src/cpu/x86/vm/interp_masm_x86_32.cpp

Thu, 19 Mar 2009 09:13:24 -0700

author
kvn
date
Thu, 19 Mar 2009 09:13:24 -0700
changeset 1082
bd441136a5ce
parent 1063
7bb995fbd3c0
parent 1079
c517646eef23
child 1145
e5b0439ef4ae
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interp_masm_x86_32.cpp.incl"
    29 // Implementation of InterpreterMacroAssembler
    30 #ifdef CC_INTERP
    31 void InterpreterMacroAssembler::get_method(Register reg) {
    32   movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
    33   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
    34 }
    35 #endif // CC_INTERP
    38 #ifndef CC_INTERP
    39 void InterpreterMacroAssembler::call_VM_leaf_base(
    40   address entry_point,
    41   int     number_of_arguments
    42 ) {
    43   // interpreter specific
    44   //
    45   // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
    46   //       since these are callee saved registers and no blocking/
    47   //       GC can happen in leaf calls.
    48   // Further Note: DO NOT save/restore bcp/locals. If a caller has
    49   // already saved them so that it can use rsi/rdi as temporaries
    50   // then a save/restore here will DESTROY the copy the caller
    51   // saved! There used to be a save_bcp() that only happened in
    52   // the ASSERT path (no restore_bcp). Which caused bizarre failures
    53   // when jvm built with ASSERTs.
    54 #ifdef ASSERT
    55   { Label L;
    56     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    57     jcc(Assembler::equal, L);
    58     stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
    59     bind(L);
    60   }
    61 #endif
    62   // super call
    63   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    64   // interpreter specific
    66   // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
    67   // but since they may not have been saved (and we don't want to
    68   // save them here (see note above) the assert is invalid.
    69 }
    72 void InterpreterMacroAssembler::call_VM_base(
    73   Register oop_result,
    74   Register java_thread,
    75   Register last_java_sp,
    76   address  entry_point,
    77   int      number_of_arguments,
    78   bool     check_exceptions
    79 ) {
    80 #ifdef ASSERT
    81   { Label L;
    82     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    83     jcc(Assembler::equal, L);
    84     stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
    85     bind(L);
    86   }
    87 #endif /* ASSERT */
    88   // interpreter specific
    89   //
    90   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
    91   //       really make a difference for these runtime calls, since they are
    92   //       slow anyway. Btw., bcp must be saved/restored since it may change
    93   //       due to GC.
    94   assert(java_thread == noreg , "not expecting a precomputed java thread");
    95   save_bcp();
    96   // super call
    97   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
    98   // interpreter specific
    99   restore_bcp();
   100   restore_locals();
   101 }
   104 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   105   if (JvmtiExport::can_pop_frame()) {
   106     Label L;
   107     // Initiate popframe handling only if it is not already being processed.  If the flag
   108     // has the popframe_processing bit set, it means that this code is called *during* popframe
   109     // handling - we don't want to reenter.
   110     Register pop_cond = java_thread;  // Not clear if any other register is available...
   111     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
   112     testl(pop_cond, JavaThread::popframe_pending_bit);
   113     jcc(Assembler::zero, L);
   114     testl(pop_cond, JavaThread::popframe_processing_bit);
   115     jcc(Assembler::notZero, L);
   116     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   117     // address of the same-named entrypoint in the generated interpreter code.
   118     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   119     jmp(rax);
   120     bind(L);
   121     get_thread(java_thread);
   122   }
   123 }
   126 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   127   get_thread(rcx);
   128   movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
   129   const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
   130   const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
   131   const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
   132   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
   133                              + in_ByteSize(wordSize));
   134   switch (state) {
   135     case atos: movptr(rax, oop_addr);
   136                movptr(oop_addr, NULL_WORD);
   137                verify_oop(rax, state);                break;
   138     case ltos:
   139                movl(rdx, val_addr1);               // fall through
   140     case btos:                                     // fall through
   141     case ctos:                                     // fall through
   142     case stos:                                     // fall through
   143     case itos: movl(rax, val_addr);                   break;
   144     case ftos: fld_s(val_addr);                       break;
   145     case dtos: fld_d(val_addr);                       break;
   146     case vtos: /* nothing to do */                    break;
   147     default  : ShouldNotReachHere();
   148   }
   149   // Clean up tos value in the thread object
   150   movl(tos_addr,  (int32_t) ilgl);
   151   movptr(val_addr,  NULL_WORD);
   152   NOT_LP64(movptr(val_addr1, NULL_WORD));
   153 }
   156 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   157   if (JvmtiExport::can_force_early_return()) {
   158     Label L;
   159     Register tmp = java_thread;
   160     movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
   161     testptr(tmp, tmp);
   162     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   164     // Initiate earlyret handling only if it is not already being processed.
   165     // If the flag has the earlyret_processing bit set, it means that this code
   166     // is called *during* earlyret handling - we don't want to reenter.
   167     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
   168     cmpl(tmp, JvmtiThreadState::earlyret_pending);
   169     jcc(Assembler::notEqual, L);
   171     // Call Interpreter::remove_activation_early_entry() to get the address of the
   172     // same-named entrypoint in the generated interpreter code.
