src/cpu/x86/vm/interp_masm_x86_64.cpp

Thu, 19 Mar 2009 09:13:24 -0700

author
kvn
date
Thu, 19 Mar 2009 09:13:24 -0700
changeset 1082
bd441136a5ce
parent 1063
7bb995fbd3c0
parent 1079
c517646eef23
child 1145
e5b0439ef4ae
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2003-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interp_masm_x86_64.cpp.incl"
    29 // Implementation of InterpreterMacroAssembler
    31 #ifdef CC_INTERP
    32 void InterpreterMacroAssembler::get_method(Register reg) {
    33   movptr(reg, Address(rbp, -((int)sizeof(BytecodeInterpreter) + 2 * wordSize)));
    34   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
    35 }
    36 #endif // CC_INTERP
    38 #ifndef CC_INTERP
    40 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
    41                                                   int number_of_arguments) {
    42   // interpreter specific
    43   //
    44   // Note: No need to save/restore bcp & locals (r13 & r14) pointer
    45   //       since these are callee saved registers and no blocking/
    46   //       GC can happen in leaf calls.
    47   // Further Note: DO NOT save/restore bcp/locals. If a caller has
    48   // already saved them so that it can use esi/edi as temporaries
    49   // then a save/restore here will DESTROY the copy the caller
    50   // saved! There used to be a save_bcp() that only happened in
    51   // the ASSERT path (no restore_bcp). Which caused bizarre failures
    52   // when jvm built with ASSERTs.
    53 #ifdef ASSERT
    54   {
    55     Label L;
    56     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    57     jcc(Assembler::equal, L);
    58     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
    59          " last_sp != NULL");
    60     bind(L);
    61   }
    62 #endif
    63   // super call
    64   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    65   // interpreter specific
    66   // Used to ASSERT that r13/r14 were equal to frame's bcp/locals
    67   // but since they may not have been saved (and we don't want to
    68   // save thme here (see note above) the assert is invalid.
    69 }
    71 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
    72                                              Register java_thread,
    73                                              Register last_java_sp,
    74                                              address  entry_point,
    75                                              int      number_of_arguments,
    76                                              bool     check_exceptions) {
    77   // interpreter specific
    78   //
    79   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
    80   //       really make a difference for these runtime calls, since they are
    81   //       slow anyway. Btw., bcp must be saved/restored since it may change
    82   //       due to GC.
    83   // assert(java_thread == noreg , "not expecting a precomputed java thread");
    84   save_bcp();
    85 #ifdef ASSERT
    86   {
    87     Label L;
    88     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    89     jcc(Assembler::equal, L);
    90     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
    91          " last_sp != NULL");
    92     bind(L);
    93   }
    94 #endif /* ASSERT */
    95   // super call
    96   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
    97                                entry_point, number_of_arguments,
    98                                check_exceptions);
    99   // interpreter specific
   100   restore_bcp();
   101   restore_locals();
   102 }
   105 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   106   if (JvmtiExport::can_pop_frame()) {
   107     Label L;
   108     // Initiate popframe handling only if it is not already being
   109     // processed.  If the flag has the popframe_processing bit set, it
   110     // means that this code is called *during* popframe handling - we
   111     // don't want to reenter.
   112     // This method is only called just after the call into the vm in
   113     // call_VM_base, so the arg registers are available.
   114     movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
   115     testl(c_rarg0, JavaThread::popframe_pending_bit);
   116     jcc(Assembler::zero, L);
   117     testl(c_rarg0, JavaThread::popframe_processing_bit);
   118     jcc(Assembler::notZero, L);
   119     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   120     // address of the same-named entrypoint in the generated interpreter code.
   121     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   122     jmp(rax);
   123     bind(L);
   124   }
   125 }
   128 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   129   movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   130   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
   131   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
   132   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
   133   switch (state) {
   134     case atos: movptr(rax, oop_addr);
   135                movptr(oop_addr, (int32_t)NULL_WORD);
   136                verify_oop(rax, state);              break;
   137     case ltos: movptr(rax, val_addr);                 break;
   138     case btos:                                   // fall through
   139     case ctos:                                   // fall through
   140     case stos:                                   // fall through
   141     case itos: movl(rax, val_addr);                 break;
   142     case ftos: movflt(xmm0, val_addr);              break;
   143     case dtos: movdbl(xmm0, val_addr);              break;
   144     case vtos: /* nothing to do */                  break;
   145     default  : ShouldNotReachHere();
   146   }
   147   // Clean up tos value in the thread object
   148   movl(tos_addr,  (int) ilgl);
   149   movl(val_addr,  (int32_t) NULL_WORD);
   150 }
   153 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   154   if (JvmtiExport::can_force_early_return()) {
   155     Label L;
   156     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   157     testptr(c_rarg0, c_rarg0);
   158     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   160     // Initiate earlyret handling only if it is not already being processed.
   161     // If the flag has the earlyret_processing bit set, it means that this code
   162     // is called *during* earlyret handling - we don't want to reenter.
   163     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
   164     cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
   165     jcc(Assembler::notEqual, L);
   167     // Call Interpreter::remove_activation_early_entry() to get the address of the
   168     // same-named entrypoint in the generated interpreter code.
   169     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   170     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
   171     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
   172     jmp(rax);
   173     bind(L);
   174   }
   175 }
   178 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
   179   Register reg,
   180   int bcp_offset) {
   181   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   182   movl(reg, Address(r13, bcp_offset));
   183   bswapl(reg);
   184   shrl(reg, 16);
   185 }
   188 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
   189                                                            Register index,
   190                                                            int bcp_offset) {
   191   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   192   assert(cache != index, "must use different registers");
   193   load_unsigned_short(index, Address(r13, bcp_offset));
   194   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   195   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
   196   // convert from field index to ConstantPoolCacheEntry index
   197   shll(index, 2);
   198 }
   201 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
   202                                                                Register tmp,
   203                                                                int bcp_offset) {
   204   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   205   assert(cache != tmp, "must use different register");
   206   load_unsigned_short(tmp, Address(r13, bcp_offset));
   207   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
   208   // convert from field index to ConstantPoolCacheEntry index
   209   // and from word offset to byte offset
   210   shll(tmp, 2 + LogBytesPerWord);
   211   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   212   // skip past the header
   213   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
   214   addptr(cache, tmp);  // construct pointer to cache entry
   215 }
   218 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
   219 // subtype of super_klass.
