src/cpu/sparc/vm/sparc.ad

Thu, 19 Mar 2009 09:13:24 -0700

author
kvn
date
Thu, 19 Mar 2009 09:13:24 -0700
changeset 1082
bd441136a5ce
parent 1063
7bb995fbd3c0
parent 1078
c771b7f43bbf
child 1116
fbde8ec322d0
permissions
-rw-r--r--

Merge

     1 //
     2 // Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg());
   197 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg()->next());
   198 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg());
   199 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg()->next());
   200 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg());
   201 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg()->next());
   202 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg());
   203 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg()->next());
   204 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg());
   205 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg()->next());
   206 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg());
   207 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg()->next());
   208 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg());
   209 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg()->next());
   210 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg());
   211 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg()->next());
   212 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg());
   213 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg()->next());
   214 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg());
   215 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg()->next());
   216 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg());
   217 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg()->next());
   218 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg());
   219 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg()->next());
   220 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg());
   221 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg()->next());
   222 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg());
   223 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg()->next());
   224 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg());
   225 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg()->next());
   226 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg());
   227 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 // Macros to extract hi & lo halves from a long pair.
   464 // G0 is not part of any long pair, so assert on that.
   465 // Prevents accidentally using G1 instead of G0.
   466 #define LONG_HI_REG(x) (x)
   467 #define LONG_LO_REG(x) (x)
   469 %}
   471 source %{
   472 #define __ _masm.
   474 // tertiary op of a LoadP or StoreP encoding
   475 #define REGP_OP true
   477 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   478 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   479 static Register reg_to_register_object(int register_encoding);
   481 // Used by the DFA in dfa_sparc.cpp.
   482 // Check for being able to use a V9 branch-on-register.  Requires a
   483 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   484 // extended.  Doesn't work following an integer ADD, for example, because of
   485 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   486 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   487 // replace them with zero, which could become sign-extension in a different OS
   488 // release.  There's no obvious reason why an interrupt will ever fill these
   489 // bits with non-zero junk (the registers are reloaded with standard LD
   490 // instructions which either zero-fill or sign-fill).
   491 bool can_branch_register( Node *bol, Node *cmp ) {
   492   if( !BranchOnRegister ) return false;
   493 #ifdef _LP64
   494   if( cmp->Opcode() == Op_CmpP )
   495     return true;  // No problems with pointer compares
   496 #endif
   497   if( cmp->Opcode() == Op_CmpL )
   498     return true;  // No problems with long compares
   500   if( !SparcV9RegsHiBitsZero ) return false;
   501   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   502       bol->as_Bool()->_test._test != BoolTest::eq )
   503      return false;
   505   // Check for comparing against a 'safe' value.  Any operation which
   506   // clears out the high word is safe.  Thus, loads and certain shifts
   507   // are safe, as are non-negative constants.  Any operation which
   508   // preserves zero bits in the high word is safe as long as each of its
   509   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   510   // inputs are safe.  At present, the only important case to recognize
   511   // seems to be loads.  Constants should fold away, and shifts &
   512   // logicals can use the 'cc' forms.
   513   Node *x = cmp->in(1);
   514   if( x->is_Load() ) return true;
   515   if( x->is_Phi() ) {
   516     for( uint i = 1; i < x->req(); i++ )
   517       if( !x->in(i)->is_Load() )
   518         return false;
   519     return true;
   520   }
   521   return false;
   522 }
   524 // ****************************************************************************
   526 // REQUIRED FUNCTIONALITY
   528 // !!!!! Special hack to get all type of calls to specify the byte offset
   529 //       from the start of the call to the point where the return address
   530 //       will point.
   531 //       The "return address" is the address of the call instruction, plus 8.
   533 int MachCallStaticJavaNode::ret_addr_offset() {
   534   return NativeCall::instruction_size;  // call; delay slot
   535 }
   537 int MachCallDynamicJavaNode::ret_addr_offset() {
   538   int vtable_index = this->_vtable_index;
   539   if (vtable_index < 0) {
   540     // must be invalid_vtable_index, not nonvirtual_vtable_index
   541     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   542     return (NativeMovConstReg::instruction_size +
   543            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   544   } else {
   545     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   546     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   547     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   548     int klass_load_size;
   549     if (UseCompressedOops) {
   550       assert(Universe::heap() != NULL, "java heap should be initialized");
   551       if (Universe::narrow_oop_base() == NULL)
   552         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   553       else
   554         klass_load_size = 3*BytesPerInstWord;
   555     } else {
   556       klass_load_size = 1*BytesPerInstWord;
   557     }
   558     if( Assembler::is_simm13(v_off) ) {
   559       return klass_load_size +
   560              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   561              NativeCall::instruction_size);  // call; delay slot
   562     } else {
   563       return klass_load_size +
   564              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   565              NativeCall::instruction_size);  // call; delay slot
   566     }
   567   }
   568 }
   570 int MachCallRuntimeNode::ret_addr_offset() {
   571 #ifdef _LP64
   572   return NativeFarCall::instruction_size;  // farcall; delay slot
   573 #else
   574   return NativeCall::instruction_size;  // call; delay slot
   575 #endif
   576 }
   578 // Indicate if the safepoint node needs the polling page as an input.
   579 // Since Sparc does not have absolute addressing, it does.
   580 bool SafePointNode::needs_polling_address_input() {
   581   return true;
   582 }
   584 // emit an interrupt that is caught by the debugger (for debugging compiler)
   585 void emit_break(CodeBuffer &cbuf) {
   586   MacroAssembler _masm(&cbuf);
   587   __ breakpoint_trap();
   588 }
   590 #ifndef PRODUCT
   591 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   592   st->print("TA");
   593 }
   594 #endif
   596 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   597   emit_break(cbuf);
   598 }
   600 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   601   return MachNode::size(ra_);
   602 }
   604 // Traceable jump
   605 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   606   MacroAssembler _masm(&cbuf);
   607   Register rdest = reg_to_register_object(jump_target);
   608   __ JMP(rdest, 0);
   609   __ delayed()->nop();
   610 }
   612 // Traceable jump and set exception pc
   613 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   614   MacroAssembler _masm(&cbuf);
   615   Register rdest = reg_to_register_object(jump_target);
   616   __ JMP(rdest, 0);
   617   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   618 }
   620 void emit_nop(CodeBuffer &cbuf) {
   621   MacroAssembler _masm(&cbuf);
   622   __ nop();
   623 }
   625 void emit_illtrap(CodeBuffer &cbuf) {
   626   MacroAssembler _masm(&cbuf);
   627   __ illtrap(0);
   628 }
   631 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   632   assert(n->rule() != loadUB_rule, "");
   634   intptr_t offset = 0;
   635   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   636   const Node* addr = n->get_base_and_disp(offset, adr_type);
   637   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   638   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   639   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   640   atype = atype->add_offset(offset);
   641   assert(disp32 == offset, "wrong disp32");
   642   return atype->_offset;
   643 }
   646 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   647   assert(n->rule() != loadUB_rule, "");
   649   intptr_t offset = 0;
   650   Node* addr = n->in(2);
   651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   652   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   653     Node* a = addr->in(2/*AddPNode::Address*/);
   654     Node* o = addr->in(3/*AddPNode::Offset*/);
   655     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   656     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   657     assert(atype->isa_oop_ptr(), "still an oop");
   658   }
   659   offset = atype->is_ptr()->_offset;
   660   if (offset != Type::OffsetBot)  offset += disp32;
   661   return offset;
   662 }
   664 // Standard Sparc opcode form2 field breakdown
   665 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   666   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   667   int op = (f30 << 30) |
   668            (f29 << 29) |
   669            (f25 << 25) |
   670            (f22 << 22) |
   671            (f20 << 20) |
   672            (f19 << 19) |
   673            (f0  <<  0);
   674   *((int*)(cbuf.code_end())) = op;
   675   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   676 }
   678 // Standard Sparc opcode form2 field breakdown
   679 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   680   f0 >>= 10;           // Drop 10 bits
   681   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   682   int op = (f30 << 30) |
   683            (f25 << 25) |
   684            (f22 << 22) |
   685            (f0  <<  0);
   686   *((int*)(cbuf.code_end())) = op;
   687   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   688 }
   690 // Standard Sparc opcode form3 field breakdown
   691 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   692   int op = (f30 << 30) |
   693            (f25 << 25) |
   694            (f19 << 19) |
   695            (f14 << 14) |
   696            (f5  <<  5) |
   697            (f0  <<  0);
   698   *((int*)(cbuf.code_end())) = op;
   699   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   700 }
   702 // Standard Sparc opcode form3 field breakdown
   703 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   704   simm13 &= (1<<13)-1; // Mask to 13 bits
   705   int op = (f30 << 30) |
   706            (f25 << 25) |
   707            (f19 << 19) |
   708            (f14 << 14) |
   709            (1   << 13) | // bit to indicate immediate-mode
   710            (simm13<<0);
   711   *((int*)(cbuf.code_end())) = op;
   712   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   713 }
   715 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   716   simm10 &= (1<<10)-1; // Mask to 10 bits
   717   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   718 }
   720 #ifdef ASSERT
   721 // Helper function for VerifyOops in emit_form3_mem_reg
   722 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   723   warning("VerifyOops encountered unexpected instruction:");
   724   n->dump(2);
   725   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   726 }
   727 #endif
   730 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   731                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   733 #ifdef ASSERT
   734   // The following code implements the +VerifyOops feature.
   735   // It verifies oop values which are loaded into or stored out of
   736   // the current method activation.  +VerifyOops complements techniques
   737   // like ScavengeALot, because it eagerly inspects oops in transit,
   738   // as they enter or leave the stack, as opposed to ScavengeALot,
   739   // which inspects oops "at rest", in the stack or heap, at safepoints.
   740   // For this reason, +VerifyOops can sometimes detect bugs very close
   741   // to their point of creation.  It can also serve as a cross-check
   742   // on the validity of oop maps, when used toegether with ScavengeALot.
   744   // It would be good to verify oops at other points, especially
   745   // when an oop is used as a base pointer for a load or store.
   746   // This is presently difficult, because it is hard to know when
   747   // a base address is biased or not.  (If we had such information,
   748   // it would be easy and useful to make a two-argument version of
   749   // verify_oop which unbiases the base, and performs verification.)
   751   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   752   bool is_verified_oop_base  = false;
   753   bool is_verified_oop_load  = false;
   754   bool is_verified_oop_store = false;
   755   int tmp_enc = -1;
   756   if (VerifyOops && src1_enc != R_SP_enc) {
   757     // classify the op, mainly for an assert check
   758     int st_op = 0, ld_op = 0;
   759     switch (primary) {
   760     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   761     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   762     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   763     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   764     case Assembler::std_op3:  st_op = Op_StoreL; break;
   765     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   766     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   768     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   769     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   770     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   771     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   772     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   773     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   774     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   775     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   776     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   777     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   778     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   780     default: ShouldNotReachHere();
   781     }
   782     if (tertiary == REGP_OP) {
   783       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   784       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   785       else                          ShouldNotReachHere();
   786       if (st_op) {
   787         // a store
   788         // inputs are (0:control, 1:memory, 2:address, 3:value)
   789         Node* n2 = n->in(3);
   790         if (n2 != NULL) {
   791           const Type* t = n2->bottom_type();
   792           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   793         }
   794       } else {
   795         // a load
   796         const Type* t = n->bottom_type();
   797         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   798       }
   799     }
   801     if (ld_op) {
   802       // a Load
   803       // inputs are (0:control, 1:memory, 2:address)
   804       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   805           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   806           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   807           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   808           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   809           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   810           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   811           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   812           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   813           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   814           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   815           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   816           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   817           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   818           !(n->rule() == loadUB_rule)) {
   819         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   820       }
   821     } else if (st_op) {
   822       // a Store
   823       // inputs are (0:control, 1:memory, 2:address, 3:value)
   824       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   825           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   826           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   827           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   828           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   829           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   830         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   831       }
   832     }
   834     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   835       Node* addr = n->in(2);
   836       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   837         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   838         if (atype != NULL) {
   839           intptr_t offset = get_offset_from_base(n, atype, disp32);
   840           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   841           if (offset != offset_2) {
   842             get_offset_from_base(n, atype, disp32);
   843             get_offset_from_base_2(n, atype, disp32);
   844           }
   845           assert(offset == offset_2, "different offsets");
   846           if (offset == disp32) {
   847             // we now know that src1 is a true oop pointer
   848             is_verified_oop_base = true;
   849             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   850               if( primary == Assembler::ldd_op3 ) {
   851                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   852               } else {
   853                 tmp_enc = dst_enc;
   854                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   855                 assert(src1_enc != dst_enc, "");
   856               }
   857             }
   858           }
   859           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   860                        || offset == oopDesc::mark_offset_in_bytes())) {
   861                       // loading the mark should not be allowed either, but
   862                       // we don't check this since it conflicts with InlineObjectHash
   863                       // usage of LoadINode to get the mark. We could keep the
   864                       // check if we create a new LoadMarkNode
   865             // but do not verify the object before its header is initialized
   866             ShouldNotReachHere();
   867           }
   868         }
   869       }
   870     }
   871   }
   872 #endif
   874   uint instr;
   875   instr = (Assembler::ldst_op << 30)
   876         | (dst_enc        << 25)
   877         | (primary        << 19)
   878         | (src1_enc       << 14);
   880   uint index = src2_enc;
   881   int disp = disp32;
   883   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   884     disp += STACK_BIAS;
   886   // We should have a compiler bailout here rather than a guarantee.
   887   // Better yet would be some mechanism to handle variable-size matches correctly.
   888   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   890   if( disp == 0 ) {
   891     // use reg-reg form
   892     // bit 13 is already zero
   893     instr |= index;
   894   } else {
   895     // use reg-imm form
   896     instr |= 0x00002000;          // set bit 13 to one
   897     instr |= disp & 0x1FFF;
   898   }
   900   uint *code = (uint*)cbuf.code_end();
   901   *code = instr;
   902   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   904 #ifdef ASSERT
   905   {
   906     MacroAssembler _masm(&cbuf);
   907     if (is_verified_oop_base) {
   908       __ verify_oop(reg_to_register_object(src1_enc));
   909     }
   910     if (is_verified_oop_store) {
   911       __ verify_oop(reg_to_register_object(dst_enc));
   912     }
   913     if (tmp_enc != -1) {
   914       __ mov(O7, reg_to_register_object(tmp_enc));
   915     }
   916     if (is_verified_oop_load) {
   917       __ verify_oop(reg_to_register_object(dst_enc));
   918     }
   919   }
   920 #endif
   921 }
   923 void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   924                         int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
   926   uint instr;
   927   instr = (Assembler::ldst_op << 30)
   928         | (dst_enc        << 25)
   929         | (primary        << 19)
   930         | (src1_enc       << 14);
   932   int disp = disp32;
   933   int index    = src2_enc;
   935   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   936     disp += STACK_BIAS;
   938   // We should have a compiler bailout here rather than a guarantee.
   939   // Better yet would be some mechanism to handle variable-size matches correctly.
   940   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   942   if( disp != 0 ) {
   943     // use reg-reg form
   944     // set src2=R_O7 contains offset
   945     index = R_O7_enc;
   946     emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
   947   }
   948   instr |= (asi << 5);
   949   instr |= index;
   950   uint *code = (uint*)cbuf.code_end();
   951   *code = instr;
   952   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   953 }
   955 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
   956   // The method which records debug information at every safepoint
   957   // expects the call to be the first instruction in the snippet as
   958   // it creates a PcDesc structure which tracks the offset of a call
   959   // from the start of the codeBlob. This offset is computed as
   960   // code_end() - code_begin() of the code which has been emitted
   961   // so far.
   962   // In this particular case we have skirted around the problem by
   963   // putting the "mov" instruction in the delay slot but the problem
   964   // may bite us again at some other point and a cleaner/generic
   965   // solution using relocations would be needed.
   966   MacroAssembler _masm(&cbuf);
   967   __ set_inst_mark();
   969   // We flush the current window just so that there is a valid stack copy
   970   // the fact that the current window becomes active again instantly is
   971   // not a problem there is nothing live in it.
   973 #ifdef ASSERT
   974   int startpos = __ offset();
   975 #endif /* ASSERT */
   977 #ifdef _LP64
   978   // Calls to the runtime or native may not be reachable from compiled code,
   979   // so we generate the far call sequence on 64 bit sparc.
   980   // This code sequence is relocatable to any address, even on LP64.
   981   if ( force_far_call ) {
   982     __ relocate(rtype);
   983     Address dest(O7, (address)entry_point);
   984     __ jumpl_to(dest, O7);
   985   }
   986   else
   987 #endif
   988   {
   989      __ call((address)entry_point, rtype);
   990   }
   992   if (preserve_g2)   __ delayed()->mov(G2, L7);
   993   else __ delayed()->nop();
   995   if (preserve_g2)   __ mov(L7, G2);
   997 #ifdef ASSERT
   998   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   999 #ifdef _LP64
  1000     // Trash argument dump slots.
  1001     __ set(0xb0b8ac0db0b8ac0d, G1);
  1002     __ mov(G1, G5);
  1003     __ stx(G1, SP, STACK_BIAS + 0x80);
  1004     __ stx(G1, SP, STACK_BIAS + 0x88);
  1005     __ stx(G1, SP, STACK_BIAS + 0x90);
  1006     __ stx(G1, SP, STACK_BIAS + 0x98);
  1007     __ stx(G1, SP, STACK_BIAS + 0xA0);
  1008     __ stx(G1, SP, STACK_BIAS + 0xA8);
  1009 #else // _LP64
  1010     // this is also a native call, so smash the first 7 stack locations,
  1011     // and the various registers
  1013     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1014     // while [SP+0x44..0x58] are the argument dump slots.
  1015     __ set((intptr_t)0xbaadf00d, G1);
  1016     __ mov(G1, G5);
  1017     __ sllx(G1, 32, G1);
  1018     __ or3(G1, G5, G1);
  1019     __ mov(G1, G5);
  1020     __ stx(G1, SP, 0x40);
  1021     __ stx(G1, SP, 0x48);
  1022     __ stx(G1, SP, 0x50);
  1023     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1024 #endif // _LP64
  1026 #endif /*ASSERT*/
  1029 //=============================================================================
  1030 // REQUIRED FUNCTIONALITY for encoding
  1031 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1032 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1034 void emit_ptr(CodeBuffer &cbuf, intptr_t val, Register reg, bool ForceRelocatable) {
  1035   MacroAssembler _masm(&cbuf);
  1036   if (ForceRelocatable) {
  1037     Address addr(reg, (address)val);
  1038     __ sethi(addr, ForceRelocatable);
  1039     __ add(addr, reg);
  1040   } else {
  1041     __ set(val, reg);
  1046 //=============================================================================
  1048 #ifndef PRODUCT
  1049 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1050   Compile* C = ra_->C;
  1052   for (int i = 0; i < OptoPrologueNops; i++) {
  1053     st->print_cr("NOP"); st->print("\t");
  1056   if( VerifyThread ) {
  1057     st->print_cr("Verify_Thread"); st->print("\t");
  1060   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1062   // Calls to C2R adapters often do not accept exceptional returns.
  1063   // We require that their callers must bang for them.  But be careful, because
  1064   // some VM calls (such as call site linkage) can use several kilobytes of
  1065   // stack.  But the stack safety zone should account for that.
  1066   // See bugs 4446381, 4468289, 4497237.
  1067   if (C->need_stack_bang(framesize)) {
  1068     st->print_cr("! stack bang"); st->print("\t");
  1071   if (Assembler::is_simm13(-framesize)) {
  1072     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1073   } else {
  1074     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1075     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1076     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1080 #endif
  1082 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1083   Compile* C = ra_->C;
  1084   MacroAssembler _masm(&cbuf);
  1086   for (int i = 0; i < OptoPrologueNops; i++) {
  1087     __ nop();
  1090   __ verify_thread();
  1092   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1093   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1094   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1096   // Calls to C2R adapters often do not accept exceptional returns.