   173     get_thread(java_thread);
   174     movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
   175     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
   176     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
   177     jmp(rax);
   178     bind(L);
   179     get_thread(java_thread);
   180   }
   181 }
   184 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
   185   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   186   movl(reg, Address(rsi, bcp_offset));
   187   bswapl(reg);
   188   shrl(reg, 16);
   189 }
   192 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, int bcp_offset) {
   193   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   194   assert(cache != index, "must use different registers");
   195   load_unsigned_short(index, Address(rsi, bcp_offset));
   196   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   197   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   198   shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index
   199 }
   202 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
   203   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   204   assert(cache != tmp, "must use different register");
   205   load_unsigned_short(tmp, Address(rsi, bcp_offset));
   206   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   207                                // convert from field index to ConstantPoolCacheEntry index
   208                                // and from word offset to byte offset
   209   shll(tmp, 2 + LogBytesPerWord);
   210   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   211                                // skip past the header
   212   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
   213   addptr(cache, tmp);            // construct pointer to cache entry
   214 }
   217   // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   218   // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
   219   // Resets EDI to locals.  Register sub_klass cannot be any of the above.
   220 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
   221   assert( Rsub_klass != rax, "rax, holds superklass" );
   222   assert( Rsub_klass != rcx, "used as a temp" );
   223   assert( Rsub_klass != rdi, "used as a temp, restored from locals" );
   225   // Profile the not-null value's klass.
   226   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
   228   // Do the check.
   229   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
   231   // Profile the failure of the check.
   232   profile_typecheck_failed(rcx); // blows rcx
   233 }
   235 void InterpreterMacroAssembler::f2ieee() {
   236   if (IEEEPrecision) {
   237     fstp_s(Address(rsp, 0));
   238     fld_s(Address(rsp, 0));
   239   }
   240 }
   243 void InterpreterMacroAssembler::d2ieee() {
   244   if (IEEEPrecision) {
   245     fstp_d(Address(rsp, 0));
   246     fld_d(Address(rsp, 0));
   247   }
   248 }
   250 // Java Expression Stack
   252 #ifdef ASSERT
   253 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
   254   if (TaggedStackInterpreter) {
   255     Label okay;
   256     cmpptr(Address(rsp, wordSize), (int32_t)t);
   257     jcc(Assembler::equal, okay);
   258     // Also compare if the stack value is zero, then the tag might
   259     // not have been set coming from deopt.
   260     cmpptr(Address(rsp, 0), 0);
   261     jcc(Assembler::equal, okay);
   262     stop("Java Expression stack tag value is bad");
   263     bind(okay);
   264   }
   265 }
   266 #endif // ASSERT
   268 void InterpreterMacroAssembler::pop_ptr(Register r) {
   269   debug_only(verify_stack_tag(frame::TagReference));
   270   pop(r);
   271   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   272 }
   274 void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
   275   pop(r);
   276   // Tag may not be reference for jsr, can be returnAddress
   277   if (TaggedStackInterpreter) pop(tag);
   278 }
   280 void InterpreterMacroAssembler::pop_i(Register r) {
   281   debug_only(verify_stack_tag(frame::TagValue));
   282   pop(r);
   283   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   284 }
   286 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
   287   debug_only(verify_stack_tag(frame::TagValue));
   288   pop(lo);
   289   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   290   debug_only(verify_stack_tag(frame::TagValue));
   291   pop(hi);
   292   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   293 }
   295 void InterpreterMacroAssembler::pop_f() {
   296   debug_only(verify_stack_tag(frame::TagValue));
   297   fld_s(Address(rsp, 0));
   298   addptr(rsp, 1 * wordSize);
   299   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   300 }
   302 void InterpreterMacroAssembler::pop_d() {
   303   // Write double to stack contiguously and load into ST0
   304   pop_dtos_to_rsp();
   305   fld_d(Address(rsp, 0));
   306   addptr(rsp, 2 * wordSize);
   307 }
   310 // Pop the top of the java expression stack to execution stack (which
   311 // happens to be the same place).
   312 void InterpreterMacroAssembler::pop_dtos_to_rsp() {
   313   if (TaggedStackInterpreter) {
   314     // Pop double value into scratch registers
   315     debug_only(verify_stack_tag(frame::TagValue));
   316     pop(rax);
   317     addptr(rsp, 1* wordSize);
   318     debug_only(verify_stack_tag(frame::TagValue));
   319     pop(rdx);
   320     addptr(rsp, 1* wordSize);
   321     push(rdx);
   322     push(rax);
   323   }
   324 }
   326 void InterpreterMacroAssembler::pop_ftos_to_rsp() {
   327   if (TaggedStackInterpreter) {
   328     debug_only(verify_stack_tag(frame::TagValue));
   329     pop(rax);
   330     addptr(rsp, 1 * wordSize);
   331     push(rax);  // ftos is at rsp
   332   }
   333 }
   335 void InterpreterMacroAssembler::pop(TosState state) {
   336   switch (state) {
   337     case atos: pop_ptr(rax);                                 break;
   338     case btos:                                               // fall through
   339     case ctos:                                               // fall through
   340     case stos:                                               // fall through
   341     case itos: pop_i(rax);                                   break;
   342     case ltos: pop_l(rax, rdx);                              break;
   343     case ftos: pop_f();                                      break;
   344     case dtos: pop_d();                                      break;
   345     case vtos: /* nothing to do */                           break;
   346     default  : ShouldNotReachHere();
   347   }
   348   verify_oop(rax, state);
   349 }
   351 void InterpreterMacroAssembler::push_ptr(Register r) {
   352   if (TaggedStackInterpreter) push(frame::TagReference);
   353   push(r);
   354 }
   356 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
   357   if (TaggedStackInterpreter) push(tag);  // tag first
   358   push(r);
   359 }
   361 void InterpreterMacroAssembler::push_i(Register r) {
   362   if (TaggedStackInterpreter) push(frame::TagValue);
   363   push(r);
   364 }
   366 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
   367   if (TaggedStackInterpreter) push(frame::TagValue);
   368   push(hi);
   369   if (TaggedStackInterpreter) push(frame::TagValue);
   370   push(lo);
   371 }
   373 void InterpreterMacroAssembler::push_f() {
   374   if (TaggedStackInterpreter) push(frame::TagValue);
   375   // Do not schedule for no AGI! Never write beyond rsp!