   220 //
   221 // Args:
   222 //      rax: superklass
   223 //      Rsub_klass: subklass
   224 //
   225 // Kills:
   226 //      rcx, rdi
   227 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   228                                                   Label& ok_is_subtype) {
   229   assert(Rsub_klass != rax, "rax holds superklass");
   230   assert(Rsub_klass != r14, "r14 holds locals");
   231   assert(Rsub_klass != r13, "r13 holds bcp");
   232   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
   233   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
   235   // Profile the not-null value's klass.
   236   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
   238   // Do the check.
   239   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
   241   // Profile the failure of the check.
   242   profile_typecheck_failed(rcx); // blows rcx
   243 }
   247 // Java Expression Stack
   249 #ifdef ASSERT
   250 // Verifies that the stack tag matches.  Must be called before the stack
   251 // value is popped off the stack.
   252 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
   253   if (TaggedStackInterpreter) {
   254     frame::Tag tag = t;
   255     if (t == frame::TagCategory2) {
   256       tag = frame::TagValue;
   257       Label hokay;
   258       cmpptr(Address(rsp, 3*wordSize), (int32_t)tag);
   259       jcc(Assembler::equal, hokay);
   260       stop("Java Expression stack tag high value is bad");
   261       bind(hokay);
   262     }
   263     Label okay;
   264     cmpptr(Address(rsp, wordSize), (int32_t)tag);
   265     jcc(Assembler::equal, okay);
   266     // Also compare if the stack value is zero, then the tag might
   267     // not have been set coming from deopt.
   268     cmpptr(Address(rsp, 0), 0);
   269     jcc(Assembler::equal, okay);
   270     stop("Java Expression stack tag value is bad");
   271     bind(okay);
   272   }
   273 }
   274 #endif // ASSERT
   276 void InterpreterMacroAssembler::pop_ptr(Register r) {
   277   debug_only(verify_stack_tag(frame::TagReference));
   278   pop(r);
   279   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   280 }
   282 void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
   283   pop(r);
   284   if (TaggedStackInterpreter) pop(tag);
   285 }
   287 void InterpreterMacroAssembler::pop_i(Register r) {
   288   // XXX can't use pop currently, upper half non clean
   289   debug_only(verify_stack_tag(frame::TagValue));
   290   movl(r, Address(rsp, 0));
   291   addptr(rsp, wordSize);
   292   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   293 }
   295 void InterpreterMacroAssembler::pop_l(Register r) {
   296   debug_only(verify_stack_tag(frame::TagCategory2));
   297   movq(r, Address(rsp, 0));
   298   addptr(rsp, 2 * Interpreter::stackElementSize());
   299 }
   301 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
   302   debug_only(verify_stack_tag(frame::TagValue));
   303   movflt(r, Address(rsp, 0));
   304   addptr(rsp, wordSize);
   305   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   306 }
   308 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
   309   debug_only(verify_stack_tag(frame::TagCategory2));
   310   movdbl(r, Address(rsp, 0));
   311   addptr(rsp, 2 * Interpreter::stackElementSize());
   312 }
   314 void InterpreterMacroAssembler::push_ptr(Register r) {
   315   if (TaggedStackInterpreter) push(frame::TagReference);
   316   push(r);
   317 }
   319 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
   320   if (TaggedStackInterpreter) push(tag);
   321   push(r);
   322 }
   324 void InterpreterMacroAssembler::push_i(Register r) {
   325   if (TaggedStackInterpreter) push(frame::TagValue);
   326   push(r);
   327 }
   329 void InterpreterMacroAssembler::push_l(Register r) {
   330   if (TaggedStackInterpreter) {
   331     push(frame::TagValue);
   332     subptr(rsp, 1 * wordSize);
   333     push(frame::TagValue);
   334     subptr(rsp, 1 * wordSize);
   335   } else {
   336     subptr(rsp, 2 * wordSize);
   337   }
   338   movq(Address(rsp, 0), r);
   339 }
   341 void InterpreterMacroAssembler::push_f(XMMRegister r) {
   342   if (TaggedStackInterpreter) push(frame::TagValue);
   343   subptr(rsp, wordSize);
   344   movflt(Address(rsp, 0), r);
   345 }
   347 void InterpreterMacroAssembler::push_d(XMMRegister r) {
   348   if (TaggedStackInterpreter) {
   349     push(frame::TagValue);
   350     subptr(rsp, 1 * wordSize);
   351     push(frame::TagValue);
   352     subptr(rsp, 1 * wordSize);
   353   } else {
   354     subptr(rsp, 2 * wordSize);
   355   }
   356   movdbl(Address(rsp, 0), r);
   357 }
   359 void InterpreterMacroAssembler::pop(TosState state) {
   360   switch (state) {
   361   case atos: pop_ptr();                 break;
   362   case btos:
   363   case ctos:
   364   case stos:
   365   case itos: pop_i();                   break;
   366   case ltos: pop_l();                   break;
   367   case ftos: pop_f();                   break;
   368   case dtos: pop_d();                   break;
   369   case vtos: /* nothing to do */        break;
   370   default:   ShouldNotReachHere();
   371   }
   372   verify_oop(rax, state);
   373 }
   375 void InterpreterMacroAssembler::push(TosState state) {
   376   verify_oop(rax, state);
   377   switch (state) {
   378   case atos: push_ptr();                break;
   379   case btos:
   380   case ctos:
   381   case stos:
   382   case itos: push_i();                  break;
   383   case ltos: push_l();                  break;
   384   case ftos: push_f();                  break;
   385   case dtos: push_d();                  break;
   386   case vtos: /* nothing to do */        break;
   387   default  : ShouldNotReachHere();
   388   }
   389 }
   394 // Tagged stack helpers for swap and dup
   395 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
   396                                                  Register tag) {
   397   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   398   if (TaggedStackInterpreter) {
   399     movptr(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
   400   }
   401 }
   403 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
   404                                                   Register tag) {
   405   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   406   if (TaggedStackInterpreter) {
   407     movptr(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
   408   }
   409 }
   412 // Tagged local support
   413 void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
   414   if (TaggedStackInterpreter) {
