src/cpu/x86/vm/x86_64.ad

Thu, 19 Mar 2009 09:13:24 -0700

author
kvn
date
Thu, 19 Mar 2009 09:13:24 -0700
changeset 1082
bd441136a5ce
parent 1063
7bb995fbd3c0
parent 1079
c517646eef23
child 1106
d0994e5bebce
permissions
-rw-r--r--

Merge

     1 //
     2 // Copyright 2003-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // AMD64 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
    64 // used as byte registers)
    66 // Previously set RBX, RSI, and RDI as save-on-entry for java code
    67 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    68 // Now that allocator is better, turn on RSI and RDI as SOE registers.
    70 reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
    71 reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
    73 reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
    74 reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
    76 reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
    77 reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
    79 reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
    80 reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
    82 reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
    83 reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
    85 // now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
    86 reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
    87 reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
    89 #ifdef _WIN64
    91 reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
    92 reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
    94 reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
    95 reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
    97 #else
    99 reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
   100 reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
   102 reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
   103 reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
   105 #endif
   107 reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
   108 reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
   110 reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
   111 reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
   113 reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
   114 reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
   116 reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
   117 reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
   119 reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
   120 reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
   122 reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
   123 reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
   125 reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
   126 reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
   128 reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
   129 reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
   132 // Floating Point Registers
   134 // XMM registers.  128-bit registers or 4 words each, labeled (a)-d.
   135 // Word a in each register holds a Float, words ab hold a Double.  We
   136 // currently do not use the SIMD capabilities, so registers cd are
   137 // unused at the moment.
   138 // XMM8-XMM15 must be encoded with REX.
   139 // Linux ABI:   No register preserved across function calls
   140 //              XMM0-XMM7 might hold parameters
   141 // Windows ABI: XMM6-XMM15 preserved across function calls
   142 //              XMM0-XMM3 might hold parameters
   144 reg_def XMM0   (SOC, SOC, Op_RegF,  0, xmm0->as_VMReg());
   145 reg_def XMM0_H (SOC, SOC, Op_RegF,  0, xmm0->as_VMReg()->next());
   147 reg_def XMM1   (SOC, SOC, Op_RegF,  1, xmm1->as_VMReg());
   148 reg_def XMM1_H (SOC, SOC, Op_RegF,  1, xmm1->as_VMReg()->next());
   150 reg_def XMM2   (SOC, SOC, Op_RegF,  2, xmm2->as_VMReg());
   151 reg_def XMM2_H (SOC, SOC, Op_RegF,  2, xmm2->as_VMReg()->next());
   153 reg_def XMM3   (SOC, SOC, Op_RegF,  3, xmm3->as_VMReg());
   154 reg_def XMM3_H (SOC, SOC, Op_RegF,  3, xmm3->as_VMReg()->next());
   156 reg_def XMM4   (SOC, SOC, Op_RegF,  4, xmm4->as_VMReg());
   157 reg_def XMM4_H (SOC, SOC, Op_RegF,  4, xmm4->as_VMReg()->next());
   159 reg_def XMM5   (SOC, SOC, Op_RegF,  5, xmm5->as_VMReg());
   160 reg_def XMM5_H (SOC, SOC, Op_RegF,  5, xmm5->as_VMReg()->next());
   162 #ifdef _WIN64
   164 reg_def XMM6   (SOC, SOE, Op_RegF,  6, xmm6->as_VMReg());
   165 reg_def XMM6_H (SOC, SOE, Op_RegF,  6, xmm6->as_VMReg()->next());
   167 reg_def XMM7   (SOC, SOE, Op_RegF,  7, xmm7->as_VMReg());
   168 reg_def XMM7_H (SOC, SOE, Op_RegF,  7, xmm7->as_VMReg()->next());
   170 reg_def XMM8   (SOC, SOE, Op_RegF,  8, xmm8->as_VMReg());
   171 reg_def XMM8_H (SOC, SOE, Op_RegF,  8, xmm8->as_VMReg()->next());
   173 reg_def XMM9   (SOC, SOE, Op_RegF,  9, xmm9->as_VMReg());
   174 reg_def XMM9_H (SOC, SOE, Op_RegF,  9, xmm9->as_VMReg()->next());
   176 reg_def XMM10  (SOC, SOE, Op_RegF, 10, xmm10->as_VMReg());
   177 reg_def XMM10_H(SOC, SOE, Op_RegF, 10, xmm10->as_VMReg()->next());
   179 reg_def XMM11  (SOC, SOE, Op_RegF, 11, xmm11->as_VMReg());
   180 reg_def XMM11_H(SOC, SOE, Op_RegF, 11, xmm11->as_VMReg()->next());
   182 reg_def XMM12  (SOC, SOE, Op_RegF, 12, xmm12->as_VMReg());
   183 reg_def XMM12_H(SOC, SOE, Op_RegF, 12, xmm12->as_VMReg()->next());
   185 reg_def XMM13  (SOC, SOE, Op_RegF, 13, xmm13->as_VMReg());
   186 reg_def XMM13_H(SOC, SOE, Op_RegF, 13, xmm13->as_VMReg()->next());
   188 reg_def XMM14  (SOC, SOE, Op_RegF, 14, xmm14->as_VMReg());
   189 reg_def XMM14_H(SOC, SOE, Op_RegF, 14, xmm14->as_VMReg()->next());
   191 reg_def XMM15  (SOC, SOE, Op_RegF, 15, xmm15->as_VMReg());
   192 reg_def XMM15_H(SOC, SOE, Op_RegF, 15, xmm15->as_VMReg()->next());
   194 #else
   196 reg_def XMM6   (SOC, SOC, Op_RegF,  6, xmm6->as_VMReg());
   197 reg_def XMM6_H (SOC, SOC, Op_RegF,  6, xmm6->as_VMReg()->next());
   199 reg_def XMM7   (SOC, SOC, Op_RegF,  7, xmm7->as_VMReg());
   200 reg_def XMM7_H (SOC, SOC, Op_RegF,  7, xmm7->as_VMReg()->next());
   202 reg_def XMM8   (SOC, SOC, Op_RegF,  8, xmm8->as_VMReg());
   203 reg_def XMM8_H (SOC, SOC, Op_RegF,  8, xmm8->as_VMReg()->next());
   205 reg_def XMM9   (SOC, SOC, Op_RegF,  9, xmm9->as_VMReg());
   206 reg_def XMM9_H (SOC, SOC, Op_RegF,  9, xmm9->as_VMReg()->next());
   208 reg_def XMM10  (SOC, SOC, Op_RegF, 10, xmm10->as_VMReg());
   209 reg_def XMM10_H(SOC, SOC, Op_RegF, 10, xmm10->as_VMReg()->next());
   211 reg_def XMM11  (SOC, SOC, Op_RegF, 11, xmm11->as_VMReg());
   212 reg_def XMM11_H(SOC, SOC, Op_RegF, 11, xmm11->as_VMReg()->next());
   214 reg_def XMM12  (SOC, SOC, Op_RegF, 12, xmm12->as_VMReg());
   215 reg_def XMM12_H(SOC, SOC, Op_RegF, 12, xmm12->as_VMReg()->next());
   217 reg_def XMM13  (SOC, SOC, Op_RegF, 13, xmm13->as_VMReg());
   218 reg_def XMM13_H(SOC, SOC, Op_RegF, 13, xmm13->as_VMReg()->next());
   220 reg_def XMM14  (SOC, SOC, Op_RegF, 14, xmm14->as_VMReg());
   221 reg_def XMM14_H(SOC, SOC, Op_RegF, 14, xmm14->as_VMReg()->next());
   223 reg_def XMM15  (SOC, SOC, Op_RegF, 15, xmm15->as_VMReg());
   224 reg_def XMM15_H(SOC, SOC, Op_RegF, 15, xmm15->as_VMReg()->next());
   226 #endif // _WIN64
   228 reg_def RFLAGS(SOC, SOC, 0, 16, VMRegImpl::Bad());
   230 // Specify priority of register selection within phases of register
   231 // allocation.  Highest priority is first.  A useful heuristic is to
   232 // give registers a low priority when they are required by machine
   233 // instructions, like EAX and EDX on I486, and choose no-save registers
   234 // before save-on-call, & save-on-call before save-on-entry.  Registers
   235 // which participate in fixed calling sequences should come last.
   236 // Registers which are used as pairs must fall on an even boundary.
   238 alloc_class chunk0(R10,         R10_H,
   239                    R11,         R11_H,
   240                    R8,          R8_H,
   241                    R9,          R9_H,
   242                    R12,         R12_H,
   243                    RCX,         RCX_H,
   244                    RBX,         RBX_H,
   245                    RDI,         RDI_H,
   246                    RDX,         RDX_H,
   247                    RSI,         RSI_H,
   248                    RAX,         RAX_H,
   249                    RBP,         RBP_H,
   250                    R13,         R13_H,
   251                    R14,         R14_H,
   252                    R15,         R15_H,
   253                    RSP,         RSP_H);
   255 // XXX probably use 8-15 first on Linux
   256 alloc_class chunk1(XMM0,  XMM0_H,
   257                    XMM1,  XMM1_H,
   258                    XMM2,  XMM2_H,
   259                    XMM3,  XMM3_H,
   260                    XMM4,  XMM4_H,
   261                    XMM5,  XMM5_H,
   262                    XMM6,  XMM6_H,
   263                    XMM7,  XMM7_H,
   264                    XMM8,  XMM8_H,
   265                    XMM9,  XMM9_H,
   266                    XMM10, XMM10_H,
   267                    XMM11, XMM11_H,
   268                    XMM12, XMM12_H,
   269                    XMM13, XMM13_H,
   270                    XMM14, XMM14_H,
   271                    XMM15, XMM15_H);
   273 alloc_class chunk2(RFLAGS);
   276 //----------Architecture Description Register Classes--------------------------
   277 // Several register classes are automatically defined based upon information in
   278 // this architecture description.
   279 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   280 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   281 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // Class for all pointer registers (including RSP)
   286 reg_class any_reg(RAX, RAX_H,
   287                   RDX, RDX_H,
   288                   RBP, RBP_H,
   289                   RDI, RDI_H,
   290                   RSI, RSI_H,
   291                   RCX, RCX_H,
   292                   RBX, RBX_H,
   293                   RSP, RSP_H,
   294                   R8,  R8_H,
   295                   R9,  R9_H,
   296                   R10, R10_H,
   297                   R11, R11_H,
   298                   R12, R12_H,
   299                   R13, R13_H,
   300                   R14, R14_H,
   301                   R15, R15_H);
   303 // Class for all pointer registers except RSP
   304 reg_class ptr_reg(RAX, RAX_H,
   305                   RDX, RDX_H,
   306                   RBP, RBP_H,
   307                   RDI, RDI_H,
   308                   RSI, RSI_H,
   309                   RCX, RCX_H,
   310                   RBX, RBX_H,
   311                   R8,  R8_H,
   312                   R9,  R9_H,
   313                   R10, R10_H,
   314                   R11, R11_H,
   315                   R13, R13_H,
   316                   R14, R14_H);
   318 // Class for all pointer registers except RAX and RSP
   319 reg_class ptr_no_rax_reg(RDX, RDX_H,
   320                          RBP, RBP_H,
   321                          RDI, RDI_H,
   322                          RSI, RSI_H,
   323                          RCX, RCX_H,
   324                          RBX, RBX_H,
   325                          R8,  R8_H,
   326                          R9,  R9_H,
   327                          R10, R10_H,
   328                          R11, R11_H,
   329                          R13, R13_H,
   330                          R14, R14_H);
   332 reg_class ptr_no_rbp_reg(RDX, RDX_H,
   333                          RAX, RAX_H,
   334                          RDI, RDI_H,
   335                          RSI, RSI_H,
   336                          RCX, RCX_H,
   337                          RBX, RBX_H,
   338                          R8,  R8_H,
   339                          R9,  R9_H,
   340                          R10, R10_H,
   341                          R11, R11_H,
   342                          R13, R13_H,
   343                          R14, R14_H);
   345 // Class for all pointer registers except RAX, RBX and RSP
   346 reg_class ptr_no_rax_rbx_reg(RDX, RDX_H,
   347                              RBP, RBP_H,
   348                              RDI, RDI_H,
   349                              RSI, RSI_H,
   350                              RCX, RCX_H,
   351                              R8,  R8_H,
   352                              R9,  R9_H,
   353                              R10, R10_H,
   354                              R11, R11_H,
   355                              R13, R13_H,
   356                              R14, R14_H);
   358 // Singleton class for RAX pointer register
   359 reg_class ptr_rax_reg(RAX, RAX_H);
   361 // Singleton class for RBX pointer register
   362 reg_class ptr_rbx_reg(RBX, RBX_H);
   364 // Singleton class for RSI pointer register
   365 reg_class ptr_rsi_reg(RSI, RSI_H);
   367 // Singleton class for RDI pointer register
   368 reg_class ptr_rdi_reg(RDI, RDI_H);
   370 // Singleton class for RBP pointer register
   371 reg_class ptr_rbp_reg(RBP, RBP_H);
   373 // Singleton class for stack pointer
   374 reg_class ptr_rsp_reg(RSP, RSP_H);
   376 // Singleton class for TLS pointer
   377 reg_class ptr_r15_reg(R15, R15_H);
   379 // Class for all long registers (except RSP)
   380 reg_class long_reg(RAX, RAX_H,
   381                    RDX, RDX_H,
   382                    RBP, RBP_H,
   383                    RDI, RDI_H,
   384                    RSI, RSI_H,
   385                    RCX, RCX_H,
   386                    RBX, RBX_H,
   387                    R8,  R8_H,
   388                    R9,  R9_H,
   389                    R10, R10_H,
   390                    R11, R11_H,
   391                    R13, R13_H,
   392                    R14, R14_H);
   394 // Class for all long registers except RAX, RDX (and RSP)
   395 reg_class long_no_rax_rdx_reg(RBP, RBP_H,
   396                               RDI, RDI_H,
   397                               RSI, RSI_H,
   398                               RCX, RCX_H,
   399                               RBX, RBX_H,
   400                               R8,  R8_H,
   401                               R9,  R9_H,
   402                               R10, R10_H,
   403                               R11, R11_H,
   404                               R13, R13_H,
   405                               R14, R14_H);
   407 // Class for all long registers except RCX (and RSP)
   408 reg_class long_no_rcx_reg(RBP, RBP_H,
   409                           RDI, RDI_H,
   410                           RSI, RSI_H,
   411                           RAX, RAX_H,
   412                           RDX, RDX_H,
   413                           RBX, RBX_H,
   414                           R8,  R8_H,
   415                           R9,  R9_H,
   416                           R10, R10_H,
   417                           R11, R11_H,
   418                           R13, R13_H,
   419                           R14, R14_H);
   421 // Class for all long registers except RAX (and RSP)
   422 reg_class long_no_rax_reg(RBP, RBP_H,
   423                           RDX, RDX_H,
   424                           RDI, RDI_H,
   425                           RSI, RSI_H,
   426                           RCX, RCX_H,
   427                           RBX, RBX_H,
   428                           R8,  R8_H,
   429                           R9,  R9_H,
   430                           R10, R10_H,
   431                           R11, R11_H,
   432                           R13, R13_H,
   433                           R14, R14_H);
   435 // Singleton class for RAX long register
   436 reg_class long_rax_reg(RAX, RAX_H);
   438 // Singleton class for RCX long register
   439 reg_class long_rcx_reg(RCX, RCX_H);
   441 // Singleton class for RDX long register
   442 reg_class long_rdx_reg(RDX, RDX_H);
   444 // Class for all int registers (except RSP)
   445 reg_class int_reg(RAX,
   446                   RDX,
   447                   RBP,
   448                   RDI,
   449                   RSI,
   450                   RCX,
   451                   RBX,
   452                   R8,
   453                   R9,
   454                   R10,
   455                   R11,
   456                   R13,
   457                   R14);
   459 // Class for all int registers except RCX (and RSP)
   460 reg_class int_no_rcx_reg(RAX,
   461                          RDX,
   462                          RBP,
   463                          RDI,
   464                          RSI,
   465                          RBX,
   466                          R8,
   467                          R9,
   468                          R10,
   469                          R11,
   470                          R13,
   471                          R14);
   473 // Class for all int registers except RAX, RDX (and RSP)
   474 reg_class int_no_rax_rdx_reg(RBP,
   475                              RDI,
   476                              RSI,
   477                              RCX,
   478                              RBX,
   479                              R8,
   480                              R9,
   481                              R10,
   482                              R11,
   483                              R13,
   484                              R14);
   486 // Singleton class for RAX int register
   487 reg_class int_rax_reg(RAX);
   489 // Singleton class for RBX int register
   490 reg_class int_rbx_reg(RBX);
   492 // Singleton class for RCX int register
   493 reg_class int_rcx_reg(RCX);
   495 // Singleton class for RCX int register
   496 reg_class int_rdx_reg(RDX);
   498 // Singleton class for RCX int register
   499 reg_class int_rdi_reg(RDI);
   501 // Singleton class for instruction pointer
   502 // reg_class ip_reg(RIP);
   504 // Singleton class for condition codes
   505 reg_class int_flags(RFLAGS);
   507 // Class for all float registers
   508 reg_class float_reg(XMM0,
   509                     XMM1,
   510                     XMM2,
   511                     XMM3,
   512                     XMM4,
   513                     XMM5,
   514                     XMM6,
   515                     XMM7,
   516                     XMM8,
   517                     XMM9,
   518                     XMM10,
   519                     XMM11,
   520                     XMM12,
   521                     XMM13,
   522                     XMM14,
   523                     XMM15);
   525 // Class for all double registers
   526 reg_class double_reg(XMM0,  XMM0_H,
   527                      XMM1,  XMM1_H,
   528                      XMM2,  XMM2_H,
   529                      XMM3,  XMM3_H,
   530                      XMM4,  XMM4_H,
   531                      XMM5,  XMM5_H,
   532                      XMM6,  XMM6_H,
   533                      XMM7,  XMM7_H,
   534                      XMM8,  XMM8_H,
   535                      XMM9,  XMM9_H,
   536                      XMM10, XMM10_H,
   537                      XMM11, XMM11_H,
   538                      XMM12, XMM12_H,
   539                      XMM13, XMM13_H,
   540                      XMM14, XMM14_H,
   541                      XMM15, XMM15_H);
   542 %}
   545 //----------SOURCE BLOCK-------------------------------------------------------
   546 // This is a block of C++ code which provides values, functions, and
   547 // definitions necessary in the rest of the architecture description
   548 source %{
   549 #define   RELOC_IMM64    Assembler::imm_operand
   550 #define   RELOC_DISP32   Assembler::disp32_operand
   552 #define __ _masm.
   554 // !!!!! Special hack to get all types of calls to specify the byte offset
   555 //       from the start of the call to the point where the return address
   556 //       will point.
   557 int MachCallStaticJavaNode::ret_addr_offset()
   558 {
   559   return 5; // 5 bytes from start of call to where return address points
   560 }
   562 int MachCallDynamicJavaNode::ret_addr_offset()
   563 {
   564   return 15; // 15 bytes from start of call to where return address points
   565 }
   567 // In os_cpu .ad file
   568 // int MachCallRuntimeNode::ret_addr_offset()
   570 // Indicate if the safepoint node needs the polling page as an input.
   571 // Since amd64 does not have absolute addressing but RIP-relative
   572 // addressing and the polling page is within 2G, it doesn't.
   573 bool SafePointNode::needs_polling_address_input()
   574 {
   575   return false;
   576 }
   578 //
   579 // Compute padding required for nodes which need alignment
   580 //
   582 // The address of the call instruction needs to be 4-byte aligned to
   583 // ensure that it does not span a cache line so that it can be patched.
   584 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
   585 {
   586   current_offset += 1; // skip call opcode byte
   587   return round_to(current_offset, alignment_required()) - current_offset;
   588 }
   590 // The address of the call instruction needs to be 4-byte aligned to
   591 // ensure that it does not span a cache line so that it can be patched.
   592 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
   593 {
   594   current_offset += 11; // skip movq instruction + call opcode byte
   595   return round_to(current_offset, alignment_required()) - current_offset;
   596 }
   598 #ifndef PRODUCT
   599 void MachBreakpointNode::format(PhaseRegAlloc*, outputStream* st) const
   600 {
   601   st->print("INT3");
   602 }
   603 #endif
   605 // EMIT_RM()
   606 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3)
   607 {
   608   unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
   609   *(cbuf.code_end()) = c;
   610   cbuf.set_code_end(cbuf.code_end() + 1);
   611 }
   613 // EMIT_CC()
   614 void emit_cc(CodeBuffer &cbuf, int f1, int f2)
   615 {
   616   unsigned char c = (unsigned char) (f1 | f2);
   617   *(cbuf.code_end()) = c;
   618   cbuf.set_code_end(cbuf.code_end() + 1);
   619 }
   621 // EMIT_OPCODE()
   622 void emit_opcode(CodeBuffer &cbuf, int code)
   623 {
   624   *(cbuf.code_end()) = (unsigned char) code;
   625   cbuf.set_code_end(cbuf.code_end() + 1);
   626 }
   628 // EMIT_OPCODE() w/ relocation information
   629 void emit_opcode(CodeBuffer &cbuf,
   630                  int code, relocInfo::relocType reloc, int offset, int format)
   631 {
   632   cbuf.relocate(cbuf.inst_mark() + offset, reloc, format);
   633   emit_opcode(cbuf, code);
   634 }
   636 // EMIT_D8()
   637 void emit_d8(CodeBuffer &cbuf, int d8)
   638 {
   639   *(cbuf.code_end()) = (unsigned char) d8;
   640   cbuf.set_code_end(cbuf.code_end() + 1);
   641 }
   643 // EMIT_D16()
   644 void emit_d16(CodeBuffer &cbuf, int d16)
   645 {
   646   *((short *)(cbuf.code_end())) = d16;
   647   cbuf.set_code_end(cbuf.code_end() + 2);
   648 }
   650 // EMIT_D32()
   651 void emit_d32(CodeBuffer &cbuf, int d32)
   652 {
   653   *((int *)(cbuf.code_end())) = d32;
   654   cbuf.set_code_end(cbuf.code_end() + 4);
   655 }
   657 // EMIT_D64()
   658 void emit_d64(CodeBuffer &cbuf, int64_t d64)
   659 {
   660   *((int64_t*) (cbuf.code_end())) = d64;
   661   cbuf.set_code_end(cbuf.code_end() + 8);
   662 }
   664 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   665 void emit_d32_reloc(CodeBuffer& cbuf,
   666                     int d32,
   667                     relocInfo::relocType reloc,
   668                     int format)
   669 {
   670   assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
   671   cbuf.relocate(cbuf.inst_mark(), reloc, format);
   673   *((int*) (cbuf.code_end())) = d32;
   674   cbuf.set_code_end(cbuf.code_end() + 4);
   675 }
   677 // emit 32 bit value and construct relocation entry from RelocationHolder
   678 void emit_d32_reloc(CodeBuffer& cbuf,
   679                     int d32,
   680                     RelocationHolder const& rspec,
   681                     int format)
   682 {
   683 #ifdef ASSERT
   684   if (rspec.reloc()->type() == relocInfo::oop_type &&
   685       d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
   686     assert(oop((intptr_t)d32)->is_oop() && oop((intptr_t)d32)->is_perm(), "cannot embed non-perm oops in code");
   687   }
   688 #endif
   689   cbuf.relocate(cbuf.inst_mark(), rspec, format);
   691   *((int* )(cbuf.code_end())) = d32;
   692   cbuf.set_code_end(cbuf.code_end() + 4);
   693 }
   695 void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
   696   address next_ip = cbuf.code_end() + 4;
   697   emit_d32_reloc(cbuf, (int) (addr - next_ip),
   698                  external_word_Relocation::spec(addr),
   699                  RELOC_DISP32);
   700 }
   703 // emit 64 bit value and construct relocation entry from relocInfo::relocType
   704 void emit_d64_reloc(CodeBuffer& cbuf,
   705                     int64_t d64,
   706                     relocInfo::relocType reloc,
   707                     int format)
   708 {
   709   cbuf.relocate(cbuf.inst_mark(), reloc, format);
   711   *((int64_t*) (cbuf.code_end())) = d64;
   712   cbuf.set_code_end(cbuf.code_end() + 8);
   713 }
   715 // emit 64 bit value and construct relocation entry from RelocationHolder
   716 void emit_d64_reloc(CodeBuffer& cbuf,
   717                     int64_t d64,
   718                     RelocationHolder const& rspec,
   719                     int format)
   720 {
   721 #ifdef ASSERT
   722   if (rspec.reloc()->type() == relocInfo::oop_type &&
   723       d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
   724     assert(oop(d64)->is_oop() && oop(d64)->is_perm(),
   725            "cannot embed non-perm oops in code");
   726   }
   727 #endif
   728   cbuf.relocate(cbuf.inst_mark(), rspec, format);
   730   *((int64_t*) (cbuf.code_end())) = d64;
   731   cbuf.set_code_end(cbuf.code_end() + 8);
   732 }
   734 // Access stack slot for load or store
   735 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
   736 {
   737   emit_opcode(cbuf, opcode);                  // (e.g., FILD   [RSP+src])
   738   if (-0x80 <= disp && disp < 0x80) {
   739     emit_rm(cbuf, 0x01, rm_field, RSP_enc);   // R/M byte
   740     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
   741     emit_d8(cbuf, disp);     // Displacement  // R/M byte
   742   } else {
   743     emit_rm(cbuf, 0x02, rm_field, RSP_enc);   // R/M byte
   744     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
   745     emit_d32(cbuf, disp);     // Displacement // R/M byte
   746   }
   747 }
   749    // rRegI ereg, memory mem) %{    // emit_reg_mem
   750 void encode_RegMem(CodeBuffer &cbuf,
   751                    int reg,
   752                    int base, int index, int scale, int disp, bool disp_is_oop)
   753 {
   754   assert(!disp_is_oop, "cannot have disp");
   755   int regenc = reg & 7;
   756   int baseenc = base & 7;
   757   int indexenc = index & 7;
   759   // There is no index & no scale, use form without SIB byte
   760   if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
   761     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
   762     if (disp == 0 && base != RBP_enc && base != R13_enc) {
   763       emit_rm(cbuf, 0x0, regenc, baseenc); // *
   764     } else if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
   765       // If 8-bit displacement, mode 0x1
   766       emit_rm(cbuf, 0x1, regenc, baseenc); // *
   767       emit_d8(cbuf, disp);
   768     } else {
   769       // If 32-bit displacement
   770       if (base == -1) { // Special flag for absolute address
   771         emit_rm(cbuf, 0x0, regenc, 0x5); // *
   772         if (disp_is_oop) {
   773           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
   774         } else {
   775           emit_d32(cbuf, disp);
   776         }
   777       } else {
   778         // Normal base + offset
   779         emit_rm(cbuf, 0x2, regenc, baseenc); // *
   780         if (disp_is_oop) {
   781           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
   782         } else {
   783           emit_d32(cbuf, disp);
   784         }
   785       }
   786     }
   787   } else {
   788     // Else, encode with the SIB byte
   789     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
   790     if (disp == 0 && base != RBP_enc && base != R13_enc) {
   791       // If no displacement
   792       emit_rm(cbuf, 0x0, regenc, 0x4); // *
   793       emit_rm(cbuf, scale, indexenc, baseenc);
   794     } else {
   795       if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
   796         // If 8-bit displacement, mode 0x1
   797         emit_rm(cbuf, 0x1, regenc, 0x4); // *
   798         emit_rm(cbuf, scale, indexenc, baseenc);
   799         emit_d8(cbuf, disp);
   800       } else {
   801         // If 32-bit displacement
   802         if (base == 0x04 ) {
   803           emit_rm(cbuf, 0x2, regenc, 0x4);
   804           emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
   805         } else {
   806           emit_rm(cbuf, 0x2, regenc, 0x4);
   807           emit_rm(cbuf, scale, indexenc, baseenc); // *
   808         }
   809         if (disp_is_oop) {
   810           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
   811         } else {
   812           emit_d32(cbuf, disp);
   813         }
   814       }
   815     }
   816   }
   817 }
   819 void encode_copy(CodeBuffer &cbuf, int dstenc, int srcenc)
   820 {
   821   if (dstenc != srcenc) {
   822     if (dstenc < 8) {
   823       if (srcenc >= 8) {
   824         emit_opcode(cbuf, Assembler::REX_B);
   825         srcenc -= 8;
   826       }
   827     } else {
   828       if (srcenc < 8) {
   829         emit_opcode(cbuf, Assembler::REX_R);
   830       } else {
   831         emit_opcode(cbuf, Assembler::REX_RB);
   832         srcenc -= 8;
   833       }
   834       dstenc -= 8;
   835     }
   837     emit_opcode(cbuf, 0x8B);
   838     emit_rm(cbuf, 0x3, dstenc, srcenc);
   839   }
   840 }
   842 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   843   if( dst_encoding == src_encoding ) {
   844     // reg-reg copy, use an empty encoding
   845   } else {
   846     MacroAssembler _masm(&cbuf);
   848     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
   849   }
   850 }
   853 //=============================================================================
   854 #ifndef PRODUCT
   855 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const
   856 {
   857   Compile* C = ra_->C;
   859   int framesize = C->frame_slots() << LogBytesPerInt;
   860   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   861   // Remove wordSize for return adr already pushed
   862   // and another for the RBP we are going to save
   863   framesize -= 2*wordSize;
   864   bool need_nop = true;
   866   // Calls to C2R adapters often do not accept exceptional returns.
   867   // We require that their callers must bang for them.  But be
   868   // careful, because some VM calls (such as call site linkage) can
   869   // use several kilobytes of stack.  But the stack safety zone should
   870   // account for that.  See bugs 4446381, 4468289, 4497237.
   871   if (C->need_stack_bang(framesize)) {
   872     st->print_cr("# stack bang"); st->print("\t");
   873     need_nop = false;
   874   }
   875   st->print_cr("pushq   rbp"); st->print("\t");
   877   if (VerifyStackAtCalls) {
   878     // Majik cookie to verify stack depth
   879     st->print_cr("pushq   0xffffffffbadb100d"
   880                   "\t# Majik cookie for stack depth check");
   881     st->print("\t");
   882     framesize -= wordSize; // Remove 2 for cookie
   883     need_nop = false;
   884   }
   886   if (framesize) {
   887     st->print("subq    rsp, #%d\t# Create frame", framesize);
   888     if (framesize < 0x80 && need_nop) {
   889       st->print("\n\tnop\t# nop for patch_verified_entry");
   890     }
   891   }
   892 }
   893 #endif
   895 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
   896 {
   897   Compile* C = ra_->C;
   899   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   900   // NativeJump::patch_verified_entry will be able to patch out the entry
   901   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   902   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   903   // 6 bytes. So if we don't do the fldcw or the push then we must
   904   // use the 6 byte frame allocation even if we have no frame. :-(
   905   // If method sets FPU control word do it now
   907   int framesize = C->frame_slots() << LogBytesPerInt;
   908   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   909   // Remove wordSize for return adr already pushed
   910   // and another for the RBP we are going to save
   911   framesize -= 2*wordSize;
   912   bool need_nop = true;
   914   // Calls to C2R adapters often do not accept exceptional returns.
   915   // We require that their callers must bang for them.  But be
   916   // careful, because some VM calls (such as call site linkage) can
   917   // use several kilobytes of stack.  But the stack safety zone should
   918   // account for that.  See bugs 4446381, 4468289, 4497237.
   919   if (C->need_stack_bang(framesize)) {
   920     MacroAssembler masm(&cbuf);
   921     masm.generate_stack_overflow_check(framesize);
   922     need_nop = false;
   923   }
   925   // We always push rbp so that on return to interpreter rbp will be
   926   // restored correctly and we can correct the stack.
   927   emit_opcode(cbuf, 0x50 | RBP_enc);
   929   if (VerifyStackAtCalls) {
   930     // Majik cookie to verify stack depth
   931     emit_opcode(cbuf, 0x68); // pushq (sign-extended) 0xbadb100d
   932     emit_d32(cbuf, 0xbadb100d);
   933     framesize -= wordSize; // Remove 2 for cookie
   934     need_nop = false;
   935   }
   937   if (framesize) {
   938     emit_opcode(cbuf, Assembler::REX_W);
   939     if (framesize < 0x80) {
   940       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   941       emit_rm(cbuf, 0x3, 0x05, RSP_enc);
   942       emit_d8(cbuf, framesize);
   943       if (need_nop) {
   944         emit_opcode(cbuf, 0x90); // nop
   945       }
   946     } else {
   947       emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   948       emit_rm(cbuf, 0x3, 0x05, RSP_enc);
   949       emit_d32(cbuf, framesize);
   950     }
   951   }
   953   C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
   955 #ifdef ASSERT
   956   if (VerifyStackAtCalls) {
   957     Label L;
   958     MacroAssembler masm(&cbuf);
   959     masm.push(rax);
   960     masm.mov(rax, rsp);
   961     masm.andptr(rax, StackAlignmentInBytes-1);
   962     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
   963     masm.pop(rax);
   964     masm.jcc(Assembler::equal, L);
   965     masm.stop("Stack is not properly aligned!");
   966     masm.bind(L);
   967   }
   968 #endif
   969 }
   971 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
   972 {
   973   return MachNode::size(ra_); // too many variables; just compute it
   974                               // the hard way
   975 }
   977 int MachPrologNode::reloc() const
   978 {
   979   return 0; // a large enough number
   980 }
   982 //=============================================================================
   983 #ifndef PRODUCT
   984 void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
   985 {
   986   Compile* C = ra_->C;
   987   int framesize = C->frame_slots() << LogBytesPerInt;
   988   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   989   // Remove word for return adr already pushed
   990   // and RBP
   991   framesize -= 2*wordSize;
   993   if (framesize) {
   994     st->print_cr("addq\trsp, %d\t# Destroy frame", framesize);
   995     st->print("\t");
   996   }
   998   st->print_cr("popq\trbp");
   999   if (do_polling() && C->is_method_compilation()) {
  1000     st->print_cr("\ttestl\trax, [rip + #offset_to_poll_page]\t"
  1001                   "# Safepoint: poll for GC");
  1002     st->print("\t");
  1005 #endif
  1007 void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
  1009   Compile* C = ra_->C;
  1010   int framesize = C->frame_slots() << LogBytesPerInt;
  1011   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1012   // Remove word for return adr already pushed
  1013   // and RBP
  1014   framesize -= 2*wordSize;
  1016   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
  1018   if (framesize) {
  1019     emit_opcode(cbuf, Assembler::REX_W);
  1020     if (framesize < 0x80) {
  1021       emit_opcode(cbuf, 0x83); // addq rsp, #framesize
  1022       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
  1023       emit_d8(cbuf, framesize);
  1024     } else {
  1025       emit_opcode(cbuf, 0x81); // addq rsp, #framesize
  1026       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
  1027       emit_d32(cbuf, framesize);
  1031   // popq rbp
  1032   emit_opcode(cbuf, 0x58 | RBP_enc);
  1034   if (do_polling() && C->is_method_compilation()) {
  1035     // testl %rax, off(%rip) // Opcode + ModRM + Disp32 == 6 bytes
  1036     // XXX reg_mem doesn't support RIP-relative addressing yet
  1037     cbuf.set_inst_mark();
  1038     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_return_type, 0); // XXX
  1039     emit_opcode(cbuf, 0x85); // testl
  1040     emit_rm(cbuf, 0x0, RAX_enc, 0x5); // 00 rax 101 == 0x5
  1041     // cbuf.inst_mark() is beginning of instruction
  1042     emit_d32_reloc(cbuf, os::get_polling_page());
  1043 //                    relocInfo::poll_return_type,
  1047 uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
  1049   Compile* C = ra_->C;
  1050   int framesize = C->frame_slots() << LogBytesPerInt;
  1051   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1052   // Remove word for return adr already pushed
  1053   // and RBP
  1054   framesize -= 2*wordSize;
  1056   uint size = 0;
  1058   if (do_polling() && C->is_method_compilation()) {
  1059     size += 6;
  1062   // count popq rbp
  1063   size++;
  1065   if (framesize) {
  1066     if (framesize < 0x80) {
  1067       size += 4;
  1068     } else if (framesize) {
  1069       size += 7;
  1073   return size;
  1076 int MachEpilogNode::reloc() const
  1078   return 2; // a large enough number
  1081 const Pipeline* MachEpilogNode::pipeline() const
  1083   return MachNode::pipeline_class();
  1086 int MachEpilogNode::safepoint_offset() const
  1088   return 0;
  1091 //=============================================================================
  1093 enum RC {
  1094   rc_bad,
  1095   rc_int,
  1096   rc_float,
  1097   rc_stack
  1098 };
  1100 static enum RC rc_class(OptoReg::Name reg)
  1102   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1104   if (OptoReg::is_stack(reg)) return rc_stack;
  1106   VMReg r = OptoReg::as_VMReg(reg);
  1108   if (r->is_Register()) return rc_int;
  1110   assert(r->is_XMMRegister(), "must be");
  1111   return rc_float;
  1114 uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
  1115                                        PhaseRegAlloc* ra_,
  1116                                        bool do_size,
  1117                                        outputStream* st) const
  1120   // Get registers to move
  1121   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1122   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1123   OptoReg::Name dst_second = ra_->get_reg_second(this);
  1124   OptoReg::Name dst_first = ra_->get_reg_first(this);
  1126   enum RC src_second_rc = rc_class(src_second);
  1127   enum RC src_first_rc = rc_class(src_first);
  1128   enum RC dst_second_rc = rc_class(dst_second);
  1129   enum RC dst_first_rc = rc_class(dst_first);
  1131   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
  1132          "must move at least 1 register" );
  1134   if (src_first == dst_first && src_second == dst_second) {
  1135     // Self copy, no move
  1136     return 0;
  1137   } else if (src_first_rc == rc_stack) {
  1138     // mem ->
  1139     if (dst_first_rc == rc_stack) {
  1140       // mem -> mem
  1141       assert(src_second != dst_first, "overlap");
  1142       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1143           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1144         // 64-bit
  1145         int src_offset = ra_->reg2offset(src_first);
  1146         int dst_offset = ra_->reg2offset(dst_first);
  1147         if (cbuf) {
  1148           emit_opcode(*cbuf, 0xFF);
  1149           encode_RegMem(*cbuf, RSI_enc, RSP_enc, 0x4, 0, src_offset, false);
  1151           emit_opcode(*cbuf, 0x8F);
  1152           encode_RegMem(*cbuf, RAX_enc, RSP_enc, 0x4, 0, dst_offset, false);
  1154 #ifndef PRODUCT
  1155         } else if (!do_size) {
  1156           st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
  1157                      "popq    [rsp + #%d]",
  1158                      src_offset,
  1159                      dst_offset);
  1160 #endif
  1162         return
  1163           3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) +
  1164           3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4));
  1165       } else {
  1166         // 32-bit
  1167         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1168         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1169         // No pushl/popl, so:
  1170         int src_offset = ra_->reg2offset(src_first);
  1171         int dst_offset = ra_->reg2offset(dst_first);
  1172         if (cbuf) {
  1173           emit_opcode(*cbuf, Assembler::REX_W);
  1174           emit_opcode(*cbuf, 0x89);
  1175           emit_opcode(*cbuf, 0x44);
  1176           emit_opcode(*cbuf, 0x24);
  1177           emit_opcode(*cbuf, 0xF8);
  1179           emit_opcode(*cbuf, 0x8B);
  1180           encode_RegMem(*cbuf,
  1181                         RAX_enc,
  1182                         RSP_enc, 0x4, 0, src_offset,
  1183                         false);
  1185           emit_opcode(*cbuf, 0x89);
  1186           encode_RegMem(*cbuf,
  1187                         RAX_enc,
  1188                         RSP_enc, 0x4, 0, dst_offset,
  1189                         false);
  1191           emit_opcode(*cbuf, Assembler::REX_W);
  1192           emit_opcode(*cbuf, 0x8B);
  1193           emit_opcode(*cbuf, 0x44);
  1194           emit_opcode(*cbuf, 0x24);
  1195           emit_opcode(*cbuf, 0xF8);
  1197 #ifndef PRODUCT
  1198         } else if (!do_size) {
  1199           st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
  1200                      "movl    rax, [rsp + #%d]\n\t"
  1201                      "movl    [rsp + #%d], rax\n\t"
  1202                      "movq    rax, [rsp - #8]",
  1203                      src_offset,
  1204                      dst_offset);
  1205 #endif
  1207         return
  1208           5 + // movq
  1209           3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) + // movl
  1210           3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4)) + // movl
  1211           5; // movq
  1213     } else if (dst_first_rc == rc_int) {
  1214       // mem -> gpr
  1215       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1216           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1217         // 64-bit
  1218         int offset = ra_->reg2offset(src_first);
  1219         if (cbuf) {
  1220           if (Matcher::_regEncode[dst_first] < 8) {
  1221             emit_opcode(*cbuf, Assembler::REX_W);
  1222           } else {
  1223             emit_opcode(*cbuf, Assembler::REX_WR);
  1225           emit_opcode(*cbuf, 0x8B);
  1226           encode_RegMem(*cbuf,
  1227                         Matcher::_regEncode[dst_first],
  1228                         RSP_enc, 0x4, 0, offset,
  1229                         false);
  1230 #ifndef PRODUCT
  1231         } else if (!do_size) {
  1232           st->print("movq    %s, [rsp + #%d]\t# spill",
  1233                      Matcher::regName[dst_first],
  1234                      offset);
  1235 #endif
  1237         return
  1238           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
  1239       } else {
  1240         // 32-bit
  1241         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1242         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1243         int offset = ra_->reg2offset(src_first);
  1244         if (cbuf) {
  1245           if (Matcher::_regEncode[dst_first] >= 8) {
  1246             emit_opcode(*cbuf, Assembler::REX_R);
  1248           emit_opcode(*cbuf, 0x8B);
  1249           encode_RegMem(*cbuf,
  1250                         Matcher::_regEncode[dst_first],
  1251                         RSP_enc, 0x4, 0, offset,
  1252                         false);
  1253 #ifndef PRODUCT
  1254         } else if (!do_size) {
  1255           st->print("movl    %s, [rsp + #%d]\t# spill",
  1256                      Matcher::regName[dst_first],
  1257                      offset);
  1258 #endif
  1260         return
  1261           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1262           ((Matcher::_regEncode[dst_first] < 8)
  1263            ? 3
  1264            : 4); // REX
  1266     } else if (dst_first_rc == rc_float) {
  1267       // mem-> xmm
  1268       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1269           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1270         // 64-bit
  1271         int offset = ra_->reg2offset(src_first);
  1272         if (cbuf) {
  1273           emit_opcode(*cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  1274           if (Matcher::_regEncode[dst_first] >= 8) {
  1275             emit_opcode(*cbuf, Assembler::REX_R);
  1277           emit_opcode(*cbuf, 0x0F);
  1278           emit_opcode(*cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  1279           encode_RegMem(*cbuf,
  1280                         Matcher::_regEncode[dst_first],
  1281                         RSP_enc, 0x4, 0, offset,
  1282                         false);
  1283 #ifndef PRODUCT
  1284         } else if (!do_size) {
  1285           st->print("%s  %s, [rsp + #%d]\t# spill",
  1286                      UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
  1287                      Matcher::regName[dst_first],
  1288                      offset);
  1289 #endif
  1291         return
  1292           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1293           ((Matcher::_regEncode[dst_first] < 8)
  1294            ? 5
  1295            : 6); // REX
  1296       } else {
  1297         // 32-bit
  1298         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1299         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1300         int offset = ra_->reg2offset(src_first);
  1301         if (cbuf) {
  1302           emit_opcode(*cbuf, 0xF3);
  1303           if (Matcher::_regEncode[dst_first] >= 8) {
  1304             emit_opcode(*cbuf, Assembler::REX_R);
  1306           emit_opcode(*cbuf, 0x0F);
  1307           emit_opcode(*cbuf, 0x10);
  1308           encode_RegMem(*cbuf,
  1309                         Matcher::_regEncode[dst_first],
  1310                         RSP_enc, 0x4, 0, offset,
  1311                         false);
  1312 #ifndef PRODUCT
  1313         } else if (!do_size) {
  1314           st->print("movss   %s, [rsp + #%d]\t# spill",
  1315                      Matcher::regName[dst_first],
  1316                      offset);
  1317 #endif
  1319         return
  1320           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1321           ((Matcher::_regEncode[dst_first] < 8)
  1322            ? 5
  1323            : 6); // REX
  1326   } else if (src_first_rc == rc_int) {
  1327     // gpr ->
  1328     if (dst_first_rc == rc_stack) {
  1329       // gpr -> mem
  1330       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1331           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1332         // 64-bit
  1333         int offset = ra_->reg2offset(dst_first);
  1334         if (cbuf) {
  1335           if (Matcher::_regEncode[src_first] < 8) {
  1336             emit_opcode(*cbuf, Assembler::REX_W);
  1337           } else {
  1338             emit_opcode(*cbuf, Assembler::REX_WR);
  1340           emit_opcode(*cbuf, 0x89);
  1341           encode_RegMem(*cbuf,
  1342                         Matcher::_regEncode[src_first],
  1343                         RSP_enc, 0x4, 0, offset,
  1344                         false);
  1345 #ifndef PRODUCT
  1346         } else if (!do_size) {
  1347           st->print("movq    [rsp + #%d], %s\t# spill",
  1348                      offset,
  1349                      Matcher::regName[src_first]);
  1350 #endif
  1352         return ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
  1353       } else {
  1354         // 32-bit
  1355         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1356         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1357         int offset = ra_->reg2offset(dst_first);
  1358         if (cbuf) {
  1359           if (Matcher::_regEncode[src_first] >= 8) {
  1360             emit_opcode(*cbuf, Assembler::REX_R);
  1362           emit_opcode(*cbuf, 0x89);
  1363           encode_RegMem(*cbuf,
  1364                         Matcher::_regEncode[src_first],
  1365                         RSP_enc, 0x4, 0, offset,
  1366                         false);
  1367 #ifndef PRODUCT
  1368         } else if (!do_size) {
  1369           st->print("movl    [rsp + #%d], %s\t# spill",
  1370                      offset,
  1371                      Matcher::regName[src_first]);
  1372 #endif
  1374         return
  1375           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1376           ((Matcher::_regEncode[src_first] < 8)
  1377            ? 3
  1378            : 4); // REX
  1380     } else if (dst_first_rc == rc_int) {
  1381       // gpr -> gpr
  1382       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1383           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1384         // 64-bit
  1385         if (cbuf) {
  1386           if (Matcher::_regEncode[dst_first] < 8) {
  1387             if (Matcher::_regEncode[src_first] < 8) {
  1388               emit_opcode(*cbuf, Assembler::REX_W);
  1389             } else {
  1390               emit_opcode(*cbuf, Assembler::REX_WB);
  1392           } else {
  1393             if (Matcher::_regEncode[src_first] < 8) {
  1394               emit_opcode(*cbuf, Assembler::REX_WR);
  1395             } else {
  1396               emit_opcode(*cbuf, Assembler::REX_WRB);
  1399           emit_opcode(*cbuf, 0x8B);
  1400           emit_rm(*cbuf, 0x3,
  1401                   Matcher::_regEncode[dst_first] & 7,
  1402                   Matcher::_regEncode[src_first] & 7);
  1403 #ifndef PRODUCT
  1404         } else if (!do_size) {
  1405           st->print("movq    %s, %s\t# spill",
  1406                      Matcher::regName[dst_first],
  1407                      Matcher::regName[src_first]);
  1408 #endif
  1410         return 3; // REX
  1411       } else {
  1412         // 32-bit
  1413         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1414         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1415         if (cbuf) {
  1416           if (Matcher::_regEncode[dst_first] < 8) {
  1417             if (Matcher::_regEncode[src_first] >= 8) {
  1418               emit_opcode(*cbuf, Assembler::REX_B);
  1420           } else {
  1421             if (Matcher::_regEncode[src_first] < 8) {
  1422               emit_opcode(*cbuf, Assembler::REX_R);
  1423             } else {
  1424               emit_opcode(*cbuf, Assembler::REX_RB);
  1427           emit_opcode(*cbuf, 0x8B);
  1428           emit_rm(*cbuf, 0x3,
  1429                   Matcher::_regEncode[dst_first] & 7,
  1430                   Matcher::_regEncode[src_first] & 7);
  1431 #ifndef PRODUCT
  1432         } else if (!do_size) {
  1433           st->print("movl    %s, %s\t# spill",
  1434                      Matcher::regName[dst_first],
  1435                      Matcher::regName[src_first]);
  1436 #endif
  1438         return
  1439           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1440           ? 2
  1441           : 3; // REX
  1443     } else if (dst_first_rc == rc_float) {
  1444       // gpr -> xmm
  1445       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1446           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1447         // 64-bit
  1448         if (cbuf) {
  1449           emit_opcode(*cbuf, 0x66);
  1450           if (Matcher::_regEncode[dst_first] < 8) {
  1451             if (Matcher::_regEncode[src_first] < 8) {
  1452               emit_opcode(*cbuf, Assembler::REX_W);
  1453             } else {
  1454               emit_opcode(*cbuf, Assembler::REX_WB);
  1456           } else {
  1457             if (Matcher::_regEncode[src_first] < 8) {
  1458               emit_opcode(*cbuf, Assembler::REX_WR);
  1459             } else {
  1460               emit_opcode(*cbuf, Assembler::REX_WRB);
  1463           emit_opcode(*cbuf, 0x0F);
  1464           emit_opcode(*cbuf, 0x6E);
  1465           emit_rm(*cbuf, 0x3,
  1466                   Matcher::_regEncode[dst_first] & 7,
  1467                   Matcher::_regEncode[src_first] & 7);
  1468 #ifndef PRODUCT
  1469         } else if (!do_size) {
  1470           st->print("movdq   %s, %s\t# spill",
  1471                      Matcher::regName[dst_first],
  1472                      Matcher::regName[src_first]);
  1473 #endif
  1475         return 5; // REX
  1476       } else {
  1477         // 32-bit
  1478         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1479         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1480         if (cbuf) {
  1481           emit_opcode(*cbuf, 0x66);
  1482           if (Matcher::_regEncode[dst_first] < 8) {
  1483             if (Matcher::_regEncode[src_first] >= 8) {
  1484               emit_opcode(*cbuf, Assembler::REX_B);
  1486           } else {
  1487             if (Matcher::_regEncode[src_first] < 8) {
  1488               emit_opcode(*cbuf, Assembler::REX_R);
  1489             } else {
  1490               emit_opcode(*cbuf, Assembler::REX_RB);
  1493           emit_opcode(*cbuf, 0x0F);
  1494           emit_opcode(*cbuf, 0x6E);
  1495           emit_rm(*cbuf, 0x3,
  1496                   Matcher::_regEncode[dst_first] & 7,
  1497                   Matcher::_regEncode[src_first] & 7);
  1498 #ifndef PRODUCT
  1499         } else if (!do_size) {
  1500           st->print("movdl   %s, %s\t# spill",
  1501                      Matcher::regName[dst_first],
  1502                      Matcher::regName[src_first]);
  1503 #endif
  1505         return
  1506           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1507           ? 4
  1508           : 5; // REX
  1511   } else if (src_first_rc == rc_float) {
  1512     // xmm ->
  1513     if (dst_first_rc == rc_stack) {
  1514       // xmm -> mem
  1515       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1516           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1517         // 64-bit
  1518         int offset = ra_->reg2offset(dst_first);
  1519         if (cbuf) {
  1520           emit_opcode(*cbuf, 0xF2);
  1521           if (Matcher::_regEncode[src_first] >= 8) {
  1522               emit_opcode(*cbuf, Assembler::REX_R);
  1524           emit_opcode(*cbuf, 0x0F);
  1525           emit_opcode(*cbuf, 0x11);
  1526           encode_RegMem(*cbuf,
  1527                         Matcher::_regEncode[src_first],
  1528                         RSP_enc, 0x4, 0, offset,
  1529                         false);
  1530 #ifndef PRODUCT
  1531         } else if (!do_size) {
  1532           st->print("movsd   [rsp + #%d], %s\t# spill",
  1533                      offset,
  1534                      Matcher::regName[src_first]);
  1535 #endif
  1537         return
  1538           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1539           ((Matcher::_regEncode[src_first] < 8)
  1540            ? 5
  1541            : 6); // REX
  1542       } else {
  1543         // 32-bit
  1544         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1545         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1546         int offset = ra_->reg2offset(dst_first);
  1547         if (cbuf) {
  1548           emit_opcode(*cbuf, 0xF3);
  1549           if (Matcher::_regEncode[src_first] >= 8) {
  1550               emit_opcode(*cbuf, Assembler::REX_R);
  1552           emit_opcode(*cbuf, 0x0F);
  1553           emit_opcode(*cbuf, 0x11);
  1554           encode_RegMem(*cbuf,
  1555                         Matcher::_regEncode[src_first],
  1556                         RSP_enc, 0x4, 0, offset,
  1557                         false);
  1558 #ifndef PRODUCT
  1559         } else if (!do_size) {
  1560           st->print("movss   [rsp + #%d], %s\t# spill",
  1561                      offset,
  1562                      Matcher::regName[src_first]);
  1563 #endif
  1565         return
  1566           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1567           ((Matcher::_regEncode[src_first] < 8)
  1568            ? 5
  1569            : 6); // REX
  1571     } else if (dst_first_rc == rc_int) {
  1572       // xmm -> gpr
  1573       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1574           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1575         // 64-bit
  1576         if (cbuf) {
  1577           emit_opcode(*cbuf, 0x66);
  1578           if (Matcher::_regEncode[dst_first] < 8) {
  1579             if (Matcher::_regEncode[src_first] < 8) {
  1580               emit_opcode(*cbuf, Assembler::REX_W);
  1581             } else {
  1582               emit_opcode(*cbuf, Assembler::REX_WR); // attention!