   376   subptr(rsp, 1 * wordSize);
   377   fstp_s(Address(rsp, 0));
   378 }
   380 void InterpreterMacroAssembler::push_d(Register r) {
   381   if (TaggedStackInterpreter) {
   382     // Double values are stored as:
   383     //   tag
   384     //   high
   385     //   tag
   386     //   low
   387     push(frame::TagValue);
   388     subptr(rsp, 3 * wordSize);
   389     fstp_d(Address(rsp, 0));
   390     // move high word up to slot n-1
   391     movl(r, Address(rsp, 1*wordSize));
   392     movl(Address(rsp, 2*wordSize), r);
   393     // move tag
   394     movl(Address(rsp, 1*wordSize), frame::TagValue);
   395   } else {
   396     // Do not schedule for no AGI! Never write beyond rsp!
   397     subptr(rsp, 2 * wordSize);
   398     fstp_d(Address(rsp, 0));
   399   }
   400 }
   403 void InterpreterMacroAssembler::push(TosState state) {
   404   verify_oop(rax, state);
   405   switch (state) {
   406     case atos: push_ptr(rax); break;
   407     case btos:                                               // fall through
   408     case ctos:                                               // fall through
   409     case stos:                                               // fall through
   410     case itos: push_i(rax);                                    break;
   411     case ltos: push_l(rax, rdx);                               break;
   412     case ftos: push_f();                                       break;
   413     case dtos: push_d(rax);                                    break;
   414     case vtos: /* nothing to do */                             break;
   415     default  : ShouldNotReachHere();
   416   }
   417 }
   420 // Tagged stack helpers for swap and dup
   421 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
   422                                                  Register tag) {
   423   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   424   if (TaggedStackInterpreter) {
   425     movptr(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
   426   }
   427 }
   429 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
   430                                                   Register tag) {
   431   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   432   if (TaggedStackInterpreter) {
   433     movptr(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
   434   }
   435 }
   438 // Tagged local support
   439 void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
   440   if (TaggedStackInterpreter) {
   441     if (tag == frame::TagCategory2) {
   442       movptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n+1)), (int32_t)frame::TagValue);
   443       movptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)frame::TagValue);
   444     } else {
   445       movptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)tag);
   446     }
   447   }
   448 }
   450 void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
   451   if (TaggedStackInterpreter) {
   452     if (tag == frame::TagCategory2) {
   453       movptr(Address(rdi, idx, Interpreter::stackElementScale(),
   454                   Interpreter::local_tag_offset_in_bytes(1)), (int32_t)frame::TagValue);
   455       movptr(Address(rdi, idx, Interpreter::stackElementScale(),
   456                     Interpreter::local_tag_offset_in_bytes(0)), (int32_t)frame::TagValue);
   457     } else {
   458       movptr(Address(rdi, idx, Interpreter::stackElementScale(),
   459                                Interpreter::local_tag_offset_in_bytes(0)), (int32_t)tag);
   460     }
   461   }
   462 }
   464 void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
   465   if (TaggedStackInterpreter) {
   466     // can only be TagValue or TagReference
   467     movptr(Address(rdi, idx, Interpreter::stackElementScale(),
   468                            Interpreter::local_tag_offset_in_bytes(0)), tag);
   469   }
   470 }
   473 void InterpreterMacroAssembler::tag_local(Register tag, int n) {
   474   if (TaggedStackInterpreter) {
   475     // can only be TagValue or TagReference
   476     movptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), tag);
   477   }
   478 }
   480 #ifdef ASSERT
   481 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
   482   if (TaggedStackInterpreter) {
   483      frame::Tag t = tag;
   484     if (tag == frame::TagCategory2) {
   485       Label nbl;
   486       t = frame::TagValue;  // change to what is stored in locals
   487       cmpptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n+1)), (int32_t)t);
   488       jcc(Assembler::equal, nbl);
   489       stop("Local tag is bad for long/double");
   490       bind(nbl);
   491     }
   492     Label notBad;
   493     cmpptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)t);
   494     jcc(Assembler::equal, notBad);
   495     // Also compare if the local value is zero, then the tag might
   496     // not have been set coming from deopt.
   497     cmpptr(Address(rdi, Interpreter::local_offset_in_bytes(n)), 0);
   498     jcc(Assembler::equal, notBad);
   499     stop("Local tag is bad");
   500     bind(notBad);
   501   }
   502 }
   504 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
   505   if (TaggedStackInterpreter) {
   506     frame::Tag t = tag;
   507     if (tag == frame::TagCategory2) {
   508       Label nbl;
   509       t = frame::TagValue;  // change to what is stored in locals
   510       cmpptr(Address(rdi, idx, Interpreter::stackElementScale(),
   511                   Interpreter::local_tag_offset_in_bytes(1)), (int32_t)t);
   512       jcc(Assembler::equal, nbl);
   513       stop("Local tag is bad for long/double");
   514       bind(nbl);
   515     }
   516     Label notBad;
   517     cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
   518                   Interpreter::local_tag_offset_in_bytes(0)), (int32_t)t);
   519     jcc(Assembler::equal, notBad);
   520     // Also compare if the local value is zero, then the tag might
   521     // not have been set coming from deopt.
