src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Thu, 19 Mar 2009 09:13:24 -0700

author
kvn
date
Thu, 19 Mar 2009 09:13:24 -0700
changeset 1082
bd441136a5ce
parent 1063
7bb995fbd3c0
parent 1079
c517646eef23
child 1215
c96bf21b756f
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2000-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
    29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    30 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    31 // fast versions of NegF/NegD and AbsF/AbsD.
    33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    35   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    36   // of 128-bits operands for SSE instructions.
    37   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
    38   // Store the value to a 128-bits operand.
    39   operand[0] = lo;
    40   operand[1] = hi;
    41   return operand;
    42 }
    44 // Buffer for 128-bits masks used by SSE instructions.
    45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    47 // Static initialization during VM startup.
    48 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    50 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    55 NEEDS_CLEANUP // remove this definitions ?
    56 const Register IC_Klass    = rax;   // where the IC klass is cached
    57 const Register SYNC_header = rax;   // synchronization header
    58 const Register SHIFT_count = rcx;   // where count for shift operations must be
    60 #define __ _masm->
    63 static void select_different_registers(Register preserve,
    64                                        Register extra,
    65                                        Register &tmp1,
    66                                        Register &tmp2) {
    67   if (tmp1 == preserve) {
    68     assert_different_registers(tmp1, tmp2, extra);
    69     tmp1 = extra;
    70   } else if (tmp2 == preserve) {
    71     assert_different_registers(tmp1, tmp2, extra);
    72     tmp2 = extra;
    73   }
    74   assert_different_registers(preserve, tmp1, tmp2);
    75 }
    79 static void select_different_registers(Register preserve,
    80                                        Register extra,
    81                                        Register &tmp1,
    82                                        Register &tmp2,
    83                                        Register &tmp3) {
    84   if (tmp1 == preserve) {
    85     assert_different_registers(tmp1, tmp2, tmp3, extra);
    86     tmp1 = extra;
    87   } else if (tmp2 == preserve) {
    88     assert_different_registers(tmp1, tmp2, tmp3, extra);
    89     tmp2 = extra;
    90   } else if (tmp3 == preserve) {
    91     assert_different_registers(tmp1, tmp2, tmp3, extra);
    92     tmp3 = extra;
    93   }
    94   assert_different_registers(preserve, tmp1, tmp2, tmp3);
    95 }
    99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   100   if (opr->is_constant()) {
   101     LIR_Const* constant = opr->as_constant_ptr();
   102     switch (constant->type()) {
   103       case T_INT: {
   104         return true;
   105       }
   107       default:
   108         return false;
   109     }
   110   }
   111   return false;
   112 }
   115 LIR_Opr LIR_Assembler::receiverOpr() {
   116   return FrameMap::receiver_opr;
   117 }
   119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   120   return receiverOpr();
   121 }
   123 LIR_Opr LIR_Assembler::osrBufferPointer() {
   124   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   125 }
   127 //--------------fpu register translations-----------------------
   130 address LIR_Assembler::float_constant(float f) {
   131   address const_addr = __ float_constant(f);
   132   if (const_addr == NULL) {
   133     bailout("const section overflow");
   134     return __ code()->consts()->start();
   135   } else {
   136     return const_addr;
   137   }
   138 }
   141 address LIR_Assembler::double_constant(double d) {
   142   address const_addr = __ double_constant(d);
   143   if (const_addr == NULL) {
   144     bailout("const section overflow");
   145     return __ code()->consts()->start();
   146   } else {
   147     return const_addr;
   148   }
   149 }
   152 void LIR_Assembler::set_24bit_FPU() {
   153   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   154 }
   156 void LIR_Assembler::reset_FPU() {
   157   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   158 }
   160 void LIR_Assembler::fpop() {
   161   __ fpop();
   162 }
   164 void LIR_Assembler::fxch(int i) {
   165   __ fxch(i);
   166 }
   168 void LIR_Assembler::fld(int i) {
   169   __ fld_s(i);
   170 }
   172 void LIR_Assembler::ffree(int i) {
   173   __ ffree(i);
   174 }
   176 void LIR_Assembler::breakpoint() {
   177   __ int3();
   178 }
   180 void LIR_Assembler::push(LIR_Opr opr) {
   181   if (opr->is_single_cpu()) {
   182     __ push_reg(opr->as_register());
   183   } else if (opr->is_double_cpu()) {
   184     NOT_LP64(__ push_reg(opr->as_register_hi()));
   185     __ push_reg(opr->as_register_lo());
   186   } else if (opr->is_stack()) {
   187     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   188   } else if (opr->is_constant()) {
   189     LIR_Const* const_opr = opr->as_constant_ptr();
   190     if (const_opr->type() == T_OBJECT) {
   191       __ push_oop(const_opr->as_jobject());
   192     } else if (const_opr->type() == T_INT) {
   193       __ push_jint(const_opr->as_jint());
   194     } else {
   195       ShouldNotReachHere();
   196     }
   198   } else {
   199     ShouldNotReachHere();
   200   }
   201 }
   203 void LIR_Assembler::pop(LIR_Opr opr) {
   204   if (opr->is_single_cpu()) {
   205     __ pop_reg(opr->as_register());
   206   } else {
   207     ShouldNotReachHere();
   208   }
   209 }
   211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   212   return addr->base()->is_illegal() && addr->index()->is_illegal();
   213 }
   215 //-------------------------------------------
   217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   218   return as_Address(addr, rscratch1);
   219 }
   221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   222   if (addr->base()->is_illegal()) {
   223     assert(addr->index()->is_illegal(), "must be illegal too");
   224     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   225     if (! __ reachable(laddr)) {
   226       __ movptr(tmp, laddr.addr());
   227       Address res(tmp, 0);
   228       return res;
   229     } else {
   230       return __ as_Address(laddr);
   231     }
   232   }
   234   Register base = addr->base()->as_pointer_register();
   236   if (addr->index()->is_illegal()) {
   237     return Address( base, addr->disp());
   238   } else if (addr->index()->is_cpu_register()) {
   239     Register index = addr->index()->as_pointer_register();
   240     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   241   } else if (addr->index()->is_constant()) {
   242     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   243     assert(Assembler::is_simm32(addr_offset), "must be");
   245     return Address(base, addr_offset);
   246   } else {
   247     Unimplemented();
   248     return Address();
   249   }
   250 }
   253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   254   Address base = as_Address(addr);
   255   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   256 }
   259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   260   return as_Address(addr);
   261 }
   264 void LIR_Assembler::osr_entry() {
   265   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   266   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   267   ValueStack* entry_state = osr_entry->state();
   268   int number_of_locks = entry_state->locks_size();
   270   // we jump here if osr happens with the interpreter
   271   // state set up to continue at the beginning of the
   272   // loop that triggered osr - in particular, we have
   273   // the following registers setup:
   274   //
   275   // rcx: osr buffer
   276   //
   278   // build frame
   279   ciMethod* m = compilation()->method();
   280   __ build_frame(initial_frame_size_in_bytes());
   282   // OSR buffer is
   283   //
   284   // locals[nlocals-1..0]
   285   // monitors[0..number_of_locks]
   286   //
   287   // locals is a direct copy of the interpreter frame so in the osr buffer
   288   // so first slot in the local array is the last local from the interpreter
   289   // and last slot is local[0] (receiver) from the interpreter
   290   //
   291   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   292   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   293   // in the interpreter frame (the method lock if a sync method)
   295   // Initialize monitors in the compiled activation.
   296   //   rcx: pointer to osr buffer
   297   //
   298   // All other registers are dead at this point and the locals will be
   299   // copied into place by code emitted in the IR.
   301   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   302   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   303     int monitor_offset = BytesPerWord * method()->max_locals() +
   304       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
   305     for (int i = 0; i < number_of_locks; i++) {
   306       int slot_offset = monitor_offset - ((i * BasicObjectLock::size()) * BytesPerWord);
   307 #ifdef ASSERT
   308       // verify the interpreter's monitor has a non-null object
   309       {
   310         Label L;
   311         __ cmpptr(Address(OSR_buf, slot_offset + BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
   312         __ jcc(Assembler::notZero, L);
   313         __ stop("locked object is NULL");
   314         __ bind(L);
   315       }
   316 #endif
   317       __ movptr(rbx, Address(OSR_buf, slot_offset + BasicObjectLock::lock_offset_in_bytes()));
   318       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   319       __ movptr(rbx, Address(OSR_buf, slot_offset + BasicObjectLock::obj_offset_in_bytes()));
   320       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   321     }
   322   }
   323 }
   326 // inline cache check; done before the frame is built.
   327 int LIR_Assembler::check_icache() {
   328   Register receiver = FrameMap::receiver_opr->as_register();
   329   Register ic_klass = IC_Klass;
   330   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   332   if (!VerifyOops) {
   333     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   334     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   335       __ nop();
   336     }
   337   }
   338   int offset = __ offset();
   339   __ inline_cache_check(receiver, IC_Klass);
   340   assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
   341   if (VerifyOops) {
   342     // force alignment after the cache check.
   343     // It's been verified to be aligned if !VerifyOops
   344     __ align(CodeEntryAlignment);
   345   }
   346   return offset;
   347 }
   350 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   351   jobject o = NULL;
   352   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   353   __ movoop(reg, o);
   354   patching_epilog(patch, lir_patch_normal, reg, info);
   355 }
   358 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
   359   if (exception->is_valid()) {
   360     // preserve exception
   361     // note: the monitor_exit runtime call is a leaf routine
   362     //       and cannot block => no GC can happen
   363     // The slow case (MonitorAccessStub) uses the first two stack slots
   364     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
   365     __ movptr (Address(rsp, 2*wordSize), exception);
   366   }
   368   Register obj_reg  = obj_opr->as_register();
   369   Register lock_reg = lock_opr->as_register();
   371   // setup registers (lock_reg must be rax, for lock_object)
   372   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
   373   Register hdr = lock_reg;
   374   assert(new_hdr == SYNC_header, "wrong register");
   375   lock_reg = new_hdr;
   376   // compute pointer to BasicLock
   377   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
   378   __ lea(lock_reg, lock_addr);
   379   // unlock object
   380   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
   381   // _slow_case_stubs->append(slow_case);
   382   // temporary fix: must be created after exceptionhandler, therefore as call stub
   383   _slow_case_stubs->append(slow_case);
   384   if (UseFastLocking) {
   385     // try inlined fast unlocking first, revert to slow locking if it fails
   386     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   387     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   388     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   389   } else {
   390     // always do slow unlocking
   391     // note: the slow unlocking code could be inlined here, however if we use
   392     //       slow unlocking, speed doesn't matter anyway and this solution is
   393     //       simpler and requires less duplicated code - additionally, the
   394     //       slow unlocking code is the same in either case which simplifies
   395     //       debugging
   396     __ jmp(*slow_case->entry());
   397   }
   398   // done
   399   __ bind(*slow_case->continuation());
   401   if (exception->is_valid()) {
   402     // restore exception
   403     __ movptr (exception, Address(rsp, 2 * wordSize));
   404   }
   405 }
   407 // This specifies the rsp decrement needed to build the frame
   408 int LIR_Assembler::initial_frame_size_in_bytes() {
   409   // if rounding, must let FrameMap know!