  1097   // We require that their callers must bang for them.  But be careful, because
  1098   // some VM calls (such as call site linkage) can use several kilobytes of
  1099   // stack.  But the stack safety zone should account for that.
  1100   // See bugs 4446381, 4468289, 4497237.
  1101   if (C->need_stack_bang(framesize)) {
  1102     __ generate_stack_overflow_check(framesize);
  1105   if (Assembler::is_simm13(-framesize)) {
  1106     __ save(SP, -framesize, SP);
  1107   } else {
  1108     __ sethi(-framesize & ~0x3ff, G3);
  1109     __ add(G3, -framesize & 0x3ff, G3);
  1110     __ save(SP, G3, SP);
  1112   C->set_frame_complete( __ offset() );
  1115 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1116   return MachNode::size(ra_);
  1119 int MachPrologNode::reloc() const {
  1120   return 10; // a large enough number
  1123 //=============================================================================
  1124 #ifndef PRODUCT
  1125 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1126   Compile* C = ra_->C;
  1128   if( do_polling() && ra_->C->is_method_compilation() ) {
  1129     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1130 #ifdef _LP64
  1131     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1132 #else
  1133     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1134 #endif
  1137   if( do_polling() )
  1138     st->print("RET\n\t");
  1140   st->print("RESTORE");
  1142 #endif
  1144 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1145   MacroAssembler _masm(&cbuf);
  1146   Compile* C = ra_->C;
  1148   __ verify_thread();
  1150   // If this does safepoint polling, then do it here
  1151   if( do_polling() && ra_->C->is_method_compilation() ) {
  1152     Address polling_page(L0, (address)os::get_polling_page());
  1153     __ sethi(polling_page, false);
  1154     __ relocate(relocInfo::poll_return_type);
  1155     __ ld_ptr( L0, 0, G0 );
  1158   // If this is a return, then stuff the restore in the delay slot
  1159   if( do_polling() ) {
  1160     __ ret();
  1161     __ delayed()->restore();
  1162   } else {
  1163     __ restore();
  1167 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1168   return MachNode::size(ra_);
  1171 int MachEpilogNode::reloc() const {
  1172   return 16; // a large enough number
  1175 const Pipeline * MachEpilogNode::pipeline() const {
  1176   return MachNode::pipeline_class();
  1179 int MachEpilogNode::safepoint_offset() const {
  1180   assert( do_polling(), "no return for this epilog node");
  1181   return MacroAssembler::size_of_sethi(os::get_polling_page());
  1184 //=============================================================================
  1186 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1187 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1188 static enum RC rc_class( OptoReg::Name reg ) {
  1189   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1190   if (OptoReg::is_stack(reg)) return rc_stack;
  1191   VMReg r = OptoReg::as_VMReg(reg);
  1192   if (r->is_Register()) return rc_int;
  1193   assert(r->is_FloatRegister(), "must be");
  1194   return rc_float;
  1197 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1198   if( cbuf ) {
  1199     // Better yet would be some mechanism to handle variable-size matches correctly
  1200     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1201       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1202     } else {
  1203       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1206 #ifndef PRODUCT
  1207   else if( !do_size ) {
  1208     if( size != 0 ) st->print("\n\t");
  1209     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1210     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1212 #endif
  1213   return size+4;
  1216 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1217   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1218 #ifndef PRODUCT
  1219   else if( !do_size ) {
  1220     if( size != 0 ) st->print("\n\t");
  1221     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1223 #endif
  1224   return size+4;
  1227 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1228                                         PhaseRegAlloc *ra_,
  1229                                         bool do_size,
  1230                                         outputStream* st ) const {
  1231   // Get registers to move
  1232   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1233   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1234   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1235   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1237   enum RC src_second_rc = rc_class(src_second);
  1238   enum RC src_first_rc = rc_class(src_first);
  1239   enum RC dst_second_rc = rc_class(dst_second);
  1240   enum RC dst_first_rc = rc_class(dst_first);
  1242   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1244   // Generate spill code!
  1245   int size = 0;
  1247   if( src_first == dst_first && src_second == dst_second )
  1248     return size;            // Self copy, no move
  1250   // --------------------------------------
  1251   // Check for mem-mem move.  Load into unused float registers and fall into
  1252   // the float-store case.
  1253   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1254     int offset = ra_->reg2offset(src_first);
  1255     // Further check for aligned-adjacent pair, so we can use a double load
  1256     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1257       src_second    = OptoReg::Name(R_F31_num);
  1258       src_second_rc = rc_float;
  1259       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1260     } else {
  1261       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1263     src_first    = OptoReg::Name(R_F30_num);
  1264     src_first_rc = rc_float;
  1267   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1268     int offset = ra_->reg2offset(src_second);
  1269     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1270     src_second    = OptoReg::Name(R_F31_num);
  1271     src_second_rc = rc_float;
  1274   // --------------------------------------
  1275   // Check for float->int copy; requires a trip through memory
  1276   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
  1277     int offset = frame::register_save_words*wordSize;
  1278     if( cbuf ) {
  1279       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1280       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1281       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1282       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1284 #ifndef PRODUCT
  1285     else if( !do_size ) {
  1286       if( size != 0 ) st->print("\n\t");
  1287       st->print(  "SUB    R_SP,16,R_SP\n");
  1288       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1289       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1290       st->print("\tADD    R_SP,16,R_SP\n");
  1292 #endif
  1293     size += 16;
  1296   // --------------------------------------
  1297   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1298   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1299   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1300   // there.  Misaligned sources only come from native-long-returns (handled
  1301   // special below).
  1302 #ifndef _LP64
  1303   if( src_first_rc == rc_int &&     // source is already big-endian
  1304       src_second_rc != rc_bad &&    // 64-bit move
  1305       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1306     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1307     // Do the big-endian flop.
  1308     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1309     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1311 #endif
  1313   // --------------------------------------
  1314   // Check for integer reg-reg copy
  1315   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1316 #ifndef _LP64
  1317     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1318       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1319       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1320       //       operand contains the least significant word of the 64-bit value and vice versa.
  1321       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1322       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1323       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1324       if( cbuf ) {
  1325         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1326         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1327         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1328 #ifndef PRODUCT
  1329       } else if( !do_size ) {
  1330         if( size != 0 ) st->print("\n\t");
  1331         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1332         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1333         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1334 #endif
  1336       return size+12;
  1338     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1339       // returning a long value in I0/I1
  1340       // a SpillCopy must be able to target a return instruction's reg_class
  1341       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1342       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1343       //       operand contains the least significant word of the 64-bit value and vice versa.
  1344       OptoReg::Name tdest = dst_first;
  1346       if (src_first == dst_first) {
  1347         tdest = OptoReg::Name(R_O7_num);
  1348         size += 4;
  1351       if( cbuf ) {
  1352         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1353         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1354         // ShrL_reg_imm6
  1355         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1356         // ShrR_reg_imm6  src, 0, dst
  1357         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1358         if (tdest != dst_first) {
  1359           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1362 #ifndef PRODUCT
  1363       else if( !do_size ) {
  1364         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1365         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1366         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1367         if (tdest != dst_first) {
  1368           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1371 #endif // PRODUCT
  1372       return size+8;
  1374 #endif // !_LP64
  1375     // Else normal reg-reg copy
  1376     assert( src_second != dst_first, "smashed second before evacuating it" );
  1377     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1378     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1379     // This moves an aligned adjacent pair.
  1380     // See if we are done.
  1381     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1382       return size;
  1385   // Check for integer store
  1386   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1387     int offset = ra_->reg2offset(dst_first);
  1388     // Further check for aligned-adjacent pair, so we can use a double store
  1389     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1390       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1391     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1394   // Check for integer load
  1395   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1396     int offset = ra_->reg2offset(src_first);
  1397     // Further check for aligned-adjacent pair, so we can use a double load
  1398     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1399       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1400     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1403   // Check for float reg-reg copy
  1404   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1405     // Further check for aligned-adjacent pair, so we can use a double move
  1406     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1407       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1408     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1411   // Check for float store
  1412   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1413     int offset = ra_->reg2offset(dst_first);
  1414     // Further check for aligned-adjacent pair, so we can use a double store
  1415     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1416       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1417     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1420   // Check for float load
  1421   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1422     int offset = ra_->reg2offset(src_first);
  1423     // Further check for aligned-adjacent pair, so we can use a double load
  1424     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1425       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1426     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1429   // --------------------------------------------------------------------
  1430   // Check for hi bits still needing moving.  Only happens for misaligned
  1431   // arguments to native calls.
  1432   if( src_second == dst_second )
  1433     return size;               // Self copy; no move
  1434   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1436 #ifndef _LP64
  1437   // In the LP64 build, all registers can be moved as aligned/adjacent
  1438   // pairs, so there's never any need to move the high bits separately.
  1439   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1440   // all sorts of silly alignment problems.
  1442   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1443   // 32-bits of a 64-bit register, but are needed in low bits of another
  1444   // register (else it's a hi-bits-to-hi-bits copy which should have
  1445   // happened already as part of a 64-bit move)
  1446   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1447     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1448     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1449     // Shift src_second down to dst_second's low bits.
  1450     if( cbuf ) {
  1451       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1452 #ifndef PRODUCT
  1453     } else if( !do_size ) {
  1454       if( size != 0 ) st->print("\n\t");
  1455       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1456 #endif
  1458     return size+4;
  1461   // Check for high word integer store.  Must down-shift the hi bits
  1462   // into a temp register, then fall into the case of storing int bits.
  1463   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1464     // Shift src_second down to dst_second's low bits.
  1465     if( cbuf ) {
  1466       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1467 #ifndef PRODUCT
  1468     } else if( !do_size ) {
  1469       if( size != 0 ) st->print("\n\t");
  1470       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1471 #endif
  1473     size+=4;
  1474     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1477   // Check for high word integer load
  1478   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1479     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1481   // Check for high word integer store
  1482   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1483     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1485   // Check for high word float store
  1486   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1487     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1489 #endif // !_LP64
  1491   Unimplemented();
  1494 #ifndef PRODUCT
  1495 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1496   implementation( NULL, ra_, false, st );
  1498 #endif
  1500 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1501   implementation( &cbuf, ra_, false, NULL );
  1504 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1505   return implementation( NULL, ra_, true, NULL );
  1508 //=============================================================================
  1509 #ifndef PRODUCT
  1510 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1511   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1513 #endif
  1515 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1516   MacroAssembler _masm(&cbuf);
  1517   for(int i = 0; i < _count; i += 1) {
  1518     __ nop();
  1522 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1523   return 4 * _count;
  1527 //=============================================================================
  1528 #ifndef PRODUCT
  1529 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1530   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1531   int reg = ra_->get_reg_first(this);
  1532   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1534 #endif
  1536 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1537   MacroAssembler _masm(&cbuf);
  1538   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1539   int reg = ra_->get_encode(this);
  1541   if (Assembler::is_simm13(offset)) {
  1542      __ add(SP, offset, reg_to_register_object(reg));
  1543   } else {
  1544      __ set(offset, O7);
  1545      __ add(SP, O7, reg_to_register_object(reg));
  1549 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1550   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1551   assert(ra_ == ra_->C->regalloc(), "sanity");
  1552   return ra_->C->scratch_emit_size(this);
  1555 //=============================================================================
  1557 // emit call stub, compiled java to interpretor
  1558 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1560   // Stub is fixed up when the corresponding call is converted from calling
  1561   // compiled code to calling interpreted code.
  1562   // set (empty), G5
  1563   // jmp -1
  1565   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1567   MacroAssembler _masm(&cbuf);
  1569   address base =
  1570   __ start_a_stub(Compile::MAX_stubs_size);
  1571   if (base == NULL)  return;  // CodeBuffer::expand failed
  1573   // static stub relocation stores the instruction address of the call
  1574   __ relocate(static_stub_Relocation::spec(mark));
  1576   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1578   __ set_inst_mark();
  1579   Address a(G3, (address)-1);
  1580   __ JUMP(a, 0);
  1582   __ delayed()->nop();
  1584   // Update current stubs pointer and restore code_end.
  1585   __ end_a_stub();
  1588 // size of call stub, compiled java to interpretor
  1589 uint size_java_to_interp() {
  1590   // This doesn't need to be accurate but it must be larger or equal to
  1591   // the real size of the stub.
  1592   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1593           NativeJump::instruction_size + // sethi; jmp; nop
  1594           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1596 // relocation entries for call stub, compiled java to interpretor
  1597 uint reloc_java_to_interp() {
  1598   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1602 //=============================================================================
  1603 #ifndef PRODUCT
  1604 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1605   st->print_cr("\nUEP:");
  1606 #ifdef    _LP64
  1607   if (UseCompressedOops) {
  1608     assert(Universe::heap() != NULL, "java heap should be initialized");
  1609     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1610     st->print_cr("\tSLL    R_G5,3,R_G5");
  1611     if (Universe::narrow_oop_base() != NULL)
  1612       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1613   } else {
  1614     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1616   st->print_cr("\tCMP    R_G5,R_G3" );
  1617   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1618 #else  // _LP64
  1619   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1620   st->print_cr("\tCMP    R_G5,R_G3" );
  1621   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1622 #endif // _LP64
  1624 #endif
  1626 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1627   MacroAssembler _masm(&cbuf);
  1628   Label L;
  1629   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1630   Register temp_reg   = G3;
  1631   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1633   // Load klass from receiver
  1634   __ load_klass(O0, temp_reg);
  1635   // Compare against expected klass
  1636   __ cmp(temp_reg, G5_ic_reg);
  1637   // Branch to miss code, checks xcc or icc depending
  1638   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1641 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1642   return MachNode::size(ra_);
  1646 //=============================================================================
  1648 uint size_exception_handler() {
  1649   if (TraceJumps) {
  1650     return (400); // just a guess
  1652   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1655 uint size_deopt_handler() {
  1656   if (TraceJumps) {
  1657     return (400); // just a guess
  1659   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1662 // Emit exception handler code.
  1663 int emit_exception_handler(CodeBuffer& cbuf) {
  1664   Register temp_reg = G3;
  1665   Address exception_blob(temp_reg, OptoRuntime::exception_blob()->instructions_begin());
  1666   MacroAssembler _masm(&cbuf);
  1668   address base =
  1669   __ start_a_stub(size_exception_handler());
  1670   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1672   int offset = __ offset();
  1674   __ JUMP(exception_blob, 0); // sethi;jmp
  1675   __ delayed()->nop();
  1677   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1679   __ end_a_stub();
  1681   return offset;
  1684 int emit_deopt_handler(CodeBuffer& cbuf) {
  1685   // Can't use any of the current frame's registers as we may have deopted
  1686   // at a poll and everything (including G3) can be live.
  1687   Register temp_reg = L0;
  1688   Address deopt_blob(temp_reg, SharedRuntime::deopt_blob()->unpack());
  1689   MacroAssembler _masm(&cbuf);
  1691   address base =
  1692   __ start_a_stub(size_deopt_handler());
  1693   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1695   int offset = __ offset();
  1696   __ save_frame(0);
  1697   __ JUMP(deopt_blob, 0); // sethi;jmp
  1698   __ delayed()->restore();
  1700   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1702   __ end_a_stub();
  1703   return offset;
  1707 // Given a register encoding, produce a Integer Register object
  1708 static Register reg_to_register_object(int register_encoding) {
  1709   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1710   return as_Register(register_encoding);
  1713 // Given a register encoding, produce a single-precision Float Register object
  1714 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1715   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1716   return as_SingleFloatRegister(register_encoding);
  1719 // Given a register encoding, produce a double-precision Float Register object
  1720 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1721   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1722   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1723   return as_DoubleFloatRegister(register_encoding);
  1726 int Matcher::regnum_to_fpu_offset(int regnum) {
  1727   return regnum - 32; // The FP registers are in the second chunk
  1730 #ifdef ASSERT
  1731 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1732 #endif
  1734 // Vector width in bytes
  1735 const uint Matcher::vector_width_in_bytes(void) {
  1736   return 8;
  1739 // Vector ideal reg
  1740 const uint Matcher::vector_ideal_reg(void) {
  1741   return Op_RegD;
  1744 // USII supports fxtof through the whole range of number, USIII doesn't
  1745 const bool Matcher::convL2FSupported(void) {
  1746   return VM_Version::has_fast_fxtof();
  1749 // Is this branch offset short enough that a short branch can be used?
  1750 //
  1751 // NOTE: If the platform does not provide any short branch variants, then
  1752 //       this method should return false for offset 0.
  1753 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1754   return false;
  1757 const bool Matcher::isSimpleConstant64(jlong value) {
  1758   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1759   // Depends on optimizations in MacroAssembler::setx.
  1760   int hi = (int)(value >> 32);
  1761   int lo = (int)(value & ~0);
  1762   return (hi == 0) || (hi == -1) || (lo == 0);
  1765 // No scaling for the parameter the ClearArray node.
  1766 const bool Matcher::init_array_count_is_in_bytes = true;
  1768 // Threshold size for cleararray.
  1769 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1771 // Should the Matcher clone shifts on addressing modes, expecting them to
  1772 // be subsumed into complex addressing expressions or compute them into
  1773 // registers?  True for Intel but false for most RISCs
  1774 const bool Matcher::clone_shift_expressions = false;
  1776 // Is it better to copy float constants, or load them directly from memory?
  1777 // Intel can load a float constant from a direct address, requiring no
  1778 // extra registers.  Most RISCs will have to materialize an address into a
  1779 // register first, so they would do better to copy the constant from stack.
  1780 const bool Matcher::rematerialize_float_constants = false;
  1782 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1783 // needed.  Else we split the double into 2 integer pieces and move it
  1784 // piece-by-piece.  Only happens when passing doubles into C code as the
  1785 // Java calling convention forces doubles to be aligned.
  1786 #ifdef _LP64
  1787 const bool Matcher::misaligned_doubles_ok = true;
  1788 #else
  1789 const bool Matcher::misaligned_doubles_ok = false;
  1790 #endif
  1792 // No-op on SPARC.
  1793 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1796 // Advertise here if the CPU requires explicit rounding operations
  1797 // to implement the UseStrictFP mode.
  1798 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1800 // Do floats take an entire double register or just half?
  1801 const bool Matcher::float_in_double = false;
  1803 // Do ints take an entire long register or just half?
  1804 // Note that we if-def off of _LP64.
  1805 // The relevant question is how the int is callee-saved.  In _LP64
  1806 // the whole long is written but de-opt'ing will have to extract
  1807 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1808 #ifdef _LP64
  1809 const bool Matcher::int_in_long = true;
  1810 #else
  1811 const bool Matcher::int_in_long = false;
  1812 #endif
  1814 // Return whether or not this register is ever used as an argument.  This
  1815 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1816 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1817 // arguments in those registers not be available to the callee.
  1818 bool Matcher::can_be_java_arg( int reg ) {
  1819   // Standard sparc 6 args in registers
  1820   if( reg == R_I0_num ||
  1821       reg == R_I1_num ||
  1822       reg == R_I2_num ||
  1823       reg == R_I3_num ||
  1824       reg == R_I4_num ||
  1825       reg == R_I5_num ) return true;
  1826 #ifdef _LP64
  1827   // 64-bit builds can pass 64-bit pointers and longs in
  1828   // the high I registers
  1829   if( reg == R_I0H_num ||
  1830       reg == R_I1H_num ||
  1831       reg == R_I2H_num ||
  1832       reg == R_I3H_num ||
  1833       reg == R_I4H_num ||
  1834       reg == R_I5H_num ) return true;
  1836   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1837     return true;
  1840 #else
  1841   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1842   // Longs cannot be passed in O regs, because O regs become I regs
  1843   // after a 'save' and I regs get their high bits chopped off on
  1844   // interrupt.