   415     if (tag == frame::TagCategory2) {
   416       movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)),
   417            (int32_t)frame::TagValue);
   418       movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)),
   419            (int32_t)frame::TagValue);
   420     } else {
   421       movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)tag);
   422     }
   423   }
   424 }
   426 void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
   427   if (TaggedStackInterpreter) {
   428     if (tag == frame::TagCategory2) {
   429       movptr(Address(r14, idx, Address::times_8,
   430                   Interpreter::local_tag_offset_in_bytes(1)), (int32_t)frame::TagValue);
   431       movptr(Address(r14, idx, Address::times_8,
   432                   Interpreter::local_tag_offset_in_bytes(0)), (int32_t)frame::TagValue);
   433     } else {
   434       movptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)),
   435            (int32_t)tag);
   436     }
   437   }
   438 }
   440 void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
   441   if (TaggedStackInterpreter) {
   442     // can only be TagValue or TagReference
   443     movptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), tag);
   444   }
   445 }
   448 void InterpreterMacroAssembler::tag_local(Register tag, int n) {
   449   if (TaggedStackInterpreter) {
   450     // can only be TagValue or TagReference
   451     movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), tag);
   452   }
   453 }
   455 #ifdef ASSERT
   456 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
   457   if (TaggedStackInterpreter) {
   458      frame::Tag t = tag;
   459     if (tag == frame::TagCategory2) {
   460       Label nbl;
   461       t = frame::TagValue;  // change to what is stored in locals
   462       cmpptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)), (int32_t)t);
   463       jcc(Assembler::equal, nbl);
   464       stop("Local tag is bad for long/double");
   465       bind(nbl);
   466     }
   467     Label notBad;
   468     cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)t);
   469     jcc(Assembler::equal, notBad);
   470     // Also compare if the local value is zero, then the tag might
   471     // not have been set coming from deopt.
   472     cmpptr(Address(r14, Interpreter::local_offset_in_bytes(n)), 0);
   473     jcc(Assembler::equal, notBad);
   474     stop("Local tag is bad");
   475     bind(notBad);
   476   }
   477 }
   479 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
   480   if (TaggedStackInterpreter) {
   481     frame::Tag t = tag;
   482     if (tag == frame::TagCategory2) {
   483       Label nbl;
   484       t = frame::TagValue;  // change to what is stored in locals
   485       cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(1)), (int32_t)t);
   486       jcc(Assembler::equal, nbl);
   487       stop("Local tag is bad for long/double");
   488       bind(nbl);
   489     }
   490     Label notBad;
   491     cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), (int32_t)t);
   492     jcc(Assembler::equal, notBad);
   493     // Also compare if the local value is zero, then the tag might
   494     // not have been set coming from deopt.
   495     cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_offset_in_bytes(0)), 0);
   496     jcc(Assembler::equal, notBad);
   497     stop("Local tag is bad");
   498     bind(notBad);
   499   }
   500 }
   501 #endif // ASSERT
   504 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
   505   MacroAssembler::call_VM_leaf_base(entry_point, 0);
   506 }
   509 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   510                                                    Register arg_1) {
   511   if (c_rarg0 != arg_1) {
   512     mov(c_rarg0, arg_1);
   513   }
   514   MacroAssembler::call_VM_leaf_base(entry_point, 1);
   515 }
   518 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   519                                                    Register arg_1,
   520                                                    Register arg_2) {
   521   assert(c_rarg0 != arg_2, "smashed argument");
   522   assert(c_rarg1 != arg_1, "smashed argument");
   523   if (c_rarg0 != arg_1) {
   524     mov(c_rarg0, arg_1);
   525   }
   526   if (c_rarg1 != arg_2) {
   527     mov(c_rarg1, arg_2);
   528   }
   529   MacroAssembler::call_VM_leaf_base(entry_point, 2);
   530 }
   532 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   533                                                    Register arg_1,
   534                                                    Register arg_2,
   535                                                    Register arg_3) {
   536   assert(c_rarg0 != arg_2, "smashed argument");
   537   assert(c_rarg0 != arg_3, "smashed argument");
   538   assert(c_rarg1 != arg_1, "smashed argument");
   539   assert(c_rarg1 != arg_3, "smashed argument");
   540   assert(c_rarg2 != arg_1, "smashed argument");
   541   assert(c_rarg2 != arg_2, "smashed argument");
   542   if (c_rarg0 != arg_1) {
   543     mov(c_rarg0, arg_1);
   544   }
   545   if (c_rarg1 != arg_2) {
   546     mov(c_rarg1, arg_2);
   547   }
   548   if (c_rarg2 != arg_3) {
   549     mov(c_rarg2, arg_3);
   550   }
   551   MacroAssembler::call_VM_leaf_base(entry_point, 3);
   552 }
   554 // Jump to from_interpreted entry of a call unless single stepping is possible
   555 // in this thread in which case we must call the i2i entry
   556 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   557   // set sender sp
   558   lea(r13, Address(rsp, wordSize));
   559   // record last_sp
   560   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
   562   if (JvmtiExport::can_post_interpreter_events()) {
   563     Label run_compiled_code;
   564     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   565     // compiled code in threads for which the event is enabled.  Check here for
   566     // interp_only_mode if these events CAN be enabled.
   567     get_thread(temp);
   568     // interp_only is an int, on little endian it is sufficient to test the byte only
   569     // Is a cmpl faster (ce
   570     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
   571     jcc(Assembler::zero, run_compiled_code);
   572     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   573     bind(run_compiled_code);
   574   }
   576   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   578 }
   581 // The following two routines provide a hook so that an implementation
   582 // can schedule the dispatch in two parts.  amd64 does not do this.