   411   // The frame_map records size in slots (32bit word)
   413   // subtract two words to account for return address and link
   414   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   415 }
   418 void LIR_Assembler::emit_exception_handler() {
   419   // if the last instruction is a call (typically to do a throw which
   420   // is coming at the end after block reordering) the return address
   421   // must still point into the code area in order to avoid assertion
   422   // failures when searching for the corresponding bci => add a nop
   423   // (was bug 5/14/1999 - gri)
   425   __ nop();
   427   // generate code for exception handler
   428   address handler_base = __ start_a_stub(exception_handler_size);
   429   if (handler_base == NULL) {
   430     // not enough space left for the handler
   431     bailout("exception handler overflow");
   432     return;
   433   }
   434 #ifdef ASSERT
   435   int offset = code_offset();
   436 #endif // ASSERT
   438   compilation()->offsets()->set_value(CodeOffsets::Exceptions, code_offset());
   440   // if the method does not have an exception handler, then there is
   441   // no reason to search for one
   442   if (compilation()->has_exception_handlers() || JvmtiExport::can_post_exceptions()) {
   443     // the exception oop and pc are in rax, and rdx
   444     // no other registers need to be preserved, so invalidate them
   445     __ invalidate_registers(false, true, true, false, true, true);
   447     // check that there is really an exception
   448     __ verify_not_null_oop(rax);
   450     // search an exception handler (rax: exception oop, rdx: throwing pc)
   451     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
   453     // if the call returns here, then the exception handler for particular
   454     // exception doesn't exist -> unwind activation and forward exception to caller
   455   }
   457   // the exception oop is in rax,
   458   // no other registers need to be preserved, so invalidate them
   459   __ invalidate_registers(false, true, true, true, true, true);
   461   // check that there is really an exception
   462   __ verify_not_null_oop(rax);
   464   // unlock the receiver/klass if necessary
   465   // rax,: exception
   466   ciMethod* method = compilation()->method();
   467   if (method->is_synchronized() && GenerateSynchronizationCode) {
   468     monitorexit(FrameMap::rbx_oop_opr, FrameMap::rcx_opr, SYNC_header, 0, rax);
   469   }
   471   // unwind activation and forward exception to caller
   472   // rax,: exception
   473   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   475   assert(code_offset() - offset <= exception_handler_size, "overflow");
   477   __ end_a_stub();
   478 }
   480 void LIR_Assembler::emit_deopt_handler() {
   481   // if the last instruction is a call (typically to do a throw which
   482   // is coming at the end after block reordering) the return address
   483   // must still point into the code area in order to avoid assertion
   484   // failures when searching for the corresponding bci => add a nop
   485   // (was bug 5/14/1999 - gri)
   487   __ nop();
   489   // generate code for exception handler
   490   address handler_base = __ start_a_stub(deopt_handler_size);
   491   if (handler_base == NULL) {
   492     // not enough space left for the handler
   493     bailout("deopt handler overflow");
   494     return;
   495   }
   496 #ifdef ASSERT
   497   int offset = code_offset();
   498 #endif // ASSERT
   500   compilation()->offsets()->set_value(CodeOffsets::Deopt, code_offset());
   502   InternalAddress here(__ pc());
   503   __ pushptr(here.addr());
   505   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   507   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   509   __ end_a_stub();
   511 }
   514 // This is the fast version of java.lang.String.compare; it has not
   515 // OSR-entry and therefore, we generate a slow version for OSR's
   516 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   517   __ movptr (rbx, rcx); // receiver is in rcx
   518   __ movptr (rax, arg1->as_register());
   520   // Get addresses of first characters from both Strings
   521   __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   522   __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   523   __ lea    (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   526   // rbx, may be NULL
   527   add_debug_info_for_null_check_here(info);
   528   __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   529   __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   530   __ lea    (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   532   // compute minimum length (in rax) and difference of lengths (on top of stack)
   533   if (VM_Version::supports_cmov()) {
   534     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   535     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   536     __ mov      (rcx, rbx);
   537     __ subptr   (rbx, rax); // subtract lengths
   538     __ push     (rbx);      // result
   539     __ cmov     (Assembler::lessEqual, rax, rcx);
   540   } else {
   541     Label L;
   542     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   543     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
   544     __ mov      (rax, rbx);
   545     __ subptr   (rbx, rcx);
   546     __ push     (rbx);
   547     __ jcc      (Assembler::lessEqual, L);
   548     __ mov      (rax, rcx);
   549     __ bind (L);
   550   }
   551   // is minimum length 0?
   552   Label noLoop, haveResult;
   553   __ testptr (rax, rax);
   554   __ jcc (Assembler::zero, noLoop);
   556   // compare first characters
   557   __ load_unsigned_short(rcx, Address(rdi, 0));
   558   __ load_unsigned_short(rbx, Address(rsi, 0));
   559   __ subl(rcx, rbx);
   560   __ jcc(Assembler::notZero, haveResult);
   561   // starting loop
   562   __ decrement(rax); // we already tested index: skip one
   563   __ jcc(Assembler::zero, noLoop);
   565   // set rsi.edi to the end of the arrays (arrays have same length)
   566   // negate the index
   568   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   569   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   570   __ negptr(rax);
   572   // compare the strings in a loop
   574   Label loop;
   575   __ align(wordSize);
   576   __ bind(loop);
   577   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   578   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   579   __ subl(rcx, rbx);
   580   __ jcc(Assembler::notZero, haveResult);
   581   __ increment(rax);
   582   __ jcc(Assembler::notZero, loop);
   584   // strings are equal up to min length
   586   __ bind(noLoop);
   587   __ pop(rax);
   588   return_op(LIR_OprFact::illegalOpr);
   590   __ bind(haveResult);
   591   // leave instruction is going to discard the TOS value
   592   __ mov (rax, rcx); // result of call is in rax,
   593 }
   596 void LIR_Assembler::return_op(LIR_Opr result) {
   597   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   598   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   599     assert(result->fpu() == 0, "result must already be on TOS");
   600   }
   602   // Pop the stack before the safepoint code
   603   __ leave();
   605   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   607   // Note: we do not need to round double result; float result has the right precision
   608   // the poll sets the condition code, but no data registers
   609   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   610                               relocInfo::poll_return_type);
   612   // NOTE: the requires that the polling page be reachable else the reloc
   613   // goes to the movq that loads the address and not the faulting instruction
   614   // which breaks the signal handler code
   616   __ test32(rax, polling_page);
   618   __ ret(0);
   619 }
   622 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   623   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   624                               relocInfo::poll_type);
   626   if (info != NULL) {
   627     add_debug_info_for_branch(info);
   628   } else {
   629     ShouldNotReachHere();
   630   }
   632   int offset = __ offset();
   634   // NOTE: the requires that the polling page be reachable else the reloc
   635   // goes to the movq that loads the address and not the faulting instruction
   636   // which breaks the signal handler code
   638   __ test32(rax, polling_page);
   639   return offset;
   640 }
   643 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   644   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   645 }
   647 void LIR_Assembler::swap_reg(Register a, Register b) {
   648   __ xchgptr(a, b);
   649 }
   652 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   653   assert(src->is_constant(), "should not call otherwise");
   654   assert(dest->is_register(), "should not call otherwise");
   655   LIR_Const* c = src->as_constant_ptr();
   657   switch (c->type()) {
   658     case T_INT: {
   659       assert(patch_code == lir_patch_none, "no patching handled here");
   660       __ movl(dest->as_register(), c->as_jint());
   661       break;
   662     }
   664     case T_LONG: {
   665       assert(patch_code == lir_patch_none, "no patching handled here");
   666 #ifdef _LP64
   667       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   668 #else
   669       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   670       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   671 #endif // _LP64
   672       break;
   673     }
   675     case T_OBJECT: {
   676       if (patch_code != lir_patch_none) {
   677         jobject2reg_with_patching(dest->as_register(), info);
   678       } else {
   679         __ movoop(dest->as_register(), c->as_jobject());
   680       }
   681       break;
   682     }
   684     case T_FLOAT: {
   685       if (dest->is_single_xmm()) {
   686         if (c->is_zero_float()) {
   687           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   688         } else {
   689           __ movflt(dest->as_xmm_float_reg(),
   690                    InternalAddress(float_constant(c->as_jfloat())));
   691         }
   692       } else {
   693         assert(dest->is_single_fpu(), "must be");
   694         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   695         if (c->is_zero_float()) {
   696           __ fldz();
   697         } else if (c->is_one_float()) {
   698           __ fld1();
   699         } else {
   700           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   701         }
   702       }
   703       break;
   704     }
   706     case T_DOUBLE: {
   707       if (dest->is_double_xmm()) {
   708         if (c->is_zero_double()) {
   709           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   710         } else {
   711           __ movdbl(dest->as_xmm_double_reg(),
   712                     InternalAddress(double_constant(c->as_jdouble())));
   713         }
   714       } else {
   715         assert(dest->is_double_fpu(), "must be");
   716         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   717         if (c->is_zero_double()) {
   718           __ fldz();
   719         } else if (c->is_one_double()) {
   720           __ fld1();
   721         } else {
   722           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   723         }
   724       }
   725       break;
   726     }
   728     default:
   729       ShouldNotReachHere();
   730   }
   731 }
   733 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   734   assert(src->is_constant(), "should not call otherwise");
   735   assert(dest->is_stack(), "should not call otherwise");
   736   LIR_Const* c = src->as_constant_ptr();
   738   switch (c->type()) {
   739     case T_INT:  // fall through
   740     case T_FLOAT:
   741       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   742       break;
   744     case T_OBJECT:
   745       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   746       break;
   748     case T_LONG:  // fall through
   749     case T_DOUBLE:
   750 #ifdef _LP64
   751       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   752                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   753 #else
   754       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   755                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   756       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   757                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   758 #endif // _LP64
   759       break;
   761     default:
   762       ShouldNotReachHere();
   763   }
   764 }
   766 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
   767   assert(src->is_constant(), "should not call otherwise");
   768   assert(dest->is_address(), "should not call otherwise");
   769   LIR_Const* c = src->as_constant_ptr();
   770   LIR_Address* addr = dest->as_address_ptr();
   772   int null_check_here = code_offset();
   773   switch (type) {
   774     case T_INT:    // fall through
   775     case T_FLOAT:
   776       __ movl(as_Address(addr), c->as_jint_bits());
   777       break;
   779     case T_OBJECT:  // fall through
   780     case T_ARRAY:
   781       if (c->as_jobject() == NULL) {
   782         __ movptr(as_Address(addr), NULL_WORD);
   783       } else {
   784         if (is_literal_address(addr)) {
   785           ShouldNotReachHere();
   786           __ movoop(as_Address(addr, noreg), c->as_jobject());
   787         } else {
   788           __ movoop(as_Address(addr), c->as_jobject());
   789         }
   790       }
   791       break;
   793     case T_LONG:    // fall through
   794     case T_DOUBLE:
   795 #ifdef _LP64
   796       if (is_literal_address(addr)) {
   797         ShouldNotReachHere();
   798         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   799       } else {
   800         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   801         null_check_here = code_offset();
   802         __ movptr(as_Address_lo(addr), r10);
   803       }
   804 #else
   805       // Always reachable in 32bit so this doesn't produce useless move literal
   806       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   807       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   808 #endif // _LP64
   809       break;
   811     case T_BOOLEAN: // fall through
   812     case T_BYTE:
   813       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   814       break;
   816     case T_CHAR:    // fall through
   817     case T_SHORT:
   818       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   819       break;
   821     default:
   822       ShouldNotReachHere();
   823   };
   825   if (info != NULL) {
   826     add_debug_info_for_null_check(null_check_here, info);
   827   }
   828 }
   831 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   832   assert(src->is_register(), "should not call otherwise");
   833   assert(dest->is_register(), "should not call otherwise");
   835   // move between cpu-registers
   836   if (dest->is_single_cpu()) {
   837 #ifdef _LP64
   838     if (src->type() == T_LONG) {
   839       // Can do LONG -> OBJECT
   840       move_regs(src->as_register_lo(), dest->as_register());
   841       return;
   842     }
   843 #endif
   844     assert(src->is_single_cpu(), "must match");
   845     if (src->type() == T_OBJECT) {
   846       __ verify_oop(src->as_register());
   847     }
   848     move_regs(src->as_register(), dest->as_register());
   850   } else if (dest->is_double_cpu()) {
   851 #ifdef _LP64
   852     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   853       // Surprising to me but we can see move of a long to t_object
   854       __ verify_oop(src->as_register());
   855       move_regs(src->as_register(), dest->as_register_lo());
   856       return;
   857     }
   858 #endif
   859     assert(src->is_double_cpu(), "must match");
   860     Register f_lo = src->as_register_lo();
   861     Register f_hi = src->as_register_hi();
   862     Register t_lo = dest->as_register_lo();
   863     Register t_hi = dest->as_register_hi();
   864 #ifdef _LP64
   865     assert(f_hi == f_lo, "must be same");
   866     assert(t_hi == t_lo, "must be same");
   867     move_regs(f_lo, t_lo);
   868 #else
   869     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   872     if (f_lo == t_hi && f_hi == t_lo) {
   873       swap_reg(f_lo, f_hi);
   874     } else if (f_hi == t_lo) {
   875       assert(f_lo != t_hi, "overwriting register");
   876       move_regs(f_hi, t_hi);
   877       move_regs(f_lo, t_lo);
   878     } else {
   879       assert(f_hi != t_lo, "overwriting register");
   880       move_regs(f_lo, t_lo);
   881       move_regs(f_hi, t_hi);
   882     }
   883 #endif // LP64