  1845   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1846   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1847 #endif
  1848   // A few float args in registers
  1849   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1851   return false;
  1854 bool Matcher::is_spillable_arg( int reg ) {
  1855   return can_be_java_arg(reg);
  1858 // Register for DIVI projection of divmodI
  1859 RegMask Matcher::divI_proj_mask() {
  1860   ShouldNotReachHere();
  1861   return RegMask();
  1864 // Register for MODI projection of divmodI
  1865 RegMask Matcher::modI_proj_mask() {
  1866   ShouldNotReachHere();
  1867   return RegMask();
  1870 // Register for DIVL projection of divmodL
  1871 RegMask Matcher::divL_proj_mask() {
  1872   ShouldNotReachHere();
  1873   return RegMask();
  1876 // Register for MODL projection of divmodL
  1877 RegMask Matcher::modL_proj_mask() {
  1878   ShouldNotReachHere();
  1879   return RegMask();
  1882 %}
  1885 // The intptr_t operand types, defined by textual substitution.
  1886 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1887 #ifdef _LP64
  1888 #define immX    immL
  1889 #define immX13  immL13
  1890 #define iRegX   iRegL
  1891 #define g1RegX  g1RegL
  1892 #else
  1893 #define immX    immI
  1894 #define immX13  immI13
  1895 #define iRegX   iRegI
  1896 #define g1RegX  g1RegI
  1897 #endif
  1899 //----------ENCODING BLOCK-----------------------------------------------------
  1900 // This block specifies the encoding classes used by the compiler to output
  1901 // byte streams.  Encoding classes are parameterized macros used by
  1902 // Machine Instruction Nodes in order to generate the bit encoding of the
  1903 // instruction.  Operands specify their base encoding interface with the
  1904 // interface keyword.  There are currently supported four interfaces,
  1905 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1906 // operand to generate a function which returns its register number when
  1907 // queried.   CONST_INTER causes an operand to generate a function which
  1908 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1909 // operand to generate four functions which return the Base Register, the
  1910 // Index Register, the Scale Value, and the Offset Value of the operand when
  1911 // queried.  COND_INTER causes an operand to generate six functions which
  1912 // return the encoding code (ie - encoding bits for the instruction)
  1913 // associated with each basic boolean condition for a conditional instruction.
  1914 //
  1915 // Instructions specify two basic values for encoding.  Again, a function
  1916 // is available to check if the constant displacement is an oop. They use the
  1917 // ins_encode keyword to specify their encoding classes (which must be
  1918 // a sequence of enc_class names, and their parameters, specified in
  1919 // the encoding block), and they use the
  1920 // opcode keyword to specify, in order, their primary, secondary, and
  1921 // tertiary opcode.  Only the opcode sections which a particular instruction
  1922 // needs for encoding need to be specified.
  1923 encode %{
  1924   enc_class enc_untested %{
  1925 #ifdef ASSERT
  1926     MacroAssembler _masm(&cbuf);
  1927     __ untested("encoding");
  1928 #endif
  1929   %}
  1931   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  1932     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1933                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1934   %}
  1936   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  1937     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1938                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1939   %}
  1941   enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
  1942     emit_form3_mem_reg_asi(cbuf, this, $primary, -1,
  1943                      $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
  1944   %}
  1946   enc_class form3_mem_prefetch_read( memory mem ) %{
  1947     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1948                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  1949   %}
  1951   enc_class form3_mem_prefetch_write( memory mem ) %{
  1952     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1953                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  1954   %}
  1956   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  1957     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1958     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1959     guarantee($mem$$index == R_G0_enc, "double index?");
  1960     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  1961     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  1962     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  1963     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  1964   %}
  1966   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  1967     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1968     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1969     guarantee($mem$$index == R_G0_enc, "double index?");
  1970     // Load long with 2 instructions
  1971     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  1972     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  1973   %}
  1975   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  1976   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  1977     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  1978     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  1979   %}
  1981   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  1982     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1983     if( $rs2$$reg != $rd$$reg )
  1984       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  1985   %}
  1987   // Target lo half of long
  1988   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  1989     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1990     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  1991       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  1992   %}
  1994   // Source lo half of long
  1995   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  1996     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1997     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  1998       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  1999   %}
  2001   // Target hi half of long
  2002   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2003     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2004   %}
  2006   // Source lo half of long, and leave it sign extended.
  2007   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2008     // Sign extend low half
  2009     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2010   %}
  2012   // Source hi half of long, and leave it sign extended.
  2013   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2014     // Shift high half to low half
  2015     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2016   %}
  2018   // Source hi half of long
  2019   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2020     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2021     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2022       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2023   %}
  2025   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2026     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2027   %}
  2029   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2030     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2031     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2032   %}
  2034   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2035     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2036     // clear if nothing else is happening
  2037     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2038     // blt,a,pn done
  2039     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2040     // mov dst,-1 in delay slot
  2041     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2042   %}
  2044   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2045     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2046   %}
  2048   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2049     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2050   %}
  2052   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2053     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2054   %}
  2056   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2057     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2058   %}
  2060   enc_class move_return_pc_to_o1() %{
  2061     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2062   %}
  2064 #ifdef _LP64
  2065   /* %%% merge with enc_to_bool */
  2066   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2067     MacroAssembler _masm(&cbuf);
  2069     Register   src_reg = reg_to_register_object($src$$reg);
  2070     Register   dst_reg = reg_to_register_object($dst$$reg);
  2071     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2072   %}
  2073 #endif
  2075   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2076     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2077     MacroAssembler _masm(&cbuf);
  2079     Register   p_reg = reg_to_register_object($p$$reg);
  2080     Register   q_reg = reg_to_register_object($q$$reg);
  2081     Register   y_reg = reg_to_register_object($y$$reg);
  2082     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2084     __ subcc( p_reg, q_reg,   p_reg );
  2085     __ add  ( p_reg, y_reg, tmp_reg );
  2086     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2087   %}
  2089   enc_class form_d2i_helper(regD src, regF dst) %{
  2090     // fcmp %fcc0,$src,$src
  2091     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2092     // branch %fcc0 not-nan, predict taken
  2093     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2094     // fdtoi $src,$dst
  2095     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2096     // fitos $dst,$dst (if nan)
  2097     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2098     // clear $dst (if nan)
  2099     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2100     // carry on here...
  2101   %}
  2103   enc_class form_d2l_helper(regD src, regD dst) %{
  2104     // fcmp %fcc0,$src,$src  check for NAN
  2105     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2106     // branch %fcc0 not-nan, predict taken
  2107     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2108     // fdtox $src,$dst   convert in delay slot
  2109     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2110     // fxtod $dst,$dst  (if nan)
  2111     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2112     // clear $dst (if nan)
  2113     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2114     // carry on here...
  2115   %}
  2117   enc_class form_f2i_helper(regF src, regF dst) %{
  2118     // fcmps %fcc0,$src,$src
  2119     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2120     // branch %fcc0 not-nan, predict taken
  2121     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2122     // fstoi $src,$dst
  2123     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2124     // fitos $dst,$dst (if nan)
  2125     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2126     // clear $dst (if nan)
  2127     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2128     // carry on here...
  2129   %}
  2131   enc_class form_f2l_helper(regF src, regD dst) %{
  2132     // fcmps %fcc0,$src,$src
  2133     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2134     // branch %fcc0 not-nan, predict taken
  2135     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2136     // fstox $src,$dst
  2137     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2138     // fxtod $dst,$dst (if nan)
  2139     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2140     // clear $dst (if nan)
  2141     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2142     // carry on here...
  2143   %}
  2145   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2146   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2147   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2148   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2150   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2152   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2153   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2155   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2156     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2157   %}
  2159   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2160     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2161   %}
  2163   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2164     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2165   %}
  2167   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2168     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2169   %}
  2171   enc_class form3_convI2F(regF rs2, regF rd) %{
  2172     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2173   %}
  2175   // Encloding class for traceable jumps
  2176   enc_class form_jmpl(g3RegP dest) %{
  2177     emit_jmpl(cbuf, $dest$$reg);
  2178   %}
  2180   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2181     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2182   %}
  2184   enc_class form2_nop() %{
  2185     emit_nop(cbuf);
  2186   %}
  2188   enc_class form2_illtrap() %{
  2189     emit_illtrap(cbuf);
  2190   %}
  2193   // Compare longs and convert into -1, 0, 1.
  2194   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2195     // CMP $src1,$src2
  2196     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2197     // blt,a,pn done
  2198     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2199     // mov dst,-1 in delay slot
  2200     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2201     // bgt,a,pn done
  2202     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2203     // mov dst,1 in delay slot
  2204     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2205     // CLR    $dst
  2206     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2207   %}
  2209   enc_class enc_PartialSubtypeCheck() %{
  2210     MacroAssembler _masm(&cbuf);
  2211     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2212     __ delayed()->nop();
  2213   %}
  2215   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
  2216     MacroAssembler _masm(&cbuf);
  2217     Label &L = *($labl$$label);
  2218     Assembler::Predict predict_taken =
  2219       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2221     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
  2222     __ delayed()->nop();
  2223   %}
  2225   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
  2226     MacroAssembler _masm(&cbuf);
  2227     Label &L = *($labl$$label);
  2228     Assembler::Predict predict_taken =
  2229       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2231     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
  2232     __ delayed()->nop();
  2233   %}
  2235   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
  2236     MacroAssembler _masm(&cbuf);
  2237     Label &L = *($labl$$label);
  2238     Assembler::Predict predict_taken =
  2239       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2241     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
  2242     __ delayed()->nop();
  2243   %}
  2245   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
  2246     MacroAssembler _masm(&cbuf);
  2247     Label &L = *($labl$$label);
  2248     Assembler::Predict predict_taken =
  2249       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2251     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
  2252     __ delayed()->nop();
  2253   %}
  2255   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
  2256     MacroAssembler _masm(&cbuf);
  2258     Register switch_reg       = as_Register($switch_val$$reg);
  2259     Register table_reg        = O7;
  2261     address table_base = __ address_table_constant(_index2label);
  2262     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
  2264     // Load table address
  2265     Address the_pc(table_reg, table_base, rspec);
  2266     __ load_address(the_pc);
  2268     // Jump to base address + switch value
  2269     __ ld_ptr(table_reg, switch_reg, table_reg);
  2270     __ jmp(table_reg, G0);
  2271     __ delayed()->nop();
  2273   %}
  2275   enc_class enc_ba( Label labl ) %{
  2276     MacroAssembler _masm(&cbuf);
  2277     Label &L = *($labl$$label);
  2278     __ ba(false, L);
  2279     __ delayed()->nop();
  2280   %}
  2282   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2283     MacroAssembler _masm(&cbuf);
  2284     Label &L = *$labl$$label;
  2285     Assembler::Predict predict_taken =
  2286       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2288     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
  2289     __ delayed()->nop();
  2290   %}
  2292   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2293     int op = (Assembler::arith_op << 30) |
  2294              ($dst$$reg << 25) |
  2295              (Assembler::movcc_op3 << 19) |
  2296              (1 << 18) |                    // cc2 bit for 'icc'
  2297              ($cmp$$cmpcode << 14) |
  2298              (0 << 13) |                    // select register move
  2299              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2300              ($src$$reg << 0);
  2301     *((int*)(cbuf.code_end())) = op;
  2302     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2303   %}
  2305   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2306     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2307     int op = (Assembler::arith_op << 30) |
  2308              ($dst$$reg << 25) |
  2309              (Assembler::movcc_op3 << 19) |
  2310              (1 << 18) |                    // cc2 bit for 'icc'
  2311              ($cmp$$cmpcode << 14) |
  2312              (1 << 13) |                    // select immediate move
  2313              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2314              (simm11 << 0);
  2315     *((int*)(cbuf.code_end())) = op;
  2316     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2317   %}
  2319   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2320     int op = (Assembler::arith_op << 30) |
  2321              ($dst$$reg << 25) |
  2322              (Assembler::movcc_op3 << 19) |
  2323              (0 << 18) |                    // cc2 bit for 'fccX'
  2324              ($cmp$$cmpcode << 14) |
  2325              (0 << 13) |                    // select register move
  2326              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2327              ($src$$reg << 0);
  2328     *((int*)(cbuf.code_end())) = op;
  2329     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2330   %}
  2332   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2333     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2334     int op = (Assembler::arith_op << 30) |
  2335              ($dst$$reg << 25) |
  2336              (Assembler::movcc_op3 << 19) |
  2337              (0 << 18) |                    // cc2 bit for 'fccX'
  2338              ($cmp$$cmpcode << 14) |
  2339              (1 << 13) |                    // select immediate move
  2340              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2341              (simm11 << 0);
  2342     *((int*)(cbuf.code_end())) = op;
  2343     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2344   %}
  2346   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2347     int op = (Assembler::arith_op << 30) |
  2348              ($dst$$reg << 25) |
  2349              (Assembler::fpop2_op3 << 19) |
  2350              (0 << 18) |
  2351              ($cmp$$cmpcode << 14) |
  2352              (1 << 13) |                    // select register move
  2353              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2354              ($primary << 5) |              // select single, double or quad
  2355              ($src$$reg << 0);
  2356     *((int*)(cbuf.code_end())) = op;
  2357     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2358   %}
  2360   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2361     int op = (Assembler::arith_op << 30) |
  2362              ($dst$$reg << 25) |
  2363              (Assembler::fpop2_op3 << 19) |
  2364              (0 << 18) |
  2365              ($cmp$$cmpcode << 14) |
  2366              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2367              ($primary << 5) |              // select single, double or quad
  2368              ($src$$reg << 0);
  2369     *((int*)(cbuf.code_end())) = op;
  2370     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2371   %}
  2373   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2374   // the condition comes from opcode-field instead of an argument.
  2375   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2376     int op = (Assembler::arith_op << 30) |
  2377              ($dst$$reg << 25) |
  2378              (Assembler::movcc_op3 << 19) |
  2379              (1 << 18) |                    // cc2 bit for 'icc'
  2380              ($primary << 14) |
  2381              (0 << 13) |                    // select register move
  2382              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2383              ($src$$reg << 0);
  2384     *((int*)(cbuf.code_end())) = op;
  2385     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2386   %}
  2388   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2389     int op = (Assembler::arith_op << 30) |
  2390              ($dst$$reg << 25) |
  2391              (Assembler::movcc_op3 << 19) |
  2392              (6 << 16) |                    // cc2 bit for 'xcc'
  2393              ($primary << 14) |
  2394              (0 << 13) |                    // select register move
  2395              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2396              ($src$$reg << 0);
  2397     *((int*)(cbuf.code_end())) = op;
  2398     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2399   %}
  2401   // Utility encoding for loading a 64 bit Pointer into a register
  2402   // The 64 bit pointer is stored in the generated code stream
  2403   enc_class SetPtr( immP src, iRegP rd ) %{
  2404     Register dest = reg_to_register_object($rd$$reg);
  2405     // [RGV] This next line should be generated from ADLC
  2406     if ( _opnds[1]->constant_is_oop() ) {
  2407       intptr_t val = $src$$constant;
  2408       MacroAssembler _masm(&cbuf);
  2409       __ set_oop_constant((jobject)val, dest);
  2410     } else {          // non-oop pointers, e.g. card mark base, heap top
  2411       emit_ptr(cbuf, $src$$constant, dest, /*ForceRelocatable=*/ false);
  2413   %}
  2415   enc_class Set13( immI13 src, iRegI rd ) %{
  2416     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2417   %}
  2419   enc_class SetHi22( immI src, iRegI rd ) %{
  2420     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2421   %}
  2423   enc_class Set32( immI src, iRegI rd ) %{
  2424     MacroAssembler _masm(&cbuf);
  2425     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2426   %}
  2428   enc_class SetNull( iRegI rd ) %{
  2429     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
  2430   %}
  2432   enc_class call_epilog %{
  2433     if( VerifyStackAtCalls ) {
  2434       MacroAssembler _masm(&cbuf);
  2435       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2436       Register temp_reg = G3;
  2437       __ add(SP, framesize, temp_reg);
  2438       __ cmp(temp_reg, FP);
  2439       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2441   %}
  2443   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2444   // to G1 so the register allocator will not have to deal with the misaligned register
  2445   // pair.
  2446   enc_class adjust_long_from_native_call %{
  2447 #ifndef _LP64
  2448     if (returns_long()) {
  2449       //    sllx  O0,32,O0
  2450       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2451       //    srl   O1,0,O1
  2452       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2453       //    or    O0,O1,G1
  2454       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2456 #endif
  2457   %}
  2459   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2460     // CALL directly to the runtime
  2461     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2462     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2463                     /*preserve_g2=*/true, /*force far call*/true);
  2464   %}
  2466   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2467     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2468     // who we intended to call.
  2469     if ( !_method ) {
  2470       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2471     } else if (_optimized_virtual) {
  2472       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2473     } else {
  2474       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2476     if( _method ) {  // Emit stub for static call
  2477       emit_java_to_interp(cbuf);
  2479   %}
  2481   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2482     MacroAssembler _masm(&cbuf);
  2483     __ set_inst_mark();
  2484     int vtable_index = this->_vtable_index;
  2485     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2486     if (vtable_index < 0) {
  2487       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2488       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2489       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2490       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2491       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2492       // !!!!!
  2493       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2494       // emit_call_dynamic_prologue( cbuf );
  2495       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2497       address  virtual_call_oop_addr = __ inst_mark();
  2498       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2499       // who we intended to call.
  2500       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2501       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2502     } else {
  2503       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2504       // Just go thru the vtable
  2505       // get receiver klass (receiver already checked for non-null)
  2506       // If we end up going thru a c2i adapter interpreter expects method in G5
  2507       int off = __ offset();
  2508       __ load_klass(O0, G3_scratch);
  2509       int klass_load_size;
  2510       if (UseCompressedOops) {
  2511         assert(Universe::heap() != NULL, "java heap should be initialized");
  2512         if (Universe::narrow_oop_base() == NULL)
  2513           klass_load_size = 2*BytesPerInstWord;
  2514         else
  2515           klass_load_size = 3*BytesPerInstWord;
  2516       } else {
  2517         klass_load_size = 1*BytesPerInstWord;
  2519       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2520       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2521       if( __ is_simm13(v_off) ) {
  2522         __ ld_ptr(G3, v_off, G5_method);
  2523       } else {
  2524         // Generate 2 instructions
  2525         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2526         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2527         // ld_ptr, set_hi, set
  2528         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2529                "Unexpected instruction size(s)");
  2530         __ ld_ptr(G3, G5_method, G5_method);
  2532       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2533       // However it may very well end up in handle_wrong_method if the
  2534       // method is abstract for the particular class.
  2535       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2536       // jump to target (either compiled code or c2iadapter)
  2537       __ jmpl(G3_scratch, G0, O7);
  2538       __ delayed()->nop();
  2540   %}
  2542   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2543     MacroAssembler _masm(&cbuf);
  2545     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2546     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2547                               // we might be calling a C2I adapter which needs it.