   583 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   584   // Nothing amd64 specific to be done here
   585 }
   587 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   588   dispatch_next(state, step);
   589 }
   591 void InterpreterMacroAssembler::dispatch_base(TosState state,
   592                                               address* table,
   593                                               bool verifyoop) {
   594   verify_FPU(1, state);
   595   if (VerifyActivationFrameSize) {
   596     Label L;
   597     mov(rcx, rbp);
   598     subptr(rcx, rsp);
   599     int32_t min_frame_size =
   600       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
   601       wordSize;
   602     cmpptr(rcx, (int32_t)min_frame_size);
   603     jcc(Assembler::greaterEqual, L);
   604     stop("broken stack frame");
   605     bind(L);
   606   }
   607   if (verifyoop) {
   608     verify_oop(rax, state);
   609   }
   610   lea(rscratch1, ExternalAddress((address)table));
   611   jmp(Address(rscratch1, rbx, Address::times_8));
   612 }
   614 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   615   dispatch_base(state, Interpreter::dispatch_table(state));
   616 }
   618 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   619   dispatch_base(state, Interpreter::normal_table(state));
   620 }
   622 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   623   dispatch_base(state, Interpreter::normal_table(state), false);
   624 }
   627 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   628   // load next bytecode (load before advancing r13 to prevent AGI)
   629   load_unsigned_byte(rbx, Address(r13, step));
   630   // advance r13
   631   increment(r13, step);
   632   dispatch_base(state, Interpreter::dispatch_table(state));
   633 }
   635 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   636   // load current bytecode
   637   load_unsigned_byte(rbx, Address(r13, 0));
   638   dispatch_base(state, table);
   639 }
   641 // remove activation
   642 //
   643 // Unlock the receiver if this is a synchronized method.
   644 // Unlock any Java monitors from syncronized blocks.
   645 // Remove the activation from the stack.
   646 //
   647 // If there are locked Java monitors
   648 //    If throw_monitor_exception
   649 //       throws IllegalMonitorStateException
   650 //    Else if install_monitor_exception
   651 //       installs IllegalMonitorStateException
   652 //    Else
   653 //       no error processing
   654 void InterpreterMacroAssembler::remove_activation(
   655         TosState state,
   656         Register ret_addr,
   657         bool throw_monitor_exception,
   658         bool install_monitor_exception,
   659         bool notify_jvmdi) {
   660   // Note: Registers rdx xmm0 may be in use for the
   661   // result check if synchronized method
   662   Label unlocked, unlock, no_unlock;
   664   // get the value of _do_not_unlock_if_synchronized into rdx
   665   const Address do_not_unlock_if_synchronized(r15_thread,
   666     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   667   movbool(rdx, do_not_unlock_if_synchronized);
   668   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   670  // get method access flags
   671   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
   672   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
   673   testl(rcx, JVM_ACC_SYNCHRONIZED);
   674   jcc(Assembler::zero, unlocked);
   676   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   677   // is set.
   678   testbool(rdx);
   679   jcc(Assembler::notZero, no_unlock);
   681   // unlock monitor
   682   push(state); // save result
   684   // BasicObjectLock will be first in list, since this is a
   685   // synchronized method. However, need to check that the object has
   686   // not been unlocked by an explicit monitorexit bytecode.
   687   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
   688                         wordSize - (int) sizeof(BasicObjectLock));
   689   // We use c_rarg1 so that if we go slow path it will be the correct
   690   // register for unlock_object to pass to VM directly
   691   lea(c_rarg1, monitor); // address of first monitor
   693   movptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
   694   testptr(rax, rax);
   695   jcc(Assembler::notZero, unlock);
   697   pop(state);
   698   if (throw_monitor_exception) {
   699     // Entry already unlocked, need to throw exception
   700     call_VM(noreg, CAST_FROM_FN_PTR(address,
   701                    InterpreterRuntime::throw_illegal_monitor_state_exception));
   702     should_not_reach_here();
   703   } else {
   704     // Monitor already unlocked during a stack unroll. If requested,
   705     // install an illegal_monitor_state_exception.  Continue with
   706     // stack unrolling.
   707     if (install_monitor_exception) {
   708       call_VM(noreg, CAST_FROM_FN_PTR(address,
   709                      InterpreterRuntime::new_illegal_monitor_state_exception));
   710     }
   711     jmp(unlocked);
   712   }
   714   bind(unlock);
   715   unlock_object(c_rarg1);
   716   pop(state);
   718   // Check that for block-structured locking (i.e., that all locked
   719   // objects has been unlocked)
   720   bind(unlocked);
   722   // rax: Might contain return value
   724   // Check that all monitors are unlocked
   725   {
   726     Label loop, exception, entry, restart;
   727     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   728     const Address monitor_block_top(
   729         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   730     const Address monitor_block_bot(
   731         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
   733     bind(restart);
   734     // We use c_rarg1 so that if we go slow path it will be the correct
   735     // register for unlock_object to pass to VM directly
   736     movptr(c_rarg1, monitor_block_top); // points to current entry, starting
   737                                   // with top-most entry
   738     lea(rbx, monitor_block_bot);  // points to word before bottom of
   739                                   // monitor block
   740     jmp(entry);
   742     // Entry already locked, need to throw exception
   743     bind(exception);
   745     if (throw_monitor_exception) {
   746       // Throw exception
   747       MacroAssembler::call_VM(noreg,
   748                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
   749                                    throw_illegal_monitor_state_exception));
   750       should_not_reach_here();
   751     } else {
   752       // Stack unrolling. Unlock object and install illegal_monitor_exception.
   753       // Unlock does not block, so don't have to worry about the frame.
   754       // We don't have to preserve c_rarg1 since we are going to throw an exception.