  1584           } else {
  1585             if (Matcher::_regEncode[src_first] < 8) {
  1586               emit_opcode(*cbuf, Assembler::REX_WB); // attention!
  1587             } else {
  1588               emit_opcode(*cbuf, Assembler::REX_WRB);
  1591           emit_opcode(*cbuf, 0x0F);
  1592           emit_opcode(*cbuf, 0x7E);
  1593           emit_rm(*cbuf, 0x3,
  1594                   Matcher::_regEncode[dst_first] & 7,
  1595                   Matcher::_regEncode[src_first] & 7);
  1596 #ifndef PRODUCT
  1597         } else if (!do_size) {
  1598           st->print("movdq   %s, %s\t# spill",
  1599                      Matcher::regName[dst_first],
  1600                      Matcher::regName[src_first]);
  1601 #endif
  1603         return 5; // REX
  1604       } else {
  1605         // 32-bit
  1606         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1607         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1608         if (cbuf) {
  1609           emit_opcode(*cbuf, 0x66);
  1610           if (Matcher::_regEncode[dst_first] < 8) {
  1611             if (Matcher::_regEncode[src_first] >= 8) {
  1612               emit_opcode(*cbuf, Assembler::REX_R); // attention!
  1614           } else {
  1615             if (Matcher::_regEncode[src_first] < 8) {
  1616               emit_opcode(*cbuf, Assembler::REX_B); // attention!
  1617             } else {
  1618               emit_opcode(*cbuf, Assembler::REX_RB);
  1621           emit_opcode(*cbuf, 0x0F);
  1622           emit_opcode(*cbuf, 0x7E);
  1623           emit_rm(*cbuf, 0x3,
  1624                   Matcher::_regEncode[dst_first] & 7,
  1625                   Matcher::_regEncode[src_first] & 7);
  1626 #ifndef PRODUCT
  1627         } else if (!do_size) {
  1628           st->print("movdl   %s, %s\t# spill",
  1629                      Matcher::regName[dst_first],
  1630                      Matcher::regName[src_first]);
  1631 #endif
  1633         return
  1634           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1635           ? 4
  1636           : 5; // REX
  1638     } else if (dst_first_rc == rc_float) {
  1639       // xmm -> xmm
  1640       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1641           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1642         // 64-bit
  1643         if (cbuf) {
  1644           emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x66 : 0xF2);
  1645           if (Matcher::_regEncode[dst_first] < 8) {
  1646             if (Matcher::_regEncode[src_first] >= 8) {
  1647               emit_opcode(*cbuf, Assembler::REX_B);
  1649           } else {
  1650             if (Matcher::_regEncode[src_first] < 8) {
  1651               emit_opcode(*cbuf, Assembler::REX_R);
  1652             } else {
  1653               emit_opcode(*cbuf, Assembler::REX_RB);
  1656           emit_opcode(*cbuf, 0x0F);
  1657           emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  1658           emit_rm(*cbuf, 0x3,
  1659                   Matcher::_regEncode[dst_first] & 7,
  1660                   Matcher::_regEncode[src_first] & 7);
  1661 #ifndef PRODUCT
  1662         } else if (!do_size) {
  1663           st->print("%s  %s, %s\t# spill",
  1664                      UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
  1665                      Matcher::regName[dst_first],
  1666                      Matcher::regName[src_first]);
  1667 #endif
  1669         return
  1670           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1671           ? 4
  1672           : 5; // REX
  1673       } else {
  1674         // 32-bit
  1675         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1676         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1677         if (cbuf) {
  1678           if (!UseXmmRegToRegMoveAll)
  1679             emit_opcode(*cbuf, 0xF3);
  1680           if (Matcher::_regEncode[dst_first] < 8) {
  1681             if (Matcher::_regEncode[src_first] >= 8) {
  1682               emit_opcode(*cbuf, Assembler::REX_B);
  1684           } else {
  1685             if (Matcher::_regEncode[src_first] < 8) {
  1686               emit_opcode(*cbuf, Assembler::REX_R);
  1687             } else {
  1688               emit_opcode(*cbuf, Assembler::REX_RB);
  1691           emit_opcode(*cbuf, 0x0F);
  1692           emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  1693           emit_rm(*cbuf, 0x3,
  1694                   Matcher::_regEncode[dst_first] & 7,
  1695                   Matcher::_regEncode[src_first] & 7);
  1696 #ifndef PRODUCT
  1697         } else if (!do_size) {
  1698           st->print("%s  %s, %s\t# spill",
  1699                      UseXmmRegToRegMoveAll ? "movaps" : "movss ",
  1700                      Matcher::regName[dst_first],
  1701                      Matcher::regName[src_first]);
  1702 #endif
  1704         return
  1705           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1706           ? (UseXmmRegToRegMoveAll ? 3 : 4)
  1707           : (UseXmmRegToRegMoveAll ? 4 : 5); // REX
  1712   assert(0," foo ");
  1713   Unimplemented();
  1715   return 0;
  1718 #ifndef PRODUCT
  1719 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const
  1721   implementation(NULL, ra_, false, st);
  1723 #endif
  1725 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
  1727   implementation(&cbuf, ra_, false, NULL);
  1730 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const
  1732   return implementation(NULL, ra_, true, NULL);
  1735 //=============================================================================
  1736 #ifndef PRODUCT
  1737 void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const
  1739   st->print("nop \t# %d bytes pad for loops and calls", _count);
  1741 #endif
  1743 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc*) const
  1745   MacroAssembler _masm(&cbuf);
  1746   __ nop(_count);
  1749 uint MachNopNode::size(PhaseRegAlloc*) const
  1751   return _count;
  1755 //=============================================================================
  1756 #ifndef PRODUCT
  1757 void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
  1759   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1760   int reg = ra_->get_reg_first(this);
  1761   st->print("leaq    %s, [rsp + #%d]\t# box lock",
  1762             Matcher::regName[reg], offset);
  1764 #endif
  1766 void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
  1768   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1769   int reg = ra_->get_encode(this);
  1770   if (offset >= 0x80) {
  1771     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
  1772     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
  1773     emit_rm(cbuf, 0x2, reg & 7, 0x04);
  1774     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
  1775     emit_d32(cbuf, offset);
  1776   } else {
  1777     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
  1778     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
  1779     emit_rm(cbuf, 0x1, reg & 7, 0x04);
  1780     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
  1781     emit_d8(cbuf, offset);
  1785 uint BoxLockNode::size(PhaseRegAlloc *ra_) const
  1787   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1788   return (offset < 0x80) ? 5 : 8; // REX
  1791 //=============================================================================
  1793 // emit call stub, compiled java to interpreter
  1794 void emit_java_to_interp(CodeBuffer& cbuf)
  1796   // Stub is fixed up when the corresponding call is converted from
  1797   // calling compiled code to calling interpreted code.
  1798   // movq rbx, 0
  1799   // jmp -5 # to self
  1801   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1803   // Note that the code buffer's inst_mark is always relative to insts.
  1804   // That's why we must use the macroassembler to generate a stub.
  1805   MacroAssembler _masm(&cbuf);
  1807   address base =
  1808   __ start_a_stub(Compile::MAX_stubs_size);
  1809   if (base == NULL)  return;  // CodeBuffer::expand failed
  1810   // static stub relocation stores the instruction address of the call
  1811   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM64);
  1812   // static stub relocation also tags the methodOop in the code-stream.
  1813   __ movoop(rbx, (jobject) NULL);  // method is zapped till fixup time
  1814   // This is recognized as unresolved by relocs/nativeinst/ic code
  1815   __ jump(RuntimeAddress(__ pc()));
  1817   // Update current stubs pointer and restore code_end.
  1818   __ end_a_stub();
  1821 // size of call stub, compiled java to interpretor
  1822 uint size_java_to_interp()
  1824   return 15;  // movq (1+1+8); jmp (1+4)
  1827 // relocation entries for call stub, compiled java to interpretor
  1828 uint reloc_java_to_interp()
  1830   return 4; // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1833 //=============================================================================
  1834 #ifndef PRODUCT
  1835 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
  1837   if (UseCompressedOops) {
  1838     st->print_cr("movl    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes() #%d]\t", oopDesc::klass_offset_in_bytes());
  1839     if (Universe::narrow_oop_shift() != 0) {
  1840       st->print_cr("leaq    rscratch1, [r12_heapbase, r, Address::times_8, 0]");
  1842     st->print_cr("cmpq    rax, rscratch1\t # Inline cache check");
  1843   } else {
  1844     st->print_cr("cmpq    rax, [j_rarg0 + oopDesc::klass_offset_in_bytes() #%d]\t"
  1845                  "# Inline cache check", oopDesc::klass_offset_in_bytes());
  1847   st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
  1848   st->print_cr("\tnop");
  1849   if (!OptoBreakpoint) {
  1850     st->print_cr("\tnop");
  1853 #endif
  1855 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
  1857   MacroAssembler masm(&cbuf);
  1858 #ifdef ASSERT
  1859   uint code_size = cbuf.code_size();
  1860 #endif
  1861   if (UseCompressedOops) {
  1862     masm.load_klass(rscratch1, j_rarg0);
  1863     masm.cmpptr(rax, rscratch1);
  1864   } else {
  1865     masm.cmpptr(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
  1868   masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1870   /* WARNING these NOPs are critical so that verified entry point is properly
  1871      aligned for patching by NativeJump::patch_verified_entry() */
  1872   int nops_cnt = 1;
  1873   if (!OptoBreakpoint) {
  1874     // Leave space for int3
  1875      nops_cnt += 1;
  1877   if (UseCompressedOops) {
  1878     // ??? divisible by 4 is aligned?
  1879     nops_cnt += 1;
  1881   masm.nop(nops_cnt);
  1883   assert(cbuf.code_size() - code_size == size(ra_),
  1884          "checking code size of inline cache node");
  1887 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
  1889   if (UseCompressedOops) {
  1890     if (Universe::narrow_oop_shift() == 0) {
  1891       return OptoBreakpoint ? 15 : 16;
  1892     } else {
  1893       return OptoBreakpoint ? 19 : 20;
  1895   } else {
  1896     return OptoBreakpoint ? 11 : 12;
  1901 //=============================================================================
  1902 uint size_exception_handler()
  1904   // NativeCall instruction size is the same as NativeJump.
  1905   // Note that this value is also credited (in output.cpp) to
  1906   // the size of the code section.
  1907   return NativeJump::instruction_size;
  1910 // Emit exception handler code.
  1911 int emit_exception_handler(CodeBuffer& cbuf)
  1914   // Note that the code buffer's inst_mark is always relative to insts.
  1915   // That's why we must use the macroassembler to generate a handler.
  1916   MacroAssembler _masm(&cbuf);
  1917   address base =
  1918   __ start_a_stub(size_exception_handler());
  1919   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1920   int offset = __ offset();
  1921   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
  1922   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1923   __ end_a_stub();
  1924   return offset;
  1927 uint size_deopt_handler()
  1929   // three 5 byte instructions
  1930   return 15;
  1933 // Emit deopt handler code.
  1934 int emit_deopt_handler(CodeBuffer& cbuf)
  1937   // Note that the code buffer's inst_mark is always relative to insts.
  1938   // That's why we must use the macroassembler to generate a handler.
  1939   MacroAssembler _masm(&cbuf);
  1940   address base =
  1941   __ start_a_stub(size_deopt_handler());
  1942   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1943   int offset = __ offset();
  1944   address the_pc = (address) __ pc();
  1945   Label next;
  1946   // push a "the_pc" on the stack without destroying any registers
  1947   // as they all may be live.
  1949   // push address of "next"
  1950   __ call(next, relocInfo::none); // reloc none is fine since it is a disp32
  1951   __ bind(next);
  1952   // adjust it so it matches "the_pc"
  1953   __ subptr(Address(rsp, 0), __ offset() - offset);
  1954   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1955   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1956   __ end_a_stub();
  1957   return offset;
  1960 static void emit_double_constant(CodeBuffer& cbuf, double x) {
  1961   int mark = cbuf.insts()->mark_off();
  1962   MacroAssembler _masm(&cbuf);
  1963   address double_address = __ double_constant(x);
  1964   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1965   emit_d32_reloc(cbuf,
  1966                  (int) (double_address - cbuf.code_end() - 4),
  1967                  internal_word_Relocation::spec(double_address),
  1968                  RELOC_DISP32);
  1971 static void emit_float_constant(CodeBuffer& cbuf, float x) {
  1972   int mark = cbuf.insts()->mark_off();
  1973   MacroAssembler _masm(&cbuf);
  1974   address float_address = __ float_constant(x);
  1975   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1976   emit_d32_reloc(cbuf,
  1977                  (int) (float_address - cbuf.code_end() - 4),
  1978                  internal_word_Relocation::spec(float_address),
  1979                  RELOC_DISP32);
  1983 int Matcher::regnum_to_fpu_offset(int regnum)
  1985   return regnum - 32; // The FP registers are in the second chunk
  1988 // This is UltraSparc specific, true just means we have fast l2f conversion
  1989 const bool Matcher::convL2FSupported(void) {
  1990   return true;
  1993 // Vector width in bytes
  1994 const uint Matcher::vector_width_in_bytes(void) {
  1995   return 8;
  1998 // Vector ideal reg
  1999 const uint Matcher::vector_ideal_reg(void) {
  2000   return Op_RegD;
  2003 // Is this branch offset short enough that a short branch can be used?
  2004 //
  2005 // NOTE: If the platform does not provide any short branch variants, then
  2006 //       this method should return false for offset 0.
  2007 bool Matcher::is_short_branch_offset(int rule, int offset) {
  2008   // the short version of jmpConUCF2 contains multiple branches,
  2009   // making the reach slightly less
  2010   if (rule == jmpConUCF2_rule)
  2011     return (-126 <= offset && offset <= 125);
  2012   return (-128 <= offset && offset <= 127);
  2015 const bool Matcher::isSimpleConstant64(jlong value) {
  2016   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  2017   //return value == (int) value;  // Cf. storeImmL and immL32.
  2019   // Probably always true, even if a temp register is required.
  2020   return true;
  2023 // The ecx parameter to rep stosq for the ClearArray node is in words.
  2024 const bool Matcher::init_array_count_is_in_bytes = false;
  2026 // Threshold size for cleararray.
  2027 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  2029 // Should the Matcher clone shifts on addressing modes, expecting them
  2030 // to be subsumed into complex addressing expressions or compute them
  2031 // into registers?  True for Intel but false for most RISCs
  2032 const bool Matcher::clone_shift_expressions = true;
  2034 // Is it better to copy float constants, or load them directly from
  2035 // memory?  Intel can load a float constant from a direct address,
  2036 // requiring no extra registers.  Most RISCs will have to materialize
  2037 // an address into a register first, so they would do better to copy
  2038 // the constant from stack.
  2039 const bool Matcher::rematerialize_float_constants = true; // XXX
  2041 // If CPU can load and store mis-aligned doubles directly then no
  2042 // fixup is needed.  Else we split the double into 2 integer pieces
  2043 // and move it piece-by-piece.  Only happens when passing doubles into
  2044 // C code as the Java calling convention forces doubles to be aligned.
  2045 const bool Matcher::misaligned_doubles_ok = true;
  2047 // No-op on amd64
  2048 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
  2050 // Advertise here if the CPU requires explicit rounding operations to
  2051 // implement the UseStrictFP mode.
  2052 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  2054 // Do floats take an entire double register or just half?
  2055 const bool Matcher::float_in_double = true;
  2056 // Do ints take an entire long register or just half?
  2057 const bool Matcher::int_in_long = true;
  2059 // Return whether or not this register is ever used as an argument.
  2060 // This function is used on startup to build the trampoline stubs in
  2061 // generateOptoStub.  Registers not mentioned will be killed by the VM
  2062 // call in the trampoline, and arguments in those registers not be
  2063 // available to the callee.
  2064 bool Matcher::can_be_java_arg(int reg)
  2066   return
  2067     reg ==  RDI_num || reg ==  RDI_H_num ||
  2068     reg ==  RSI_num || reg ==  RSI_H_num ||
  2069     reg ==  RDX_num || reg ==  RDX_H_num ||
  2070     reg ==  RCX_num || reg ==  RCX_H_num ||
  2071     reg ==   R8_num || reg ==   R8_H_num ||
  2072     reg ==   R9_num || reg ==   R9_H_num ||
  2073     reg ==  R12_num || reg ==  R12_H_num ||
  2074     reg == XMM0_num || reg == XMM0_H_num ||
  2075     reg == XMM1_num || reg == XMM1_H_num ||
  2076     reg == XMM2_num || reg == XMM2_H_num ||
  2077     reg == XMM3_num || reg == XMM3_H_num ||
  2078     reg == XMM4_num || reg == XMM4_H_num ||
  2079     reg == XMM5_num || reg == XMM5_H_num ||
  2080     reg == XMM6_num || reg == XMM6_H_num ||
  2081     reg == XMM7_num || reg == XMM7_H_num;
  2084 bool Matcher::is_spillable_arg(int reg)
  2086   return can_be_java_arg(reg);
  2089 // Register for DIVI projection of divmodI
  2090 RegMask Matcher::divI_proj_mask() {
  2091   return INT_RAX_REG_mask;
  2094 // Register for MODI projection of divmodI
  2095 RegMask Matcher::modI_proj_mask() {
  2096   return INT_RDX_REG_mask;
  2099 // Register for DIVL projection of divmodL
  2100 RegMask Matcher::divL_proj_mask() {
  2101   return LONG_RAX_REG_mask;
  2104 // Register for MODL projection of divmodL
  2105 RegMask Matcher::modL_proj_mask() {
  2106   return LONG_RDX_REG_mask;
  2109 static Address build_address(int b, int i, int s, int d) {
  2110   Register index = as_Register(i);
  2111   Address::ScaleFactor scale = (Address::ScaleFactor)s;
  2112   if (index == rsp) {
  2113     index = noreg;
  2114     scale = Address::no_scale;
  2116   Address addr(as_Register(b), index, scale, d);
  2117   return addr;
  2120 %}
  2122 //----------ENCODING BLOCK-----------------------------------------------------
  2123 // This block specifies the encoding classes used by the compiler to
  2124 // output byte streams.  Encoding classes are parameterized macros
  2125 // used by Machine Instruction Nodes in order to generate the bit
  2126 // encoding of the instruction.  Operands specify their base encoding
  2127 // interface with the interface keyword.  There are currently
  2128 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
  2129 // COND_INTER.  REG_INTER causes an operand to generate a function
  2130 // which returns its register number when queried.  CONST_INTER causes
  2131 // an operand to generate a function which returns the value of the
  2132 // constant when queried.  MEMORY_INTER causes an operand to generate
  2133 // four functions which return the Base Register, the Index Register,
  2134 // the Scale Value, and the Offset Value of the operand when queried.
  2135 // COND_INTER causes an operand to generate six functions which return
  2136 // the encoding code (ie - encoding bits for the instruction)
  2137 // associated with each basic boolean condition for a conditional
  2138 // instruction.
  2139 //
  2140 // Instructions specify two basic values for encoding.  Again, a
  2141 // function is available to check if the constant displacement is an
  2142 // oop. They use the ins_encode keyword to specify their encoding
  2143 // classes (which must be a sequence of enc_class names, and their
  2144 // parameters, specified in the encoding block), and they use the
  2145 // opcode keyword to specify, in order, their primary, secondary, and
  2146 // tertiary opcode.  Only the opcode sections which a particular
  2147 // instruction needs for encoding need to be specified.
  2148 encode %{
  2149   // Build emit functions for each basic byte or larger field in the
  2150   // intel encoding scheme (opcode, rm, sib, immediate), and call them
  2151   // from C++ code in the enc_class source block.  Emit functions will
  2152   // live in the main source block for now.  In future, we can
  2153   // generalize this by adding a syntax that specifies the sizes of
  2154   // fields in an order, so that the adlc can build the emit functions
  2155   // automagically
  2157   // Emit primary opcode
  2158   enc_class OpcP
  2159   %{
  2160     emit_opcode(cbuf, $primary);
  2161   %}
  2163   // Emit secondary opcode
  2164   enc_class OpcS
  2165   %{
  2166     emit_opcode(cbuf, $secondary);
  2167   %}
  2169   // Emit tertiary opcode
  2170   enc_class OpcT
  2171   %{
  2172     emit_opcode(cbuf, $tertiary);
  2173   %}
  2175   // Emit opcode directly
  2176   enc_class Opcode(immI d8)
  2177   %{
  2178     emit_opcode(cbuf, $d8$$constant);
  2179   %}
  2181   // Emit size prefix
  2182   enc_class SizePrefix
  2183   %{
  2184     emit_opcode(cbuf, 0x66);
  2185   %}
  2187   enc_class reg(rRegI reg)
  2188   %{
  2189     emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
  2190   %}
  2192   enc_class reg_reg(rRegI dst, rRegI src)
  2193   %{
  2194     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2195   %}
  2197   enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
  2198   %{
  2199     emit_opcode(cbuf, $opcode$$constant);
  2200     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2201   %}
  2203   enc_class cmpfp_fixup()
  2204   %{
  2205     // jnp,s exit
  2206     emit_opcode(cbuf, 0x7B);
  2207     emit_d8(cbuf, 0x0A);
  2209     // pushfq
  2210     emit_opcode(cbuf, 0x9C);
  2212     // andq $0xffffff2b, (%rsp)
  2213     emit_opcode(cbuf, Assembler::REX_W);
  2214     emit_opcode(cbuf, 0x81);
  2215     emit_opcode(cbuf, 0x24);
  2216     emit_opcode(cbuf, 0x24);
  2217     emit_d32(cbuf, 0xffffff2b);
  2219     // popfq
  2220     emit_opcode(cbuf, 0x9D);
  2222     // nop (target for branch to avoid branch to branch)
  2223     emit_opcode(cbuf, 0x90);
  2224   %}
  2226   enc_class cmpfp3(rRegI dst)
  2227   %{
  2228     int dstenc = $dst$$reg;
  2230     // movl $dst, -1
  2231     if (dstenc >= 8) {
  2232       emit_opcode(cbuf, Assembler::REX_B);
  2234     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
  2235     emit_d32(cbuf, -1);
  2237     // jp,s done
  2238     emit_opcode(cbuf, 0x7A);
  2239     emit_d8(cbuf, dstenc < 4 ? 0x08 : 0x0A);
  2241     // jb,s done
  2242     emit_opcode(cbuf, 0x72);
  2243     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
  2245     // setne $dst
  2246     if (dstenc >= 4) {
  2247       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
  2249     emit_opcode(cbuf, 0x0F);
  2250     emit_opcode(cbuf, 0x95);
  2251     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
  2253     // movzbl $dst, $dst
  2254     if (dstenc >= 4) {
  2255       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
  2257     emit_opcode(cbuf, 0x0F);
  2258     emit_opcode(cbuf, 0xB6);
  2259     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
  2260   %}
  2262   enc_class cdql_enc(no_rax_rdx_RegI div)
  2263   %{
  2264     // Full implementation of Java idiv and irem; checks for
  2265     // special case as described in JVM spec., p.243 & p.271.
  2266     //
  2267     //         normal case                           special case
  2268     //
  2269     // input : rax: dividend                         min_int
  2270     //         reg: divisor                          -1
  2271     //
  2272     // output: rax: quotient  (= rax idiv reg)       min_int
  2273     //         rdx: remainder (= rax irem reg)       0
  2274     //
  2275     //  Code sequnce:
  2276     //
  2277     //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
  2278     //    5:   75 07/08                jne    e <normal>
  2279     //    7:   33 d2                   xor    %edx,%edx
  2280     //  [div >= 8 -> offset + 1]
  2281     //  [REX_B]
  2282     //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
  2283     //    c:   74 03/04                je     11 <done>
  2284     // 000000000000000e <normal>:
  2285     //    e:   99                      cltd
  2286     //  [div >= 8 -> offset + 1]
  2287     //  [REX_B]
  2288     //    f:   f7 f9                   idiv   $div
  2289     // 0000000000000011 <done>:
  2291     // cmp    $0x80000000,%eax
  2292     emit_opcode(cbuf, 0x3d);
  2293     emit_d8(cbuf, 0x00);
  2294     emit_d8(cbuf, 0x00);
  2295     emit_d8(cbuf, 0x00);
  2296     emit_d8(cbuf, 0x80);
  2298     // jne    e <normal>
  2299     emit_opcode(cbuf, 0x75);
  2300     emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
  2302     // xor    %edx,%edx
  2303     emit_opcode(cbuf, 0x33);
  2304     emit_d8(cbuf, 0xD2);
  2306     // cmp    $0xffffffffffffffff,%ecx
  2307     if ($div$$reg >= 8) {
  2308       emit_opcode(cbuf, Assembler::REX_B);
  2310     emit_opcode(cbuf, 0x83);
  2311     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
  2312     emit_d8(cbuf, 0xFF);
  2314     // je     11 <done>
  2315     emit_opcode(cbuf, 0x74);
  2316     emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
  2318     // <normal>
  2319     // cltd
  2320     emit_opcode(cbuf, 0x99);
  2322     // idivl (note: must be emitted by the user of this rule)
  2323     // <done>
  2324   %}
  2326   enc_class cdqq_enc(no_rax_rdx_RegL div)
  2327   %{
  2328     // Full implementation of Java ldiv and lrem; checks for
  2329     // special case as described in JVM spec., p.243 & p.271.
  2330     //
  2331     //         normal case                           special case
  2332     //
  2333     // input : rax: dividend                         min_long
  2334     //         reg: divisor                          -1
  2335     //
  2336     // output: rax: quotient  (= rax idiv reg)       min_long
  2337     //         rdx: remainder (= rax irem reg)       0
  2338     //
  2339     //  Code sequnce:
  2340     //
  2341     //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
  2342     //    7:   00 00 80
  2343     //    a:   48 39 d0                cmp    %rdx,%rax
  2344     //    d:   75 08                   jne    17 <normal>
  2345     //    f:   33 d2                   xor    %edx,%edx
  2346     //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
  2347     //   15:   74 05                   je     1c <done>
  2348     // 0000000000000017 <normal>:
  2349     //   17:   48 99                   cqto
  2350     //   19:   48 f7 f9                idiv   $div
  2351     // 000000000000001c <done>:
  2353     // mov    $0x8000000000000000,%rdx
  2354     emit_opcode(cbuf, Assembler::REX_W);
  2355     emit_opcode(cbuf, 0xBA);
  2356     emit_d8(cbuf, 0x00);
  2357     emit_d8(cbuf, 0x00);
  2358     emit_d8(cbuf, 0x00);
  2359     emit_d8(cbuf, 0x00);
  2360     emit_d8(cbuf, 0x00);
  2361     emit_d8(cbuf, 0x00);
  2362     emit_d8(cbuf, 0x00);
  2363     emit_d8(cbuf, 0x80);
  2365     // cmp    %rdx,%rax
  2366     emit_opcode(cbuf, Assembler::REX_W);
  2367     emit_opcode(cbuf, 0x39);
  2368     emit_d8(cbuf, 0xD0);
  2370     // jne    17 <normal>
  2371     emit_opcode(cbuf, 0x75);
  2372     emit_d8(cbuf, 0x08);
  2374     // xor    %edx,%edx
  2375     emit_opcode(cbuf, 0x33);
  2376     emit_d8(cbuf, 0xD2);
  2378     // cmp    $0xffffffffffffffff,$div
  2379     emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
  2380     emit_opcode(cbuf, 0x83);
  2381     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
  2382     emit_d8(cbuf, 0xFF);
  2384     // je     1e <done>
  2385     emit_opcode(cbuf, 0x74);
  2386     emit_d8(cbuf, 0x05);
  2388     // <normal>
  2389     // cqto
  2390     emit_opcode(cbuf, Assembler::REX_W);
  2391     emit_opcode(cbuf, 0x99);
  2393     // idivq (note: must be emitted by the user of this rule)
  2394     // <done>
  2395   %}
  2397   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  2398   enc_class OpcSE(immI imm)
  2399   %{
  2400     // Emit primary opcode and set sign-extend bit
  2401     // Check for 8-bit immediate, and set sign extend bit in opcode
  2402     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2403       emit_opcode(cbuf, $primary | 0x02);
  2404     } else {
  2405       // 32-bit immediate
  2406       emit_opcode(cbuf, $primary);
  2408   %}
  2410   enc_class OpcSErm(rRegI dst, immI imm)
  2411   %{
  2412     // OpcSEr/m
  2413     int dstenc = $dst$$reg;
  2414     if (dstenc >= 8) {
  2415       emit_opcode(cbuf, Assembler::REX_B);
  2416       dstenc -= 8;
  2418     // Emit primary opcode and set sign-extend bit
  2419     // Check for 8-bit immediate, and set sign extend bit in opcode
  2420     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2421       emit_opcode(cbuf, $primary | 0x02);
  2422     } else {
  2423       // 32-bit immediate
  2424       emit_opcode(cbuf, $primary);
  2426     // Emit r/m byte with secondary opcode, after primary opcode.
  2427     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2428   %}
  2430   enc_class OpcSErm_wide(rRegL dst, immI imm)
  2431   %{
  2432     // OpcSEr/m
  2433     int dstenc = $dst$$reg;
  2434     if (dstenc < 8) {
  2435       emit_opcode(cbuf, Assembler::REX_W);
  2436     } else {
  2437       emit_opcode(cbuf, Assembler::REX_WB);
  2438       dstenc -= 8;
  2440     // Emit primary opcode and set sign-extend bit
  2441     // Check for 8-bit immediate, and set sign extend bit in opcode
  2442     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2443       emit_opcode(cbuf, $primary | 0x02);
  2444     } else {
  2445       // 32-bit immediate
  2446       emit_opcode(cbuf, $primary);
  2448     // Emit r/m byte with secondary opcode, after primary opcode.
  2449     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2450   %}
  2452   enc_class Con8or32(immI imm)
  2453   %{
  2454     // Check for 8-bit immediate, and set sign extend bit in opcode
  2455     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2456       $$$emit8$imm$$constant;
  2457     } else {
  2458       // 32-bit immediate
  2459       $$$emit32$imm$$constant;
  2461   %}
  2463   enc_class Lbl(label labl)
  2464   %{
  2465     // JMP, CALL
  2466     Label* l = $labl$$label;
  2467     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0);
  2468   %}
  2470   enc_class LblShort(label labl)
  2471   %{
  2472     // JMP, CALL
  2473     Label* l = $labl$$label;
  2474     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
  2475     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  2476     emit_d8(cbuf, disp);
  2477   %}
  2479   enc_class opc2_reg(rRegI dst)
  2480   %{
  2481     // BSWAP
  2482     emit_cc(cbuf, $secondary, $dst$$reg);
  2483   %}
  2485   enc_class opc3_reg(rRegI dst)
  2486   %{
  2487     // BSWAP
  2488     emit_cc(cbuf, $tertiary, $dst$$reg);
  2489   %}
  2491   enc_class reg_opc(rRegI div)
  2492   %{
  2493     // INC, DEC, IDIV, IMOD, JMP indirect, ...
  2494     emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
  2495   %}
  2497   enc_class Jcc(cmpOp cop, label labl)
  2498   %{
  2499     // JCC
  2500     Label* l = $labl$$label;
  2501     $$$emit8$primary;
  2502     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  2503     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0);
  2504   %}
  2506   enc_class JccShort (cmpOp cop, label labl)
  2507   %{
  2508   // JCC
  2509     Label *l = $labl$$label;
  2510     emit_cc(cbuf, $primary, $cop$$cmpcode);
  2511     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
  2512     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  2513     emit_d8(cbuf, disp);
  2514   %}
  2516   enc_class enc_cmov(cmpOp cop)
  2517   %{
  2518     // CMOV
  2519     $$$emit8$primary;
  2520     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  2521   %}
  2523   enc_class enc_cmovf_branch(cmpOp cop, regF dst, regF src)
  2524   %{
  2525     // Invert sense of branch from sense of cmov
  2526     emit_cc(cbuf, 0x70, $cop$$cmpcode ^ 1);
  2527     emit_d8(cbuf, ($dst$$reg < 8 && $src$$reg < 8)
  2528                   ? (UseXmmRegToRegMoveAll ? 3 : 4)
  2529                   : (UseXmmRegToRegMoveAll ? 4 : 5) ); // REX
  2530     // UseXmmRegToRegMoveAll ? movaps(dst, src) : movss(dst, src)
  2531     if (!UseXmmRegToRegMoveAll) emit_opcode(cbuf, 0xF3);
  2532     if ($dst$$reg < 8) {
  2533       if ($src$$reg >= 8) {
  2534         emit_opcode(cbuf, Assembler::REX_B);
  2536     } else {
  2537       if ($src$$reg < 8) {
  2538         emit_opcode(cbuf, Assembler::REX_R);
  2539       } else {
  2540         emit_opcode(cbuf, Assembler::REX_RB);
  2543     emit_opcode(cbuf, 0x0F);
  2544     emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  2545     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2546   %}
  2548   enc_class enc_cmovd_branch(cmpOp cop, regD dst, regD src)
  2549   %{
  2550     // Invert sense of branch from sense of cmov
  2551     emit_cc(cbuf, 0x70, $cop$$cmpcode ^ 1);
  2552     emit_d8(cbuf, $dst$$reg < 8 && $src$$reg < 8 ? 4 : 5); // REX
  2554     //  UseXmmRegToRegMoveAll ? movapd(dst, src) : movsd(dst, src)
  2555     emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x66 : 0xF2);
  2556     if ($dst$$reg < 8) {
  2557       if ($src$$reg >= 8) {
  2558         emit_opcode(cbuf, Assembler::REX_B);
  2560     } else {
  2561       if ($src$$reg < 8) {
  2562         emit_opcode(cbuf, Assembler::REX_R);
  2563       } else {
  2564         emit_opcode(cbuf, Assembler::REX_RB);
  2567     emit_opcode(cbuf, 0x0F);
  2568     emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  2569     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2570   %}
  2572   enc_class enc_PartialSubtypeCheck()
  2573   %{
  2574     Register Rrdi = as_Register(RDI_enc); // result register
  2575     Register Rrax = as_Register(RAX_enc); // super class
  2576     Register Rrcx = as_Register(RCX_enc); // killed
  2577     Register Rrsi = as_Register(RSI_enc); // sub class
  2578     Label miss;
  2579     const bool set_cond_codes = true;
  2581     MacroAssembler _masm(&cbuf);
  2582     __ check_klass_subtype_slow_path(Rrsi, Rrax, Rrcx, Rrdi,
  2583                                      NULL, &miss,
  2584                                      /*set_cond_codes:*/ true);
  2585     if ($primary) {
  2586       __ xorptr(Rrdi, Rrdi);
  2588     __ bind(miss);
  2589   %}
  2591   enc_class Java_To_Interpreter(method meth)
  2592   %{
  2593     // CALL Java_To_Interpreter
  2594     // This is the instruction starting address for relocation info.
  2595     cbuf.set_inst_mark();
  2596     $$$emit8$primary;
  2597     // CALL directly to the runtime
  2598     emit_d32_reloc(cbuf,
  2599                    (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2600                    runtime_call_Relocation::spec(),
  2601                    RELOC_DISP32);
  2602   %}
  2604   enc_class Java_Static_Call(method meth)
  2605   %{
  2606     // JAVA STATIC CALL
  2607     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
  2608     // determine who we intended to call.
  2609     cbuf.set_inst_mark();
  2610     $$$emit8$primary;
  2612     if (!_method) {
  2613       emit_d32_reloc(cbuf,
  2614                      (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2615                      runtime_call_Relocation::spec(),
  2616                      RELOC_DISP32);
  2617     } else if (_optimized_virtual) {
  2618       emit_d32_reloc(cbuf,
  2619                      (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2620                      opt_virtual_call_Relocation::spec(),
  2621                      RELOC_DISP32);
  2622     } else {
  2623       emit_d32_reloc(cbuf,
  2624                      (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2625                      static_call_Relocation::spec(),
  2626                      RELOC_DISP32);
  2628     if (_method) {
  2629       // Emit stub for static call
  2630       emit_java_to_interp(cbuf);
  2632   %}
  2634   enc_class Java_Dynamic_Call(method meth)
  2635   %{
  2636     // JAVA DYNAMIC CALL
  2637     // !!!!!
  2638     // Generate  "movq rax, -1", placeholder instruction to load oop-info
  2639     // emit_call_dynamic_prologue( cbuf );
  2640     cbuf.set_inst_mark();
  2642     // movq rax, -1
  2643     emit_opcode(cbuf, Assembler::REX_W);
  2644     emit_opcode(cbuf, 0xB8 | RAX_enc);
  2645     emit_d64_reloc(cbuf,
  2646                    (int64_t) Universe::non_oop_word(),
  2647                    oop_Relocation::spec_for_immediate(), RELOC_IMM64);
  2648     address virtual_call_oop_addr = cbuf.inst_mark();
  2649     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2650     // who we intended to call.
  2651     cbuf.set_inst_mark();
  2652     $$$emit8$primary;
  2653     emit_d32_reloc(cbuf,
  2654                    (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2655                    virtual_call_Relocation::spec(virtual_call_oop_addr),
  2656                    RELOC_DISP32);
  2657   %}
  2659   enc_class Java_Compiled_Call(method meth)
  2660   %{
  2661     // JAVA COMPILED CALL
  2662     int disp = in_bytes(methodOopDesc:: from_compiled_offset());
  2664     // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
  2665     // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
  2667     // callq *disp(%rax)
  2668     cbuf.set_inst_mark();
  2669     $$$emit8$primary;
  2670     if (disp < 0x80) {
  2671       emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
  2672       emit_d8(cbuf, disp); // Displacement
  2673     } else {
  2674       emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
  2675       emit_d32(cbuf, disp); // Displacement
  2677   %}
  2679   enc_class reg_opc_imm(rRegI dst, immI8 shift)
  2680   %{
  2681     // SAL, SAR, SHR
  2682     int dstenc = $dst$$reg;
  2683     if (dstenc >= 8) {
  2684       emit_opcode(cbuf, Assembler::REX_B);
  2685       dstenc -= 8;
  2687     $$$emit8$primary;
  2688     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2689     $$$emit8$shift$$constant;
  2690   %}
  2692   enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
  2693   %{
  2694     // SAL, SAR, SHR
  2695     int dstenc = $dst$$reg;
  2696     if (dstenc < 8) {
  2697       emit_opcode(cbuf, Assembler::REX_W);
  2698     } else {
  2699       emit_opcode(cbuf, Assembler::REX_WB);
  2700       dstenc -= 8;
  2702     $$$emit8$primary;
  2703     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2704     $$$emit8$shift$$constant;
  2705   %}
  2707   enc_class load_immI(rRegI dst, immI src)
  2708   %{
  2709     int dstenc = $dst$$reg;
  2710     if (dstenc >= 8) {
  2711       emit_opcode(cbuf, Assembler::REX_B);
  2712       dstenc -= 8;
  2714     emit_opcode(cbuf, 0xB8 | dstenc);
  2715     $$$emit32$src$$constant;
  2716   %}
  2718   enc_class load_immL(rRegL dst, immL src)
  2719   %{
  2720     int dstenc = $dst$$reg;
  2721     if (dstenc < 8) {
  2722       emit_opcode(cbuf, Assembler::REX_W);
  2723     } else {
  2724       emit_opcode(cbuf, Assembler::REX_WB);
  2725       dstenc -= 8;
  2727     emit_opcode(cbuf, 0xB8 | dstenc);
  2728     emit_d64(cbuf, $src$$constant);
  2729   %}
  2731   enc_class load_immUL32(rRegL dst, immUL32 src)
  2732   %{
  2733     // same as load_immI, but this time we care about zeroes in the high word
  2734     int dstenc = $dst$$reg;
  2735     if (dstenc >= 8) {
  2736       emit_opcode(cbuf, Assembler::REX_B);
  2737       dstenc -= 8;
  2739     emit_opcode(cbuf, 0xB8 | dstenc);
  2740     $$$emit32$src$$constant;
  2741   %}
  2743   enc_class load_immL32(rRegL dst, immL32 src)
  2744   %{
  2745     int dstenc = $dst$$reg;
  2746     if (dstenc < 8) {
  2747       emit_opcode(cbuf, Assembler::REX_W);
  2748     } else {
  2749       emit_opcode(cbuf, Assembler::REX_WB);
  2750       dstenc -= 8;
  2752     emit_opcode(cbuf, 0xC7);
  2753     emit_rm(cbuf, 0x03, 0x00, dstenc);
  2754     $$$emit32$src$$constant;
  2755   %}
  2757   enc_class load_immP31(rRegP dst, immP32 src)
  2758   %{
  2759     // same as load_immI, but this time we care about zeroes in the high word
  2760     int dstenc = $dst$$reg;
  2761     if (dstenc >= 8) {
  2762       emit_opcode(cbuf, Assembler::REX_B);
  2763       dstenc -= 8;
  2765     emit_opcode(cbuf, 0xB8 | dstenc);
  2766     $$$emit32$src$$constant;
  2767   %}
  2769   enc_class load_immP(rRegP dst, immP src)
  2770   %{
  2771     int dstenc = $dst$$reg;
  2772     if (dstenc < 8) {
  2773       emit_opcode(cbuf, Assembler::REX_W);
  2774     } else {
  2775       emit_opcode(cbuf, Assembler::REX_WB);
  2776       dstenc -= 8;
  2778     emit_opcode(cbuf, 0xB8 | dstenc);
  2779     // This next line should be generated from ADLC
  2780     if ($src->constant_is_oop()) {
  2781       emit_d64_reloc(cbuf, $src$$constant, relocInfo::oop_type, RELOC_IMM64);
  2782     } else {
  2783       emit_d64(cbuf, $src$$constant);
  2785   %}
  2787   enc_class load_immF(regF dst, immF con)
  2788   %{
  2789     // XXX reg_mem doesn't support RIP-relative addressing yet
  2790     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2791     emit_float_constant(cbuf, $con$$constant);
  2792   %}
  2794   enc_class load_immD(regD dst, immD con)
  2795   %{
  2796     // XXX reg_mem doesn't support RIP-relative addressing yet
  2797     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2798     emit_double_constant(cbuf, $con$$constant);
  2799   %}
  2801   enc_class load_conF (regF dst, immF con) %{    // Load float constant
  2802     emit_opcode(cbuf, 0xF3);
  2803     if ($dst$$reg >= 8) {
  2804       emit_opcode(cbuf, Assembler::REX_R);
  2806     emit_opcode(cbuf, 0x0F);
  2807     emit_opcode(cbuf, 0x10);
  2808     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2809     emit_float_constant(cbuf, $con$$constant);
  2810   %}
  2812   enc_class load_conD (regD dst, immD con) %{    // Load double constant
  2813     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
  2814     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2815     if ($dst$$reg >= 8) {
  2816       emit_opcode(cbuf, Assembler::REX_R);
  2818     emit_opcode(cbuf, 0x0F);
  2819     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2820     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2821     emit_double_constant(cbuf, $con$$constant);
  2822   %}
  2824   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2825   enc_class enc_copy(rRegI dst, rRegI src)
  2826   %{
  2827     encode_copy(cbuf, $dst$$reg, $src$$reg);
  2828   %}
  2830   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  2831   enc_class enc_CopyXD( RegD dst, RegD src ) %{
  2832     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  2833   %}
  2835   enc_class enc_copy_always(rRegI dst, rRegI src)
  2836   %{
  2837     int srcenc = $src$$reg;
  2838     int dstenc = $dst$$reg;
  2840     if (dstenc < 8) {
  2841       if (srcenc >= 8) {
  2842         emit_opcode(cbuf, Assembler::REX_B);
  2843         srcenc -= 8;
  2845     } else {
  2846       if (srcenc < 8) {
  2847         emit_opcode(cbuf, Assembler::REX_R);
  2848       } else {
  2849         emit_opcode(cbuf, Assembler::REX_RB);
  2850         srcenc -= 8;
  2852       dstenc -= 8;
  2855     emit_opcode(cbuf, 0x8B);
  2856     emit_rm(cbuf, 0x3, dstenc, srcenc);
  2857   %}
  2859   enc_class enc_copy_wide(rRegL dst, rRegL src)
  2860   %{
  2861     int srcenc = $src$$reg;
  2862     int dstenc = $dst$$reg;
  2864     if (dstenc != srcenc) {
  2865       if (dstenc < 8) {
  2866         if (srcenc < 8) {
  2867           emit_opcode(cbuf, Assembler::REX_W);
  2868         } else {
  2869           emit_opcode(cbuf, Assembler::REX_WB);
  2870           srcenc -= 8;
  2872       } else {
  2873         if (srcenc < 8) {
  2874           emit_opcode(cbuf, Assembler::REX_WR);
  2875         } else {
  2876           emit_opcode(cbuf, Assembler::REX_WRB);
  2877           srcenc -= 8;
  2879         dstenc -= 8;
  2881       emit_opcode(cbuf, 0x8B);
  2882       emit_rm(cbuf, 0x3, dstenc, srcenc);
  2884   %}
  2886   enc_class Con32(immI src)
  2887   %{
  2888     // Output immediate
  2889     $$$emit32$src$$constant;
  2890   %}
  2892   enc_class Con64(immL src)
  2893   %{
  2894     // Output immediate
  2895     emit_d64($src$$constant);
  2896   %}
  2898   enc_class Con32F_as_bits(immF src)
  2899   %{
  2900     // Output Float immediate bits
  2901     jfloat jf = $src$$constant;
  2902     jint jf_as_bits = jint_cast(jf);
  2903     emit_d32(cbuf, jf_as_bits);
  2904   %}
  2906   enc_class Con16(immI src)
  2907   %{
  2908     // Output immediate
  2909     $$$emit16$src$$constant;
  2910   %}
  2912   // How is this different from Con32??? XXX
  2913   enc_class Con_d32(immI src)
  2914   %{
  2915     emit_d32(cbuf,$src$$constant);
  2916   %}
  2918   enc_class conmemref (rRegP t1) %{    // Con32(storeImmI)
  2919     // Output immediate memory reference
  2920     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2921     emit_d32(cbuf, 0x00);
  2922   %}
  2924   enc_class jump_enc(rRegL switch_val, rRegI dest) %{
  2925     MacroAssembler masm(&cbuf);
  2927     Register switch_reg = as_Register($switch_val$$reg);
  2928     Register dest_reg   = as_Register($dest$$reg);
  2929     address table_base  = masm.address_table_constant(_index2label);
  2931     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
  2932     // to do that and the compiler is using that register as one it can allocate.
  2933     // So we build it all by hand.
  2934     // Address index(noreg, switch_reg, Address::times_1);
  2935     // ArrayAddress dispatch(table, index);
  2937     Address dispatch(dest_reg, switch_reg, Address::times_1);
  2939     masm.lea(dest_reg, InternalAddress(table_base));
  2940     masm.jmp(dispatch);
  2941   %}
  2943   enc_class jump_enc_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
  2944     MacroAssembler masm(&cbuf);
  2946     Register switch_reg = as_Register($switch_val$$reg);
  2947     Register dest_reg   = as_Register($dest$$reg);
  2948     address table_base  = masm.address_table_constant(_index2label);
  2950     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
  2951     // to do that and the compiler is using that register as one it can allocate.
  2952     // So we build it all by hand.
  2953     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant, (int)$offset$$constant);
  2954     // ArrayAddress dispatch(table, index);
  2956     Address dispatch(dest_reg, switch_reg, (Address::ScaleFactor)$shift$$constant, (int)$offset$$constant);
  2958     masm.lea(dest_reg, InternalAddress(table_base));
  2959     masm.jmp(dispatch);
  2960   %}
  2962   enc_class jump_enc_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
  2963     MacroAssembler masm(&cbuf);
  2965     Register switch_reg = as_Register($switch_val$$reg);
  2966     Register dest_reg   = as_Register($dest$$reg);
  2967     address table_base  = masm.address_table_constant(_index2label);
  2969     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
  2970     // to do that and the compiler is using that register as one it can allocate.
  2971     // So we build it all by hand.