  2549     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2550     // Load nmethod
  2551     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2553     // CALL to compiled java, indirect the contents of G3
  2554     __ set_inst_mark();
  2555     __ callr(temp_reg, G0);
  2556     __ delayed()->nop();
  2557   %}
  2559 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2560     MacroAssembler _masm(&cbuf);
  2561     Register Rdividend = reg_to_register_object($src1$$reg);
  2562     Register Rdivisor = reg_to_register_object($src2$$reg);
  2563     Register Rresult = reg_to_register_object($dst$$reg);
  2565     __ sra(Rdivisor, 0, Rdivisor);
  2566     __ sra(Rdividend, 0, Rdividend);
  2567     __ sdivx(Rdividend, Rdivisor, Rresult);
  2568 %}
  2570 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2571     MacroAssembler _masm(&cbuf);
  2573     Register Rdividend = reg_to_register_object($src1$$reg);
  2574     int divisor = $imm$$constant;
  2575     Register Rresult = reg_to_register_object($dst$$reg);
  2577     __ sra(Rdividend, 0, Rdividend);
  2578     __ sdivx(Rdividend, divisor, Rresult);
  2579 %}
  2581 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2582     MacroAssembler _masm(&cbuf);
  2583     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2584     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2585     Register Rdst  = reg_to_register_object($dst$$reg);
  2587     __ sra( Rsrc1, 0, Rsrc1 );
  2588     __ sra( Rsrc2, 0, Rsrc2 );
  2589     __ mulx( Rsrc1, Rsrc2, Rdst );
  2590     __ srlx( Rdst, 32, Rdst );
  2591 %}
  2593 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2594     MacroAssembler _masm(&cbuf);
  2595     Register Rdividend = reg_to_register_object($src1$$reg);
  2596     Register Rdivisor = reg_to_register_object($src2$$reg);
  2597     Register Rresult = reg_to_register_object($dst$$reg);
  2598     Register Rscratch = reg_to_register_object($scratch$$reg);
  2600     assert(Rdividend != Rscratch, "");
  2601     assert(Rdivisor  != Rscratch, "");
  2603     __ sra(Rdividend, 0, Rdividend);
  2604     __ sra(Rdivisor, 0, Rdivisor);
  2605     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2606     __ mulx(Rscratch, Rdivisor, Rscratch);
  2607     __ sub(Rdividend, Rscratch, Rresult);
  2608 %}
  2610 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2611     MacroAssembler _masm(&cbuf);
  2613     Register Rdividend = reg_to_register_object($src1$$reg);
  2614     int divisor = $imm$$constant;
  2615     Register Rresult = reg_to_register_object($dst$$reg);
  2616     Register Rscratch = reg_to_register_object($scratch$$reg);
  2618     assert(Rdividend != Rscratch, "");
  2620     __ sra(Rdividend, 0, Rdividend);
  2621     __ sdivx(Rdividend, divisor, Rscratch);
  2622     __ mulx(Rscratch, divisor, Rscratch);
  2623     __ sub(Rdividend, Rscratch, Rresult);
  2624 %}
  2626 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2627     MacroAssembler _masm(&cbuf);
  2629     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2630     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2632     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2633 %}
  2635 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2636     MacroAssembler _masm(&cbuf);
  2638     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2639     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2641     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2642 %}
  2644 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2645     MacroAssembler _masm(&cbuf);
  2647     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2648     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2650     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2651 %}
  2653 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2654     MacroAssembler _masm(&cbuf);
  2656     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2657     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2659     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2660 %}
  2662 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2663     MacroAssembler _masm(&cbuf);
  2665     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2666     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2668     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2669 %}
  2671 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2672     MacroAssembler _masm(&cbuf);
  2674     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2675     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2677     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2678 %}
  2680 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2681     MacroAssembler _masm(&cbuf);
  2683     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2684     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2686     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2687 %}
  2689 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2690     MacroAssembler _masm(&cbuf);
  2692     Register Roop  = reg_to_register_object($oop$$reg);
  2693     Register Rbox  = reg_to_register_object($box$$reg);
  2694     Register Rscratch = reg_to_register_object($scratch$$reg);
  2695     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2697     assert(Roop  != Rscratch, "");
  2698     assert(Roop  != Rmark, "");
  2699     assert(Rbox  != Rscratch, "");
  2700     assert(Rbox  != Rmark, "");
  2702     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2703 %}
  2705 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2706     MacroAssembler _masm(&cbuf);
  2708     Register Roop  = reg_to_register_object($oop$$reg);
  2709     Register Rbox  = reg_to_register_object($box$$reg);
  2710     Register Rscratch = reg_to_register_object($scratch$$reg);
  2711     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2713     assert(Roop  != Rscratch, "");
  2714     assert(Roop  != Rmark, "");
  2715     assert(Rbox  != Rscratch, "");
  2716     assert(Rbox  != Rmark, "");
  2718     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2719   %}
  2721   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2722     MacroAssembler _masm(&cbuf);
  2723     Register Rmem = reg_to_register_object($mem$$reg);
  2724     Register Rold = reg_to_register_object($old$$reg);
  2725     Register Rnew = reg_to_register_object($new$$reg);
  2727     // casx_under_lock picks 1 of 3 encodings:
  2728     // For 32-bit pointers you get a 32-bit CAS
  2729     // For 64-bit pointers you get a 64-bit CASX
  2730     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2731     __ cmp( Rold, Rnew );
  2732   %}
  2734   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2735     Register Rmem = reg_to_register_object($mem$$reg);
  2736     Register Rold = reg_to_register_object($old$$reg);
  2737     Register Rnew = reg_to_register_object($new$$reg);
  2739     MacroAssembler _masm(&cbuf);
  2740     __ mov(Rnew, O7);
  2741     __ casx(Rmem, Rold, O7);
  2742     __ cmp( Rold, O7 );
  2743   %}
  2745   // raw int cas, used for compareAndSwap
  2746   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2747     Register Rmem = reg_to_register_object($mem$$reg);
  2748     Register Rold = reg_to_register_object($old$$reg);
  2749     Register Rnew = reg_to_register_object($new$$reg);
  2751     MacroAssembler _masm(&cbuf);
  2752     __ mov(Rnew, O7);
  2753     __ cas(Rmem, Rold, O7);
  2754     __ cmp( Rold, O7 );
  2755   %}
  2757   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2758     Register Rres = reg_to_register_object($res$$reg);
  2760     MacroAssembler _masm(&cbuf);
  2761     __ mov(1, Rres);
  2762     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2763   %}
  2765   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2766     Register Rres = reg_to_register_object($res$$reg);
  2768     MacroAssembler _masm(&cbuf);
  2769     __ mov(1, Rres);
  2770     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2771   %}
  2773   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2774     MacroAssembler _masm(&cbuf);
  2775     Register Rdst = reg_to_register_object($dst$$reg);
  2776     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2777                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2778     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2779                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2781     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2782     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2783   %}
  2785   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
  2786     MacroAssembler _masm(&cbuf);
  2787     Register dest = reg_to_register_object($dst$$reg);
  2788     Register temp = reg_to_register_object($tmp$$reg);
  2789     __ set64( $src$$constant, dest, temp );
  2790   %}
  2792   enc_class LdImmF(immF src, regF dst, o7RegP tmp) %{    // Load Immediate
  2793     address float_address = MacroAssembler(&cbuf).float_constant($src$$constant);
  2794     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
  2795 #ifdef _LP64
  2796     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2797     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2798     emit_ptr(cbuf, (intptr_t)float_address, tmp_reg, /*ForceRelocatable=*/ true);
  2799     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, $tmp$$reg, 0 );
  2800 #else  // _LP64
  2801     uint *code;
  2802     int tmp_reg = $tmp$$reg;
  2804     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2805     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) float_address );
  2807     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2808     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, tmp_reg, (intptr_t) float_address );
  2809 #endif // _LP64
  2810   %}
  2812   enc_class LdImmD(immD src, regD dst, o7RegP tmp) %{    // Load Immediate
  2813     address double_address = MacroAssembler(&cbuf).double_constant($src$$constant);
  2814     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2815 #ifdef _LP64
  2816     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2817     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2818     emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
  2819     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
  2820 #else // _LP64
  2821     uint *code;
  2822     int tmp_reg = $tmp$$reg;
  2824     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2825     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
  2827     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2828     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
  2829 #endif // _LP64
  2830   %}
  2832   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
  2833     // Load a constant replicated "count" times with width "width"
  2834     int bit_width = $width$$constant * 8;
  2835     jlong elt_val = $src$$constant;
  2836     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
  2837     jlong val = elt_val;
  2838     for (int i = 0; i < $count$$constant - 1; i++) {
  2839         val <<= bit_width;
  2840         val |= elt_val;
  2842     jdouble dval = *(jdouble*)&val; // coerce to double type
  2843     address double_address = MacroAssembler(&cbuf).double_constant(dval);
  2844     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2845 #ifdef _LP64
  2846     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2847     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2848     emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
  2849     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
  2850 #else // _LP64
  2851     uint *code;
  2852     int tmp_reg = $tmp$$reg;
  2854     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2855     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
  2857     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2858     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
  2859 #endif // _LP64
  2860   %}
  2863   enc_class ShouldNotEncodeThis ( ) %{
  2864     ShouldNotCallThis();
  2865   %}
  2867   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2868   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2869     MacroAssembler _masm(&cbuf);
  2870     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2871     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2872     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2874     Label loop;
  2875     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2877     // Loop and clear, walking backwards through the array.
  2878     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2879     __ bind(loop);
  2880     __ deccc(nof_bytes_tmp, 8);
  2881     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2882     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2883     // %%%% this mini-loop must not cross a cache boundary!
  2884   %}
  2887   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
  2888     Label Ldone, Lloop;
  2889     MacroAssembler _masm(&cbuf);
  2891     Register   str1_reg = reg_to_register_object($str1$$reg);
  2892     Register   str2_reg = reg_to_register_object($str2$$reg);
  2893     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  2894     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
  2895     Register result_reg = reg_to_register_object($result$$reg);
  2897     // Get the first character position in both strings
  2898     //         [8] char array, [12] offset, [16] count
  2899     int  value_offset = java_lang_String:: value_offset_in_bytes();
  2900     int offset_offset = java_lang_String::offset_offset_in_bytes();
  2901     int  count_offset = java_lang_String:: count_offset_in_bytes();
  2903     // load str1 (jchar*) base address into tmp1_reg
  2904     __ load_heap_oop(Address(str1_reg, 0,  value_offset), tmp1_reg);
  2905     __ ld(Address(str1_reg, 0, offset_offset), result_reg);
  2906     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
  2907     __    ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  2908     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  2909     __    load_heap_oop(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  2910     __ add(result_reg, tmp1_reg, tmp1_reg);
  2912     // load str2 (jchar*) base address into tmp2_reg
  2913     // __ ld_ptr(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  2914     __ ld(Address(str2_reg, 0, offset_offset), result_reg);
  2915     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
  2916     __    ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  2917     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  2918     __   subcc(str1_reg, str2_reg, O7); // hoisted
  2919     __ add(result_reg, tmp2_reg, tmp2_reg);
  2921     // Compute the minimum of the string lengths(str1_reg) and the
  2922     // difference of the string lengths (stack)
  2924     // discard string base pointers, after loading up the lengths
  2925     // __ ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  2926     // __ ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  2928     // See if the lengths are different, and calculate min in str1_reg.
  2929     // Stash diff in O7 in case we need it for a tie-breaker.
  2930     Label Lskip;
  2931     // __ subcc(str1_reg, str2_reg, O7); // hoisted
  2932     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
  2933     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2934     // str2 is shorter, so use its count:
  2935     __ delayed()->sll(str2_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
  2936     __ bind(Lskip);
  2938     // reallocate str1_reg, str2_reg, result_reg
  2939     // Note:  limit_reg holds the string length pre-scaled by 2
  2940     Register limit_reg =   str1_reg;
  2941     Register  chr2_reg =   str2_reg;
  2942     Register  chr1_reg = result_reg;
  2943     // tmp{12} are the base pointers
  2945     // Is the minimum length zero?
  2946     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2947     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2948     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2950     // Load first characters
  2951     __ lduh(tmp1_reg, 0, chr1_reg);
  2952     __ lduh(tmp2_reg, 0, chr2_reg);
  2954     // Compare first characters
  2955     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2956     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2957     assert(chr1_reg == result_reg, "result must be pre-placed");
  2958     __ delayed()->nop();
  2961       // Check after comparing first character to see if strings are equivalent
  2962       Label LSkip2;
  2963       // Check if the strings start at same location
  2964       __ cmp(tmp1_reg, tmp2_reg);
  2965       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2966       __ delayed()->nop();
  2968       // Check if the length difference is zero (in O7)
  2969       __ cmp(G0, O7);
  2970       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2971       __ delayed()->mov(G0, result_reg);  // result is zero
  2973       // Strings might not be equal
  2974       __ bind(LSkip2);
  2977     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2978     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2979     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2981     // Shift tmp1_reg and tmp2_reg to the end of the arrays, negate limit
  2982     __ add(tmp1_reg, limit_reg, tmp1_reg);
  2983     __ add(tmp2_reg, limit_reg, tmp2_reg);
  2984     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2986     // Compare the rest of the characters
  2987     __ lduh(tmp1_reg, limit_reg, chr1_reg);
  2988     __ bind(Lloop);
  2989     // __ lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  2990     __ lduh(tmp2_reg, limit_reg, chr2_reg);
  2991     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2992     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2993     assert(chr1_reg == result_reg, "result must be pre-placed");
  2994     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2995     // annul LDUH if branch is not taken to prevent access past end of string
  2996     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2997     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  2999     // If strings are equal up to min length, return the length difference.
  3000     __ mov(O7, result_reg);
  3002     // Otherwise, return the difference between the first mismatched chars.
  3003     __ bind(Ldone);
  3004   %}
  3006   enc_class enc_rethrow() %{
  3007     cbuf.set_inst_mark();
  3008     Register temp_reg = G3;
  3009     Address rethrow_stub(temp_reg, OptoRuntime::rethrow_stub());
  3010     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3011     MacroAssembler _masm(&cbuf);
  3012 #ifdef ASSERT
  3013     __ save_frame(0);
  3014     Address last_rethrow_addr(L1, (address)&last_rethrow);
  3015     __ sethi(last_rethrow_addr);
  3016     __ get_pc(L2);
  3017     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3018     __ st_ptr(L2, last_rethrow_addr);
  3019     __ restore();
  3020 #endif
  3021     __ JUMP(rethrow_stub, 0); // sethi;jmp
  3022     __ delayed()->nop();
  3023   %}
  3025   enc_class emit_mem_nop() %{
  3026     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3027     unsigned int *code = (unsigned int*)cbuf.code_end();
  3028     *code = (unsigned int)0xc0839040;
  3029     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3030   %}
  3032   enc_class emit_fadd_nop() %{
  3033     // Generates the instruction FMOVS f31,f31
  3034     unsigned int *code = (unsigned int*)cbuf.code_end();
  3035     *code = (unsigned int)0xbfa0003f;
  3036     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3037   %}
  3039   enc_class emit_br_nop() %{
  3040     // Generates the instruction BPN,PN .
  3041     unsigned int *code = (unsigned int*)cbuf.code_end();
  3042     *code = (unsigned int)0x00400000;
  3043     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3044   %}
  3046   enc_class enc_membar_acquire %{
  3047     MacroAssembler _masm(&cbuf);
  3048     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3049   %}
  3051   enc_class enc_membar_release %{
  3052     MacroAssembler _masm(&cbuf);
  3053     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3054   %}
  3056   enc_class enc_membar_volatile %{
  3057     MacroAssembler _masm(&cbuf);
  3058     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3059   %}
  3061   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3062     MacroAssembler _masm(&cbuf);
  3063     Register src_reg = reg_to_register_object($src$$reg);
  3064     Register dst_reg = reg_to_register_object($dst$$reg);
  3065     __ sllx(src_reg, 56, dst_reg);
  3066     __ srlx(dst_reg,  8, O7);
  3067     __ or3 (dst_reg, O7, dst_reg);
  3068     __ srlx(dst_reg, 16, O7);
  3069     __ or3 (dst_reg, O7, dst_reg);
  3070     __ srlx(dst_reg, 32, O7);
  3071     __ or3 (dst_reg, O7, dst_reg);
  3072   %}
  3074   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3075     MacroAssembler _masm(&cbuf);
  3076     Register src_reg = reg_to_register_object($src$$reg);
  3077     Register dst_reg = reg_to_register_object($dst$$reg);
  3078     __ sll(src_reg, 24, dst_reg);
  3079     __ srl(dst_reg,  8, O7);
  3080     __ or3(dst_reg, O7, dst_reg);
  3081     __ srl(dst_reg, 16, O7);
  3082     __ or3(dst_reg, O7, dst_reg);
  3083   %}
  3085   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3086     MacroAssembler _masm(&cbuf);
  3087     Register src_reg = reg_to_register_object($src$$reg);
  3088     Register dst_reg = reg_to_register_object($dst$$reg);
  3089     __ sllx(src_reg, 48, dst_reg);
  3090     __ srlx(dst_reg, 16, O7);
  3091     __ or3 (dst_reg, O7, dst_reg);
  3092     __ srlx(dst_reg, 32, O7);
  3093     __ or3 (dst_reg, O7, dst_reg);
  3094   %}
  3096   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3097     MacroAssembler _masm(&cbuf);
  3098     Register src_reg = reg_to_register_object($src$$reg);
  3099     Register dst_reg = reg_to_register_object($dst$$reg);
  3100     __ sllx(src_reg, 32, dst_reg);
  3101     __ srlx(dst_reg, 32, O7);
  3102     __ or3 (dst_reg, O7, dst_reg);
  3103   %}
  3105 %}
  3107 //----------FRAME--------------------------------------------------------------
  3108 // Definition of frame structure and management information.
  3109 //
  3110 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3111 //                             |   (to get allocators register number
  3112 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3113 //  r   CALLER     |        |
  3114 //  o     |        +--------+      pad to even-align allocators stack-slot
  3115 //  w     V        |  pad0  |        numbers; owned by CALLER
  3116 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3117 //  h     ^        |   in   |  5
  3118 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3119 //  |     |        |        |  3
  3120 //  |     |        +--------+
  3121 //  V     |        | old out|      Empty on Intel, window on Sparc
  3122 //        |    old |preserve|      Must be even aligned.
  3123 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3124 //        |        |   in   |  3   area for Intel ret address
  3125 //     Owned by    |preserve|      Empty on Sparc.
  3126 //       SELF      +--------+
  3127 //        |        |  pad2  |  2   pad to align old SP
  3128 //        |        +--------+  1
  3129 //        |        | locks  |  0
  3130 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3131 //        |        |  pad1  | 11   pad to align new SP
  3132 //        |        +--------+
  3133 //        |        |        | 10
  3134 //        |        | spills |  9   spills
  3135 //        V        |        |  8   (pad0 slot for callee)
  3136 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3137 //        ^        |  out   |  7
  3138 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3139 //     Owned by    +--------+
  3140 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3141 //        |    new |preserve|      Must be even-aligned.
  3142 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3143 //        |        |        |
  3144 //
  3145 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3146 //         known from SELF's arguments and the Java calling convention.
  3147 //         Region 6-7 is determined per call site.
  3148 // Note 2: If the calling convention leaves holes in the incoming argument
  3149 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3150 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3151 //         incoming area, as the Java calling convention is completely under
  3152 //         the control of the AD file.  Doubles can be sorted and packed to
  3153 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3154 //         varargs C calling conventions.
  3155 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3156 //         even aligned with pad0 as needed.
  3157 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3158 //         region 6-11 is even aligned; it may be padded out more so that
  3159 //         the region from SP to FP meets the minimum stack alignment.
  3161 frame %{
  3162   // What direction does stack grow in (assumed to be same for native & Java)
  3163   stack_direction(TOWARDS_LOW);
  3165   // These two registers define part of the calling convention
  3166   // between compiled code and the interpreter.