   756       push(state);
   757       unlock_object(c_rarg1);
   758       pop(state);
   760       if (install_monitor_exception) {
   761         call_VM(noreg, CAST_FROM_FN_PTR(address,
   762                                         InterpreterRuntime::
   763                                         new_illegal_monitor_state_exception));
   764       }
   766       jmp(restart);
   767     }
   769     bind(loop);
   770     // check if current entry is used
   771     cmpptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
   772     jcc(Assembler::notEqual, exception);
   774     addptr(c_rarg1, entry_size); // otherwise advance to next entry
   775     bind(entry);
   776     cmpptr(c_rarg1, rbx); // check if bottom reached
   777     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
   778   }
   780   bind(no_unlock);
   782   // jvmti support
   783   if (notify_jvmdi) {
   784     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
   785   } else {
   786     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   787   }
   789   // remove activation
   790   // get sender sp
   791   movptr(rbx,
   792          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
   793   leave();                           // remove frame anchor
   794   pop(ret_addr);                     // get return address
   795   mov(rsp, rbx);                     // set sp to sender sp
   796 }
   798 #endif // C_INTERP
   800 // Lock object
   801 //
   802 // Args:
   803 //      c_rarg1: BasicObjectLock to be used for locking
   804 //
   805 // Kills:
   806 //      rax
   807 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
   808 //      rscratch1, rscratch2 (scratch regs)
   809 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   810   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
   812   if (UseHeavyMonitors) {
   813     call_VM(noreg,
   814             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   815             lock_reg);
   816   } else {
   817     Label done;
   819     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
   820     const Register obj_reg = c_rarg3; // Will contain the oop
   822     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   823     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   824     const int mark_offset = lock_offset +
   825                             BasicLock::displaced_header_offset_in_bytes();
   827     Label slow_case;
   829     // Load object pointer into obj_reg %c_rarg3
   830     movptr(obj_reg, Address(lock_reg, obj_offset));
   832     if (UseBiasedLocking) {
   833       biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
   834     }
   836     // Load immediate 1 into swap_reg %rax
   837     movl(swap_reg, 1);
   839     // Load (object->mark() | 1) into swap_reg %rax
   840     orptr(swap_reg, Address(obj_reg, 0));
   842     // Save (object->mark() | 1) into BasicLock's displaced header
   843     movptr(Address(lock_reg, mark_offset), swap_reg);
   845     assert(lock_offset == 0,
   846            "displached header must be first word in BasicObjectLock");
   848     if (os::is_MP()) lock();
   849     cmpxchgptr(lock_reg, Address(obj_reg, 0));
   850     if (PrintBiasedLockingStatistics) {
   851       cond_inc32(Assembler::zero,
   852                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   853     }
   854     jcc(Assembler::zero, done);
   856     // Test if the oopMark is an obvious stack pointer, i.e.,
   857     //  1) (mark & 7) == 0, and
   858     //  2) rsp <= mark < mark + os::pagesize()
   859     //
   860     // These 3 tests can be done by evaluating the following
   861     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
   862     // assuming both stack pointer and pagesize have their
   863     // least significant 3 bits clear.
   864     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
   865     subptr(swap_reg, rsp);
   866     andptr(swap_reg, 7 - os::vm_page_size());
   868     // Save the test result, for recursive case, the result is zero
   869     movptr(Address(lock_reg, mark_offset), swap_reg);
   871     if (PrintBiasedLockingStatistics) {
   872       cond_inc32(Assembler::zero,
   873                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   874     }
   875     jcc(Assembler::zero, done);
   877     bind(slow_case);
   879     // Call the runtime routine for slow case
   880     call_VM(noreg,
   881             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   882             lock_reg);
   884     bind(done);
   885   }
   886 }
   889 // Unlocks an object. Used in monitorexit bytecode and
   890 // remove_activation.  Throws an IllegalMonitorException if object is
   891 // not locked by current thread.
   892 //
   893 // Args:
   894 //      c_rarg1: BasicObjectLock for lock
   895 //
   896 // Kills:
   897 //      rax
   898 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
   899 //      rscratch1, rscratch2 (scratch regs)
   900 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   901   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
   903   if (UseHeavyMonitors) {
   904     call_VM(noreg,
   905             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   906             lock_reg);
   907   } else {
   908     Label done;
   910     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
   911     const Register header_reg = c_rarg2;  // Will contain the old oopMark
   912     const Register obj_reg    = c_rarg3;  // Will contain the oop
   914     save_bcp(); // Save in case of exception
   916     // Convert from BasicObjectLock structure to object and BasicLock
   917     // structure Store the BasicLock address into %rax
   918     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   920     // Load oop into obj_reg(%c_rarg3)
   921     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
   923     // Free entry
   924     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
   926     if (UseBiasedLocking) {
   927       biased_locking_exit(obj_reg, header_reg, done);
   928     }
   930     // Load the old header from BasicLock structure
   931     movptr(header_reg, Address(swap_reg,
   932                                BasicLock::displaced_header_offset_in_bytes()));
   934     // Test for recursion
   935     testptr(header_reg, header_reg);
   937     // zero for recursive case
   938     jcc(Assembler::zero, done);
   940     // Atomic swap back the old header
   941     if (os::is_MP()) lock();
   942     cmpxchgptr(header_reg, Address(obj_reg, 0));
   944     // zero for recursive case
   945     jcc(Assembler::zero, done);
   947     // Call the runtime routine for slow case.
   948     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
   949          obj_reg); // restore obj
   950     call_VM(noreg,
   951             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   952             lock_reg);
   954     bind(done);
   956     restore_bcp();
   957   }
   958 }
   960 #ifndef CC_INTERP
   962 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
   963                                                          Label& zero_continue) {
   964   assert(ProfileInterpreter, "must be profiling interpreter");
   965   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
   966   testptr(mdp, mdp);
   967   jcc(Assembler::zero, zero_continue);
   968 }
   971 // Set the method data pointer for the current bcp.
   972 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
   973   assert(ProfileInterpreter, "must be profiling interpreter");
   974   Label zero_continue;
   975   push(rax);
   976   push(rbx);
   978   get_method(rbx);
   979   // Test MDO to avoid the call if it is NULL.