  2972     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
  2973     // ArrayAddress dispatch(table, index);
  2975     Address dispatch(dest_reg, switch_reg, (Address::ScaleFactor)$shift$$constant);
  2976     masm.lea(dest_reg, InternalAddress(table_base));
  2977     masm.jmp(dispatch);
  2979   %}
  2981   enc_class lock_prefix()
  2982   %{
  2983     if (os::is_MP()) {
  2984       emit_opcode(cbuf, 0xF0); // lock
  2986   %}
  2988   enc_class REX_mem(memory mem)
  2989   %{
  2990     if ($mem$$base >= 8) {
  2991       if ($mem$$index < 8) {
  2992         emit_opcode(cbuf, Assembler::REX_B);
  2993       } else {
  2994         emit_opcode(cbuf, Assembler::REX_XB);
  2996     } else {
  2997       if ($mem$$index >= 8) {
  2998         emit_opcode(cbuf, Assembler::REX_X);
  3001   %}
  3003   enc_class REX_mem_wide(memory mem)
  3004   %{
  3005     if ($mem$$base >= 8) {
  3006       if ($mem$$index < 8) {
  3007         emit_opcode(cbuf, Assembler::REX_WB);
  3008       } else {
  3009         emit_opcode(cbuf, Assembler::REX_WXB);
  3011     } else {
  3012       if ($mem$$index < 8) {
  3013         emit_opcode(cbuf, Assembler::REX_W);
  3014       } else {
  3015         emit_opcode(cbuf, Assembler::REX_WX);
  3018   %}
  3020   // for byte regs
  3021   enc_class REX_breg(rRegI reg)
  3022   %{
  3023     if ($reg$$reg >= 4) {
  3024       emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
  3026   %}
  3028   // for byte regs
  3029   enc_class REX_reg_breg(rRegI dst, rRegI src)
  3030   %{
  3031     if ($dst$$reg < 8) {
  3032       if ($src$$reg >= 4) {
  3033         emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
  3035     } else {
  3036       if ($src$$reg < 8) {
  3037         emit_opcode(cbuf, Assembler::REX_R);
  3038       } else {
  3039         emit_opcode(cbuf, Assembler::REX_RB);
  3042   %}
  3044   // for byte regs
  3045   enc_class REX_breg_mem(rRegI reg, memory mem)
  3046   %{
  3047     if ($reg$$reg < 8) {
  3048       if ($mem$$base < 8) {
  3049         if ($mem$$index >= 8) {
  3050           emit_opcode(cbuf, Assembler::REX_X);
  3051         } else if ($reg$$reg >= 4) {
  3052           emit_opcode(cbuf, Assembler::REX);
  3054       } else {
  3055         if ($mem$$index < 8) {
  3056           emit_opcode(cbuf, Assembler::REX_B);
  3057         } else {
  3058           emit_opcode(cbuf, Assembler::REX_XB);
  3061     } else {
  3062       if ($mem$$base < 8) {
  3063         if ($mem$$index < 8) {
  3064           emit_opcode(cbuf, Assembler::REX_R);
  3065         } else {
  3066           emit_opcode(cbuf, Assembler::REX_RX);
  3068       } else {
  3069         if ($mem$$index < 8) {
  3070           emit_opcode(cbuf, Assembler::REX_RB);
  3071         } else {
  3072           emit_opcode(cbuf, Assembler::REX_RXB);
  3076   %}
  3078   enc_class REX_reg(rRegI reg)
  3079   %{
  3080     if ($reg$$reg >= 8) {
  3081       emit_opcode(cbuf, Assembler::REX_B);
  3083   %}
  3085   enc_class REX_reg_wide(rRegI reg)
  3086   %{
  3087     if ($reg$$reg < 8) {
  3088       emit_opcode(cbuf, Assembler::REX_W);
  3089     } else {
  3090       emit_opcode(cbuf, Assembler::REX_WB);
  3092   %}
  3094   enc_class REX_reg_reg(rRegI dst, rRegI src)
  3095   %{
  3096     if ($dst$$reg < 8) {
  3097       if ($src$$reg >= 8) {
  3098         emit_opcode(cbuf, Assembler::REX_B);
  3100     } else {
  3101       if ($src$$reg < 8) {
  3102         emit_opcode(cbuf, Assembler::REX_R);
  3103       } else {
  3104         emit_opcode(cbuf, Assembler::REX_RB);
  3107   %}
  3109   enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
  3110   %{
  3111     if ($dst$$reg < 8) {
  3112       if ($src$$reg < 8) {
  3113         emit_opcode(cbuf, Assembler::REX_W);
  3114       } else {
  3115         emit_opcode(cbuf, Assembler::REX_WB);
  3117     } else {
  3118       if ($src$$reg < 8) {
  3119         emit_opcode(cbuf, Assembler::REX_WR);
  3120       } else {
  3121         emit_opcode(cbuf, Assembler::REX_WRB);
  3124   %}
  3126   enc_class REX_reg_mem(rRegI reg, memory mem)
  3127   %{
  3128     if ($reg$$reg < 8) {
  3129       if ($mem$$base < 8) {
  3130         if ($mem$$index >= 8) {
  3131           emit_opcode(cbuf, Assembler::REX_X);
  3133       } else {
  3134         if ($mem$$index < 8) {
  3135           emit_opcode(cbuf, Assembler::REX_B);
  3136         } else {
  3137           emit_opcode(cbuf, Assembler::REX_XB);
  3140     } else {
  3141       if ($mem$$base < 8) {
  3142         if ($mem$$index < 8) {
  3143           emit_opcode(cbuf, Assembler::REX_R);
  3144         } else {
  3145           emit_opcode(cbuf, Assembler::REX_RX);
  3147       } else {
  3148         if ($mem$$index < 8) {
  3149           emit_opcode(cbuf, Assembler::REX_RB);
  3150         } else {
  3151           emit_opcode(cbuf, Assembler::REX_RXB);
  3155   %}
  3157   enc_class REX_reg_mem_wide(rRegL reg, memory mem)
  3158   %{
  3159     if ($reg$$reg < 8) {
  3160       if ($mem$$base < 8) {
  3161         if ($mem$$index < 8) {
  3162           emit_opcode(cbuf, Assembler::REX_W);
  3163         } else {
  3164           emit_opcode(cbuf, Assembler::REX_WX);
  3166       } else {
  3167         if ($mem$$index < 8) {
  3168           emit_opcode(cbuf, Assembler::REX_WB);
  3169         } else {
  3170           emit_opcode(cbuf, Assembler::REX_WXB);
  3173     } else {
  3174       if ($mem$$base < 8) {
  3175         if ($mem$$index < 8) {
  3176           emit_opcode(cbuf, Assembler::REX_WR);
  3177         } else {
  3178           emit_opcode(cbuf, Assembler::REX_WRX);
  3180       } else {
  3181         if ($mem$$index < 8) {
  3182           emit_opcode(cbuf, Assembler::REX_WRB);
  3183         } else {
  3184           emit_opcode(cbuf, Assembler::REX_WRXB);
  3188   %}
  3190   enc_class reg_mem(rRegI ereg, memory mem)
  3191   %{
  3192     // High registers handle in encode_RegMem
  3193     int reg = $ereg$$reg;
  3194     int base = $mem$$base;
  3195     int index = $mem$$index;
  3196     int scale = $mem$$scale;
  3197     int disp = $mem$$disp;
  3198     bool disp_is_oop = $mem->disp_is_oop();
  3200     encode_RegMem(cbuf, reg, base, index, scale, disp, disp_is_oop);
  3201   %}
  3203   enc_class RM_opc_mem(immI rm_opcode, memory mem)
  3204   %{
  3205     int rm_byte_opcode = $rm_opcode$$constant;
  3207     // High registers handle in encode_RegMem
  3208     int base = $mem$$base;
  3209     int index = $mem$$index;
  3210     int scale = $mem$$scale;
  3211     int displace = $mem$$disp;
  3213     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when
  3214                                             // working with static
  3215                                             // globals
  3216     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
  3217                   disp_is_oop);
  3218   %}
  3220   enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
  3221   %{
  3222     int reg_encoding = $dst$$reg;
  3223     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  3224     int index        = 0x04;            // 0x04 indicates no index
  3225     int scale        = 0x00;            // 0x00 indicates no scale
  3226     int displace     = $src1$$constant; // 0x00 indicates no displacement
  3227     bool disp_is_oop = false;
  3228     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
  3229                   disp_is_oop);
  3230   %}
  3232   enc_class neg_reg(rRegI dst)
  3233   %{
  3234     int dstenc = $dst$$reg;
  3235     if (dstenc >= 8) {
  3236       emit_opcode(cbuf, Assembler::REX_B);
  3237       dstenc -= 8;
  3239     // NEG $dst
  3240     emit_opcode(cbuf, 0xF7);
  3241     emit_rm(cbuf, 0x3, 0x03, dstenc);
  3242   %}
  3244   enc_class neg_reg_wide(rRegI dst)
  3245   %{
  3246     int dstenc = $dst$$reg;
  3247     if (dstenc < 8) {
  3248       emit_opcode(cbuf, Assembler::REX_W);
  3249     } else {
  3250       emit_opcode(cbuf, Assembler::REX_WB);
  3251       dstenc -= 8;
  3253     // NEG $dst
  3254     emit_opcode(cbuf, 0xF7);
  3255     emit_rm(cbuf, 0x3, 0x03, dstenc);
  3256   %}
  3258   enc_class setLT_reg(rRegI dst)
  3259   %{
  3260     int dstenc = $dst$$reg;
  3261     if (dstenc >= 8) {
  3262       emit_opcode(cbuf, Assembler::REX_B);
  3263       dstenc -= 8;
  3264     } else if (dstenc >= 4) {
  3265       emit_opcode(cbuf, Assembler::REX);
  3267     // SETLT $dst
  3268     emit_opcode(cbuf, 0x0F);
  3269     emit_opcode(cbuf, 0x9C);
  3270     emit_rm(cbuf, 0x3, 0x0, dstenc);
  3271   %}
  3273   enc_class setNZ_reg(rRegI dst)
  3274   %{
  3275     int dstenc = $dst$$reg;
  3276     if (dstenc >= 8) {
  3277       emit_opcode(cbuf, Assembler::REX_B);
  3278       dstenc -= 8;
  3279     } else if (dstenc >= 4) {
  3280       emit_opcode(cbuf, Assembler::REX);
  3282     // SETNZ $dst
  3283     emit_opcode(cbuf, 0x0F);
  3284     emit_opcode(cbuf, 0x95);
  3285     emit_rm(cbuf, 0x3, 0x0, dstenc);
  3286   %}
  3288   enc_class enc_cmpLTP(no_rcx_RegI p, no_rcx_RegI q, no_rcx_RegI y,
  3289                        rcx_RegI tmp)
  3290   %{
  3291     // cadd_cmpLT
  3293     int tmpReg = $tmp$$reg;
  3295     int penc = $p$$reg;
  3296     int qenc = $q$$reg;
  3297     int yenc = $y$$reg;
  3299     // subl $p,$q
  3300     if (penc < 8) {
  3301       if (qenc >= 8) {
  3302         emit_opcode(cbuf, Assembler::REX_B);
  3304     } else {
  3305       if (qenc < 8) {
  3306         emit_opcode(cbuf, Assembler::REX_R);
  3307       } else {
  3308         emit_opcode(cbuf, Assembler::REX_RB);
  3311     emit_opcode(cbuf, 0x2B);
  3312     emit_rm(cbuf, 0x3, penc & 7, qenc & 7);
  3314     // sbbl $tmp, $tmp
  3315     emit_opcode(cbuf, 0x1B);
  3316     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  3318     // andl $tmp, $y
  3319     if (yenc >= 8) {
  3320       emit_opcode(cbuf, Assembler::REX_B);
  3322     emit_opcode(cbuf, 0x23);
  3323     emit_rm(cbuf, 0x3, tmpReg, yenc & 7);
  3325     // addl $p,$tmp
  3326     if (penc >= 8) {
  3327         emit_opcode(cbuf, Assembler::REX_R);
  3329     emit_opcode(cbuf, 0x03);
  3330     emit_rm(cbuf, 0x3, penc & 7, tmpReg);
  3331   %}
  3333   // Compare the lonogs and set -1, 0, or 1 into dst
  3334   enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
  3335   %{
  3336     int src1enc = $src1$$reg;
  3337     int src2enc = $src2$$reg;
  3338     int dstenc = $dst$$reg;
  3340     // cmpq $src1, $src2
  3341     if (src1enc < 8) {
  3342       if (src2enc < 8) {
  3343         emit_opcode(cbuf, Assembler::REX_W);
  3344       } else {
  3345         emit_opcode(cbuf, Assembler::REX_WB);
  3347     } else {
  3348       if (src2enc < 8) {
  3349         emit_opcode(cbuf, Assembler::REX_WR);
  3350       } else {
  3351         emit_opcode(cbuf, Assembler::REX_WRB);
  3354     emit_opcode(cbuf, 0x3B);
  3355     emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
  3357     // movl $dst, -1
  3358     if (dstenc >= 8) {
  3359       emit_opcode(cbuf, Assembler::REX_B);
  3361     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
  3362     emit_d32(cbuf, -1);
  3364     // jl,s done
  3365     emit_opcode(cbuf, 0x7C);
  3366     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
  3368     // setne $dst
  3369     if (dstenc >= 4) {
  3370       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
  3372     emit_opcode(cbuf, 0x0F);
  3373     emit_opcode(cbuf, 0x95);
  3374     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
  3376     // movzbl $dst, $dst
  3377     if (dstenc >= 4) {
  3378       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
  3380     emit_opcode(cbuf, 0x0F);
  3381     emit_opcode(cbuf, 0xB6);
  3382     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
  3383   %}
  3385   enc_class Push_ResultXD(regD dst) %{
  3386     int dstenc = $dst$$reg;
  3388     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [RSP]
  3390     // UseXmmLoadAndClearUpper ? movsd dst,[rsp] : movlpd dst,[rsp]
  3391     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  3392     if (dstenc >= 8) {
  3393       emit_opcode(cbuf, Assembler::REX_R);
  3395     emit_opcode  (cbuf, 0x0F );
  3396     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12 );
  3397     encode_RegMem(cbuf, dstenc, RSP_enc, 0x4, 0, 0, false);
  3399     // add rsp,8
  3400     emit_opcode(cbuf, Assembler::REX_W);
  3401     emit_opcode(cbuf,0x83);
  3402     emit_rm(cbuf,0x3, 0x0, RSP_enc);
  3403     emit_d8(cbuf,0x08);
  3404   %}
  3406   enc_class Push_SrcXD(regD src) %{
  3407     int srcenc = $src$$reg;
  3409     // subq rsp,#8
  3410     emit_opcode(cbuf, Assembler::REX_W);
  3411     emit_opcode(cbuf, 0x83);
  3412     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  3413     emit_d8(cbuf, 0x8);
  3415     // movsd [rsp],src
  3416     emit_opcode(cbuf, 0xF2);
  3417     if (srcenc >= 8) {
  3418       emit_opcode(cbuf, Assembler::REX_R);
  3420     emit_opcode(cbuf, 0x0F);
  3421     emit_opcode(cbuf, 0x11);
  3422     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false);
  3424     // fldd [rsp]
  3425     emit_opcode(cbuf, 0x66);
  3426     emit_opcode(cbuf, 0xDD);
  3427     encode_RegMem(cbuf, 0x0, RSP_enc, 0x4, 0, 0, false);
  3428   %}
  3431   enc_class movq_ld(regD dst, memory mem) %{
  3432     MacroAssembler _masm(&cbuf);
  3433     __ movq($dst$$XMMRegister, $mem$$Address);
  3434   %}
  3436   enc_class movq_st(memory mem, regD src) %{
  3437     MacroAssembler _masm(&cbuf);
  3438     __ movq($mem$$Address, $src$$XMMRegister);
  3439   %}
  3441   enc_class pshufd_8x8(regF dst, regF src) %{
  3442     MacroAssembler _masm(&cbuf);
  3444     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
  3445     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
  3446     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  3447   %}
  3449   enc_class pshufd_4x16(regF dst, regF src) %{
  3450     MacroAssembler _masm(&cbuf);
  3452     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  3453   %}
  3455   enc_class pshufd(regD dst, regD src, int mode) %{
  3456     MacroAssembler _masm(&cbuf);
  3458     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  3459   %}
  3461   enc_class pxor(regD dst, regD src) %{
  3462     MacroAssembler _masm(&cbuf);
  3464     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  3465   %}
  3467   enc_class mov_i2x(regD dst, rRegI src) %{
  3468     MacroAssembler _masm(&cbuf);
  3470     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
  3471   %}
  3473   // obj: object to lock
  3474   // box: box address (header location) -- killed
  3475   // tmp: rax -- killed
  3476   // scr: rbx -- killed
  3477   //
  3478   // What follows is a direct transliteration of fast_lock() and fast_unlock()
  3479   // from i486.ad.  See that file for comments.
  3480   // TODO: where possible switch from movq (r, 0) to movl(r,0) and
  3481   // use the shorter encoding.  (Movl clears the high-order 32-bits).
  3484   enc_class Fast_Lock(rRegP obj, rRegP box, rax_RegI tmp, rRegP scr)
  3485   %{
  3486     Register objReg = as_Register((int)$obj$$reg);
  3487     Register boxReg = as_Register((int)$box$$reg);
  3488     Register tmpReg = as_Register($tmp$$reg);
  3489     Register scrReg = as_Register($scr$$reg);
  3490     MacroAssembler masm(&cbuf);
  3492     // Verify uniqueness of register assignments -- necessary but not sufficient
  3493     assert (objReg != boxReg && objReg != tmpReg &&
  3494             objReg != scrReg && tmpReg != scrReg, "invariant") ;
  3496     if (_counters != NULL) {
  3497       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3499     if (EmitSync & 1) {
  3500         // Without cast to int32_t a movptr will destroy r10 which is typically obj
  3501         masm.movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark())) ; 
  3502         masm.cmpptr(rsp, (int32_t)NULL_WORD) ; 
  3503     } else
  3504     if (EmitSync & 2) {
  3505         Label DONE_LABEL;
  3506         if (UseBiasedLocking) {
  3507            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3508           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3510         // QQQ was movl...
  3511         masm.movptr(tmpReg, 0x1);
  3512         masm.orptr(tmpReg, Address(objReg, 0));
  3513         masm.movptr(Address(boxReg, 0), tmpReg);
  3514         if (os::is_MP()) {
  3515           masm.lock();
  3517         masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
  3518         masm.jcc(Assembler::equal, DONE_LABEL);
  3520         // Recursive locking
  3521         masm.subptr(tmpReg, rsp);
  3522         masm.andptr(tmpReg, 7 - os::vm_page_size());
  3523         masm.movptr(Address(boxReg, 0), tmpReg);
  3525         masm.bind(DONE_LABEL);
  3526         masm.nop(); // avoid branch to branch
  3527     } else {
  3528         Label DONE_LABEL, IsInflated, Egress;
  3530         masm.movptr(tmpReg, Address(objReg, 0)) ; 
  3531         masm.testl (tmpReg, 0x02) ;         // inflated vs stack-locked|neutral|biased
  3532         masm.jcc   (Assembler::notZero, IsInflated) ; 
  3534         // it's stack-locked, biased or neutral
  3535         // TODO: optimize markword triage order to reduce the number of
  3536         // conditional branches in the most common cases.
  3537         // Beware -- there's a subtle invariant that fetch of the markword
  3538         // at [FETCH], below, will never observe a biased encoding (*101b).
  3539         // If this invariant is not held we'll suffer exclusion (safety) failure.
  3541         if (UseBiasedLocking && !UseOptoBiasInlining) {
  3542           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, true, DONE_LABEL, NULL, _counters);
  3543           masm.movptr(tmpReg, Address(objReg, 0)) ;        // [FETCH]
  3546         // was q will it destroy high?
  3547         masm.orl   (tmpReg, 1) ; 
  3548         masm.movptr(Address(boxReg, 0), tmpReg) ;  
  3549         if (os::is_MP()) { masm.lock(); } 
  3550         masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
  3551         if (_counters != NULL) {
  3552            masm.cond_inc32(Assembler::equal,
  3553                            ExternalAddress((address) _counters->fast_path_entry_count_addr()));
  3555         masm.jcc   (Assembler::equal, DONE_LABEL);
  3557         // Recursive locking
  3558         masm.subptr(tmpReg, rsp);
  3559         masm.andptr(tmpReg, 7 - os::vm_page_size());
  3560         masm.movptr(Address(boxReg, 0), tmpReg);
  3561         if (_counters != NULL) {
  3562            masm.cond_inc32(Assembler::equal,
  3563                            ExternalAddress((address) _counters->fast_path_entry_count_addr()));
  3565         masm.jmp   (DONE_LABEL) ;
  3567         masm.bind  (IsInflated) ;
  3568         // It's inflated
  3570         // TODO: someday avoid the ST-before-CAS penalty by
  3571         // relocating (deferring) the following ST.
  3572         // We should also think about trying a CAS without having
  3573         // fetched _owner.  If the CAS is successful we may
  3574         // avoid an RTO->RTS upgrade on the $line.
  3575         // Without cast to int32_t a movptr will destroy r10 which is typically obj
  3576         masm.movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark())) ; 
  3578         masm.mov    (boxReg, tmpReg) ; 
  3579         masm.movptr (tmpReg, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3580         masm.testptr(tmpReg, tmpReg) ;   
  3581         masm.jcc    (Assembler::notZero, DONE_LABEL) ; 
  3583         // It's inflated and appears unlocked
  3584         if (os::is_MP()) { masm.lock(); } 
  3585         masm.cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3586         // Intentional fall-through into DONE_LABEL ...
  3588         masm.bind  (DONE_LABEL) ;
  3589         masm.nop   () ;                 // avoid jmp to jmp
  3591   %}
  3593   // obj: object to unlock
  3594   // box: box address (displaced header location), killed
  3595   // RBX: killed tmp; cannot be obj nor box
  3596   enc_class Fast_Unlock(rRegP obj, rax_RegP box, rRegP tmp)
  3597   %{
  3599     Register objReg = as_Register($obj$$reg);
  3600     Register boxReg = as_Register($box$$reg);
  3601     Register tmpReg = as_Register($tmp$$reg);
  3602     MacroAssembler masm(&cbuf);
  3604     if (EmitSync & 4) { 
  3605        masm.cmpptr(rsp, 0) ; 
  3606     } else
  3607     if (EmitSync & 8) {
  3608        Label DONE_LABEL;
  3609        if (UseBiasedLocking) {
  3610          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3613        // Check whether the displaced header is 0
  3614        //(=> recursive unlock)
  3615        masm.movptr(tmpReg, Address(boxReg, 0));
  3616        masm.testptr(tmpReg, tmpReg);
  3617        masm.jcc(Assembler::zero, DONE_LABEL);
  3619        // If not recursive lock, reset the header to displaced header
  3620        if (os::is_MP()) {
  3621          masm.lock();
  3623        masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
  3624        masm.bind(DONE_LABEL);
  3625        masm.nop(); // avoid branch to branch
  3626     } else {
  3627        Label DONE_LABEL, Stacked, CheckSucc ;
  3629        if (UseBiasedLocking && !UseOptoBiasInlining) {
  3630          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3633        masm.movptr(tmpReg, Address(objReg, 0)) ; 
  3634        masm.cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD) ; 
  3635        masm.jcc   (Assembler::zero, DONE_LABEL) ; 
  3636        masm.testl (tmpReg, 0x02) ; 
  3637        masm.jcc   (Assembler::zero, Stacked) ; 
  3639        // It's inflated
  3640        masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3641        masm.xorptr(boxReg, r15_thread) ; 
  3642        masm.orptr (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ; 
  3643        masm.jcc   (Assembler::notZero, DONE_LABEL) ; 
  3644        masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3645        masm.orptr (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3646        masm.jcc   (Assembler::notZero, CheckSucc) ; 
  3647        masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD) ; 
  3648        masm.jmp   (DONE_LABEL) ; 
  3650        if ((EmitSync & 65536) == 0) { 
  3651          Label LSuccess, LGoSlowPath ;
  3652          masm.bind  (CheckSucc) ;
  3653          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
  3654          masm.jcc   (Assembler::zero, LGoSlowPath) ;
  3656          // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
  3657          // the explicit ST;MEMBAR combination, but masm doesn't currently support
  3658          // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
  3659          // are all faster when the write buffer is populated.
  3660          masm.movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
  3661          if (os::is_MP()) {
  3662             masm.lock () ; masm.addl (Address(rsp, 0), 0) ;
  3664          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
  3665          masm.jcc   (Assembler::notZero, LSuccess) ;
  3667          masm.movptr (boxReg, (int32_t)NULL_WORD) ;                   // box is really EAX
  3668          if (os::is_MP()) { masm.lock(); }
  3669          masm.cmpxchgptr(r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3670          masm.jcc   (Assembler::notEqual, LSuccess) ;
  3671          // Intentional fall-through into slow-path
  3673          masm.bind  (LGoSlowPath) ;
  3674          masm.orl   (boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3675          masm.jmp   (DONE_LABEL) ;
  3677          masm.bind  (LSuccess) ;
  3678          masm.testl (boxReg, 0) ;                      // set ICC.ZF=1 to indicate success
  3679          masm.jmp   (DONE_LABEL) ;
  3682        masm.bind  (Stacked) ; 
  3683        masm.movptr(tmpReg, Address (boxReg, 0)) ;      // re-fetch
  3684        if (os::is_MP()) { masm.lock(); } 
  3685        masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
  3687        if (EmitSync & 65536) {
  3688           masm.bind (CheckSucc) ;
  3690        masm.bind(DONE_LABEL);
  3691        if (EmitSync & 32768) {
  3692           masm.nop();                      // avoid branch to branch
  3695   %}
  3697   enc_class enc_String_Compare()
  3698   %{
  3699     Label RCX_GOOD_LABEL, LENGTH_DIFF_LABEL,
  3700           POP_LABEL, DONE_LABEL, CONT_LABEL,
  3701           WHILE_HEAD_LABEL;
  3702     MacroAssembler masm(&cbuf);
  3704     // Get the first character position in both strings
  3705     //         [8] char array, [12] offset, [16] count
  3706     int value_offset  = java_lang_String::value_offset_in_bytes();
  3707     int offset_offset = java_lang_String::offset_offset_in_bytes();
  3708     int count_offset  = java_lang_String::count_offset_in_bytes();
  3709     int base_offset   = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3711     masm.load_heap_oop(rax, Address(rsi, value_offset));
  3712     masm.movl(rcx, Address(rsi, offset_offset));
  3713     masm.lea(rax, Address(rax, rcx, Address::times_2, base_offset));
  3714     masm.load_heap_oop(rbx, Address(rdi, value_offset));
  3715     masm.movl(rcx, Address(rdi, offset_offset));
  3716     masm.lea(rbx, Address(rbx, rcx, Address::times_2, base_offset));
  3718     // Compute the minimum of the string lengths(rsi) and the
  3719     // difference of the string lengths (stack)
  3721     masm.movl(rdi, Address(rdi, count_offset));
  3722     masm.movl(rsi, Address(rsi, count_offset));
  3723     masm.movl(rcx, rdi);
  3724     masm.subl(rdi, rsi);
  3725     masm.push(rdi);
  3726     masm.cmov(Assembler::lessEqual, rsi, rcx);
  3728     // Is the minimum length zero?
  3729     masm.bind(RCX_GOOD_LABEL);
  3730     masm.testl(rsi, rsi);
  3731     masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  3733     // Load first characters
  3734     masm.load_unsigned_short(rcx, Address(rbx, 0));
  3735     masm.load_unsigned_short(rdi, Address(rax, 0));
  3737     // Compare first characters
  3738     masm.subl(rcx, rdi);
  3739     masm.jcc(Assembler::notZero,  POP_LABEL);
  3740     masm.decrementl(rsi);
  3741     masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  3744       // Check after comparing first character to see if strings are equivalent
  3745       Label LSkip2;
  3746       // Check if the strings start at same location
  3747       masm.cmpptr(rbx, rax);
  3748       masm.jcc(Assembler::notEqual, LSkip2);
  3750       // Check if the length difference is zero (from stack)
  3751       masm.cmpl(Address(rsp, 0), 0x0);
  3752       masm.jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
  3754       // Strings might not be equivalent
  3755       masm.bind(LSkip2);
  3758     // Shift RAX and RBX to the end of the arrays, negate min
  3759     masm.lea(rax, Address(rax, rsi, Address::times_2, 2));
  3760     masm.lea(rbx, Address(rbx, rsi, Address::times_2, 2));
  3761     masm.negptr(rsi);
  3763     // Compare the rest of the characters
  3764     masm.bind(WHILE_HEAD_LABEL);
  3765     masm.load_unsigned_short(rcx, Address(rbx, rsi, Address::times_2, 0));
  3766     masm.load_unsigned_short(rdi, Address(rax, rsi, Address::times_2, 0));
  3767     masm.subl(rcx, rdi);
  3768     masm.jcc(Assembler::notZero, POP_LABEL);
  3769     masm.increment(rsi);
  3770     masm.jcc(Assembler::notZero, WHILE_HEAD_LABEL);
  3772     // Strings are equal up to min length.  Return the length difference.
  3773     masm.bind(LENGTH_DIFF_LABEL);
  3774     masm.pop(rcx);
  3775     masm.jmp(DONE_LABEL);
  3777     // Discard the stored length difference
  3778     masm.bind(POP_LABEL);
  3779     masm.addptr(rsp, 8);
  3781     // That's it
  3782     masm.bind(DONE_LABEL);
  3783   %}
  3785   enc_class enc_Array_Equals(rdi_RegP ary1, rsi_RegP ary2, rax_RegI tmp1, rbx_RegI tmp2, rcx_RegI result) %{
  3786     Label TRUE_LABEL, FALSE_LABEL, DONE_LABEL, COMPARE_LOOP_HDR, COMPARE_LOOP;
  3787     MacroAssembler masm(&cbuf);
  3789     Register ary1Reg   = as_Register($ary1$$reg);
  3790     Register ary2Reg   = as_Register($ary2$$reg);
  3791     Register tmp1Reg   = as_Register($tmp1$$reg);
  3792     Register tmp2Reg   = as_Register($tmp2$$reg);
  3793     Register resultReg = as_Register($result$$reg);
  3795     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3796     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3798     // Check the input args
  3799     masm.cmpq(ary1Reg, ary2Reg);                        
  3800     masm.jcc(Assembler::equal, TRUE_LABEL);
  3801     masm.testq(ary1Reg, ary1Reg);                       
  3802     masm.jcc(Assembler::zero, FALSE_LABEL);
  3803     masm.testq(ary2Reg, ary2Reg);                       
  3804     masm.jcc(Assembler::zero, FALSE_LABEL);
  3806     // Check the lengths
  3807     masm.movl(tmp2Reg, Address(ary1Reg, length_offset));
  3808     masm.movl(resultReg, Address(ary2Reg, length_offset));
  3809     masm.cmpl(tmp2Reg, resultReg);
  3810     masm.jcc(Assembler::notEqual, FALSE_LABEL);
  3811     masm.testl(resultReg, resultReg);
  3812     masm.jcc(Assembler::zero, TRUE_LABEL);
  3814     // Get the number of 4 byte vectors to compare
  3815     masm.shrl(resultReg, 1);
  3817     // Check for odd-length arrays
  3818     masm.andl(tmp2Reg, 1);
  3819     masm.testl(tmp2Reg, tmp2Reg);
  3820     masm.jcc(Assembler::zero, COMPARE_LOOP_HDR);
  3822     // Compare 2-byte "tail" at end of arrays
  3823     masm.load_unsigned_short(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
  3824     masm.load_unsigned_short(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
  3825     masm.cmpl(tmp1Reg, tmp2Reg);
  3826     masm.jcc(Assembler::notEqual, FALSE_LABEL);
  3827     masm.testl(resultReg, resultReg);
  3828     masm.jcc(Assembler::zero, TRUE_LABEL);
  3830     // Setup compare loop
  3831     masm.bind(COMPARE_LOOP_HDR);
  3832     // Shift tmp1Reg and tmp2Reg to the last 4-byte boundary of the arrays
  3833     masm.leaq(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
  3834     masm.leaq(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
  3835     masm.negq(resultReg);
  3837     // 4-byte-wide compare loop
  3838     masm.bind(COMPARE_LOOP);
  3839     masm.movl(ary1Reg, Address(tmp1Reg, resultReg, Address::times_4, 0));
  3840     masm.movl(ary2Reg, Address(tmp2Reg, resultReg, Address::times_4, 0));
  3841     masm.cmpl(ary1Reg, ary2Reg);
  3842     masm.jcc(Assembler::notEqual, FALSE_LABEL);
  3843     masm.incrementq(resultReg);
  3844     masm.jcc(Assembler::notZero, COMPARE_LOOP);
  3846     masm.bind(TRUE_LABEL);
  3847     masm.movl(resultReg, 1);   // return true
  3848     masm.jmp(DONE_LABEL);
  3850     masm.bind(FALSE_LABEL);
  3851     masm.xorl(resultReg, resultReg); // return false
  3853     // That's it
  3854     masm.bind(DONE_LABEL);
  3855   %}
  3857   enc_class enc_rethrow()
  3858   %{
  3859     cbuf.set_inst_mark();
  3860     emit_opcode(cbuf, 0xE9); // jmp entry
  3861     emit_d32_reloc(cbuf,
  3862                    (int) (OptoRuntime::rethrow_stub() - cbuf.code_end() - 4),
  3863                    runtime_call_Relocation::spec(),
  3864                    RELOC_DISP32);
  3865   %}
  3867   enc_class absF_encoding(regF dst)
  3868   %{
  3869     int dstenc = $dst$$reg;
  3870     address signmask_address = (address) StubRoutines::x86::float_sign_mask();
  3872     cbuf.set_inst_mark();
  3873     if (dstenc >= 8) {
  3874       emit_opcode(cbuf, Assembler::REX_R);
  3875       dstenc -= 8;
  3877     // XXX reg_mem doesn't support RIP-relative addressing yet
  3878     emit_opcode(cbuf, 0x0F);
  3879     emit_opcode(cbuf, 0x54);
  3880     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3881     emit_d32_reloc(cbuf, signmask_address);
  3882   %}
  3884   enc_class absD_encoding(regD dst)
  3885   %{
  3886     int dstenc = $dst$$reg;
  3887     address signmask_address = (address) StubRoutines::x86::double_sign_mask();
  3889     cbuf.set_inst_mark();
  3890     emit_opcode(cbuf, 0x66);
  3891     if (dstenc >= 8) {
  3892       emit_opcode(cbuf, Assembler::REX_R);
  3893       dstenc -= 8;
  3895     // XXX reg_mem doesn't support RIP-relative addressing yet
  3896     emit_opcode(cbuf, 0x0F);
  3897     emit_opcode(cbuf, 0x54);
  3898     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3899     emit_d32_reloc(cbuf, signmask_address);
  3900   %}
  3902   enc_class negF_encoding(regF dst)
  3903   %{
  3904     int dstenc = $dst$$reg;
  3905     address signflip_address = (address) StubRoutines::x86::float_sign_flip();
  3907     cbuf.set_inst_mark();
  3908     if (dstenc >= 8) {
  3909       emit_opcode(cbuf, Assembler::REX_R);
  3910       dstenc -= 8;
  3912     // XXX reg_mem doesn't support RIP-relative addressing yet
  3913     emit_opcode(cbuf, 0x0F);
  3914     emit_opcode(cbuf, 0x57);
  3915     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3916     emit_d32_reloc(cbuf, signflip_address);
  3917   %}
  3919   enc_class negD_encoding(regD dst)
  3920   %{
  3921     int dstenc = $dst$$reg;
  3922     address signflip_address = (address) StubRoutines::x86::double_sign_flip();
  3924     cbuf.set_inst_mark();
  3925     emit_opcode(cbuf, 0x66);
  3926     if (dstenc >= 8) {
  3927       emit_opcode(cbuf, Assembler::REX_R);
  3928       dstenc -= 8;
  3930     // XXX reg_mem doesn't support RIP-relative addressing yet
  3931     emit_opcode(cbuf, 0x0F);
  3932     emit_opcode(cbuf, 0x57);
  3933     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3934     emit_d32_reloc(cbuf, signflip_address);
  3935   %}
  3937   enc_class f2i_fixup(rRegI dst, regF src)
  3938   %{
  3939     int dstenc = $dst$$reg;
  3940     int srcenc = $src$$reg;
  3942     // cmpl $dst, #0x80000000
  3943     if (dstenc >= 8) {
  3944       emit_opcode(cbuf, Assembler::REX_B);
  3946     emit_opcode(cbuf, 0x81);
  3947     emit_rm(cbuf, 0x3, 0x7, dstenc & 7);
  3948     emit_d32(cbuf, 0x80000000);
  3950     // jne,s done
  3951     emit_opcode(cbuf, 0x75);
  3952     if (srcenc < 8 && dstenc < 8) {
  3953       emit_d8(cbuf, 0xF);
  3954     } else if (srcenc >= 8 && dstenc >= 8) {
  3955       emit_d8(cbuf, 0x11);
  3956     } else {
  3957       emit_d8(cbuf, 0x10);
  3960     // subq rsp, #8
  3961     emit_opcode(cbuf, Assembler::REX_W);
  3962     emit_opcode(cbuf, 0x83);
  3963     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  3964     emit_d8(cbuf, 8);
  3966     // movss [rsp], $src
  3967     emit_opcode(cbuf, 0xF3);
  3968     if (srcenc >= 8) {
  3969       emit_opcode(cbuf, Assembler::REX_R);
  3971     emit_opcode(cbuf, 0x0F);
  3972     emit_opcode(cbuf, 0x11);
  3973     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  3975     // call f2i_fixup
  3976     cbuf.set_inst_mark();
  3977     emit_opcode(cbuf, 0xE8);
  3978     emit_d32_reloc(cbuf,
  3979                    (int)
  3980                    (StubRoutines::x86::f2i_fixup() - cbuf.code_end() - 4),
  3981                    runtime_call_Relocation::spec(),
  3982                    RELOC_DISP32);
  3984     // popq $dst
  3985     if (dstenc >= 8) {
  3986       emit_opcode(cbuf, Assembler::REX_B);
  3988     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  3990     // done:
  3991   %}
  3993   enc_class f2l_fixup(rRegL dst, regF src)
  3994   %{
  3995     int dstenc = $dst$$reg;
  3996     int srcenc = $src$$reg;
  3997     address const_address = (address) StubRoutines::x86::double_sign_flip();
  3999     // cmpq $dst, [0x8000000000000000]
  4000     cbuf.set_inst_mark();
  4001     emit_opcode(cbuf, dstenc < 8 ? Assembler::REX_W : Assembler::REX_WR);
  4002     emit_opcode(cbuf, 0x39);
  4003     // XXX reg_mem doesn't support RIP-relative addressing yet
  4004     emit_rm(cbuf, 0x0, dstenc & 7, 0x5); // 00 reg 101
  4005     emit_d32_reloc(cbuf, const_address);
  4008     // jne,s done
  4009     emit_opcode(cbuf, 0x75);
  4010     if (srcenc < 8 && dstenc < 8) {
  4011       emit_d8(cbuf, 0xF);
  4012     } else if (srcenc >= 8 && dstenc >= 8) {
  4013       emit_d8(cbuf, 0x11);
  4014     } else {
  4015       emit_d8(cbuf, 0x10);
  4018     // subq rsp, #8
  4019     emit_opcode(cbuf, Assembler::REX_W);
  4020     emit_opcode(cbuf, 0x83);
  4021     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  4022     emit_d8(cbuf, 8);
  4024     // movss [rsp], $src
  4025     emit_opcode(cbuf, 0xF3);
  4026     if (srcenc >= 8) {
  4027       emit_opcode(cbuf, Assembler::REX_R);
  4029     emit_opcode(cbuf, 0x0F);
  4030     emit_opcode(cbuf, 0x11);
  4031     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  4033     // call f2l_fixup
  4034     cbuf.set_inst_mark();
  4035     emit_opcode(cbuf, 0xE8);
  4036     emit_d32_reloc(cbuf,
  4037                    (int)
  4038                    (StubRoutines::x86::f2l_fixup() - cbuf.code_end() - 4),
  4039                    runtime_call_Relocation::spec(),
  4040                    RELOC_DISP32);
  4042     // popq $dst
  4043     if (dstenc >= 8) {
  4044       emit_opcode(cbuf, Assembler::REX_B);
  4046     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  4048     // done:
  4049   %}
  4051   enc_class d2i_fixup(rRegI dst, regD src)
  4052   %{
  4053     int dstenc = $dst$$reg;
  4054     int srcenc = $src$$reg;
  4056     // cmpl $dst, #0x80000000
  4057     if (dstenc >= 8) {
  4058       emit_opcode(cbuf, Assembler::REX_B);
  4060     emit_opcode(cbuf, 0x81);
  4061     emit_rm(cbuf, 0x3, 0x7, dstenc & 7);
  4062     emit_d32(cbuf, 0x80000000);
  4064     // jne,s done
  4065     emit_opcode(cbuf, 0x75);
  4066     if (srcenc < 8 && dstenc < 8) {
  4067       emit_d8(cbuf, 0xF);
  4068     } else if (srcenc >= 8 && dstenc >= 8) {
  4069       emit_d8(cbuf, 0x11);
  4070     } else {
  4071       emit_d8(cbuf, 0x10);
  4074     // subq rsp, #8
  4075     emit_opcode(cbuf, Assembler::REX_W);
  4076     emit_opcode(cbuf, 0x83);
  4077     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  4078     emit_d8(cbuf, 8);
  4080     // movsd [rsp], $src
  4081     emit_opcode(cbuf, 0xF2);
  4082     if (srcenc >= 8) {
  4083       emit_opcode(cbuf, Assembler::REX_R);
  4085     emit_opcode(cbuf, 0x0F);
  4086     emit_opcode(cbuf, 0x11);
  4087     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  4089     // call d2i_fixup
  4090     cbuf.set_inst_mark();
  4091     emit_opcode(cbuf, 0xE8);
  4092     emit_d32_reloc(cbuf,
  4093                    (int)
  4094                    (StubRoutines::x86::d2i_fixup() - cbuf.code_end() - 4),
  4095                    runtime_call_Relocation::spec(),
  4096                    RELOC_DISP32);
  4098     // popq $dst
  4099     if (dstenc >= 8) {
  4100       emit_opcode(cbuf, Assembler::REX_B);
  4102     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  4104     // done:
  4105   %}
  4107   enc_class d2l_fixup(rRegL dst, regD src)
  4108   %{
  4109     int dstenc = $dst$$reg;
  4110     int srcenc = $src$$reg;
  4111     address const_address = (address) StubRoutines::x86::double_sign_flip();
  4113     // cmpq $dst, [0x8000000000000000]
  4114     cbuf.set_inst_mark();
  4115     emit_opcode(cbuf, dstenc < 8 ? Assembler::REX_W : Assembler::REX_WR);
  4116     emit_opcode(cbuf, 0x39);
  4117     // XXX reg_mem doesn't support RIP-relative addressing yet
  4118     emit_rm(cbuf, 0x0, dstenc & 7, 0x5); // 00 reg 101
  4119     emit_d32_reloc(cbuf, const_address);
  4122     // jne,s done
  4123     emit_opcode(cbuf, 0x75);
  4124     if (srcenc < 8 && dstenc < 8) {
  4125       emit_d8(cbuf, 0xF);
  4126     } else if (srcenc >= 8 && dstenc >= 8) {
  4127       emit_d8(cbuf, 0x11);
  4128     } else {
  4129       emit_d8(cbuf, 0x10);
  4132     // subq rsp, #8
  4133     emit_opcode(cbuf, Assembler::REX_W);
  4134     emit_opcode(cbuf, 0x83);
  4135     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  4136     emit_d8(cbuf, 8);
  4138     // movsd [rsp], $src
  4139     emit_opcode(cbuf, 0xF2);
  4140     if (srcenc >= 8) {
  4141       emit_opcode(cbuf, Assembler::REX_R);
  4143     emit_opcode(cbuf, 0x0F);
  4144     emit_opcode(cbuf, 0x11);
  4145     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  4147     // call d2l_fixup
  4148     cbuf.set_inst_mark();
  4149     emit_opcode(cbuf, 0xE8);
  4150     emit_d32_reloc(cbuf,
  4151                    (int)
  4152                    (StubRoutines::x86::d2l_fixup() - cbuf.code_end() - 4),
  4153                    runtime_call_Relocation::spec(),
  4154                    RELOC_DISP32);
  4156     // popq $dst
  4157     if (dstenc >= 8) {
  4158       emit_opcode(cbuf, Assembler::REX_B);
  4160     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  4162     // done:
  4163   %}
  4165   enc_class enc_membar_acquire
  4166   %{
  4167     // [jk] not needed currently, if you enable this and it really
  4168     // emits code don't forget to the remove the "size(0)" line in
  4169     // membar_acquire()
  4170     // MacroAssembler masm(&cbuf);
  4171     // masm.membar(Assembler::Membar_mask_bits(Assembler::LoadStore |
  4172     //                                         Assembler::LoadLoad));
  4173   %}
  4175   enc_class enc_membar_release
  4176   %{
  4177     // [jk] not needed currently, if you enable this and it really
  4178     // emits code don't forget to the remove the "size(0)" line in
  4179     // membar_release()
  4180     // MacroAssembler masm(&cbuf);
  4181     // masm.membar(Assembler::Membar_mask_bits(Assembler::LoadStore |
  4182     //                                         Assembler::StoreStore));
  4183   %}
  4185   enc_class enc_membar_volatile
  4186   %{
  4187     MacroAssembler masm(&cbuf);
  4188     masm.membar(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  4189                                             Assembler::StoreStore));
  4190   %}
  4192   // Safepoint Poll.  This polls the safepoint page, and causes an
  4193   // exception if it is not readable. Unfortunately, it kills
  4194   // RFLAGS in the process.
  4195   enc_class enc_safepoint_poll
  4196   %{
  4197     // testl %rax, off(%rip) // Opcode + ModRM + Disp32 == 6 bytes
  4198     // XXX reg_mem doesn't support RIP-relative addressing yet
  4199     cbuf.set_inst_mark();
  4200     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0); // XXX
  4201     emit_opcode(cbuf, 0x85); // testl
  4202     emit_rm(cbuf, 0x0, RAX_enc, 0x5); // 00 rax 101 == 0x5
  4203     // cbuf.inst_mark() is beginning of instruction
  4204     emit_d32_reloc(cbuf, os::get_polling_page());
  4205 //                    relocInfo::poll_type,
  4206   %}
  4207 %}
  4211 //----------FRAME--------------------------------------------------------------
  4212 // Definition of frame structure and management information.
  4213 //
  4214 //  S T A C K   L A Y O U T    Allocators stack-slot number
  4215 //                             |   (to get allocators register number
  4216 //  G  Owned by    |        |  v    add OptoReg::stack0())
  4217 //  r   CALLER     |        |
  4218 //  o     |        +--------+      pad to even-align allocators stack-slot
  4219 //  w     V        |  pad0  |        numbers; owned by CALLER
  4220 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  4221 //  h     ^        |   in   |  5
  4222 //        |        |  args  |  4   Holes in incoming args owned by SELF
  4223 //  |     |        |        |  3
  4224 //  |     |        +--------+
  4225 //  V     |        | old out|      Empty on Intel, window on Sparc
  4226 //        |    old |preserve|      Must be even aligned.
  4227 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  4228 //        |        |   in   |  3   area for Intel ret address
  4229 //     Owned by    |preserve|      Empty on Sparc.
  4230 //       SELF      +--------+
  4231 //        |        |  pad2  |  2   pad to align old SP
  4232 //        |        +--------+  1
  4233 //        |        | locks  |  0
  4234 //        |        +--------+----> OptoReg::stack0(), even aligned
  4235 //        |        |  pad1  | 11   pad to align new SP
  4236 //        |        +--------+
  4237 //        |        |        | 10
  4238 //        |        | spills |  9   spills
  4239 //        V        |        |  8   (pad0 slot for callee)
  4240 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  4241 //        ^        |  out   |  7
  4242 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  4243 //     Owned by    +--------+
  4244 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  4245 //        |    new |preserve|      Must be even-aligned.
  4246 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  4247 //        |        |        |
  4248 //
  4249 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  4250 //         known from SELF's arguments and the Java calling convention.
  4251 //         Region 6-7 is determined per call site.
  4252 // Note 2: If the calling convention leaves holes in the incoming argument
  4253 //         area, those holes are owned by SELF.  Holes in the outgoing area
  4254 //         are owned by the CALLEE.  Holes should not be nessecary in the
  4255 //         incoming area, as the Java calling convention is completely under
  4256 //         the control of the AD file.  Doubles can be sorted and packed to
  4257 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  4258 //         varargs C calling conventions.
  4259 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  4260 //         even aligned with pad0 as needed.
  4261 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  4262 //         region 6-11 is even aligned; it may be padded out more so that
  4263 //         the region from SP to FP meets the minimum stack alignment.
  4264 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
  4265 //         alignment.  Region 11, pad1, may be dynamically extended so that
  4266 //         SP meets the minimum alignment.
  4268 frame
  4269 %{
  4270   // What direction does stack grow in (assumed to be same for C & Java)
  4271   stack_direction(TOWARDS_LOW);
  4273   // These three registers define part of the calling convention
  4274   // between compiled code and the interpreter.
  4275   inline_cache_reg(RAX);                // Inline Cache Register
  4276   interpreter_method_oop_reg(RBX);      // Method Oop Register when
  4277                                         // calling interpreter
  4279   // Optional: name the operand used by cisc-spilling to access
  4280   // [stack_pointer + offset]
  4281   cisc_spilling_operand_name(indOffset32);
  4283   // Number of stack slots consumed by locking an object
  4284   sync_stack_slots(2);
  4286   // Compiled code's Frame Pointer
  4287   frame_pointer(RSP);
  4289   // Interpreter stores its frame pointer in a register which is
  4290   // stored to the stack by I2CAdaptors.
  4291   // I2CAdaptors convert from interpreted java to compiled java.
  4292   interpreter_frame_pointer(RBP);
  4294   // Stack alignment requirement
  4295   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
  4297   // Number of stack slots between incoming argument block and the start of
  4298   // a new frame.  The PROLOG must add this many slots to the stack.  The
  4299   // EPILOG must remove this many slots.  amd64 needs two slots for
  4300   // return address.
  4301   in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
  4303   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  4304   // for calls to C.  Supports the var-args backing area for register parms.
  4305   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
  4307   // The after-PROLOG location of the return address.  Location of
  4308   // return address specifies a type (REG or STACK) and a number
  4309   // representing the register number (i.e. - use a register name) or
  4310   // stack slot.
  4311   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  4312   // Otherwise, it is above the locks and verification slot and alignment word
  4313   return_addr(STACK - 2 +
  4314               round_to(2 + 2 * VerifyStackAtCalls +
  4315                        Compile::current()->fixed_slots(),
  4316                        WordsPerLong * 2));
  4318   // Body of function which returns an integer array locating
  4319   // arguments either in registers or in stack slots.  Passed an array
  4320   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4321   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4322   // arguments for a CALLEE.  Incoming stack arguments are
  4323   // automatically biased by the preserve_stack_slots field above.
  4325   calling_convention
  4326   %{
  4327     // No difference between ingoing/outgoing just pass false
  4328     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  4329   %}
  4331   c_calling_convention
  4332   %{
  4333     // This is obviously always outgoing
  4334     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  4335   %}
  4337   // Location of compiled Java return values.  Same as C for now.
  4338   return_value
  4339   %{
  4340     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
  4341            "only return normal values");
  4343     static const int lo[Op_RegL + 1] = {
  4344       0,
  4345       0,
  4346       RAX_num,  // Op_RegN
  4347       RAX_num,  // Op_RegI
  4348       RAX_num,  // Op_RegP
  4349       XMM0_num, // Op_RegF
  4350       XMM0_num, // Op_RegD
  4351       RAX_num   // Op_RegL
  4352     };
  4353     static const int hi[Op_RegL + 1] = {
  4354       0,
  4355       0,
  4356       OptoReg::Bad, // Op_RegN
  4357       OptoReg::Bad, // Op_RegI
  4358       RAX_H_num,    // Op_RegP
  4359       OptoReg::Bad, // Op_RegF
  4360       XMM0_H_num,   // Op_RegD
  4361       RAX_H_num     // Op_RegL
  4362     };
  4363     assert(ARRAY_SIZE(hi) == _last_machine_leaf - 1, "missing type");
  4364     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
  4365   %}
  4366 %}
  4368 //----------ATTRIBUTES---------------------------------------------------------
  4369 //----------Operand Attributes-------------------------------------------------
  4370 op_attrib op_cost(0);        // Required cost attribute
  4372 //----------Instruction Attributes---------------------------------------------
  4373 ins_attrib ins_cost(100);       // Required cost attribute
  4374 ins_attrib ins_size(8);         // Required size attribute (in bits)
  4375 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  4376 ins_attrib ins_short_branch(0); // Required flag: is this instruction
  4377                                 // a non-matching short branch variant
  4378                                 // of some long branch?
  4379 ins_attrib ins_alignment(1);    // Required alignment attribute (must
  4380                                 // be a power of 2) specifies the
  4381                                 // alignment that some part of the
  4382                                 // instruction (not necessarily the
  4383                                 // start) requires.  If > 1, a
  4384                                 // compute_padding() function must be
  4385                                 // provided for the instruction
  4387 //----------OPERANDS-----------------------------------------------------------
  4388 // Operand definitions must precede instruction definitions for correct parsing
  4389 // in the ADLC because operands constitute user defined types which are used in
  4390 // instruction definitions.