  3167   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3168   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3170   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3171   cisc_spilling_operand_name(indOffset);
  3173   // Number of stack slots consumed by a Monitor enter
  3174 #ifdef _LP64
  3175   sync_stack_slots(2);
  3176 #else
  3177   sync_stack_slots(1);
  3178 #endif
  3180   // Compiled code's Frame Pointer
  3181   frame_pointer(R_SP);
  3183   // Stack alignment requirement
  3184   stack_alignment(StackAlignmentInBytes);
  3185   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3186   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3188   // Number of stack slots between incoming argument block and the start of
  3189   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3190   // EPILOG must remove this many slots.
  3191   in_preserve_stack_slots(0);
  3193   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3194   // for calls to C.  Supports the var-args backing area for register parms.
  3195   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3196 #ifdef _LP64
  3197   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3198   varargs_C_out_slots_killed(12);
  3199 #else
  3200   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3201   varargs_C_out_slots_killed( 7);
  3202 #endif
  3204   // The after-PROLOG location of the return address.  Location of
  3205   // return address specifies a type (REG or STACK) and a number
  3206   // representing the register number (i.e. - use a register name) or
  3207   // stack slot.
  3208   return_addr(REG R_I7);          // Ret Addr is in register I7
  3210   // Body of function which returns an OptoRegs array locating
  3211   // arguments either in registers or in stack slots for calling
  3212   // java
  3213   calling_convention %{
  3214     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3216   %}
  3218   // Body of function which returns an OptoRegs array locating
  3219   // arguments either in registers or in stack slots for callin
  3220   // C.
  3221   c_calling_convention %{
  3222     // This is obviously always outgoing
  3223     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3224   %}
  3226   // Location of native (C/C++) and interpreter return values.  This is specified to
  3227   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3228   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3229   // to and from the register pairs is done by the appropriate call and epilog
  3230   // opcodes.  This simplifies the register allocator.
  3231   c_return_value %{
  3232     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3233 #ifdef     _LP64
  3234     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3235     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3236     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3237     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3238 #else  // !_LP64
  3239     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3240     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3241     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3242     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3243 #endif
  3244     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3245                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3246   %}
  3248   // Location of compiled Java return values.  Same as C
  3249   return_value %{
  3250     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3251 #ifdef     _LP64
  3252     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3253     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3254     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3255     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3256 #else  // !_LP64
  3257     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3258     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3259     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3260     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3261 #endif
  3262     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3263                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3264   %}
  3266 %}
  3269 //----------ATTRIBUTES---------------------------------------------------------
  3270 //----------Operand Attributes-------------------------------------------------
  3271 op_attrib op_cost(1);          // Required cost attribute
  3273 //----------Instruction Attributes---------------------------------------------
  3274 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3275 ins_attrib ins_size(32);       // Required size attribute (in bits)
  3276 ins_attrib ins_pc_relative(0); // Required PC Relative flag
  3277 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3278                                 // non-matching short branch variant of some
  3279                                                             // long branch?
  3281 //----------OPERANDS-----------------------------------------------------------
  3282 // Operand definitions must precede instruction definitions for correct parsing
  3283 // in the ADLC because operands constitute user defined types which are used in
  3284 // instruction definitions.
  3286 //----------Simple Operands----------------------------------------------------
  3287 // Immediate Operands
  3288 // Integer Immediate: 32-bit
  3289 operand immI() %{
  3290   match(ConI);
  3292   op_cost(0);
  3293   // formats are generated automatically for constants and base registers
  3294   format %{ %}
  3295   interface(CONST_INTER);
  3296 %}
  3298 // Integer Immediate: 13-bit
  3299 operand immI13() %{
  3300   predicate(Assembler::is_simm13(n->get_int()));
  3301   match(ConI);
  3302   op_cost(0);
  3304   format %{ %}
  3305   interface(CONST_INTER);
  3306 %}
  3308 // Unsigned (positive) Integer Immediate: 13-bit
  3309 operand immU13() %{
  3310   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3311   match(ConI);
  3312   op_cost(0);
  3314   format %{ %}
  3315   interface(CONST_INTER);
  3316 %}
  3318 // Integer Immediate: 6-bit
  3319 operand immU6() %{
  3320   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3321   match(ConI);
  3322   op_cost(0);
  3323   format %{ %}
  3324   interface(CONST_INTER);
  3325 %}
  3327 // Integer Immediate: 11-bit
  3328 operand immI11() %{
  3329   predicate(Assembler::is_simm(n->get_int(),11));
  3330   match(ConI);
  3331   op_cost(0);
  3332   format %{ %}
  3333   interface(CONST_INTER);
  3334 %}
  3336 // Integer Immediate: 0-bit
  3337 operand immI0() %{
  3338   predicate(n->get_int() == 0);
  3339   match(ConI);
  3340   op_cost(0);
  3342   format %{ %}
  3343   interface(CONST_INTER);
  3344 %}
  3346 // Integer Immediate: the value 10
  3347 operand immI10() %{
  3348   predicate(n->get_int() == 10);
  3349   match(ConI);
  3350   op_cost(0);
  3352   format %{ %}
  3353   interface(CONST_INTER);
  3354 %}
  3356 // Integer Immediate: the values 0-31
  3357 operand immU5() %{
  3358   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3359   match(ConI);
  3360   op_cost(0);
  3362   format %{ %}
  3363   interface(CONST_INTER);
  3364 %}
  3366 // Integer Immediate: the values 1-31
  3367 operand immI_1_31() %{
  3368   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3369   match(ConI);
  3370   op_cost(0);
  3372   format %{ %}
  3373   interface(CONST_INTER);
  3374 %}
  3376 // Integer Immediate: the values 32-63
  3377 operand immI_32_63() %{
  3378   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3379   match(ConI);
  3380   op_cost(0);
  3382   format %{ %}
  3383   interface(CONST_INTER);
  3384 %}
  3386 // Integer Immediate: the value 255
  3387 operand immI_255() %{
  3388   predicate( n->get_int() == 255 );
  3389   match(ConI);
  3390   op_cost(0);
  3392   format %{ %}
  3393   interface(CONST_INTER);
  3394 %}
  3396 // Long Immediate: the value FF
  3397 operand immL_FF() %{
  3398   predicate( n->get_long() == 0xFFL );
  3399   match(ConL);
  3400   op_cost(0);
  3402   format %{ %}
  3403   interface(CONST_INTER);
  3404 %}
  3406 // Long Immediate: the value FFFF
  3407 operand immL_FFFF() %{
  3408   predicate( n->get_long() == 0xFFFFL );
  3409   match(ConL);
  3410   op_cost(0);
  3412   format %{ %}
  3413   interface(CONST_INTER);
  3414 %}
  3416 // Pointer Immediate: 32 or 64-bit
  3417 operand immP() %{
  3418   match(ConP);
  3420   op_cost(5);
  3421   // formats are generated automatically for constants and base registers
  3422   format %{ %}
  3423   interface(CONST_INTER);
  3424 %}
  3426 operand immP13() %{
  3427   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3428   match(ConP);
  3429   op_cost(0);
  3431   format %{ %}
  3432   interface(CONST_INTER);
  3433 %}
  3435 operand immP0() %{
  3436   predicate(n->get_ptr() == 0);
  3437   match(ConP);
  3438   op_cost(0);
  3440   format %{ %}
  3441   interface(CONST_INTER);
  3442 %}
  3444 operand immP_poll() %{
  3445   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3446   match(ConP);
  3448   // formats are generated automatically for constants and base registers
  3449   format %{ %}
  3450   interface(CONST_INTER);
  3451 %}
  3453 // Pointer Immediate
  3454 operand immN()
  3455 %{
  3456   match(ConN);
  3458   op_cost(10);
  3459   format %{ %}
  3460   interface(CONST_INTER);
  3461 %}
  3463 // NULL Pointer Immediate
  3464 operand immN0()
  3465 %{
  3466   predicate(n->get_narrowcon() == 0);
  3467   match(ConN);
  3469   op_cost(0);
  3470   format %{ %}
  3471   interface(CONST_INTER);
  3472 %}
  3474 operand immL() %{
  3475   match(ConL);
  3476   op_cost(40);
  3477   // formats are generated automatically for constants and base registers
  3478   format %{ %}
  3479   interface(CONST_INTER);
  3480 %}
  3482 operand immL0() %{
  3483   predicate(n->get_long() == 0L);
  3484   match(ConL);
  3485   op_cost(0);
  3486   // formats are generated automatically for constants and base registers
  3487   format %{ %}
  3488   interface(CONST_INTER);
  3489 %}
  3491 // Long Immediate: 13-bit
  3492 operand immL13() %{
  3493   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3494   match(ConL);
  3495   op_cost(0);
  3497   format %{ %}
  3498   interface(CONST_INTER);
  3499 %}
  3501 // Long Immediate: low 32-bit mask
  3502 operand immL_32bits() %{
  3503   predicate(n->get_long() == 0xFFFFFFFFL);
  3504   match(ConL);
  3505   op_cost(0);
  3507   format %{ %}
  3508   interface(CONST_INTER);
  3509 %}
  3511 // Double Immediate
  3512 operand immD() %{
  3513   match(ConD);
  3515   op_cost(40);
  3516   format %{ %}
  3517   interface(CONST_INTER);
  3518 %}
  3520 operand immD0() %{
  3521 #ifdef _LP64
  3522   // on 64-bit architectures this comparision is faster
  3523   predicate(jlong_cast(n->getd()) == 0);
  3524 #else
  3525   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3526 #endif
  3527   match(ConD);
  3529   op_cost(0);
  3530   format %{ %}
  3531   interface(CONST_INTER);
  3532 %}
  3534 // Float Immediate
  3535 operand immF() %{
  3536   match(ConF);
  3538   op_cost(20);
  3539   format %{ %}
  3540   interface(CONST_INTER);
  3541 %}
  3543 // Float Immediate: 0
  3544 operand immF0() %{
  3545   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3546   match(ConF);
  3548   op_cost(0);
  3549   format %{ %}
  3550   interface(CONST_INTER);
  3551 %}
  3553 // Integer Register Operands
  3554 // Integer Register
  3555 operand iRegI() %{
  3556   constraint(ALLOC_IN_RC(int_reg));
  3557   match(RegI);
  3559   match(notemp_iRegI);
  3560   match(g1RegI);
  3561   match(o0RegI);
  3562   match(iRegIsafe);
  3564   format %{ %}
  3565   interface(REG_INTER);
  3566 %}
  3568 operand notemp_iRegI() %{
  3569   constraint(ALLOC_IN_RC(notemp_int_reg));
  3570   match(RegI);
  3572   match(o0RegI);
  3574   format %{ %}
  3575   interface(REG_INTER);
  3576 %}
  3578 operand o0RegI() %{
  3579   constraint(ALLOC_IN_RC(o0_regI));
  3580   match(iRegI);
  3582   format %{ %}
  3583   interface(REG_INTER);
  3584 %}
  3586 // Pointer Register
  3587 operand iRegP() %{
  3588   constraint(ALLOC_IN_RC(ptr_reg));
  3589   match(RegP);
  3591   match(lock_ptr_RegP);
  3592   match(g1RegP);
  3593   match(g2RegP);
  3594   match(g3RegP);
  3595   match(g4RegP);
  3596   match(i0RegP);
  3597   match(o0RegP);
  3598   match(o1RegP);
  3599   match(l7RegP);
  3601   format %{ %}
  3602   interface(REG_INTER);
  3603 %}
  3605 operand sp_ptr_RegP() %{
  3606   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3607   match(RegP);
  3608   match(iRegP);
  3610   format %{ %}
  3611   interface(REG_INTER);
  3612 %}
  3614 operand lock_ptr_RegP() %{
  3615   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3616   match(RegP);
  3617   match(i0RegP);
  3618   match(o0RegP);
  3619   match(o1RegP);
  3620   match(l7RegP);
  3622   format %{ %}
  3623   interface(REG_INTER);
  3624 %}
  3626 operand g1RegP() %{
  3627   constraint(ALLOC_IN_RC(g1_regP));
  3628   match(iRegP);
  3630   format %{ %}
  3631   interface(REG_INTER);
  3632 %}
  3634 operand g2RegP() %{
  3635   constraint(ALLOC_IN_RC(g2_regP));
  3636   match(iRegP);
  3638   format %{ %}
  3639   interface(REG_INTER);
  3640 %}
  3642 operand g3RegP() %{
  3643   constraint(ALLOC_IN_RC(g3_regP));
  3644   match(iRegP);
  3646   format %{ %}
  3647   interface(REG_INTER);
  3648 %}
  3650 operand g1RegI() %{
  3651   constraint(ALLOC_IN_RC(g1_regI));
  3652   match(iRegI);
  3654   format %{ %}
  3655   interface(REG_INTER);
  3656 %}
  3658 operand g3RegI() %{
  3659   constraint(ALLOC_IN_RC(g3_regI));
  3660   match(iRegI);
  3662   format %{ %}
  3663   interface(REG_INTER);
  3664 %}
  3666 operand g4RegI() %{
  3667   constraint(ALLOC_IN_RC(g4_regI));
  3668   match(iRegI);
  3670   format %{ %}
  3671   interface(REG_INTER);
  3672 %}
  3674 operand g4RegP() %{
  3675   constraint(ALLOC_IN_RC(g4_regP));
  3676   match(iRegP);
  3678   format %{ %}
  3679   interface(REG_INTER);
  3680 %}
  3682 operand i0RegP() %{
  3683   constraint(ALLOC_IN_RC(i0_regP));
  3684   match(iRegP);
  3686   format %{ %}
  3687   interface(REG_INTER);
  3688 %}
  3690 operand o0RegP() %{
  3691   constraint(ALLOC_IN_RC(o0_regP));
  3692   match(iRegP);
  3694   format %{ %}
  3695   interface(REG_INTER);
  3696 %}
  3698 operand o1RegP() %{
  3699   constraint(ALLOC_IN_RC(o1_regP));
  3700   match(iRegP);
  3702   format %{ %}
  3703   interface(REG_INTER);
  3704 %}
  3706 operand o2RegP() %{
  3707   constraint(ALLOC_IN_RC(o2_regP));
  3708   match(iRegP);
  3710   format %{ %}
  3711   interface(REG_INTER);
  3712 %}
  3714 operand o7RegP() %{
  3715   constraint(ALLOC_IN_RC(o7_regP));
  3716   match(iRegP);
  3718   format %{ %}
  3719   interface(REG_INTER);
  3720 %}
  3722 operand l7RegP() %{
  3723   constraint(ALLOC_IN_RC(l7_regP));
  3724   match(iRegP);
  3726   format %{ %}
  3727   interface(REG_INTER);
  3728 %}
  3730 operand o7RegI() %{
  3731   constraint(ALLOC_IN_RC(o7_regI));
  3732   match(iRegI);
  3734   format %{ %}
  3735   interface(REG_INTER);
  3736 %}
  3738 operand iRegN() %{
  3739   constraint(ALLOC_IN_RC(int_reg));
  3740   match(RegN);
  3742   format %{ %}
  3743   interface(REG_INTER);
  3744 %}
  3746 // Long Register
  3747 operand iRegL() %{
  3748   constraint(ALLOC_IN_RC(long_reg));
  3749   match(RegL);
  3751   format %{ %}
  3752   interface(REG_INTER);
  3753 %}
  3755 operand o2RegL() %{
  3756   constraint(ALLOC_IN_RC(o2_regL));
  3757   match(iRegL);
  3759   format %{ %}
  3760   interface(REG_INTER);
  3761 %}
  3763 operand o7RegL() %{
  3764   constraint(ALLOC_IN_RC(o7_regL));
  3765   match(iRegL);
  3767   format %{ %}
  3768   interface(REG_INTER);
  3769 %}
  3771 operand g1RegL() %{
  3772   constraint(ALLOC_IN_RC(g1_regL));
  3773   match(iRegL);
  3775   format %{ %}
  3776   interface(REG_INTER);
  3777 %}
  3779 operand g3RegL() %{
  3780   constraint(ALLOC_IN_RC(g3_regL));
  3781   match(iRegL);
  3783   format %{ %}
  3784   interface(REG_INTER);
  3785 %}
  3787 // Int Register safe
  3788 // This is 64bit safe
  3789 operand iRegIsafe() %{
  3790   constraint(ALLOC_IN_RC(long_reg));
  3792   match(iRegI);
  3794   format %{ %}
  3795   interface(REG_INTER);
  3796 %}
  3798 // Condition Code Flag Register
  3799 operand flagsReg() %{
  3800   constraint(ALLOC_IN_RC(int_flags));
  3801   match(RegFlags);
  3803   format %{ "ccr" %} // both ICC and XCC
  3804   interface(REG_INTER);
  3805 %}
  3807 // Condition Code Register, unsigned comparisons.
  3808 operand flagsRegU() %{
  3809   constraint(ALLOC_IN_RC(int_flags));
  3810   match(RegFlags);
  3812   format %{ "icc_U" %}
  3813   interface(REG_INTER);
  3814 %}
  3816 // Condition Code Register, pointer comparisons.
  3817 operand flagsRegP() %{
  3818   constraint(ALLOC_IN_RC(int_flags));
  3819   match(RegFlags);
  3821 #ifdef _LP64
  3822   format %{ "xcc_P" %}
  3823 #else
  3824   format %{ "icc_P" %}
  3825 #endif
  3826   interface(REG_INTER);
  3827 %}
  3829 // Condition Code Register, long comparisons.
  3830 operand flagsRegL() %{
  3831   constraint(ALLOC_IN_RC(int_flags));
  3832   match(RegFlags);
  3834   format %{ "xcc_L" %}
  3835   interface(REG_INTER);
  3836 %}
  3838 // Condition Code Register, floating comparisons, unordered same as "less".
  3839 operand flagsRegF() %{
  3840   constraint(ALLOC_IN_RC(float_flags));
  3841   match(RegFlags);
  3842   match(flagsRegF0);
  3844   format %{ %}
  3845   interface(REG_INTER);
  3846 %}
  3848 operand flagsRegF0() %{
  3849   constraint(ALLOC_IN_RC(float_flag0));
  3850   match(RegFlags);
  3852   format %{ %}
  3853   interface(REG_INTER);
  3854 %}
  3857 // Condition Code Flag Register used by long compare
  3858 operand flagsReg_long_LTGE() %{
  3859   constraint(ALLOC_IN_RC(int_flags));
  3860   match(RegFlags);
  3861   format %{ "icc_LTGE" %}
  3862   interface(REG_INTER);
  3863 %}
  3864 operand flagsReg_long_EQNE() %{
  3865   constraint(ALLOC_IN_RC(int_flags));
  3866   match(RegFlags);
  3867   format %{ "icc_EQNE" %}
  3868   interface(REG_INTER);
  3869 %}
  3870 operand flagsReg_long_LEGT() %{
  3871   constraint(ALLOC_IN_RC(int_flags));
  3872   match(RegFlags);
  3873   format %{ "icc_LEGT" %}
  3874   interface(REG_INTER);
  3875 %}
  3878 operand regD() %{
  3879   constraint(ALLOC_IN_RC(dflt_reg));
  3880   match(RegD);
  3882   match(regD_low);
  3884   format %{ %}
  3885   interface(REG_INTER);
  3886 %}
  3888 operand regF() %{
  3889   constraint(ALLOC_IN_RC(sflt_reg));
  3890   match(RegF);
  3892   format %{ %}
  3893   interface(REG_INTER);
  3894 %}
  3896 operand regD_low() %{
  3897   constraint(ALLOC_IN_RC(dflt_low_reg));
  3898   match(regD);
  3900   format %{ %}
  3901   interface(REG_INTER);
  3902 %}
  3904 // Special Registers
  3906 // Method Register
  3907 operand inline_cache_regP(iRegP reg) %{
  3908   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  3909   match(reg);
  3910   format %{ %}
  3911   interface(REG_INTER);
  3912 %}
  3914 operand interpreter_method_oop_regP(iRegP reg) %{
  3915   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  3916   match(reg);
  3917   format %{ %}
  3918   interface(REG_INTER);
  3919 %}
  3922 //----------Complex Operands---------------------------------------------------
  3923 // Indirect Memory Reference
  3924 operand indirect(sp_ptr_RegP reg) %{
  3925   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3926   match(reg);
  3928   op_cost(100);
  3929   format %{ "[$reg]" %}
  3930   interface(MEMORY_INTER) %{
  3931     base($reg);
  3932     index(0x0);
  3933     scale(0x0);
  3934     disp(0x0);
  3935   %}
  3936 %}
  3938 // Indirect with Offset
  3939 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  3940   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3941   match(AddP reg offset);
  3943   op_cost(100);
  3944   format %{ "[$reg + $offset]" %}
  3945   interface(MEMORY_INTER) %{
  3946     base($reg);
  3947     index(0x0);
  3948     scale(0x0);
  3949     disp($offset);
  3950   %}
  3951 %}
  3953 // Note:  Intel has a swapped version also, like this:
  3954 //operand indOffsetX(iRegI reg, immP offset) %{
  3955 //  constraint(ALLOC_IN_RC(int_reg));
  3956 //  match(AddP offset reg);
  3957 //
  3958 //  op_cost(100);
  3959 //  format %{ "[$reg + $offset]" %}
  3960 //  interface(MEMORY_INTER) %{
  3961 //    base($reg);
  3962 //    index(0x0);
  3963 //    scale(0x0);
  3964 //    disp($offset);
  3965 //  %}
  3966 //%}
  3967 //// However, it doesn't make sense for SPARC, since
  3968 // we have no particularly good way to embed oops in
  3969 // single instructions.