   980   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   981   testptr(rax, rax);
   982   jcc(Assembler::zero, zero_continue);
   984   // rbx: method
   985   // r13: bcp
   986   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
   987   // rax: mdi
   989   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   990   testptr(rbx, rbx);
   991   jcc(Assembler::zero, zero_continue);
   992   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
   993   addptr(rbx, rax);
   994   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
   996   bind(zero_continue);
   997   pop(rbx);
   998   pop(rax);
   999 }
  1001 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1002   assert(ProfileInterpreter, "must be profiling interpreter");
  1003 #ifdef ASSERT
  1004   Label verify_continue;
  1005   push(rax);
  1006   push(rbx);
  1007   push(c_rarg3);
  1008   push(c_rarg2);
  1009   test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
  1010   get_method(rbx);
  1012   // If the mdp is valid, it will point to a DataLayout header which is
  1013   // consistent with the bcp.  The converse is highly probable also.
  1014   load_unsigned_short(c_rarg2,
  1015                       Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
  1016   addptr(c_rarg2, Address(rbx, methodOopDesc::const_offset()));
  1017   lea(c_rarg2, Address(c_rarg2, constMethodOopDesc::codes_offset()));
  1018   cmpptr(c_rarg2, r13);
  1019   jcc(Assembler::equal, verify_continue);
  1020   // rbx: method
  1021   // r13: bcp
  1022   // c_rarg3: mdp
  1023   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
  1024                rbx, r13, c_rarg3);
  1025   bind(verify_continue);
  1026   pop(c_rarg2);
  1027   pop(c_rarg3);
  1028   pop(rbx);
  1029   pop(rax);
  1030 #endif // ASSERT
  1034 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
  1035                                                 int constant,
  1036                                                 Register value) {
  1037   assert(ProfileInterpreter, "must be profiling interpreter");
  1038   Address data(mdp_in, constant);
  1039   movptr(data, value);
  1043 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
  1044                                                       int constant,
  1045                                                       bool decrement) {
  1046   // Counter address
  1047   Address data(mdp_in, constant);
  1049   increment_mdp_data_at(data, decrement);
  1052 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
  1053                                                       bool decrement) {
  1054   assert(ProfileInterpreter, "must be profiling interpreter");
  1055   // %%% this does 64bit counters at best it is wasting space
  1056   // at worst it is a rare bug when counters overflow
  1058   if (decrement) {
  1059     // Decrement the register.  Set condition codes.
  1060     addptr(data, (int32_t) -DataLayout::counter_increment);
  1061     // If the decrement causes the counter to overflow, stay negative
  1062     Label L;
  1063     jcc(Assembler::negative, L);
  1064     addptr(data, (int32_t) DataLayout::counter_increment);
  1065     bind(L);
  1066   } else {
  1067     assert(DataLayout::counter_increment == 1,
  1068            "flow-free idiom only works with 1");
  1069     // Increment the register.  Set carry flag.
  1070     addptr(data, DataLayout::counter_increment);
  1071     // If the increment causes the counter to overflow, pull back by 1.
  1072     sbbptr(data, (int32_t)0);
  1077 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
  1078                                                       Register reg,
  1079                                                       int constant,
  1080                                                       bool decrement) {
  1081   Address data(mdp_in, reg, Address::times_1, constant);
  1083   increment_mdp_data_at(data, decrement);
  1086 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
  1087                                                 int flag_byte_constant) {
  1088   assert(ProfileInterpreter, "must be profiling interpreter");
  1089   int header_offset = in_bytes(DataLayout::header_offset());
  1090   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
  1091   // Set the flag
  1092   orl(Address(mdp_in, header_offset), header_bits);
  1097 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
  1098                                                  int offset,
  1099                                                  Register value,
  1100                                                  Register test_value_out,
  1101                                                  Label& not_equal_continue) {
  1102   assert(ProfileInterpreter, "must be profiling interpreter");
  1103   if (test_value_out == noreg) {
  1104     cmpptr(value, Address(mdp_in, offset));
  1105   } else {
  1106     // Put the test value into a register, so caller can use it:
  1107     movptr(test_value_out, Address(mdp_in, offset));
  1108     cmpptr(test_value_out, value);
  1110   jcc(Assembler::notEqual, not_equal_continue);
  1114 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
  1115                                                      int offset_of_disp) {
  1116   assert(ProfileInterpreter, "must be profiling interpreter");
  1117   Address disp_address(mdp_in, offset_of_disp);
  1118   addptr(mdp_in, disp_address);
  1119   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1123 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
  1124                                                      Register reg,
  1125                                                      int offset_of_disp) {
  1126   assert(ProfileInterpreter, "must be profiling interpreter");
  1127   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
  1128   addptr(mdp_in, disp_address);
  1129   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1133 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
  1134                                                        int constant) {
  1135   assert(ProfileInterpreter, "must be profiling interpreter");
  1136   addptr(mdp_in, constant);
  1137   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1141 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
  1142   assert(ProfileInterpreter, "must be profiling interpreter");
  1143   push(return_bci); // save/restore across call_VM
  1144   call_VM(noreg,
  1145           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
  1146           return_bci);
  1147   pop(return_bci);
  1151 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
  1152                                                      Register bumped_count) {
  1153   if (ProfileInterpreter) {
  1154     Label profile_continue;
  1156     // If no method data exists, go to profile_continue.
  1157     // Otherwise, assign to mdp
  1158     test_method_data_pointer(mdp, profile_continue);
  1160     // We are taking a branch.  Increment the taken count.
  1161     // We inline increment_mdp_data_at to return bumped_count in a register
  1162     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
  1163     Address data(mdp, in_bytes(JumpData::taken_offset()));
  1164     movptr(bumped_count, data);
  1165     assert(DataLayout::counter_increment == 1,
  1166             "flow-free idiom only works with 1");
  1167     addptr(bumped_count, DataLayout::counter_increment);
  1168     sbbptr(bumped_count, 0);
  1169     movptr(data, bumped_count); // Store back out
  1171     // The method data pointer needs to be updated to reflect the new target.
  1172     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
  1173     bind(profile_continue);
  1178 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  1179   if (ProfileInterpreter) {
  1180     Label profile_continue;
  1182     // If no method data exists, go to profile_continue.
  1183     test_method_data_pointer(mdp, profile_continue);
  1185     // We are taking a branch.  Increment the not taken count.