  4392 //----------Simple Operands----------------------------------------------------
  4393 // Immediate Operands
  4394 // Integer Immediate
  4395 operand immI()
  4396 %{
  4397   match(ConI);
  4399   op_cost(10);
  4400   format %{ %}
  4401   interface(CONST_INTER);
  4402 %}
  4404 // Constant for test vs zero
  4405 operand immI0()
  4406 %{
  4407   predicate(n->get_int() == 0);
  4408   match(ConI);
  4410   op_cost(0);
  4411   format %{ %}
  4412   interface(CONST_INTER);
  4413 %}
  4415 // Constant for increment
  4416 operand immI1()
  4417 %{
  4418   predicate(n->get_int() == 1);
  4419   match(ConI);
  4421   op_cost(0);
  4422   format %{ %}
  4423   interface(CONST_INTER);
  4424 %}
  4426 // Constant for decrement
  4427 operand immI_M1()
  4428 %{
  4429   predicate(n->get_int() == -1);
  4430   match(ConI);
  4432   op_cost(0);
  4433   format %{ %}
  4434   interface(CONST_INTER);
  4435 %}
  4437 // Valid scale values for addressing modes
  4438 operand immI2()
  4439 %{
  4440   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  4441   match(ConI);
  4443   format %{ %}
  4444   interface(CONST_INTER);
  4445 %}
  4447 operand immI8()
  4448 %{
  4449   predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
  4450   match(ConI);
  4452   op_cost(5);
  4453   format %{ %}
  4454   interface(CONST_INTER);
  4455 %}
  4457 operand immI16()
  4458 %{
  4459   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  4460   match(ConI);
  4462   op_cost(10);
  4463   format %{ %}
  4464   interface(CONST_INTER);
  4465 %}
  4467 // Constant for long shifts
  4468 operand immI_32()
  4469 %{
  4470   predicate( n->get_int() == 32 );
  4471   match(ConI);
  4473   op_cost(0);
  4474   format %{ %}
  4475   interface(CONST_INTER);
  4476 %}
  4478 // Constant for long shifts
  4479 operand immI_64()
  4480 %{
  4481   predicate( n->get_int() == 64 );
  4482   match(ConI);
  4484   op_cost(0);
  4485   format %{ %}
  4486   interface(CONST_INTER);
  4487 %}
  4489 // Pointer Immediate
  4490 operand immP()
  4491 %{
  4492   match(ConP);
  4494   op_cost(10);
  4495   format %{ %}
  4496   interface(CONST_INTER);
  4497 %}
  4499 // NULL Pointer Immediate
  4500 operand immP0()
  4501 %{
  4502   predicate(n->get_ptr() == 0);
  4503   match(ConP);
  4505   op_cost(5);
  4506   format %{ %}
  4507   interface(CONST_INTER);
  4508 %}
  4510 // Pointer Immediate
  4511 operand immN() %{
  4512   match(ConN);
  4514   op_cost(10);
  4515   format %{ %}
  4516   interface(CONST_INTER);
  4517 %}
  4519 // NULL Pointer Immediate
  4520 operand immN0() %{
  4521   predicate(n->get_narrowcon() == 0);
  4522   match(ConN);
  4524   op_cost(5);
  4525   format %{ %}
  4526   interface(CONST_INTER);
  4527 %}
  4529 operand immP31()
  4530 %{
  4531   predicate(!n->as_Type()->type()->isa_oopptr()
  4532             && (n->get_ptr() >> 31) == 0);
  4533   match(ConP);
  4535   op_cost(5);
  4536   format %{ %}
  4537   interface(CONST_INTER);
  4538 %}
  4541 // Long Immediate
  4542 operand immL()
  4543 %{
  4544   match(ConL);
  4546   op_cost(20);
  4547   format %{ %}
  4548   interface(CONST_INTER);
  4549 %}
  4551 // Long Immediate 8-bit
  4552 operand immL8()
  4553 %{
  4554   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
  4555   match(ConL);
  4557   op_cost(5);
  4558   format %{ %}
  4559   interface(CONST_INTER);
  4560 %}
  4562 // Long Immediate 32-bit unsigned
  4563 operand immUL32()
  4564 %{
  4565   predicate(n->get_long() == (unsigned int) (n->get_long()));
  4566   match(ConL);
  4568   op_cost(10);
  4569   format %{ %}
  4570   interface(CONST_INTER);
  4571 %}
  4573 // Long Immediate 32-bit signed
  4574 operand immL32()
  4575 %{
  4576   predicate(n->get_long() == (int) (n->get_long()));
  4577   match(ConL);
  4579   op_cost(15);
  4580   format %{ %}
  4581   interface(CONST_INTER);
  4582 %}
  4584 // Long Immediate zero
  4585 operand immL0()
  4586 %{
  4587   predicate(n->get_long() == 0L);
  4588   match(ConL);
  4590   op_cost(10);
  4591   format %{ %}
  4592   interface(CONST_INTER);
  4593 %}
  4595 // Constant for increment
  4596 operand immL1()
  4597 %{
  4598   predicate(n->get_long() == 1);
  4599   match(ConL);
  4601   format %{ %}
  4602   interface(CONST_INTER);
  4603 %}
  4605 // Constant for decrement
  4606 operand immL_M1()
  4607 %{
  4608   predicate(n->get_long() == -1);
  4609   match(ConL);
  4611   format %{ %}
  4612   interface(CONST_INTER);
  4613 %}
  4615 // Long Immediate: the value 10
  4616 operand immL10()
  4617 %{
  4618   predicate(n->get_long() == 10);
  4619   match(ConL);
  4621   format %{ %}
  4622   interface(CONST_INTER);
  4623 %}
  4625 // Long immediate from 0 to 127.
  4626 // Used for a shorter form of long mul by 10.
  4627 operand immL_127()
  4628 %{
  4629   predicate(0 <= n->get_long() && n->get_long() < 0x80);
  4630   match(ConL);
  4632   op_cost(10);
  4633   format %{ %}
  4634   interface(CONST_INTER);
  4635 %}
  4637 // Long Immediate: low 32-bit mask
  4638 operand immL_32bits()
  4639 %{
  4640   predicate(n->get_long() == 0xFFFFFFFFL);
  4641   match(ConL);
  4642   op_cost(20);
  4644   format %{ %}
  4645   interface(CONST_INTER);
  4646 %}
  4648 // Float Immediate zero
  4649 operand immF0()
  4650 %{
  4651   predicate(jint_cast(n->getf()) == 0);
  4652   match(ConF);
  4654   op_cost(5);
  4655   format %{ %}
  4656   interface(CONST_INTER);
  4657 %}
  4659 // Float Immediate
  4660 operand immF()
  4661 %{
  4662   match(ConF);
  4664   op_cost(15);
  4665   format %{ %}
  4666   interface(CONST_INTER);
  4667 %}
  4669 // Double Immediate zero
  4670 operand immD0()
  4671 %{
  4672   predicate(jlong_cast(n->getd()) == 0);
  4673   match(ConD);
  4675   op_cost(5);
  4676   format %{ %}
  4677   interface(CONST_INTER);
  4678 %}
  4680 // Double Immediate
  4681 operand immD()
  4682 %{
  4683   match(ConD);
  4685   op_cost(15);
  4686   format %{ %}
  4687   interface(CONST_INTER);
  4688 %}
  4690 // Immediates for special shifts (sign extend)
  4692 // Constants for increment
  4693 operand immI_16()
  4694 %{
  4695   predicate(n->get_int() == 16);
  4696   match(ConI);
  4698   format %{ %}
  4699   interface(CONST_INTER);
  4700 %}
  4702 operand immI_24()
  4703 %{
  4704   predicate(n->get_int() == 24);
  4705   match(ConI);
  4707   format %{ %}
  4708   interface(CONST_INTER);
  4709 %}
  4711 // Constant for byte-wide masking
  4712 operand immI_255()
  4713 %{
  4714   predicate(n->get_int() == 255);
  4715   match(ConI);
  4717   format %{ %}
  4718   interface(CONST_INTER);
  4719 %}
  4721 // Constant for short-wide masking
  4722 operand immI_65535()
  4723 %{
  4724   predicate(n->get_int() == 65535);
  4725   match(ConI);
  4727   format %{ %}
  4728   interface(CONST_INTER);
  4729 %}
  4731 // Constant for byte-wide masking
  4732 operand immL_255()
  4733 %{
  4734   predicate(n->get_long() == 255);
  4735   match(ConL);
  4737   format %{ %}
  4738   interface(CONST_INTER);
  4739 %}
  4741 // Constant for short-wide masking
  4742 operand immL_65535()
  4743 %{
  4744   predicate(n->get_long() == 65535);
  4745   match(ConL);
  4747   format %{ %}
  4748   interface(CONST_INTER);
  4749 %}
  4751 // Register Operands
  4752 // Integer Register
  4753 operand rRegI()
  4754 %{
  4755   constraint(ALLOC_IN_RC(int_reg));
  4756   match(RegI);
  4758   match(rax_RegI);
  4759   match(rbx_RegI);
  4760   match(rcx_RegI);
  4761   match(rdx_RegI);
  4762   match(rdi_RegI);
  4764   format %{ %}
  4765   interface(REG_INTER);
  4766 %}
  4768 // Special Registers
  4769 operand rax_RegI()
  4770 %{
  4771   constraint(ALLOC_IN_RC(int_rax_reg));
  4772   match(RegI);
  4773   match(rRegI);
  4775   format %{ "RAX" %}
  4776   interface(REG_INTER);
  4777 %}
  4779 // Special Registers
  4780 operand rbx_RegI()
  4781 %{
  4782   constraint(ALLOC_IN_RC(int_rbx_reg));
  4783   match(RegI);
  4784   match(rRegI);
  4786   format %{ "RBX" %}
  4787   interface(REG_INTER);
  4788 %}
  4790 operand rcx_RegI()
  4791 %{
  4792   constraint(ALLOC_IN_RC(int_rcx_reg));
  4793   match(RegI);
  4794   match(rRegI);
  4796   format %{ "RCX" %}
  4797   interface(REG_INTER);
  4798 %}
  4800 operand rdx_RegI()
  4801 %{
  4802   constraint(ALLOC_IN_RC(int_rdx_reg));
  4803   match(RegI);
  4804   match(rRegI);
  4806   format %{ "RDX" %}
  4807   interface(REG_INTER);
  4808 %}
  4810 operand rdi_RegI()
  4811 %{
  4812   constraint(ALLOC_IN_RC(int_rdi_reg));
  4813   match(RegI);
  4814   match(rRegI);
  4816   format %{ "RDI" %}
  4817   interface(REG_INTER);
  4818 %}
  4820 operand no_rcx_RegI()
  4821 %{
  4822   constraint(ALLOC_IN_RC(int_no_rcx_reg));
  4823   match(RegI);
  4824   match(rax_RegI);
  4825   match(rbx_RegI);
  4826   match(rdx_RegI);
  4827   match(rdi_RegI);
  4829   format %{ %}
  4830   interface(REG_INTER);
  4831 %}
  4833 operand no_rax_rdx_RegI()
  4834 %{
  4835   constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
  4836   match(RegI);
  4837   match(rbx_RegI);
  4838   match(rcx_RegI);
  4839   match(rdi_RegI);
  4841   format %{ %}
  4842   interface(REG_INTER);
  4843 %}
  4845 // Pointer Register
  4846 operand any_RegP()
  4847 %{
  4848   constraint(ALLOC_IN_RC(any_reg));
  4849   match(RegP);
  4850   match(rax_RegP);
  4851   match(rbx_RegP);
  4852   match(rdi_RegP);
  4853   match(rsi_RegP);
  4854   match(rbp_RegP);
  4855   match(r15_RegP);
  4856   match(rRegP);
  4858   format %{ %}
  4859   interface(REG_INTER);
  4860 %}
  4862 operand rRegP()
  4863 %{
  4864   constraint(ALLOC_IN_RC(ptr_reg));
  4865   match(RegP);
  4866   match(rax_RegP);
  4867   match(rbx_RegP);
  4868   match(rdi_RegP);
  4869   match(rsi_RegP);
  4870   match(rbp_RegP);
  4871   match(r15_RegP);  // See Q&A below about r15_RegP.
  4873   format %{ %}
  4874   interface(REG_INTER);
  4875 %}
  4877 operand rRegN() %{
  4878   constraint(ALLOC_IN_RC(int_reg));
  4879   match(RegN);
  4881   format %{ %}
  4882   interface(REG_INTER);
  4883 %}
  4885 // Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
  4886 // Answer: Operand match rules govern the DFA as it processes instruction inputs.
  4887 // It's fine for an instruction input which expects rRegP to match a r15_RegP.
  4888 // The output of an instruction is controlled by the allocator, which respects
  4889 // register class masks, not match rules.  Unless an instruction mentions
  4890 // r15_RegP or any_RegP explicitly as its output, r15 will not be considered
  4891 // by the allocator as an input.
  4893 operand no_rax_RegP()
  4894 %{
  4895   constraint(ALLOC_IN_RC(ptr_no_rax_reg));
  4896   match(RegP);
  4897   match(rbx_RegP);
  4898   match(rsi_RegP);
  4899   match(rdi_RegP);
  4901   format %{ %}
  4902   interface(REG_INTER);
  4903 %}
  4905 operand no_rbp_RegP()
  4906 %{
  4907   constraint(ALLOC_IN_RC(ptr_no_rbp_reg));
  4908   match(RegP);
  4909   match(rbx_RegP);
  4910   match(rsi_RegP);
  4911   match(rdi_RegP);
  4913   format %{ %}
  4914   interface(REG_INTER);
  4915 %}
  4917 operand no_rax_rbx_RegP()
  4918 %{
  4919   constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
  4920   match(RegP);
  4921   match(rsi_RegP);
  4922   match(rdi_RegP);
  4924   format %{ %}
  4925   interface(REG_INTER);
  4926 %}
  4928 // Special Registers
  4929 // Return a pointer value
  4930 operand rax_RegP()
  4931 %{
  4932   constraint(ALLOC_IN_RC(ptr_rax_reg));
  4933   match(RegP);
  4934   match(rRegP);
  4936   format %{ %}
  4937   interface(REG_INTER);
  4938 %}
  4940 // Special Registers
  4941 // Return a compressed pointer value
  4942 operand rax_RegN()
  4943 %{
  4944   constraint(ALLOC_IN_RC(int_rax_reg));
  4945   match(RegN);
  4946   match(rRegN);
  4948   format %{ %}
  4949   interface(REG_INTER);
  4950 %}
  4952 // Used in AtomicAdd
  4953 operand rbx_RegP()
  4954 %{
  4955   constraint(ALLOC_IN_RC(ptr_rbx_reg));
  4956   match(RegP);
  4957   match(rRegP);
  4959   format %{ %}
  4960   interface(REG_INTER);
  4961 %}
  4963 operand rsi_RegP()
  4964 %{
  4965   constraint(ALLOC_IN_RC(ptr_rsi_reg));
  4966   match(RegP);
  4967   match(rRegP);
  4969   format %{ %}
  4970   interface(REG_INTER);
  4971 %}
  4973 // Used in rep stosq
  4974 operand rdi_RegP()
  4975 %{
  4976   constraint(ALLOC_IN_RC(ptr_rdi_reg));
  4977   match(RegP);
  4978   match(rRegP);
  4980   format %{ %}
  4981   interface(REG_INTER);
  4982 %}
  4984 operand rbp_RegP()
  4985 %{
  4986   constraint(ALLOC_IN_RC(ptr_rbp_reg));
  4987   match(RegP);
  4988   match(rRegP);
  4990   format %{ %}
  4991   interface(REG_INTER);
  4992 %}
  4994 operand r15_RegP()
  4995 %{
  4996   constraint(ALLOC_IN_RC(ptr_r15_reg));
  4997   match(RegP);
  4998   match(rRegP);
  5000   format %{ %}
  5001   interface(REG_INTER);
  5002 %}
  5004 operand rRegL()
  5005 %{
  5006   constraint(ALLOC_IN_RC(long_reg));
  5007   match(RegL);
  5008   match(rax_RegL);
  5009   match(rdx_RegL);
  5011   format %{ %}
  5012   interface(REG_INTER);
  5013 %}
  5015 // Special Registers
  5016 operand no_rax_rdx_RegL()
  5017 %{
  5018   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
  5019   match(RegL);
  5020   match(rRegL);
  5022   format %{ %}
  5023   interface(REG_INTER);
  5024 %}
  5026 operand no_rax_RegL()
  5027 %{
  5028   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
  5029   match(RegL);
  5030   match(rRegL);
  5031   match(rdx_RegL);
  5033   format %{ %}
  5034   interface(REG_INTER);
  5035 %}
  5037 operand no_rcx_RegL()
  5038 %{
  5039   constraint(ALLOC_IN_RC(long_no_rcx_reg));
  5040   match(RegL);
  5041   match(rRegL);
  5043   format %{ %}
  5044   interface(REG_INTER);
  5045 %}
  5047 operand rax_RegL()
  5048 %{
  5049   constraint(ALLOC_IN_RC(long_rax_reg));
  5050   match(RegL);
  5051   match(rRegL);
  5053   format %{ "RAX" %}
  5054   interface(REG_INTER);
  5055 %}
  5057 operand rcx_RegL()
  5058 %{
  5059   constraint(ALLOC_IN_RC(long_rcx_reg));
  5060   match(RegL);
  5061   match(rRegL);
  5063   format %{ %}
  5064   interface(REG_INTER);
  5065 %}
  5067 operand rdx_RegL()
  5068 %{
  5069   constraint(ALLOC_IN_RC(long_rdx_reg));
  5070   match(RegL);
  5071   match(rRegL);
  5073   format %{ %}
  5074   interface(REG_INTER);
  5075 %}
  5077 // Flags register, used as output of compare instructions
  5078 operand rFlagsReg()
  5079 %{
  5080   constraint(ALLOC_IN_RC(int_flags));
  5081   match(RegFlags);
  5083   format %{ "RFLAGS" %}
  5084   interface(REG_INTER);
  5085 %}
  5087 // Flags register, used as output of FLOATING POINT compare instructions
  5088 operand rFlagsRegU()
  5089 %{
  5090   constraint(ALLOC_IN_RC(int_flags));
  5091   match(RegFlags);
  5093   format %{ "RFLAGS_U" %}
  5094   interface(REG_INTER);
  5095 %}
  5097 operand rFlagsRegUCF() %{
  5098   constraint(ALLOC_IN_RC(int_flags));
  5099   match(RegFlags);
  5100   predicate(false);
  5102   format %{ "RFLAGS_U_CF" %}
  5103   interface(REG_INTER);
  5104 %}
  5106 // Float register operands
  5107 operand regF()
  5108 %{
  5109   constraint(ALLOC_IN_RC(float_reg));
  5110   match(RegF);
  5112   format %{ %}
  5113   interface(REG_INTER);
  5114 %}
  5116 // Double register operands
  5117 operand regD()
  5118 %{
  5119   constraint(ALLOC_IN_RC(double_reg));
  5120   match(RegD);
  5122   format %{ %}
  5123   interface(REG_INTER);
  5124 %}
  5127 //----------Memory Operands----------------------------------------------------
  5128 // Direct Memory Operand
  5129 // operand direct(immP addr)
  5130 // %{
  5131 //   match(addr);
  5133 //   format %{ "[$addr]" %}
  5134 //   interface(MEMORY_INTER) %{
  5135 //     base(0xFFFFFFFF);
  5136 //     index(0x4);
  5137 //     scale(0x0);
  5138 //     disp($addr);
  5139 //   %}
  5140 // %}
  5142 // Indirect Memory Operand
  5143 operand indirect(any_RegP reg)
  5144 %{
  5145   constraint(ALLOC_IN_RC(ptr_reg));
  5146   match(reg);
  5148   format %{ "[$reg]" %}
  5149   interface(MEMORY_INTER) %{
  5150     base($reg);
  5151     index(0x4);
  5152     scale(0x0);
  5153     disp(0x0);
  5154   %}
  5155 %}
  5157 // Indirect Memory Plus Short Offset Operand
  5158 operand indOffset8(any_RegP reg, immL8 off)
  5159 %{
  5160   constraint(ALLOC_IN_RC(ptr_reg));
  5161   match(AddP reg off);
  5163   format %{ "[$reg + $off (8-bit)]" %}
  5164   interface(MEMORY_INTER) %{
  5165     base($reg);
  5166     index(0x4);
  5167     scale(0x0);
  5168     disp($off);
  5169   %}
  5170 %}
  5172 // Indirect Memory Plus Long Offset Operand
  5173 operand indOffset32(any_RegP reg, immL32 off)
  5174 %{
  5175   constraint(ALLOC_IN_RC(ptr_reg));
  5176   match(AddP reg off);
  5178   format %{ "[$reg + $off (32-bit)]" %}
  5179   interface(MEMORY_INTER) %{
  5180     base($reg);
  5181     index(0x4);
  5182     scale(0x0);
  5183     disp($off);
  5184   %}
  5185 %}
  5187 // Indirect Memory Plus Index Register Plus Offset Operand
  5188 operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
  5189 %{
  5190   constraint(ALLOC_IN_RC(ptr_reg));
  5191   match(AddP (AddP reg lreg) off);
  5193   op_cost(10);
  5194   format %{"[$reg + $off + $lreg]" %}
  5195   interface(MEMORY_INTER) %{
  5196     base($reg);
  5197     index($lreg);
  5198     scale(0x0);
  5199     disp($off);
  5200   %}
  5201 %}
  5203 // Indirect Memory Plus Index Register Plus Offset Operand
  5204 operand indIndex(any_RegP reg, rRegL lreg)
  5205 %{
  5206   constraint(ALLOC_IN_RC(ptr_reg));
  5207   match(AddP reg lreg);
  5209   op_cost(10);
  5210   format %{"[$reg + $lreg]" %}
  5211   interface(MEMORY_INTER) %{
  5212     base($reg);
  5213     index($lreg);
  5214     scale(0x0);
  5215     disp(0x0);
  5216   %}
  5217 %}
  5219 // Indirect Memory Times Scale Plus Index Register
  5220 operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
  5221 %{
  5222   constraint(ALLOC_IN_RC(ptr_reg));
  5223   match(AddP reg (LShiftL lreg scale));
  5225   op_cost(10);
  5226   format %{"[$reg + $lreg << $scale]" %}
  5227   interface(MEMORY_INTER) %{
  5228     base($reg);
  5229     index($lreg);
  5230     scale($scale);
  5231     disp(0x0);
  5232   %}
  5233 %}
  5235 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5236 operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
  5237 %{
  5238   constraint(ALLOC_IN_RC(ptr_reg));
  5239   match(AddP (AddP reg (LShiftL lreg scale)) off);
  5241   op_cost(10);
  5242   format %{"[$reg + $off + $lreg << $scale]" %}
  5243   interface(MEMORY_INTER) %{
  5244     base($reg);
  5245     index($lreg);
  5246     scale($scale);
  5247     disp($off);
  5248   %}
  5249 %}
  5251 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
  5252 operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
  5253 %{
  5254   constraint(ALLOC_IN_RC(ptr_reg));
  5255   predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5256   match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
  5258   op_cost(10);
  5259   format %{"[$reg + $off + $idx << $scale]" %}
  5260   interface(MEMORY_INTER) %{
  5261     base($reg);
  5262     index($idx);
  5263     scale($scale);
  5264     disp($off);
  5265   %}
  5266 %}
  5268 // Indirect Narrow Oop Plus Offset Operand
  5269 // Note: x86 architecture doesn't support "scale * index + offset" without a base
  5270 // we can't free r12 even with Universe::narrow_oop_base() == NULL.
  5271 operand indCompressedOopOffset(rRegN reg, immL32 off) %{
  5272   predicate(UseCompressedOops && (Universe::narrow_oop_shift() != 0));
  5273   constraint(ALLOC_IN_RC(ptr_reg));
  5274   match(AddP (DecodeN reg) off);
  5276   op_cost(10);
  5277   format %{"[R12 + $reg << 3 + $off] (compressed oop addressing)" %}
  5278   interface(MEMORY_INTER) %{
  5279     base(0xc); // R12
  5280     index($reg);
  5281     scale(0x3);
  5282     disp($off);
  5283   %}
  5284 %}
  5286 // Indirect Memory Operand
  5287 operand indirectNarrow(rRegN reg)
  5288 %{
  5289   predicate(Universe::narrow_oop_shift() == 0);
  5290   constraint(ALLOC_IN_RC(ptr_reg));
  5291   match(DecodeN reg);
  5293   format %{ "[$reg]" %}
  5294   interface(MEMORY_INTER) %{
  5295     base($reg);
  5296     index(0x4);
  5297     scale(0x0);
  5298     disp(0x0);
  5299   %}
  5300 %}
  5302 // Indirect Memory Plus Short Offset Operand
  5303 operand indOffset8Narrow(rRegN reg, immL8 off)
  5304 %{
  5305   predicate(Universe::narrow_oop_shift() == 0);
  5306   constraint(ALLOC_IN_RC(ptr_reg));
  5307   match(AddP (DecodeN reg) off);
  5309   format %{ "[$reg + $off (8-bit)]" %}
  5310   interface(MEMORY_INTER) %{
  5311     base($reg);
  5312     index(0x4);
  5313     scale(0x0);
  5314     disp($off);
  5315   %}
  5316 %}
  5318 // Indirect Memory Plus Long Offset Operand
  5319 operand indOffset32Narrow(rRegN reg, immL32 off)
  5320 %{
  5321   predicate(Universe::narrow_oop_shift() == 0);
  5322   constraint(ALLOC_IN_RC(ptr_reg));
  5323   match(AddP (DecodeN reg) off);
  5325   format %{ "[$reg + $off (32-bit)]" %}
  5326   interface(MEMORY_INTER) %{
  5327     base($reg);
  5328     index(0x4);
  5329     scale(0x0);
  5330     disp($off);
  5331   %}
  5332 %}
  5334 // Indirect Memory Plus Index Register Plus Offset Operand
  5335 operand indIndexOffsetNarrow(rRegN reg, rRegL lreg, immL32 off)
  5336 %{
  5337   predicate(Universe::narrow_oop_shift() == 0);
  5338   constraint(ALLOC_IN_RC(ptr_reg));
  5339   match(AddP (AddP (DecodeN reg) lreg) off);
  5341   op_cost(10);
  5342   format %{"[$reg + $off + $lreg]" %}
  5343   interface(MEMORY_INTER) %{
  5344     base($reg);
  5345     index($lreg);
  5346     scale(0x0);
  5347     disp($off);
  5348   %}
  5349 %}
  5351 // Indirect Memory Plus Index Register Plus Offset Operand
  5352 operand indIndexNarrow(rRegN reg, rRegL lreg)
  5353 %{
  5354   predicate(Universe::narrow_oop_shift() == 0);
  5355   constraint(ALLOC_IN_RC(ptr_reg));
  5356   match(AddP (DecodeN reg) lreg);
  5358   op_cost(10);
  5359   format %{"[$reg + $lreg]" %}
  5360   interface(MEMORY_INTER) %{
  5361     base($reg);
  5362     index($lreg);
  5363     scale(0x0);
  5364     disp(0x0);
  5365   %}
  5366 %}
  5368 // Indirect Memory Times Scale Plus Index Register
  5369 operand indIndexScaleNarrow(rRegN reg, rRegL lreg, immI2 scale)
  5370 %{
  5371   predicate(Universe::narrow_oop_shift() == 0);
  5372   constraint(ALLOC_IN_RC(ptr_reg));
  5373   match(AddP (DecodeN reg) (LShiftL lreg scale));
  5375   op_cost(10);
  5376   format %{"[$reg + $lreg << $scale]" %}
  5377   interface(MEMORY_INTER) %{
  5378     base($reg);
  5379     index($lreg);
  5380     scale($scale);
  5381     disp(0x0);
  5382   %}
  5383 %}
  5385 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5386 operand indIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegL lreg, immI2 scale)
  5387 %{
  5388   predicate(Universe::narrow_oop_shift() == 0);
  5389   constraint(ALLOC_IN_RC(ptr_reg));
  5390   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
  5392   op_cost(10);
  5393   format %{"[$reg + $off + $lreg << $scale]" %}
  5394   interface(MEMORY_INTER) %{
  5395     base($reg);
  5396     index($lreg);
  5397     scale($scale);
  5398     disp($off);
  5399   %}
  5400 %}
  5402 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
  5403 operand indPosIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegI idx, immI2 scale)
  5404 %{
  5405   constraint(ALLOC_IN_RC(ptr_reg));
  5406   predicate(Universe::narrow_oop_shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5407   match(AddP (AddP (DecodeN reg) (LShiftL (ConvI2L idx) scale)) off);
  5409   op_cost(10);
  5410   format %{"[$reg + $off + $idx << $scale]" %}
  5411   interface(MEMORY_INTER) %{
  5412     base($reg);
  5413     index($idx);
  5414     scale($scale);
  5415     disp($off);
  5416   %}
  5417 %}
  5420 //----------Special Memory Operands--------------------------------------------
  5421 // Stack Slot Operand - This operand is used for loading and storing temporary
  5422 //                      values on the stack where a match requires a value to
  5423 //                      flow through memory.
  5424 operand stackSlotP(sRegP reg)
  5425 %{
  5426   constraint(ALLOC_IN_RC(stack_slots));
  5427   // No match rule because this operand is only generated in matching
  5429   format %{ "[$reg]" %}
  5430   interface(MEMORY_INTER) %{
  5431     base(0x4);   // RSP
  5432     index(0x4);  // No Index
  5433     scale(0x0);  // No Scale
  5434     disp($reg);  // Stack Offset
  5435   %}
  5436 %}
  5438 operand stackSlotI(sRegI reg)
  5439 %{
  5440   constraint(ALLOC_IN_RC(stack_slots));
  5441   // No match rule because this operand is only generated in matching
  5443   format %{ "[$reg]" %}
  5444   interface(MEMORY_INTER) %{
  5445     base(0x4);   // RSP
  5446     index(0x4);  // No Index
  5447     scale(0x0);  // No Scale
  5448     disp($reg);  // Stack Offset
  5449   %}
  5450 %}
  5452 operand stackSlotF(sRegF reg)
  5453 %{
  5454   constraint(ALLOC_IN_RC(stack_slots));
  5455   // No match rule because this operand is only generated in matching
  5457   format %{ "[$reg]" %}
  5458   interface(MEMORY_INTER) %{
  5459     base(0x4);   // RSP
  5460     index(0x4);  // No Index
  5461     scale(0x0);  // No Scale
  5462     disp($reg);  // Stack Offset
  5463   %}
  5464 %}
  5466 operand stackSlotD(sRegD reg)
  5467 %{
  5468   constraint(ALLOC_IN_RC(stack_slots));
  5469   // No match rule because this operand is only generated in matching
  5471   format %{ "[$reg]" %}
  5472   interface(MEMORY_INTER) %{
  5473     base(0x4);   // RSP
  5474     index(0x4);  // No Index
  5475     scale(0x0);  // No Scale
  5476     disp($reg);  // Stack Offset
  5477   %}
  5478 %}
  5479 operand stackSlotL(sRegL reg)
  5480 %{
  5481   constraint(ALLOC_IN_RC(stack_slots));
  5482   // No match rule because this operand is only generated in matching
  5484   format %{ "[$reg]" %}
  5485   interface(MEMORY_INTER) %{
  5486     base(0x4);   // RSP
  5487     index(0x4);  // No Index
  5488     scale(0x0);  // No Scale
  5489     disp($reg);  // Stack Offset
  5490   %}
  5491 %}
  5493 //----------Conditional Branch Operands----------------------------------------
  5494 // Comparison Op  - This is the operation of the comparison, and is limited to
  5495 //                  the following set of codes:
  5496 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5497 //
  5498 // Other attributes of the comparison, such as unsignedness, are specified
  5499 // by the comparison instruction that sets a condition code flags register.
  5500 // That result is represented by a flags operand whose subtype is appropriate
  5501 // to the unsignedness (etc.) of the comparison.
  5502 //
  5503 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5504 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5505 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5507 // Comparision Code
  5508 operand cmpOp()
  5509 %{
  5510   match(Bool);
  5512   format %{ "" %}
  5513   interface(COND_INTER) %{
  5514     equal(0x4, "e");
  5515     not_equal(0x5, "ne");
  5516     less(0xC, "l");
  5517     greater_equal(0xD, "ge");
  5518     less_equal(0xE, "le");
  5519     greater(0xF, "g");
  5520   %}
  5521 %}
  5523 // Comparison Code, unsigned compare.  Used by FP also, with
  5524 // C2 (unordered) turned into GT or LT already.  The other bits
  5525 // C0 and C3 are turned into Carry & Zero flags.
  5526 operand cmpOpU()
  5527 %{
  5528   match(Bool);
  5530   format %{ "" %}
  5531   interface(COND_INTER) %{
  5532     equal(0x4, "e");
  5533     not_equal(0x5, "ne");
  5534     less(0x2, "b");
  5535     greater_equal(0x3, "nb");
  5536     less_equal(0x6, "be");
  5537     greater(0x7, "nbe");
  5538   %}
  5539 %}
  5542 // Floating comparisons that don't require any fixup for the unordered case
  5543 operand cmpOpUCF() %{
  5544   match(Bool);
  5545   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5546             n->as_Bool()->_test._test == BoolTest::ge ||
  5547             n->as_Bool()->_test._test == BoolTest::le ||
  5548             n->as_Bool()->_test._test == BoolTest::gt);
  5549   format %{ "" %}
  5550   interface(COND_INTER) %{
  5551     equal(0x4, "e");
  5552     not_equal(0x5, "ne");
  5553     less(0x2, "b");
  5554     greater_equal(0x3, "nb");
  5555     less_equal(0x6, "be");
  5556     greater(0x7, "nbe");
  5557   %}
  5558 %}
  5561 // Floating comparisons that can be fixed up with extra conditional jumps
  5562 operand cmpOpUCF2() %{
  5563   match(Bool);
  5564   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5565             n->as_Bool()->_test._test == BoolTest::eq);
  5566   format %{ "" %}
  5567   interface(COND_INTER) %{
  5568     equal(0x4, "e");
  5569     not_equal(0x5, "ne");
  5570     less(0x2, "b");
  5571     greater_equal(0x3, "nb");
  5572     less_equal(0x6, "be");
  5573     greater(0x7, "nbe");
  5574   %}
  5575 %}
  5578 //----------OPERAND CLASSES----------------------------------------------------
  5579 // Operand Classes are groups of operands that are used as to simplify
  5580 // instruction definitions by not requiring the AD writer to specify separate
  5581 // instructions for every form of operand when the instruction accepts
  5582 // multiple operand types with the same basic encoding and format.  The classic
  5583 // case of this is memory operands.
  5585 opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
  5586                indIndexScale, indIndexScaleOffset, indPosIndexScaleOffset,
  5587                indCompressedOopOffset,
  5588                indirectNarrow, indOffset8Narrow, indOffset32Narrow,
  5589                indIndexOffsetNarrow, indIndexNarrow, indIndexScaleNarrow,
  5590                indIndexScaleOffsetNarrow, indPosIndexScaleOffsetNarrow);
  5592 //----------PIPELINE-----------------------------------------------------------
  5593 // Rules which define the behavior of the target architectures pipeline.
  5594 pipeline %{
  5596 //----------ATTRIBUTES---------------------------------------------------------
  5597 attributes %{
  5598   variable_size_instructions;        // Fixed size instructions
  5599   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5600   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5601   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5602   instruction_fetch_units = 1;       // of 16 bytes
  5604   // List of nop instructions
  5605   nops( MachNop );
  5606 %}
  5608 //----------RESOURCES----------------------------------------------------------
  5609 // Resources are the functional units available to the machine
  5611 // Generic P2/P3 pipeline
  5612 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5613 // 3 instructions decoded per cycle.
  5614 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5615 // 3 ALU op, only ALU0 handles mul instructions.
  5616 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5617            MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
  5618            BR, FPU,
  5619            ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
  5621 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5622 // Pipeline Description specifies the stages in the machine's pipeline
  5624 // Generic P2/P3 pipeline
  5625 pipe_desc(S0, S1, S2, S3, S4, S5);
  5627 //----------PIPELINE CLASSES---------------------------------------------------
  5628 // Pipeline Classes describe the stages in which input and output are
  5629 // referenced by the hardware pipeline.
  5631 // Naming convention: ialu or fpu
  5632 // Then: _reg
  5633 // Then: _reg if there is a 2nd register
  5634 // Then: _long if it's a pair of instructions implementing a long
  5635 // Then: _fat if it requires the big decoder
  5636 //   Or: _mem if it requires the big decoder and a memory unit.
  5638 // Integer ALU reg operation
  5639 pipe_class ialu_reg(rRegI dst)
  5640 %{
  5641     single_instruction;
  5642     dst    : S4(write);
  5643     dst    : S3(read);
  5644     DECODE : S0;        // any decoder
  5645     ALU    : S3;        // any alu
  5646 %}
  5648 // Long ALU reg operation
  5649 pipe_class ialu_reg_long(rRegL dst)
  5650 %{
  5651     instruction_count(2);
  5652     dst    : S4(write);
  5653     dst    : S3(read);
  5654     DECODE : S0(2);     // any 2 decoders
  5655     ALU    : S3(2);     // both alus
  5656 %}
  5658 // Integer ALU reg operation using big decoder
  5659 pipe_class ialu_reg_fat(rRegI dst)
  5660 %{
  5661     single_instruction;
  5662     dst    : S4(write);
  5663     dst    : S3(read);
  5664     D0     : S0;        // big decoder only
  5665     ALU    : S3;        // any alu
  5666 %}
  5668 // Long ALU reg operation using big decoder
  5669 pipe_class ialu_reg_long_fat(rRegL dst)
  5670 %{
  5671     instruction_count(2);
  5672     dst    : S4(write);
  5673     dst    : S3(read);
  5674     D0     : S0(2);     // big decoder only; twice
  5675     ALU    : S3(2);     // any 2 alus
  5676 %}
  5678 // Integer ALU reg-reg operation
  5679 pipe_class ialu_reg_reg(rRegI dst, rRegI src)
  5680 %{
  5681     single_instruction;
  5682     dst    : S4(write);
  5683     src    : S3(read);
  5684     DECODE : S0;        // any decoder
  5685     ALU    : S3;        // any alu
  5686 %}
  5688 // Long ALU reg-reg operation
  5689 pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
  5690 %{
  5691     instruction_count(2);
  5692     dst    : S4(write);
  5693     src    : S3(read);
  5694     DECODE : S0(2);     // any 2 decoders
  5695     ALU    : S3(2);     // both alus
  5696 %}
  5698 // Integer ALU reg-reg operation
  5699 pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
  5700 %{
  5701     single_instruction;
  5702     dst    : S4(write);
  5703     src    : S3(read);
  5704     D0     : S0;        // big decoder only
  5705     ALU    : S3;        // any alu
  5706 %}
  5708 // Long ALU reg-reg operation
  5709 pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
  5710 %{
  5711     instruction_count(2);
  5712     dst    : S4(write);
  5713     src    : S3(read);
  5714     D0     : S0(2);     // big decoder only; twice
  5715     ALU    : S3(2);     // both alus
  5716 %}
  5718 // Integer ALU reg-mem operation
  5719 pipe_class ialu_reg_mem(rRegI dst, memory mem)
  5720 %{
  5721     single_instruction;
  5722     dst    : S5(write);
  5723     mem    : S3(read);
  5724     D0     : S0;        // big decoder only
  5725     ALU    : S4;        // any alu
  5726     MEM    : S3;        // any mem
  5727 %}
  5729 // Integer mem operation (prefetch)
  5730 pipe_class ialu_mem(memory mem)
  5731 %{
  5732     single_instruction;
  5733     mem    : S3(read);
  5734     D0     : S0;        // big decoder only
  5735     MEM    : S3;        // any mem
  5736 %}
  5738 // Integer Store to Memory
  5739 pipe_class ialu_mem_reg(memory mem, rRegI src)
  5740 %{
  5741     single_instruction;
  5742     mem    : S3(read);
  5743     src    : S5(read);
  5744     D0     : S0;        // big decoder only
  5745     ALU    : S4;        // any alu
  5746     MEM    : S3;
  5747 %}
  5749 // // Long Store to Memory
  5750 // pipe_class ialu_mem_long_reg(memory mem, rRegL src)
  5751 // %{
  5752 //     instruction_count(2);
  5753 //     mem    : S3(read);
  5754 //     src    : S5(read);
  5755 //     D0     : S0(2);          // big decoder only; twice
  5756 //     ALU    : S4(2);     // any 2 alus
  5757 //     MEM    : S3(2);  // Both mems
  5758 // %}
  5760 // Integer Store to Memory
  5761 pipe_class ialu_mem_imm(memory mem)
  5762 %{
  5763     single_instruction;
  5764     mem    : S3(read);
  5765     D0     : S0;        // big decoder only
  5766     ALU    : S4;        // any alu
  5767     MEM    : S3;
  5768 %}
  5770 // Integer ALU0 reg-reg operation
  5771 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
  5772 %{
  5773     single_instruction;
  5774     dst    : S4(write);
  5775     src    : S3(read);
  5776     D0     : S0;        // Big decoder only
  5777     ALU0   : S3;        // only alu0
  5778 %}
  5780 // Integer ALU0 reg-mem operation
  5781 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
  5782 %{
  5783     single_instruction;
  5784     dst    : S5(write);
  5785     mem    : S3(read);
  5786     D0     : S0;        // big decoder only
  5787     ALU0   : S4;        // ALU0 only
  5788     MEM    : S3;        // any mem
  5789 %}
  5791 // Integer ALU reg-reg operation
  5792 pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
  5793 %{
  5794     single_instruction;
  5795     cr     : S4(write);
  5796     src1   : S3(read);
  5797     src2   : S3(read);
  5798     DECODE : S0;        // any decoder
  5799     ALU    : S3;        // any alu
  5800 %}
  5802 // Integer ALU reg-imm operation
  5803 pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
  5804 %{
  5805     single_instruction;
  5806     cr     : S4(write);
  5807     src1   : S3(read);
  5808     DECODE : S0;        // any decoder
  5809     ALU    : S3;        // any alu
  5810 %}
  5812 // Integer ALU reg-mem operation
  5813 pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
  5814 %{
  5815     single_instruction;
  5816     cr     : S4(write);
  5817     src1   : S3(read);
  5818     src2   : S3(read);
  5819     D0     : S0;        // big decoder only
  5820     ALU    : S4;        // any alu
  5821     MEM    : S3;
  5822 %}
  5824 // Conditional move reg-reg
  5825 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
  5826 %{
  5827     instruction_count(4);
  5828     y      : S4(read);
  5829     q      : S3(read);
  5830     p      : S3(read);
  5831     DECODE : S0(4);     // any decoder
  5832 %}
  5834 // Conditional move reg-reg
  5835 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
  5836 %{
  5837     single_instruction;
  5838     dst    : S4(write);
  5839     src    : S3(read);
  5840     cr     : S3(read);
  5841     DECODE : S0;        // any decoder
  5842 %}
  5844 // Conditional move reg-mem
  5845 pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
  5846 %{
  5847     single_instruction;
  5848     dst    : S4(write);
  5849     src    : S3(read);
  5850     cr     : S3(read);
  5851     DECODE : S0;        // any decoder
  5852     MEM    : S3;
  5853 %}
  5855 // Conditional move reg-reg long
  5856 pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
  5857 %{
  5858     single_instruction;
  5859     dst    : S4(write);
  5860     src    : S3(read);
  5861     cr     : S3(read);
  5862     DECODE : S0(2);     // any 2 decoders
  5863 %}
  5865 // XXX
  5866 // // Conditional move double reg-reg
  5867 // pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
  5868 // %{
  5869 //     single_instruction;
  5870 //     dst    : S4(write);
  5871 //     src    : S3(read);
  5872 //     cr     : S3(read);
  5873 //     DECODE : S0;     // any decoder
  5874 // %}
  5876 // Float reg-reg operation
  5877 pipe_class fpu_reg(regD dst)
  5878 %{
  5879     instruction_count(2);
  5880     dst    : S3(read);
  5881     DECODE : S0(2);     // any 2 decoders
  5882     FPU    : S3;
  5883 %}
  5885 // Float reg-reg operation
  5886 pipe_class fpu_reg_reg(regD dst, regD src)
  5887 %{
  5888     instruction_count(2);
  5889     dst    : S4(write);
  5890     src    : S3(read);
  5891     DECODE : S0(2);     // any 2 decoders
  5892     FPU    : S3;
  5893 %}
  5895 // Float reg-reg operation
  5896 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
  5897 %{
  5898     instruction_count(3);
  5899     dst    : S4(write);
  5900     src1   : S3(read);
  5901     src2   : S3(read);
  5902     DECODE : S0(3);     // any 3 decoders
  5903     FPU    : S3(2);
  5904 %}
  5906 // Float reg-reg operation
  5907 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
  5908 %{
  5909     instruction_count(4);
  5910     dst    : S4(write);
  5911     src1   : S3(read);
  5912     src2   : S3(read);
  5913     src3   : S3(read);
  5914     DECODE : S0(4);     // any 3 decoders
  5915     FPU    : S3(2);
  5916 %}
  5918 // Float reg-reg operation
  5919 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
  5920 %{
  5921     instruction_count(4);
  5922     dst    : S4(write);
  5923     src1   : S3(read);
  5924     src2   : S3(read);
  5925     src3   : S3(read);
  5926     DECODE : S1(3);     // any 3 decoders
  5927     D0     : S0;        // Big decoder only
  5928     FPU    : S3(2);
  5929     MEM    : S3;
  5930 %}
  5932 // Float reg-mem operation
  5933 pipe_class fpu_reg_mem(regD dst, memory mem)
  5934 %{
  5935     instruction_count(2);
  5936     dst    : S5(write);
  5937     mem    : S3(read);
  5938     D0     : S0;        // big decoder only
  5939     DECODE : S1;        // any decoder for FPU POP
  5940     FPU    : S4;
  5941     MEM    : S3;        // any mem
  5942 %}
  5944 // Float reg-mem operation
  5945 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
  5946 %{
  5947     instruction_count(3);
  5948     dst    : S5(write);
  5949     src1   : S3(read);
  5950     mem    : S3(read);
  5951     D0     : S0;        // big decoder only
  5952     DECODE : S1(2);     // any decoder for FPU POP
  5953     FPU    : S4;
  5954     MEM    : S3;        // any mem
  5955 %}
  5957 // Float mem-reg operation
  5958 pipe_class fpu_mem_reg(memory mem, regD src)
  5959 %{
  5960     instruction_count(2);
  5961     src    : S5(read);
  5962     mem    : S3(read);
  5963     DECODE : S0;        // any decoder for FPU PUSH
  5964     D0     : S1;        // big decoder only
  5965     FPU    : S4;
  5966     MEM    : S3;        // any mem
  5967 %}
  5969 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
  5970 %{
  5971     instruction_count(3);
  5972     src1   : S3(read);
  5973     src2   : S3(read);
  5974     mem    : S3(read);
  5975     DECODE : S0(2);     // any decoder for FPU PUSH
  5976     D0     : S1;        // big decoder only
  5977     FPU    : S4;
  5978     MEM    : S3;        // any mem
  5979 %}
  5981 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
  5982 %{
  5983     instruction_count(3);
  5984     src1   : S3(read);
  5985     src2   : S3(read);
  5986     mem    : S4(read);
  5987     DECODE : S0;        // any decoder for FPU PUSH
  5988     D0     : S0(2);     // big decoder only
  5989     FPU    : S4;
  5990     MEM    : S3(2);     // any mem
  5991 %}
  5993 pipe_class fpu_mem_mem(memory dst, memory src1)
  5994 %{
  5995     instruction_count(2);
  5996     src1   : S3(read);
  5997     dst    : S4(read);
  5998     D0     : S0(2);     // big decoder only
  5999     MEM    : S3(2);     // any mem
  6000 %}
  6002 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
  6003 %{
  6004     instruction_count(3);
  6005     src1   : S3(read);
  6006     src2   : S3(read);
  6007     dst    : S4(read);
  6008     D0     : S0(3);     // big decoder only
  6009     FPU    : S4;
  6010     MEM    : S3(3);     // any mem
  6011 %}
  6013 pipe_class fpu_mem_reg_con(memory mem, regD src1)
  6014 %{
  6015     instruction_count(3);
  6016     src1   : S4(read);
  6017     mem    : S4(read);
  6018     DECODE : S0;        // any decoder for FPU PUSH
  6019     D0     : S0(2);     // big decoder only
  6020     FPU    : S4;
  6021     MEM    : S3(2);     // any mem
  6022 %}
  6024 // Float load constant
  6025 pipe_class fpu_reg_con(regD dst)
  6026 %{
  6027     instruction_count(2);
  6028     dst    : S5(write);
  6029     D0     : S0;        // big decoder only for the load
  6030     DECODE : S1;        // any decoder for FPU POP
  6031     FPU    : S4;
  6032     MEM    : S3;        // any mem
  6033 %}
  6035 // Float load constant
  6036 pipe_class fpu_reg_reg_con(regD dst, regD src)
  6037 %{
  6038     instruction_count(3);
  6039     dst    : S5(write);
  6040     src    : S3(read);
  6041     D0     : S0;        // big decoder only for the load
  6042     DECODE : S1(2);     // any decoder for FPU POP
  6043     FPU    : S4;
  6044     MEM    : S3;        // any mem
  6045 %}
  6047 // UnConditional branch
  6048 pipe_class pipe_jmp(label labl)
  6049 %{
  6050     single_instruction;
  6051     BR   : S3;
  6052 %}
  6054 // Conditional branch
  6055 pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
  6056 %{
  6057     single_instruction;
  6058     cr    : S1(read);
  6059     BR    : S3;
  6060 %}
  6062 // Allocation idiom
  6063 pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
  6064 %{
  6065     instruction_count(1); force_serialization;
  6066     fixed_latency(6);
  6067     heap_ptr : S3(read);
  6068     DECODE   : S0(3);
  6069     D0       : S2;
  6070     MEM      : S3;
  6071     ALU      : S3(2);
  6072     dst      : S5(write);
  6073     BR       : S5;
  6074 %}
  6076 // Generic big/slow expanded idiom
  6077 pipe_class pipe_slow()
  6078 %{
  6079     instruction_count(10); multiple_bundles; force_serialization;
  6080     fixed_latency(100);
  6081     D0  : S0(2);
  6082     MEM : S3(2);
  6083 %}
  6085 // The real do-nothing guy
  6086 pipe_class empty()
  6087 %{
  6088     instruction_count(0);
  6089 %}
  6091 // Define the class for the Nop node
  6092 define
  6093 %{
  6094    MachNop = empty;
  6095 %}
  6097 %}
  6099 //----------INSTRUCTIONS-------------------------------------------------------
  6100 //
  6101 // match      -- States which machine-independent subtree may be replaced
  6102 //               by this instruction.
  6103 // ins_cost   -- The estimated cost of this instruction is used by instruction
  6104 //               selection to identify a minimum cost tree of machine
  6105 //               instructions that matches a tree of machine-independent
  6106 //               instructions.
  6107 // format     -- A string providing the disassembly for this instruction.
  6108 //               The value of an instruction's operand may be inserted
  6109 //               by referring to it with a '$' prefix.
  6110 // opcode     -- Three instruction opcodes may be provided.  These are referred
  6111 //               to within an encode class as $primary, $secondary, and $tertiary
  6112 //               rrspectively.  The primary opcode is commonly used to
  6113 //               indicate the type of machine instruction, while secondary
  6114 //               and tertiary are often used for prefix options or addressing
  6115 //               modes.
  6116 // ins_encode -- A list of encode classes with parameters. The encode class
  6117 //               name must have been defined in an 'enc_class' specification
  6118 //               in the encode section of the architecture description.