  3971 // Indirect with Register Index
  3972 operand indIndex(iRegP addr, iRegX index) %{
  3973   constraint(ALLOC_IN_RC(ptr_reg));
  3974   match(AddP addr index);
  3976   op_cost(100);
  3977   format %{ "[$addr + $index]" %}
  3978   interface(MEMORY_INTER) %{
  3979     base($addr);
  3980     index($index);
  3981     scale(0x0);
  3982     disp(0x0);
  3983   %}
  3984 %}
  3986 //----------Special Memory Operands--------------------------------------------
  3987 // Stack Slot Operand - This operand is used for loading and storing temporary
  3988 //                      values on the stack where a match requires a value to
  3989 //                      flow through memory.
  3990 operand stackSlotI(sRegI reg) %{
  3991   constraint(ALLOC_IN_RC(stack_slots));
  3992   op_cost(100);
  3993   //match(RegI);
  3994   format %{ "[$reg]" %}
  3995   interface(MEMORY_INTER) %{
  3996     base(0xE);   // R_SP
  3997     index(0x0);
  3998     scale(0x0);
  3999     disp($reg);  // Stack Offset
  4000   %}
  4001 %}
  4003 operand stackSlotP(sRegP reg) %{
  4004   constraint(ALLOC_IN_RC(stack_slots));
  4005   op_cost(100);
  4006   //match(RegP);
  4007   format %{ "[$reg]" %}
  4008   interface(MEMORY_INTER) %{
  4009     base(0xE);   // R_SP
  4010     index(0x0);
  4011     scale(0x0);
  4012     disp($reg);  // Stack Offset
  4013   %}
  4014 %}
  4016 operand stackSlotF(sRegF reg) %{
  4017   constraint(ALLOC_IN_RC(stack_slots));
  4018   op_cost(100);
  4019   //match(RegF);
  4020   format %{ "[$reg]" %}
  4021   interface(MEMORY_INTER) %{
  4022     base(0xE);   // R_SP
  4023     index(0x0);
  4024     scale(0x0);
  4025     disp($reg);  // Stack Offset
  4026   %}
  4027 %}
  4028 operand stackSlotD(sRegD reg) %{
  4029   constraint(ALLOC_IN_RC(stack_slots));
  4030   op_cost(100);
  4031   //match(RegD);
  4032   format %{ "[$reg]" %}
  4033   interface(MEMORY_INTER) %{
  4034     base(0xE);   // R_SP
  4035     index(0x0);
  4036     scale(0x0);
  4037     disp($reg);  // Stack Offset
  4038   %}
  4039 %}
  4040 operand stackSlotL(sRegL reg) %{
  4041   constraint(ALLOC_IN_RC(stack_slots));
  4042   op_cost(100);
  4043   //match(RegL);
  4044   format %{ "[$reg]" %}
  4045   interface(MEMORY_INTER) %{
  4046     base(0xE);   // R_SP
  4047     index(0x0);
  4048     scale(0x0);
  4049     disp($reg);  // Stack Offset
  4050   %}
  4051 %}
  4053 // Operands for expressing Control Flow
  4054 // NOTE:  Label is a predefined operand which should not be redefined in
  4055 //        the AD file.  It is generically handled within the ADLC.
  4057 //----------Conditional Branch Operands----------------------------------------
  4058 // Comparison Op  - This is the operation of the comparison, and is limited to
  4059 //                  the following set of codes:
  4060 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4061 //
  4062 // Other attributes of the comparison, such as unsignedness, are specified
  4063 // by the comparison instruction that sets a condition code flags register.
  4064 // That result is represented by a flags operand whose subtype is appropriate
  4065 // to the unsignedness (etc.) of the comparison.
  4066 //
  4067 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4068 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4069 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4071 operand cmpOp() %{
  4072   match(Bool);
  4074   format %{ "" %}
  4075   interface(COND_INTER) %{
  4076     equal(0x1);
  4077     not_equal(0x9);
  4078     less(0x3);
  4079     greater_equal(0xB);
  4080     less_equal(0x2);
  4081     greater(0xA);
  4082   %}
  4083 %}
  4085 // Comparison Op, unsigned
  4086 operand cmpOpU() %{
  4087   match(Bool);
  4089   format %{ "u" %}
  4090   interface(COND_INTER) %{
  4091     equal(0x1);
  4092     not_equal(0x9);
  4093     less(0x5);
  4094     greater_equal(0xD);
  4095     less_equal(0x4);
  4096     greater(0xC);
  4097   %}
  4098 %}
  4100 // Comparison Op, pointer (same as unsigned)
  4101 operand cmpOpP() %{
  4102   match(Bool);
  4104   format %{ "p" %}
  4105   interface(COND_INTER) %{
  4106     equal(0x1);
  4107     not_equal(0x9);
  4108     less(0x5);
  4109     greater_equal(0xD);
  4110     less_equal(0x4);
  4111     greater(0xC);
  4112   %}
  4113 %}
  4115 // Comparison Op, branch-register encoding
  4116 operand cmpOp_reg() %{
  4117   match(Bool);
  4119   format %{ "" %}
  4120   interface(COND_INTER) %{
  4121     equal        (0x1);
  4122     not_equal    (0x5);
  4123     less         (0x3);
  4124     greater_equal(0x7);
  4125     less_equal   (0x2);
  4126     greater      (0x6);
  4127   %}
  4128 %}
  4130 // Comparison Code, floating, unordered same as less
  4131 operand cmpOpF() %{
  4132   match(Bool);
  4134   format %{ "fl" %}
  4135   interface(COND_INTER) %{
  4136     equal(0x9);
  4137     not_equal(0x1);
  4138     less(0x3);
  4139     greater_equal(0xB);
  4140     less_equal(0xE);
  4141     greater(0x6);
  4142   %}
  4143 %}
  4145 // Used by long compare
  4146 operand cmpOp_commute() %{
  4147   match(Bool);
  4149   format %{ "" %}
  4150   interface(COND_INTER) %{
  4151     equal(0x1);
  4152     not_equal(0x9);
  4153     less(0xA);
  4154     greater_equal(0x2);
  4155     less_equal(0xB);
  4156     greater(0x3);
  4157   %}
  4158 %}
  4160 //----------OPERAND CLASSES----------------------------------------------------
  4161 // Operand Classes are groups of operands that are used to simplify
  4162 // instruction definitions by not requiring the AD writer to specify separate
  4163 // instructions for every form of operand when the instruction accepts
  4164 // multiple operand types with the same basic encoding and format.  The classic
  4165 // case of this is memory operands.
  4166 // Indirect is not included since its use is limited to Compare & Swap
  4167 opclass memory( indirect, indOffset13, indIndex );
  4169 //----------PIPELINE-----------------------------------------------------------
  4170 pipeline %{
  4172 //----------ATTRIBUTES---------------------------------------------------------
  4173 attributes %{
  4174   fixed_size_instructions;           // Fixed size instructions
  4175   branch_has_delay_slot;             // Branch has delay slot following
  4176   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4177   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4178   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4179   instruction_fetch_units = 1;       // of 16 bytes
  4181   // List of nop instructions
  4182   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4183 %}
  4185 //----------RESOURCES----------------------------------------------------------
  4186 // Resources are the functional units available to the machine
  4187 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4189 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4190 // Pipeline Description specifies the stages in the machine's pipeline
  4192 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4194 //----------PIPELINE CLASSES---------------------------------------------------
  4195 // Pipeline Classes describe the stages in which input and output are
  4196 // referenced by the hardware pipeline.
  4198 // Integer ALU reg-reg operation
  4199 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4200     single_instruction;
  4201     dst   : E(write);
  4202     src1  : R(read);
  4203     src2  : R(read);
  4204     IALU  : R;
  4205 %}
  4207 // Integer ALU reg-reg long operation
  4208 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4209     instruction_count(2);
  4210     dst   : E(write);
  4211     src1  : R(read);
  4212     src2  : R(read);
  4213     IALU  : R;
  4214     IALU  : R;
  4215 %}
  4217 // Integer ALU reg-reg long dependent operation
  4218 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4219     instruction_count(1); multiple_bundles;
  4220     dst   : E(write);
  4221     src1  : R(read);
  4222     src2  : R(read);
  4223     cr    : E(write);
  4224     IALU  : R(2);
  4225 %}
  4227 // Integer ALU reg-imm operaion
  4228 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4229     single_instruction;
  4230     dst   : E(write);
  4231     src1  : R(read);
  4232     IALU  : R;
  4233 %}
  4235 // Integer ALU reg-reg operation with condition code
  4236 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4237     single_instruction;
  4238     dst   : E(write);
  4239     cr    : E(write);
  4240     src1  : R(read);
  4241     src2  : R(read);
  4242     IALU  : R;
  4243 %}
  4245 // Integer ALU reg-imm operation with condition code
  4246 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4247     single_instruction;
  4248     dst   : E(write);
  4249     cr    : E(write);
  4250     src1  : R(read);
  4251     IALU  : R;
  4252 %}
  4254 // Integer ALU zero-reg operation
  4255 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4256     single_instruction;
  4257     dst   : E(write);
  4258     src2  : R(read);
  4259     IALU  : R;
  4260 %}
  4262 // Integer ALU zero-reg operation with condition code only
  4263 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4264     single_instruction;
  4265     cr    : E(write);
  4266     src   : R(read);
  4267     IALU  : R;
  4268 %}
  4270 // Integer ALU reg-reg operation with condition code only
  4271 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4272     single_instruction;
  4273     cr    : E(write);
  4274     src1  : R(read);
  4275     src2  : R(read);
  4276     IALU  : R;
  4277 %}
  4279 // Integer ALU reg-imm operation with condition code only
  4280 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4281     single_instruction;
  4282     cr    : E(write);
  4283     src1  : R(read);
  4284     IALU  : R;
  4285 %}
  4287 // Integer ALU reg-reg-zero operation with condition code only
  4288 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4289     single_instruction;
  4290     cr    : E(write);
  4291     src1  : R(read);
  4292     src2  : R(read);
  4293     IALU  : R;
  4294 %}
  4296 // Integer ALU reg-imm-zero operation with condition code only
  4297 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4298     single_instruction;
  4299     cr    : E(write);
  4300     src1  : R(read);
  4301     IALU  : R;
  4302 %}
  4304 // Integer ALU reg-reg operation with condition code, src1 modified
  4305 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4306     single_instruction;
  4307     cr    : E(write);
  4308     src1  : E(write);
  4309     src1  : R(read);
  4310     src2  : R(read);
  4311     IALU  : R;
  4312 %}
  4314 // Integer ALU reg-imm operation with condition code, src1 modified
  4315 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4316     single_instruction;
  4317     cr    : E(write);
  4318     src1  : E(write);
  4319     src1  : R(read);
  4320     IALU  : R;
  4321 %}
  4323 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4324     multiple_bundles;
  4325     dst   : E(write)+4;
  4326     cr    : E(write);
  4327     src1  : R(read);
  4328     src2  : R(read);
  4329     IALU  : R(3);
  4330     BR    : R(2);
  4331 %}
  4333 // Integer ALU operation
  4334 pipe_class ialu_none(iRegI dst) %{
  4335     single_instruction;
  4336     dst   : E(write);
  4337     IALU  : R;
  4338 %}
  4340 // Integer ALU reg operation
  4341 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4342     single_instruction; may_have_no_code;
  4343     dst   : E(write);
  4344     src   : R(read);
  4345     IALU  : R;
  4346 %}
  4348 // Integer ALU reg conditional operation
  4349 // This instruction has a 1 cycle stall, and cannot execute
  4350 // in the same cycle as the instruction setting the condition
  4351 // code. We kludge this by pretending to read the condition code
  4352 // 1 cycle earlier, and by marking the functional units as busy
  4353 // for 2 cycles with the result available 1 cycle later than
  4354 // is really the case.
  4355 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4356     single_instruction;
  4357     op2_out : C(write);
  4358     op1     : R(read);
  4359     cr      : R(read);       // This is really E, with a 1 cycle stall
  4360     BR      : R(2);
  4361     MS      : R(2);
  4362 %}
  4364 #ifdef _LP64
  4365 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4366     instruction_count(1); multiple_bundles;
  4367     dst     : C(write)+1;
  4368     src     : R(read)+1;
  4369     IALU    : R(1);
  4370     BR      : E(2);
  4371     MS      : E(2);
  4372 %}
  4373 #endif
  4375 // Integer ALU reg operation
  4376 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4377     single_instruction; may_have_no_code;
  4378     dst   : E(write);
  4379     src   : R(read);
  4380     IALU  : R;
  4381 %}
  4382 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4383     single_instruction; may_have_no_code;
  4384     dst   : E(write);
  4385     src   : R(read);
  4386     IALU  : R;
  4387 %}
  4389 // Two integer ALU reg operations
  4390 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4391     instruction_count(2);
  4392     dst   : E(write);
  4393     src   : R(read);
  4394     A0    : R;
  4395     A1    : R;
  4396 %}
  4398 // Two integer ALU reg operations
  4399 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4400     instruction_count(2); may_have_no_code;
  4401     dst   : E(write);
  4402     src   : R(read);
  4403     A0    : R;
  4404     A1    : R;
  4405 %}
  4407 // Integer ALU imm operation
  4408 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4409     single_instruction;
  4410     dst   : E(write);
  4411     IALU  : R;
  4412 %}
  4414 // Integer ALU reg-reg with carry operation
  4415 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4416     single_instruction;
  4417     dst   : E(write);
  4418     src1  : R(read);
  4419     src2  : R(read);
  4420     IALU  : R;
  4421 %}
  4423 // Integer ALU cc operation
  4424 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4425     single_instruction;
  4426     dst   : E(write);
  4427     cc    : R(read);
  4428     IALU  : R;
  4429 %}
  4431 // Integer ALU cc / second IALU operation
  4432 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4433     instruction_count(1); multiple_bundles;
  4434     dst   : E(write)+1;
  4435     src   : R(read);
  4436     IALU  : R;
  4437 %}
  4439 // Integer ALU cc / second IALU operation
  4440 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4441     instruction_count(1); multiple_bundles;
  4442     dst   : E(write)+1;
  4443     p     : R(read);
  4444     q     : R(read);
  4445     IALU  : R;
  4446 %}
  4448 // Integer ALU hi-lo-reg operation
  4449 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4450     instruction_count(1); multiple_bundles;
  4451     dst   : E(write)+1;
  4452     IALU  : R(2);
  4453 %}
  4455 // Float ALU hi-lo-reg operation (with temp)
  4456 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4457     instruction_count(1); multiple_bundles;
  4458     dst   : E(write)+1;
  4459     IALU  : R(2);
  4460 %}
  4462 // Long Constant
  4463 pipe_class loadConL( iRegL dst, immL src ) %{
  4464     instruction_count(2); multiple_bundles;
  4465     dst   : E(write)+1;
  4466     IALU  : R(2);
  4467     IALU  : R(2);
  4468 %}
  4470 // Pointer Constant
  4471 pipe_class loadConP( iRegP dst, immP src ) %{
  4472     instruction_count(0); multiple_bundles;
  4473     fixed_latency(6);
  4474 %}
  4476 // Polling Address
  4477 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4478 #ifdef _LP64
  4479     instruction_count(0); multiple_bundles;
  4480     fixed_latency(6);
  4481 #else
  4482     dst   : E(write);
  4483     IALU  : R;
  4484 #endif
  4485 %}
  4487 // Long Constant small
  4488 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4489     instruction_count(2);
  4490     dst   : E(write);
  4491     IALU  : R;
  4492     IALU  : R;
  4493 %}
  4495 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4496 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4497     instruction_count(1); multiple_bundles;
  4498     src   : R(read);
  4499     dst   : M(write)+1;
  4500     IALU  : R;
  4501     MS    : E;
  4502 %}
  4504 // Integer ALU nop operation
  4505 pipe_class ialu_nop() %{
  4506     single_instruction;
  4507     IALU  : R;
  4508 %}
  4510 // Integer ALU nop operation
  4511 pipe_class ialu_nop_A0() %{
  4512     single_instruction;
  4513     A0    : R;
  4514 %}
  4516 // Integer ALU nop operation
  4517 pipe_class ialu_nop_A1() %{
  4518     single_instruction;
  4519     A1    : R;
  4520 %}
  4522 // Integer Multiply reg-reg operation
  4523 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4524     single_instruction;
  4525     dst   : E(write);
  4526     src1  : R(read);