  1186     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1188     // The method data pointer needs to be updated to correspond to
  1189     // the next bytecode
  1190     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1191     bind(profile_continue);
  1196 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1197   if (ProfileInterpreter) {
  1198     Label profile_continue;
  1200     // If no method data exists, go to profile_continue.
  1201     test_method_data_pointer(mdp, profile_continue);
  1203     // We are making a call.  Increment the count.
  1204     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1206     // The method data pointer needs to be updated to reflect the new target.
  1207     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1208     bind(profile_continue);
  1213 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1214   if (ProfileInterpreter) {
  1215     Label profile_continue;
  1217     // If no method data exists, go to profile_continue.
  1218     test_method_data_pointer(mdp, profile_continue);
  1220     // We are making a call.  Increment the count.
  1221     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1223     // The method data pointer needs to be updated to reflect the new target.
  1224     update_mdp_by_constant(mdp,
  1225                            in_bytes(VirtualCallData::
  1226                                     virtual_call_data_size()));
  1227     bind(profile_continue);
  1232 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1233                                                      Register mdp,
  1234                                                      Register reg2) {
  1235   if (ProfileInterpreter) {
  1236     Label profile_continue;
  1238     // If no method data exists, go to profile_continue.
  1239     test_method_data_pointer(mdp, profile_continue);
  1241     // We are making a call.  Increment the count.
  1242     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1244     // Record the receiver type.
  1245     record_klass_in_profile(receiver, mdp, reg2);
  1247     // The method data pointer needs to be updated to reflect the new target.
  1248     update_mdp_by_constant(mdp,
  1249                            in_bytes(VirtualCallData::
  1250                                     virtual_call_data_size()));
  1251     bind(profile_continue);
  1255 // This routine creates a state machine for updating the multi-row
  1256 // type profile at a virtual call site (or other type-sensitive bytecode).
  1257 // The machine visits each row (of receiver/count) until the receiver type
  1258 // is found, or until it runs out of rows.  At the same time, it remembers
  1259 // the location of the first empty row.  (An empty row records null for its
  1260 // receiver, and can be allocated for a newly-observed receiver type.)
  1261 // Because there are two degrees of freedom in the state, a simple linear
  1262 // search will not work; it must be a decision tree.  Hence this helper
  1263 // function is recursive, to generate the required tree structured code.
  1264 // It's the interpreter, so we are trading off code space for speed.
  1265 // See below for example code.
  1266 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1267                                         Register receiver, Register mdp,
  1268                                         Register reg2,
  1269                                         int start_row, Label& done) {
  1270   int last_row = VirtualCallData::row_limit() - 1;
  1271   assert(start_row <= last_row, "must be work left to do");
  1272   // Test this row for both the receiver and for null.
  1273   // Take any of three different outcomes:
  1274   //   1. found receiver => increment count and goto done
  1275   //   2. found null => keep looking for case 1, maybe allocate this cell
  1276   //   3. found something else => keep looking for cases 1 and 2
  1277   // Case 3 is handled by a recursive call.
  1278   for (int row = start_row; row <= last_row; row++) {
  1279     Label next_test;
  1280     bool test_for_null_also = (row == start_row);
  1282     // See if the receiver is receiver[n].
  1283     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1284     test_mdp_data_at(mdp, recvr_offset, receiver,
  1285                      (test_for_null_also ? reg2 : noreg),
  1286                      next_test);
  1287     // (Reg2 now contains the receiver from the CallData.)
  1289     // The receiver is receiver[n].  Increment count[n].
  1290     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1291     increment_mdp_data_at(mdp, count_offset);
  1292     jmp(done);
  1293     bind(next_test);
  1295     if (test_for_null_also) {
  1296       // Failed the equality check on receiver[n]...  Test for null.
  1297       testptr(reg2, reg2);
  1298       if (start_row == last_row) {
  1299         // The only thing left to do is handle the null case.
  1300         jcc(Assembler::notZero, done);
  1301         break;
  1303       // Since null is rare, make it be the branch-taken case.
  1304       Label found_null;
  1305       jcc(Assembler::zero, found_null);
  1307       // Put all the "Case 3" tests here.
  1308       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
  1310       // Found a null.  Keep searching for a matching receiver,
  1311       // but remember that this is an empty (unused) slot.
  1312       bind(found_null);
  1316   // In the fall-through case, we found no matching receiver, but we
  1317   // observed the receiver[start_row] is NULL.
  1319   // Fill in the receiver field and increment the count.
  1320   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1321   set_mdp_data_at(mdp, recvr_offset, receiver);
  1322   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1323   movl(reg2, DataLayout::counter_increment);
  1324   set_mdp_data_at(mdp, count_offset, reg2);
  1325   jmp(done);
  1328 // Example state machine code for three profile rows:
  1329 //   // main copy of decision tree, rooted at row[1]
  1330 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
  1331 //   if (row[0].rec != NULL) {
  1332 //     // inner copy of decision tree, rooted at row[1]
  1333 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
  1334 //     if (row[1].rec != NULL) {
  1335 //       // degenerate decision tree, rooted at row[2]
  1336 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
  1337 //       if (row[2].rec != NULL) { goto done; } // overflow
  1338 //       row[2].init(rec); goto done;
  1339 //     } else {
  1340 //       // remember row[1] is empty
  1341 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
  1342 //       row[1].init(rec); goto done;
  1343 //     }
  1344 //   } else {
  1345 //     // remember row[0] is empty
  1346 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
  1347 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
  1348 //     row[0].init(rec); goto done;
  1349 //   }
  1351 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1352                                                         Register mdp,
  1353                                                         Register reg2) {
  1354   assert(ProfileInterpreter, "must be profiling");
  1355   Label done;
  1357   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
  1359   bind (done);
  1362 void InterpreterMacroAssembler::profile_ret(Register return_bci,
  1363                                             Register mdp) {
  1364   if (ProfileInterpreter) {
  1365     Label profile_continue;
  1366     uint row;
  1368     // If no method data exists, go to profile_continue.
  1369     test_method_data_pointer(mdp, profile_continue);
  1371     // Update the total ret count.