   885     // special moves from fpu-register to xmm-register
   886     // necessary for method results
   887   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   888     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   889     __ fld_s(Address(rsp, 0));
   890   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   891     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   892     __ fld_d(Address(rsp, 0));
   893   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   894     __ fstp_s(Address(rsp, 0));
   895     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   896   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   897     __ fstp_d(Address(rsp, 0));
   898     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   900     // move between xmm-registers
   901   } else if (dest->is_single_xmm()) {
   902     assert(src->is_single_xmm(), "must match");
   903     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   904   } else if (dest->is_double_xmm()) {
   905     assert(src->is_double_xmm(), "must match");
   906     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   908     // move between fpu-registers (no instruction necessary because of fpu-stack)
   909   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   910     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   911     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   912   } else {
   913     ShouldNotReachHere();
   914   }
   915 }
   917 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   918   assert(src->is_register(), "should not call otherwise");
   919   assert(dest->is_stack(), "should not call otherwise");
   921   if (src->is_single_cpu()) {
   922     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   923     if (type == T_OBJECT || type == T_ARRAY) {
   924       __ verify_oop(src->as_register());
   925       __ movptr (dst, src->as_register());
   926     } else {
   927       __ movl (dst, src->as_register());
   928     }
   930   } else if (src->is_double_cpu()) {
   931     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   932     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   933     __ movptr (dstLO, src->as_register_lo());
   934     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   936   } else if (src->is_single_xmm()) {
   937     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   938     __ movflt(dst_addr, src->as_xmm_float_reg());
   940   } else if (src->is_double_xmm()) {
   941     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   942     __ movdbl(dst_addr, src->as_xmm_double_reg());
   944   } else if (src->is_single_fpu()) {
   945     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   946     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   947     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   948     else                   __ fst_s  (dst_addr);
   950   } else if (src->is_double_fpu()) {
   951     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   952     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   953     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   954     else                   __ fst_d  (dst_addr);
   956   } else {
   957     ShouldNotReachHere();
   958   }
   959 }
   962 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
   963   LIR_Address* to_addr = dest->as_address_ptr();
   964   PatchingStub* patch = NULL;
   966   if (type == T_ARRAY || type == T_OBJECT) {
   967     __ verify_oop(src->as_register());
   968   }
   969   if (patch_code != lir_patch_none) {
   970     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
   971     Address toa = as_Address(to_addr);
   972     assert(toa.disp() != 0, "must have");
   973   }
   974   if (info != NULL) {
   975     add_debug_info_for_null_check_here(info);
   976   }
   978   switch (type) {
   979     case T_FLOAT: {
   980       if (src->is_single_xmm()) {
   981         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
   982       } else {
   983         assert(src->is_single_fpu(), "must be");
   984         assert(src->fpu_regnr() == 0, "argument must be on TOS");
   985         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
   986         else                    __ fst_s (as_Address(to_addr));
   987       }
   988       break;
   989     }
   991     case T_DOUBLE: {
   992       if (src->is_double_xmm()) {
   993         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
   994       } else {
   995         assert(src->is_double_fpu(), "must be");
   996         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   997         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
   998         else                    __ fst_d (as_Address(to_addr));
   999       }
  1000       break;
  1003     case T_ADDRESS: // fall through
  1004     case T_ARRAY:   // fall through
  1005     case T_OBJECT:  // fall through
  1006 #ifdef _LP64
  1007       __ movptr(as_Address(to_addr), src->as_register());
  1008       break;
  1009 #endif // _LP64
  1010     case T_INT:
  1011       __ movl(as_Address(to_addr), src->as_register());
  1012       break;
  1014     case T_LONG: {
  1015       Register from_lo = src->as_register_lo();
  1016       Register from_hi = src->as_register_hi();
  1017 #ifdef _LP64
  1018       __ movptr(as_Address_lo(to_addr), from_lo);
  1019 #else
  1020       Register base = to_addr->base()->as_register();
  1021       Register index = noreg;
  1022       if (to_addr->index()->is_register()) {
  1023         index = to_addr->index()->as_register();
  1025       if (base == from_lo || index == from_lo) {
  1026         assert(base != from_hi, "can't be");
  1027         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1028         __ movl(as_Address_hi(to_addr), from_hi);
  1029         if (patch != NULL) {
  1030           patching_epilog(patch, lir_patch_high, base, info);
  1031           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1032           patch_code = lir_patch_low;
  1034         __ movl(as_Address_lo(to_addr), from_lo);
  1035       } else {
  1036         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1037         __ movl(as_Address_lo(to_addr), from_lo);
  1038         if (patch != NULL) {
  1039           patching_epilog(patch, lir_patch_low, base, info);
  1040           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1041           patch_code = lir_patch_high;
  1043         __ movl(as_Address_hi(to_addr), from_hi);
  1045 #endif // _LP64
  1046       break;
  1049     case T_BYTE:    // fall through
  1050     case T_BOOLEAN: {
  1051       Register src_reg = src->as_register();
  1052       Address dst_addr = as_Address(to_addr);
  1053       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1054       __ movb(dst_addr, src_reg);
  1055       break;
  1058     case T_CHAR:    // fall through
  1059     case T_SHORT:
  1060       __ movw(as_Address(to_addr), src->as_register());
  1061       break;
  1063     default:
  1064       ShouldNotReachHere();
  1067   if (patch_code != lir_patch_none) {
  1068     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1073 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1074   assert(src->is_stack(), "should not call otherwise");
  1075   assert(dest->is_register(), "should not call otherwise");
  1077   if (dest->is_single_cpu()) {
  1078     if (type == T_ARRAY || type == T_OBJECT) {
  1079       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1080       __ verify_oop(dest->as_register());
  1081     } else {
  1082       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1085   } else if (dest->is_double_cpu()) {
  1086     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1087     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1088     __ movptr(dest->as_register_lo(), src_addr_LO);
  1089     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1091   } else if (dest->is_single_xmm()) {
  1092     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1093     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1095   } else if (dest->is_double_xmm()) {
  1096     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1097     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1099   } else if (dest->is_single_fpu()) {
  1100     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1101     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1102     __ fld_s(src_addr);
  1104   } else if (dest->is_double_fpu()) {
  1105     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1106     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1107     __ fld_d(src_addr);
  1109   } else {
  1110     ShouldNotReachHere();
  1115 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1116   if (src->is_single_stack()) {
  1117     if (type == T_OBJECT || type == T_ARRAY) {
  1118       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1119       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1120     } else {
  1121       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1122       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1125   } else if (src->is_double_stack()) {
  1126 #ifdef _LP64
  1127     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1128     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1129 #else
  1130     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1131     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1132     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1133     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1134     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1135 #endif // _LP64
  1137   } else {
  1138     ShouldNotReachHere();
  1143 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
  1144   assert(src->is_address(), "should not call otherwise");
  1145   assert(dest->is_register(), "should not call otherwise");
  1147   LIR_Address* addr = src->as_address_ptr();
  1148   Address from_addr = as_Address(addr);
  1150   switch (type) {
  1151     case T_BOOLEAN: // fall through
  1152     case T_BYTE:    // fall through
  1153     case T_CHAR:    // fall through
  1154     case T_SHORT:
  1155       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1156         // on pre P6 processors we may get partial register stalls
  1157         // so blow away the value of to_rinfo before loading a
  1158         // partial word into it.  Do it here so that it precedes
  1159         // the potential patch point below.
  1160         __ xorptr(dest->as_register(), dest->as_register());
  1162       break;
  1165   PatchingStub* patch = NULL;
  1166   if (patch_code != lir_patch_none) {
  1167     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1168     assert(from_addr.disp() != 0, "must have");
  1170   if (info != NULL) {
  1171     add_debug_info_for_null_check_here(info);
  1174   switch (type) {
  1175     case T_FLOAT: {
  1176       if (dest->is_single_xmm()) {
  1177         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1178       } else {
  1179         assert(dest->is_single_fpu(), "must be");
  1180         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1181         __ fld_s(from_addr);
  1183       break;
  1186     case T_DOUBLE: {
  1187       if (dest->is_double_xmm()) {
  1188         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1189       } else {
  1190         assert(dest->is_double_fpu(), "must be");
  1191         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1192         __ fld_d(from_addr);
  1194       break;
  1197     case T_ADDRESS: // fall through
  1198     case T_OBJECT:  // fall through
  1199     case T_ARRAY:   // fall through
  1200 #ifdef _LP64
  1201       __ movptr(dest->as_register(), from_addr);
  1202       break;
  1203 #endif // _L64
  1204     case T_INT:
  1205       // %%% could this be a movl? this is safer but longer instruction
  1206       __ movl2ptr(dest->as_register(), from_addr);
  1207       break;
  1209     case T_LONG: {
  1210       Register to_lo = dest->as_register_lo();
  1211       Register to_hi = dest->as_register_hi();
  1212 #ifdef _LP64
  1213       __ movptr(to_lo, as_Address_lo(addr));
  1214 #else
  1215       Register base = addr->base()->as_register();
  1216       Register index = noreg;
  1217       if (addr->index()->is_register()) {
  1218         index = addr->index()->as_register();
  1220       if ((base == to_lo && index == to_hi) ||
  1221           (base == to_hi && index == to_lo)) {
  1222         // addresses with 2 registers are only formed as a result of
  1223         // array access so this code will never have to deal with
  1224         // patches or null checks.
  1225         assert(info == NULL && patch == NULL, "must be");
  1226         __ lea(to_hi, as_Address(addr));
  1227         __ movl(to_lo, Address(to_hi, 0));
  1228         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1229       } else if (base == to_lo || index == to_lo) {
  1230         assert(base != to_hi, "can't be");
  1231         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1232         __ movl(to_hi, as_Address_hi(addr));
  1233         if (patch != NULL) {
  1234           patching_epilog(patch, lir_patch_high, base, info);
  1235           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1236           patch_code = lir_patch_low;
  1238         __ movl(to_lo, as_Address_lo(addr));
  1239       } else {
  1240         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1241         __ movl(to_lo, as_Address_lo(addr));
  1242         if (patch != NULL) {
  1243           patching_epilog(patch, lir_patch_low, base, info);
  1244           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1245           patch_code = lir_patch_high;
  1247         __ movl(to_hi, as_Address_hi(addr));
  1249 #endif // _LP64
  1250       break;
  1253     case T_BOOLEAN: // fall through
  1254     case T_BYTE: {
  1255       Register dest_reg = dest->as_register();
  1256       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1257       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1258         __ movsbl(dest_reg, from_addr);
  1259       } else {
  1260         __ movb(dest_reg, from_addr);
  1261         __ shll(dest_reg, 24);
  1262         __ sarl(dest_reg, 24);
  1264       // These are unsigned so the zero extension on 64bit is just what we need
  1265       break;
  1268     case T_CHAR: {
  1269       Register dest_reg = dest->as_register();
  1270       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1271       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1272         __ movzwl(dest_reg, from_addr);
  1273       } else {
  1274         __ movw(dest_reg, from_addr);
  1276       // This is unsigned so the zero extension on 64bit is just what we need
  1277       // __ movl2ptr(dest_reg, dest_reg);
  1278       break;
  1281     case T_SHORT: {
  1282       Register dest_reg = dest->as_register();
  1283       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1284         __ movswl(dest_reg, from_addr);
  1285       } else {
  1286         __ movw(dest_reg, from_addr);
  1287         __ shll(dest_reg, 16);
  1288         __ sarl(dest_reg, 16);
  1290       // Might not be needed in 64bit but certainly doesn't hurt (except for code size)
  1291       __ movl2ptr(dest_reg, dest_reg);
  1292       break;
  1295     default:
  1296       ShouldNotReachHere();
  1299   if (patch != NULL) {
  1300     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1303   if (type == T_ARRAY || type == T_OBJECT) {
  1304     __ verify_oop(dest->as_register());
  1309 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1310   LIR_Address* addr = src->as_address_ptr();
  1311   Address from_addr = as_Address(addr);
  1313   if (VM_Version::supports_sse()) {
  1314     switch (ReadPrefetchInstr) {
  1315       case 0:
  1316         __ prefetchnta(from_addr); break;
  1317       case 1:
  1318         __ prefetcht0(from_addr); break;
  1319       case 2:
  1320         __ prefetcht2(from_addr); break;
  1321       default:
  1322         ShouldNotReachHere(); break;
  1324   } else if (VM_Version::supports_3dnow()) {
  1325     __ prefetchr(from_addr);
  1330 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1331   LIR_Address* addr = src->as_address_ptr();
  1332   Address from_addr = as_Address(addr);
  1334   if (VM_Version::supports_sse()) {
  1335     switch (AllocatePrefetchInstr) {
  1336       case 0:
  1337         __ prefetchnta(from_addr); break;
  1338       case 1:
  1339         __ prefetcht0(from_addr); break;
  1340       case 2:
  1341         __ prefetcht2(from_addr); break;
  1342       case 3:
  1343         __ prefetchw(from_addr); break;
  1344       default:
  1345         ShouldNotReachHere(); break;
  1347   } else if (VM_Version::supports_3dnow()) {
  1348     __ prefetchw(from_addr);