  4527     src2  : R(read);
  4528     MS    : R(5);
  4529 %}
  4531 // Integer Multiply reg-imm operation
  4532 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4533     single_instruction;
  4534     dst   : E(write);
  4535     src1  : R(read);
  4536     MS    : R(5);
  4537 %}
  4539 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4540     single_instruction;
  4541     dst   : E(write)+4;
  4542     src1  : R(read);
  4543     src2  : R(read);
  4544     MS    : R(6);
  4545 %}
  4547 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4548     single_instruction;
  4549     dst   : E(write)+4;
  4550     src1  : R(read);
  4551     MS    : R(6);
  4552 %}
  4554 // Integer Divide reg-reg
  4555 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4556     instruction_count(1); multiple_bundles;
  4557     dst   : E(write);
  4558     temp  : E(write);
  4559     src1  : R(read);
  4560     src2  : R(read);
  4561     temp  : R(read);
  4562     MS    : R(38);
  4563 %}
  4565 // Integer Divide reg-imm
  4566 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4567     instruction_count(1); multiple_bundles;
  4568     dst   : E(write);
  4569     temp  : E(write);
  4570     src1  : R(read);
  4571     temp  : R(read);
  4572     MS    : R(38);
  4573 %}
  4575 // Long Divide
  4576 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4577     dst  : E(write)+71;
  4578     src1 : R(read);
  4579     src2 : R(read)+1;
  4580     MS   : R(70);
  4581 %}
  4583 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4584     dst  : E(write)+71;
  4585     src1 : R(read);
  4586     MS   : R(70);
  4587 %}
  4589 // Floating Point Add Float
  4590 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4591     single_instruction;
  4592     dst   : X(write);
  4593     src1  : E(read);
  4594     src2  : E(read);
  4595     FA    : R;
  4596 %}
  4598 // Floating Point Add Double
  4599 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4600     single_instruction;
  4601     dst   : X(write);
  4602     src1  : E(read);
  4603     src2  : E(read);
  4604     FA    : R;
  4605 %}
  4607 // Floating Point Conditional Move based on integer flags
  4608 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4609     single_instruction;
  4610     dst   : X(write);
  4611     src   : E(read);
  4612     cr    : R(read);
  4613     FA    : R(2);
  4614     BR    : R(2);
  4615 %}
  4617 // Floating Point Conditional Move based on integer flags
  4618 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4619     single_instruction;
  4620     dst   : X(write);
  4621     src   : E(read);
  4622     cr    : R(read);
  4623     FA    : R(2);
  4624     BR    : R(2);
  4625 %}
  4627 // Floating Point Multiply Float
  4628 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4629     single_instruction;
  4630     dst   : X(write);
  4631     src1  : E(read);
  4632     src2  : E(read);
  4633     FM    : R;
  4634 %}
  4636 // Floating Point Multiply Double
  4637 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4638     single_instruction;
  4639     dst   : X(write);
  4640     src1  : E(read);
  4641     src2  : E(read);
  4642     FM    : R;
  4643 %}
  4645 // Floating Point Divide Float
  4646 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4647     single_instruction;
  4648     dst   : X(write);
  4649     src1  : E(read);
  4650     src2  : E(read);
  4651     FM    : R;
  4652     FDIV  : C(14);
  4653 %}
  4655 // Floating Point Divide Double
  4656 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4657     single_instruction;
  4658     dst   : X(write);
  4659     src1  : E(read);
  4660     src2  : E(read);
  4661     FM    : R;
  4662     FDIV  : C(17);
  4663 %}
  4665 // Floating Point Move/Negate/Abs Float
  4666 pipe_class faddF_reg(regF dst, regF src) %{
  4667     single_instruction;
  4668     dst   : W(write);
  4669     src   : E(read);
  4670     FA    : R(1);
  4671 %}
  4673 // Floating Point Move/Negate/Abs Double
  4674 pipe_class faddD_reg(regD dst, regD src) %{
  4675     single_instruction;
  4676     dst   : W(write);
  4677     src   : E(read);
  4678     FA    : R;
  4679 %}
  4681 // Floating Point Convert F->D
  4682 pipe_class fcvtF2D(regD dst, regF src) %{
  4683     single_instruction;
  4684     dst   : X(write);
  4685     src   : E(read);
  4686     FA    : R;
  4687 %}
  4689 // Floating Point Convert I->D
  4690 pipe_class fcvtI2D(regD dst, regF src) %{
  4691     single_instruction;
  4692     dst   : X(write);
  4693     src   : E(read);
  4694     FA    : R;
  4695 %}
  4697 // Floating Point Convert LHi->D
  4698 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4699     single_instruction;
  4700     dst   : X(write);
  4701     src   : E(read);
  4702     FA    : R;
  4703 %}
  4705 // Floating Point Convert L->D
  4706 pipe_class fcvtL2D(regD dst, regF src) %{
  4707     single_instruction;
  4708     dst   : X(write);
  4709     src   : E(read);
  4710     FA    : R;
  4711 %}
  4713 // Floating Point Convert L->F
  4714 pipe_class fcvtL2F(regD dst, regF src) %{
  4715     single_instruction;
  4716     dst   : X(write);
  4717     src   : E(read);
  4718     FA    : R;
  4719 %}
  4721 // Floating Point Convert D->F
  4722 pipe_class fcvtD2F(regD dst, regF src) %{
  4723     single_instruction;
  4724     dst   : X(write);
  4725     src   : E(read);
  4726     FA    : R;
  4727 %}
  4729 // Floating Point Convert I->L
  4730 pipe_class fcvtI2L(regD dst, regF src) %{
  4731     single_instruction;
  4732     dst   : X(write);
  4733     src   : E(read);
  4734     FA    : R;
  4735 %}
  4737 // Floating Point Convert D->F
  4738 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4739     instruction_count(1); multiple_bundles;
  4740     dst   : X(write)+6;
  4741     src   : E(read);
  4742     FA    : R;
  4743 %}
  4745 // Floating Point Convert D->L
  4746 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4747     instruction_count(1); multiple_bundles;
  4748     dst   : X(write)+6;
  4749     src   : E(read);
  4750     FA    : R;
  4751 %}
  4753 // Floating Point Convert F->I
  4754 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4755     instruction_count(1); multiple_bundles;
  4756     dst   : X(write)+6;
  4757     src   : E(read);
  4758     FA    : R;
  4759 %}
  4761 // Floating Point Convert F->L
  4762 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4763     instruction_count(1); multiple_bundles;
  4764     dst   : X(write)+6;
  4765     src   : E(read);
  4766     FA    : R;
  4767 %}
  4769 // Floating Point Convert I->F
  4770 pipe_class fcvtI2F(regF dst, regF src) %{
  4771     single_instruction;
  4772     dst   : X(write);
  4773     src   : E(read);
  4774     FA    : R;
  4775 %}
  4777 // Floating Point Compare
  4778 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4779     single_instruction;
  4780     cr    : X(write);
  4781     src1  : E(read);
  4782     src2  : E(read);
  4783     FA    : R;
  4784 %}
  4786 // Floating Point Compare
  4787 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4788     single_instruction;
  4789     cr    : X(write);
  4790     src1  : E(read);
  4791     src2  : E(read);
  4792     FA    : R;
  4793 %}
  4795 // Floating Add Nop
  4796 pipe_class fadd_nop() %{
  4797     single_instruction;
  4798     FA  : R;
  4799 %}
  4801 // Integer Store to Memory
  4802 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4803     single_instruction;
  4804     mem   : R(read);
  4805     src   : C(read);
  4806     MS    : R;
  4807 %}
  4809 // Integer Store to Memory
  4810 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  4811     single_instruction;
  4812     mem   : R(read);
  4813     src   : C(read);
  4814     MS    : R;
  4815 %}
  4817 // Integer Store Zero to Memory
  4818 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  4819     single_instruction;
  4820     mem   : R(read);
  4821     MS    : R;
  4822 %}
  4824 // Special Stack Slot Store
  4825 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  4826     single_instruction;
  4827     stkSlot : R(read);
  4828     src     : C(read);
  4829     MS      : R;
  4830 %}
  4832 // Special Stack Slot Store
  4833 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  4834     instruction_count(2); multiple_bundles;
  4835     stkSlot : R(read);
  4836     src     : C(read);
  4837     MS      : R(2);
  4838 %}
  4840 // Float Store
  4841 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  4842     single_instruction;
  4843     mem : R(read);
  4844     src : C(read);
  4845     MS  : R;
  4846 %}
  4848 // Float Store
  4849 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  4850     single_instruction;
  4851     mem : R(read);
  4852     MS  : R;
  4853 %}
  4855 // Double Store
  4856 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  4857     instruction_count(1);
  4858     mem : R(read);
  4859     src : C(read);
  4860     MS  : R;
  4861 %}
  4863 // Double Store
  4864 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  4865     single_instruction;
  4866     mem : R(read);
  4867     MS  : R;
  4868 %}
  4870 // Special Stack Slot Float Store
  4871 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  4872     single_instruction;
  4873     stkSlot : R(read);
  4874     src     : C(read);
  4875     MS      : R;
  4876 %}
  4878 // Special Stack Slot Double Store
  4879 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  4880     single_instruction;
  4881     stkSlot : R(read);
  4882     src     : C(read);
  4883     MS      : R;
  4884 %}
  4886 // Integer Load (when sign bit propagation not needed)
  4887 pipe_class iload_mem(iRegI dst, memory mem) %{
  4888     single_instruction;
  4889     mem : R(read);
  4890     dst : C(write);
  4891     MS  : R;
  4892 %}
  4894 // Integer Load from stack operand
  4895 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  4896     single_instruction;
  4897     mem : R(read);
  4898     dst : C(write);
  4899     MS  : R;
  4900 %}
  4902 // Integer Load (when sign bit propagation or masking is needed)
  4903 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  4904     single_instruction;
  4905     mem : R(read);
  4906     dst : M(write);
  4907     MS  : R;
  4908 %}
  4910 // Float Load
  4911 pipe_class floadF_mem(regF dst, memory mem) %{
  4912     single_instruction;
  4913     mem : R(read);
  4914     dst : M(write);
  4915     MS  : R;
  4916 %}
  4918 // Float Load
  4919 pipe_class floadD_mem(regD dst, memory mem) %{
  4920     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  4921     mem : R(read);
  4922     dst : M(write);
  4923     MS  : R;
  4924 %}
  4926 // Float Load
  4927 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  4928     single_instruction;
  4929     stkSlot : R(read);
  4930     dst : M(write);
  4931     MS  : R;
  4932 %}
  4934 // Float Load
  4935 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  4936     single_instruction;
  4937     stkSlot : R(read);
  4938     dst : M(write);
  4939     MS  : R;
  4940 %}
  4942 // Memory Nop
  4943 pipe_class mem_nop() %{
  4944     single_instruction;
  4945     MS  : R;
  4946 %}
  4948 pipe_class sethi(iRegP dst, immI src) %{
  4949     single_instruction;
  4950     dst  : E(write);
  4951     IALU : R;
  4952 %}
  4954 pipe_class loadPollP(iRegP poll) %{
  4955     single_instruction;
  4956     poll : R(read);
  4957     MS   : R;
  4958 %}
  4960 pipe_class br(Universe br, label labl) %{
  4961     single_instruction_with_delay_slot;
  4962     BR  : R;
  4963 %}
  4965 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  4966     single_instruction_with_delay_slot;
  4967     cr    : E(read);
  4968     BR    : R;
  4969 %}
  4971 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  4972     single_instruction_with_delay_slot;
  4973     op1 : E(read);
  4974     BR  : R;
  4975     MS  : R;
  4976 %}
  4978 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  4979     single_instruction_with_delay_slot;
  4980     cr    : E(read);
  4981     BR    : R;
  4982 %}
  4984 pipe_class br_nop() %{
  4985     single_instruction;
  4986     BR  : R;
  4987 %}
  4989 pipe_class simple_call(method meth) %{
  4990     instruction_count(2); multiple_bundles; force_serialization;
  4991     fixed_latency(100);
  4992     BR  : R(1);
  4993     MS  : R(1);
  4994     A0  : R(1);
  4995 %}
  4997 pipe_class compiled_call(method meth) %{
  4998     instruction_count(1); multiple_bundles; force_serialization;
  4999     fixed_latency(100);
  5000     MS  : R(1);
  5001 %}
  5003 pipe_class call(method meth) %{
  5004     instruction_count(0); multiple_bundles; force_serialization;
  5005     fixed_latency(100);
  5006 %}
  5008 pipe_class tail_call(Universe ignore, label labl) %{
  5009     single_instruction; has_delay_slot;
  5010     fixed_latency(100);
  5011     BR  : R(1);
  5012     MS  : R(1);
  5013 %}
  5015 pipe_class ret(Universe ignore) %{
  5016     single_instruction; has_delay_slot;
  5017     BR  : R(1);
  5018     MS  : R(1);
  5019 %}
  5021 pipe_class ret_poll(g3RegP poll) %{
  5022     instruction_count(3); has_delay_slot;
  5023     poll : E(read);
  5024     MS   : R;
  5025 %}
  5027 // The real do-nothing guy
  5028 pipe_class empty( ) %{
  5029     instruction_count(0);
  5030 %}
  5032 pipe_class long_memory_op() %{
  5033     instruction_count(0); multiple_bundles; force_serialization;
  5034     fixed_latency(25);
  5035     MS  : R(1);
  5036 %}
  5038 // Check-cast
  5039 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5040     array : R(read);
  5041     match  : R(read);
  5042     IALU   : R(2);
  5043     BR     : R(2);
  5044     MS     : R;
  5045 %}
  5047 // Convert FPU flags into +1,0,-1
  5048 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5049     src1  : E(read);
  5050     src2  : E(read);
  5051     dst   : E(write);
  5052     FA    : R;
  5053     MS    : R(2);
  5054     BR    : R(2);
  5055 %}
  5057 // Compare for p < q, and conditionally add y
  5058 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5059     p     : E(read);
  5060     q     : E(read);
  5061     y     : E(read);
  5062     IALU  : R(3)
  5063 %}
  5065 // Perform a compare, then move conditionally in a branch delay slot.
  5066 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5067     src2   : E(read);
  5068     srcdst : E(read);
  5069     IALU   : R;
  5070     BR     : R;
  5071 %}
  5073 // Define the class for the Nop node
  5074 define %{
  5075    MachNop = ialu_nop;
  5076 %}
  5078 %}
  5080 //----------INSTRUCTIONS-------------------------------------------------------
  5082 //------------Special Stack Slot instructions - no match rules-----------------
  5083 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5084   // No match rule to avoid chain rule match.
  5085   effect(DEF dst, USE src);
  5086   ins_cost(MEMORY_REF_COST);
  5087   size(4);
  5088   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5089   opcode(Assembler::ldf_op3);
  5090   ins_encode(simple_form3_mem_reg(src, dst));
  5091   ins_pipe(floadF_stk);
  5092 %}
  5094 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5095   // No match rule to avoid chain rule match.
  5096   effect(DEF dst, USE src);
  5097   ins_cost(MEMORY_REF_COST);
  5098   size(4);
  5099   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5100   opcode(Assembler::lddf_op3);
  5101   ins_encode(simple_form3_mem_reg(src, dst));
  5102   ins_pipe(floadD_stk);
  5103 %}
  5105 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5106   // No match rule to avoid chain rule match.
  5107   effect(DEF dst, USE src);
  5108   ins_cost(MEMORY_REF_COST);
  5109   size(4);
  5110   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5111   opcode(Assembler::stf_op3);
  5112   ins_encode(simple_form3_mem_reg(dst, src));
  5113   ins_pipe(fstoreF_stk_reg);
  5114 %}
  5116 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5117   // No match rule to avoid chain rule match.
  5118   effect(DEF dst, USE src);
  5119   ins_cost(MEMORY_REF_COST);
  5120   size(4);
  5121   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5122   opcode(Assembler::stdf_op3);
  5123   ins_encode(simple_form3_mem_reg(dst, src));
  5124   ins_pipe(fstoreD_stk_reg);
  5125 %}
  5127 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5128   effect(DEF dst, USE src);
  5129   ins_cost(MEMORY_REF_COST*2);
  5130   size(8);
  5131   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5132             "STW    R_G0,$dst.lo" %}
  5133   opcode(Assembler::stw_op3);
  5134   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5135   ins_pipe(lstoreI_stk_reg);
  5136 %}
  5138 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5139   // No match rule to avoid chain rule match.
