:     return "branches to stub";
  6197     case counter_alu:             return "artithmetic + logic";
  6198     case counter_alloc:           return "allocations";
  6199     case counter_sync:            return "synchronisation";
  6200     case counter_throw:           return "throw";
  6201     case counter_unwind:          return "unwind";
  6202     case counter_typecheck:       return "type+null-checks";
  6203     case counter_fpu_stack:       return "fpu-stack";
  6204     case counter_misc_inst:       return "other instructions";
  6205     case counter_other_inst:      return "misc. instructions";
  6207     // counter for different types of moves
  6208     case counter_move_total:      return "total moves";
  6209     case counter_move_reg_reg:    return "register->register";
  6210     case counter_move_reg_stack:  return "register->stack";
  6211     case counter_move_stack_reg:  return "stack->register";
  6212     case counter_move_stack_stack:return "stack->stack";
  6213     case counter_move_reg_mem:    return "register->memory";
  6214     case counter_move_mem_reg:    return "memory->register";
  6215     case counter_move_const_any:  return "constant->any";
  6217     case blank_line_1:            return "";
  6218     case blank_line_2:            return "";
  6220     default: ShouldNotReachHere(); return "";
  6224 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
  6225   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
  6226     return counter_method;
  6227   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
  6228     return counter_block;
  6229   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
  6230     return counter_instruction;
  6231   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
  6232     return counter_move_total;
  6234   return invalid_counter;
  6237 LinearScanStatistic::LinearScanStatistic() {
  6238   for (int i = 0; i < number_of_counters; i++) {
  6239     _counters_sum[i] = 0;
  6240     _counters_max[i] = -1;
  6245 // add the method-local numbers to the total sum
  6246 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
  6247   for (int i = 0; i < number_of_counters; i++) {
  6248     _counters_sum[i] += method_statistic._counters_sum[i];
  6249     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
  6253 void LinearScanStatistic::print(const char* title) {
  6254   if (CountLinearScan || TraceLinearScanLevel > 0) {
  6255     tty->cr();
  6256     tty->print_cr("***** LinearScan statistic - %s *****", title);
  6258     for (int i = 0; i < number_of_counters; i++) {
  6259       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
  6260         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
  6262         if (base_counter(i) != invalid_counter) {
  6263           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
  6264         } else {
  6265           tty->print("           ");
  6268         if (_counters_max[i] >= 0) {
  6269           tty->print("%8d", _counters_max[i]);
  6272       tty->cr();
  6277 void LinearScanStatistic::collect(LinearScan* allocator) {
  6278   inc_counter(counter_method);
  6279   if (allocator->has_fpu_registers()) {
  6280     inc_counter(counter_fpu_method);
  6282   if (allocator->num_loops() > 0) {
  6283     inc_counter(counter_loop_method);
  6285   inc_counter(counter_loop, allocator->num_loops());
  6286   inc_counter(counter_spill_slots, allocator->max_spills());
  6288   int i;
  6289   for (i = 0; i < allocator->interval_count(); i++) {
  6290     Interval* cur = allocator->interval_at(i);
  6292     if (cur != NULL) {
  6293       inc_counter(counter_interval);
  6294       inc_counter(counter_use_pos, cur->num_use_positions());
  6295       if (LinearScan::is_precolored_interval(cur)) {
  6296         inc_counter(counter_fixed_interval);
  6297         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
  6300       Range* range = cur->first();
  6301       while (range != Range::end()) {
  6302         inc_counter(counter_range);
  6303         if (LinearScan::is_precolored_interval(cur)) {
  6304           inc_counter(counter_fixed_range);
  6306         range = range->next();