  1353 NEEDS_CLEANUP; // This could be static?
  1354 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1355   int elem_size = type2aelembytes(type);
  1356   switch (elem_size) {
  1357     case 1: return Address::times_1;
  1358     case 2: return Address::times_2;
  1359     case 4: return Address::times_4;
  1360     case 8: return Address::times_8;
  1362   ShouldNotReachHere();
  1363   return Address::no_scale;
  1367 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1368   switch (op->code()) {
  1369     case lir_idiv:
  1370     case lir_irem:
  1371       arithmetic_idiv(op->code(),
  1372                       op->in_opr1(),
  1373                       op->in_opr2(),
  1374                       op->in_opr3(),
  1375                       op->result_opr(),
  1376                       op->info());
  1377       break;
  1378     default:      ShouldNotReachHere(); break;
  1382 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1383 #ifdef ASSERT
  1384   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1385   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1386   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1387 #endif
  1389   if (op->cond() == lir_cond_always) {
  1390     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1391     __ jmp (*(op->label()));
  1392   } else {
  1393     Assembler::Condition acond = Assembler::zero;
  1394     if (op->code() == lir_cond_float_branch) {
  1395       assert(op->ublock() != NULL, "must have unordered successor");
  1396       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1397       switch(op->cond()) {
  1398         case lir_cond_equal:        acond = Assembler::equal;      break;
  1399         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1400         case lir_cond_less:         acond = Assembler::below;      break;
  1401         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1402         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1403         case lir_cond_greater:      acond = Assembler::above;      break;
  1404         default:                         ShouldNotReachHere();
  1406     } else {
  1407       switch (op->cond()) {
  1408         case lir_cond_equal:        acond = Assembler::equal;       break;
  1409         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1410         case lir_cond_less:         acond = Assembler::less;        break;
  1411         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1412         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1413         case lir_cond_greater:      acond = Assembler::greater;     break;
  1414         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1415         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1416         default:                         ShouldNotReachHere();
  1419     __ jcc(acond,*(op->label()));
  1423 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1424   LIR_Opr src  = op->in_opr();
  1425   LIR_Opr dest = op->result_opr();
  1427   switch (op->bytecode()) {
  1428     case Bytecodes::_i2l:
  1429 #ifdef _LP64
  1430       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1431 #else
  1432       move_regs(src->as_register(), dest->as_register_lo());
  1433       move_regs(src->as_register(), dest->as_register_hi());
  1434       __ sarl(dest->as_register_hi(), 31);
  1435 #endif // LP64
  1436       break;
  1438     case Bytecodes::_l2i:
  1439       move_regs(src->as_register_lo(), dest->as_register());
  1440       break;
  1442     case Bytecodes::_i2b:
  1443       move_regs(src->as_register(), dest->as_register());
  1444       __ sign_extend_byte(dest->as_register());
  1445       break;
  1447     case Bytecodes::_i2c:
  1448       move_regs(src->as_register(), dest->as_register());
  1449       __ andl(dest->as_register(), 0xFFFF);
  1450       break;
  1452     case Bytecodes::_i2s:
  1453       move_regs(src->as_register(), dest->as_register());
  1454       __ sign_extend_short(dest->as_register());
  1455       break;
  1458     case Bytecodes::_f2d:
  1459     case Bytecodes::_d2f:
  1460       if (dest->is_single_xmm()) {
  1461         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1462       } else if (dest->is_double_xmm()) {
  1463         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1464       } else {
  1465         assert(src->fpu() == dest->fpu(), "register must be equal");
  1466         // do nothing (float result is rounded later through spilling)
  1468       break;
  1470     case Bytecodes::_i2f:
  1471     case Bytecodes::_i2d:
  1472       if (dest->is_single_xmm()) {
  1473         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1474       } else if (dest->is_double_xmm()) {
  1475         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1476       } else {
  1477         assert(dest->fpu() == 0, "result must be on TOS");
  1478         __ movl(Address(rsp, 0), src->as_register());
  1479         __ fild_s(Address(rsp, 0));
  1481       break;
  1483     case Bytecodes::_f2i:
  1484     case Bytecodes::_d2i:
  1485       if (src->is_single_xmm()) {
  1486         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1487       } else if (src->is_double_xmm()) {
  1488         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1489       } else {
  1490         assert(src->fpu() == 0, "input must be on TOS");
  1491         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1492         __ fist_s(Address(rsp, 0));
  1493         __ movl(dest->as_register(), Address(rsp, 0));
  1494         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1497       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1498       assert(op->stub() != NULL, "stub required");
  1499       __ cmpl(dest->as_register(), 0x80000000);
  1500       __ jcc(Assembler::equal, *op->stub()->entry());
  1501       __ bind(*op->stub()->continuation());
  1502       break;
  1504     case Bytecodes::_l2f:
  1505     case Bytecodes::_l2d:
  1506       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1507       assert(dest->fpu() == 0, "result must be on TOS");
  1509       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1510       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1511       __ fild_d(Address(rsp, 0));
  1512       // float result is rounded later through spilling
  1513       break;
  1515     case Bytecodes::_f2l:
  1516     case Bytecodes::_d2l:
  1517       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1518       assert(src->fpu() == 0, "input must be on TOS");
  1519       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1521       // instruction sequence too long to inline it here
  1523         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1525       break;
  1527     default: ShouldNotReachHere();
  1531 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1532   if (op->init_check()) {
  1533     __ cmpl(Address(op->klass()->as_register(),
  1534                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
  1535             instanceKlass::fully_initialized);
  1536     add_debug_info_for_null_check_here(op->stub()->info());
  1537     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1539   __ allocate_object(op->obj()->as_register(),
  1540                      op->tmp1()->as_register(),
  1541                      op->tmp2()->as_register(),
  1542                      op->header_size(),
  1543                      op->object_size(),
  1544                      op->klass()->as_register(),
  1545                      *op->stub()->entry());
  1546   __ bind(*op->stub()->continuation());
  1549 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1550   if (UseSlowPath ||
  1551       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1552       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1553     __ jmp(*op->stub()->entry());
  1554   } else {
  1555     Register len =  op->len()->as_register();
  1556     Register tmp1 = op->tmp1()->as_register();
  1557     Register tmp2 = op->tmp2()->as_register();
  1558     Register tmp3 = op->tmp3()->as_register();
  1559     if (len == tmp1) {
  1560       tmp1 = tmp3;
  1561     } else if (len == tmp2) {
  1562       tmp2 = tmp3;
  1563     } else if (len == tmp3) {
  1564       // everything is ok
  1565     } else {
  1566       __ mov(tmp3, len);
  1568     __ allocate_array(op->obj()->as_register(),
  1569                       len,
  1570                       tmp1,
  1571                       tmp2,
  1572                       arrayOopDesc::header_size(op->type()),
  1573                       array_element_size(op->type()),
  1574                       op->klass()->as_register(),
  1575                       *op->stub()->entry());
  1577   __ bind(*op->stub()->continuation());
  1582 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1583   LIR_Code code = op->code();
  1584   if (code == lir_store_check) {
  1585     Register value = op->object()->as_register();
  1586     Register array = op->array()->as_register();
  1587     Register k_RInfo = op->tmp1()->as_register();
  1588     Register klass_RInfo = op->tmp2()->as_register();
  1589     Register Rtmp1 = op->tmp3()->as_register();
  1591     CodeStub* stub = op->stub();
  1592     Label done;
  1593     __ cmpptr(value, (int32_t)NULL_WORD);
  1594     __ jcc(Assembler::equal, done);
  1595     add_debug_info_for_null_check_here(op->info_for_exception());
  1596     __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
  1597     __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
  1599     // get instance klass
  1600     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
  1601     // perform the fast part of the checking logic
  1602     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
  1603     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1604     __ push(klass_RInfo);
  1605     __ push(k_RInfo);
  1606     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1607     __ pop(klass_RInfo);
  1608     __ pop(k_RInfo);
  1609     // result is a boolean
  1610     __ cmpl(k_RInfo, 0);
  1611     __ jcc(Assembler::equal, *stub->entry());
  1612     __ bind(done);
  1613   } else if (op->code() == lir_checkcast) {
  1614     // we always need a stub for the failure case.
  1615     CodeStub* stub = op->stub();
  1616     Register obj = op->object()->as_register();
  1617     Register k_RInfo = op->tmp1()->as_register();
  1618     Register klass_RInfo = op->tmp2()->as_register();
  1619     Register dst = op->result_opr()->as_register();
  1620     ciKlass* k = op->klass();
  1621     Register Rtmp1 = noreg;
  1623     Label done;
  1624     if (obj == k_RInfo) {
  1625       k_RInfo = dst;
  1626     } else if (obj == klass_RInfo) {
  1627       klass_RInfo = dst;
  1629     if (k->is_loaded()) {
  1630       select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1631     } else {
  1632       Rtmp1 = op->tmp3()->as_register();
  1633       select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1636     assert_different_registers(obj, k_RInfo, klass_RInfo);
  1637     if (!k->is_loaded()) {
  1638       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1639     } else {
  1640 #ifdef _LP64
  1641       __ movoop(k_RInfo, k->encoding());
  1642 #else
  1643       k_RInfo = noreg;
  1644 #endif // _LP64
  1646     assert(obj != k_RInfo, "must be different");
  1647     __ cmpptr(obj, (int32_t)NULL_WORD);
  1648     if (op->profiled_method() != NULL) {
  1649       ciMethod* method = op->profiled_method();
  1650       int bci          = op->profiled_bci();
  1652       Label profile_done;
  1653       __ jcc(Assembler::notEqual, profile_done);
  1654       // Object is null; update methodDataOop
  1655       ciMethodData* md = method->method_data();
  1656       if (md == NULL) {
  1657         bailout("out of memory building methodDataOop");
  1658         return;
  1660       ciProfileData* data = md->bci_to_data(bci);
  1661       assert(data != NULL,       "need data for checkcast");
  1662       assert(data->is_BitData(), "need BitData for checkcast");
  1663       Register mdo  = klass_RInfo;
  1664       __ movoop(mdo, md->encoding());
  1665       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1666       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1667       __ orl(data_addr, header_bits);
  1668       __ jmp(done);
  1669       __ bind(profile_done);
  1670     } else {
  1671       __ jcc(Assembler::equal, done);
  1673     __ verify_oop(obj);
  1675     if (op->fast_check()) {
  1676       // get object classo
  1677       // not a safepoint as obj null check happens earlier
  1678       if (k->is_loaded()) {
  1679 #ifdef _LP64
  1680         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1681 #else
  1682         __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->encoding());
  1683 #endif // _LP64
  1684       } else {
  1685         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1688       __ jcc(Assembler::notEqual, *stub->entry());
  1689       __ bind(done);
  1690     } else {
  1691       // get object class
  1692       // not a safepoint as obj null check happens earlier
  1693       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1694       if (k->is_loaded()) {
  1695         // See if we get an immediate positive hit
  1696 #ifdef _LP64
  1697         __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1698 #else
  1699         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->encoding());
  1700 #endif // _LP64
  1701         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
  1702           __ jcc(Assembler::notEqual, *stub->entry());
  1703         } else {
  1704           // See if we get an immediate positive hit
  1705           __ jcc(Assembler::equal, done);
  1706           // check for self
  1707 #ifdef _LP64
  1708           __ cmpptr(klass_RInfo, k_RInfo);
  1709 #else
  1710           __ cmpoop(klass_RInfo, k->encoding());
  1711 #endif // _LP64
  1712           __ jcc(Assembler::equal, done);
  1714           __ push(klass_RInfo);
  1715 #ifdef _LP64
  1716           __ push(k_RInfo);
  1717 #else
  1718           __ pushoop(k->encoding());
  1719 #endif // _LP64
  1720           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1721           __ pop(klass_RInfo);
  1722           __ pop(klass_RInfo);
  1723           // result is a boolean
  1724           __ cmpl(klass_RInfo, 0);
  1725           __ jcc(Assembler::equal, *stub->entry());
  1727         __ bind(done);
  1728       } else {
  1729         // perform the fast part of the checking logic
  1730         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
  1731         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1732         __ push(klass_RInfo);
  1733         __ push(k_RInfo);
  1734         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1735         __ pop(klass_RInfo);
  1736         __ pop(k_RInfo);
  1737         // result is a boolean
  1738         __ cmpl(k_RInfo, 0);
  1739         __ jcc(Assembler::equal, *stub->entry());
  1740         __ bind(done);
  1744     if (dst != obj) {
  1745       __ mov(dst, obj);
  1747   } else if (code == lir_instanceof) {
  1748     Register obj = op->object()->as_register();
  1749     Register k_RInfo = op->tmp1()->as_register();
  1750     Register klass_RInfo = op->tmp2()->as_register();
  1751     Register dst = op->result_opr()->as_register();
  1752     ciKlass* k = op->klass();
  1754     Label done;
  1755     Label zero;