   522     cmpptr(Address(rdi, idx, Interpreter::stackElementScale(),
   523                   Interpreter::local_offset_in_bytes(0)), 0);
   524     jcc(Assembler::equal, notBad);
   525     stop("Local tag is bad");
   526     bind(notBad);
   528   }
   529 }
   530 #endif // ASSERT
   532 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
   533   MacroAssembler::call_VM_leaf_base(entry_point, 0);
   534 }
   537 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1) {
   538   push(arg_1);
   539   MacroAssembler::call_VM_leaf_base(entry_point, 1);
   540 }
   543 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
   544   push(arg_2);
   545   push(arg_1);
   546   MacroAssembler::call_VM_leaf_base(entry_point, 2);
   547 }
   550 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
   551   push(arg_3);
   552   push(arg_2);
   553   push(arg_1);
   554   MacroAssembler::call_VM_leaf_base(entry_point, 3);
   555 }
   558 // Jump to from_interpreted entry of a call unless single stepping is possible
   559 // in this thread in which case we must call the i2i entry
   560 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   561   // set sender sp
   562   lea(rsi, Address(rsp, wordSize));
   563   // record last_sp
   564   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
   566   if (JvmtiExport::can_post_interpreter_events()) {
   567     Label run_compiled_code;
   568     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   569     // compiled code in threads for which the event is enabled.  Check here for
   570     // interp_only_mode if these events CAN be enabled.
   571     get_thread(temp);
   572     // interp_only is an int, on little endian it is sufficient to test the byte only
   573     // Is a cmpl faster (ce
   574     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
   575     jcc(Assembler::zero, run_compiled_code);
   576     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   577     bind(run_compiled_code);
   578   }
   580   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   582 }
   585 // The following two routines provide a hook so that an implementation
   586 // can schedule the dispatch in two parts.  Intel does not do this.
   587 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   588   // Nothing Intel-specific to be done here.
   589 }
   591 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   592   dispatch_next(state, step);
   593 }
   595 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
   596                                               bool verifyoop) {
   597   verify_FPU(1, state);
   598   if (VerifyActivationFrameSize) {
   599     Label L;
   600     mov(rcx, rbp);
   601     subptr(rcx, rsp);
   602     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
   603     cmpptr(rcx, min_frame_size);
   604     jcc(Assembler::greaterEqual, L);
   605     stop("broken stack frame");
   606     bind(L);
   607   }
   608   if (verifyoop) verify_oop(rax, state);
   609   Address index(noreg, rbx, Address::times_ptr);
   610   ExternalAddress tbl((address)table);
   611   ArrayAddress dispatch(tbl, index);
   612   jump(dispatch);
   613 }
   616 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   617   dispatch_base(state, Interpreter::dispatch_table(state));
   618 }
   621 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   622   dispatch_base(state, Interpreter::normal_table(state));
   623 }
   625 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   626   dispatch_base(state, Interpreter::normal_table(state), false);
   627 }
   630 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   631   // load next bytecode (load before advancing rsi to prevent AGI)
   632   load_unsigned_byte(rbx, Address(rsi, step));
   633   // advance rsi
   634   increment(rsi, step);
   635   dispatch_base(state, Interpreter::dispatch_table(state));
   636 }
   639 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   640   // load current bytecode
   641   load_unsigned_byte(rbx, Address(rsi, 0));
   642   dispatch_base(state, table);
   643 }
   645 // remove activation
   646 //
   647 // Unlock the receiver if this is a synchronized method.
   648 // Unlock any Java monitors from syncronized blocks.
   649 // Remove the activation from the stack.
   650 //
   651 // If there are locked Java monitors
   652 //    If throw_monitor_exception
   653 //       throws IllegalMonitorStateException
   654 //    Else if install_monitor_exception
   655 //       installs IllegalMonitorStateException
   656 //    Else
   657 //       no error processing
   658 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
   659                                                   bool throw_monitor_exception,
   660                                                   bool install_monitor_exception,
   661                                                   bool notify_jvmdi) {
   662   // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
   663   // check if synchronized method
   664   Label unlocked, unlock, no_unlock;
   666   get_thread(rcx);
   667   const Address do_not_unlock_if_synchronized(rcx,
   668     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   670   movbool(rbx, do_not_unlock_if_synchronized);
   671   mov(rdi,rbx);
   672   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   674   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
   675   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
   677   testl(rcx, JVM_ACC_SYNCHRONIZED);
   678   jcc(Assembler::zero, unlocked);
   680   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   681   // is set.
   682   mov(rcx,rdi);
   683   testbool(rcx);
   684   jcc(Assembler::notZero, no_unlock);
   686   // unlock monitor
   687   push(state);                                   // save result
   689   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
   690   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
   691   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
   692   lea   (rdx, monitor);                          // address of first monitor
   694   movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
   695   testptr(rax, rax);
   696   jcc    (Assembler::notZero, unlock);
   698   pop(state);
   699   if (throw_monitor_exception) {
   700     empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   702     // Entry already unlocked, need to throw exception
   703     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   704     should_not_reach_here();
   705   } else {
   706     // Monitor already unlocked during a stack unroll.
   707     // If requested, install an illegal_monitor_state_exception.
   708     // Continue with stack unrolling.