  6121 //----------Load/Store/Move Instructions---------------------------------------
  6122 //----------Load Instructions--------------------------------------------------
  6124 // Load Byte (8 bit signed)
  6125 instruct loadB(rRegI dst, memory mem)
  6126 %{
  6127   match(Set dst (LoadB mem));
  6129   ins_cost(125);
  6130   format %{ "movsbl  $dst, $mem\t# byte" %}
  6132   ins_encode %{
  6133     __ movsbl($dst$$Register, $mem$$Address);
  6134   %}
  6136   ins_pipe(ialu_reg_mem);
  6137 %}
  6139 // Load Byte (8 bit signed) into Long Register
  6140 instruct loadB2L(rRegL dst, memory mem)
  6141 %{
  6142   match(Set dst (ConvI2L (LoadB mem)));
  6144   ins_cost(125);
  6145   format %{ "movsbq  $dst, $mem\t# byte -> long" %}
  6147   ins_encode %{
  6148     __ movsbq($dst$$Register, $mem$$Address);
  6149   %}
  6151   ins_pipe(ialu_reg_mem);
  6152 %}
  6154 // Load Unsigned Byte (8 bit UNsigned)
  6155 instruct loadUB(rRegI dst, memory mem)
  6156 %{
  6157   match(Set dst (LoadUB mem));
  6159   ins_cost(125);
  6160   format %{ "movzbl  $dst, $mem\t# ubyte" %}
  6162   ins_encode %{
  6163     __ movzbl($dst$$Register, $mem$$Address);
  6164   %}
  6166   ins_pipe(ialu_reg_mem);
  6167 %}
  6169 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  6170 instruct loadUB2L(rRegL dst, memory mem)
  6171 %{
  6172   match(Set dst (ConvI2L (LoadUB mem)));
  6174   ins_cost(125);
  6175   format %{ "movzbq  $dst, $mem\t# ubyte -> long" %}
  6177   ins_encode %{
  6178     __ movzbq($dst$$Register, $mem$$Address);
  6179   %}
  6181   ins_pipe(ialu_reg_mem);
  6182 %}
  6184 // Load Short (16 bit signed)
  6185 instruct loadS(rRegI dst, memory mem)
  6186 %{
  6187   match(Set dst (LoadS mem));
  6189   ins_cost(125);
  6190   format %{ "movswl $dst, $mem\t# short" %}
  6192   ins_encode %{
  6193     __ movswl($dst$$Register, $mem$$Address);
  6194   %}
  6196   ins_pipe(ialu_reg_mem);
  6197 %}
  6199 // Load Short (16 bit signed) into Long Register
  6200 instruct loadS2L(rRegL dst, memory mem)
  6201 %{
  6202   match(Set dst (ConvI2L (LoadS mem)));
  6204   ins_cost(125);
  6205   format %{ "movswq $dst, $mem\t# short -> long" %}
  6207   ins_encode %{
  6208     __ movswq($dst$$Register, $mem$$Address);
  6209   %}
  6211   ins_pipe(ialu_reg_mem);
  6212 %}
  6214 // Load Unsigned Short/Char (16 bit UNsigned)
  6215 instruct loadUS(rRegI dst, memory mem)
  6216 %{
  6217   match(Set dst (LoadUS mem));
  6219   ins_cost(125);
  6220   format %{ "movzwl  $dst, $mem\t# ushort/char" %}
  6222   ins_encode %{
  6223     __ movzwl($dst$$Register, $mem$$Address);
  6224   %}
  6226   ins_pipe(ialu_reg_mem);
  6227 %}
  6229 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6230 instruct loadUS2L(rRegL dst, memory mem)
  6231 %{
  6232   match(Set dst (ConvI2L (LoadUS mem)));
  6234   ins_cost(125);
  6235   format %{ "movzwq  $dst, $mem\t# ushort/char -> long" %}
  6237   ins_encode %{
  6238     __ movzwq($dst$$Register, $mem$$Address);
  6239   %}
  6241   ins_pipe(ialu_reg_mem);
  6242 %}
  6244 // Load Integer
  6245 instruct loadI(rRegI dst, memory mem)
  6246 %{
  6247   match(Set dst (LoadI mem));
  6249   ins_cost(125);
  6250   format %{ "movl    $dst, $mem\t# int" %}
  6252   ins_encode %{
  6253     __ movl($dst$$Register, $mem$$Address);
  6254   %}
  6256   ins_pipe(ialu_reg_mem);
  6257 %}
  6259 // Load Integer into Long Register
  6260 instruct loadI2L(rRegL dst, memory mem)
  6261 %{
  6262   match(Set dst (ConvI2L (LoadI mem)));
  6264   ins_cost(125);
  6265   format %{ "movslq  $dst, $mem\t# int -> long" %}
  6267   ins_encode %{
  6268     __ movslq($dst$$Register, $mem$$Address);
  6269   %}
  6271   ins_pipe(ialu_reg_mem);
  6272 %}
  6274 // Load Unsigned Integer into Long Register
  6275 instruct loadUI2L(rRegL dst, memory mem)
  6276 %{
  6277   match(Set dst (LoadUI2L mem));
  6279   ins_cost(125);
  6280   format %{ "movl    $dst, $mem\t# uint -> long" %}
  6282   ins_encode %{
  6283     __ movl($dst$$Register, $mem$$Address);
  6284   %}
  6286   ins_pipe(ialu_reg_mem);
  6287 %}
  6289 // Load Long
  6290 instruct loadL(rRegL dst, memory mem)
  6291 %{
  6292   match(Set dst (LoadL mem));
  6294   ins_cost(125);
  6295   format %{ "movq    $dst, $mem\t# long" %}
  6297   ins_encode %{
  6298     __ movq($dst$$Register, $mem$$Address);
  6299   %}
  6301   ins_pipe(ialu_reg_mem); // XXX
  6302 %}
  6304 // Load Range
  6305 instruct loadRange(rRegI dst, memory mem)
  6306 %{
  6307   match(Set dst (LoadRange mem));
  6309   ins_cost(125); // XXX
  6310   format %{ "movl    $dst, $mem\t# range" %}
  6311   opcode(0x8B);
  6312   ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
  6313   ins_pipe(ialu_reg_mem);
  6314 %}
  6316 // Load Pointer
  6317 instruct loadP(rRegP dst, memory mem)
  6318 %{
  6319   match(Set dst (LoadP mem));
  6321   ins_cost(125); // XXX
  6322   format %{ "movq    $dst, $mem\t# ptr" %}
  6323   opcode(0x8B);
  6324   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6325   ins_pipe(ialu_reg_mem); // XXX
  6326 %}
  6328 // Load Compressed Pointer
  6329 instruct loadN(rRegN dst, memory mem)
  6330 %{
  6331    match(Set dst (LoadN mem));
  6333    ins_cost(125); // XXX
  6334    format %{ "movl    $dst, $mem\t# compressed ptr" %}
  6335    ins_encode %{
  6336      __ movl($dst$$Register, $mem$$Address);
  6337    %}
  6338    ins_pipe(ialu_reg_mem); // XXX
  6339 %}
  6342 // Load Klass Pointer
  6343 instruct loadKlass(rRegP dst, memory mem)
  6344 %{
  6345   match(Set dst (LoadKlass mem));
  6347   ins_cost(125); // XXX
  6348   format %{ "movq    $dst, $mem\t# class" %}
  6349   opcode(0x8B);
  6350   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6351   ins_pipe(ialu_reg_mem); // XXX
  6352 %}
  6354 // Load narrow Klass Pointer
  6355 instruct loadNKlass(rRegN dst, memory mem)
  6356 %{
  6357   match(Set dst (LoadNKlass mem));
  6359   ins_cost(125); // XXX
  6360   format %{ "movl    $dst, $mem\t# compressed klass ptr" %}
  6361   ins_encode %{
  6362     __ movl($dst$$Register, $mem$$Address);
  6363   %}
  6364   ins_pipe(ialu_reg_mem); // XXX
  6365 %}
  6367 // Load Float
  6368 instruct loadF(regF dst, memory mem)
  6369 %{
  6370   match(Set dst (LoadF mem));
  6372   ins_cost(145); // XXX
  6373   format %{ "movss   $dst, $mem\t# float" %}
  6374   opcode(0xF3, 0x0F, 0x10);
  6375   ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
  6376   ins_pipe(pipe_slow); // XXX
  6377 %}
  6379 // Load Double
  6380 instruct loadD_partial(regD dst, memory mem)
  6381 %{
  6382   predicate(!UseXmmLoadAndClearUpper);
  6383   match(Set dst (LoadD mem));
  6385   ins_cost(145); // XXX
  6386   format %{ "movlpd  $dst, $mem\t# double" %}
  6387   opcode(0x66, 0x0F, 0x12);
  6388   ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
  6389   ins_pipe(pipe_slow); // XXX
  6390 %}
  6392 instruct loadD(regD dst, memory mem)
  6393 %{
  6394   predicate(UseXmmLoadAndClearUpper);
  6395   match(Set dst (LoadD mem));
  6397   ins_cost(145); // XXX
  6398   format %{ "movsd   $dst, $mem\t# double" %}
  6399   opcode(0xF2, 0x0F, 0x10);
  6400   ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
  6401   ins_pipe(pipe_slow); // XXX
  6402 %}
  6404 // Load Aligned Packed Byte to XMM register
  6405 instruct loadA8B(regD dst, memory mem) %{
  6406   match(Set dst (Load8B mem));
  6407   ins_cost(125);
  6408   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  6409   ins_encode( movq_ld(dst, mem));
  6410   ins_pipe( pipe_slow );
  6411 %}
  6413 // Load Aligned Packed Short to XMM register
  6414 instruct loadA4S(regD dst, memory mem) %{
  6415   match(Set dst (Load4S mem));
  6416   ins_cost(125);
  6417   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  6418   ins_encode( movq_ld(dst, mem));
  6419   ins_pipe( pipe_slow );
  6420 %}
  6422 // Load Aligned Packed Char to XMM register
  6423 instruct loadA4C(regD dst, memory mem) %{
  6424   match(Set dst (Load4C mem));
  6425   ins_cost(125);
  6426   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  6427   ins_encode( movq_ld(dst, mem));
  6428   ins_pipe( pipe_slow );
  6429 %}
  6431 // Load Aligned Packed Integer to XMM register
  6432 instruct load2IU(regD dst, memory mem) %{
  6433   match(Set dst (Load2I mem));
  6434   ins_cost(125);
  6435   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  6436   ins_encode( movq_ld(dst, mem));
  6437   ins_pipe( pipe_slow );
  6438 %}
  6440 // Load Aligned Packed Single to XMM
  6441 instruct loadA2F(regD dst, memory mem) %{
  6442   match(Set dst (Load2F mem));
  6443   ins_cost(145);
  6444   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  6445   ins_encode( movq_ld(dst, mem));
  6446   ins_pipe( pipe_slow );
  6447 %}
  6449 // Load Effective Address
  6450 instruct leaP8(rRegP dst, indOffset8 mem)
  6451 %{
  6452   match(Set dst mem);
  6454   ins_cost(110); // XXX
  6455   format %{ "leaq    $dst, $mem\t# ptr 8" %}
  6456   opcode(0x8D);
  6457   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6458   ins_pipe(ialu_reg_reg_fat);
  6459 %}
  6461 instruct leaP32(rRegP dst, indOffset32 mem)
  6462 %{
  6463   match(Set dst mem);
  6465   ins_cost(110);
  6466   format %{ "leaq    $dst, $mem\t# ptr 32" %}
  6467   opcode(0x8D);
  6468   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6469   ins_pipe(ialu_reg_reg_fat);
  6470 %}
  6472 // instruct leaPIdx(rRegP dst, indIndex mem)
  6473 // %{
  6474 //   match(Set dst mem);
  6476 //   ins_cost(110);
  6477 //   format %{ "leaq    $dst, $mem\t# ptr idx" %}
  6478 //   opcode(0x8D);
  6479 //   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6480 //   ins_pipe(ialu_reg_reg_fat);
  6481 // %}
  6483 instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
  6484 %{
  6485   match(Set dst mem);
  6487   ins_cost(110);
  6488   format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
  6489   opcode(0x8D);
  6490   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6491   ins_pipe(ialu_reg_reg_fat);
  6492 %}
  6494 instruct leaPIdxScale(rRegP dst, indIndexScale mem)
  6495 %{
  6496   match(Set dst mem);
  6498   ins_cost(110);
  6499   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
  6500   opcode(0x8D);
  6501   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6502   ins_pipe(ialu_reg_reg_fat);
  6503 %}
  6505 instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
  6506 %{
  6507   match(Set dst mem);
  6509   ins_cost(110);
  6510   format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
  6511   opcode(0x8D);
  6512   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6513   ins_pipe(ialu_reg_reg_fat);
  6514 %}
  6516 instruct leaPPosIdxScaleOff(rRegP dst, indPosIndexScaleOffset mem)
  6517 %{
  6518   match(Set dst mem);
  6520   ins_cost(110);
  6521   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoff" %}
  6522   opcode(0x8D);
  6523   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6524   ins_pipe(ialu_reg_reg_fat);
  6525 %}
  6527 // Load Effective Address which uses Narrow (32-bits) oop
  6528 instruct leaPCompressedOopOffset(rRegP dst, indCompressedOopOffset mem)
  6529 %{
  6530   predicate(UseCompressedOops && (Universe::narrow_oop_shift() != 0));
  6531   match(Set dst mem);
  6533   ins_cost(110);
  6534   format %{ "leaq    $dst, $mem\t# ptr compressedoopoff32" %}
  6535   opcode(0x8D);
  6536   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6537   ins_pipe(ialu_reg_reg_fat);
  6538 %}
  6540 instruct leaP8Narrow(rRegP dst, indOffset8Narrow mem)
  6541 %{
  6542   predicate(Universe::narrow_oop_shift() == 0);
  6543   match(Set dst mem);
  6545   ins_cost(110); // XXX
  6546   format %{ "leaq    $dst, $mem\t# ptr off8narrow" %}
  6547   opcode(0x8D);
  6548   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6549   ins_pipe(ialu_reg_reg_fat);
  6550 %}
  6552 instruct leaP32Narrow(rRegP dst, indOffset32Narrow mem)
  6553 %{
  6554   predicate(Universe::narrow_oop_shift() == 0);
  6555   match(Set dst mem);
  6557   ins_cost(110);
  6558   format %{ "leaq    $dst, $mem\t# ptr off32narrow" %}
  6559   opcode(0x8D);
  6560   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6561   ins_pipe(ialu_reg_reg_fat);
  6562 %}
  6564 instruct leaPIdxOffNarrow(rRegP dst, indIndexOffsetNarrow mem)
  6565 %{
  6566   predicate(Universe::narrow_oop_shift() == 0);
  6567   match(Set dst mem);
  6569   ins_cost(110);
  6570   format %{ "leaq    $dst, $mem\t# ptr idxoffnarrow" %}
  6571   opcode(0x8D);
  6572   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6573   ins_pipe(ialu_reg_reg_fat);
  6574 %}
  6576 instruct leaPIdxScaleNarrow(rRegP dst, indIndexScaleNarrow mem)
  6577 %{
  6578   predicate(Universe::narrow_oop_shift() == 0);
  6579   match(Set dst mem);
  6581   ins_cost(110);
  6582   format %{ "leaq    $dst, $mem\t# ptr idxscalenarrow" %}
  6583   opcode(0x8D);
  6584   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6585   ins_pipe(ialu_reg_reg_fat);
  6586 %}
  6588 instruct leaPIdxScaleOffNarrow(rRegP dst, indIndexScaleOffsetNarrow mem)
  6589 %{
  6590   predicate(Universe::narrow_oop_shift() == 0);
  6591   match(Set dst mem);
  6593   ins_cost(110);
  6594   format %{ "leaq    $dst, $mem\t# ptr idxscaleoffnarrow" %}
  6595   opcode(0x8D);
  6596   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6597   ins_pipe(ialu_reg_reg_fat);
  6598 %}
  6600 instruct leaPPosIdxScaleOffNarrow(rRegP dst, indPosIndexScaleOffsetNarrow mem)
  6601 %{
  6602   predicate(Universe::narrow_oop_shift() == 0);
  6603   match(Set dst mem);
  6605   ins_cost(110);
  6606   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoffnarrow" %}
  6607   opcode(0x8D);
  6608   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6609   ins_pipe(ialu_reg_reg_fat);
  6610 %}
  6612 instruct loadConI(rRegI dst, immI src)
  6613 %{
  6614   match(Set dst src);
  6616   format %{ "movl    $dst, $src\t# int" %}
  6617   ins_encode(load_immI(dst, src));
  6618   ins_pipe(ialu_reg_fat); // XXX
  6619 %}
  6621 instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
  6622 %{
  6623   match(Set dst src);
  6624   effect(KILL cr);
  6626   ins_cost(50);
  6627   format %{ "xorl    $dst, $dst\t# int" %}
  6628   opcode(0x33); /* + rd */
  6629   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
  6630   ins_pipe(ialu_reg);
  6631 %}
  6633 instruct loadConL(rRegL dst, immL src)
  6634 %{
  6635   match(Set dst src);
  6637   ins_cost(150);
  6638   format %{ "movq    $dst, $src\t# long" %}
  6639   ins_encode(load_immL(dst, src));
  6640   ins_pipe(ialu_reg);
  6641 %}
  6643 instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
  6644 %{
  6645   match(Set dst src);
  6646   effect(KILL cr);
  6648   ins_cost(50);
  6649   format %{ "xorl    $dst, $dst\t# long" %}
  6650   opcode(0x33); /* + rd */
  6651   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
  6652   ins_pipe(ialu_reg); // XXX
  6653 %}
  6655 instruct loadConUL32(rRegL dst, immUL32 src)
  6656 %{
  6657   match(Set dst src);
  6659   ins_cost(60);
  6660   format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
  6661   ins_encode(load_immUL32(dst, src));
  6662   ins_pipe(ialu_reg);
  6663 %}
  6665 instruct loadConL32(rRegL dst, immL32 src)
  6666 %{
  6667   match(Set dst src);
  6669   ins_cost(70);
  6670   format %{ "movq    $dst, $src\t# long (32-bit)" %}
  6671   ins_encode(load_immL32(dst, src));
  6672   ins_pipe(ialu_reg);
  6673 %}
  6675 instruct loadConP(rRegP dst, immP src)
  6676 %{
  6677   match(Set dst src);
  6679   format %{ "movq    $dst, $src\t# ptr" %}
  6680   ins_encode(load_immP(dst, src));
  6681   ins_pipe(ialu_reg_fat); // XXX
  6682 %}
  6684 instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
  6685 %{
  6686   match(Set dst src);
  6687   effect(KILL cr);
  6689   ins_cost(50);
  6690   format %{ "xorl    $dst, $dst\t# ptr" %}
  6691   opcode(0x33); /* + rd */
  6692   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
  6693   ins_pipe(ialu_reg);
  6694 %}
  6696 instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
  6697 %{
  6698   match(Set dst src);
  6699   effect(KILL cr);
  6701   ins_cost(60);
  6702   format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
  6703   ins_encode(load_immP31(dst, src));
  6704   ins_pipe(ialu_reg);
  6705 %}
  6707 instruct loadConF(regF dst, immF src)
  6708 %{
  6709   match(Set dst src);
  6710   ins_cost(125);
  6712   format %{ "movss   $dst, [$src]" %}
  6713   ins_encode(load_conF(dst, src));
  6714   ins_pipe(pipe_slow);
  6715 %}
  6717 instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
  6718   match(Set dst src);
  6719   effect(KILL cr);
  6720   format %{ "xorq    $dst, $src\t# compressed NULL ptr" %}
  6721   ins_encode %{
  6722     __ xorq($dst$$Register, $dst$$Register);
  6723   %}
  6724   ins_pipe(ialu_reg);
  6725 %}
  6727 instruct loadConN(rRegN dst, immN src) %{
  6728   match(Set dst src);
  6730   ins_cost(125);
  6731   format %{ "movl    $dst, $src\t# compressed ptr" %}
  6732   ins_encode %{
  6733     address con = (address)$src$$constant;
  6734     if (con == NULL) {
  6735       ShouldNotReachHere();
  6736     } else {
  6737       __ set_narrow_oop($dst$$Register, (jobject)$src$$constant);
  6739   %}
  6740   ins_pipe(ialu_reg_fat); // XXX
  6741 %}
  6743 instruct loadConF0(regF dst, immF0 src)
  6744 %{
  6745   match(Set dst src);
  6746   ins_cost(100);
  6748   format %{ "xorps   $dst, $dst\t# float 0.0" %}
  6749   opcode(0x0F, 0x57);
  6750   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  6751   ins_pipe(pipe_slow);
  6752 %}
  6754 // Use the same format since predicate() can not be used here.
  6755 instruct loadConD(regD dst, immD src)
  6756 %{
  6757   match(Set dst src);
  6758   ins_cost(125);
  6760   format %{ "movsd   $dst, [$src]" %}
  6761   ins_encode(load_conD(dst, src));
  6762   ins_pipe(pipe_slow);
  6763 %}
  6765 instruct loadConD0(regD dst, immD0 src)
  6766 %{
  6767   match(Set dst src);
  6768   ins_cost(100);
  6770   format %{ "xorpd   $dst, $dst\t# double 0.0" %}
  6771   opcode(0x66, 0x0F, 0x57);
  6772   ins_encode(OpcP, REX_reg_reg(dst, dst), OpcS, OpcT, reg_reg(dst, dst));
  6773   ins_pipe(pipe_slow);
  6774 %}
  6776 instruct loadSSI(rRegI dst, stackSlotI src)
  6777 %{
  6778   match(Set dst src);
  6780   ins_cost(125);
  6781   format %{ "movl    $dst, $src\t# int stk" %}
  6782   opcode(0x8B);
  6783   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  6784   ins_pipe(ialu_reg_mem);
  6785 %}
  6787 instruct loadSSL(rRegL dst, stackSlotL src)
  6788 %{
  6789   match(Set dst src);
  6791   ins_cost(125);
  6792   format %{ "movq    $dst, $src\t# long stk" %}
  6793   opcode(0x8B);
  6794   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  6795   ins_pipe(ialu_reg_mem);
  6796 %}
  6798 instruct loadSSP(rRegP dst, stackSlotP src)
  6799 %{
  6800   match(Set dst src);
  6802   ins_cost(125);
  6803   format %{ "movq    $dst, $src\t# ptr stk" %}
  6804   opcode(0x8B);
  6805   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  6806   ins_pipe(ialu_reg_mem);
  6807 %}
  6809 instruct loadSSF(regF dst, stackSlotF src)
  6810 %{
  6811   match(Set dst src);
  6813   ins_cost(125);
  6814   format %{ "movss   $dst, $src\t# float stk" %}
  6815   opcode(0xF3, 0x0F, 0x10);
  6816   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
  6817   ins_pipe(pipe_slow); // XXX
  6818 %}
  6820 // Use the same format since predicate() can not be used here.
  6821 instruct loadSSD(regD dst, stackSlotD src)
  6822 %{
  6823   match(Set dst src);
  6825   ins_cost(125);
  6826   format %{ "movsd   $dst, $src\t# double stk" %}
  6827   ins_encode  %{
  6828     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
  6829   %}
  6830   ins_pipe(pipe_slow); // XXX
  6831 %}
  6833 // Prefetch instructions.
  6834 // Must be safe to execute with invalid address (cannot fault).
  6836 instruct prefetchr( memory mem ) %{
  6837   predicate(ReadPrefetchInstr==3);
  6838   match(PrefetchRead mem);
  6839   ins_cost(125);
  6841   format %{ "PREFETCHR $mem\t# Prefetch into level 1 cache" %}
  6842   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /0 */
  6843   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
  6844   ins_pipe(ialu_mem);
  6845 %}
  6847 instruct prefetchrNTA( memory mem ) %{
  6848   predicate(ReadPrefetchInstr==0);
  6849   match(PrefetchRead mem);
  6850   ins_cost(125);
  6852   format %{ "PREFETCHNTA $mem\t# Prefetch into non-temporal cache for read" %}
  6853   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  6854   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
  6855   ins_pipe(ialu_mem);
  6856 %}
  6858 instruct prefetchrT0( memory mem ) %{
  6859   predicate(ReadPrefetchInstr==1);
  6860   match(PrefetchRead mem);
  6861   ins_cost(125);
  6863   format %{ "PREFETCHT0 $mem\t# prefetch into L1 and L2 caches for read" %}
  6864   opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */
  6865   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
  6866   ins_pipe(ialu_mem);
  6867 %}
  6869 instruct prefetchrT2( memory mem ) %{
  6870   predicate(ReadPrefetchInstr==2);
  6871   match(PrefetchRead mem);
  6872   ins_cost(125);
  6874   format %{ "PREFETCHT2 $mem\t# prefetch into L2 caches for read" %}
  6875   opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */
  6876   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x03, mem));
  6877   ins_pipe(ialu_mem);
  6878 %}
  6880 instruct prefetchw( memory mem ) %{
  6881   predicate(AllocatePrefetchInstr==3);
  6882   match(PrefetchWrite mem);
  6883   ins_cost(125);
  6885   format %{ "PREFETCHW $mem\t# Prefetch into level 1 cache and mark modified" %}
  6886   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  6887   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
  6888   ins_pipe(ialu_mem);
  6889 %}
  6891 instruct prefetchwNTA( memory mem ) %{
  6892   predicate(AllocatePrefetchInstr==0);
  6893   match(PrefetchWrite mem);
  6894   ins_cost(125);
  6896   format %{ "PREFETCHNTA $mem\t# Prefetch to non-temporal cache for write" %}
  6897   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  6898   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
  6899   ins_pipe(ialu_mem);
  6900 %}
  6902 instruct prefetchwT0( memory mem ) %{
  6903   predicate(AllocatePrefetchInstr==1);
  6904   match(PrefetchWrite mem);
  6905   ins_cost(125);
  6907   format %{ "PREFETCHT0 $mem\t# Prefetch to level 1 and 2 caches for write" %}
  6908   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  6909   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
  6910   ins_pipe(ialu_mem);
  6911 %}
  6913 instruct prefetchwT2( memory mem ) %{
  6914   predicate(AllocatePrefetchInstr==2);
  6915   match(PrefetchWrite mem);
  6916   ins_cost(125);
  6918   format %{ "PREFETCHT2 $mem\t# Prefetch to level 2 cache for write" %}
  6919   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  6920   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x03, mem));
  6921   ins_pipe(ialu_mem);
  6922 %}
  6924 //----------Store Instructions-------------------------------------------------
  6926 // Store Byte
  6927 instruct storeB(memory mem, rRegI src)
  6928 %{
  6929   match(Set mem (StoreB mem src));
  6931   ins_cost(125); // XXX
  6932   format %{ "movb    $mem, $src\t# byte" %}
  6933   opcode(0x88);
  6934   ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
  6935   ins_pipe(ialu_mem_reg);
  6936 %}
  6938 // Store Char/Short
  6939 instruct storeC(memory mem, rRegI src)
  6940 %{
  6941   match(Set mem (StoreC mem src));
  6943   ins_cost(125); // XXX
  6944   format %{ "movw    $mem, $src\t# char/short" %}
  6945   opcode(0x89);
  6946   ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
  6947   ins_pipe(ialu_mem_reg);
  6948 %}
  6950 // Store Integer
  6951 instruct storeI(memory mem, rRegI src)
  6952 %{
  6953   match(Set mem (StoreI mem src));
  6955   ins_cost(125); // XXX
  6956   format %{ "movl    $mem, $src\t# int" %}
  6957   opcode(0x89);
  6958   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
  6959   ins_pipe(ialu_mem_reg);
  6960 %}
  6962 // Store Long
  6963 instruct storeL(memory mem, rRegL src)
  6964 %{
  6965   match(Set mem (StoreL mem src));
  6967   ins_cost(125); // XXX
  6968   format %{ "movq    $mem, $src\t# long" %}
  6969   opcode(0x89);
  6970   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
  6971   ins_pipe(ialu_mem_reg); // XXX
  6972 %}
  6974 // Store Pointer
  6975 instruct storeP(memory mem, any_RegP src)
  6976 %{
  6977   match(Set mem (StoreP mem src));
  6979   ins_cost(125); // XXX
  6980   format %{ "movq    $mem, $src\t# ptr" %}
  6981   opcode(0x89);
  6982   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
  6983   ins_pipe(ialu_mem_reg);
  6984 %}
  6986 instruct storeImmP0(memory mem, immP0 zero)
  6987 %{
  6988   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  6989   match(Set mem (StoreP mem zero));
  6991   ins_cost(125); // XXX
  6992   format %{ "movq    $mem, R12\t# ptr (R12_heapbase==0)" %}
  6993   ins_encode %{
  6994     __ movq($mem$$Address, r12);
  6995   %}
  6996   ins_pipe(ialu_mem_reg);
  6997 %}
  6999 // Store NULL Pointer, mark word, or other simple pointer constant.
  7000 instruct storeImmP(memory mem, immP31 src)
  7001 %{
  7002   match(Set mem (StoreP mem src));
  7004   ins_cost(150); // XXX
  7005   format %{ "movq    $mem, $src\t# ptr" %}
  7006   opcode(0xC7); /* C7 /0 */
  7007   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
  7008   ins_pipe(ialu_mem_imm);
  7009 %}
  7011 // Store Compressed Pointer
  7012 instruct storeN(memory mem, rRegN src)
  7013 %{
  7014   match(Set mem (StoreN mem src));
  7016   ins_cost(125); // XXX
  7017   format %{ "movl    $mem, $src\t# compressed ptr" %}
  7018   ins_encode %{
  7019     __ movl($mem$$Address, $src$$Register);
  7020   %}
  7021   ins_pipe(ialu_mem_reg);
  7022 %}
  7024 instruct storeImmN0(memory mem, immN0 zero)
  7025 %{
  7026   predicate(Universe::narrow_oop_base() == NULL);
  7027   match(Set mem (StoreN mem zero));
  7029   ins_cost(125); // XXX
  7030   format %{ "movl    $mem, R12\t# compressed ptr (R12_heapbase==0)" %}
  7031   ins_encode %{
  7032     __ movl($mem$$Address, r12);
  7033   %}
  7034   ins_pipe(ialu_mem_reg);
  7035 %}
  7037 instruct storeImmN(memory mem, immN src)
  7038 %{
  7039   match(Set mem (StoreN mem src));
  7041   ins_cost(150); // XXX
  7042   format %{ "movl    $mem, $src\t# compressed ptr" %}
  7043   ins_encode %{
  7044     address con = (address)$src$$constant;
  7045     if (con == NULL) {
  7046       __ movl($mem$$Address, (int32_t)0);
  7047     } else {
  7048       __ set_narrow_oop($mem$$Address, (jobject)$src$$constant);
  7050   %}
  7051   ins_pipe(ialu_mem_imm);
  7052 %}
  7054 // Store Integer Immediate
  7055 instruct storeImmI0(memory mem, immI0 zero)
  7056 %{
  7057   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  7058   match(Set mem (StoreI mem zero));
  7060   ins_cost(125); // XXX
  7061   format %{ "movl    $mem, R12\t# int (R12_heapbase==0)" %}
  7062   ins_encode %{
  7063     __ movl($mem$$Address, r12);
  7064   %}
  7065   ins_pipe(ialu_mem_reg);
  7066 %}
  7068 instruct storeImmI(memory mem, immI src)
  7069 %{
  7070   match(Set mem (StoreI mem src));
  7072   ins_cost(150);
  7073   format %{ "movl    $mem, $src\t# int" %}
  7074   opcode(0xC7); /* C7 /0 */
  7075   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
  7076   ins_pipe(ialu_mem_imm);
  7077 %}
  7079 // Store Long Immediate
  7080 instruct storeImmL0(memory mem, immL0 zero)
  7081 %{
  7082   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  7083   match(Set mem (StoreL mem zero));
  7085   ins_cost(125); // XXX
  7086   format %{ "movq    $mem, R12\t# long (R12_heapbase==0)" %}
  7087   ins_encode %{
  7088     __ movq($mem$$Address, r12);
  7089   %}
  7090   ins_pipe(ialu_mem_reg);
  7091 %}
  7093 instruct storeImmL(memory mem, immL32 src)
  7094 %{
  7095   match(Set mem (StoreL mem src));
  7097   ins_cost(150);
  7098   format %{ "movq    $mem, $src\t# long" %}
  7099   opcode(0xC7); /* C7 /0 */
  7100   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
  7101   ins_pipe(ialu_mem_imm);
  7102 %}
  7104 // Store Short/Char Immediate
  7105 instruct storeImmC0(memory mem, immI0 zero)
  7106 %{
  7107   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  7108   match(Set mem (StoreC mem zero));
  7110   ins_cost(125); // XXX
  7111   format %{ "movw    $mem, R12\t# short/char (R12_heapbase==0)" %}
  7112   ins_encode %{
  7113     __ movw($mem$$Address, r12);
  7114   %}
  7115   ins_pipe(ialu_mem_reg);
  7116 %}
  7118 instruct storeImmI16(memory mem, immI16 src)
  7119 %{
  7120   predicate(UseStoreImmI16);
  7121   match(Set mem (StoreC mem src));
  7123   ins_cost(150);
  7124   format %{ "movw    $mem, $src\t# short/char" %}
  7125   opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
  7126   ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
  7127   ins_pipe(ialu_mem_imm);
  7128 %}
  7130 // Store Byte Immediate
  7131 instruct storeImmB0(memory mem, immI0 zero)
  7132 %{
  7133   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  7134   match(Set mem (StoreB mem zero));
  7136   ins_cost(125); // XXX
  7137   format %{ "movb    $mem, R12\t# short/char (R12_heapbase==0)" %}
  7138   ins_encode %{
  7139     __ movb($mem$$Address, r12);
  7140   %}
  7141   ins_pipe(ialu_mem_reg);
  7142 %}
  7144 instruct storeImmB(memory mem, immI8 src)
  7145 %{
  7146   match(Set mem (StoreB mem src));
  7148   ins_cost(150); // XXX
  7149   format %{ "movb    $mem, $src\t# byte" %}
  7150   opcode(0xC6); /* C6 /0 */
  7151   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
  7152   ins_pipe(ialu_mem_imm);
  7153 %}
  7155 // Store Aligned Packed Byte XMM register to memory
  7156 instruct storeA8B(memory mem, regD src) %{
  7157   match(Set mem (Store8B mem src));
  7158   ins_cost(145);
  7159   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7160   ins_encode( movq_st(mem, src));
  7161   ins_pipe( pipe_slow );
  7162 %}
  7164 // Store Aligned Packed Char/Short XMM register to memory
  7165 instruct storeA4C(memory mem, regD src) %{
  7166   match(Set mem (Store4C mem src));
  7167   ins_cost(145);
  7168   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7169   ins_encode( movq_st(mem, src));
  7170   ins_pipe( pipe_slow );
  7171 %}
  7173 // Store Aligned Packed Integer XMM register to memory
  7174 instruct storeA2I(memory mem, regD src) %{
  7175   match(Set mem (Store2I mem src));
  7176   ins_cost(145);
  7177   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7178   ins_encode( movq_st(mem, src));
  7179   ins_pipe( pipe_slow );
  7180 %}
  7182 // Store CMS card-mark Immediate
  7183 instruct storeImmCM0_reg(memory mem, immI0 zero)
  7184 %{
  7185   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  7186   match(Set mem (StoreCM mem zero));
  7188   ins_cost(125); // XXX
  7189   format %{ "movb    $mem, R12\t# CMS card-mark byte 0 (R12_heapbase==0)" %}
  7190   ins_encode %{
  7191     __ movb($mem$$Address, r12);
  7192   %}
  7193   ins_pipe(ialu_mem_reg);
  7194 %}
  7196 instruct storeImmCM0(memory mem, immI0 src)
  7197 %{
  7198   match(Set mem (StoreCM mem src));
  7200   ins_cost(150); // XXX
  7201   format %{ "movb    $mem, $src\t# CMS card-mark byte 0" %}
  7202   opcode(0xC6); /* C6 /0 */
  7203   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
  7204   ins_pipe(ialu_mem_imm);
  7205 %}
  7207 // Store Aligned Packed Single Float XMM register to memory
  7208 instruct storeA2F(memory mem, regD src) %{
  7209   match(Set mem (Store2F mem src));
  7210   ins_cost(145);
  7211   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7212   ins_encode( movq_st(mem, src));
  7213   ins_pipe( pipe_slow );
  7214 %}
  7216 // Store Float
  7217 instruct storeF(memory mem, regF src)
  7218 %{
  7219   match(Set mem (StoreF mem src));
  7221   ins_cost(95); // XXX
  7222   format %{ "movss   $mem, $src\t# float" %}
  7223   opcode(0xF3, 0x0F, 0x11);
  7224   ins_encode(OpcP, REX_reg_mem(src, mem), OpcS, OpcT, reg_mem(src, mem));
  7225   ins_pipe(pipe_slow); // XXX
  7226 %}
  7228 // Store immediate Float value (it is faster than store from XMM register)
  7229 instruct storeF0(memory mem, immF0 zero)
  7230 %{
  7231   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  7232   match(Set mem (StoreF mem zero));
  7234   ins_cost(25); // XXX
  7235   format %{ "movl    $mem, R12\t# float 0. (R12_heapbase==0)" %}
  7236   ins_encode %{
  7237     __ movl($mem$$Address, r12);
  7238   %}
  7239   ins_pipe(ialu_mem_reg);
  7240 %}
  7242 instruct storeF_imm(memory mem, immF src)
  7243 %{
  7244   match(Set mem (StoreF mem src));
  7246   ins_cost(50);
  7247   format %{ "movl    $mem, $src\t# float" %}
  7248   opcode(0xC7); /* C7 /0 */
  7249   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
  7250   ins_pipe(ialu_mem_imm);
  7251 %}
  7253 // Store Double
  7254 instruct storeD(memory mem, regD src)
  7255 %{
  7256   match(Set mem (StoreD mem src));
  7258   ins_cost(95); // XXX
  7259   format %{ "movsd   $mem, $src\t# double" %}
  7260   opcode(0xF2, 0x0F, 0x11);
  7261   ins_encode(OpcP, REX_reg_mem(src, mem), OpcS, OpcT, reg_mem(src, mem));
  7262   ins_pipe(pipe_slow); // XXX
  7263 %}
  7265 // Store immediate double 0.0 (it is faster than store from XMM register)
  7266 instruct storeD0_imm(memory mem, immD0 src)
  7267 %{
  7268   predicate(!UseCompressedOops || (Universe::narrow_oop_base() != NULL));
  7269   match(Set mem (StoreD mem src));
  7271   ins_cost(50);
  7272   format %{ "movq    $mem, $src\t# double 0." %}
  7273   opcode(0xC7); /* C7 /0 */
  7274   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
  7275   ins_pipe(ialu_mem_imm);
  7276 %}
  7278 instruct storeD0(memory mem, immD0 zero)
  7279 %{
  7280   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  7281   match(Set mem (StoreD mem zero));
  7283   ins_cost(25); // XXX
  7284   format %{ "movq    $mem, R12\t# double 0. (R12_heapbase==0)" %}
  7285   ins_encode %{
  7286     __ movq($mem$$Address, r12);
  7287   %}
  7288   ins_pipe(ialu_mem_reg);
  7289 %}
  7291 instruct storeSSI(stackSlotI dst, rRegI src)
  7292 %{
  7293   match(Set dst src);
  7295   ins_cost(100);
  7296   format %{ "movl    $dst, $src\t# int stk" %}
  7297   opcode(0x89);
  7298   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  7299   ins_pipe( ialu_mem_reg );
  7300 %}
  7302 instruct storeSSL(stackSlotL dst, rRegL src)
  7303 %{
  7304   match(Set dst src);
  7306   ins_cost(100);
  7307   format %{ "movq    $dst, $src\t# long stk" %}
  7308   opcode(0x89);
  7309   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  7310   ins_pipe(ialu_mem_reg);
  7311 %}
  7313 instruct storeSSP(stackSlotP dst, rRegP src)
  7314 %{
  7315   match(Set dst src);
  7317   ins_cost(100);
  7318   format %{ "movq    $dst, $src\t# ptr stk" %}
  7319   opcode(0x89);
  7320   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  7321   ins_pipe(ialu_mem_reg);
  7322 %}
  7324 instruct storeSSF(stackSlotF dst, regF src)
  7325 %{
  7326   match(Set dst src);
  7328   ins_cost(95); // XXX
  7329   format %{ "movss   $dst, $src\t# float stk" %}
  7330   opcode(0xF3, 0x0F, 0x11);
  7331   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
  7332   ins_pipe(pipe_slow); // XXX
  7333 %}
  7335 instruct storeSSD(stackSlotD dst, regD src)
  7336 %{
  7337   match(Set dst src);
  7339   ins_cost(95); // XXX
  7340   format %{ "movsd   $dst, $src\t# double stk" %}
  7341   opcode(0xF2, 0x0F, 0x11);
  7342   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
  7343   ins_pipe(pipe_slow); // XXX
  7344 %}
  7346 //----------BSWAP Instructions-------------------------------------------------
  7347 instruct bytes_reverse_int(rRegI dst) %{
  7348   match(Set dst (ReverseBytesI dst));
  7350   format %{ "bswapl  $dst" %}
  7351   opcode(0x0F, 0xC8);  /*Opcode 0F /C8 */
  7352   ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
  7353   ins_pipe( ialu_reg );
  7354 %}
  7356 instruct bytes_reverse_long(rRegL dst) %{
  7357   match(Set dst (ReverseBytesL dst));
  7359   format %{ "bswapq  $dst" %}
  7361   opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
  7362   ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
  7363   ins_pipe( ialu_reg);
  7364 %}
  7366 instruct loadI_reversed(rRegI dst, memory src) %{
  7367   match(Set dst (ReverseBytesI (LoadI src)));
  7369   format %{ "bswap_movl $dst, $src" %}
  7370   opcode(0x8B, 0x0F, 0xC8); /* Opcode 8B 0F C8 */
  7371   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src), REX_reg(dst), OpcS, opc3_reg(dst));
  7372   ins_pipe( ialu_reg_mem );
  7373 %}
  7375 instruct loadL_reversed(rRegL dst, memory src) %{
  7376   match(Set dst (ReverseBytesL (LoadL src)));
  7378   format %{ "bswap_movq $dst, $src" %}
  7379   opcode(0x8B, 0x0F, 0xC8); /* Opcode 8B 0F C8 */
  7380   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src), REX_reg_wide(dst), OpcS, opc3_reg(dst));
  7381   ins_pipe( ialu_reg_mem );
  7382 %}
  7384 instruct storeI_reversed(memory dst, rRegI src) %{
  7385   match(Set dst (StoreI dst (ReverseBytesI  src)));
  7387   format %{ "movl_bswap $dst, $src" %}
  7388   opcode(0x0F, 0xC8, 0x89); /* Opcode 0F C8 89 */
  7389   ins_encode( REX_reg(src), OpcP, opc2_reg(src), REX_reg_mem(src, dst), OpcT, reg_mem(src, dst) );
  7390   ins_pipe( ialu_mem_reg );
  7391 %}
  7393 instruct storeL_reversed(memory dst, rRegL src) %{
  7394   match(Set dst (StoreL dst (ReverseBytesL  src)));
  7396   format %{ "movq_bswap $dst, $src" %}
  7397   opcode(0x0F, 0xC8, 0x89); /* Opcode 0F C8 89 */
  7398   ins_encode( REX_reg_wide(src), OpcP, opc2_reg(src), REX_reg_mem_wide(src, dst), OpcT, reg_mem(src, dst) );
  7399   ins_pipe( ialu_mem_reg );
  7400 %}
  7403 //---------- Population Count Instructions -------------------------------------
  7405 instruct popCountI(rRegI dst, rRegI src) %{
  7406   predicate(UsePopCountInstruction);
  7407   match(Set dst (PopCountI src));
  7409   format %{ "popcnt  $dst, $src" %}
  7410   ins_encode %{
  7411     __ popcntl($dst$$Register, $src$$Register);
  7412   %}
  7413   ins_pipe(ialu_reg);
  7414 %}
  7416 instruct popCountI_mem(rRegI dst, memory mem) %{
  7417   predicate(UsePopCountInstruction);
  7418   match(Set dst (PopCountI (LoadI mem)));
  7420   format %{ "popcnt  $dst, $mem" %}
  7421   ins_encode %{
  7422     __ popcntl($dst$$Register, $mem$$Address);
  7423   %}
  7424   ins_pipe(ialu_reg);
  7425 %}
  7427 // Note: Long.bitCount(long) returns an int.
  7428 instruct popCountL(rRegI dst, rRegL src) %{
  7429   predicate(UsePopCountInstruction);
  7430   match(Set dst (PopCountL src));
  7432   format %{ "popcnt  $dst, $src" %}
  7433   ins_encode %{
  7434     __ popcntq($dst$$Register, $src$$Register);
  7435   %}
  7436   ins_pipe(ialu_reg);
  7437 %}
  7439 // Note: Long.bitCount(long) returns an int.
  7440 instruct popCountL_mem(rRegI dst, memory mem) %{
  7441   predicate(UsePopCountInstruction);
  7442   match(Set dst (PopCountL (LoadL mem)));
  7444   format %{ "popcnt  $dst, $mem" %}
  7445   ins_encode %{
  7446     __ popcntq($dst$$Register, $mem$$Address);
  7447   %}
  7448   ins_pipe(ialu_reg);
  7449 %}
  7452 //----------MemBar Instructions-----------------------------------------------
  7453 // Memory barrier flavors
  7455 instruct membar_acquire()
  7456 %{
  7457   match(MemBarAcquire);
  7458   ins_cost(0);
  7460   size(0);
  7461   format %{ "MEMBAR-acquire" %}
  7462   ins_encode();
  7463   ins_pipe(empty);
  7464 %}
  7466 instruct membar_acquire_lock()
  7467 %{
  7468   match(MemBarAcquire);
  7469   predicate(Matcher::prior_fast_lock(n));
  7470   ins_cost(0);
  7472   size(0);
  7473   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7474   ins_encode();
  7475   ins_pipe(empty);
  7476 %}
  7478 instruct membar_release()
  7479 %{
  7480   match(MemBarRelease);
  7481   ins_cost(0);
  7483   size(0);
  7484   format %{ "MEMBAR-release" %}
  7485   ins_encode();
  7486   ins_pipe(empty);
  7487 %}
  7489 instruct membar_release_lock()
  7490 %{
  7491   match(MemBarRelease);
  7492   predicate(Matcher::post_fast_unlock(n));
  7493   ins_cost(0);
  7495   size(0);
  7496   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7497   ins_encode();
  7498   ins_pipe(empty);
  7499 %}
  7501 instruct membar_volatile()
  7502 %{
  7503   match(MemBarVolatile);
  7504   ins_cost(400);
  7506   format %{ "MEMBAR-volatile" %}
  7507   ins_encode(enc_membar_volatile);
  7508   ins_pipe(pipe_slow);
  7509 %}
  7511 instruct unnecessary_membar_volatile()
  7512 %{
  7513   match(MemBarVolatile);
  7514   predicate(Matcher::post_store_load_barrier(n));
  7515   ins_cost(0);
  7517   size(0);
  7518   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7519   ins_encode();
  7520   ins_pipe(empty);
  7521 %}
  7523 //----------Move Instructions--------------------------------------------------
  7525 instruct castX2P(rRegP dst, rRegL src)
  7526 %{
  7527   match(Set dst (CastX2P src));
  7529   format %{ "movq    $dst, $src\t# long->ptr" %}
  7530   ins_encode(enc_copy_wide(dst, src));
  7531   ins_pipe(ialu_reg_reg); // XXX
  7532 %}
  7534 instruct castP2X(rRegL dst, rRegP src)
  7535 %{
  7536   match(Set dst (CastP2X src));
  7538   format %{ "movq    $dst, $src\t# ptr -> long" %}
  7539   ins_encode(enc_copy_wide(dst, src));
  7540   ins_pipe(ialu_reg_reg); // XXX
  7541 %}
  7544 // Convert oop pointer into compressed form
  7545 instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
  7546   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  7547   match(Set dst (EncodeP src));
  7548   effect(KILL cr);
  7549   format %{ "encode_heap_oop $dst,$src" %}
  7550   ins_encode %{
  7551     Register s = $src$$Register;
  7552     Register d = $dst$$Register;
  7553     if (s != d) {
  7554       __ movq(d, s);
  7556     __ encode_heap_oop(d);
  7557   %}
  7558   ins_pipe(ialu_reg_long);
  7559 %}
  7561 instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
  7562   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  7563   match(Set dst (EncodeP src));
  7564   effect(KILL cr);
  7565   format %{ "encode_heap_oop_not_null $dst,$src" %}
  7566   ins_encode %{
  7567     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
  7568   %}
  7569   ins_pipe(ialu_reg_long);
  7570 %}
  7572 instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
  7573   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  7574             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  7575   match(Set dst (DecodeN src));
  7576   effect(KILL cr);
  7577   format %{ "decode_heap_oop $dst,$src" %}
  7578   ins_encode %{
  7579     Register s = $src$$Register;
  7580     Register d = $dst$$Register;
  7581     if (s != d) {
  7582       __ movq(d, s);
  7584     __ decode_heap_oop(d);
  7585   %}
  7586   ins_pipe(ialu_reg_long);
  7587 %}
  7589 instruct decodeHeapOop_not_null(rRegP dst, rRegN src) %{
  7590   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  7591             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  7592   match(Set dst (DecodeN src));
  7593   format %{ "decode_heap_oop_not_null $dst,$src" %}
  7594   ins_encode %{
  7595     Register s = $src$$Register;
  7596     Register d = $dst$$Register;
  7597     if (s != d) {
  7598       __ decode_heap_oop_not_null(d, s);
  7599     } else {
  7600       __ decode_heap_oop_not_null(d);
  7602   %}
  7603   ins_pipe(ialu_reg_long);
  7604 %}
  7607 //----------Conditional Move---------------------------------------------------
  7608 // Jump
  7609 // dummy instruction for generating temp registers
  7610 instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
  7611   match(Jump (LShiftL switch_val shift));
  7612   ins_cost(350);
  7613   predicate(false);
  7614   effect(TEMP dest);
  7616   format %{ "leaq    $dest, table_base\n\t"
  7617             "jmp     [$dest + $switch_val << $shift]\n\t" %}
  7618   ins_encode(jump_enc_offset(switch_val, shift, dest));
  7619   ins_pipe(pipe_jmp);
  7620   ins_pc_relative(1);
  7621 %}
  7623 instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
  7624   match(Jump (AddL (LShiftL switch_val shift) offset));
  7625   ins_cost(350);
  7626   effect(TEMP dest);
  7628   format %{ "leaq    $dest, table_base\n\t"
  7629             "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
  7630   ins_encode(jump_enc_addr(switch_val, shift, offset, dest));
  7631   ins_pipe(pipe_jmp);
  7632   ins_pc_relative(1);
  7633 %}
  7635 instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
  7636   match(Jump switch_val);
  7637   ins_cost(350);
  7638   effect(TEMP dest);
  7640   format %{ "leaq    $dest, table_base\n\t"
  7641             "jmp     [$dest + $switch_val]\n\t" %}
  7642   ins_encode(jump_enc(switch_val, dest));
  7643   ins_pipe(pipe_jmp);
  7644   ins_pc_relative(1);
  7645 %}
  7647 // Conditional move
  7648 instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
  7649 %{
  7650   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7652   ins_cost(200); // XXX
  7653   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
  7654   opcode(0x0F, 0x40);
  7655   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7656   ins_pipe(pipe_cmov_reg);
  7657 %}
  7659 instruct cmovI_regU(cmpOpU cop, rFlagsRegU cr, rRegI dst, rRegI src) %{
  7660   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7662   ins_cost(200); // XXX
  7663   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
  7664   opcode(0x0F, 0x40);
  7665   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7666   ins_pipe(pipe_cmov_reg);
  7667 %}
  7669 instruct cmovI_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
  7670   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7671   ins_cost(200);
  7672   expand %{
  7673     cmovI_regU(cop, cr, dst, src);
  7674   %}
  7675 %}
  7677 // Conditional move
  7678 instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src) %{
  7679   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7681   ins_cost(250); // XXX
  7682   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
  7683   opcode(0x0F, 0x40);
  7684   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7685   ins_pipe(pipe_cmov_mem);
  7686 %}
  7688 // Conditional move
  7689 instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
  7690 %{
  7691   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7693   ins_cost(250); // XXX
  7694   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
  7695   opcode(0x0F, 0x40);
  7696   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7697   ins_pipe(pipe_cmov_mem);
  7698 %}
  7700 instruct cmovI_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, memory src) %{
  7701   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7702   ins_cost(250);
  7703   expand %{
  7704     cmovI_memU(cop, cr, dst, src);
  7705   %}
  7706 %}
  7708 // Conditional move
  7709 instruct cmovN_reg(rRegN dst, rRegN src, rFlagsReg cr, cmpOp cop)
  7710 %{
  7711   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
  7713   ins_cost(200); // XXX
  7714   format %{ "cmovl$cop $dst, $src\t# signed, compressed ptr" %}
  7715   opcode(0x0F, 0x40);
  7716   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7717   ins_pipe(pipe_cmov_reg);
  7718 %}
  7720 // Conditional move
  7721 instruct cmovN_regU(cmpOpU cop, rFlagsRegU cr, rRegN dst, rRegN src)
  7722 %{
  7723   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
  7725   ins_cost(200); // XXX
  7726   format %{ "cmovl$cop $dst, $src\t# unsigned, compressed ptr" %}
  7727   opcode(0x0F, 0x40);
  7728   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7729   ins_pipe(pipe_cmov_reg);
  7730 %}
  7732 instruct cmovN_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
  7733   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
  7734   ins_cost(200);
  7735   expand %{
  7736     cmovN_regU(cop, cr, dst, src);
  7737   %}
  7738 %}
  7740 // Conditional move
  7741 instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
  7742 %{
  7743   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7745   ins_cost(200); // XXX
  7746   format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
  7747   opcode(0x0F, 0x40);
  7748   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7749   ins_pipe(pipe_cmov_reg);  // XXX
  7750 %}
  7752 // Conditional move
  7753 instruct cmovP_regU(cmpOpU cop, rFlagsRegU cr, rRegP dst, rRegP src)
  7754 %{
  7755   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7757   ins_cost(200); // XXX
  7758   format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
  7759   opcode(0x0F, 0x40);
  7760   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7761   ins_pipe(pipe_cmov_reg); // XXX
  7762 %}
  7764 instruct cmovP_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
  7765   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7766   ins_cost(200);
  7767   expand %{
  7768     cmovP_regU(cop, cr, dst, src);
  7769   %}
  7770 %}
  7772 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7773 // correctly meets the two pointer arguments; one is an incoming
  7774 // register but the other is a memory operand.  ALSO appears to
  7775 // be buggy with implicit null checks.