  1756     Label one;
  1757     if (obj == k_RInfo) {
  1758       k_RInfo = klass_RInfo;
  1759       klass_RInfo = obj;
  1761     // patching may screw with our temporaries on sparc,
  1762     // so let's do it before loading the class
  1763     if (!k->is_loaded()) {
  1764       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1765     } else {
  1766       LP64_ONLY(__ movoop(k_RInfo, k->encoding()));
  1768     assert(obj != k_RInfo, "must be different");
  1770     __ verify_oop(obj);
  1771     if (op->fast_check()) {
  1772       __ cmpptr(obj, (int32_t)NULL_WORD);
  1773       __ jcc(Assembler::equal, zero);
  1774       // get object class
  1775       // not a safepoint as obj null check happens earlier
  1776       if (LP64_ONLY(false &&) k->is_loaded()) {
  1777         NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->encoding()));
  1778         k_RInfo = noreg;
  1779       } else {
  1780         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1783       __ jcc(Assembler::equal, one);
  1784     } else {
  1785       // get object class
  1786       // not a safepoint as obj null check happens earlier
  1787       __ cmpptr(obj, (int32_t)NULL_WORD);
  1788       __ jcc(Assembler::equal, zero);
  1789       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1791 #ifndef _LP64
  1792       if (k->is_loaded()) {
  1793         // See if we get an immediate positive hit
  1794         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->encoding());
  1795         __ jcc(Assembler::equal, one);
  1796         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
  1797           // check for self
  1798           __ cmpoop(klass_RInfo, k->encoding());
  1799           __ jcc(Assembler::equal, one);
  1800           __ push(klass_RInfo);
  1801           __ pushoop(k->encoding());
  1802           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1803           __ pop(klass_RInfo);
  1804           __ pop(dst);
  1805           __ jmp(done);
  1808         else // next block is unconditional if LP64:
  1809 #endif // LP64
  1811         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
  1813         // perform the fast part of the checking logic
  1814         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, dst, &one, &zero, NULL);
  1815         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1816         __ push(klass_RInfo);
  1817         __ push(k_RInfo);
  1818         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1819         __ pop(klass_RInfo);
  1820         __ pop(dst);
  1821         __ jmp(done);
  1824     __ bind(zero);
  1825     __ xorptr(dst, dst);
  1826     __ jmp(done);
  1827     __ bind(one);
  1828     __ movptr(dst, 1);
  1829     __ bind(done);
  1830   } else {
  1831     ShouldNotReachHere();
  1837 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1838   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1839     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1840     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1841     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1842     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1843     Register addr = op->addr()->as_register();
  1844     if (os::is_MP()) {
  1845       __ lock();
  1847     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1849   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1850     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1851     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1852     Register newval = op->new_value()->as_register();
  1853     Register cmpval = op->cmp_value()->as_register();
  1854     assert(cmpval == rax, "wrong register");
  1855     assert(newval != NULL, "new val must be register");
  1856     assert(cmpval != newval, "cmp and new values must be in different registers");
  1857     assert(cmpval != addr, "cmp and addr must be in different registers");
  1858     assert(newval != addr, "new value and addr must be in different registers");
  1859     if (os::is_MP()) {
  1860       __ lock();
  1862     if ( op->code() == lir_cas_obj) {
  1863       __ cmpxchgptr(newval, Address(addr, 0));
  1864     } else if (op->code() == lir_cas_int) {
  1865       __ cmpxchgl(newval, Address(addr, 0));
  1866     } else {
  1867       LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
  1869 #ifdef _LP64
  1870   } else if (op->code() == lir_cas_long) {
  1871     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1872     Register newval = op->new_value()->as_register_lo();
  1873     Register cmpval = op->cmp_value()->as_register_lo();
  1874     assert(cmpval == rax, "wrong register");
  1875     assert(newval != NULL, "new val must be register");
  1876     assert(cmpval != newval, "cmp and new values must be in different registers");
  1877     assert(cmpval != addr, "cmp and addr must be in different registers");
  1878     assert(newval != addr, "new value and addr must be in different registers");
  1879     if (os::is_MP()) {
  1880       __ lock();
  1882     __ cmpxchgq(newval, Address(addr, 0));
  1883 #endif // _LP64
  1884   } else {
  1885     Unimplemented();
  1890 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1891   Assembler::Condition acond, ncond;
  1892   switch (condition) {
  1893     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  1894     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  1895     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  1896     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  1897     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  1898     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  1899     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  1900     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  1901     default:                    ShouldNotReachHere();
  1904   if (opr1->is_cpu_register()) {
  1905     reg2reg(opr1, result);
  1906   } else if (opr1->is_stack()) {
  1907     stack2reg(opr1, result, result->type());
  1908   } else if (opr1->is_constant()) {
  1909     const2reg(opr1, result, lir_patch_none, NULL);
  1910   } else {
  1911     ShouldNotReachHere();
  1914   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  1915     // optimized version that does not require a branch
  1916     if (opr2->is_single_cpu()) {
  1917       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  1918       __ cmov(ncond, result->as_register(), opr2->as_register());
  1919     } else if (opr2->is_double_cpu()) {
  1920       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  1921       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  1922       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  1923       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  1924     } else if (opr2->is_single_stack()) {
  1925       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  1926     } else if (opr2->is_double_stack()) {
  1927       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  1928       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  1929     } else {
  1930       ShouldNotReachHere();
  1933   } else {
  1934     Label skip;
  1935     __ jcc (acond, skip);
  1936     if (opr2->is_cpu_register()) {
  1937       reg2reg(opr2, result);
  1938     } else if (opr2->is_stack()) {
  1939       stack2reg(opr2, result, result->type());
  1940     } else if (opr2->is_constant()) {
  1941       const2reg(opr2, result, lir_patch_none, NULL);
  1942     } else {
  1943       ShouldNotReachHere();
  1945     __ bind(skip);
  1950 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1951   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  1953   if (left->is_single_cpu()) {
  1954     assert(left == dest, "left and dest must be equal");
  1955     Register lreg = left->as_register();
  1957     if (right->is_single_cpu()) {
  1958       // cpu register - cpu register
  1959       Register rreg = right->as_register();
  1960       switch (code) {
  1961         case lir_add: __ addl (lreg, rreg); break;
  1962         case lir_sub: __ subl (lreg, rreg); break;
  1963         case lir_mul: __ imull(lreg, rreg); break;
  1964         default:      ShouldNotReachHere();
  1967     } else if (right->is_stack()) {
  1968       // cpu register - stack
  1969       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  1970       switch (code) {
  1971         case lir_add: __ addl(lreg, raddr); break;
  1972         case lir_sub: __ subl(lreg, raddr); break;
  1973         default:      ShouldNotReachHere();
  1976     } else if (right->is_constant()) {
  1977       // cpu register - constant
  1978       jint c = right->as_constant_ptr()->as_jint();
  1979       switch (code) {
  1980         case lir_add: {
  1981           __ increment(lreg, c);
  1982           break;
  1984         case lir_sub: {
  1985           __ decrement(lreg, c);
  1986           break;
  1988         default: ShouldNotReachHere();
  1991     } else {
  1992       ShouldNotReachHere();
  1995   } else if (left->is_double_cpu()) {
  1996     assert(left == dest, "left and dest must be equal");
  1997     Register lreg_lo = left->as_register_lo();
  1998     Register lreg_hi = left->as_register_hi();
  2000     if (right->is_double_cpu()) {
  2001       // cpu register - cpu register
  2002       Register rreg_lo = right->as_register_lo();
  2003       Register rreg_hi = right->as_register_hi();
  2004       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2005       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2006       switch (code) {
  2007         case lir_add:
  2008           __ addptr(lreg_lo, rreg_lo);
  2009           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2010           break;
  2011         case lir_sub:
  2012           __ subptr(lreg_lo, rreg_lo);
  2013           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2014           break;
  2015         case lir_mul:
  2016 #ifdef _LP64
  2017           __ imulq(lreg_lo, rreg_lo);
  2018 #else
  2019           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2020           __ imull(lreg_hi, rreg_lo);
  2021           __ imull(rreg_hi, lreg_lo);
  2022           __ addl (rreg_hi, lreg_hi);
  2023           __ mull (rreg_lo);
  2024           __ addl (lreg_hi, rreg_hi);
  2025 #endif // _LP64
  2026           break;
  2027         default:
  2028           ShouldNotReachHere();
  2031     } else if (right->is_constant()) {
  2032       // cpu register - constant
  2033 #ifdef _LP64
  2034       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2035       __ movptr(r10, (intptr_t) c);
  2036       switch (code) {
  2037         case lir_add:
  2038           __ addptr(lreg_lo, r10);
  2039           break;
  2040         case lir_sub:
  2041           __ subptr(lreg_lo, r10);
  2042           break;
  2043         default:
  2044           ShouldNotReachHere();
  2046 #else
  2047       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2048       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2049       switch (code) {
  2050         case lir_add:
  2051           __ addptr(lreg_lo, c_lo);
  2052           __ adcl(lreg_hi, c_hi);
  2053           break;
  2054         case lir_sub:
  2055           __ subptr(lreg_lo, c_lo);
  2056           __ sbbl(lreg_hi, c_hi);
  2057           break;
  2058         default:
  2059           ShouldNotReachHere();
  2061 #endif // _LP64
  2063     } else {
  2064       ShouldNotReachHere();
  2067   } else if (left->is_single_xmm()) {
  2068     assert(left == dest, "left and dest must be equal");
  2069     XMMRegister lreg = left->as_xmm_float_reg();
  2071     if (right->is_single_xmm()) {
  2072       XMMRegister rreg = right->as_xmm_float_reg();
  2073       switch (code) {
  2074         case lir_add: __ addss(lreg, rreg);  break;
  2075         case lir_sub: __ subss(lreg, rreg);  break;
  2076         case lir_mul_strictfp: // fall through
  2077         case lir_mul: __ mulss(lreg, rreg);  break;
  2078         case lir_div_strictfp: // fall through
  2079         case lir_div: __ divss(lreg, rreg);  break;
  2080         default: ShouldNotReachHere();
  2082     } else {
  2083       Address raddr;
  2084       if (right->is_single_stack()) {
  2085         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2086       } else if (right->is_constant()) {
  2087         // hack for now
  2088         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2089       } else {
  2090         ShouldNotReachHere();
  2092       switch (code) {
  2093         case lir_add: __ addss(lreg, raddr);  break;
  2094         case lir_sub: __ subss(lreg, raddr);  break;
  2095         case lir_mul_strictfp: // fall through
  2096         case lir_mul: __ mulss(lreg, raddr);  break;
  2097         case lir_div_strictfp: // fall through
  2098         case lir_div: __ divss(lreg, raddr);  break;
  2099         default: ShouldNotReachHere();
  2103   } else if (left->is_double_xmm()) {
  2104     assert(left == dest, "left and dest must be equal");
  2106     XMMRegister lreg = left->as_xmm_double_reg();
  2107     if (right->is_double_xmm()) {
  2108       XMMRegister rreg = right->as_xmm_double_reg();
  2109       switch (code) {
  2110         case lir_add: __ addsd(lreg, rreg);  break;
  2111         case lir_sub: __ subsd(lreg, rreg);  break;
  2112         case lir_mul_strictfp: // fall through
  2113         case lir_mul: __ mulsd(lreg, rreg);  break;
  2114         case lir_div_strictfp: // fall through
  2115         case lir_div: __ divsd(lreg, rreg);  break;
  2116         default: ShouldNotReachHere();
  2118     } else {
  2119       Address raddr;
  2120       if (right->is_double_stack()) {
  2121         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2122       } else if (right->is_constant()) {
  2123         // hack for now
  2124         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2125       } else {
  2126         ShouldNotReachHere();
  2128       switch (code) {
  2129         case lir_add: __ addsd(lreg, raddr);  break;
  2130         case lir_sub: __ subsd(lreg, raddr);  break;
  2131         case lir_mul_strictfp: // fall through
  2132         case lir_mul: __ mulsd(lreg, raddr);  break;
  2133         case lir_div_strictfp: // fall through
  2134         case lir_div: __ divsd(lreg, raddr);  break;
  2135         default: ShouldNotReachHere();
  2139   } else if (left->is_single_fpu()) {
  2140     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2142     if (right->is_single_fpu()) {
  2143       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2145     } else {
  2146       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2147       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2149       Address raddr;
  2150       if (right->is_single_stack()) {
  2151         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2152       } else if (right->is_constant()) {
  2153         address const_addr = float_constant(right->as_jfloat());
  2154         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2155         // hack for now
  2156         raddr = __ as_Address(InternalAddress(const_addr));
  2157       } else {
  2158         ShouldNotReachHere();
  2161       switch (code) {
  2162         case lir_add: __ fadd_s(raddr); break;
  2163         case lir_sub: __ fsub_s(raddr); break;
  2164         case lir_mul_strictfp: // fall through
  2165         case lir_mul: __ fmul_s(raddr); break;