   709     if (install_monitor_exception) {
   710       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   711       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   712     }
   713     jmp(unlocked);
   714   }
   716   bind(unlock);
   717   unlock_object(rdx);
   718   pop(state);
   720   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
   721   bind(unlocked);
   723   // rax, rdx: Might contain return value
   725   // Check that all monitors are unlocked
   726   {
   727     Label loop, exception, entry, restart;
   728     const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
   729     const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   730     const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
   732     bind(restart);
   733     movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
   734     lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
   735     jmp(entry);
   737     // Entry already locked, need to throw exception
   738     bind(exception);
   740     if (throw_monitor_exception) {
   741       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   743       // Throw exception
   744       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   745       should_not_reach_here();
   746     } else {
   747       // Stack unrolling. Unlock object and install illegal_monitor_exception
   748       // Unlock does not block, so don't have to worry about the frame
   750       push(state);
   751       mov(rdx, rcx);
   752       unlock_object(rdx);
   753       pop(state);
   755       if (install_monitor_exception) {
   756         empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   757         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   758       }
   760       jmp(restart);
   761     }
   763     bind(loop);
   764     cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
   765     jcc(Assembler::notEqual, exception);
   767     addptr(rcx, entry_size);                     // otherwise advance to next entry
   768     bind(entry);
   769     cmpptr(rcx, rbx);                            // check if bottom reached
   770     jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
   771   }
   773   bind(no_unlock);
   775   // jvmti support
   776   if (notify_jvmdi) {
   777     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
   778   } else {
   779     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   780   }
   782   // remove activation
   783   movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
   784   leave();                                     // remove frame anchor
   785   pop(ret_addr);                               // get return address
   786   mov(rsp, rbx);                               // set sp to sender sp
   787   if (UseSSE) {
   788     // float and double are returned in xmm register in SSE-mode
   789     if (state == ftos && UseSSE >= 1) {
   790       subptr(rsp, wordSize);
   791       fstp_s(Address(rsp, 0));
   792       movflt(xmm0, Address(rsp, 0));
   793       addptr(rsp, wordSize);
   794     } else if (state == dtos && UseSSE >= 2) {
   795       subptr(rsp, 2*wordSize);
   796       fstp_d(Address(rsp, 0));
   797       movdbl(xmm0, Address(rsp, 0));
   798       addptr(rsp, 2*wordSize);
   799     }
   800   }
   801 }
   803 #endif /* !CC_INTERP */
   806 // Lock object
   807 //
   808 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
   809 // be initialized with object to lock
   810 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   811   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   813   if (UseHeavyMonitors) {
   814     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   815   } else {
   817     Label done;
   819     const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
   820     const Register obj_reg  = rcx;  // Will contain the oop
   822     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   823     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   824     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
   826     Label slow_case;
   828     // Load object pointer into obj_reg %rcx
   829     movptr(obj_reg, Address(lock_reg, obj_offset));
   831     if (UseBiasedLocking) {
   832       // Note: we use noreg for the temporary register since it's hard
   833       // to come up with a free register on all incoming code paths
   834       biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
   835     }
   837     // Load immediate 1 into swap_reg %rax,
   838     movptr(swap_reg, (int32_t)1);
   840     // Load (object->mark() | 1) into swap_reg %rax,
   841     orptr(swap_reg, Address(obj_reg, 0));
   843     // Save (object->mark() | 1) into BasicLock's displaced header
   844     movptr(Address(lock_reg, mark_offset), swap_reg);
   846     assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
   847     if (os::is_MP()) {
   848       lock();
   849     }
   850     cmpxchgptr(lock_reg, Address(obj_reg, 0));
   851     if (PrintBiasedLockingStatistics) {
   852       cond_inc32(Assembler::zero,
   853                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   854     }
   855     jcc(Assembler::zero, done);
   857     // Test if the oopMark is an obvious stack pointer, i.e.,
   858     //  1) (mark & 3) == 0, and
   859     //  2) rsp <= mark < mark + os::pagesize()
   860     //
   861     // These 3 tests can be done by evaluating the following
   862     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
   863     // assuming both stack pointer and pagesize have their
   864     // least significant 2 bits clear.
   865     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
   866     subptr(swap_reg, rsp);
   867     andptr(swap_reg, 3 - os::vm_page_size());
   869     // Save the test result, for recursive case, the result is zero
   870     movptr(Address(lock_reg, mark_offset), swap_reg);
   872     if (PrintBiasedLockingStatistics) {
   873       cond_inc32(Assembler::zero,
   874                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   875     }
   876     jcc(Assembler::zero, done);
   878     bind(slow_case);
   880     // Call the runtime routine for slow case
   881     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   883     bind(done);
   884   }
   885 }
   888 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
   889 //
   890 // Argument: rdx : Points to BasicObjectLock structure for lock
   891 // Throw an IllegalMonitorException if object is not locked by current thread
   892 //
   893 // Uses: rax, rbx, rcx, rdx
   894 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   895   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   897   if (UseHeavyMonitors) {
   898     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   899   } else {
   900     Label done;
   902     const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
   903     const Register header_reg = rbx;  // Will contain the old oopMark
   904     const Register obj_reg    = rcx;  // Will contain the oop
   906     save_bcp(); // Save in case of exception
   908     // Convert from BasicObjectLock structure to object and BasicLock structure
   909     // Store the BasicLock address into %rax,
   910     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   912     // Load oop into obj_reg(%rcx)
   913     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
   915     // Free entry
   916     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
   918     if (UseBiasedLocking) {
   919       biased_locking_exit(obj_reg, header_reg, done);
   920     }
   922     // Load the old header from BasicLock structure
   923     movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
   925     // Test for recursion
   926     testptr(header_reg, header_reg);
   928     // zero for recursive case
   929     jcc(Assembler::zero, done);
   931     // Atomic swap back the old header
   932     if (os::is_MP()) lock();
   933     cmpxchgptr(header_reg, Address(obj_reg, 0));
   935     // zero for recursive case
   936     jcc(Assembler::zero, done);
   938     // Call the runtime routine for slow case.