  7776 //
  7777 //// Conditional move
  7778 //instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
  7779 //%{
  7780 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7781 //  ins_cost(250);
  7782 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7783 //  opcode(0x0F,0x40);
  7784 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
  7785 //  ins_pipe( pipe_cmov_mem );
  7786 //%}
  7787 //
  7788 //// Conditional move
  7789 //instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
  7790 //%{
  7791 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7792 //  ins_cost(250);
  7793 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7794 //  opcode(0x0F,0x40);
  7795 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
  7796 //  ins_pipe( pipe_cmov_mem );
  7797 //%}
  7799 instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
  7800 %{
  7801   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7803   ins_cost(200); // XXX
  7804   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
  7805   opcode(0x0F, 0x40);
  7806   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7807   ins_pipe(pipe_cmov_reg);  // XXX
  7808 %}
  7810 instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
  7811 %{
  7812   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
  7814   ins_cost(200); // XXX
  7815   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
  7816   opcode(0x0F, 0x40);
  7817   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7818   ins_pipe(pipe_cmov_mem);  // XXX
  7819 %}
  7821 instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
  7822 %{
  7823   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7825   ins_cost(200); // XXX
  7826   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
  7827   opcode(0x0F, 0x40);
  7828   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7829   ins_pipe(pipe_cmov_reg); // XXX
  7830 %}
  7832 instruct cmovL_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
  7833   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7834   ins_cost(200);
  7835   expand %{
  7836     cmovL_regU(cop, cr, dst, src);
  7837   %}
  7838 %}
  7840 instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
  7841 %{
  7842   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
  7844   ins_cost(200); // XXX
  7845   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
  7846   opcode(0x0F, 0x40);
  7847   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7848   ins_pipe(pipe_cmov_mem); // XXX
  7849 %}
  7851 instruct cmovL_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, memory src) %{
  7852   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
  7853   ins_cost(200);
  7854   expand %{
  7855     cmovL_memU(cop, cr, dst, src);
  7856   %}
  7857 %}
  7859 instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
  7860 %{
  7861   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7863   ins_cost(200); // XXX
  7864   format %{ "jn$cop    skip\t# signed cmove float\n\t"
  7865             "movss     $dst, $src\n"
  7866     "skip:" %}
  7867   ins_encode(enc_cmovf_branch(cop, dst, src));
  7868   ins_pipe(pipe_slow);
  7869 %}
  7871 // instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
  7872 // %{
  7873 //   match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
  7875 //   ins_cost(200); // XXX
  7876 //   format %{ "jn$cop    skip\t# signed cmove float\n\t"
  7877 //             "movss     $dst, $src\n"
  7878 //     "skip:" %}
  7879 //   ins_encode(enc_cmovf_mem_branch(cop, dst, src));
  7880 //   ins_pipe(pipe_slow);
  7881 // %}
  7883 instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
  7884 %{
  7885   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7887   ins_cost(200); // XXX
  7888   format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
  7889             "movss     $dst, $src\n"
  7890     "skip:" %}
  7891   ins_encode(enc_cmovf_branch(cop, dst, src));
  7892   ins_pipe(pipe_slow);
  7893 %}
  7895 instruct cmovF_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regF dst, regF src) %{
  7896   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7897   ins_cost(200);
  7898   expand %{
  7899     cmovF_regU(cop, cr, dst, src);
  7900   %}
  7901 %}
  7903 instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
  7904 %{
  7905   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7907   ins_cost(200); // XXX
  7908   format %{ "jn$cop    skip\t# signed cmove double\n\t"
  7909             "movsd     $dst, $src\n"
  7910     "skip:" %}
  7911   ins_encode(enc_cmovd_branch(cop, dst, src));
  7912   ins_pipe(pipe_slow);
  7913 %}
  7915 instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
  7916 %{
  7917   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7919   ins_cost(200); // XXX
  7920   format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
  7921             "movsd     $dst, $src\n"
  7922     "skip:" %}
  7923   ins_encode(enc_cmovd_branch(cop, dst, src));
  7924   ins_pipe(pipe_slow);
  7925 %}
  7927 instruct cmovD_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regD dst, regD src) %{
  7928   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7929   ins_cost(200);
  7930   expand %{
  7931     cmovD_regU(cop, cr, dst, src);
  7932   %}
  7933 %}
  7935 //----------Arithmetic Instructions--------------------------------------------
  7936 //----------Addition Instructions----------------------------------------------
  7938 instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  7939 %{
  7940   match(Set dst (AddI dst src));
  7941   effect(KILL cr);
  7943   format %{ "addl    $dst, $src\t# int" %}
  7944   opcode(0x03);
  7945   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  7946   ins_pipe(ialu_reg_reg);
  7947 %}
  7949 instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  7950 %{
  7951   match(Set dst (AddI dst src));
  7952   effect(KILL cr);
  7954   format %{ "addl    $dst, $src\t# int" %}
  7955   opcode(0x81, 0x00); /* /0 id */
  7956   ins_encode(OpcSErm(dst, src), Con8or32(src));
  7957   ins_pipe( ialu_reg );
  7958 %}
  7960 instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  7961 %{
  7962   match(Set dst (AddI dst (LoadI src)));
  7963   effect(KILL cr);
  7965   ins_cost(125); // XXX
  7966   format %{ "addl    $dst, $src\t# int" %}
  7967   opcode(0x03);
  7968   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  7969   ins_pipe(ialu_reg_mem);
  7970 %}
  7972 instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  7973 %{
  7974   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7975   effect(KILL cr);
  7977   ins_cost(150); // XXX
  7978   format %{ "addl    $dst, $src\t# int" %}
  7979   opcode(0x01); /* Opcode 01 /r */
  7980   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  7981   ins_pipe(ialu_mem_reg);
  7982 %}
  7984 instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
  7985 %{
  7986   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7987   effect(KILL cr);
  7989   ins_cost(125); // XXX
  7990   format %{ "addl    $dst, $src\t# int" %}
  7991   opcode(0x81); /* Opcode 81 /0 id */
  7992   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
  7993   ins_pipe(ialu_mem_imm);
  7994 %}
  7996 instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
  7997 %{
  7998   predicate(UseIncDec);
  7999   match(Set dst (AddI dst src));
  8000   effect(KILL cr);
  8002   format %{ "incl    $dst\t# int" %}
  8003   opcode(0xFF, 0x00); // FF /0
  8004   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8005   ins_pipe(ialu_reg);
  8006 %}
  8008 instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
  8009 %{
  8010   predicate(UseIncDec);
  8011   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8012   effect(KILL cr);
  8014   ins_cost(125); // XXX
  8015   format %{ "incl    $dst\t# int" %}
  8016   opcode(0xFF); /* Opcode FF /0 */
  8017   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
  8018   ins_pipe(ialu_mem_imm);
  8019 %}
  8021 // XXX why does that use AddI
  8022 instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
  8023 %{
  8024   predicate(UseIncDec);
  8025   match(Set dst (AddI dst src));
  8026   effect(KILL cr);
  8028   format %{ "decl    $dst\t# int" %}
  8029   opcode(0xFF, 0x01); // FF /1
  8030   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8031   ins_pipe(ialu_reg);
  8032 %}
  8034 // XXX why does that use AddI
  8035 instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
  8036 %{
  8037   predicate(UseIncDec);
  8038   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8039   effect(KILL cr);
  8041   ins_cost(125); // XXX
  8042   format %{ "decl    $dst\t# int" %}
  8043   opcode(0xFF); /* Opcode FF /1 */
  8044   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
  8045   ins_pipe(ialu_mem_imm);
  8046 %}
  8048 instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
  8049 %{
  8050   match(Set dst (AddI src0 src1));
  8052   ins_cost(110);
  8053   format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
  8054   opcode(0x8D); /* 0x8D /r */
  8055   ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
  8056   ins_pipe(ialu_reg_reg);
  8057 %}
  8059 instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  8060 %{
  8061   match(Set dst (AddL dst src));
  8062   effect(KILL cr);
  8064   format %{ "addq    $dst, $src\t# long" %}
  8065   opcode(0x03);
  8066   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  8067   ins_pipe(ialu_reg_reg);
  8068 %}
  8070 instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
  8071 %{
  8072   match(Set dst (AddL dst src));
  8073   effect(KILL cr);
  8075   format %{ "addq    $dst, $src\t# long" %}
  8076   opcode(0x81, 0x00); /* /0 id */
  8077   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  8078   ins_pipe( ialu_reg );
  8079 %}
  8081 instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  8082 %{
  8083   match(Set dst (AddL dst (LoadL src)));
  8084   effect(KILL cr);
  8086   ins_cost(125); // XXX
  8087   format %{ "addq    $dst, $src\t# long" %}
  8088   opcode(0x03);
  8089   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  8090   ins_pipe(ialu_reg_mem);
  8091 %}
  8093 instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  8094 %{
  8095   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  8096   effect(KILL cr);
  8098   ins_cost(150); // XXX
  8099   format %{ "addq    $dst, $src\t# long" %}
  8100   opcode(0x01); /* Opcode 01 /r */
  8101   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  8102   ins_pipe(ialu_mem_reg);
  8103 %}
  8105 instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  8106 %{
  8107   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  8108   effect(KILL cr);
  8110   ins_cost(125); // XXX
  8111   format %{ "addq    $dst, $src\t# long" %}
  8112   opcode(0x81); /* Opcode 81 /0 id */
  8113   ins_encode(REX_mem_wide(dst),
  8114              OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
  8115   ins_pipe(ialu_mem_imm);
  8116 %}
  8118 instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
  8119 %{
  8120   predicate(UseIncDec);
  8121   match(Set dst (AddL dst src));
  8122   effect(KILL cr);
  8124   format %{ "incq    $dst\t# long" %}
  8125   opcode(0xFF, 0x00); // FF /0
  8126   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8127   ins_pipe(ialu_reg);
  8128 %}
  8130 instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
  8131 %{
  8132   predicate(UseIncDec);
  8133   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  8134   effect(KILL cr);
  8136   ins_cost(125); // XXX
  8137   format %{ "incq    $dst\t# long" %}
  8138   opcode(0xFF); /* Opcode FF /0 */
  8139   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
  8140   ins_pipe(ialu_mem_imm);
  8141 %}
  8143 // XXX why does that use AddL
  8144 instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
  8145 %{
  8146   predicate(UseIncDec);
  8147   match(Set dst (AddL dst src));
  8148   effect(KILL cr);
  8150   format %{ "decq    $dst\t# long" %}
  8151   opcode(0xFF, 0x01); // FF /1
  8152   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8153   ins_pipe(ialu_reg);
  8154 %}
  8156 // XXX why does that use AddL
  8157 instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
  8158 %{
  8159   predicate(UseIncDec);
  8160   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  8161   effect(KILL cr);
  8163   ins_cost(125); // XXX
  8164   format %{ "decq    $dst\t# long" %}
  8165   opcode(0xFF); /* Opcode FF /1 */
  8166   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
  8167   ins_pipe(ialu_mem_imm);
  8168 %}
  8170 instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
  8171 %{
  8172   match(Set dst (AddL src0 src1));
  8174   ins_cost(110);
  8175   format %{ "leaq    $dst, [$src0 + $src1]\t# long" %}
  8176   opcode(0x8D); /* 0x8D /r */
  8177   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
  8178   ins_pipe(ialu_reg_reg);
  8179 %}
  8181 instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
  8182 %{
  8183   match(Set dst (AddP dst src));
  8184   effect(KILL cr);
  8186   format %{ "addq    $dst, $src\t# ptr" %}
  8187   opcode(0x03);
  8188   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  8189   ins_pipe(ialu_reg_reg);
  8190 %}
  8192 instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
  8193 %{
  8194   match(Set dst (AddP dst src));
  8195   effect(KILL cr);
  8197   format %{ "addq    $dst, $src\t# ptr" %}
  8198   opcode(0x81, 0x00); /* /0 id */
  8199   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  8200   ins_pipe( ialu_reg );
  8201 %}
  8203 // XXX addP mem ops ????
  8205 instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
  8206 %{
  8207   match(Set dst (AddP src0 src1));
  8209   ins_cost(110);
  8210   format %{ "leaq    $dst, [$src0 + $src1]\t# ptr" %}
  8211   opcode(0x8D); /* 0x8D /r */
  8212   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
  8213   ins_pipe(ialu_reg_reg);
  8214 %}
  8216 instruct checkCastPP(rRegP dst)
  8217 %{
  8218   match(Set dst (CheckCastPP dst));
  8220   size(0);
  8221   format %{ "# checkcastPP of $dst" %}
  8222   ins_encode(/* empty encoding */);
  8223   ins_pipe(empty);
  8224 %}
  8226 instruct castPP(rRegP dst)
  8227 %{
  8228   match(Set dst (CastPP dst));
  8230   size(0);
  8231   format %{ "# castPP of $dst" %}
  8232   ins_encode(/* empty encoding */);
  8233   ins_pipe(empty);
  8234 %}
  8236 instruct castII(rRegI dst)
  8237 %{
  8238   match(Set dst (CastII dst));
  8240   size(0);
  8241   format %{ "# castII of $dst" %}
  8242   ins_encode(/* empty encoding */);
  8243   ins_cost(0);
  8244   ins_pipe(empty);
  8245 %}
  8247 // LoadP-locked same as a regular LoadP when used with compare-swap
  8248 instruct loadPLocked(rRegP dst, memory mem)
  8249 %{
  8250   match(Set dst (LoadPLocked mem));
  8252   ins_cost(125); // XXX
  8253   format %{ "movq    $dst, $mem\t# ptr locked" %}
  8254   opcode(0x8B);
  8255   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  8256   ins_pipe(ialu_reg_mem); // XXX
  8257 %}
  8259 // LoadL-locked - same as a regular LoadL when used with compare-swap
  8260 instruct loadLLocked(rRegL dst, memory mem)
  8261 %{
  8262   match(Set dst (LoadLLocked mem));
  8264   ins_cost(125); // XXX
  8265   format %{ "movq    $dst, $mem\t# long locked" %}
  8266   opcode(0x8B);
  8267   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  8268   ins_pipe(ialu_reg_mem); // XXX
  8269 %}
  8271 // Conditional-store of the updated heap-top.
  8272 // Used during allocation of the shared heap.
  8273 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  8275 instruct storePConditional(memory heap_top_ptr,
  8276                            rax_RegP oldval, rRegP newval,
  8277                            rFlagsReg cr)
  8278 %{
  8279   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  8281   format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
  8282             "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
  8283   opcode(0x0F, 0xB1);
  8284   ins_encode(lock_prefix,
  8285              REX_reg_mem_wide(newval, heap_top_ptr),
  8286              OpcP, OpcS,
  8287              reg_mem(newval, heap_top_ptr));
  8288   ins_pipe(pipe_cmpxchg);
  8289 %}
  8291 // Conditional-store of an int value.
  8292 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
  8293 instruct storeIConditional(memory mem, rax_RegI oldval, rRegI newval, rFlagsReg cr)
  8294 %{
  8295   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  8296   effect(KILL oldval);
  8298   format %{ "cmpxchgl $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
  8299   opcode(0x0F, 0xB1);
  8300   ins_encode(lock_prefix,
  8301              REX_reg_mem(newval, mem),
  8302              OpcP, OpcS,
  8303              reg_mem(newval, mem));
  8304   ins_pipe(pipe_cmpxchg);
  8305 %}
  8307 // Conditional-store of a long value.
  8308 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
  8309 instruct storeLConditional(memory mem, rax_RegL oldval, rRegL newval, rFlagsReg cr)
  8310 %{
  8311   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  8312   effect(KILL oldval);
  8314   format %{ "cmpxchgq $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
  8315   opcode(0x0F, 0xB1);
  8316   ins_encode(lock_prefix,
  8317              REX_reg_mem_wide(newval, mem),
  8318              OpcP, OpcS,
  8319              reg_mem(newval, mem));
  8320   ins_pipe(pipe_cmpxchg);
  8321 %}
  8324 // XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  8325 instruct compareAndSwapP(rRegI res,
  8326                          memory mem_ptr,
  8327                          rax_RegP oldval, rRegP newval,
  8328                          rFlagsReg cr)
  8329 %{
  8330   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  8331   effect(KILL cr, KILL oldval);
  8333   format %{ "cmpxchgq $mem_ptr,$newval\t# "
  8334             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  8335             "sete    $res\n\t"
  8336             "movzbl  $res, $res" %}
  8337   opcode(0x0F, 0xB1);
  8338   ins_encode(lock_prefix,
  8339              REX_reg_mem_wide(newval, mem_ptr),
  8340              OpcP, OpcS,
  8341              reg_mem(newval, mem_ptr),
  8342              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  8343              REX_reg_breg(res, res), // movzbl
  8344              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  8345   ins_pipe( pipe_cmpxchg );
  8346 %}
  8348 instruct compareAndSwapL(rRegI res,
  8349                          memory mem_ptr,
  8350                          rax_RegL oldval, rRegL newval,
  8351                          rFlagsReg cr)
  8352 %{
  8353   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  8354   effect(KILL cr, KILL oldval);
  8356   format %{ "cmpxchgq $mem_ptr,$newval\t# "
  8357             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  8358             "sete    $res\n\t"
  8359             "movzbl  $res, $res" %}
  8360   opcode(0x0F, 0xB1);
  8361   ins_encode(lock_prefix,
  8362              REX_reg_mem_wide(newval, mem_ptr),
  8363              OpcP, OpcS,
  8364              reg_mem(newval, mem_ptr),
  8365              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  8366              REX_reg_breg(res, res), // movzbl
  8367              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  8368   ins_pipe( pipe_cmpxchg );
  8369 %}
  8371 instruct compareAndSwapI(rRegI res,
  8372                          memory mem_ptr,
  8373                          rax_RegI oldval, rRegI newval,
  8374                          rFlagsReg cr)
  8375 %{
  8376   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  8377   effect(KILL cr, KILL oldval);
  8379   format %{ "cmpxchgl $mem_ptr,$newval\t# "
  8380             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  8381             "sete    $res\n\t"
  8382             "movzbl  $res, $res" %}
  8383   opcode(0x0F, 0xB1);
  8384   ins_encode(lock_prefix,
  8385              REX_reg_mem(newval, mem_ptr),
  8386              OpcP, OpcS,
  8387              reg_mem(newval, mem_ptr),
  8388              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  8389              REX_reg_breg(res, res), // movzbl
  8390              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  8391   ins_pipe( pipe_cmpxchg );
  8392 %}
  8395 instruct compareAndSwapN(rRegI res,
  8396                           memory mem_ptr,
  8397                           rax_RegN oldval, rRegN newval,
  8398                           rFlagsReg cr) %{
  8399   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  8400   effect(KILL cr, KILL oldval);
  8402   format %{ "cmpxchgl $mem_ptr,$newval\t# "
  8403             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  8404             "sete    $res\n\t"
  8405             "movzbl  $res, $res" %}
  8406   opcode(0x0F, 0xB1);
  8407   ins_encode(lock_prefix,
  8408              REX_reg_mem(newval, mem_ptr),
  8409              OpcP, OpcS,
  8410              reg_mem(newval, mem_ptr),
  8411              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  8412              REX_reg_breg(res, res), // movzbl
  8413              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  8414   ins_pipe( pipe_cmpxchg );
  8415 %}
  8417 //----------Subtraction Instructions-------------------------------------------
  8419 // Integer Subtraction Instructions
  8420 instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  8421 %{
  8422   match(Set dst (SubI dst src));
  8423   effect(KILL cr);
  8425   format %{ "subl    $dst, $src\t# int" %}
  8426   opcode(0x2B);
  8427   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  8428   ins_pipe(ialu_reg_reg);
  8429 %}
  8431 instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  8432 %{
  8433   match(Set dst (SubI dst src));
  8434   effect(KILL cr);
  8436   format %{ "subl    $dst, $src\t# int" %}
  8437   opcode(0x81, 0x05);  /* Opcode 81 /5 */
  8438   ins_encode(OpcSErm(dst, src), Con8or32(src));
  8439   ins_pipe(ialu_reg);
  8440 %}
  8442 instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  8443 %{
  8444   match(Set dst (SubI dst (LoadI src)));
  8445   effect(KILL cr);
  8447   ins_cost(125);
  8448   format %{ "subl    $dst, $src\t# int" %}
  8449   opcode(0x2B);
  8450   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  8451   ins_pipe(ialu_reg_mem);
  8452 %}
  8454 instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  8455 %{
  8456   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8457   effect(KILL cr);
  8459   ins_cost(150);
  8460   format %{ "subl    $dst, $src\t# int" %}
  8461   opcode(0x29); /* Opcode 29 /r */
  8462   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  8463   ins_pipe(ialu_mem_reg);
  8464 %}
  8466 instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
  8467 %{
  8468   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8469   effect(KILL cr);
  8471   ins_cost(125); // XXX
  8472   format %{ "subl    $dst, $src\t# int" %}
  8473   opcode(0x81); /* Opcode 81 /5 id */
  8474   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
  8475   ins_pipe(ialu_mem_imm);
  8476 %}
  8478 instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  8479 %{
  8480   match(Set dst (SubL dst src));
  8481   effect(KILL cr);
  8483   format %{ "subq    $dst, $src\t# long" %}
  8484   opcode(0x2B);
  8485   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  8486   ins_pipe(ialu_reg_reg);
  8487 %}
  8489 instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
  8490 %{
  8491   match(Set dst (SubL dst src));
  8492   effect(KILL cr);
  8494   format %{ "subq    $dst, $src\t# long" %}
  8495   opcode(0x81, 0x05);  /* Opcode 81 /5 */
  8496   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  8497   ins_pipe(ialu_reg);
  8498 %}
  8500 instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  8501 %{
  8502   match(Set dst (SubL dst (LoadL src)));
  8503   effect(KILL cr);
  8505   ins_cost(125);
  8506   format %{ "subq    $dst, $src\t# long" %}
  8507   opcode(0x2B);
  8508   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  8509   ins_pipe(ialu_reg_mem);
  8510 %}
  8512 instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  8513 %{
  8514   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
  8515   effect(KILL cr);
  8517   ins_cost(150);
  8518   format %{ "subq    $dst, $src\t# long" %}
  8519   opcode(0x29); /* Opcode 29 /r */
  8520   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  8521   ins_pipe(ialu_mem_reg);
  8522 %}
  8524 instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  8525 %{
  8526   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
  8527   effect(KILL cr);
  8529   ins_cost(125); // XXX
  8530   format %{ "subq    $dst, $src\t# long" %}
  8531   opcode(0x81); /* Opcode 81 /5 id */
  8532   ins_encode(REX_mem_wide(dst),
  8533              OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
  8534   ins_pipe(ialu_mem_imm);
  8535 %}
  8537 // Subtract from a pointer
  8538 // XXX hmpf???
  8539 instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
  8540 %{
  8541   match(Set dst (AddP dst (SubI zero src)));
  8542   effect(KILL cr);
  8544   format %{ "subq    $dst, $src\t# ptr - int" %}
  8545   opcode(0x2B);
  8546   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  8547   ins_pipe(ialu_reg_reg);
  8548 %}
  8550 instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
  8551 %{
  8552   match(Set dst (SubI zero dst));
  8553   effect(KILL cr);
  8555   format %{ "negl    $dst\t# int" %}
  8556   opcode(0xF7, 0x03);  // Opcode F7 /3
  8557   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8558   ins_pipe(ialu_reg);
  8559 %}
  8561 instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
  8562 %{
  8563   match(Set dst (StoreI dst (SubI zero (LoadI dst))));
  8564   effect(KILL cr);
  8566   format %{ "negl    $dst\t# int" %}
  8567   opcode(0xF7, 0x03);  // Opcode F7 /3
  8568   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8569   ins_pipe(ialu_reg);
  8570 %}
  8572 instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
  8573 %{
  8574   match(Set dst (SubL zero dst));
  8575   effect(KILL cr);
  8577   format %{ "negq    $dst\t# long" %}
  8578   opcode(0xF7, 0x03);  // Opcode F7 /3
  8579   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8580   ins_pipe(ialu_reg);
  8581 %}
  8583 instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
  8584 %{
  8585   match(Set dst (StoreL dst (SubL zero (LoadL dst))));
  8586   effect(KILL cr);
  8588   format %{ "negq    $dst\t# long" %}
  8589   opcode(0xF7, 0x03);  // Opcode F7 /3
  8590   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8591   ins_pipe(ialu_reg);
  8592 %}
  8595 //----------Multiplication/Division Instructions-------------------------------
  8596 // Integer Multiplication Instructions
  8597 // Multiply Register
  8599 instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  8600 %{
  8601   match(Set dst (MulI dst src));
  8602   effect(KILL cr);
  8604   ins_cost(300);
  8605   format %{ "imull   $dst, $src\t# int" %}
  8606   opcode(0x0F, 0xAF);
  8607   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  8608   ins_pipe(ialu_reg_reg_alu0);
  8609 %}
  8611 instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
  8612 %{
  8613   match(Set dst (MulI src imm));
  8614   effect(KILL cr);
  8616   ins_cost(300);
  8617   format %{ "imull   $dst, $src, $imm\t# int" %}
  8618   opcode(0x69); /* 69 /r id */
  8619   ins_encode(REX_reg_reg(dst, src),
  8620              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
  8621   ins_pipe(ialu_reg_reg_alu0);
  8622 %}
  8624 instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
  8625 %{
  8626   match(Set dst (MulI dst (LoadI src)));
  8627   effect(KILL cr);
  8629   ins_cost(350);
  8630   format %{ "imull   $dst, $src\t# int" %}
  8631   opcode(0x0F, 0xAF);
  8632   ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
  8633   ins_pipe(ialu_reg_mem_alu0);
  8634 %}
  8636 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
  8637 %{
  8638   match(Set dst (MulI (LoadI src) imm));
  8639   effect(KILL cr);
  8641   ins_cost(300);
  8642   format %{ "imull   $dst, $src, $imm\t# int" %}
  8643   opcode(0x69); /* 69 /r id */
  8644   ins_encode(REX_reg_mem(dst, src),
  8645              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
  8646   ins_pipe(ialu_reg_mem_alu0);
  8647 %}
  8649 instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  8650 %{
  8651   match(Set dst (MulL dst src));
  8652   effect(KILL cr);
  8654   ins_cost(300);
  8655   format %{ "imulq   $dst, $src\t# long" %}
  8656   opcode(0x0F, 0xAF);
  8657   ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
  8658   ins_pipe(ialu_reg_reg_alu0);
  8659 %}
  8661 instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
  8662 %{
  8663   match(Set dst (MulL src imm));
  8664   effect(KILL cr);
  8666   ins_cost(300);
  8667   format %{ "imulq   $dst, $src, $imm\t# long" %}
  8668   opcode(0x69); /* 69 /r id */
  8669   ins_encode(REX_reg_reg_wide(dst, src),
  8670              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
  8671   ins_pipe(ialu_reg_reg_alu0);
  8672 %}
  8674 instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
  8675 %{
  8676   match(Set dst (MulL dst (LoadL src)));
  8677   effect(KILL cr);
  8679   ins_cost(350);
  8680   format %{ "imulq   $dst, $src\t# long" %}
  8681   opcode(0x0F, 0xAF);
  8682   ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
  8683   ins_pipe(ialu_reg_mem_alu0);
  8684 %}
  8686 instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
  8687 %{
  8688   match(Set dst (MulL (LoadL src) imm));
  8689   effect(KILL cr);
  8691   ins_cost(300);
  8692   format %{ "imulq   $dst, $src, $imm\t# long" %}
  8693   opcode(0x69); /* 69 /r id */
  8694   ins_encode(REX_reg_mem_wide(dst, src),
  8695              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
  8696   ins_pipe(ialu_reg_mem_alu0);
  8697 %}
  8699 instruct mulHiL_rReg(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
  8700 %{
  8701   match(Set dst (MulHiL src rax));
  8702   effect(USE_KILL rax, KILL cr);
  8704   ins_cost(300);
  8705   format %{ "imulq   RDX:RAX, RAX, $src\t# mulhi" %}
  8706   opcode(0xF7, 0x5); /* Opcode F7 /5 */
  8707   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
  8708   ins_pipe(ialu_reg_reg_alu0);
  8709 %}
  8711 instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
  8712                    rFlagsReg cr)
  8713 %{
  8714   match(Set rax (DivI rax div));
  8715   effect(KILL rdx, KILL cr);
  8717   ins_cost(30*100+10*100); // XXX
  8718   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
  8719             "jne,s   normal\n\t"
  8720             "xorl    rdx, rdx\n\t"
  8721             "cmpl    $div, -1\n\t"
  8722             "je,s    done\n"
  8723     "normal: cdql\n\t"
  8724             "idivl   $div\n"
  8725     "done:"        %}
  8726   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8727   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
  8728   ins_pipe(ialu_reg_reg_alu0);
  8729 %}
  8731 instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
  8732                    rFlagsReg cr)
  8733 %{
  8734   match(Set rax (DivL rax div));
  8735   effect(KILL rdx, KILL cr);
  8737   ins_cost(30*100+10*100); // XXX
  8738   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
  8739             "cmpq    rax, rdx\n\t"
  8740             "jne,s   normal\n\t"
  8741             "xorl    rdx, rdx\n\t"
  8742             "cmpq    $div, -1\n\t"
  8743             "je,s    done\n"
  8744     "normal: cdqq\n\t"
  8745             "idivq   $div\n"
  8746     "done:"        %}
  8747   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8748   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
  8749   ins_pipe(ialu_reg_reg_alu0);
  8750 %}
  8752 // Integer DIVMOD with Register, both quotient and mod results
  8753 instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
  8754                              rFlagsReg cr)
  8755 %{
  8756   match(DivModI rax div);
  8757   effect(KILL cr);
  8759   ins_cost(30*100+10*100); // XXX
  8760   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
  8761             "jne,s   normal\n\t"
  8762             "xorl    rdx, rdx\n\t"
  8763             "cmpl    $div, -1\n\t"
  8764             "je,s    done\n"
  8765     "normal: cdql\n\t"
  8766             "idivl   $div\n"
  8767     "done:"        %}
  8768   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8769   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
  8770   ins_pipe(pipe_slow);
  8771 %}
  8773 // Long DIVMOD with Register, both quotient and mod results
  8774 instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
  8775                              rFlagsReg cr)
  8776 %{
  8777   match(DivModL rax div);
  8778   effect(KILL cr);
  8780   ins_cost(30*100+10*100); // XXX
  8781   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
  8782             "cmpq    rax, rdx\n\t"
  8783             "jne,s   normal\n\t"
  8784             "xorl    rdx, rdx\n\t"
  8785             "cmpq    $div, -1\n\t"
  8786             "je,s    done\n"
  8787     "normal: cdqq\n\t"
  8788             "idivq   $div\n"
  8789     "done:"        %}
  8790   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8791   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
  8792   ins_pipe(pipe_slow);
  8793 %}
  8795 //----------- DivL-By-Constant-Expansions--------------------------------------
  8796 // DivI cases are handled by the compiler
  8798 // Magic constant, reciprocal of 10
  8799 instruct loadConL_0x6666666666666667(rRegL dst)
  8800 %{
  8801   effect(DEF dst);
  8803   format %{ "movq    $dst, #0x666666666666667\t# Used in div-by-10" %}
  8804   ins_encode(load_immL(dst, 0x6666666666666667));
  8805   ins_pipe(ialu_reg);
  8806 %}
  8808 instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
  8809 %{
  8810   effect(DEF dst, USE src, USE_KILL rax, KILL cr);
  8812   format %{ "imulq   rdx:rax, rax, $src\t# Used in div-by-10" %}
  8813   opcode(0xF7, 0x5); /* Opcode F7 /5 */
  8814   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
  8815   ins_pipe(ialu_reg_reg_alu0);
  8816 %}
  8818 instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
  8819 %{
  8820   effect(USE_DEF dst, KILL cr);
  8822   format %{ "sarq    $dst, #63\t# Used in div-by-10" %}
  8823   opcode(0xC1, 0x7); /* C1 /7 ib */
  8824   ins_encode(reg_opc_imm_wide(dst, 0x3F));
  8825   ins_pipe(ialu_reg);
  8826 %}
  8828 instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
  8829 %{
  8830   effect(USE_DEF dst, KILL cr);
  8832   format %{ "sarq    $dst, #2\t# Used in div-by-10" %}
  8833   opcode(0xC1, 0x7); /* C1 /7 ib */
  8834   ins_encode(reg_opc_imm_wide(dst, 0x2));
  8835   ins_pipe(ialu_reg);
  8836 %}
  8838 instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
  8839 %{
  8840   match(Set dst (DivL src div));
  8842   ins_cost((5+8)*100);
  8843   expand %{
  8844     rax_RegL rax;                     // Killed temp
  8845     rFlagsReg cr;                     // Killed
  8846     loadConL_0x6666666666666667(rax); // movq  rax, 0x6666666666666667
  8847     mul_hi(dst, src, rax, cr);        // mulq  rdx:rax <= rax * $src
  8848     sarL_rReg_63(src, cr);            // sarq  src, 63
  8849     sarL_rReg_2(dst, cr);             // sarq  rdx, 2
  8850     subL_rReg(dst, src, cr);          // subl  rdx, src
  8851   %}
  8852 %}
  8854 //-----------------------------------------------------------------------------
  8856 instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
  8857                    rFlagsReg cr)
  8858 %{
  8859   match(Set rdx (ModI rax div));
  8860   effect(KILL rax, KILL cr);
  8862   ins_cost(300); // XXX
  8863   format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
  8864             "jne,s   normal\n\t"
  8865             "xorl    rdx, rdx\n\t"
  8866             "cmpl    $div, -1\n\t"
  8867             "je,s    done\n"
  8868     "normal: cdql\n\t"
  8869             "idivl   $div\n"
  8870     "done:"        %}
  8871   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8872   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
  8873   ins_pipe(ialu_reg_reg_alu0);
  8874 %}
  8876 instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
  8877                    rFlagsReg cr)
  8878 %{
  8879   match(Set rdx (ModL rax div));
  8880   effect(KILL rax, KILL cr);
  8882   ins_cost(300); // XXX
  8883   format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
  8884             "cmpq    rax, rdx\n\t"
  8885             "jne,s   normal\n\t"
  8886             "xorl    rdx, rdx\n\t"
  8887             "cmpq    $div, -1\n\t"
  8888             "je,s    done\n"
  8889     "normal: cdqq\n\t"
  8890             "idivq   $div\n"
  8891     "done:"        %}
  8892   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8893   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
  8894   ins_pipe(ialu_reg_reg_alu0);
  8895 %}
  8897 // Integer Shift Instructions
  8898 // Shift Left by one
  8899 instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
  8900 %{
  8901   match(Set dst (LShiftI dst shift));
  8902   effect(KILL cr);
  8904   format %{ "sall    $dst, $shift" %}
  8905   opcode(0xD1, 0x4); /* D1 /4 */
  8906   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8907   ins_pipe(ialu_reg);
  8908 %}
  8910 // Shift Left by one
  8911 instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  8912 %{
  8913   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
  8914   effect(KILL cr);
  8916   format %{ "sall    $dst, $shift\t" %}
  8917   opcode(0xD1, 0x4); /* D1 /4 */
  8918   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8919   ins_pipe(ialu_mem_imm);
  8920 %}
  8922 // Shift Left by 8-bit immediate
  8923 instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
  8924 %{
  8925   match(Set dst (LShiftI dst shift));
  8926   effect(KILL cr);
  8928   format %{ "sall    $dst, $shift" %}
  8929   opcode(0xC1, 0x4); /* C1 /4 ib */
  8930   ins_encode(reg_opc_imm(dst, shift));
  8931   ins_pipe(ialu_reg);
  8932 %}
  8934 // Shift Left by 8-bit immediate
  8935 instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  8936 %{
  8937   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
  8938   effect(KILL cr);
  8940   format %{ "sall    $dst, $shift" %}
  8941   opcode(0xC1, 0x4); /* C1 /4 ib */
  8942   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
  8943   ins_pipe(ialu_mem_imm);
  8944 %}
  8946 // Shift Left by variable
  8947 instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
  8948 %{
  8949   match(Set dst (LShiftI dst shift));
  8950   effect(KILL cr);
  8952   format %{ "sall    $dst, $shift" %}
  8953   opcode(0xD3, 0x4); /* D3 /4 */
  8954   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8955   ins_pipe(ialu_reg_reg);
  8956 %}
  8958 // Shift Left by variable
  8959 instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  8960 %{
  8961   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
  8962   effect(KILL cr);
  8964   format %{ "sall    $dst, $shift" %}
  8965   opcode(0xD3, 0x4); /* D3 /4 */
  8966   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8967   ins_pipe(ialu_mem_reg);
  8968 %}
  8970 // Arithmetic shift right by one
  8971 instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
  8972 %{
  8973   match(Set dst (RShiftI dst shift));
  8974   effect(KILL cr);
  8976   format %{ "sarl    $dst, $shift" %}
  8977   opcode(0xD1, 0x7); /* D1 /7 */
  8978   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8979   ins_pipe(ialu_reg);
  8980 %}
  8982 // Arithmetic shift right by one
  8983 instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  8984 %{
  8985   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8986   effect(KILL cr);
  8988   format %{ "sarl    $dst, $shift" %}
  8989   opcode(0xD1, 0x7); /* D1 /7 */
  8990   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8991   ins_pipe(ialu_mem_imm);
  8992 %}
  8994 // Arithmetic Shift Right by 8-bit immediate
  8995 instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
  8996 %{
  8997   match(Set dst (RShiftI dst shift));
  8998   effect(KILL cr);
  9000   format %{ "sarl    $dst, $shift" %}
  9001   opcode(0xC1, 0x7); /* C1 /7 ib */
  9002   ins_encode(reg_opc_imm(dst, shift));
  9003   ins_pipe(ialu_mem_imm);
  9004 %}
  9006 // Arithmetic Shift Right by 8-bit immediate
  9007 instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  9008 %{
  9009   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  9010   effect(KILL cr);
  9012   format %{ "sarl    $dst, $shift" %}
  9013   opcode(0xC1, 0x7); /* C1 /7 ib */
  9014   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
  9015   ins_pipe(ialu_mem_imm);
  9016 %}
  9018 // Arithmetic Shift Right by variable
  9019 instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
  9020 %{
  9021   match(Set dst (RShiftI dst shift));
  9022   effect(KILL cr);
  9024   format %{ "sarl    $dst, $shift" %}
  9025   opcode(0xD3, 0x7); /* D3 /7 */
  9026   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9027   ins_pipe(ialu_reg_reg);
  9028 %}
  9030 // Arithmetic Shift Right by variable
  9031 instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  9032 %{
  9033   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  9034   effect(KILL cr);
  9036   format %{ "sarl    $dst, $shift" %}
  9037   opcode(0xD3, 0x7); /* D3 /7 */
  9038   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  9039   ins_pipe(ialu_mem_reg);
  9040 %}
  9042 // Logical shift right by one
  9043 instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
  9044 %{
  9045   match(Set dst (URShiftI dst shift));
  9046   effect(KILL cr);
  9048   format %{ "shrl    $dst, $shift" %}
  9049   opcode(0xD1, 0x5); /* D1 /5 */
  9050   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9051   ins_pipe(ialu_reg);
  9052 %}
  9054 // Logical shift right by one
  9055 instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  9056 %{
  9057   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
  9058   effect(KILL cr);
  9060   format %{ "shrl    $dst, $shift" %}
  9061   opcode(0xD1, 0x5); /* D1 /5 */
  9062   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  9063   ins_pipe(ialu_mem_imm);
  9064 %}
  9066 // Logical Shift Right by 8-bit immediate
  9067 instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
  9068 %{
  9069   match(Set dst (URShiftI dst shift));
  9070   effect(KILL cr);
  9072   format %{ "shrl    $dst, $shift" %}
  9073   opcode(0xC1, 0x5); /* C1 /5 ib */
  9074   ins_encode(reg_opc_imm(dst, shift));
  9075   ins_pipe(ialu_reg);
  9076 %}
  9078 // Logical Shift Right by 8-bit immediate
  9079 instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  9080 %{
  9081   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
  9082   effect(KILL cr);
  9084   format %{ "shrl    $dst, $shift" %}
  9085   opcode(0xC1, 0x5); /* C1 /5 ib */
  9086   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
  9087   ins_pipe(ialu_mem_imm);
  9088 %}
  9090 // Logical Shift Right by variable
  9091 instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
  9092 %{
  9093   match(Set dst (URShiftI dst shift));
  9094   effect(KILL cr);
  9096   format %{ "shrl    $dst, $shift" %}
  9097   opcode(0xD3, 0x5); /* D3 /5 */
  9098   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9099   ins_pipe(ialu_reg_reg);
  9100 %}
  9102 // Logical Shift Right by variable
  9103 instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  9104 %{
  9105   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
  9106   effect(KILL cr);
  9108   format %{ "shrl    $dst, $shift" %}
  9109   opcode(0xD3, 0x5); /* D3 /5 */
  9110   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  9111   ins_pipe(ialu_mem_reg);
  9112 %}
  9114 // Long Shift Instructions
  9115 // Shift Left by one
  9116 instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
  9117 %{
  9118   match(Set dst (LShiftL dst shift));
  9119   effect(KILL cr);
  9121   format %{ "salq    $dst, $shift" %}
  9122   opcode(0xD1, 0x4); /* D1 /4 */
  9123   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9124   ins_pipe(ialu_reg);
  9125 %}
  9127 // Shift Left by one
  9128 instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  9129 %{
  9130   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
  9131   effect(KILL cr);
  9133   format %{ "salq    $dst, $shift" %}
  9134   opcode(0xD1, 0x4); /* D1 /4 */
  9135   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  9136   ins_pipe(ialu_mem_imm);
  9137 %}
  9139 // Shift Left by 8-bit immediate
  9140 instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
  9141 %{
  9142   match(Set dst (LShiftL dst shift));
  9143   effect(KILL cr);
  9145   format %{ "salq    $dst, $shift" %}
  9146   opcode(0xC1, 0x4); /* C1 /4 ib */
  9147   ins_encode(reg_opc_imm_wide(dst, shift));
  9148   ins_pipe(ialu_reg);
  9149 %}
  9151 // Shift Left by 8-bit immediate
  9152 instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  9153 %{
  9154   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
  9155   effect(KILL cr);
  9157   format %{ "salq    $dst, $shift" %}
  9158   opcode(0xC1, 0x4); /* C1 /4 ib */
  9159   ins_encode(REX_mem_wide(dst), OpcP,
  9160              RM_opc_mem(secondary, dst), Con8or32(shift));
  9161   ins_pipe(ialu_mem_imm);
  9162 %}
  9164 // Shift Left by variable
  9165 instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
  9166 %{
  9167   match(Set dst (LShiftL dst shift));
  9168   effect(KILL cr);
  9170   format %{ "salq    $dst, $shift" %}
  9171   opcode(0xD3, 0x4); /* D3 /4 */
  9172   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9173   ins_pipe(ialu_reg_reg);
  9174 %}
  9176 // Shift Left by variable
  9177 instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  9178 %{
  9179   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
  9180   effect(KILL cr);
  9182   format %{ "salq    $dst, $shift" %}
  9183   opcode(0xD3, 0x4); /* D3 /4 */
  9184   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  9185   ins_pipe(ialu_mem_reg);
  9186 %}
  9188 // Arithmetic shift right by one
  9189 instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
  9190 %{
  9191   match(Set dst (RShiftL dst shift));
  9192   effect(KILL cr);
  9194   format %{ "sarq    $dst, $shift" %}
  9195   opcode(0xD1, 0x7); /* D1 /7 */
  9196   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9197   ins_pipe(ialu_reg);
  9198 %}
  9200 // Arithmetic shift right by one
  9201 instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  9202 %{
  9203   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
  9204   effect(KILL cr);
  9206   format %{ "sarq    $dst, $shift" %}
  9207   opcode(0xD1, 0x7); /* D1 /7 */
  9208   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  9209   ins_pipe(ialu_mem_imm);
  9210 %}
  9212 // Arithmetic Shift Right by 8-bit immediate
  9213 instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
  9214 %{
  9215   match(Set dst (RShiftL dst shift));
  9216   effect(KILL cr);
  9218   format %{ "sarq    $dst, $shift" %}
  9219   opcode(0xC1, 0x7); /* C1 /7 ib */
  9220   ins_encode(reg_opc_imm_wide(dst, shift));
  9221   ins_pipe(ialu_mem_imm);
  9222 %}
  9224 // Arithmetic Shift Right by 8-bit immediate
  9225 instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  9226 %{
  9227   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
  9228   effect(KILL cr);
  9230   format %{ "sarq    $dst, $shift" %}
  9231   opcode(0xC1, 0x7); /* C1 /7 ib */
  9232   ins_encode(REX_mem_wide(dst), OpcP,
  9233              RM_opc_mem(secondary, dst), Con8or32(shift));
  9234   ins_pipe(ialu_mem_imm);
  9235 %}
  9237 // Arithmetic Shift Right by variable
  9238 instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
  9239 %{
  9240   match(Set dst (RShiftL dst shift));
  9241   effect(KILL cr);
  9243   format %{ "sarq    $dst, $shift" %}
  9244   opcode(0xD3, 0x7); /* D3 /7 */
  9245   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9246   ins_pipe(ialu_reg_reg);
  9247 %}
  9249 // Arithmetic Shift Right by variable
  9250 instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  9251 %{
  9252   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
  9253   effect(KILL cr);
  9255   format %{ "sarq    $dst, $shift" %}
  9256   opcode(0xD3, 0x7); /* D3 /7 */
  9257   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  9258   ins_pipe(ialu_mem_reg);
  9259 %}
  9261 // Logical shift right by one
  9262 instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
  9263 %{
  9264   match(Set dst (URShiftL dst shift));
  9265   effect(KILL cr);
  9267   format %{ "shrq    $dst, $shift" %}
  9268   opcode(0xD1, 0x5); /* D1 /5 */
  9269   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
  9270   ins_pipe(ialu_reg);
  9271 %}
  9273 // Logical shift right by one
  9274 instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  9275 %{
  9276   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
  9277   effect(KILL cr);
  9279   format %{ "shrq    $dst, $shift" %}
  9280   opcode(0xD1, 0x5); /* D1 /5 */
  9281   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  9282   ins_pipe(ialu_mem_imm);
  9283 %}
  9285 // Logical Shift Right by 8-bit immediate
  9286 instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
  9287 %{
  9288   match(Set dst (URShiftL dst shift));
  9289   effect(KILL cr);
  9291   format %{ "shrq    $dst, $shift" %}
  9292   opcode(0xC1, 0x5); /* C1 /5 ib */
  9293   ins_encode(reg_opc_imm_wide(dst, shift));
  9294   ins_pipe(ialu_reg);
  9295 %}
  9298 // Logical Shift Right by 8-bit immediate
  9299 instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  9300 %{
  9301   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
  9302   effect(KILL cr);
  9304   format %{ "shrq    $dst, $shift" %}
  9305   opcode(0xC1, 0x5); /* C1 /5 ib */
  9306   ins_encode(REX_mem_wide(dst), OpcP,
  9307              RM_opc_mem(secondary, dst), Con8or32(shift));
  9308   ins_pipe(ialu_mem_imm);
  9309 %}
  9311 // Logical Shift Right by variable
  9312 instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
  9313 %{
  9314   match(Set dst (URShiftL dst shift));
  9315   effect(KILL cr);
  9317   format %{ "shrq    $dst, $shift" %}
  9318   opcode(0xD3, 0x5); /* D3 /5 */
  9319   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9320   ins_pipe(ialu_reg_reg);
  9321 %}
  9323 // Logical Shift Right by variable
  9324 instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  9325 %{
  9326   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
  9327   effect(KILL cr);
  9329   format %{ "shrq    $dst, $shift" %}
  9330   opcode(0xD3, 0x5); /* D3 /5 */
  9331   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  9332   ins_pipe(ialu_mem_reg);
  9333 %}
  9335 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  9336 // This idiom is used by the compiler for the i2b bytecode.
  9337 instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
  9338 %{
  9339   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  9341   format %{ "movsbl  $dst, $src\t# i2b" %}
  9342   opcode(0x0F, 0xBE);
  9343   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  9344   ins_pipe(ialu_reg_reg);
  9345 %}
  9347 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  9348 // This idiom is used by the compiler the i2s bytecode.