  2166         case lir_div_strictfp: // fall through
  2167         case lir_div: __ fdiv_s(raddr); break;
  2168         default:      ShouldNotReachHere();
  2172   } else if (left->is_double_fpu()) {
  2173     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2175     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2176       // Double values require special handling for strictfp mul/div on x86
  2177       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2178       __ fmulp(left->fpu_regnrLo() + 1);
  2181     if (right->is_double_fpu()) {
  2182       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2184     } else {
  2185       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2186       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2188       Address raddr;
  2189       if (right->is_double_stack()) {
  2190         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2191       } else if (right->is_constant()) {
  2192         // hack for now
  2193         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2194       } else {
  2195         ShouldNotReachHere();
  2198       switch (code) {
  2199         case lir_add: __ fadd_d(raddr); break;
  2200         case lir_sub: __ fsub_d(raddr); break;
  2201         case lir_mul_strictfp: // fall through
  2202         case lir_mul: __ fmul_d(raddr); break;
  2203         case lir_div_strictfp: // fall through
  2204         case lir_div: __ fdiv_d(raddr); break;
  2205         default: ShouldNotReachHere();
  2209     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2210       // Double values require special handling for strictfp mul/div on x86
  2211       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2212       __ fmulp(dest->fpu_regnrLo() + 1);
  2215   } else if (left->is_single_stack() || left->is_address()) {
  2216     assert(left == dest, "left and dest must be equal");
  2218     Address laddr;
  2219     if (left->is_single_stack()) {
  2220       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2221     } else if (left->is_address()) {
  2222       laddr = as_Address(left->as_address_ptr());
  2223     } else {
  2224       ShouldNotReachHere();
  2227     if (right->is_single_cpu()) {
  2228       Register rreg = right->as_register();
  2229       switch (code) {
  2230         case lir_add: __ addl(laddr, rreg); break;
  2231         case lir_sub: __ subl(laddr, rreg); break;
  2232         default:      ShouldNotReachHere();
  2234     } else if (right->is_constant()) {
  2235       jint c = right->as_constant_ptr()->as_jint();
  2236       switch (code) {
  2237         case lir_add: {
  2238           __ incrementl(laddr, c);
  2239           break;
  2241         case lir_sub: {
  2242           __ decrementl(laddr, c);
  2243           break;
  2245         default: ShouldNotReachHere();
  2247     } else {
  2248       ShouldNotReachHere();
  2251   } else {
  2252     ShouldNotReachHere();
  2256 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2257   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2258   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2259   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2261   bool left_is_tos = (left_index == 0);
  2262   bool dest_is_tos = (dest_index == 0);
  2263   int non_tos_index = (left_is_tos ? right_index : left_index);
  2265   switch (code) {
  2266     case lir_add:
  2267       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2268       else if (dest_is_tos)    __ fadd (non_tos_index);
  2269       else                     __ fadda(non_tos_index);
  2270       break;
  2272     case lir_sub:
  2273       if (left_is_tos) {
  2274         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2275         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2276         else                   __ fsubra(non_tos_index);
  2277       } else {
  2278         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2279         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2280         else                   __ fsuba (non_tos_index);
  2282       break;
  2284     case lir_mul_strictfp: // fall through
  2285     case lir_mul:
  2286       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2287       else if (dest_is_tos)    __ fmul (non_tos_index);
  2288       else                     __ fmula(non_tos_index);
  2289       break;
  2291     case lir_div_strictfp: // fall through
  2292     case lir_div:
  2293       if (left_is_tos) {
  2294         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2295         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2296         else                   __ fdivra(non_tos_index);
  2297       } else {
  2298         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2299         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2300         else                   __ fdiva (non_tos_index);
  2302       break;
  2304     case lir_rem:
  2305       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2306       __ fremr(noreg);
  2307       break;
  2309     default:
  2310       ShouldNotReachHere();
  2315 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2316   if (value->is_double_xmm()) {
  2317     switch(code) {
  2318       case lir_abs :
  2320           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2321             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2323           __ andpd(dest->as_xmm_double_reg(),
  2324                     ExternalAddress((address)double_signmask_pool));
  2326         break;
  2328       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2329       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2330       default      : ShouldNotReachHere();
  2333   } else if (value->is_double_fpu()) {
  2334     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2335     switch(code) {
  2336       case lir_log   : __ flog() ; break;
  2337       case lir_log10 : __ flog10() ; break;
  2338       case lir_abs   : __ fabs() ; break;
  2339       case lir_sqrt  : __ fsqrt(); break;
  2340       case lir_sin   :
  2341         // Should consider not saving rbx, if not necessary
  2342         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2343         break;
  2344       case lir_cos :
  2345         // Should consider not saving rbx, if not necessary
  2346         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2347         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2348         break;
  2349       case lir_tan :
  2350         // Should consider not saving rbx, if not necessary
  2351         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2352         break;
  2353       default      : ShouldNotReachHere();
  2355   } else {
  2356     Unimplemented();
  2360 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2361   // assert(left->destroys_register(), "check");
  2362   if (left->is_single_cpu()) {
  2363     Register reg = left->as_register();
  2364     if (right->is_constant()) {
  2365       int val = right->as_constant_ptr()->as_jint();
  2366       switch (code) {
  2367         case lir_logic_and: __ andl (reg, val); break;
  2368         case lir_logic_or:  __ orl  (reg, val); break;
  2369         case lir_logic_xor: __ xorl (reg, val); break;
  2370         default: ShouldNotReachHere();
  2372     } else if (right->is_stack()) {
  2373       // added support for stack operands
  2374       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2375       switch (code) {
  2376         case lir_logic_and: __ andl (reg, raddr); break;
  2377         case lir_logic_or:  __ orl  (reg, raddr); break;
  2378         case lir_logic_xor: __ xorl (reg, raddr); break;
  2379         default: ShouldNotReachHere();
  2381     } else {
  2382       Register rright = right->as_register();
  2383       switch (code) {
  2384         case lir_logic_and: __ andptr (reg, rright); break;
  2385         case lir_logic_or : __ orptr  (reg, rright); break;
  2386         case lir_logic_xor: __ xorptr (reg, rright); break;
  2387         default: ShouldNotReachHere();
  2390     move_regs(reg, dst->as_register());
  2391   } else {
  2392     Register l_lo = left->as_register_lo();
  2393     Register l_hi = left->as_register_hi();
  2394     if (right->is_constant()) {
  2395 #ifdef _LP64
  2396       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2397       switch (code) {
  2398         case lir_logic_and:
  2399           __ andq(l_lo, rscratch1);
  2400           break;
  2401         case lir_logic_or:
  2402           __ orq(l_lo, rscratch1);
  2403           break;
  2404         case lir_logic_xor:
  2405           __ xorq(l_lo, rscratch1);
  2406           break;
  2407         default: ShouldNotReachHere();
  2409 #else
  2410       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2411       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2412       switch (code) {
  2413         case lir_logic_and:
  2414           __ andl(l_lo, r_lo);
  2415           __ andl(l_hi, r_hi);
  2416           break;
  2417         case lir_logic_or:
  2418           __ orl(l_lo, r_lo);
  2419           __ orl(l_hi, r_hi);
  2420           break;
  2421         case lir_logic_xor:
  2422           __ xorl(l_lo, r_lo);
  2423           __ xorl(l_hi, r_hi);
  2424           break;
  2425         default: ShouldNotReachHere();
  2427 #endif // _LP64
  2428     } else {
  2429       Register r_lo = right->as_register_lo();
  2430       Register r_hi = right->as_register_hi();
  2431       assert(l_lo != r_hi, "overwriting registers");
  2432       switch (code) {
  2433         case lir_logic_and:
  2434           __ andptr(l_lo, r_lo);
  2435           NOT_LP64(__ andptr(l_hi, r_hi);)
  2436           break;
  2437         case lir_logic_or:
  2438           __ orptr(l_lo, r_lo);
  2439           NOT_LP64(__ orptr(l_hi, r_hi);)
  2440           break;
  2441         case lir_logic_xor:
  2442           __ xorptr(l_lo, r_lo);
  2443           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2444           break;
  2445         default: ShouldNotReachHere();
  2449     Register dst_lo = dst->as_register_lo();
  2450     Register dst_hi = dst->as_register_hi();
  2452 #ifdef _LP64
  2453     move_regs(l_lo, dst_lo);
  2454 #else
  2455     if (dst_lo == l_hi) {
  2456       assert(dst_hi != l_lo, "overwriting registers");
  2457       move_regs(l_hi, dst_hi);
  2458       move_regs(l_lo, dst_lo);
  2459     } else {
  2460       assert(dst_lo != l_hi, "overwriting registers");
  2461       move_regs(l_lo, dst_lo);
  2462       move_regs(l_hi, dst_hi);
  2464 #endif // _LP64
  2469 // we assume that rax, and rdx can be overwritten
  2470 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2472   assert(left->is_single_cpu(),   "left must be register");
  2473   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2474   assert(result->is_single_cpu(), "result must be register");
  2476   //  assert(left->destroys_register(), "check");
  2477   //  assert(right->destroys_register(), "check");
  2479   Register lreg = left->as_register();
  2480   Register dreg = result->as_register();
  2482   if (right->is_constant()) {
  2483     int divisor = right->as_constant_ptr()->as_jint();
  2484     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2485     if (code == lir_idiv) {
  2486       assert(lreg == rax, "must be rax,");
  2487       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2488       __ cdql(); // sign extend into rdx:rax
  2489       if (divisor == 2) {
  2490         __ subl(lreg, rdx);
  2491       } else {
  2492         __ andl(rdx, divisor - 1);
  2493         __ addl(lreg, rdx);
  2495       __ sarl(lreg, log2_intptr(divisor));
  2496       move_regs(lreg, dreg);
  2497     } else if (code == lir_irem) {
  2498       Label done;
  2499       __ mov(dreg, lreg);
  2500       __ andl(dreg, 0x80000000 | (divisor - 1));
  2501       __ jcc(Assembler::positive, done);
  2502       __ decrement(dreg);
  2503       __ orl(dreg, ~(divisor - 1));
  2504       __ increment(dreg);
  2505       __ bind(done);
  2506     } else {
  2507       ShouldNotReachHere();
  2509   } else {
  2510     Register rreg = right->as_register();
  2511     assert(lreg == rax, "left register must be rax,");
  2512     assert(rreg != rdx, "right register must not be rdx");
  2513     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2515     move_regs(lreg, rax);
  2517     int idivl_offset = __ corrected_idivl(rreg);
  2518     add_debug_info_for_div0(idivl_offset, info);
  2519     if (code == lir_irem) {
  2520       move_regs(rdx, dreg); // result is in rdx
  2521     } else {
  2522       move_regs(rax, dreg);
  2528 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2529   if (opr1->is_single_cpu()) {
  2530     Register reg1 = opr1->as_register();
  2531     if (opr2->is_single_cpu()) {
  2532       // cpu register - cpu register
  2533       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2534         __ cmpptr(reg1, opr2->as_register());
  2535       } else {
  2536         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2537         __ cmpl(reg1, opr2->as_register());
  2539     } else if (opr2->is_stack()) {
  2540       // cpu register - stack
  2541       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2542         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2543       } else {
  2544         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2546     } else if (opr2->is_constant()) {
  2547       // cpu register - constant
  2548       LIR_Const* c = opr2->as_constant_ptr();
  2549       if (c->type() == T_INT) {
  2550         __ cmpl(reg1, c->as_jint());
  2551       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2552         // In 64bit oops are single register
  2553         jobject o = c->as_jobject();
  2554         if (o == NULL) {
  2555           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2556         } else {
  2557 #ifdef _LP64
  2558           __ movoop(rscratch1, o);
  2559           __ cmpptr(reg1, rscratch1);
  2560 #else
  2561           __ cmpoop(reg1, c->as_jobject());
  2562 #endif // _LP64
  2564       } else {
  2565         ShouldNotReachHere();
  2567       // cpu register - address
  2568     } else if (opr2->is_address()) {
  2569       if (op->info() != NULL) {
  2570         add_debug_info_for_null_check_here(op->info());
  2572       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2573     } else {
  2574       ShouldNotReachHere();
  2577   } else if(opr1->is_double_cpu()) {
  2578     Register xlo = opr1->as_register_lo();
  2579     Register xhi = opr1->as_register_hi();
  2580     if (opr2->is_double_cpu()) {
  2581 #ifdef _LP64
  2582       __ cmpptr(xlo, opr2->as_register_lo());
  2583 #else
  2584       // cpu register - cpu register
  2585       Register ylo = opr2->as_register_lo();
  2586       Register yhi = opr2->as_register_hi();
  2587       __ subl(xlo, ylo);
  2588       __ sbbl(xhi, yhi);
  2589       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2590         __ orl(xhi, xlo);
  2592 #endif // _LP64
  2593     } else if (opr2->is_constant()) {
  2594       // cpu register - constant 0
  2595       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2596 #ifdef _LP64
  2597       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2598 #else
  2599       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2600       __ orl(xhi, xlo);
  2601 #endif // _LP64
  2602     } else {