   939     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
   940     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   942     bind(done);
   944     restore_bcp();
   945   }
   946 }
   949 #ifndef CC_INTERP
   951 // Test ImethodDataPtr.  If it is null, continue at the specified label
   952 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
   953   assert(ProfileInterpreter, "must be profiling interpreter");
   954   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
   955   testptr(mdp, mdp);
   956   jcc(Assembler::zero, zero_continue);
   957 }
   960 // Set the method data pointer for the current bcp.
   961 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
   962   assert(ProfileInterpreter, "must be profiling interpreter");
   963   Label zero_continue;
   964   push(rax);
   965   push(rbx);
   967   get_method(rbx);
   968   // Test MDO to avoid the call if it is NULL.
   969   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   970   testptr(rax, rax);
   971   jcc(Assembler::zero, zero_continue);
   973   // rbx,: method
   974   // rsi: bcp
   975   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
   976   // rax,: mdi
   978   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   979   testptr(rbx, rbx);
   980   jcc(Assembler::zero, zero_continue);
   981   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
   982   addptr(rbx, rax);
   983   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
   985   bind(zero_continue);
   986   pop(rbx);
   987   pop(rax);
   988 }
   990 void InterpreterMacroAssembler::verify_method_data_pointer() {
   991   assert(ProfileInterpreter, "must be profiling interpreter");
   992 #ifdef ASSERT
   993   Label verify_continue;
   994   push(rax);
   995   push(rbx);
   996   push(rcx);
   997   push(rdx);
   998   test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
   999   get_method(rbx);
  1001   // If the mdp is valid, it will point to a DataLayout header which is
  1002   // consistent with the bcp.  The converse is highly probable also.
  1003   load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
  1004   addptr(rdx, Address(rbx, methodOopDesc::const_offset()));
  1005   lea(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
  1006   cmpptr(rdx, rsi);
  1007   jcc(Assembler::equal, verify_continue);
  1008   // rbx,: method
  1009   // rsi: bcp
  1010   // rcx: mdp
  1011   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
  1012   bind(verify_continue);
  1013   pop(rdx);
  1014   pop(rcx);
  1015   pop(rbx);
  1016   pop(rax);
  1017 #endif // ASSERT
  1021 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
  1022   // %%% this seems to be used to store counter data which is surely 32bits
  1023   // however 64bit side stores 64 bits which seems wrong
  1024   assert(ProfileInterpreter, "must be profiling interpreter");
  1025   Address data(mdp_in, constant);
  1026   movptr(data, value);
  1030 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
  1031                                                       int constant,
  1032                                                       bool decrement) {
  1033   // Counter address
  1034   Address data(mdp_in, constant);
  1036   increment_mdp_data_at(data, decrement);
  1040 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
  1041                                                       bool decrement) {
  1043   assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
  1044   assert(ProfileInterpreter, "must be profiling interpreter");
  1046   // %%% 64bit treats this as 64 bit which seems unlikely
  1047   if (decrement) {
  1048     // Decrement the register.  Set condition codes.
  1049     addl(data, -DataLayout::counter_increment);
  1050     // If the decrement causes the counter to overflow, stay negative
  1051     Label L;
  1052     jcc(Assembler::negative, L);
  1053     addl(data, DataLayout::counter_increment);
  1054     bind(L);
  1055   } else {
  1056     assert(DataLayout::counter_increment == 1,
  1057            "flow-free idiom only works with 1");
  1058     // Increment the register.  Set carry flag.
  1059     addl(data, DataLayout::counter_increment);
  1060     // If the increment causes the counter to overflow, pull back by 1.
  1061     sbbl(data, 0);
  1066 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
  1067                                                       Register reg,
  1068                                                       int constant,
  1069                                                       bool decrement) {
  1070   Address data(mdp_in, reg, Address::times_1, constant);
  1072   increment_mdp_data_at(data, decrement);
  1076 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
  1077   assert(ProfileInterpreter, "must be profiling interpreter");
  1078   int header_offset = in_bytes(DataLayout::header_offset());
  1079   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
  1080   // Set the flag
  1081   orl(Address(mdp_in, header_offset), header_bits);
  1086 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
  1087                                                  int offset,
  1088                                                  Register value,
  1089                                                  Register test_value_out,
  1090                                                  Label& not_equal_continue) {
  1091   assert(ProfileInterpreter, "must be profiling interpreter");
  1092   if (test_value_out == noreg) {
  1093     cmpptr(value, Address(mdp_in, offset));
  1094   } else {
  1095     // Put the test value into a register, so caller can use it:
  1096     movptr(test_value_out, Address(mdp_in, offset));
  1097     cmpptr(test_value_out, value);
  1099   jcc(Assembler::notEqual, not_equal_continue);
  1103 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
  1104   assert(ProfileInterpreter, "must be profiling interpreter");
  1105   Address disp_address(mdp_in, offset_of_disp);
  1106   addptr(mdp_in,disp_address);
  1107   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1111 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
  1112   assert(ProfileInterpreter, "must be profiling interpreter");
  1113   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
  1114   addptr(mdp_in, disp_address);
  1115   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1119 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
  1120   assert(ProfileInterpreter, "must be profiling interpreter");
  1121   addptr(mdp_in, constant);
  1122   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1126 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
  1127   assert(ProfileInterpreter, "must be profiling interpreter");
  1128   push(return_bci);             // save/restore across call_VM
  1129   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  1130   pop(return_bci);
  1134 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
  1135   if (ProfileInterpreter) {
  1136     Label profile_continue;
  1138     // If no method data exists, go to profile_continue.