  9349 instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
  9350 %{
  9351   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  9353   format %{ "movswl  $dst, $src\t# i2s" %}
  9354   opcode(0x0F, 0xBF);
  9355   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  9356   ins_pipe(ialu_reg_reg);
  9357 %}
  9359 // ROL/ROR instructions
  9361 // ROL expand
  9362 instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
  9363   effect(KILL cr, USE_DEF dst);
  9365   format %{ "roll    $dst" %}
  9366   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
  9367   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9368   ins_pipe(ialu_reg);
  9369 %}
  9371 instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
  9372   effect(USE_DEF dst, USE shift, KILL cr);
  9374   format %{ "roll    $dst, $shift" %}
  9375   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
  9376   ins_encode( reg_opc_imm(dst, shift) );
  9377   ins_pipe(ialu_reg);
  9378 %}
  9380 instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
  9381 %{
  9382   effect(USE_DEF dst, USE shift, KILL cr);
  9384   format %{ "roll    $dst, $shift" %}
  9385   opcode(0xD3, 0x0); /* Opcode D3 /0 */
  9386   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9387   ins_pipe(ialu_reg_reg);
  9388 %}
  9389 // end of ROL expand
  9391 // Rotate Left by one
  9392 instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
  9393 %{
  9394   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9396   expand %{
  9397     rolI_rReg_imm1(dst, cr);
  9398   %}
  9399 %}
  9401 // Rotate Left by 8-bit immediate
  9402 instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
  9403 %{
  9404   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9405   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9407   expand %{
  9408     rolI_rReg_imm8(dst, lshift, cr);
  9409   %}
  9410 %}
  9412 // Rotate Left by variable
  9413 instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  9414 %{
  9415   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  9417   expand %{
  9418     rolI_rReg_CL(dst, shift, cr);
  9419   %}
  9420 %}
  9422 // Rotate Left by variable
  9423 instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
  9424 %{
  9425   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  9427   expand %{
  9428     rolI_rReg_CL(dst, shift, cr);
  9429   %}
  9430 %}
  9432 // ROR expand
  9433 instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
  9434 %{
  9435   effect(USE_DEF dst, KILL cr);
  9437   format %{ "rorl    $dst" %}
  9438   opcode(0xD1, 0x1); /* D1 /1 */
  9439   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9440   ins_pipe(ialu_reg);
  9441 %}
  9443 instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
  9444 %{
  9445   effect(USE_DEF dst, USE shift, KILL cr);
  9447   format %{ "rorl    $dst, $shift" %}
  9448   opcode(0xC1, 0x1); /* C1 /1 ib */
  9449   ins_encode(reg_opc_imm(dst, shift));
  9450   ins_pipe(ialu_reg);
  9451 %}
  9453 instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
  9454 %{
  9455   effect(USE_DEF dst, USE shift, KILL cr);
  9457   format %{ "rorl    $dst, $shift" %}
  9458   opcode(0xD3, 0x1); /* D3 /1 */
  9459   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9460   ins_pipe(ialu_reg_reg);
  9461 %}
  9462 // end of ROR expand
  9464 // Rotate Right by one
  9465 instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
  9466 %{
  9467   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9469   expand %{
  9470     rorI_rReg_imm1(dst, cr);
  9471   %}
  9472 %}
  9474 // Rotate Right by 8-bit immediate
  9475 instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
  9476 %{
  9477   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9478   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9480   expand %{
  9481     rorI_rReg_imm8(dst, rshift, cr);
  9482   %}
  9483 %}
  9485 // Rotate Right by variable
  9486 instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  9487 %{
  9488   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  9490   expand %{
  9491     rorI_rReg_CL(dst, shift, cr);
  9492   %}
  9493 %}
  9495 // Rotate Right by variable
  9496 instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
  9497 %{
  9498   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  9500   expand %{
  9501     rorI_rReg_CL(dst, shift, cr);
  9502   %}
  9503 %}
  9505 // for long rotate
  9506 // ROL expand
  9507 instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
  9508   effect(USE_DEF dst, KILL cr);
  9510   format %{ "rolq    $dst" %}
  9511   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
  9512   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9513   ins_pipe(ialu_reg);
  9514 %}
  9516 instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
  9517   effect(USE_DEF dst, USE shift, KILL cr);
  9519   format %{ "rolq    $dst, $shift" %}
  9520   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
  9521   ins_encode( reg_opc_imm_wide(dst, shift) );
  9522   ins_pipe(ialu_reg);
  9523 %}
  9525 instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
  9526 %{
  9527   effect(USE_DEF dst, USE shift, KILL cr);
  9529   format %{ "rolq    $dst, $shift" %}
  9530   opcode(0xD3, 0x0); /* Opcode D3 /0 */
  9531   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9532   ins_pipe(ialu_reg_reg);
  9533 %}
  9534 // end of ROL expand
  9536 // Rotate Left by one
  9537 instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
  9538 %{
  9539   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
  9541   expand %{
  9542     rolL_rReg_imm1(dst, cr);
  9543   %}
  9544 %}
  9546 // Rotate Left by 8-bit immediate
  9547 instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
  9548 %{
  9549   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
  9550   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
  9552   expand %{
  9553     rolL_rReg_imm8(dst, lshift, cr);
  9554   %}
  9555 %}
  9557 // Rotate Left by variable
  9558 instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  9559 %{
  9560   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
  9562   expand %{
  9563     rolL_rReg_CL(dst, shift, cr);
  9564   %}
  9565 %}
  9567 // Rotate Left by variable
  9568 instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
  9569 %{
  9570   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
  9572   expand %{
  9573     rolL_rReg_CL(dst, shift, cr);
  9574   %}
  9575 %}
  9577 // ROR expand
  9578 instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
  9579 %{
  9580   effect(USE_DEF dst, KILL cr);
  9582   format %{ "rorq    $dst" %}
  9583   opcode(0xD1, 0x1); /* D1 /1 */
  9584   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9585   ins_pipe(ialu_reg);
  9586 %}
  9588 instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
  9589 %{
  9590   effect(USE_DEF dst, USE shift, KILL cr);
  9592   format %{ "rorq    $dst, $shift" %}
  9593   opcode(0xC1, 0x1); /* C1 /1 ib */
  9594   ins_encode(reg_opc_imm_wide(dst, shift));
  9595   ins_pipe(ialu_reg);
  9596 %}
  9598 instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
  9599 %{
  9600   effect(USE_DEF dst, USE shift, KILL cr);
  9602   format %{ "rorq    $dst, $shift" %}
  9603   opcode(0xD3, 0x1); /* D3 /1 */
  9604   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9605   ins_pipe(ialu_reg_reg);
  9606 %}
  9607 // end of ROR expand
  9609 // Rotate Right by one
  9610 instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
  9611 %{
  9612   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
  9614   expand %{
  9615     rorL_rReg_imm1(dst, cr);
  9616   %}
  9617 %}
  9619 // Rotate Right by 8-bit immediate
  9620 instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
  9621 %{
  9622   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
  9623   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
  9625   expand %{
  9626     rorL_rReg_imm8(dst, rshift, cr);
  9627   %}
  9628 %}
  9630 // Rotate Right by variable
  9631 instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  9632 %{
  9633   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
  9635   expand %{
  9636     rorL_rReg_CL(dst, shift, cr);
  9637   %}
  9638 %}
  9640 // Rotate Right by variable
  9641 instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
  9642 %{
  9643   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
  9645   expand %{
  9646     rorL_rReg_CL(dst, shift, cr);
  9647   %}
  9648 %}
  9650 // Logical Instructions
  9652 // Integer Logical Instructions
  9654 // And Instructions
  9655 // And Register with Register
  9656 instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  9657 %{
  9658   match(Set dst (AndI dst src));
  9659   effect(KILL cr);
  9661   format %{ "andl    $dst, $src\t# int" %}
  9662   opcode(0x23);
  9663   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  9664   ins_pipe(ialu_reg_reg);
  9665 %}
  9667 // And Register with Immediate 255
  9668 instruct andI_rReg_imm255(rRegI dst, immI_255 src)
  9669 %{
  9670   match(Set dst (AndI dst src));
  9672   format %{ "movzbl  $dst, $dst\t# int & 0xFF" %}
  9673   opcode(0x0F, 0xB6);
  9674   ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  9675   ins_pipe(ialu_reg);
  9676 %}
  9678 // And Register with Immediate 255 and promote to long
  9679 instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
  9680 %{
  9681   match(Set dst (ConvI2L (AndI src mask)));
  9683   format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
  9684   opcode(0x0F, 0xB6);
  9685   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  9686   ins_pipe(ialu_reg);
  9687 %}
  9689 // And Register with Immediate 65535
  9690 instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
  9691 %{
  9692   match(Set dst (AndI dst src));
  9694   format %{ "movzwl  $dst, $dst\t# int & 0xFFFF" %}
  9695   opcode(0x0F, 0xB7);
  9696   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  9697   ins_pipe(ialu_reg);
  9698 %}
  9700 // And Register with Immediate 65535 and promote to long
  9701 instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
  9702 %{
  9703   match(Set dst (ConvI2L (AndI src mask)));
  9705   format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
  9706   opcode(0x0F, 0xB7);
  9707   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  9708   ins_pipe(ialu_reg);
  9709 %}
  9711 // And Register with Immediate
  9712 instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  9713 %{
  9714   match(Set dst (AndI dst src));
  9715   effect(KILL cr);
  9717   format %{ "andl    $dst, $src\t# int" %}
  9718   opcode(0x81, 0x04); /* Opcode 81 /4 */
  9719   ins_encode(OpcSErm(dst, src), Con8or32(src));
  9720   ins_pipe(ialu_reg);
  9721 %}
  9723 // And Register with Memory
  9724 instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  9725 %{
  9726   match(Set dst (AndI dst (LoadI src)));
  9727   effect(KILL cr);
  9729   ins_cost(125);
  9730   format %{ "andl    $dst, $src\t# int" %}
  9731   opcode(0x23);
  9732   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  9733   ins_pipe(ialu_reg_mem);
  9734 %}
  9736 // And Memory with Register
  9737 instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  9738 %{
  9739   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9740   effect(KILL cr);
  9742   ins_cost(150);
  9743   format %{ "andl    $dst, $src\t# int" %}
  9744   opcode(0x21); /* Opcode 21 /r */
  9745   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  9746   ins_pipe(ialu_mem_reg);
  9747 %}
  9749 // And Memory with Immediate
  9750 instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
  9751 %{
  9752   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9753   effect(KILL cr);
  9755   ins_cost(125);
  9756   format %{ "andl    $dst, $src\t# int" %}
  9757   opcode(0x81, 0x4); /* Opcode 81 /4 id */
  9758   ins_encode(REX_mem(dst), OpcSE(src),
  9759              RM_opc_mem(secondary, dst), Con8or32(src));
  9760   ins_pipe(ialu_mem_imm);
  9761 %}
  9763 // Or Instructions
  9764 // Or Register with Register
  9765 instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  9766 %{
  9767   match(Set dst (OrI dst src));
  9768   effect(KILL cr);
  9770   format %{ "orl     $dst, $src\t# int" %}
  9771   opcode(0x0B);
  9772   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  9773   ins_pipe(ialu_reg_reg);
  9774 %}
  9776 // Or Register with Immediate
  9777 instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  9778 %{
  9779   match(Set dst (OrI dst src));
  9780   effect(KILL cr);
  9782   format %{ "orl     $dst, $src\t# int" %}
  9783   opcode(0x81, 0x01); /* Opcode 81 /1 id */
  9784   ins_encode(OpcSErm(dst, src), Con8or32(src));
  9785   ins_pipe(ialu_reg);
  9786 %}
  9788 // Or Register with Memory
  9789 instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  9790 %{
  9791   match(Set dst (OrI dst (LoadI src)));
  9792   effect(KILL cr);
  9794   ins_cost(125);
  9795   format %{ "orl     $dst, $src\t# int" %}
  9796   opcode(0x0B);
  9797   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  9798   ins_pipe(ialu_reg_mem);
  9799 %}
  9801 // Or Memory with Register
  9802 instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  9803 %{
  9804   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9805   effect(KILL cr);
  9807   ins_cost(150);
  9808   format %{ "orl     $dst, $src\t# int" %}
  9809   opcode(0x09); /* Opcode 09 /r */
  9810   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  9811   ins_pipe(ialu_mem_reg);
  9812 %}
  9814 // Or Memory with Immediate
  9815 instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
  9816 %{
  9817   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9818   effect(KILL cr);
  9820   ins_cost(125);
  9821   format %{ "orl     $dst, $src\t# int" %}
  9822   opcode(0x81, 0x1); /* Opcode 81 /1 id */
  9823   ins_encode(REX_mem(dst), OpcSE(src),
  9824              RM_opc_mem(secondary, dst), Con8or32(src));
  9825   ins_pipe(ialu_mem_imm);
  9826 %}
  9828 // Xor Instructions
  9829 // Xor Register with Register
  9830 instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  9831 %{
  9832   match(Set dst (XorI dst src));
  9833   effect(KILL cr);
  9835   format %{ "xorl    $dst, $src\t# int" %}
  9836   opcode(0x33);
  9837   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  9838   ins_pipe(ialu_reg_reg);
  9839 %}
  9841 // Xor Register with Immediate -1
  9842 instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
  9843   match(Set dst (XorI dst imm));  
  9845   format %{ "not    $dst" %}  
  9846   ins_encode %{
  9847      __ notl($dst$$Register);
  9848   %}
  9849   ins_pipe(ialu_reg);
  9850 %}
  9852 // Xor Register with Immediate
  9853 instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  9854 %{
  9855   match(Set dst (XorI dst src));
  9856   effect(KILL cr);
  9858   format %{ "xorl    $dst, $src\t# int" %}
  9859   opcode(0x81, 0x06); /* Opcode 81 /6 id */
  9860   ins_encode(OpcSErm(dst, src), Con8or32(src));
  9861   ins_pipe(ialu_reg);
  9862 %}
  9864 // Xor Register with Memory
  9865 instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  9866 %{
  9867   match(Set dst (XorI dst (LoadI src)));
  9868   effect(KILL cr);
  9870   ins_cost(125);
  9871   format %{ "xorl    $dst, $src\t# int" %}
  9872   opcode(0x33);
  9873   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  9874   ins_pipe(ialu_reg_mem);
  9875 %}
  9877 // Xor Memory with Register
  9878 instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  9879 %{
  9880   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9881   effect(KILL cr);
  9883   ins_cost(150);
  9884   format %{ "xorl    $dst, $src\t# int" %}
  9885   opcode(0x31); /* Opcode 31 /r */
  9886   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  9887   ins_pipe(ialu_mem_reg);
  9888 %}
  9890 // Xor Memory with Immediate
  9891 instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
  9892 %{
  9893   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9894   effect(KILL cr);
  9896   ins_cost(125);
  9897   format %{ "xorl    $dst, $src\t# int" %}
  9898   opcode(0x81, 0x6); /* Opcode 81 /6 id */
  9899   ins_encode(REX_mem(dst), OpcSE(src),
  9900              RM_opc_mem(secondary, dst), Con8or32(src));
  9901   ins_pipe(ialu_mem_imm);
  9902 %}
  9905 // Long Logical Instructions
  9907 // And Instructions
  9908 // And Register with Register
  9909 instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  9910 %{
  9911   match(Set dst (AndL dst src));
  9912   effect(KILL cr);
  9914   format %{ "andq    $dst, $src\t# long" %}
  9915   opcode(0x23);
  9916   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  9917   ins_pipe(ialu_reg_reg);
  9918 %}
  9920 // And Register with Immediate 255
  9921 instruct andL_rReg_imm255(rRegL dst, immL_255 src)
  9922 %{
  9923   match(Set dst (AndL dst src));
  9925   format %{ "movzbq  $dst, $dst\t# long & 0xFF" %}
  9926   opcode(0x0F, 0xB6);
  9927   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  9928   ins_pipe(ialu_reg);
  9929 %}
  9931 // And Register with Immediate 65535
  9932 instruct andL_rReg_imm65535(rRegL dst, immL_65535 src)
  9933 %{
  9934   match(Set dst (AndL dst src));
  9936   format %{ "movzwq  $dst, $dst\t# long & 0xFFFF" %}
  9937   opcode(0x0F, 0xB7);
  9938   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  9939   ins_pipe(ialu_reg);
  9940 %}
  9942 // And Register with Immediate
  9943 instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
  9944 %{
  9945   match(Set dst (AndL dst src));
  9946   effect(KILL cr);
  9948   format %{ "andq    $dst, $src\t# long" %}
  9949   opcode(0x81, 0x04); /* Opcode 81 /4 */
  9950   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  9951   ins_pipe(ialu_reg);
  9952 %}
  9954 // And Register with Memory
  9955 instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  9956 %{
  9957   match(Set dst (AndL dst (LoadL src)));
  9958   effect(KILL cr);
  9960   ins_cost(125);
  9961   format %{ "andq    $dst, $src\t# long" %}
  9962   opcode(0x23);
  9963   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  9964   ins_pipe(ialu_reg_mem);
  9965 %}
  9967 // And Memory with Register
  9968 instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  9969 %{
  9970   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
  9971   effect(KILL cr);
  9973   ins_cost(150);
  9974   format %{ "andq    $dst, $src\t# long" %}
  9975   opcode(0x21); /* Opcode 21 /r */
  9976   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  9977   ins_pipe(ialu_mem_reg);
  9978 %}
  9980 // And Memory with Immediate
  9981 instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  9982 %{
  9983   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
  9984   effect(KILL cr);
  9986   ins_cost(125);
  9987   format %{ "andq    $dst, $src\t# long" %}
  9988   opcode(0x81, 0x4); /* Opcode 81 /4 id */
  9989   ins_encode(REX_mem_wide(dst), OpcSE(src),
  9990              RM_opc_mem(secondary, dst), Con8or32(src));
  9991   ins_pipe(ialu_mem_imm);
  9992 %}
  9994 // Or Instructions
  9995 // Or Register with Register
  9996 instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  9997 %{
  9998   match(Set dst (OrL dst src));
  9999   effect(KILL cr);
 10001   format %{ "orq     $dst, $src\t# long" %}
 10002   opcode(0x0B);
 10003   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
 10004   ins_pipe(ialu_reg_reg);
 10005 %}
 10007 // Use any_RegP to match R15 (TLS register) without spilling.
 10008 instruct orL_rReg_castP2X(rRegL dst, any_RegP src, rFlagsReg cr) %{
 10009   match(Set dst (OrL dst (CastP2X src)));
 10010   effect(KILL cr);
 10012   format %{ "orq     $dst, $src\t# long" %}
 10013   opcode(0x0B);
 10014   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
 10015   ins_pipe(ialu_reg_reg);
 10016 %}
 10019 // Or Register with Immediate
 10020 instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
 10021 %{
 10022   match(Set dst (OrL dst src));
 10023   effect(KILL cr);
 10025   format %{ "orq     $dst, $src\t# long" %}
 10026   opcode(0x81, 0x01); /* Opcode 81 /1 id */
 10027   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
 10028   ins_pipe(ialu_reg);
 10029 %}
 10031 // Or Register with Memory
 10032 instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
 10033 %{
 10034   match(Set dst (OrL dst (LoadL src)));
 10035   effect(KILL cr);
 10037   ins_cost(125);
 10038   format %{ "orq     $dst, $src\t# long" %}
 10039   opcode(0x0B);
 10040   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
 10041   ins_pipe(ialu_reg_mem);
 10042 %}
 10044 // Or Memory with Register
 10045 instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
 10046 %{
 10047   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
 10048   effect(KILL cr);
 10050   ins_cost(150);
 10051   format %{ "orq     $dst, $src\t# long" %}
 10052   opcode(0x09); /* Opcode 09 /r */
 10053   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
 10054   ins_pipe(ialu_mem_reg);
 10055 %}
 10057 // Or Memory with Immediate
 10058 instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
 10059 %{
 10060   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
 10061   effect(KILL cr);
 10063   ins_cost(125);
 10064   format %{ "orq     $dst, $src\t# long" %}
 10065   opcode(0x81, 0x1); /* Opcode 81 /1 id */
 10066   ins_encode(REX_mem_wide(dst), OpcSE(src),
 10067              RM_opc_mem(secondary, dst), Con8or32(src));
 10068   ins_pipe(ialu_mem_imm);
 10069 %}
 10071 // Xor Instructions
 10072 // Xor Register with Register
 10073 instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
 10074 %{
 10075   match(Set dst (XorL dst src));
 10076   effect(KILL cr);
 10078   format %{ "xorq    $dst, $src\t# long" %}
 10079   opcode(0x33);
 10080   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
 10081   ins_pipe(ialu_reg_reg);
 10082 %}
 10084 // Xor Register with Immediate -1
 10085 instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
 10086   match(Set dst (XorL dst imm));  
 10088   format %{ "notq   $dst" %}  
 10089   ins_encode %{
 10090      __ notq($dst$$Register);
 10091   %}
 10092   ins_pipe(ialu_reg);
 10093 %}
 10095 // Xor Register with Immediate
 10096 instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
 10097 %{
 10098   match(Set dst (XorL dst src));
 10099   effect(KILL cr);
 10101   format %{ "xorq    $dst, $src\t# long" %}
 10102   opcode(0x81, 0x06); /* Opcode 81 /6 id */
 10103   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
 10104   ins_pipe(ialu_reg);
 10105 %}
 10107 // Xor Register with Memory
 10108 instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
 10109 %{
 10110   match(Set dst (XorL dst (LoadL src)));
 10111   effect(KILL cr);
 10113   ins_cost(125);
 10114   format %{ "xorq    $dst, $src\t# long" %}
 10115   opcode(0x33);
 10116   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
 10117   ins_pipe(ialu_reg_mem);
 10118 %}
 10120 // Xor Memory with Register
 10121 instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
 10122 %{
 10123   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
 10124   effect(KILL cr);
 10126   ins_cost(150);
 10127   format %{ "xorq    $dst, $src\t# long" %}
 10128   opcode(0x31); /* Opcode 31 /r */
 10129   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
 10130   ins_pipe(ialu_mem_reg);
 10131 %}
 10133 // Xor Memory with Immediate
 10134 instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
 10135 %{
 10136   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
 10137   effect(KILL cr);
 10139   ins_cost(125);
 10140   format %{ "xorq    $dst, $src\t# long" %}
 10141   opcode(0x81, 0x6); /* Opcode 81 /6 id */
 10142   ins_encode(REX_mem_wide(dst), OpcSE(src),
 10143              RM_opc_mem(secondary, dst), Con8or32(src));
 10144   ins_pipe(ialu_mem_imm);
 10145 %}
 10147 // Convert Int to Boolean
 10148 instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
 10149 %{
 10150   match(Set dst (Conv2B src));
 10151   effect(KILL cr);
 10153   format %{ "testl   $src, $src\t# ci2b\n\t"
 10154             "setnz   $dst\n\t"
 10155             "movzbl  $dst, $dst" %}
 10156   ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
 10157              setNZ_reg(dst),
 10158              REX_reg_breg(dst, dst), // movzbl
 10159              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
 10160   ins_pipe(pipe_slow); // XXX
 10161 %}
 10163 // Convert Pointer to Boolean
 10164 instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
 10165 %{
 10166   match(Set dst (Conv2B src));
 10167   effect(KILL cr);
 10169   format %{ "testq   $src, $src\t# cp2b\n\t"
 10170             "setnz   $dst\n\t"
 10171             "movzbl  $dst, $dst" %}
 10172   ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
 10173              setNZ_reg(dst),
 10174              REX_reg_breg(dst, dst), // movzbl
 10175              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
 10176   ins_pipe(pipe_slow); // XXX
 10177 %}
 10179 instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
 10180 %{
 10181   match(Set dst (CmpLTMask p q));
 10182   effect(KILL cr);
 10184   ins_cost(400); // XXX
 10185   format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
 10186             "setlt   $dst\n\t"
 10187             "movzbl  $dst, $dst\n\t"
 10188             "negl    $dst" %}
 10189   ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
 10190              setLT_reg(dst),
 10191              REX_reg_breg(dst, dst), // movzbl
 10192              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
 10193              neg_reg(dst));
 10194   ins_pipe(pipe_slow);
 10195 %}
 10197 instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
 10198 %{
 10199   match(Set dst (CmpLTMask dst zero));
 10200   effect(KILL cr);
 10202   ins_cost(100); // XXX
 10203   format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
 10204   opcode(0xC1, 0x7);  /* C1 /7 ib */
 10205   ins_encode(reg_opc_imm(dst, 0x1F));
 10206   ins_pipe(ialu_reg);
 10207 %}
 10210 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y,
 10211                          rRegI tmp,
 10212                          rFlagsReg cr)
 10213 %{
 10214   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
 10215   effect(TEMP tmp, KILL cr);
 10217   ins_cost(400); // XXX
 10218   format %{ "subl    $p, $q\t# cadd_cmpLTMask1\n\t"
 10219             "sbbl    $tmp, $tmp\n\t"
 10220             "andl    $tmp, $y\n\t"
 10221             "addl    $p, $tmp" %}
 10222   ins_encode(enc_cmpLTP(p, q, y, tmp));
 10223   ins_pipe(pipe_cmplt);
 10224 %}
 10226 /* If I enable this, I encourage spilling in the inner loop of compress.
 10227 instruct cadd_cmpLTMask_mem( rRegI p, rRegI q, memory y, rRegI tmp, rFlagsReg cr )
 10228 %{
 10229   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
 10230   effect( TEMP tmp, KILL cr );
 10231   ins_cost(400);
 10233   format %{ "SUB    $p,$q\n\t"
 10234             "SBB    RCX,RCX\n\t"
 10235             "AND    RCX,$y\n\t"
 10236             "ADD    $p,RCX" %}
 10237   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
 10238 %}
 10239 */
 10241 //---------- FP Instructions------------------------------------------------
 10243 instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
 10244 %{
 10245   match(Set cr (CmpF src1 src2));
 10247   ins_cost(145);
 10248   format %{ "ucomiss $src1, $src2\n\t"
 10249             "jnp,s   exit\n\t"
 10250             "pushfq\t# saw NaN, set CF\n\t"
 10251             "andq    [rsp], #0xffffff2b\n\t"
 10252             "popfq\n"
 10253     "exit:   nop\t# avoid branch to branch" %}
 10254   opcode(0x0F, 0x2E);
 10255   ins_encode(REX_reg_reg(src1, src2), OpcP, OpcS, reg_reg(src1, src2),
 10256              cmpfp_fixup);
 10257   ins_pipe(pipe_slow);
 10258 %}
 10260 instruct cmpF_cc_reg_CF(rFlagsRegUCF cr, regF src1, regF src2) %{
 10261   match(Set cr (CmpF src1 src2));
 10263   ins_cost(145);
 10264   format %{ "ucomiss $src1, $src2" %}
 10265   ins_encode %{
 10266     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10267   %}
 10268   ins_pipe(pipe_slow);
 10269 %}
 10271 instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
 10272 %{
 10273   match(Set cr (CmpF src1 (LoadF src2)));
 10275   ins_cost(145);
 10276   format %{ "ucomiss $src1, $src2\n\t"
 10277             "jnp,s   exit\n\t"
 10278             "pushfq\t# saw NaN, set CF\n\t"
 10279             "andq    [rsp], #0xffffff2b\n\t"
 10280             "popfq\n"
 10281     "exit:   nop\t# avoid branch to branch" %}
 10282   opcode(0x0F, 0x2E);
 10283   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2),
 10284              cmpfp_fixup);
 10285   ins_pipe(pipe_slow);
 10286 %}
 10288 instruct cmpF_cc_memCF(rFlagsRegUCF cr, regF src1, memory src2) %{
 10289   match(Set cr (CmpF src1 (LoadF src2)));
 10291   ins_cost(100);
 10292   format %{ "ucomiss $src1, $src2" %}
 10293   opcode(0x0F, 0x2E);
 10294   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2));
 10295   ins_pipe(pipe_slow);
 10296 %}
 10298 instruct cmpF_cc_imm(rFlagsRegU cr, regF src1, immF src2)
 10299 %{
 10300   match(Set cr (CmpF src1 src2));
 10302   ins_cost(145);
 10303   format %{ "ucomiss $src1, $src2\n\t"
 10304             "jnp,s   exit\n\t"
 10305             "pushfq\t# saw NaN, set CF\n\t"
 10306             "andq    [rsp], #0xffffff2b\n\t"
 10307             "popfq\n"
 10308     "exit:   nop\t# avoid branch to branch" %}
 10309   opcode(0x0F, 0x2E);
 10310   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2),
 10311              cmpfp_fixup);
 10312   ins_pipe(pipe_slow);
 10313 %}
 10315 instruct cmpF_cc_immCF(rFlagsRegUCF cr, regF src1, immF src2) %{
 10316   match(Set cr (CmpF src1 src2));
 10318   ins_cost(100);
 10319   format %{ "ucomiss $src1, $src2" %}
 10320   opcode(0x0F, 0x2E);
 10321   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2));
 10322   ins_pipe(pipe_slow);
 10323 %}
 10325 instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
 10326 %{
 10327   match(Set cr (CmpD src1 src2));
 10329   ins_cost(145);
 10330   format %{ "ucomisd $src1, $src2\n\t"
 10331             "jnp,s   exit\n\t"
 10332             "pushfq\t# saw NaN, set CF\n\t"
 10333             "andq    [rsp], #0xffffff2b\n\t"
 10334             "popfq\n"
 10335     "exit:   nop\t# avoid branch to branch" %}
 10336   opcode(0x66, 0x0F, 0x2E);
 10337   ins_encode(OpcP, REX_reg_reg(src1, src2), OpcS, OpcT, reg_reg(src1, src2),
 10338              cmpfp_fixup);
 10339   ins_pipe(pipe_slow);
 10340 %}
 10342 instruct cmpD_cc_reg_CF(rFlagsRegUCF cr, regD src1, regD src2) %{
 10343   match(Set cr (CmpD src1 src2));
 10345   ins_cost(100);
 10346   format %{ "ucomisd $src1, $src2 test" %}
 10347   ins_encode %{
 10348     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
 10349   %}
 10350   ins_pipe(pipe_slow);
 10351 %}
 10353 instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
 10354 %{
 10355   match(Set cr (CmpD src1 (LoadD src2)));
 10357   ins_cost(145);
 10358   format %{ "ucomisd $src1, $src2\n\t"
 10359             "jnp,s   exit\n\t"
 10360             "pushfq\t# saw NaN, set CF\n\t"
 10361             "andq    [rsp], #0xffffff2b\n\t"
 10362             "popfq\n"
 10363     "exit:   nop\t# avoid branch to branch" %}
 10364   opcode(0x66, 0x0F, 0x2E);
 10365   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2),
 10366              cmpfp_fixup);
 10367   ins_pipe(pipe_slow);
 10368 %}
 10370 instruct cmpD_cc_memCF(rFlagsRegUCF cr, regD src1, memory src2) %{
 10371   match(Set cr (CmpD src1 (LoadD src2)));
 10373   ins_cost(100);
 10374   format %{ "ucomisd $src1, $src2" %}
 10375   opcode(0x66, 0x0F, 0x2E);
 10376   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2));
 10377   ins_pipe(pipe_slow);
 10378 %}
 10380 instruct cmpD_cc_imm(rFlagsRegU cr, regD src1, immD src2)
 10381 %{
 10382   match(Set cr (CmpD src1 src2));
 10384   ins_cost(145);
 10385   format %{ "ucomisd $src1, [$src2]\n\t"
 10386             "jnp,s   exit\n\t"
 10387             "pushfq\t# saw NaN, set CF\n\t"
 10388             "andq    [rsp], #0xffffff2b\n\t"
 10389             "popfq\n"
 10390     "exit:   nop\t# avoid branch to branch" %}
 10391   opcode(0x66, 0x0F, 0x2E);
 10392   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2),
 10393              cmpfp_fixup);
 10394   ins_pipe(pipe_slow);
 10395 %}
 10397 instruct cmpD_cc_immCF(rFlagsRegUCF cr, regD src1, immD src2) %{
 10398   match(Set cr (CmpD src1 src2));
 10400   ins_cost(100);
 10401   format %{ "ucomisd $src1, [$src2]" %}
 10402   opcode(0x66, 0x0F, 0x2E);
 10403   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2));
 10404   ins_pipe(pipe_slow);
 10405 %}
 10407 // Compare into -1,0,1
 10408 instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
 10409 %{
 10410   match(Set dst (CmpF3 src1 src2));
 10411   effect(KILL cr);
 10413   ins_cost(275);
 10414   format %{ "ucomiss $src1, $src2\n\t"
 10415             "movl    $dst, #-1\n\t"
 10416             "jp,s    done\n\t"
 10417             "jb,s    done\n\t"
 10418             "setne   $dst\n\t"
 10419             "movzbl  $dst, $dst\n"
 10420     "done:" %}
 10422   opcode(0x0F, 0x2E);
 10423   ins_encode(REX_reg_reg(src1, src2), OpcP, OpcS, reg_reg(src1, src2),
 10424              cmpfp3(dst));
 10425   ins_pipe(pipe_slow);
 10426 %}
 10428 // Compare into -1,0,1
 10429 instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
 10430 %{
 10431   match(Set dst (CmpF3 src1 (LoadF src2)));
 10432   effect(KILL cr);
 10434   ins_cost(275);
 10435   format %{ "ucomiss $src1, $src2\n\t"
 10436             "movl    $dst, #-1\n\t"
 10437             "jp,s    done\n\t"
 10438             "jb,s    done\n\t"
 10439             "setne   $dst\n\t"
 10440             "movzbl  $dst, $dst\n"
 10441     "done:" %}
 10443   opcode(0x0F, 0x2E);
 10444   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2),
 10445              cmpfp3(dst));
 10446   ins_pipe(pipe_slow);
 10447 %}
 10449 // Compare into -1,0,1
 10450 instruct cmpF_imm(rRegI dst, regF src1, immF src2, rFlagsReg cr)
 10451 %{
 10452   match(Set dst (CmpF3 src1 src2));
 10453   effect(KILL cr);
 10455   ins_cost(275);
 10456   format %{ "ucomiss $src1, [$src2]\n\t"
 10457             "movl    $dst, #-1\n\t"
 10458             "jp,s    done\n\t"
 10459             "jb,s    done\n\t"
 10460             "setne   $dst\n\t"
 10461             "movzbl  $dst, $dst\n"
 10462     "done:" %}
 10464   opcode(0x0F, 0x2E);
 10465   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2),
 10466              cmpfp3(dst));
 10467   ins_pipe(pipe_slow);
 10468 %}
 10470 // Compare into -1,0,1
 10471 instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
 10472 %{
 10473   match(Set dst (CmpD3 src1 src2));
 10474   effect(KILL cr);
 10476   ins_cost(275);
 10477   format %{ "ucomisd $src1, $src2\n\t"
 10478             "movl    $dst, #-1\n\t"
 10479             "jp,s    done\n\t"
 10480             "jb,s    done\n\t"
 10481             "setne   $dst\n\t"
 10482             "movzbl  $dst, $dst\n"
 10483     "done:" %}
 10485   opcode(0x66, 0x0F, 0x2E);
 10486   ins_encode(OpcP, REX_reg_reg(src1, src2), OpcS, OpcT, reg_reg(src1, src2),
 10487              cmpfp3(dst));
 10488   ins_pipe(pipe_slow);
 10489 %}
 10491 // Compare into -1,0,1
 10492 instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
 10493 %{
 10494   match(Set dst (CmpD3 src1 (LoadD src2)));
 10495   effect(KILL cr);
 10497   ins_cost(275);
 10498   format %{ "ucomisd $src1, $src2\n\t"
 10499             "movl    $dst, #-1\n\t"
 10500             "jp,s    done\n\t"
 10501             "jb,s    done\n\t"
 10502             "setne   $dst\n\t"
 10503             "movzbl  $dst, $dst\n"
 10504     "done:" %}
 10506   opcode(0x66, 0x0F, 0x2E);
 10507   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2),
 10508              cmpfp3(dst));
 10509   ins_pipe(pipe_slow);
 10510 %}
 10512 // Compare into -1,0,1
 10513 instruct cmpD_imm(rRegI dst, regD src1, immD src2, rFlagsReg cr)
 10514 %{
 10515   match(Set dst (CmpD3 src1 src2));
 10516   effect(KILL cr);
 10518   ins_cost(275);
 10519   format %{ "ucomisd $src1, [$src2]\n\t"
 10520             "movl    $dst, #-1\n\t"
 10521             "jp,s    done\n\t"
 10522             "jb,s    done\n\t"
 10523             "setne   $dst\n\t"
 10524             "movzbl  $dst, $dst\n"
 10525     "done:" %}
 10527   opcode(0x66, 0x0F, 0x2E);
 10528   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2),
 10529              cmpfp3(dst));
 10530   ins_pipe(pipe_slow);
 10531 %}
 10533 instruct addF_reg(regF dst, regF src)
 10534 %{
 10535   match(Set dst (AddF dst src));
 10537   format %{ "addss   $dst, $src" %}
 10538   ins_cost(150); // XXX
 10539   opcode(0xF3, 0x0F, 0x58);
 10540   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10541   ins_pipe(pipe_slow);
 10542 %}
 10544 instruct addF_mem(regF dst, memory src)
 10545 %{
 10546   match(Set dst (AddF dst (LoadF src)));
 10548   format %{ "addss   $dst, $src" %}
 10549   ins_cost(150); // XXX
 10550   opcode(0xF3, 0x0F, 0x58);
 10551   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10552   ins_pipe(pipe_slow);
 10553 %}
 10555 instruct addF_imm(regF dst, immF src)
 10556 %{
 10557   match(Set dst (AddF dst src));
 10559   format %{ "addss   $dst, [$src]" %}
 10560   ins_cost(150); // XXX
 10561   opcode(0xF3, 0x0F, 0x58);
 10562   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10563   ins_pipe(pipe_slow);
 10564 %}
 10566 instruct addD_reg(regD dst, regD src)
 10567 %{
 10568   match(Set dst (AddD dst src));
 10570   format %{ "addsd   $dst, $src" %}
 10571   ins_cost(150); // XXX
 10572   opcode(0xF2, 0x0F, 0x58);
 10573   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10574   ins_pipe(pipe_slow);
 10575 %}
 10577 instruct addD_mem(regD dst, memory src)
 10578 %{
 10579   match(Set dst (AddD dst (LoadD src)));
 10581   format %{ "addsd   $dst, $src" %}
 10582   ins_cost(150); // XXX
 10583   opcode(0xF2, 0x0F, 0x58);
 10584   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10585   ins_pipe(pipe_slow);
 10586 %}
 10588 instruct addD_imm(regD dst, immD src)
 10589 %{
 10590   match(Set dst (AddD dst src));
 10592   format %{ "addsd   $dst, [$src]" %}
 10593   ins_cost(150); // XXX
 10594   opcode(0xF2, 0x0F, 0x58);
 10595   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10596   ins_pipe(pipe_slow);
 10597 %}
 10599 instruct subF_reg(regF dst, regF src)
 10600 %{
 10601   match(Set dst (SubF dst src));
 10603   format %{ "subss   $dst, $src" %}
 10604   ins_cost(150); // XXX
 10605   opcode(0xF3, 0x0F, 0x5C);
 10606   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10607   ins_pipe(pipe_slow);
 10608 %}
 10610 instruct subF_mem(regF dst, memory src)
 10611 %{
 10612   match(Set dst (SubF dst (LoadF src)));
 10614   format %{ "subss   $dst, $src" %}
 10615   ins_cost(150); // XXX
 10616   opcode(0xF3, 0x0F, 0x5C);
 10617   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10618   ins_pipe(pipe_slow);
 10619 %}
 10621 instruct subF_imm(regF dst, immF src)
 10622 %{
 10623   match(Set dst (SubF dst src));
 10625   format %{ "subss   $dst, [$src]" %}
 10626   ins_cost(150); // XXX
 10627   opcode(0xF3, 0x0F, 0x5C);
 10628   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10629   ins_pipe(pipe_slow);
 10630 %}
 10632 instruct subD_reg(regD dst, regD src)
 10633 %{
 10634   match(Set dst (SubD dst src));
 10636   format %{ "subsd   $dst, $src" %}
 10637   ins_cost(150); // XXX
 10638   opcode(0xF2, 0x0F, 0x5C);
 10639   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10640   ins_pipe(pipe_slow);
 10641 %}
 10643 instruct subD_mem(regD dst, memory src)
 10644 %{
 10645   match(Set dst (SubD dst (LoadD src)));
 10647   format %{ "subsd   $dst, $src" %}
 10648   ins_cost(150); // XXX
 10649   opcode(0xF2, 0x0F, 0x5C);
 10650   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10651   ins_pipe(pipe_slow);
 10652 %}
 10654 instruct subD_imm(regD dst, immD src)
 10655 %{
 10656   match(Set dst (SubD dst src));
 10658   format %{ "subsd   $dst, [$src]" %}
 10659   ins_cost(150); // XXX
 10660   opcode(0xF2, 0x0F, 0x5C);
 10661   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10662   ins_pipe(pipe_slow);
 10663 %}
 10665 instruct mulF_reg(regF dst, regF src)
 10666 %{
 10667   match(Set dst (MulF dst src));
 10669   format %{ "mulss   $dst, $src" %}
 10670   ins_cost(150); // XXX
 10671   opcode(0xF3, 0x0F, 0x59);
 10672   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10673   ins_pipe(pipe_slow);
 10674 %}
 10676 instruct mulF_mem(regF dst, memory src)
 10677 %{
 10678   match(Set dst (MulF dst (LoadF src)));
 10680   format %{ "mulss   $dst, $src" %}
 10681   ins_cost(150); // XXX
 10682   opcode(0xF3, 0x0F, 0x59);
 10683   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10684   ins_pipe(pipe_slow);
 10685 %}
 10687 instruct mulF_imm(regF dst, immF src)
 10688 %{
 10689   match(Set dst (MulF dst src));
 10691   format %{ "mulss   $dst, [$src]" %}
 10692   ins_cost(150); // XXX
 10693   opcode(0xF3, 0x0F, 0x59);
 10694   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10695   ins_pipe(pipe_slow);
 10696 %}
 10698 instruct mulD_reg(regD dst, regD src)
 10699 %{
 10700   match(Set dst (MulD dst src));
 10702   format %{ "mulsd   $dst, $src" %}
 10703   ins_cost(150); // XXX
 10704   opcode(0xF2, 0x0F, 0x59);
 10705   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10706   ins_pipe(pipe_slow);
 10707 %}
 10709 instruct mulD_mem(regD dst, memory src)
 10710 %{
 10711   match(Set dst (MulD dst (LoadD src)));
 10713   format %{ "mulsd   $dst, $src" %}
 10714   ins_cost(150); // XXX
 10715   opcode(0xF2, 0x0F, 0x59);
 10716   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10717   ins_pipe(pipe_slow);
 10718 %}
 10720 instruct mulD_imm(regD dst, immD src)
 10721 %{
 10722   match(Set dst (MulD dst src));
 10724   format %{ "mulsd   $dst, [$src]" %}
 10725   ins_cost(150); // XXX
 10726   opcode(0xF2, 0x0F, 0x59);
 10727   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10728   ins_pipe(pipe_slow);
 10729 %}
 10731 instruct divF_reg(regF dst, regF src)
 10732 %{
 10733   match(Set dst (DivF dst src));
 10735   format %{ "divss   $dst, $src" %}
 10736   ins_cost(150); // XXX
 10737   opcode(0xF3, 0x0F, 0x5E);
 10738   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10739   ins_pipe(pipe_slow);
 10740 %}
 10742 instruct divF_mem(regF dst, memory src)
 10743 %{
 10744   match(Set dst (DivF dst (LoadF src)));
 10746   format %{ "divss   $dst, $src" %}
 10747   ins_cost(150); // XXX
 10748   opcode(0xF3, 0x0F, 0x5E);
 10749   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10750   ins_pipe(pipe_slow);
 10751 %}
 10753 instruct divF_imm(regF dst, immF src)
 10754 %{
 10755   match(Set dst (DivF dst src));
 10757   format %{ "divss   $dst, [$src]" %}
 10758   ins_cost(150); // XXX
 10759   opcode(0xF3, 0x0F, 0x5E);
 10760   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10761   ins_pipe(pipe_slow);
 10762 %}
 10764 instruct divD_reg(regD dst, regD src)
 10765 %{
 10766   match(Set dst (DivD dst src));
 10768   format %{ "divsd   $dst, $src" %}
 10769   ins_cost(150); // XXX
 10770   opcode(0xF2, 0x0F, 0x5E);
 10771   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10772   ins_pipe(pipe_slow);
 10773 %}
 10775 instruct divD_mem(regD dst, memory src)
 10776 %{
 10777   match(Set dst (DivD dst (LoadD src)));
 10779   format %{ "divsd   $dst, $src" %}
 10780   ins_cost(150); // XXX
 10781   opcode(0xF2, 0x0F, 0x5E);
 10782   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10783   ins_pipe(pipe_slow);
 10784 %}
 10786 instruct divD_imm(regD dst, immD src)
 10787 %{
 10788   match(Set dst (DivD dst src));
 10790   format %{ "divsd   $dst, [$src]" %}
 10791   ins_cost(150); // XXX
 10792   opcode(0xF2, 0x0F, 0x5E);
 10793   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10794   ins_pipe(pipe_slow);
 10795 %}
 10797 instruct sqrtF_reg(regF dst, regF src)
 10798 %{
 10799   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10801   format %{ "sqrtss  $dst, $src" %}
 10802   ins_cost(150); // XXX
 10803   opcode(0xF3, 0x0F, 0x51);
 10804   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10805   ins_pipe(pipe_slow);
 10806 %}
 10808 instruct sqrtF_mem(regF dst, memory src)
 10809 %{
 10810   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF src)))));
 10812   format %{ "sqrtss  $dst, $src" %}
 10813   ins_cost(150); // XXX
 10814   opcode(0xF3, 0x0F, 0x51);
 10815   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10816   ins_pipe(pipe_slow);
 10817 %}
 10819 instruct sqrtF_imm(regF dst, immF src)
 10820 %{
 10821   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10823   format %{ "sqrtss  $dst, [$src]" %}
 10824   ins_cost(150); // XXX
 10825   opcode(0xF3, 0x0F, 0x51);
 10826   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10827   ins_pipe(pipe_slow);
 10828 %}
 10830 instruct sqrtD_reg(regD dst, regD src)
 10831 %{
 10832   match(Set dst (SqrtD src));
 10834   format %{ "sqrtsd  $dst, $src" %}
 10835   ins_cost(150); // XXX
 10836   opcode(0xF2, 0x0F, 0x51);
 10837   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10838   ins_pipe(pipe_slow);
 10839 %}
 10841 instruct sqrtD_mem(regD dst, memory src)
 10842 %{
 10843   match(Set dst (SqrtD (LoadD src)));
 10845   format %{ "sqrtsd  $dst, $src" %}
 10846   ins_cost(150); // XXX
 10847   opcode(0xF2, 0x0F, 0x51);
 10848   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10849   ins_pipe(pipe_slow);
 10850 %}
 10852 instruct sqrtD_imm(regD dst, immD src)
 10853 %{
 10854   match(Set dst (SqrtD src));
 10856   format %{ "sqrtsd  $dst, [$src]" %}
 10857   ins_cost(150); // XXX
 10858   opcode(0xF2, 0x0F, 0x51);
 10859   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10860   ins_pipe(pipe_slow);
 10861 %}
 10863 instruct absF_reg(regF dst)
 10864 %{
 10865   match(Set dst (AbsF dst));
 10867   format %{ "andps   $dst, [0x7fffffff]\t# abs float by sign masking" %}
 10868   ins_encode(absF_encoding(dst));
 10869   ins_pipe(pipe_slow);
 10870 %}
 10872 instruct absD_reg(regD dst)
 10873 %{
 10874   match(Set dst (AbsD dst));
 10876   format %{ "andpd   $dst, [0x7fffffffffffffff]\t"
 10877             "# abs double by sign masking" %}
 10878   ins_encode(absD_encoding(dst));
 10879   ins_pipe(pipe_slow);
 10880 %}
 10882 instruct negF_reg(regF dst)
 10883 %{
 10884   match(Set dst (NegF dst));
 10886   format %{ "xorps   $dst, [0x80000000]\t# neg float by sign flipping" %}
 10887   ins_encode(negF_encoding(dst));
 10888   ins_pipe(pipe_slow);
 10889 %}
 10891 instruct negD_reg(regD dst)
 10892 %{
 10893   match(Set dst (NegD dst));
 10895   format %{ "xorpd   $dst, [0x8000000000000000]\t"
 10896             "# neg double by sign flipping" %}
 10897   ins_encode(negD_encoding(dst));
 10898   ins_pipe(pipe_slow);
 10899 %}
 10901 // -----------Trig and Trancendental Instructions------------------------------
 10902 instruct cosD_reg(regD dst) %{
 10903   match(Set dst (CosD dst));
 10905   format %{ "dcos   $dst\n\t" %}
 10906   opcode(0xD9, 0xFF);
 10907   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10908   ins_pipe( pipe_slow );
 10909 %}
 10911 instruct sinD_reg(regD dst) %{
 10912   match(Set dst (SinD dst));
 10914   format %{ "dsin   $dst\n\t" %}
 10915   opcode(0xD9, 0xFE);
 10916   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10917   ins_pipe( pipe_slow );
 10918 %}
 10920 instruct tanD_reg(regD dst) %{
 10921   match(Set dst (TanD dst));
 10923   format %{ "dtan   $dst\n\t" %}
 10924   ins_encode( Push_SrcXD(dst),
 10925               Opcode(0xD9), Opcode(0xF2),   //fptan
 10926               Opcode(0xDD), Opcode(0xD8),   //fstp st
 10927               Push_ResultXD(dst) );
 10928   ins_pipe( pipe_slow );
 10929 %}
 10931 instruct log10D_reg(regD dst) %{
 10932   // The source and result Double operands in XMM registers
 10933   match(Set dst (Log10D dst));
 10934   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10935   // fyl2x        ; compute log_10(2) * log_2(x)
 10936   format %{ "fldlg2\t\t\t#Log10\n\t"
 10937             "fyl2x\t\t\t# Q=Log10*Log_2(x)\n\t"
 10938          %}
 10939    ins_encode(Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10940               Push_SrcXD(dst),
 10941               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10942               Push_ResultXD(dst));
 10944   ins_pipe( pipe_slow );
 10945 %}
 10947 instruct logD_reg(regD dst) %{
 10948   // The source and result Double operands in XMM registers
 10949   match(Set dst (LogD dst));
 10950   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10951   // fyl2x        ; compute log_e(2) * log_2(x)
 10952   format %{ "fldln2\t\t\t#Log_e\n\t"
 10953             "fyl2x\t\t\t# Q=Log_e*Log_2(x)\n\t"
 10954          %}
 10955   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10956               Push_SrcXD(dst),
 10957               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10958               Push_ResultXD(dst));
 10959   ins_pipe( pipe_slow );
 10960 %}
 10964 //----------Arithmetic Conversion Instructions---------------------------------
 10966 instruct roundFloat_nop(regF dst)
 10967 %{
 10968   match(Set dst (RoundFloat dst));
 10970   ins_cost(0);
 10971   ins_encode();
 10972   ins_pipe(empty);
 10973 %}
 10975 instruct roundDouble_nop(regD dst)
 10976 %{
 10977   match(Set dst (RoundDouble dst));
 10979   ins_cost(0);
 10980   ins_encode();
 10981   ins_pipe(empty);
 10982 %}
 10984 instruct convF2D_reg_reg(regD dst, regF src)
 10985 %{
 10986   match(Set dst (ConvF2D src));
 10988   format %{ "cvtss2sd $dst, $src" %}
 10989   opcode(0xF3, 0x0F, 0x5A);
 10990   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10991   ins_pipe(pipe_slow); // XXX
 10992 %}
 10994 instruct convF2D_reg_mem(regD dst, memory src)
 10995 %{
 10996   match(Set dst (ConvF2D (LoadF src)));
 10998   format %{ "cvtss2sd $dst, $src" %}
 10999   opcode(0xF3, 0x0F, 0x5A);
 11000   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11001   ins_pipe(pipe_slow); // XXX
 11002 %}
 11004 instruct convD2F_reg_reg(regF dst, regD src)
 11005 %{
 11006   match(Set dst (ConvD2F src));
 11008   format %{ "cvtsd2ss $dst, $src" %}
 11009   opcode(0xF2, 0x0F, 0x5A);
 11010   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 11011   ins_pipe(pipe_slow); // XXX
 11012 %}
 11014 instruct convD2F_reg_mem(regF dst, memory src)
 11015 %{
 11016   match(Set dst (ConvD2F (LoadD src)));
 11018   format %{ "cvtsd2ss $dst, $src" %}
 11019   opcode(0xF2, 0x0F, 0x5A);
 11020   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11021   ins_pipe(pipe_slow); // XXX
 11022 %}
 11024 // XXX do mem variants
 11025 instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
 11026 %{
 11027   match(Set dst (ConvF2I src));
 11028   effect(KILL cr);
 11030   format %{ "cvttss2sil $dst, $src\t# f2i\n\t"
 11031             "cmpl    $dst, #0x80000000\n\t"
 11032             "jne,s   done\n\t"
 11033             "subq    rsp, #8\n\t"
 11034             "movss   [rsp], $src\n\t"
 11035             "call    f2i_fixup\n\t"
 11036             "popq    $dst\n"
 11037     "done:   "%}
 11038   opcode(0xF3, 0x0F, 0x2C);
 11039   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src),
 11040              f2i_fixup(dst, src));
 11041   ins_pipe(pipe_slow);
 11042 %}
 11044 instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
 11045 %{
 11046   match(Set dst (ConvF2L src));
 11047   effect(KILL cr);
 11049   format %{ "cvttss2siq $dst, $src\t# f2l\n\t"
 11050             "cmpq    $dst, [0x8000000000000000]\n\t"
 11051             "jne,s   done\n\t"
 11052             "subq    rsp, #8\n\t"
 11053             "movss   [rsp], $src\n\t"
 11054             "call    f2l_fixup\n\t"
 11055             "popq    $dst\n"
 11056     "done:   "%}
 11057   opcode(0xF3, 0x0F, 0x2C);
 11058   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src),
 11059              f2l_fixup(dst, src));
 11060   ins_pipe(pipe_slow);
 11061 %}
 11063 instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
 11064 %{
 11065   match(Set dst (ConvD2I src));
 11066   effect(KILL cr);
 11068   format %{ "cvttsd2sil $dst, $src\t# d2i\n\t"
 11069             "cmpl    $dst, #0x80000000\n\t"
 11070             "jne,s   done\n\t"
 11071             "subq    rsp, #8\n\t"
 11072             "movsd   [rsp], $src\n\t"
 11073             "call    d2i_fixup\n\t"
 11074             "popq    $dst\n"
 11075     "done:   "%}
 11076   opcode(0xF2, 0x0F, 0x2C);
 11077   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src),
 11078              d2i_fixup(dst, src));
 11079   ins_pipe(pipe_slow);
 11080 %}
 11082 instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
 11083 %{
 11084   match(Set dst (ConvD2L src));
 11085   effect(KILL cr);
 11087   format %{ "cvttsd2siq $dst, $src\t# d2l\n\t"
 11088             "cmpq    $dst, [0x8000000000000000]\n\t"
 11089             "jne,s   done\n\t"
 11090             "subq    rsp, #8\n\t"
 11091             "movsd   [rsp], $src\n\t"
 11092             "call    d2l_fixup\n\t"
 11093             "popq    $dst\n"
 11094     "done:   "%}
 11095   opcode(0xF2, 0x0F, 0x2C);
 11096   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src),
 11097              d2l_fixup(dst, src));
 11098   ins_pipe(pipe_slow);
 11099 %}
 11101 instruct convI2F_reg_reg(regF dst, rRegI src)
 11102 %{
 11103   predicate(!UseXmmI2F);
 11104   match(Set dst (ConvI2F src));
 11106   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
 11107   opcode(0xF3, 0x0F, 0x2A);
 11108   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 11109   ins_pipe(pipe_slow); // XXX
 11110 %}
 11112 instruct convI2F_reg_mem(regF dst, memory src)
 11113 %{
 11114   match(Set dst (ConvI2F (LoadI src)));
 11116   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
 11117   opcode(0xF3, 0x0F, 0x2A);
 11118   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11119   ins_pipe(pipe_slow); // XXX
 11120 %}
 11122 instruct convI2D_reg_reg(regD dst, rRegI src)
 11123 %{
 11124   predicate(!UseXmmI2D);
 11125   match(Set dst (ConvI2D src));
 11127   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
 11128   opcode(0xF2, 0x0F, 0x2A);
 11129   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 11130   ins_pipe(pipe_slow); // XXX
 11131 %}
 11133 instruct convI2D_reg_mem(regD dst, memory src)
 11134 %{
 11135   match(Set dst (ConvI2D (LoadI src)));
 11137   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
 11138   opcode(0xF2, 0x0F, 0x2A);
 11139   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11140   ins_pipe(pipe_slow); // XXX
 11141 %}
 11143 instruct convXI2F_reg(regF dst, rRegI src)
 11144 %{
 11145   predicate(UseXmmI2F);
 11146   match(Set dst (ConvI2F src));
 11148   format %{ "movdl $dst, $src\n\t"
 11149             "cvtdq2psl $dst, $dst\t# i2f" %}
 11150   ins_encode %{
 11151     __ movdl($dst$$XMMRegister, $src$$Register);
 11152     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11153   %}
 11154   ins_pipe(pipe_slow); // XXX
 11155 %}
 11157 instruct convXI2D_reg(regD dst, rRegI src)
 11158 %{
 11159   predicate(UseXmmI2D);
 11160   match(Set dst (ConvI2D src));
 11162   format %{ "movdl $dst, $src\n\t"
 11163             "cvtdq2pdl $dst, $dst\t# i2d" %}
 11164   ins_encode %{
 11165     __ movdl($dst$$XMMRegister, $src$$Register);
 11166     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11167   %}
 11168   ins_pipe(pipe_slow); // XXX
 11169 %}
 11171 instruct convL2F_reg_reg(regF dst, rRegL src)
 11172 %{
 11173   match(Set dst (ConvL2F src));
 11175   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
 11176   opcode(0xF3, 0x0F, 0x2A);
 11177   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src));
 11178   ins_pipe(pipe_slow); // XXX
 11179 %}
 11181 instruct convL2F_reg_mem(regF dst, memory src)
 11182 %{
 11183   match(Set dst (ConvL2F (LoadL src)));
 11185   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
 11186   opcode(0xF3, 0x0F, 0x2A);
 11187   ins_encode(OpcP, REX_reg_mem_wide(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11188   ins_pipe(pipe_slow); // XXX
 11189 %}
 11191 instruct convL2D_reg_reg(regD dst, rRegL src)
 11192 %{
 11193   match(Set dst (ConvL2D src));
 11195   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
 11196   opcode(0xF2, 0x0F, 0x2A);
 11197   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src));
 11198   ins_pipe(pipe_slow); // XXX
 11199 %}
 11201 instruct convL2D_reg_mem(regD dst, memory src)
 11202 %{
 11203   match(Set dst (ConvL2D (LoadL src)));
 11205   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
 11206   opcode(0xF2, 0x0F, 0x2A);
 11207   ins_encode(OpcP, REX_reg_mem_wide(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11208   ins_pipe(pipe_slow); // XXX
 11209 %}
 11211 instruct convI2L_reg_reg(rRegL dst, rRegI src)
 11212 %{
 11213   match(Set dst (ConvI2L src));
 11215   ins_cost(125);
 11216   format %{ "movslq  $dst, $src\t# i2l" %}
 11217   opcode(0x63); // needs REX.W
 11218   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
 11219   ins_pipe(ialu_reg_reg);
 11220 %}
 11222 // instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
 11223 // %{
 11224 //   match(Set dst (ConvI2L src));
 11225 // //   predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
 11226 // //             _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
 11227 //   predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
 11228 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
 11229 //             ((const TypeNode*) n)->type()->is_long()->_lo ==
 11230 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
 11232 //   format %{ "movl    $dst, $src\t# unsigned i2l" %}
 11233 //   ins_encode(enc_copy(dst, src));
 11234 // //   opcode(0x63); // needs REX.W
 11235 // //   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
 11236 //   ins_pipe(ialu_reg_reg);
 11237 // %}
 11239 // Zero-extend convert int to long
 11240 instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
 11241 %{
 11242   match(Set dst (AndL (ConvI2L src) mask));
 11244   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
 11245   ins_encode(enc_copy(dst, src));
 11246   ins_pipe(ialu_reg_reg);
 11247 %}
 11249 // Zero-extend convert int to long
 11250 instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
 11251 %{
 11252   match(Set dst (AndL (ConvI2L (LoadI src)) mask));
 11254   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
 11255   opcode(0x8B);
 11256   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
 11257   ins_pipe(ialu_reg_mem);
 11258 %}
 11260 instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
 11261 %{
 11262   match(Set dst (AndL src mask));
 11264   format %{ "movl    $dst, $src\t# zero-extend long" %}
 11265   ins_encode(enc_copy_always(dst, src));
 11266   ins_pipe(ialu_reg_reg);
 11267 %}
 11269 instruct convL2I_reg_reg(rRegI dst, rRegL src)
 11270 %{
 11271   match(Set dst (ConvL2I src));
 11273   format %{ "movl    $dst, $src\t# l2i" %}
 11274   ins_encode(enc_copy_always(dst, src));
 11275   ins_pipe(ialu_reg_reg);
 11276 %}
 11279 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
 11280   match(Set dst (MoveF2I src));
 11281   effect(DEF dst, USE src);
 11283   ins_cost(125);
 11284   format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
 11285   opcode(0x8B);
 11286   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
 11287   ins_pipe(ialu_reg_mem);
 11288 %}
 11290 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
 11291   match(Set dst (MoveI2F src));
 11292   effect(DEF dst, USE src);
 11294   ins_cost(125);
 11295   format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
 11296   opcode(0xF3, 0x0F, 0x10);
 11297   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11298   ins_pipe(pipe_slow);
 11299 %}
 11301 instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
 11302   match(Set dst (MoveD2L src));
 11303   effect(DEF dst, USE src);
 11305   ins_cost(125);
 11306   format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
 11307   opcode(0x8B);
 11308   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
 11309   ins_pipe(ialu_reg_mem);
 11310 %}
 11312 instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
 11313   predicate(!UseXmmLoadAndClearUpper);
 11314   match(Set dst (MoveL2D src));
 11315   effect(DEF dst, USE src);
 11317   ins_cost(125);
 11318   format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
 11319   opcode(0x66, 0x0F, 0x12);
 11320   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11321   ins_pipe(pipe_slow);
 11322 %}
 11324 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
 11325   predicate(UseXmmLoadAndClearUpper);
 11326   match(Set dst (MoveL2D src));
 11327   effect(DEF dst, USE src);
 11329   ins_cost(125);
 11330   format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
 11331   opcode(0xF2, 0x0F, 0x10);
 11332   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11333   ins_pipe(pipe_slow);
 11334 %}
 11337 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
 11338   match(Set dst (MoveF2I src));
 11339   effect(DEF dst, USE src);
 11341   ins_cost(95); // XXX
 11342   format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
 11343   opcode(0xF3, 0x0F, 0x11);
 11344   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
 11345   ins_pipe(pipe_slow);
 11346 %}
 11348 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
 11349   match(Set dst (MoveI2F src));
 11350   effect(DEF dst, USE src);
 11352   ins_cost(100);
 11353   format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
 11354   opcode(0x89);
 11355   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
 11356   ins_pipe( ialu_mem_reg );
 11357 %}
 11359 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
 11360   match(Set dst (MoveD2L src));
 11361   effect(DEF dst, USE src);
 11363   ins_cost(95); // XXX
 11364   format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
 11365   opcode(0xF2, 0x0F, 0x11);
 11366   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
 11367   ins_pipe(pipe_slow);
 11368 %}
 11370 instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
 11371   match(Set dst (MoveL2D src));
 11372   effect(DEF dst, USE src);
 11374   ins_cost(100);
 11375   format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
 11376   opcode(0x89);
 11377   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
 11378   ins_pipe(ialu_mem_reg);
 11379 %}
 11381 instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
 11382   match(Set dst (MoveF2I src));
 11383   effect(DEF dst, USE src);
 11384   ins_cost(85);
 11385   format %{ "movd    $dst,$src\t# MoveF2I" %}
 11386   ins_encode %{ __ movdl($dst$$Register, $src$$XMMRegister); %}
 11387   ins_pipe( pipe_slow );
 11388 %}
 11390 instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
 11391   match(Set dst (MoveD2L src));
 11392   effect(DEF dst, USE src);
 11393   ins_cost(85);
 11394   format %{ "movd    $dst,$src\t# MoveD2L" %}
 11395   ins_encode %{ __ movdq($dst$$Register, $src$$XMMRegister); %}
 11396   ins_pipe( pipe_slow );
 11397 %}
 11399 // The next instructions have long latency and use Int unit. Set high cost.