  2603       ShouldNotReachHere();
  2606   } else if (opr1->is_single_xmm()) {
  2607     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2608     if (opr2->is_single_xmm()) {
  2609       // xmm register - xmm register
  2610       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2611     } else if (opr2->is_stack()) {
  2612       // xmm register - stack
  2613       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2614     } else if (opr2->is_constant()) {
  2615       // xmm register - constant
  2616       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2617     } else if (opr2->is_address()) {
  2618       // xmm register - address
  2619       if (op->info() != NULL) {
  2620         add_debug_info_for_null_check_here(op->info());
  2622       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2623     } else {
  2624       ShouldNotReachHere();
  2627   } else if (opr1->is_double_xmm()) {
  2628     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2629     if (opr2->is_double_xmm()) {
  2630       // xmm register - xmm register
  2631       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2632     } else if (opr2->is_stack()) {
  2633       // xmm register - stack
  2634       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2635     } else if (opr2->is_constant()) {
  2636       // xmm register - constant
  2637       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2638     } else if (opr2->is_address()) {
  2639       // xmm register - address
  2640       if (op->info() != NULL) {
  2641         add_debug_info_for_null_check_here(op->info());
  2643       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2644     } else {
  2645       ShouldNotReachHere();
  2648   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2649     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2650     assert(opr2->is_fpu_register(), "both must be registers");
  2651     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2653   } else if (opr1->is_address() && opr2->is_constant()) {
  2654     LIR_Const* c = opr2->as_constant_ptr();
  2655 #ifdef _LP64
  2656     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2657       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2658       __ movoop(rscratch1, c->as_jobject());
  2660 #endif // LP64
  2661     if (op->info() != NULL) {
  2662       add_debug_info_for_null_check_here(op->info());
  2664     // special case: address - constant
  2665     LIR_Address* addr = opr1->as_address_ptr();
  2666     if (c->type() == T_INT) {
  2667       __ cmpl(as_Address(addr), c->as_jint());
  2668     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2669 #ifdef _LP64
  2670       // %%% Make this explode if addr isn't reachable until we figure out a
  2671       // better strategy by giving noreg as the temp for as_Address
  2672       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2673 #else
  2674       __ cmpoop(as_Address(addr), c->as_jobject());
  2675 #endif // _LP64
  2676     } else {
  2677       ShouldNotReachHere();
  2680   } else {
  2681     ShouldNotReachHere();
  2685 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2686   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2687     if (left->is_single_xmm()) {
  2688       assert(right->is_single_xmm(), "must match");
  2689       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2690     } else if (left->is_double_xmm()) {
  2691       assert(right->is_double_xmm(), "must match");
  2692       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2694     } else {
  2695       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2696       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2698       assert(left->fpu() == 0, "left must be on TOS");
  2699       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2700                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2702   } else {
  2703     assert(code == lir_cmp_l2i, "check");
  2704 #ifdef _LP64
  2705       Register dest = dst->as_register();
  2706       __ xorptr(dest, dest);
  2707       Label high, done;
  2708       __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2709       __ jcc(Assembler::equal, done);
  2710       __ jcc(Assembler::greater, high);
  2711       __ decrement(dest);
  2712       __ jmp(done);
  2713       __ bind(high);
  2714       __ increment(dest);
  2716       __ bind(done);
  2718 #else
  2719     __ lcmp2int(left->as_register_hi(),
  2720                 left->as_register_lo(),
  2721                 right->as_register_hi(),
  2722                 right->as_register_lo());
  2723     move_regs(left->as_register_hi(), dst->as_register());
  2724 #endif // _LP64
  2729 void LIR_Assembler::align_call(LIR_Code code) {
  2730   if (os::is_MP()) {
  2731     // make sure that the displacement word of the call ends up word aligned
  2732     int offset = __ offset();
  2733     switch (code) {
  2734       case lir_static_call:
  2735       case lir_optvirtual_call:
  2736         offset += NativeCall::displacement_offset;
  2737         break;
  2738       case lir_icvirtual_call:
  2739         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2740       break;
  2741       case lir_virtual_call:  // currently, sparc-specific for niagara
  2742       default: ShouldNotReachHere();
  2744     while (offset++ % BytesPerWord != 0) {
  2745       __ nop();
  2751 void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
  2752   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2753          "must be aligned");
  2754   __ call(AddressLiteral(entry, rtype));
  2755   add_call_info(code_offset(), info);
  2759 void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
  2760   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  2761   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
  2762   assert(!os::is_MP() ||
  2763          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2764          "must be aligned");
  2765   __ call(AddressLiteral(entry, rh));
  2766   add_call_info(code_offset(), info);
  2770 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2771 void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
  2772   ShouldNotReachHere();
  2775 void LIR_Assembler::emit_static_call_stub() {
  2776   address call_pc = __ pc();
  2777   address stub = __ start_a_stub(call_stub_size);
  2778   if (stub == NULL) {
  2779     bailout("static call stub overflow");
  2780     return;
  2783   int start = __ offset();
  2784   if (os::is_MP()) {
  2785     // make sure that the displacement word of the call ends up word aligned
  2786     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2787     while (offset++ % BytesPerWord != 0) {
  2788       __ nop();
  2791   __ relocate(static_stub_Relocation::spec(call_pc));
  2792   __ movoop(rbx, (jobject)NULL);
  2793   // must be set to -1 at code generation time
  2794   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2795   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2796   __ jump(RuntimeAddress(__ pc()));
  2798   assert(__ offset() - start <= call_stub_size, "stub too big")
  2799   __ end_a_stub();
  2803 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
  2804   assert(exceptionOop->as_register() == rax, "must match");
  2805   assert(unwind || exceptionPC->as_register() == rdx, "must match");
  2807   // exception object is not added to oop map by LinearScan
  2808   // (LinearScan assumes that no oops are in fixed registers)
  2809   info->add_register_oop(exceptionOop);
  2810   Runtime1::StubID unwind_id;
  2812   if (!unwind) {
  2813     // get current pc information
  2814     // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2815     int pc_for_athrow_offset = __ offset();
  2816     InternalAddress pc_for_athrow(__ pc());
  2817     __ lea(exceptionPC->as_register(), pc_for_athrow);
  2818     add_call_info(pc_for_athrow_offset, info); // for exception handler
  2820     __ verify_not_null_oop(rax);
  2821     // search an exception handler (rax: exception oop, rdx: throwing pc)
  2822     if (compilation()->has_fpu_code()) {
  2823       unwind_id = Runtime1::handle_exception_id;
  2824     } else {
  2825       unwind_id = Runtime1::handle_exception_nofpu_id;
  2827   } else {
  2828     unwind_id = Runtime1::unwind_exception_id;
  2830   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2832   // enough room for two byte trap
  2833   __ nop();
  2837 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2839   // optimized version for linear scan:
  2840   // * count must be already in ECX (guaranteed by LinearScan)
  2841   // * left and dest must be equal
  2842   // * tmp must be unused
  2843   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  2844   assert(left == dest, "left and dest must be equal");
  2845   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  2847   if (left->is_single_cpu()) {
  2848     Register value = left->as_register();
  2849     assert(value != SHIFT_count, "left cannot be ECX");
  2851     switch (code) {
  2852       case lir_shl:  __ shll(value); break;
  2853       case lir_shr:  __ sarl(value); break;
  2854       case lir_ushr: __ shrl(value); break;
  2855       default: ShouldNotReachHere();
  2857   } else if (left->is_double_cpu()) {
  2858     Register lo = left->as_register_lo();
  2859     Register hi = left->as_register_hi();
  2860     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  2861 #ifdef _LP64
  2862     switch (code) {
  2863       case lir_shl:  __ shlptr(lo);        break;
  2864       case lir_shr:  __ sarptr(lo);        break;
  2865       case lir_ushr: __ shrptr(lo);        break;
  2866       default: ShouldNotReachHere();
  2868 #else
  2870     switch (code) {
  2871       case lir_shl:  __ lshl(hi, lo);        break;
  2872       case lir_shr:  __ lshr(hi, lo, true);  break;
  2873       case lir_ushr: __ lshr(hi, lo, false); break;
  2874       default: ShouldNotReachHere();
  2876 #endif // LP64
  2877   } else {
  2878     ShouldNotReachHere();
  2883 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2884   if (dest->is_single_cpu()) {
  2885     // first move left into dest so that left is not destroyed by the shift
  2886     Register value = dest->as_register();
  2887     count = count & 0x1F; // Java spec
  2889     move_regs(left->as_register(), value);
  2890     switch (code) {
  2891       case lir_shl:  __ shll(value, count); break;
  2892       case lir_shr:  __ sarl(value, count); break;
  2893       case lir_ushr: __ shrl(value, count); break;
  2894       default: ShouldNotReachHere();
  2896   } else if (dest->is_double_cpu()) {
  2897 #ifndef _LP64
  2898     Unimplemented();
  2899 #else
  2900     // first move left into dest so that left is not destroyed by the shift
  2901     Register value = dest->as_register_lo();
  2902     count = count & 0x1F; // Java spec
  2904     move_regs(left->as_register_lo(), value);
  2905     switch (code) {
  2906       case lir_shl:  __ shlptr(value, count); break;
  2907       case lir_shr:  __ sarptr(value, count); break;
  2908       case lir_ushr: __ shrptr(value, count); break;
  2909       default: ShouldNotReachHere();
  2911 #endif // _LP64
  2912   } else {
  2913     ShouldNotReachHere();
  2918 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  2919   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2920   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2921   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2922   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  2926 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  2927   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2928   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2929   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2930   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  2934 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  2935   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2936   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2937   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2938   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  2942 // This code replaces a call to arraycopy; no exception may
  2943 // be thrown in this code, they must be thrown in the System.arraycopy
  2944 // activation frame; we could save some checks if this would not be the case
  2945 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2946   ciArrayKlass* default_type = op->expected_type();
  2947   Register src = op->src()->as_register();
  2948   Register dst = op->dst()->as_register();
  2949   Register src_pos = op->src_pos()->as_register();
  2950   Register dst_pos = op->dst_pos()->as_register();
  2951   Register length  = op->length()->as_register();
  2952   Register tmp = op->tmp()->as_register();
  2954   CodeStub* stub = op->stub();
  2955   int flags = op->flags();
  2956   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2957   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2959   // if we don't know anything or it's an object array, just go through the generic arraycopy
  2960   if (default_type == NULL) {
  2961     Label done;
  2962     // save outgoing arguments on stack in case call to System.arraycopy is needed
  2963     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  2964     // for interpreter calling conventions. Now we have to do it in new style conventions.
  2965     // For the moment until C1 gets the new register allocator I just force all the
  2966     // args to the right place (except the register args) and then on the back side
  2967     // reload the register args properly if we go slow path. Yuck
  2969     // These are proper for the calling convention
  2971     store_parameter(length, 2);
  2972     store_parameter(dst_pos, 1);
  2973     store_parameter(dst, 0);
  2975     // these are just temporary placements until we need to reload
  2976     store_parameter(src_pos, 3);
  2977     store_parameter(src, 4);
  2978     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  2980     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  2982     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  2983 #ifdef _LP64
  2984     // The arguments are in java calling convention so we can trivially shift them to C
  2985     // convention
  2986     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  2987     __ mov(c_rarg0, j_rarg0);
  2988     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  2989     __ mov(c_rarg1, j_rarg1);
  2990     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  2991     __ mov(c_rarg2, j_rarg2);
  2992     assert_different_registers(c_rarg3, j_rarg4);
  2993     __ mov(c_rarg3, j_rarg3);
  2994 #ifdef _WIN64
  2995     // Allocate abi space for args but be sure to keep stack aligned
  2996     __ subptr(rsp, 6*wordSize);
  2997     store_parameter(j_rarg4, 4);
  2998     __ call(RuntimeAddress(entry));
  2999     __ addptr(rsp, 6*wordSize);
  3000 #else
  3001     __ mov(c_rarg4, j_rarg4);
  3002     __ call(RuntimeAddress(entry));
  3003 #endif // _WIN64
  3004 #else
  3005     __ push(length);
  3006     __ push(dst_pos);
  3007     __ push(dst);
  3008     __ push(src_pos);
  3009     __ push(src);
  3010     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
  3012 #endif // _LP64
  3014     __ cmpl(rax, 0);
  3015     __ jcc(Assembler::equal, *stub->continuation());
  3017     // Reload values from the stack so they are where the stub
  3018     // expects them.