  1139     // Otherwise, assign to mdp
  1140     test_method_data_pointer(mdp, profile_continue);
  1142     // We are taking a branch.  Increment the taken count.
  1143     // We inline increment_mdp_data_at to return bumped_count in a register
  1144     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
  1145     Address data(mdp, in_bytes(JumpData::taken_offset()));
  1147     // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
  1148     movl(bumped_count,data);
  1149     assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
  1150     addl(bumped_count, DataLayout::counter_increment);
  1151     sbbl(bumped_count, 0);
  1152     movl(data,bumped_count);    // Store back out
  1154     // The method data pointer needs to be updated to reflect the new target.
  1155     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
  1156     bind (profile_continue);
  1161 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  1162   if (ProfileInterpreter) {
  1163     Label profile_continue;
  1165     // If no method data exists, go to profile_continue.
  1166     test_method_data_pointer(mdp, profile_continue);
  1168     // We are taking a branch.  Increment the not taken count.
  1169     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1171     // The method data pointer needs to be updated to correspond to the next bytecode
  1172     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1173     bind (profile_continue);
  1178 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1179   if (ProfileInterpreter) {
  1180     Label profile_continue;
  1182     // If no method data exists, go to profile_continue.
  1183     test_method_data_pointer(mdp, profile_continue);
  1185     // We are making a call.  Increment the count.
  1186     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1188     // The method data pointer needs to be updated to reflect the new target.
  1189     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1190     bind (profile_continue);
  1195 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1196   if (ProfileInterpreter) {
  1197     Label profile_continue;
  1199     // If no method data exists, go to profile_continue.
  1200     test_method_data_pointer(mdp, profile_continue);
  1202     // We are making a call.  Increment the count.
  1203     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1205     // The method data pointer needs to be updated to reflect the new target.
  1206     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
  1207     bind (profile_continue);
  1212 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp, Register reg2) {
  1213   if (ProfileInterpreter) {
  1214     Label profile_continue;
  1216     // If no method data exists, go to profile_continue.
  1217     test_method_data_pointer(mdp, profile_continue);
  1219     // We are making a call.  Increment the count.
  1220     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1222     // Record the receiver type.
  1223     record_klass_in_profile(receiver, mdp, reg2);
  1225     // The method data pointer needs to be updated to reflect the new target.
  1226     update_mdp_by_constant(mdp,
  1227                            in_bytes(VirtualCallData::
  1228                                     virtual_call_data_size()));
  1229     bind(profile_continue);
  1234 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1235                                         Register receiver, Register mdp,
  1236                                         Register reg2,
  1237                                         int start_row, Label& done) {
  1238   int last_row = VirtualCallData::row_limit() - 1;
  1239   assert(start_row <= last_row, "must be work left to do");
  1240   // Test this row for both the receiver and for null.
  1241   // Take any of three different outcomes:
  1242   //   1. found receiver => increment count and goto done
  1243   //   2. found null => keep looking for case 1, maybe allocate this cell
  1244   //   3. found something else => keep looking for cases 1 and 2
  1245   // Case 3 is handled by a recursive call.
  1246   for (int row = start_row; row <= last_row; row++) {
  1247     Label next_test;
  1248     bool test_for_null_also = (row == start_row);
  1250     // See if the receiver is receiver[n].
  1251     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1252     test_mdp_data_at(mdp, recvr_offset, receiver,
  1253                      (test_for_null_also ? reg2 : noreg),
  1254                      next_test);
  1255     // (Reg2 now contains the receiver from the CallData.)
  1257     // The receiver is receiver[n].  Increment count[n].
  1258     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1259     increment_mdp_data_at(mdp, count_offset);
  1260     jmp(done);
  1261     bind(next_test);
  1263     if (row == start_row) {
  1264       // Failed the equality check on receiver[n]...  Test for null.
  1265       testptr(reg2, reg2);
  1266       if (start_row == last_row) {
  1267         // The only thing left to do is handle the null case.
  1268         jcc(Assembler::notZero, done);
  1269         break;
  1271       // Since null is rare, make it be the branch-taken case.
  1272       Label found_null;
  1273       jcc(Assembler::zero, found_null);
  1275       // Put all the "Case 3" tests here.
  1276       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
  1278       // Found a null.  Keep searching for a matching receiver,
  1279       // but remember that this is an empty (unused) slot.
  1280       bind(found_null);
  1284   // In the fall-through case, we found no matching receiver, but we
  1285   // observed the receiver[start_row] is NULL.
  1287   // Fill in the receiver field and increment the count.
  1288   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1289   set_mdp_data_at(mdp, recvr_offset, receiver);
  1290   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1291   movptr(reg2, (int32_t)DataLayout::counter_increment);
  1292   set_mdp_data_at(mdp, count_offset, reg2);
  1293   jmp(done);
  1296 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1297                                                         Register mdp,
  1298                                                         Register reg2) {
  1299   assert(ProfileInterpreter, "must be profiling");
  1300   Label done;
  1302   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
  1304   bind (done);
  1307 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
  1308   if (ProfileInterpreter) {
  1309     Label profile_continue;
  1310     uint row;
  1312     // If no method data exists, go to profile_continue.
  1313     test_method_data_pointer(mdp, profile_continue);
  1315     // Update the total ret count.