  1372     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1374     for (row = 0; row < RetData::row_limit(); row++) {
  1375       Label next_test;
  1377       // See if return_bci is equal to bci[n]:
  1378       test_mdp_data_at(mdp,
  1379                        in_bytes(RetData::bci_offset(row)),
  1380                        return_bci, noreg,
  1381                        next_test);
  1383       // return_bci is equal to bci[n].  Increment the count.
  1384       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1386       // The method data pointer needs to be updated to reflect the new target.
  1387       update_mdp_by_offset(mdp,
  1388                            in_bytes(RetData::bci_displacement_offset(row)));
  1389       jmp(profile_continue);
  1390       bind(next_test);
  1393     update_mdp_for_ret(return_bci);
  1395     bind(profile_continue);
  1400 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1401   if (ProfileInterpreter) {
  1402     Label profile_continue;
  1404     // If no method data exists, go to profile_continue.
  1405     test_method_data_pointer(mdp, profile_continue);
  1407     // The method data pointer needs to be updated.
  1408     int mdp_delta = in_bytes(BitData::bit_data_size());
  1409     if (TypeProfileCasts) {
  1410       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1412     update_mdp_by_constant(mdp, mdp_delta);
  1414     bind(profile_continue);
  1419 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1420   if (ProfileInterpreter && TypeProfileCasts) {
  1421     Label profile_continue;
  1423     // If no method data exists, go to profile_continue.
  1424     test_method_data_pointer(mdp, profile_continue);
  1426     int count_offset = in_bytes(CounterData::count_offset());
  1427     // Back up the address, since we have already bumped the mdp.
  1428     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1430     // *Decrement* the counter.  We expect to see zero or small negatives.
  1431     increment_mdp_data_at(mdp, count_offset, true);
  1433     bind (profile_continue);
  1438 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
  1439   if (ProfileInterpreter) {
  1440     Label profile_continue;
  1442     // If no method data exists, go to profile_continue.
  1443     test_method_data_pointer(mdp, profile_continue);
  1445     // The method data pointer needs to be updated.
  1446     int mdp_delta = in_bytes(BitData::bit_data_size());
  1447     if (TypeProfileCasts) {
  1448       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1450       // Record the object type.
  1451       record_klass_in_profile(klass, mdp, reg2);
  1453     update_mdp_by_constant(mdp, mdp_delta);
  1455     bind(profile_continue);
  1460 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1461   if (ProfileInterpreter) {
  1462     Label profile_continue;
  1464     // If no method data exists, go to profile_continue.
  1465     test_method_data_pointer(mdp, profile_continue);
  1467     // Update the default case count
  1468     increment_mdp_data_at(mdp,
  1469                           in_bytes(MultiBranchData::default_count_offset()));
  1471     // The method data pointer needs to be updated.
  1472     update_mdp_by_offset(mdp,
  1473                          in_bytes(MultiBranchData::
  1474                                   default_displacement_offset()));
  1476     bind(profile_continue);
  1481 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1482                                                     Register mdp,
  1483                                                     Register reg2) {
  1484   if (ProfileInterpreter) {
  1485     Label profile_continue;
  1487     // If no method data exists, go to profile_continue.
  1488     test_method_data_pointer(mdp, profile_continue);
  1490     // Build the base (index * per_case_size_in_bytes()) +
  1491     // case_array_offset_in_bytes()
  1492     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
  1493     imulptr(index, reg2); // XXX l ?
  1494     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
  1496     // Update the case count
  1497     increment_mdp_data_at(mdp,
  1498                           index,
  1499                           in_bytes(MultiBranchData::relative_count_offset()));
  1501     // The method data pointer needs to be updated.
  1502     update_mdp_by_offset(mdp,
  1503                          index,
  1504                          in_bytes(MultiBranchData::
  1505                                   relative_displacement_offset()));
  1507     bind(profile_continue);
  1513 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1514   if (state == atos) {
  1515     MacroAssembler::verify_oop(reg);
  1519 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1521 #endif // !CC_INTERP
  1524 void InterpreterMacroAssembler::notify_method_entry() {
  1525   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1526   // track stack depth.  If it is possible to enter interp_only_mode we add
  1527   // the code to check if the event should be sent.
  1528   if (JvmtiExport::can_post_interpreter_events()) {
  1529     Label L;
  1530     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
  1531     testl(rdx, rdx);
  1532     jcc(Assembler::zero, L);
  1533     call_VM(noreg, CAST_FROM_FN_PTR(address,
  1534                                     InterpreterRuntime::post_method_entry));
  1535     bind(L);
  1539     SkipIfEqual skip(this, &DTraceMethodProbes, false);
  1540     get_method(c_rarg1);
  1541     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1542                  r15_thread, c_rarg1);
  1545   // RedefineClasses() tracing support for obsolete method entry
  1546   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1547     get_method(c_rarg1);
  1548     call_VM_leaf(
  1549       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1550       r15_thread, c_rarg1);
  1555 void InterpreterMacroAssembler::notify_method_exit(
  1556     TosState state, NotifyMethodExitMode mode) {
  1557   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1558   // track stack depth.  If it is possible to enter interp_only_mode we add
  1559   // the code to check if the event should be sent.
  1560   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1561     Label L;
  1562     // Note: frame::interpreter_frame_result has a dependency on how the
  1563     // method result is saved across the call to post_method_exit. If this
  1564     // is changed then the interpreter_frame_result implementation will
  1565     // need to be updated too.
  1567     // For c++ interpreter the result is always stored at a known location in the frame
  1568     // template interpreter will leave it on the top of the stack.
  1569     NOT_CC_INTERP(push(state);)
  1570     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
  1571     testl(rdx, rdx);
  1572     jcc(Assembler::zero, L);
  1573     call_VM(noreg,
  1574             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1575     bind(L);
  1576     NOT_CC_INTERP(pop(state));
  1580     SkipIfEqual skip(this, &DTraceMethodProbes, false);
  1581     NOT_CC_INTERP(push(state));
  1582     get_method(c_rarg1);
  1583     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1584                  r15_thread, c_rarg1);
  1585     NOT_CC_INTERP(pop(state));

mercurial