 11400 instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
 11401   match(Set dst (MoveI2F src));
 11402   effect(DEF dst, USE src);
 11403   ins_cost(300);
 11404   format %{ "movd    $dst,$src\t# MoveI2F" %}
 11405   ins_encode %{ __ movdl($dst$$XMMRegister, $src$$Register); %}
 11406   ins_pipe( pipe_slow );
 11407 %}
 11409 instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
 11410   match(Set dst (MoveL2D src));
 11411   effect(DEF dst, USE src);
 11412   ins_cost(300);
 11413   format %{ "movd    $dst,$src\t# MoveL2D" %}
 11414   ins_encode %{ __ movdq($dst$$XMMRegister, $src$$Register); %}
 11415   ins_pipe( pipe_slow );
 11416 %}
 11418 // Replicate scalar to packed byte (1 byte) values in xmm
 11419 instruct Repl8B_reg(regD dst, regD src) %{
 11420   match(Set dst (Replicate8B src));
 11421   format %{ "MOVDQA  $dst,$src\n\t"
 11422             "PUNPCKLBW $dst,$dst\n\t"
 11423             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11424   ins_encode( pshufd_8x8(dst, src));
 11425   ins_pipe( pipe_slow );
 11426 %}
 11428 // Replicate scalar to packed byte (1 byte) values in xmm
 11429 instruct Repl8B_rRegI(regD dst, rRegI src) %{
 11430   match(Set dst (Replicate8B src));
 11431   format %{ "MOVD    $dst,$src\n\t"
 11432             "PUNPCKLBW $dst,$dst\n\t"
 11433             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11434   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
 11435   ins_pipe( pipe_slow );
 11436 %}
 11438 // Replicate scalar zero to packed byte (1 byte) values in xmm
 11439 instruct Repl8B_immI0(regD dst, immI0 zero) %{
 11440   match(Set dst (Replicate8B zero));
 11441   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 11442   ins_encode( pxor(dst, dst));
 11443   ins_pipe( fpu_reg_reg );
 11444 %}
 11446 // Replicate scalar to packed shore (2 byte) values in xmm
 11447 instruct Repl4S_reg(regD dst, regD src) %{
 11448   match(Set dst (Replicate4S src));
 11449   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 11450   ins_encode( pshufd_4x16(dst, src));
 11451   ins_pipe( fpu_reg_reg );
 11452 %}
 11454 // Replicate scalar to packed shore (2 byte) values in xmm
 11455 instruct Repl4S_rRegI(regD dst, rRegI src) %{
 11456   match(Set dst (Replicate4S src));
 11457   format %{ "MOVD    $dst,$src\n\t"
 11458             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 11459   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 11460   ins_pipe( fpu_reg_reg );
 11461 %}
 11463 // Replicate scalar zero to packed short (2 byte) values in xmm
 11464 instruct Repl4S_immI0(regD dst, immI0 zero) %{
 11465   match(Set dst (Replicate4S zero));
 11466   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 11467   ins_encode( pxor(dst, dst));
 11468   ins_pipe( fpu_reg_reg );
 11469 %}
 11471 // Replicate scalar to packed char (2 byte) values in xmm
 11472 instruct Repl4C_reg(regD dst, regD src) %{
 11473   match(Set dst (Replicate4C src));
 11474   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 11475   ins_encode( pshufd_4x16(dst, src));
 11476   ins_pipe( fpu_reg_reg );
 11477 %}
 11479 // Replicate scalar to packed char (2 byte) values in xmm
 11480 instruct Repl4C_rRegI(regD dst, rRegI src) %{
 11481   match(Set dst (Replicate4C src));
 11482   format %{ "MOVD    $dst,$src\n\t"
 11483             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 11484   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 11485   ins_pipe( fpu_reg_reg );
 11486 %}
 11488 // Replicate scalar zero to packed char (2 byte) values in xmm
 11489 instruct Repl4C_immI0(regD dst, immI0 zero) %{
 11490   match(Set dst (Replicate4C zero));
 11491   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 11492   ins_encode( pxor(dst, dst));
 11493   ins_pipe( fpu_reg_reg );
 11494 %}
 11496 // Replicate scalar to packed integer (4 byte) values in xmm
 11497 instruct Repl2I_reg(regD dst, regD src) %{
 11498   match(Set dst (Replicate2I src));
 11499   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 11500   ins_encode( pshufd(dst, src, 0x00));
 11501   ins_pipe( fpu_reg_reg );
 11502 %}
 11504 // Replicate scalar to packed integer (4 byte) values in xmm
 11505 instruct Repl2I_rRegI(regD dst, rRegI src) %{
 11506   match(Set dst (Replicate2I src));
 11507   format %{ "MOVD   $dst,$src\n\t"
 11508             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 11509   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
 11510   ins_pipe( fpu_reg_reg );
 11511 %}
 11513 // Replicate scalar zero to packed integer (2 byte) values in xmm
 11514 instruct Repl2I_immI0(regD dst, immI0 zero) %{
 11515   match(Set dst (Replicate2I zero));
 11516   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 11517   ins_encode( pxor(dst, dst));
 11518   ins_pipe( fpu_reg_reg );
 11519 %}
 11521 // Replicate scalar to packed single precision floating point values in xmm
 11522 instruct Repl2F_reg(regD dst, regD src) %{
 11523   match(Set dst (Replicate2F src));
 11524   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 11525   ins_encode( pshufd(dst, src, 0xe0));
 11526   ins_pipe( fpu_reg_reg );
 11527 %}
 11529 // Replicate scalar to packed single precision floating point values in xmm
 11530 instruct Repl2F_regF(regD dst, regF src) %{
 11531   match(Set dst (Replicate2F src));
 11532   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 11533   ins_encode( pshufd(dst, src, 0xe0));
 11534   ins_pipe( fpu_reg_reg );
 11535 %}
 11537 // Replicate scalar to packed single precision floating point values in xmm
 11538 instruct Repl2F_immF0(regD dst, immF0 zero) %{
 11539   match(Set dst (Replicate2F zero));
 11540   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 11541   ins_encode( pxor(dst, dst));
 11542   ins_pipe( fpu_reg_reg );
 11543 %}
 11546 // =======================================================================
 11547 // fast clearing of an array
 11548 instruct rep_stos(rcx_RegL cnt, rdi_RegP base, rax_RegI zero, Universe dummy,
 11549                   rFlagsReg cr)
 11550 %{
 11551   match(Set dummy (ClearArray cnt base));
 11552   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11554   format %{ "xorl    rax, rax\t# ClearArray:\n\t"
 11555             "rep stosq\t# Store rax to *rdi++ while rcx--" %}
 11556   ins_encode(opc_reg_reg(0x33, RAX, RAX), // xorl %eax, %eax
 11557              Opcode(0xF3), Opcode(0x48), Opcode(0xAB)); // rep REX_W stos
 11558   ins_pipe(pipe_slow);
 11559 %}
 11561 instruct string_compare(rdi_RegP str1, rsi_RegP str2, rax_RegI tmp1,
 11562                         rbx_RegI tmp2, rcx_RegI result, rFlagsReg cr)
 11563 %{
 11564   match(Set result (StrComp str1 str2));
 11565   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL cr);
 11566   //ins_cost(300);
 11568   format %{ "String Compare $str1, $str2 -> $result    // XXX KILL RAX, RBX" %}
 11569   ins_encode( enc_String_Compare() );
 11570   ins_pipe( pipe_slow );
 11571 %}
 11573 // fast array equals
 11574 instruct array_equals(rdi_RegP ary1, rsi_RegP ary2, rax_RegI tmp1, 
 11575                       rbx_RegI tmp2, rcx_RegI result, rFlagsReg cr) %{
 11576   match(Set result (AryEq ary1 ary2));
 11577   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL cr);
 11578   //ins_cost(300);
 11580   format %{ "Array Equals $ary1,$ary2 -> $result    // KILL RAX, RBX" %}
 11581   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, tmp2, result) );
 11582   ins_pipe( pipe_slow );
 11583 %}
 11585 //----------Control Flow Instructions------------------------------------------
 11586 // Signed compare Instructions
 11588 // XXX more variants!!
 11589 instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
 11590 %{
 11591   match(Set cr (CmpI op1 op2));
 11592   effect(DEF cr, USE op1, USE op2);
 11594   format %{ "cmpl    $op1, $op2" %}
 11595   opcode(0x3B);  /* Opcode 3B /r */
 11596   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
 11597   ins_pipe(ialu_cr_reg_reg);
 11598 %}
 11600 instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
 11601 %{
 11602   match(Set cr (CmpI op1 op2));
 11604   format %{ "cmpl    $op1, $op2" %}
 11605   opcode(0x81, 0x07); /* Opcode 81 /7 */
 11606   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
 11607   ins_pipe(ialu_cr_reg_imm);
 11608 %}
 11610 instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
 11611 %{
 11612   match(Set cr (CmpI op1 (LoadI op2)));
 11614   ins_cost(500); // XXX
 11615   format %{ "cmpl    $op1, $op2" %}
 11616   opcode(0x3B); /* Opcode 3B /r */
 11617   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
 11618   ins_pipe(ialu_cr_reg_mem);
 11619 %}
 11621 instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
 11622 %{
 11623   match(Set cr (CmpI src zero));
 11625   format %{ "testl   $src, $src" %}
 11626   opcode(0x85);
 11627   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
 11628   ins_pipe(ialu_cr_reg_imm);
 11629 %}
 11631 instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
 11632 %{
 11633   match(Set cr (CmpI (AndI src con) zero));
 11635   format %{ "testl   $src, $con" %}
 11636   opcode(0xF7, 0x00);
 11637   ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
 11638   ins_pipe(ialu_cr_reg_imm);
 11639 %}
 11641 instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
 11642 %{
 11643   match(Set cr (CmpI (AndI src (LoadI mem)) zero));
 11645   format %{ "testl   $src, $mem" %}
 11646   opcode(0x85);
 11647   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
 11648   ins_pipe(ialu_cr_reg_mem);
 11649 %}
 11651 // Unsigned compare Instructions; really, same as signed except they
 11652 // produce an rFlagsRegU instead of rFlagsReg.
 11653 instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
 11654 %{
 11655   match(Set cr (CmpU op1 op2));
 11657   format %{ "cmpl    $op1, $op2\t# unsigned" %}
 11658   opcode(0x3B); /* Opcode 3B /r */
 11659   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
 11660   ins_pipe(ialu_cr_reg_reg);
 11661 %}
 11663 instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
 11664 %{
 11665   match(Set cr (CmpU op1 op2));
 11667   format %{ "cmpl    $op1, $op2\t# unsigned" %}
 11668   opcode(0x81,0x07); /* Opcode 81 /7 */
 11669   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
 11670   ins_pipe(ialu_cr_reg_imm);
 11671 %}
 11673 instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
 11674 %{
 11675   match(Set cr (CmpU op1 (LoadI op2)));
 11677   ins_cost(500); // XXX
 11678   format %{ "cmpl    $op1, $op2\t# unsigned" %}
 11679   opcode(0x3B); /* Opcode 3B /r */
 11680   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
 11681   ins_pipe(ialu_cr_reg_mem);
 11682 %}
 11684 // // // Cisc-spilled version of cmpU_rReg
 11685 // //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
 11686 // //%{
 11687 // //  match(Set cr (CmpU (LoadI op1) op2));
 11688 // //
 11689 // //  format %{ "CMPu   $op1,$op2" %}
 11690 // //  ins_cost(500);
 11691 // //  opcode(0x39);  /* Opcode 39 /r */
 11692 // //  ins_encode( OpcP, reg_mem( op1, op2) );
 11693 // //%}
 11695 instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
 11696 %{
 11697   match(Set cr (CmpU src zero));
 11699   format %{ "testl  $src, $src\t# unsigned" %}
 11700   opcode(0x85);
 11701   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
 11702   ins_pipe(ialu_cr_reg_imm);
 11703 %}
 11705 instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
 11706 %{
 11707   match(Set cr (CmpP op1 op2));
 11709   format %{ "cmpq    $op1, $op2\t# ptr" %}
 11710   opcode(0x3B); /* Opcode 3B /r */
 11711   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
 11712   ins_pipe(ialu_cr_reg_reg);
 11713 %}
 11715 instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
 11716 %{
 11717   match(Set cr (CmpP op1 (LoadP op2)));
 11719   ins_cost(500); // XXX
 11720   format %{ "cmpq    $op1, $op2\t# ptr" %}
 11721   opcode(0x3B); /* Opcode 3B /r */
 11722   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
 11723   ins_pipe(ialu_cr_reg_mem);
 11724 %}
 11726 // // // Cisc-spilled version of cmpP_rReg
 11727 // //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
 11728 // //%{
 11729 // //  match(Set cr (CmpP (LoadP op1) op2));
 11730 // //
 11731 // //  format %{ "CMPu   $op1,$op2" %}
 11732 // //  ins_cost(500);
 11733 // //  opcode(0x39);  /* Opcode 39 /r */
 11734 // //  ins_encode( OpcP, reg_mem( op1, op2) );
 11735 // //%}
 11737 // XXX this is generalized by compP_rReg_mem???
 11738 // Compare raw pointer (used in out-of-heap check).
 11739 // Only works because non-oop pointers must be raw pointers
 11740 // and raw pointers have no anti-dependencies.
 11741 instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
 11742 %{
 11743   predicate(!n->in(2)->in(2)->bottom_type()->isa_oop_ptr());
 11744   match(Set cr (CmpP op1 (LoadP op2)));
 11746   format %{ "cmpq    $op1, $op2\t# raw ptr" %}
 11747   opcode(0x3B); /* Opcode 3B /r */
 11748   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
 11749   ins_pipe(ialu_cr_reg_mem);
 11750 %}
 11752 // This will generate a signed flags result. This should be OK since
 11753 // any compare to a zero should be eq/neq.
 11754 instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
 11755 %{
 11756   match(Set cr (CmpP src zero));
 11758   format %{ "testq   $src, $src\t# ptr" %}
 11759   opcode(0x85);
 11760   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
 11761   ins_pipe(ialu_cr_reg_imm);
 11762 %}
 11764 // This will generate a signed flags result. This should be OK since
 11765 // any compare to a zero should be eq/neq.
 11766 instruct testP_mem(rFlagsReg cr, memory op, immP0 zero)
 11767 %{
 11768   predicate(!UseCompressedOops || (Universe::narrow_oop_base() != NULL));
 11769   match(Set cr (CmpP (LoadP op) zero));
 11771   ins_cost(500); // XXX
 11772   format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
 11773   opcode(0xF7); /* Opcode F7 /0 */
 11774   ins_encode(REX_mem_wide(op),
 11775              OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
 11776   ins_pipe(ialu_cr_reg_imm);
 11777 %}
 11779 instruct testP_mem_reg0(rFlagsReg cr, memory mem, immP0 zero)
 11780 %{
 11781   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
 11782   match(Set cr (CmpP (LoadP mem) zero));
 11784   format %{ "cmpq    R12, $mem\t# ptr (R12_heapbase==0)" %}
 11785   ins_encode %{
 11786     __ cmpq(r12, $mem$$Address);
 11787   %}
 11788   ins_pipe(ialu_cr_reg_mem);
 11789 %}
 11791 instruct compN_rReg(rFlagsRegU cr, rRegN op1, rRegN op2)
 11792 %{
 11793   match(Set cr (CmpN op1 op2));
 11795   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
 11796   ins_encode %{ __ cmpl($op1$$Register, $op2$$Register); %}
 11797   ins_pipe(ialu_cr_reg_reg);
 11798 %}
 11800 instruct compN_rReg_mem(rFlagsRegU cr, rRegN src, memory mem)
 11801 %{
 11802   match(Set cr (CmpN src (LoadN mem)));
 11804   format %{ "cmpl    $src, $mem\t# compressed ptr" %}
 11805   ins_encode %{
 11806     __ cmpl($src$$Register, $mem$$Address);
 11807   %}
 11808   ins_pipe(ialu_cr_reg_mem);
 11809 %}
 11811 instruct compN_rReg_imm(rFlagsRegU cr, rRegN op1, immN op2) %{
 11812   match(Set cr (CmpN op1 op2));
 11814   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
 11815   ins_encode %{
 11816     __ cmp_narrow_oop($op1$$Register, (jobject)$op2$$constant);
 11817   %}
 11818   ins_pipe(ialu_cr_reg_imm);
 11819 %}
 11821 instruct compN_mem_imm(rFlagsRegU cr, memory mem, immN src)
 11822 %{
 11823   match(Set cr (CmpN src (LoadN mem)));
 11825   format %{ "cmpl    $mem, $src\t# compressed ptr" %}
 11826   ins_encode %{
 11827     __ cmp_narrow_oop($mem$$Address, (jobject)$src$$constant);
 11828   %}
 11829   ins_pipe(ialu_cr_reg_mem);
 11830 %}
 11832 instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
 11833   match(Set cr (CmpN src zero));
 11835   format %{ "testl   $src, $src\t# compressed ptr" %}
 11836   ins_encode %{ __ testl($src$$Register, $src$$Register); %}
 11837   ins_pipe(ialu_cr_reg_imm);
 11838 %}
 11840 instruct testN_mem(rFlagsReg cr, memory mem, immN0 zero)
 11841 %{
 11842   predicate(Universe::narrow_oop_base() != NULL);
 11843   match(Set cr (CmpN (LoadN mem) zero));
 11845   ins_cost(500); // XXX
 11846   format %{ "testl   $mem, 0xffffffff\t# compressed ptr" %}
 11847   ins_encode %{
 11848     __ cmpl($mem$$Address, (int)0xFFFFFFFF);
 11849   %}
 11850   ins_pipe(ialu_cr_reg_mem);
 11851 %}
 11853 instruct testN_mem_reg0(rFlagsReg cr, memory mem, immN0 zero)
 11854 %{
 11855   predicate(Universe::narrow_oop_base() == NULL);
 11856   match(Set cr (CmpN (LoadN mem) zero));
 11858   format %{ "cmpl    R12, $mem\t# compressed ptr (R12_heapbase==0)" %}
 11859   ins_encode %{
 11860     __ cmpl(r12, $mem$$Address);
 11861   %}
 11862   ins_pipe(ialu_cr_reg_mem);
 11863 %}
 11865 // Yanked all unsigned pointer compare operations.
 11866 // Pointer compares are done with CmpP which is already unsigned.
 11868 instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
 11869 %{
 11870   match(Set cr (CmpL op1 op2));
 11872   format %{ "cmpq    $op1, $op2" %}
 11873   opcode(0x3B);  /* Opcode 3B /r */
 11874   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
 11875   ins_pipe(ialu_cr_reg_reg);
 11876 %}
 11878 instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
 11879 %{
 11880   match(Set cr (CmpL op1 op2));
 11882   format %{ "cmpq    $op1, $op2" %}
 11883   opcode(0x81, 0x07); /* Opcode 81 /7 */
 11884   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
 11885   ins_pipe(ialu_cr_reg_imm);
 11886 %}
 11888 instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
 11889 %{
 11890   match(Set cr (CmpL op1 (LoadL op2)));
 11892   format %{ "cmpq    $op1, $op2" %}
 11893   opcode(0x3B); /* Opcode 3B /r */
 11894   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
 11895   ins_pipe(ialu_cr_reg_mem);
 11896 %}
 11898 instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
 11899 %{
 11900   match(Set cr (CmpL src zero));
 11902   format %{ "testq   $src, $src" %}
 11903   opcode(0x85);
 11904   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
 11905   ins_pipe(ialu_cr_reg_imm);
 11906 %}
 11908 instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
 11909 %{
 11910   match(Set cr (CmpL (AndL src con) zero));
 11912   format %{ "testq   $src, $con\t# long" %}
 11913   opcode(0xF7, 0x00);
 11914   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
 11915   ins_pipe(ialu_cr_reg_imm);
 11916 %}
 11918 instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
 11919 %{
 11920   match(Set cr (CmpL (AndL src (LoadL mem)) zero));
 11922   format %{ "testq   $src, $mem" %}
 11923   opcode(0x85);
 11924   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
 11925   ins_pipe(ialu_cr_reg_mem);
 11926 %}
 11928 // Manifest a CmpL result in an integer register.  Very painful.
 11929 // This is the test to avoid.
 11930 instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
 11931 %{
 11932   match(Set dst (CmpL3 src1 src2));
 11933   effect(KILL flags);
 11935   ins_cost(275); // XXX
 11936   format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
 11937             "movl    $dst, -1\n\t"
 11938             "jl,s    done\n\t"
 11939             "setne   $dst\n\t"
 11940             "movzbl  $dst, $dst\n\t"
 11941     "done:" %}
 11942   ins_encode(cmpl3_flag(src1, src2, dst));
 11943   ins_pipe(pipe_slow);
 11944 %}
 11946 //----------Max and Min--------------------------------------------------------
 11947 // Min Instructions
 11949 instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
 11950 %{
 11951   effect(USE_DEF dst, USE src, USE cr);
 11953   format %{ "cmovlgt $dst, $src\t# min" %}
 11954   opcode(0x0F, 0x4F);
 11955   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
 11956   ins_pipe(pipe_cmov_reg);
 11957 %}
 11960 instruct minI_rReg(rRegI dst, rRegI src)
 11961 %{
 11962   match(Set dst (MinI dst src));
 11964   ins_cost(200);
 11965   expand %{
 11966     rFlagsReg cr;
 11967     compI_rReg(cr, dst, src);
 11968     cmovI_reg_g(dst, src, cr);
 11969   %}
 11970 %}
 11972 instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
 11973 %{
 11974   effect(USE_DEF dst, USE src, USE cr);
 11976   format %{ "cmovllt $dst, $src\t# max" %}
 11977   opcode(0x0F, 0x4C);
 11978   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
 11979   ins_pipe(pipe_cmov_reg);
 11980 %}
 11983 instruct maxI_rReg(rRegI dst, rRegI src)
 11984 %{
 11985   match(Set dst (MaxI dst src));
 11987   ins_cost(200);
 11988   expand %{
 11989     rFlagsReg cr;
 11990     compI_rReg(cr, dst, src);
 11991     cmovI_reg_l(dst, src, cr);
 11992   %}
 11993 %}
 11995 // ============================================================================
 11996 // Branch Instructions
 11998 // Jump Direct - Label defines a relative address from JMP+1
 11999 instruct jmpDir(label labl)
 12000 %{
 12001   match(Goto);
 12002   effect(USE labl);
 12004   ins_cost(300);
 12005   format %{ "jmp     $labl" %}
 12006   size(5);
 12007   opcode(0xE9);
 12008   ins_encode(OpcP, Lbl(labl));
 12009   ins_pipe(pipe_jmp);
 12010   ins_pc_relative(1);
 12011 %}
 12013 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12014 instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
 12015 %{
 12016   match(If cop cr);
 12017   effect(USE labl);
 12019   ins_cost(300);
 12020   format %{ "j$cop     $labl" %}
 12021   size(6);
 12022   opcode(0x0F, 0x80);
 12023   ins_encode(Jcc(cop, labl));
 12024   ins_pipe(pipe_jcc);
 12025   ins_pc_relative(1);
 12026 %}
 12028 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12029 instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
 12030 %{
 12031   match(CountedLoopEnd cop cr);
 12032   effect(USE labl);
 12034   ins_cost(300);
 12035   format %{ "j$cop     $labl\t# loop end" %}
 12036   size(6);
 12037   opcode(0x0F, 0x80);
 12038   ins_encode(Jcc(cop, labl));
 12039   ins_pipe(pipe_jcc);
 12040   ins_pc_relative(1);
 12041 %}
 12043 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12044 instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
 12045   match(CountedLoopEnd cop cmp);
 12046   effect(USE labl);
 12048   ins_cost(300);
 12049   format %{ "j$cop,u   $labl\t# loop end" %}
 12050   size(6);
 12051   opcode(0x0F, 0x80);
 12052   ins_encode(Jcc(cop, labl));
 12053   ins_pipe(pipe_jcc);
 12054   ins_pc_relative(1);
 12055 %}
 12057 instruct jmpLoopEndUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
 12058   match(CountedLoopEnd cop cmp);
 12059   effect(USE labl);
 12061   ins_cost(200);
 12062   format %{ "j$cop,u   $labl\t# loop end" %}
 12063   size(6);
 12064   opcode(0x0F, 0x80);
 12065   ins_encode(Jcc(cop, labl));
 12066   ins_pipe(pipe_jcc);
 12067   ins_pc_relative(1);
 12068 %}
 12070 // Jump Direct Conditional - using unsigned comparison
 12071 instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
 12072   match(If cop cmp);
 12073   effect(USE labl);
 12075   ins_cost(300);
 12076   format %{ "j$cop,u  $labl" %}
 12077   size(6);
 12078   opcode(0x0F, 0x80);
 12079   ins_encode(Jcc(cop, labl));
 12080   ins_pipe(pipe_jcc);
 12081   ins_pc_relative(1);
 12082 %}
 12084 instruct jmpConUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
 12085   match(If cop cmp);
 12086   effect(USE labl);
 12088   ins_cost(200);
 12089   format %{ "j$cop,u  $labl" %}
 12090   size(6);
 12091   opcode(0x0F, 0x80);
 12092   ins_encode(Jcc(cop, labl));
 12093   ins_pipe(pipe_jcc);
 12094   ins_pc_relative(1);
 12095 %}
 12097 instruct jmpConUCF2(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
 12098   match(If cop cmp);
 12099   effect(USE labl);
 12101   ins_cost(200);
 12102   format %{ $$template
 12103     if ($cop$$cmpcode == Assembler::notEqual) {
 12104       $$emit$$"jp,u   $labl\n\t"
 12105       $$emit$$"j$cop,u   $labl"
 12106     } else {
 12107       $$emit$$"jp,u   done\n\t"
 12108       $$emit$$"j$cop,u   $labl\n\t"
 12109       $$emit$$"done:"
 12111   %}
 12112   size(12);
 12113   opcode(0x0F, 0x80);
 12114   ins_encode %{
 12115     Label* l = $labl$$label;
 12116     $$$emit8$primary;
 12117     emit_cc(cbuf, $secondary, Assembler::parity);
 12118     int parity_disp = -1;
 12119     if ($cop$$cmpcode == Assembler::notEqual) {
 12120        // the two jumps 6 bytes apart so the jump distances are too
 12121        parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12122     } else if ($cop$$cmpcode == Assembler::equal) {
 12123        parity_disp = 6;
 12124     } else {
 12125        ShouldNotReachHere();
 12127     emit_d32(cbuf, parity_disp);
 12128     $$$emit8$primary;
 12129     emit_cc(cbuf, $secondary, $cop$$cmpcode);
 12130     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12131     emit_d32(cbuf, disp);
 12132   %}
 12133   ins_pipe(pipe_jcc);
 12134   ins_pc_relative(1);
 12135 %}
 12137 // ============================================================================
 12138 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
 12139 // superklass array for an instance of the superklass.  Set a hidden
 12140 // internal cache on a hit (cache is checked with exposed code in
 12141 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
 12142 // encoding ALSO sets flags.
 12144 instruct partialSubtypeCheck(rdi_RegP result,
 12145                              rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
 12146                              rFlagsReg cr)
 12147 %{
 12148   match(Set result (PartialSubtypeCheck sub super));
 12149   effect(KILL rcx, KILL cr);
 12151   ins_cost(1100);  // slightly larger than the next version
 12152   format %{ "movq    rdi, [$sub + (sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())]\n\t"
 12153             "movl    rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
 12154             "addq    rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
 12155             "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
 12156             "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
 12157             "movq    [$sub + (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())], $super\t# Hit: update cache\n\t"
 12158             "xorq    $result, $result\t\t Hit: rdi zero\n\t"
 12159     "miss:\t" %}
 12161   opcode(0x1); // Force a XOR of RDI
 12162   ins_encode(enc_PartialSubtypeCheck());
 12163   ins_pipe(pipe_slow);
 12164 %}
 12166 instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
 12167                                      rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
 12168                                      immP0 zero,
 12169                                      rdi_RegP result)
 12170 %{
 12171   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12172   effect(KILL rcx, KILL result);
 12174   ins_cost(1000);
 12175   format %{ "movq    rdi, [$sub + (sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())]\n\t"
 12176             "movl    rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
 12177             "addq    rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
 12178             "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
 12179             "jne,s   miss\t\t# Missed: flags nz\n\t"
 12180             "movq    [$sub + (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())], $super\t# Hit: update cache\n\t"
 12181     "miss:\t" %}
 12183   opcode(0x0); // No need to XOR RDI
 12184   ins_encode(enc_PartialSubtypeCheck());
 12185   ins_pipe(pipe_slow);
 12186 %}
 12188 // ============================================================================
 12189 // Branch Instructions -- short offset versions
 12190 //
 12191 // These instructions are used to replace jumps of a long offset (the default
 12192 // match) with jumps of a shorter offset.  These instructions are all tagged
 12193 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12194 // match rules in general matching.  Instead, the ADLC generates a conversion
 12195 // method in the MachNode which can be used to do in-place replacement of the
 12196 // long variant with the shorter variant.  The compiler will determine if a
 12197 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12198 // specific code section of the file.
 12200 // Jump Direct - Label defines a relative address from JMP+1
 12201 instruct jmpDir_short(label labl) %{
 12202   match(Goto);
 12203   effect(USE labl);
 12205   ins_cost(300);
 12206   format %{ "jmp,s   $labl" %}
 12207   size(2);
 12208   opcode(0xEB);
 12209   ins_encode(OpcP, LblShort(labl));
 12210   ins_pipe(pipe_jmp);
 12211   ins_pc_relative(1);
 12212   ins_short_branch(1);
 12213 %}
 12215 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12216 instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl) %{
 12217   match(If cop cr);
 12218   effect(USE labl);
 12220   ins_cost(300);
 12221   format %{ "j$cop,s   $labl" %}
 12222   size(2);
 12223   opcode(0x70);
 12224   ins_encode(JccShort(cop, labl));
 12225   ins_pipe(pipe_jcc);
 12226   ins_pc_relative(1);
 12227   ins_short_branch(1);
 12228 %}
 12230 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12231 instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl) %{
 12232   match(CountedLoopEnd cop cr);
 12233   effect(USE labl);
 12235   ins_cost(300);
 12236   format %{ "j$cop,s   $labl\t# loop end" %}
 12237   size(2);
 12238   opcode(0x70);
 12239   ins_encode(JccShort(cop, labl));
 12240   ins_pipe(pipe_jcc);
 12241   ins_pc_relative(1);
 12242   ins_short_branch(1);
 12243 %}
 12245 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12246 instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
 12247   match(CountedLoopEnd cop cmp);
 12248   effect(USE labl);
 12250   ins_cost(300);
 12251   format %{ "j$cop,us  $labl\t# loop end" %}
 12252   size(2);
 12253   opcode(0x70);
 12254   ins_encode(JccShort(cop, labl));
 12255   ins_pipe(pipe_jcc);
 12256   ins_pc_relative(1);
 12257   ins_short_branch(1);
 12258 %}
 12260 instruct jmpLoopEndUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
 12261   match(CountedLoopEnd cop cmp);
 12262   effect(USE labl);
 12264   ins_cost(300);
 12265   format %{ "j$cop,us  $labl\t# loop end" %}
 12266   size(2);
 12267   opcode(0x70);
 12268   ins_encode(JccShort(cop, labl));
 12269   ins_pipe(pipe_jcc);
 12270   ins_pc_relative(1);
 12271   ins_short_branch(1);
 12272 %}
 12274 // Jump Direct Conditional - using unsigned comparison
 12275 instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
 12276   match(If cop cmp);
 12277   effect(USE labl);
 12279   ins_cost(300);
 12280   format %{ "j$cop,us  $labl" %}
 12281   size(2);
 12282   opcode(0x70);
 12283   ins_encode(JccShort(cop, labl));
 12284   ins_pipe(pipe_jcc);
 12285   ins_pc_relative(1);
 12286   ins_short_branch(1);
 12287 %}
 12289 instruct jmpConUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
 12290   match(If cop cmp);
 12291   effect(USE labl);
 12293   ins_cost(300);
 12294   format %{ "j$cop,us  $labl" %}
 12295   size(2);
 12296   opcode(0x70);
 12297   ins_encode(JccShort(cop, labl));
 12298   ins_pipe(pipe_jcc);
 12299   ins_pc_relative(1);
 12300   ins_short_branch(1);
 12301 %}
 12303 instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
 12304   match(If cop cmp);
 12305   effect(USE labl);
 12307   ins_cost(300);
 12308   format %{ $$template
 12309     if ($cop$$cmpcode == Assembler::notEqual) {
 12310       $$emit$$"jp,u,s   $labl\n\t"
 12311       $$emit$$"j$cop,u,s   $labl"
 12312     } else {
 12313       $$emit$$"jp,u,s   done\n\t"
 12314       $$emit$$"j$cop,u,s  $labl\n\t"
 12315       $$emit$$"done:"
 12317   %}
 12318   size(4);
 12319   opcode(0x70);
 12320   ins_encode %{
 12321     Label* l = $labl$$label;
 12322     emit_cc(cbuf, $primary, Assembler::parity);
 12323     int parity_disp = -1;
 12324     if ($cop$$cmpcode == Assembler::notEqual) {
 12325       parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 12326     } else if ($cop$$cmpcode == Assembler::equal) {
 12327       parity_disp = 2;
 12328     } else {
 12329       ShouldNotReachHere();
 12331     emit_d8(cbuf, parity_disp);
 12332     emit_cc(cbuf, $primary, $cop$$cmpcode);
 12333     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 12334     emit_d8(cbuf, disp);
 12335     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
 12336     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
 12337   %}
 12338   ins_pipe(pipe_jcc);
 12339   ins_pc_relative(1);
 12340   ins_short_branch(1);
 12341 %}
 12343 // ============================================================================
 12344 // inlined locking and unlocking
 12346 instruct cmpFastLock(rFlagsReg cr,
 12347                      rRegP object, rRegP box, rax_RegI tmp, rRegP scr)
 12348 %{
 12349   match(Set cr (FastLock object box));
 12350   effect(TEMP tmp, TEMP scr);
 12352   ins_cost(300);
 12353   format %{ "fastlock $object,$box,$tmp,$scr" %}
 12354   ins_encode(Fast_Lock(object, box, tmp, scr));
 12355   ins_pipe(pipe_slow);
 12356   ins_pc_relative(1);
 12357 %}
 12359 instruct cmpFastUnlock(rFlagsReg cr,
 12360                        rRegP object, rax_RegP box, rRegP tmp)
 12361 %{
 12362   match(Set cr (FastUnlock object box));
 12363   effect(TEMP tmp);
 12365   ins_cost(300);
 12366   format %{ "fastunlock $object, $box, $tmp" %}
 12367   ins_encode(Fast_Unlock(object, box, tmp));
 12368   ins_pipe(pipe_slow);
 12369   ins_pc_relative(1);
 12370 %}
 12373 // ============================================================================
 12374 // Safepoint Instructions
 12375 instruct safePoint_poll(rFlagsReg cr)
 12376 %{
 12377   match(SafePoint);
 12378   effect(KILL cr);
 12380   format %{ "testl   rax, [rip + #offset_to_poll_page]\t"
 12381             "# Safepoint: poll for GC" %}
 12382   size(6); // Opcode + ModRM + Disp32 == 6 bytes
 12383   ins_cost(125);
 12384   ins_encode(enc_safepoint_poll);
 12385   ins_pipe(ialu_reg_mem);
 12386 %}
 12388 // ============================================================================
 12389 // Procedure Call/Return Instructions
 12390 // Call Java Static Instruction
 12391 // Note: If this code changes, the corresponding ret_addr_offset() and
 12392 //       compute_padding() functions will have to be adjusted.
 12393 instruct CallStaticJavaDirect(method meth)
 12394 %{
 12395   match(CallStaticJava);
 12396   effect(USE meth);
 12398   ins_cost(300);
 12399   format %{ "call,static " %}
 12400   opcode(0xE8); /* E8 cd */
 12401   ins_encode(Java_Static_Call(meth), call_epilog);
 12402   ins_pipe(pipe_slow);
 12403   ins_pc_relative(1);
 12404   ins_alignment(4);
 12405 %}
 12407 // Call Java Dynamic Instruction
 12408 // Note: If this code changes, the corresponding ret_addr_offset() and
 12409 //       compute_padding() functions will have to be adjusted.
 12410 instruct CallDynamicJavaDirect(method meth)
 12411 %{
 12412   match(CallDynamicJava);
 12413   effect(USE meth);
 12415   ins_cost(300);
 12416   format %{ "movq    rax, #Universe::non_oop_word()\n\t"
 12417             "call,dynamic " %}
 12418   opcode(0xE8); /* E8 cd */
 12419   ins_encode(Java_Dynamic_Call(meth), call_epilog);
 12420   ins_pipe(pipe_slow);
 12421   ins_pc_relative(1);
 12422   ins_alignment(4);
 12423 %}
 12425 // Call Runtime Instruction
 12426 instruct CallRuntimeDirect(method meth)
 12427 %{
 12428   match(CallRuntime);
 12429   effect(USE meth);
 12431   ins_cost(300);
 12432   format %{ "call,runtime " %}
 12433   opcode(0xE8); /* E8 cd */
 12434   ins_encode(Java_To_Runtime(meth));
 12435   ins_pipe(pipe_slow);
 12436   ins_pc_relative(1);
 12437 %}
 12439 // Call runtime without safepoint
 12440 instruct CallLeafDirect(method meth)
 12441 %{
 12442   match(CallLeaf);
 12443   effect(USE meth);
 12445   ins_cost(300);
 12446   format %{ "call_leaf,runtime " %}
 12447   opcode(0xE8); /* E8 cd */
 12448   ins_encode(Java_To_Runtime(meth));
 12449   ins_pipe(pipe_slow);
 12450   ins_pc_relative(1);
 12451 %}
 12453 // Call runtime without safepoint
 12454 instruct CallLeafNoFPDirect(method meth)
 12455 %{
 12456   match(CallLeafNoFP);
 12457   effect(USE meth);
 12459   ins_cost(300);
 12460   format %{ "call_leaf_nofp,runtime " %}
 12461   opcode(0xE8); /* E8 cd */
 12462   ins_encode(Java_To_Runtime(meth));
 12463   ins_pipe(pipe_slow);
 12464   ins_pc_relative(1);
 12465 %}
 12467 // Return Instruction
 12468 // Remove the return address & jump to it.
 12469 // Notice: We always emit a nop after a ret to make sure there is room
 12470 // for safepoint patching
 12471 instruct Ret()
 12472 %{
 12473   match(Return);
 12475   format %{ "ret" %}
 12476   opcode(0xC3);
 12477   ins_encode(OpcP);
 12478   ins_pipe(pipe_jmp);
 12479 %}
 12481 // Tail Call; Jump from runtime stub to Java code.
 12482 // Also known as an 'interprocedural jump'.
 12483 // Target of jump will eventually return to caller.
 12484 // TailJump below removes the return address.
 12485 instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
 12486 %{
 12487   match(TailCall jump_target method_oop);
 12489   ins_cost(300);
 12490   format %{ "jmp     $jump_target\t# rbx holds method oop" %}
 12491   opcode(0xFF, 0x4); /* Opcode FF /4 */
 12492   ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
 12493   ins_pipe(pipe_jmp);
 12494 %}
 12496 // Tail Jump; remove the return address; jump to target.
 12497 // TailCall above leaves the return address around.
 12498 instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
 12499 %{
 12500   match(TailJump jump_target ex_oop);
 12502   ins_cost(300);
 12503   format %{ "popq    rdx\t# pop return address\n\t"
 12504             "jmp     $jump_target" %}
 12505   opcode(0xFF, 0x4); /* Opcode FF /4 */
 12506   ins_encode(Opcode(0x5a), // popq rdx
 12507              REX_reg(jump_target), OpcP, reg_opc(jump_target));
 12508   ins_pipe(pipe_jmp);
 12509 %}
 12511 // Create exception oop: created by stack-crawling runtime code.
 12512 // Created exception is now available to this handler, and is setup
 12513 // just prior to jumping to this handler.  No code emitted.
 12514 instruct CreateException(rax_RegP ex_oop)
 12515 %{
 12516   match(Set ex_oop (CreateEx));
 12518   size(0);
 12519   // use the following format syntax
 12520   format %{ "# exception oop is in rax; no code emitted" %}
 12521   ins_encode();
 12522   ins_pipe(empty);
 12523 %}
 12525 // Rethrow exception:
 12526 // The exception oop will come in the first argument position.
 12527 // Then JUMP (not call) to the rethrow stub code.
 12528 instruct RethrowException()
 12529 %{
 12530   match(Rethrow);
 12532   // use the following format syntax
 12533   format %{ "jmp     rethrow_stub" %}
 12534   ins_encode(enc_rethrow);
 12535   ins_pipe(pipe_jmp);
 12536 %}
 12539 //----------PEEPHOLE RULES-----------------------------------------------------
 12540 // These must follow all instruction definitions as they use the names
 12541 // defined in the instructions definitions.
 12542 //
 12543 // peepmatch ( root_instr_name [preceding_instruction]* );
 12544 //
 12545 // peepconstraint %{
 12546 // (instruction_number.operand_name relational_op instruction_number.operand_name
 12547 //  [, ...] );
 12548 // // instruction numbers are zero-based using left to right order in peepmatch
 12549 //
 12550 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 12551 // // provide an instruction_number.operand_name for each operand that appears
 12552 // // in the replacement instruction's match rule
 12553 //
 12554 // ---------VM FLAGS---------------------------------------------------------
 12555 //
 12556 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 12557 //
 12558 // Each peephole rule is given an identifying number starting with zero and
 12559 // increasing by one in the order seen by the parser.  An individual peephole
 12560 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 12561 // on the command-line.
 12562 //
 12563 // ---------CURRENT LIMITATIONS----------------------------------------------
 12564 //
 12565 // Only match adjacent instructions in same basic block
 12566 // Only equality constraints
 12567 // Only constraints between operands, not (0.dest_reg == RAX_enc)
 12568 // Only one replacement instruction
 12569 //
 12570 // ---------EXAMPLE----------------------------------------------------------
 12571 //
 12572 // // pertinent parts of existing instructions in architecture description
 12573 // instruct movI(rRegI dst, rRegI src)
 12574 // %{
 12575 //   match(Set dst (CopyI src));
 12576 // %}
 12577 //
 12578 // instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
 12579 // %{
 12580 //   match(Set dst (AddI dst src));
 12581 //   effect(KILL cr);
 12582 // %}
 12583 //
 12584 // // Change (inc mov) to lea
 12585 // peephole %{
 12586 //   // increment preceeded by register-register move
 12587 //   peepmatch ( incI_rReg movI );
 12588 //   // require that the destination register of the increment
 12589 //   // match the destination register of the move
 12590 //   peepconstraint ( 0.dst == 1.dst );
 12591 //   // construct a replacement instruction that sets
 12592 //   // the destination to ( move's source register + one )
 12593 //   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
 12594 // %}
 12595 //
 12597 // Implementation no longer uses movX instructions since
 12598 // machine-independent system no longer uses CopyX nodes.
 12599 //
 12600 // peephole
 12601 // %{
 12602 //   peepmatch (incI_rReg movI);
 12603 //   peepconstraint (0.dst == 1.dst);
 12604 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
 12605 // %}
 12607 // peephole
 12608 // %{
 12609 //   peepmatch (decI_rReg movI);
 12610 //   peepconstraint (0.dst == 1.dst);
 12611 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
 12612 // %}
 12614 // peephole
 12615 // %{
 12616 //   peepmatch (addI_rReg_imm movI);
 12617 //   peepconstraint (0.dst == 1.dst);
 12618 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
 12619 // %}
 12621 // peephole
 12622 // %{
 12623 //   peepmatch (incL_rReg movL);
 12624 //   peepconstraint (0.dst == 1.dst);
 12625 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
 12626 // %}
 12628 // peephole
 12629 // %{
 12630 //   peepmatch (decL_rReg movL);
 12631 //   peepconstraint (0.dst == 1.dst);
 12632 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
 12633 // %}
 12635 // peephole
 12636 // %{
 12637 //   peepmatch (addL_rReg_imm movL);
 12638 //   peepconstraint (0.dst == 1.dst);
 12639 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
 12640 // %}
 12642 // peephole
 12643 // %{
 12644 //   peepmatch (addP_rReg_imm movP);
 12645 //   peepconstraint (0.dst == 1.dst);
 12646 //   peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
 12647 // %}
 12649 // // Change load of spilled value to only a spill
 12650 // instruct storeI(memory mem, rRegI src)
 12651 // %{
 12652 //   match(Set mem (StoreI mem src));
 12653 // %}
 12654 //
 12655 // instruct loadI(rRegI dst, memory mem)
 12656 // %{
 12657 //   match(Set dst (LoadI mem));
 12658 // %}
 12659 //
 12661 peephole
 12662 %{
 12663   peepmatch (loadI storeI);
 12664   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
 12665   peepreplace (storeI(1.mem 1.mem 1.src));
 12666 %}
 12668 peephole
 12669 %{
 12670   peepmatch (loadL storeL);
 12671   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
 12672   peepreplace (storeL(1.mem 1.mem 1.src));
 12673 %}
 12675 //----------SMARTSPILL RULES---------------------------------------------------
 12676 // These must follow all instruction definitions as they use the names
 12677 // defined in the instructions definitions.

mercurial