  1316     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1318     for (row = 0; row < RetData::row_limit(); row++) {
  1319       Label next_test;
  1321       // See if return_bci is equal to bci[n]:
  1322       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
  1323                        noreg, next_test);
  1325       // return_bci is equal to bci[n].  Increment the count.
  1326       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1328       // The method data pointer needs to be updated to reflect the new target.
  1329       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
  1330       jmp(profile_continue);
  1331       bind(next_test);
  1334     update_mdp_for_ret(return_bci);
  1336     bind (profile_continue);
  1341 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1342   if (ProfileInterpreter) {
  1343     Label profile_continue;
  1345     // If no method data exists, go to profile_continue.
  1346     test_method_data_pointer(mdp, profile_continue);
  1348     // The method data pointer needs to be updated.
  1349     int mdp_delta = in_bytes(BitData::bit_data_size());
  1350     if (TypeProfileCasts) {
  1351       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1353     update_mdp_by_constant(mdp, mdp_delta);
  1355     bind (profile_continue);
  1360 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1361   if (ProfileInterpreter && TypeProfileCasts) {
  1362     Label profile_continue;
  1364     // If no method data exists, go to profile_continue.
  1365     test_method_data_pointer(mdp, profile_continue);
  1367     int count_offset = in_bytes(CounterData::count_offset());
  1368     // Back up the address, since we have already bumped the mdp.
  1369     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1371     // *Decrement* the counter.  We expect to see zero or small negatives.
  1372     increment_mdp_data_at(mdp, count_offset, true);
  1374     bind (profile_continue);
  1379 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
  1381   if (ProfileInterpreter) {
  1382     Label profile_continue;
  1384     // If no method data exists, go to profile_continue.
  1385     test_method_data_pointer(mdp, profile_continue);
  1387     // The method data pointer needs to be updated.
  1388     int mdp_delta = in_bytes(BitData::bit_data_size());
  1389     if (TypeProfileCasts) {
  1390       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1392       // Record the object type.
  1393       record_klass_in_profile(klass, mdp, reg2);
  1394       assert(reg2 == rdi, "we know how to fix this blown reg");
  1395       restore_locals();         // Restore EDI
  1397     update_mdp_by_constant(mdp, mdp_delta);
  1399     bind(profile_continue);
  1404 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1405   if (ProfileInterpreter) {
  1406     Label profile_continue;
  1408     // If no method data exists, go to profile_continue.
  1409     test_method_data_pointer(mdp, profile_continue);
  1411     // Update the default case count
  1412     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
  1414     // The method data pointer needs to be updated.
  1415     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
  1417     bind (profile_continue);
  1422 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
  1423   if (ProfileInterpreter) {
  1424     Label profile_continue;
  1426     // If no method data exists, go to profile_continue.
  1427     test_method_data_pointer(mdp, profile_continue);
  1429     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1430     movptr(reg2, (int32_t)in_bytes(MultiBranchData::per_case_size()));
  1431     // index is positive and so should have correct value if this code were
  1432     // used on 64bits
  1433     imulptr(index, reg2);
  1434     addptr(index, in_bytes(MultiBranchData::case_array_offset()));
  1436     // Update the case count
  1437     increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
  1439     // The method data pointer needs to be updated.
  1440     update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
  1442     bind (profile_continue);
  1446 #endif // !CC_INTERP
  1450 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1451   if (state == atos) MacroAssembler::verify_oop(reg);
  1455 #ifndef CC_INTERP
  1456 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1457   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  1460 #endif /* CC_INTERP */
  1463 void InterpreterMacroAssembler::notify_method_entry() {
  1464   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1465   // track stack depth.  If it is possible to enter interp_only_mode we add
  1466   // the code to check if the event should be sent.
  1467   if (JvmtiExport::can_post_interpreter_events()) {
  1468     Label L;
  1469     get_thread(rcx);
  1470     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1471     testl(rcx,rcx);
  1472     jcc(Assembler::zero, L);
  1473     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  1474     bind(L);
  1478     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1479     get_thread(rcx);
  1480     get_method(rbx);
  1481     call_VM_leaf(
  1482       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
  1485   // RedefineClasses() tracing support for obsolete method entry
  1486   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1487     get_thread(rcx);
  1488     get_method(rbx);
  1489     call_VM_leaf(
  1490       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1491       rcx, rbx);
  1496 void InterpreterMacroAssembler::notify_method_exit(
  1497     TosState state, NotifyMethodExitMode mode) {
  1498   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1499   // track stack depth.  If it is possible to enter interp_only_mode we add
  1500   // the code to check if the event should be sent.
  1501   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1502     Label L;
  1503     // Note: frame::interpreter_frame_result has a dependency on how the
  1504     // method result is saved across the call to post_method_exit. If this
  1505     // is changed then the interpreter_frame_result implementation will
  1506     // need to be updated too.
  1508     // For c++ interpreter the result is always stored at a known location in the frame
  1509     // template interpreter will leave it on the top of the stack.
  1510     NOT_CC_INTERP(push(state);)
  1511     get_thread(rcx);
  1512     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1513     testl(rcx,rcx);
  1514     jcc(Assembler::zero, L);
  1515     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1516     bind(L);
  1517     NOT_CC_INTERP(pop(state);)
  1521     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1522     NOT_CC_INTERP(push(state));
  1523     get_thread(rbx);
  1524     get_method(rcx);
  1525     call_VM_leaf(
  1526       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1527       rbx, rcx);
  1528     NOT_CC_INTERP(pop(state));

mercurial