  3019     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3020     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3021     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3022     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3023     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3024     __ jmp(*stub->entry());
  3026     __ bind(*stub->continuation());
  3027     return;
  3030   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3032   int elem_size = type2aelembytes(basic_type);
  3033   int shift_amount;
  3034   Address::ScaleFactor scale;
  3036   switch (elem_size) {
  3037     case 1 :
  3038       shift_amount = 0;
  3039       scale = Address::times_1;
  3040       break;
  3041     case 2 :
  3042       shift_amount = 1;
  3043       scale = Address::times_2;
  3044       break;
  3045     case 4 :
  3046       shift_amount = 2;
  3047       scale = Address::times_4;
  3048       break;
  3049     case 8 :
  3050       shift_amount = 3;
  3051       scale = Address::times_8;
  3052       break;
  3053     default:
  3054       ShouldNotReachHere();
  3057   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3058   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3059   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3060   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3062   // length and pos's are all sign extended at this point on 64bit
  3064   // test for NULL
  3065   if (flags & LIR_OpArrayCopy::src_null_check) {
  3066     __ testptr(src, src);
  3067     __ jcc(Assembler::zero, *stub->entry());
  3069   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3070     __ testptr(dst, dst);
  3071     __ jcc(Assembler::zero, *stub->entry());
  3074   // check if negative
  3075   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3076     __ testl(src_pos, src_pos);
  3077     __ jcc(Assembler::less, *stub->entry());
  3079   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3080     __ testl(dst_pos, dst_pos);
  3081     __ jcc(Assembler::less, *stub->entry());
  3083   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3084     __ testl(length, length);
  3085     __ jcc(Assembler::less, *stub->entry());
  3088   if (flags & LIR_OpArrayCopy::src_range_check) {
  3089     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3090     __ cmpl(tmp, src_length_addr);
  3091     __ jcc(Assembler::above, *stub->entry());
  3093   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3094     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3095     __ cmpl(tmp, dst_length_addr);
  3096     __ jcc(Assembler::above, *stub->entry());
  3099   if (flags & LIR_OpArrayCopy::type_check) {
  3100     __ movptr(tmp, src_klass_addr);
  3101     __ cmpptr(tmp, dst_klass_addr);
  3102     __ jcc(Assembler::notEqual, *stub->entry());
  3105 #ifdef ASSERT
  3106   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3107     // Sanity check the known type with the incoming class.  For the
  3108     // primitive case the types must match exactly with src.klass and
  3109     // dst.klass each exactly matching the default type.  For the
  3110     // object array case, if no type check is needed then either the
  3111     // dst type is exactly the expected type and the src type is a
  3112     // subtype which we can't check or src is the same array as dst
  3113     // but not necessarily exactly of type default_type.
  3114     Label known_ok, halt;
  3115     __ movoop(tmp, default_type->encoding());
  3116     if (basic_type != T_OBJECT) {
  3117       __ cmpptr(tmp, dst_klass_addr);
  3118       __ jcc(Assembler::notEqual, halt);
  3119       __ cmpptr(tmp, src_klass_addr);
  3120       __ jcc(Assembler::equal, known_ok);
  3121     } else {
  3122       __ cmpptr(tmp, dst_klass_addr);
  3123       __ jcc(Assembler::equal, known_ok);
  3124       __ cmpptr(src, dst);
  3125       __ jcc(Assembler::equal, known_ok);
  3127     __ bind(halt);
  3128     __ stop("incorrect type information in arraycopy");
  3129     __ bind(known_ok);
  3131 #endif
  3133   if (shift_amount > 0 && basic_type != T_OBJECT) {
  3134     __ shlptr(length, shift_amount);
  3137 #ifdef _LP64
  3138   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3139   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3140   assert_different_registers(c_rarg1, length);
  3141   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3142   __ mov(c_rarg2, length);
  3144 #else
  3145   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3146   store_parameter(tmp, 0);
  3147   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3148   store_parameter(tmp, 1);
  3149   store_parameter(length, 2);
  3150 #endif // _LP64
  3151   if (basic_type == T_OBJECT) {
  3152     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
  3153   } else {
  3154     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
  3157   __ bind(*stub->continuation());
  3161 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3162   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3163   Register hdr = op->hdr_opr()->as_register();
  3164   Register lock = op->lock_opr()->as_register();
  3165   if (!UseFastLocking) {
  3166     __ jmp(*op->stub()->entry());
  3167   } else if (op->code() == lir_lock) {
  3168     Register scratch = noreg;
  3169     if (UseBiasedLocking) {
  3170       scratch = op->scratch_opr()->as_register();
  3172     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3173     // add debug info for NullPointerException only if one is possible
  3174     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3175     if (op->info() != NULL) {
  3176       add_debug_info_for_null_check(null_check_offset, op->info());
  3178     // done
  3179   } else if (op->code() == lir_unlock) {
  3180     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3181     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3182   } else {
  3183     Unimplemented();
  3185   __ bind(*op->stub()->continuation());
  3189 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3190   ciMethod* method = op->profiled_method();
  3191   int bci          = op->profiled_bci();
  3193   // Update counter for all call types
  3194   ciMethodData* md = method->method_data();
  3195   if (md == NULL) {
  3196     bailout("out of memory building methodDataOop");
  3197     return;
  3199   ciProfileData* data = md->bci_to_data(bci);
  3200   assert(data->is_CounterData(), "need CounterData for calls");
  3201   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3202   Register mdo  = op->mdo()->as_register();
  3203   __ movoop(mdo, md->encoding());
  3204   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3205   __ addl(counter_addr, DataLayout::counter_increment);
  3206   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3207   // Perform additional virtual call profiling for invokevirtual and
  3208   // invokeinterface bytecodes
  3209   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3210       Tier1ProfileVirtualCalls) {
  3211     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3212     Register recv = op->recv()->as_register();
  3213     assert_different_registers(mdo, recv);
  3214     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3215     ciKlass* known_klass = op->known_holder();
  3216     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3217       // We know the type that will be seen at this call site; we can
  3218       // statically update the methodDataOop rather than needing to do
  3219       // dynamic tests on the receiver type
  3221       // NOTE: we should probably put a lock around this search to
  3222       // avoid collisions by concurrent compilations
  3223       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3224       uint i;
  3225       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3226         ciKlass* receiver = vc_data->receiver(i);
  3227         if (known_klass->equals(receiver)) {
  3228           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3229           __ addl(data_addr, DataLayout::counter_increment);
  3230           return;
  3234       // Receiver type not found in profile data; select an empty slot
  3236       // Note that this is less efficient than it should be because it
  3237       // always does a write to the receiver part of the
  3238       // VirtualCallData rather than just the first time
  3239       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3240         ciKlass* receiver = vc_data->receiver(i);
  3241         if (receiver == NULL) {
  3242           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3243           __ movoop(recv_addr, known_klass->encoding());
  3244           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3245           __ addl(data_addr, DataLayout::counter_increment);
  3246           return;
  3249     } else {
  3250       __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
  3251       Label update_done;
  3252       uint i;
  3253       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3254         Label next_test;
  3255         // See if the receiver is receiver[n].
  3256         __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
  3257         __ jcc(Assembler::notEqual, next_test);
  3258         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3259         __ addl(data_addr, DataLayout::counter_increment);
  3260         __ jmp(update_done);
  3261         __ bind(next_test);
  3264       // Didn't find receiver; find next empty slot and fill it in
  3265       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3266         Label next_test;
  3267         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3268         __ cmpptr(recv_addr, (int32_t)NULL_WORD);
  3269         __ jcc(Assembler::notEqual, next_test);
  3270         __ movptr(recv_addr, recv);
  3271         __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
  3272         if (i < (VirtualCallData::row_limit() - 1)) {
  3273           __ jmp(update_done);
  3275         __ bind(next_test);
  3278       __ bind(update_done);
  3284 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3285   Unimplemented();
  3289 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3290   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3294 void LIR_Assembler::align_backward_branch_target() {
  3295   __ align(BytesPerWord);
  3299 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3300   if (left->is_single_cpu()) {
  3301     __ negl(left->as_register());
  3302     move_regs(left->as_register(), dest->as_register());
  3304   } else if (left->is_double_cpu()) {
  3305     Register lo = left->as_register_lo();
  3306 #ifdef _LP64
  3307     Register dst = dest->as_register_lo();
  3308     __ movptr(dst, lo);
  3309     __ negptr(dst);
  3310 #else
  3311     Register hi = left->as_register_hi();
  3312     __ lneg(hi, lo);
  3313     if (dest->as_register_lo() == hi) {
  3314       assert(dest->as_register_hi() != lo, "destroying register");
  3315       move_regs(hi, dest->as_register_hi());
  3316       move_regs(lo, dest->as_register_lo());
  3317     } else {
  3318       move_regs(lo, dest->as_register_lo());
  3319       move_regs(hi, dest->as_register_hi());
  3321 #endif // _LP64
  3323   } else if (dest->is_single_xmm()) {
  3324     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3325       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3327     __ xorps(dest->as_xmm_float_reg(),
  3328              ExternalAddress((address)float_signflip_pool));
  3330   } else if (dest->is_double_xmm()) {
  3331     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3332       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3334     __ xorpd(dest->as_xmm_double_reg(),
  3335              ExternalAddress((address)double_signflip_pool));
  3337   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3338     assert(left->fpu() == 0, "arg must be on TOS");
  3339     assert(dest->fpu() == 0, "dest must be TOS");
  3340     __ fchs();
  3342   } else {
  3343     ShouldNotReachHere();
  3348 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3349   assert(addr->is_address() && dest->is_register(), "check");
  3350   Register reg;
  3351   reg = dest->as_pointer_register();
  3352   __ lea(reg, as_Address(addr->as_address_ptr()));
  3357 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3358   assert(!tmp->is_valid(), "don't need temporary");
  3359   __ call(RuntimeAddress(dest));
  3360   if (info != NULL) {
  3361     add_call_info_here(info);
  3366 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3367   assert(type == T_LONG, "only for volatile long fields");
  3369   if (info != NULL) {
  3370     add_debug_info_for_null_check_here(info);
  3373   if (src->is_double_xmm()) {
  3374     if (dest->is_double_cpu()) {
  3375 #ifdef _LP64
  3376       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3377 #else
  3378       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3379       __ psrlq(src->as_xmm_double_reg(), 32);
  3380       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3381 #endif // _LP64
  3382     } else if (dest->is_double_stack()) {
  3383       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3384     } else if (dest->is_address()) {
  3385       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3386     } else {
  3387       ShouldNotReachHere();
  3390   } else if (dest->is_double_xmm()) {
  3391     if (src->is_double_stack()) {
  3392       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3393     } else if (src->is_address()) {
  3394       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3395     } else {
  3396       ShouldNotReachHere();
  3399   } else if (src->is_double_fpu()) {
  3400     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3401     if (dest->is_double_stack()) {
  3402       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3403     } else if (dest->is_address()) {
  3404       __ fistp_d(as_Address(dest->as_address_ptr()));
  3405     } else {
  3406       ShouldNotReachHere();
  3409   } else if (dest->is_double_fpu()) {
  3410     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3411     if (src->is_double_stack()) {
  3412       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3413     } else if (src->is_address()) {
  3414       __ fild_d(as_Address(src->as_address_ptr()));
  3415     } else {
  3416       ShouldNotReachHere();
  3418   } else {
  3419     ShouldNotReachHere();
  3424 void LIR_Assembler::membar() {
  3425   // QQQ sparc TSO uses this,
  3426   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3429 void LIR_Assembler::membar_acquire() {
  3430   // No x86 machines currently require load fences
  3431   // __ load_fence();
  3434 void LIR_Assembler::membar_release() {
  3435   // No x86 machines currently require store fences
  3436   // __ store_fence();
  3439 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3440   assert(result_reg->is_register(), "check");
  3441 #ifdef _LP64
  3442   // __ get_thread(result_reg->as_register_lo());
  3443   __ mov(result_reg->as_register(), r15_thread);
  3444 #else
  3445   __ get_thread(result_reg->as_register());
  3446 #endif // _LP64
  3450 void LIR_Assembler::peephole(LIR_List*) {
  3451   // do nothing for now
  3455 #undef __

mercurial