  6311   bool has_xhandlers = false;
  6312   // Note: only count blocks that are in code-emit order
  6313   for (i = 0; i < allocator->ir()->code()->length(); i++) {
  6314     BlockBegin* cur = allocator->ir()->code()->at(i);
  6316     inc_counter(counter_block);
  6317     if (cur->loop_depth() > 0) {
  6318       inc_counter(counter_loop_block);
  6320     if (cur->is_set(BlockBegin::exception_entry_flag)) {
  6321       inc_counter(counter_exception_block);
  6322       has_xhandlers = true;
  6325     LIR_OpList* instructions = cur->lir()->instructions_list();
  6326     for (int j = 0; j < instructions->length(); j++) {
  6327       LIR_Op* op = instructions->at(j);
  6329       inc_counter(counter_instruction);
  6331       switch (op->code()) {
  6332         case lir_label:           inc_counter(counter_label); break;
  6333         case lir_std_entry:
  6334         case lir_osr_entry:       inc_counter(counter_entry); break;
  6335         case lir_return:          inc_counter(counter_return); break;
  6337         case lir_rtcall:
  6338         case lir_static_call:
  6339         case lir_optvirtual_call:
  6340         case lir_virtual_call:    inc_counter(counter_call); break;
  6342         case lir_move: {
  6343           inc_counter(counter_move);
  6344           inc_counter(counter_move_total);
  6346           LIR_Opr in = op->as_Op1()->in_opr();
  6347           LIR_Opr res = op->as_Op1()->result_opr();
  6348           if (in->is_register()) {
  6349             if (res->is_register()) {
  6350               inc_counter(counter_move_reg_reg);
  6351             } else if (res->is_stack()) {
  6352               inc_counter(counter_move_reg_stack);
  6353             } else if (res->is_address()) {
  6354               inc_counter(counter_move_reg_mem);
  6355             } else {
  6356               ShouldNotReachHere();
  6358           } else if (in->is_stack()) {
  6359             if (res->is_register()) {
  6360               inc_counter(counter_move_stack_reg);
  6361             } else {
  6362               inc_counter(counter_move_stack_stack);
  6364           } else if (in->is_address()) {
  6365             assert(res->is_register(), "must be");
  6366             inc_counter(counter_move_mem_reg);
  6367           } else if (in->is_constant()) {
  6368             inc_counter(counter_move_const_any);
  6369           } else {
  6370             ShouldNotReachHere();
  6372           break;
  6375         case lir_cmp:             inc_counter(counter_cmp); break;
  6377         case lir_branch:
  6378         case lir_cond_float_branch: {
  6379           LIR_OpBranch* branch = op->as_OpBranch();
  6380           if (branch->block() == NULL) {
  6381             inc_counter(counter_stub_branch);
  6382           } else if (branch->cond() == lir_cond_always) {
  6383             inc_counter(counter_uncond_branch);
  6384           } else {
  6385             inc_counter(counter_cond_branch);
  6387           break;
  6390         case lir_neg:
  6391         case lir_add:
  6392         case lir_sub:
  6393         case lir_mul:
  6394         case lir_mul_strictfp:
  6395         case lir_div:
  6396         case lir_div_strictfp:
  6397         case lir_rem:
  6398         case lir_sqrt:
  6399         case lir_sin:
  6400         case lir_cos:
  6401         case lir_abs:
  6402         case lir_log10:
  6403         case lir_log:
  6404         case lir_logic_and:
  6405         case lir_logic_or:
  6406         case lir_logic_xor:
  6407         case lir_shl:
  6408         case lir_shr:
  6409         case lir_ushr:            inc_counter(counter_alu); break;
  6411         case lir_alloc_object:
  6412         case lir_alloc_array:     inc_counter(counter_alloc); break;
  6414         case lir_monaddr:
  6415         case lir_lock:
  6416         case lir_unlock:          inc_counter(counter_sync); break;
  6418         case lir_throw:           inc_counter(counter_throw); break;
  6420         case lir_unwind:          inc_counter(counter_unwind); break;
  6422         case lir_null_check:
  6423         case lir_leal:
  6424         case lir_instanceof:
  6425         case lir_checkcast:
  6426         case lir_store_check:     inc_counter(counter_typecheck); break;
  6428         case lir_fpop_raw:
  6429         case lir_fxch:
  6430         case lir_fld:             inc_counter(counter_fpu_stack); break;
  6432         case lir_nop:
  6433         case lir_push:
  6434         case lir_pop:
  6435         case lir_convert:
  6436         case lir_roundfp:
  6437         case lir_cmove:           inc_counter(counter_misc_inst); break;
  6439         default:                  inc_counter(counter_other_inst); break;
  6444   if (has_xhandlers) {
  6445     inc_counter(counter_exception_method);
  6449 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
  6450   if (CountLinearScan || TraceLinearScanLevel > 0) {
  6452     LinearScanStatistic local_statistic = LinearScanStatistic();
  6454     local_statistic.collect(allocator);
  6455     global_statistic.sum_up(local_statistic);
  6457     if (TraceLinearScanLevel > 2) {
  6458       local_statistic.print("current local statistic");
  6464 // Implementation of LinearTimers
  6466 LinearScanTimers::LinearScanTimers() {
  6467   for (int i = 0; i < number_of_timers; i++) {
  6468     timer(i)->reset();
  6472 const char* LinearScanTimers::timer_name(int idx) {
  6473   switch (idx) {
  6474     case timer_do_nothing:               return "Nothing (Time Check)";
  6475     case timer_number_instructions:      return "Number Instructions";
  6476     case timer_compute_local_live_sets:  return "Local Live Sets";
  6477     case timer_compute_global_live_sets: return "Global Live Sets";
  6478     case timer_build_intervals:          return "Build Intervals";
  6479     case timer_sort_intervals_before:    return "Sort Intervals Before";
  6480     case timer_allocate_registers:       return "Allocate Registers";
  6481     case timer_resolve_data_flow:        return "Resolve Data Flow";
  6482     case timer_sort_intervals_after:     return "Sort Intervals After";
  6483     case timer_eliminate_spill_moves:    return "Spill optimization";
  6484     case timer_assign_reg_num:           return "Assign Reg Num";
  6485     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
  6486     case timer_optimize_lir:             return "Optimize LIR";
  6487     default: ShouldNotReachHere();       return "";
  6491 void LinearScanTimers::begin_method() {
  6492   if (TimeEachLinearScan) {
  6493     // reset all timers to measure only current method
  6494     for (int i = 0; i < number_of_timers; i++) {
  6495       timer(i)->reset();
  6500 void LinearScanTimers::end_method(LinearScan* allocator) {
  6501   if (TimeEachLinearScan) {
  6503     double c = timer(timer_do_nothing)->seconds();
  6504     double total = 0;
  6505     for (int i = 1; i < number_of_timers; i++) {
  6506       total += timer(i)->seconds() - c;
  6509     if (total >= 0.0005) {
  6510       // print all information in one line for automatic processing
  6511       tty->print("@"); allocator->compilation()->method()->print_name();
  6513       tty->print("@ %d ", allocator->compilation()->method()->code_size());
  6514       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
  6515       tty->print("@ %d ", allocator->block_count());
  6516       tty->print("@ %d ", allocator->num_virtual_regs());
  6517       tty->print("@ %d ", allocator->interval_count());
  6518       tty->print("@ %d ", allocator->_num_calls);
  6519       tty->print("@ %d ", allocator->num_loops());
  6521       tty->print("@ %6.6f ", total);
  6522       for (int i = 1; i < number_of_timers; i++) {
  6523         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
  6525       tty->cr();
  6530 void LinearScanTimers::print(double total_time) {
  6531   if (TimeLinearScan) {
  6532     // correction value: sum of dummy-timer that only measures the time that
  6533     // is necesary to start and stop itself
  6534     double c = timer(timer_do_nothing)->seconds();
  6536     for (int i = 0; i < number_of_timers; i++) {
  6537       double t = timer(i)->seconds();
  6538       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
  6543 #endif // #ifndef PRODUCT

mercurial