  5140   effect(DEF dst, USE src);
  5141   ins_cost(MEMORY_REF_COST);
  5142   size(4);
  5143   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5144   opcode(Assembler::stx_op3);
  5145   ins_encode(simple_form3_mem_reg( dst, src ) );
  5146   ins_pipe(istore_stk_reg);
  5147 %}
  5149 //---------- Chain stack slots between similar types --------
  5151 // Load integer from stack slot
  5152 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5153   match(Set dst src);
  5154   ins_cost(MEMORY_REF_COST);
  5156   size(4);
  5157   format %{ "LDUW   $src,$dst\t!stk" %}
  5158   opcode(Assembler::lduw_op3);
  5159   ins_encode(simple_form3_mem_reg( src, dst ) );
  5160   ins_pipe(iload_mem);
  5161 %}
  5163 // Store integer to stack slot
  5164 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5165   match(Set dst src);
  5166   ins_cost(MEMORY_REF_COST);
  5168   size(4);
  5169   format %{ "STW    $src,$dst\t!stk" %}
  5170   opcode(Assembler::stw_op3);
  5171   ins_encode(simple_form3_mem_reg( dst, src ) );
  5172   ins_pipe(istore_mem_reg);
  5173 %}
  5175 // Load long from stack slot
  5176 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5177   match(Set dst src);
  5179   ins_cost(MEMORY_REF_COST);
  5180   size(4);
  5181   format %{ "LDX    $src,$dst\t! long" %}
  5182   opcode(Assembler::ldx_op3);
  5183   ins_encode(simple_form3_mem_reg( src, dst ) );
  5184   ins_pipe(iload_mem);
  5185 %}
  5187 // Store long to stack slot
  5188 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5189   match(Set dst src);
  5191   ins_cost(MEMORY_REF_COST);
  5192   size(4);
  5193   format %{ "STX    $src,$dst\t! long" %}
  5194   opcode(Assembler::stx_op3);
  5195   ins_encode(simple_form3_mem_reg( dst, src ) );
  5196   ins_pipe(istore_mem_reg);
  5197 %}
  5199 #ifdef _LP64
  5200 // Load pointer from stack slot, 64-bit encoding
  5201 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5202   match(Set dst src);
  5203   ins_cost(MEMORY_REF_COST);
  5204   size(4);
  5205   format %{ "LDX    $src,$dst\t!ptr" %}
  5206   opcode(Assembler::ldx_op3);
  5207   ins_encode(simple_form3_mem_reg( src, dst ) );
  5208   ins_pipe(iload_mem);
  5209 %}
  5211 // Store pointer to stack slot
  5212 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5213   match(Set dst src);
  5214   ins_cost(MEMORY_REF_COST);
  5215   size(4);
  5216   format %{ "STX    $src,$dst\t!ptr" %}
  5217   opcode(Assembler::stx_op3);
  5218   ins_encode(simple_form3_mem_reg( dst, src ) );
  5219   ins_pipe(istore_mem_reg);
  5220 %}
  5221 #else // _LP64
  5222 // Load pointer from stack slot, 32-bit encoding
  5223 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5224   match(Set dst src);
  5225   ins_cost(MEMORY_REF_COST);
  5226   format %{ "LDUW   $src,$dst\t!ptr" %}
  5227   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5228   ins_encode(simple_form3_mem_reg( src, dst ) );
  5229   ins_pipe(iload_mem);
  5230 %}
  5232 // Store pointer to stack slot
  5233 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5234   match(Set dst src);
  5235   ins_cost(MEMORY_REF_COST);
  5236   format %{ "STW    $src,$dst\t!ptr" %}
  5237   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5238   ins_encode(simple_form3_mem_reg( dst, src ) );
  5239   ins_pipe(istore_mem_reg);
  5240 %}
  5241 #endif // _LP64
  5243 //------------Special Nop instructions for bundling - no match rules-----------
  5244 // Nop using the A0 functional unit
  5245 instruct Nop_A0() %{
  5246   ins_cost(0);
  5248   format %{ "NOP    ! Alu Pipeline" %}
  5249   opcode(Assembler::or_op3, Assembler::arith_op);
  5250   ins_encode( form2_nop() );
  5251   ins_pipe(ialu_nop_A0);
  5252 %}
  5254 // Nop using the A1 functional unit
  5255 instruct Nop_A1( ) %{
  5256   ins_cost(0);
  5258   format %{ "NOP    ! Alu Pipeline" %}
  5259   opcode(Assembler::or_op3, Assembler::arith_op);
  5260   ins_encode( form2_nop() );
  5261   ins_pipe(ialu_nop_A1);
  5262 %}
  5264 // Nop using the memory functional unit
  5265 instruct Nop_MS( ) %{
  5266   ins_cost(0);
  5268   format %{ "NOP    ! Memory Pipeline" %}
  5269   ins_encode( emit_mem_nop );
  5270   ins_pipe(mem_nop);
  5271 %}
  5273 // Nop using the floating add functional unit
  5274 instruct Nop_FA( ) %{
  5275   ins_cost(0);
  5277   format %{ "NOP    ! Floating Add Pipeline" %}
  5278   ins_encode( emit_fadd_nop );
  5279   ins_pipe(fadd_nop);
  5280 %}
  5282 // Nop using the branch functional unit
  5283 instruct Nop_BR( ) %{
  5284   ins_cost(0);
  5286   format %{ "NOP    ! Branch Pipeline" %}
  5287   ins_encode( emit_br_nop );
  5288   ins_pipe(br_nop);
  5289 %}
  5291 //----------Load/Store/Move Instructions---------------------------------------
  5292 //----------Load Instructions--------------------------------------------------
  5293 // Load Byte (8bit signed)
  5294 instruct loadB(iRegI dst, memory mem) %{
  5295   match(Set dst (LoadB mem));
  5296   ins_cost(MEMORY_REF_COST);
  5298   size(4);
  5299   format %{ "LDSB   $mem,$dst\t! byte" %}
  5300   opcode(Assembler::ldsb_op3);
  5301   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5302   ins_pipe(iload_mask_mem);
  5303 %}
  5305 // Load Byte (8bit signed) into a Long Register
  5306 instruct loadB2L(iRegL dst, memory mem) %{
  5307   match(Set dst (ConvI2L (LoadB mem)));
  5308   ins_cost(MEMORY_REF_COST);
  5310   size(4);
  5311   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5312   opcode(Assembler::ldsb_op3);
  5313   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5314   ins_pipe(iload_mask_mem);
  5315 %}
  5317 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5318 instruct loadUB(iRegI dst, memory mem) %{
  5319   match(Set dst (LoadUB mem));
  5320   ins_cost(MEMORY_REF_COST);
  5322   size(4);
  5323   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5324   opcode(Assembler::ldub_op3);
  5325   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5326   ins_pipe(iload_mask_mem);
  5327 %}
  5329 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5330 instruct loadUB2L(iRegL dst, memory mem) %{
  5331   match(Set dst (ConvI2L (LoadUB mem)));
  5332   ins_cost(MEMORY_REF_COST);
  5334   size(4);
  5335   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5336   opcode(Assembler::ldub_op3);
  5337   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5338   ins_pipe(iload_mask_mem);
  5339 %}
  5341 // Load Short (16bit signed)
  5342 instruct loadS(iRegI dst, memory mem) %{
  5343   match(Set dst (LoadS mem));
  5344   ins_cost(MEMORY_REF_COST);
  5346   size(4);
  5347   format %{ "LDSH   $mem,$dst\t! short" %}
  5348   opcode(Assembler::ldsh_op3);
  5349   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5350   ins_pipe(iload_mask_mem);
  5351 %}
  5353 // Load Short (16bit signed) into a Long Register
  5354 instruct loadS2L(iRegL dst, memory mem) %{
  5355   match(Set dst (ConvI2L (LoadS mem)));
  5356   ins_cost(MEMORY_REF_COST);
  5358   size(4);
  5359   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5360   opcode(Assembler::ldsh_op3);
  5361   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5362   ins_pipe(iload_mask_mem);
  5363 %}
  5365 // Load Unsigned Short/Char (16bit UNsigned)
  5366 instruct loadUS(iRegI dst, memory mem) %{
  5367   match(Set dst (LoadUS mem));
  5368   ins_cost(MEMORY_REF_COST);
  5370   size(4);
  5371   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5372   opcode(Assembler::lduh_op3);
  5373   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5374   ins_pipe(iload_mask_mem);
  5375 %}
  5377 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5378 instruct loadUS2L(iRegL dst, memory mem) %{
  5379   match(Set dst (ConvI2L (LoadUS mem)));
  5380   ins_cost(MEMORY_REF_COST);
  5382   size(4);
  5383   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5384   opcode(Assembler::lduh_op3);
  5385   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5386   ins_pipe(iload_mask_mem);
  5387 %}
  5389 // Load Integer
  5390 instruct loadI(iRegI dst, memory mem) %{
  5391   match(Set dst (LoadI mem));
  5392   ins_cost(MEMORY_REF_COST);
  5394   size(4);
  5395   format %{ "LDUW   $mem,$dst\t! int" %}
  5396   opcode(Assembler::lduw_op3);
  5397   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5398   ins_pipe(iload_mem);
  5399 %}
  5401 // Load Integer into a Long Register
  5402 instruct loadI2L(iRegL dst, memory mem) %{
  5403   match(Set dst (ConvI2L (LoadI mem)));
  5404   ins_cost(MEMORY_REF_COST);
  5406   size(4);
  5407   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5408   opcode(Assembler::ldsw_op3);
  5409   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5410   ins_pipe(iload_mem);
  5411 %}
  5413 // Load Unsigned Integer into a Long Register
  5414 instruct loadUI2L(iRegL dst, memory mem) %{
  5415   match(Set dst (LoadUI2L mem));
  5416   ins_cost(MEMORY_REF_COST);
  5418   size(4);
  5419   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5420   opcode(Assembler::lduw_op3);
  5421   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5422   ins_pipe(iload_mem);
  5423 %}
  5425 // Load Long - aligned
  5426 instruct loadL(iRegL dst, memory mem ) %{
  5427   match(Set dst (LoadL mem));
  5428   ins_cost(MEMORY_REF_COST);
  5430   size(4);
  5431   format %{ "LDX    $mem,$dst\t! long" %}
  5432   opcode(Assembler::ldx_op3);
  5433   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5434   ins_pipe(iload_mem);
  5435 %}
  5437 // Load Long - UNaligned
  5438 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5439   match(Set dst (LoadL_unaligned mem));
  5440   effect(KILL tmp);
  5441   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5442   size(16);
  5443   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5444           "\tLDUW   $mem  ,$dst\n"
  5445           "\tSLLX   #32, $dst, $dst\n"
  5446           "\tOR     $dst, R_O7, $dst" %}
  5447   opcode(Assembler::lduw_op3);
  5448   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5449   ins_pipe(iload_mem);
  5450 %}
  5452 // Load Aligned Packed Byte into a Double Register
  5453 instruct loadA8B(regD dst, memory mem) %{
  5454   match(Set dst (Load8B mem));
  5455   ins_cost(MEMORY_REF_COST);
  5456   size(4);
  5457   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5458   opcode(Assembler::lddf_op3);
  5459   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5460   ins_pipe(floadD_mem);
  5461 %}
  5463 // Load Aligned Packed Char into a Double Register
  5464 instruct loadA4C(regD dst, memory mem) %{
  5465   match(Set dst (Load4C mem));
  5466   ins_cost(MEMORY_REF_COST);
  5467   size(4);
  5468   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5469   opcode(Assembler::lddf_op3);
  5470   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5471   ins_pipe(floadD_mem);
  5472 %}
  5474 // Load Aligned Packed Short into a Double Register
  5475 instruct loadA4S(regD dst, memory mem) %{
  5476   match(Set dst (Load4S mem));
  5477   ins_cost(MEMORY_REF_COST);
  5478   size(4);
  5479   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5480   opcode(Assembler::lddf_op3);
  5481   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5482   ins_pipe(floadD_mem);
  5483 %}
  5485 // Load Aligned Packed Int into a Double Register
  5486 instruct loadA2I(regD dst, memory mem) %{
  5487   match(Set dst (Load2I mem));
  5488   ins_cost(MEMORY_REF_COST);
  5489   size(4);
  5490   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5491   opcode(Assembler::lddf_op3);
  5492   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5493   ins_pipe(floadD_mem);
  5494 %}
  5496 // Load Range
  5497 instruct loadRange(iRegI dst, memory mem) %{
  5498   match(Set dst (LoadRange mem));
  5499   ins_cost(MEMORY_REF_COST);
  5501   size(4);
  5502   format %{ "LDUW   $mem,$dst\t! range" %}
  5503   opcode(Assembler::lduw_op3);
  5504   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5505   ins_pipe(iload_mem);
  5506 %}
  5508 // Load Integer into %f register (for fitos/fitod)
  5509 instruct loadI_freg(regF dst, memory mem) %{
  5510   match(Set dst (LoadI mem));
  5511   ins_cost(MEMORY_REF_COST);
  5512   size(4);
  5514   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5515   opcode(Assembler::ldf_op3);
  5516   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5517   ins_pipe(floadF_mem);
  5518 %}
  5520 // Load Pointer
  5521 instruct loadP(iRegP dst, memory mem) %{
  5522   match(Set dst (LoadP mem));
  5523   ins_cost(MEMORY_REF_COST);
  5524   size(4);
  5526 #ifndef _LP64
  5527   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5528   opcode(Assembler::lduw_op3, 0, REGP_OP);
  5529 #else
  5530   format %{ "LDX    $mem,$dst\t! ptr" %}
  5531   opcode(Assembler::ldx_op3, 0, REGP_OP);
  5532 #endif
  5533   ins_encode( form3_mem_reg( mem, dst ) );
  5534   ins_pipe(iload_mem);
  5535 %}
  5537 // Load Compressed Pointer
  5538 instruct loadN(iRegN dst, memory mem) %{
  5539    match(Set dst (LoadN mem));
  5540    ins_cost(MEMORY_REF_COST);
  5541    size(4);
  5543    format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5544    ins_encode %{
  5545      Register index = $mem$$index$$Register;
  5546      if (index != G0) {
  5547        __ lduw($mem$$base$$Register, index, $dst$$Register);
  5548      } else {
  5549        __ lduw($mem$$base$$Register, $mem$$disp, $dst$$Register);
  5551    %}
  5552    ins_pipe(iload_mem);
  5553 %}
  5555 // Load Klass Pointer
  5556 instruct loadKlass(iRegP dst, memory mem) %{
  5557   match(Set dst (LoadKlass mem));
  5558   ins_cost(MEMORY_REF_COST);
  5559   size(4);
  5561 #ifndef _LP64
  5562   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5563   opcode(Assembler::lduw_op3, 0, REGP_OP);
  5564 #else
  5565   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5566   opcode(Assembler::ldx_op3, 0, REGP_OP);
  5567 #endif
  5568   ins_encode( form3_mem_reg( mem, dst ) );
  5569   ins_pipe(iload_mem);
  5570 %}
  5572 // Load narrow Klass Pointer
  5573 instruct loadNKlass(iRegN dst, memory mem) %{
  5574   match(Set dst (LoadNKlass mem));
  5575   ins_cost(MEMORY_REF_COST);
  5576   size(4);
  5578   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5580   ins_encode %{
  5581      Register base = as_Register($mem$$base);
  5582      Register index = as_Register($mem$$index);
  5583      Register dst = $dst$$Register;
  5584      if (index != G0) {
  5585        __ lduw(base, index, dst);
  5586      } else {
  5587        __ lduw(base, $mem$$disp, dst);
  5589   %}
  5590   ins_pipe(iload_mem);
  5591 %}
  5593 // Load Double
  5594 instruct loadD(regD dst, memory mem) %{
  5595   match(Set dst (LoadD mem));
  5596   ins_cost(MEMORY_REF_COST);
  5598   size(4);
  5599   format %{ "LDDF   $mem,$dst" %}
  5600   opcode(Assembler::lddf_op3);
  5601   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5602   ins_pipe(floadD_mem);
  5603 %}
  5605 // Load Double - UNaligned
  5606 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  5607   match(Set dst (LoadD_unaligned mem));
  5608   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5609   size(8);
  5610   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  5611           "\tLDF    $mem+4,$dst.lo\t!" %}
  5612   opcode(Assembler::ldf_op3);
  5613   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  5614   ins_pipe(iload_mem);
  5615 %}
  5617 // Load Float
  5618 instruct loadF(regF dst, memory mem) %{
  5619   match(Set dst (LoadF mem));
  5620   ins_cost(MEMORY_REF_COST);
  5622   size(4);
  5623   format %{ "LDF    $mem,$dst" %}
  5624   opcode(Assembler::ldf_op3);
  5625   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5626   ins_pipe(floadF_mem);
  5627 %}
  5629 // Load Constant
  5630 instruct loadConI( iRegI dst, immI src ) %{
  5631   match(Set dst src);
  5632   ins_cost(DEFAULT_COST * 3/2);
  5633   format %{ "SET    $src,$dst" %}
  5634   ins_encode( Set32(src, dst) );
  5635   ins_pipe(ialu_hi_lo_reg);
  5636 %}
  5638 instruct loadConI13( iRegI dst, immI13 src ) %{
  5639   match(Set dst src);
  5641   size(4);
  5642   format %{ "MOV    $src,$dst" %}
  5643   ins_encode( Set13( src, dst ) );
  5644   ins_pipe(ialu_imm);
  5645 %}
  5647 instruct loadConP(iRegP dst, immP src) %{
  5648   match(Set dst src);
  5649   ins_cost(DEFAULT_COST * 3/2);
  5650   format %{ "SET    $src,$dst\t!ptr" %}
  5651   // This rule does not use "expand" unlike loadConI because then
  5652   // the result type is not known to be an Oop.  An ADLC
  5653   // enhancement will be needed to make that work - not worth it!
  5655   ins_encode( SetPtr( src, dst ) );
  5656   ins_pipe(loadConP);
  5658 %}
  5660 instruct loadConP0(iRegP dst, immP0 src) %{
  5661   match(Set dst src);
  5663   size(4);
  5664   format %{ "CLR    $dst\t!ptr" %}
  5665   ins_encode( SetNull( dst ) );
  5666   ins_pipe(ialu_imm);
  5667 %}
  5669 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  5670   match(Set dst src);
  5671   ins_cost(DEFAULT_COST);
  5672   format %{ "SET    $src,$dst\t!ptr" %}
  5673   ins_encode %{
  5674     Address polling_page(reg_to_register_object($dst$$reg), (address)os::get_polling_page());
  5675     __ sethi(polling_page, false );
  5676   %}
  5677   ins_pipe(loadConP_poll);
  5678 %}
  5680 instruct loadConN0(iRegN dst, immN0 src) %{
  5681   match(Set dst src);
  5683   size(4);
  5684   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  5685   ins_encode( SetNull( dst ) );
  5686   ins_pipe(ialu_imm);
  5687 %}
  5689 instruct loadConN(iRegN dst, immN src) %{
  5690   match(Set dst src);
  5691   ins_cost(DEFAULT_COST * 3/2);
  5692   format %{ "SET    $src,$dst\t! compressed ptr" %}
  5693   ins_encode %{
  5694     Register dst = $dst$$Register;
  5695     __ set_narrow_oop((jobject)$src$$constant, dst);
  5696   %}
  5697   ins_pipe(ialu_hi_lo_reg);
  5698 %}
  5700 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
  5701   // %%% maybe this should work like loadConD
  5702   match(Set dst src);
  5703   effect(KILL tmp);
  5704   ins_cost(DEFAULT_COST * 4);
  5705   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
  5706   ins_encode( LdImmL(src, dst, tmp) );
  5707   ins_pipe(loadConL);
  5708 %}
  5710 instruct loadConL0( iRegL dst, immL0 src ) %{
  5711   match(Set dst src);
  5712   ins_cost(DEFAULT_COST);
  5713   size(4);
  5714   format %{ "CLR    $dst\t! long" %}
  5715   ins_encode( Set13( src, dst ) );
  5716   ins_pipe(ialu_imm);
  5717 %}
  5719 instruct loadConL13( iRegL dst, immL13 src ) %{
  5720   match(Set dst src);
  5721   ins_cost(DEFAULT_COST * 2);
  5723   size(4);
  5724   format %{ "MOV    $src,$dst\t! long" %}
  5725   ins_encode( Set13( src, dst ) );
  5726   ins_pipe(ialu_imm);
  5727 %}
  5729 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
  5730   match(Set dst src);
  5731   effect(KILL tmp);
  5733 #ifdef _LP64
  5734   size(36);
  5735 #else
  5736   size(8);
  5737 #endif
  5739   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
  5740             "LDF    [$tmp+lo(&$src)],$dst" %}
  5741   ins_encode( LdImmF(src, dst, tmp) );
  5742   ins_pipe(loadConFD);
  5743 %}
  5745 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
  5746   match(Set dst src);
  5747   effect(KILL tmp);
  5749 #ifdef _LP64
  5750   size(36);
  5751 #else
  5752   size(8);
  5753 #endif
  5755   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
  5756             "LDDF   [$tmp+lo(&$src)],$dst" %}
  5757   ins_encode( LdImmD(src, dst, tmp) );
  5758   ins_pipe(loadConFD);
  5759 %}
  5761 // Prefetch instructions.
  5762 // Must be safe to execute with invalid address (cannot fault).
  5764 instruct prefetchr( memory mem ) %{
  5765   match( PrefetchRead mem );
  5766   ins_cost(MEMORY_REF_COST);
  5768   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  5769   opcode(Assembler::prefetch_op3);
  5770   ins_encode( form3_mem_prefetch_read( mem ) );
  5771   ins_pipe(iload_mem);
  5772 %}
  5774 instruct prefetchw( memory mem ) %{
  5775   match( PrefetchWrite mem );
  5776   ins_cost(MEMORY_REF_COST);
  5778   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  5779   opcode(Assembler::prefetch_op3);
  5780   ins_encode( form3_mem_prefetch_write( mem ) );
  5781   ins_pipe(iload_mem);
  5782 %}
  5785 //----------Store Instructions-------------------------------------------------
  5786 // Store Byte
  5787 instruct storeB(memory mem, iRegI src) %{
  5788   match(Set mem (StoreB mem src));
  5789   ins_cost(MEMORY_REF_COST);
  5791   size(4);
  5792   format %{ "STB    $src,$mem\t! byte" %}
  5793   opcode(Assembler::stb_op3);
  5794   ins_encode(simple_form3_mem_reg( mem, src ) );
  5795   ins_pipe(istore_mem_reg);
  5796 %}
  5798 instruct storeB0(memory mem, immI0 src) %{
  5799   match(Set mem (StoreB mem src));
  5800   ins_cost(MEMORY_REF_COST);
  5802   size(4);
  5803   format %{ "STB    $src,$mem\t! byte" %}
  5804   opcode(Assembler::stb_op3);
  5805   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5806   ins_pipe(istore_mem_zero);
  5807 %}
  5809 instruct storeCM0(memory mem, immI0 src) %{
  5810   match(Set mem (StoreCM mem src));
  5811   ins_cost(MEMORY_REF_COST);
  5813   size(4);
  5814   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  5815   opcode(Assembler::stb_op3);
  5816   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5817   ins_pipe(istore_mem_zero);
  5818 %}
  5820 // Store Char/Short
  5821 instruct storeC(memory mem, iRegI src) %{
  5822   match(Set mem (StoreC mem src));
  5823   ins_cost(MEMORY_REF_COST);
  5825   size(4);
  5826   format %{ "STH    $src,$mem\t! short" %}
  5827   opcode(Assembler::sth_op3);
  5828   ins_encode(simple_form3_mem_reg( mem, src ) );
  5829   ins_pipe(istore_mem_reg);
  5830 %}
  5832 instruct storeC0(memory mem, immI0 src) %{
  5833   match(Set mem (StoreC mem src));
  5834   ins_cost(MEMORY_REF_COST);
  5836   size(4);
  5837   format %{ "STH    $src,$mem\t! short" %}
  5838   opcode(Assembler::sth_op3);
  5839   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5840   ins_pipe(istore_mem_zero);
  5841 %}
  5843 // Store Integer
  5844 instruct storeI(memory mem, iRegI src) %{
  5845   match(Set mem (StoreI mem src));
  5846   ins_cost(MEMORY_REF_COST);
  5848   size(4);
  5849   format %{ "STW    $src,$mem" %}
  5850   opcode(Assembler::stw_op3);
  5851   ins_encode(simple_form3_mem_reg( mem, src ) );
  5852   ins_pipe(istore_mem_reg);
  5853 %}
  5855 // Store Long
  5856 instruct storeL(memory mem, iRegL src) %{
  5857   match(Set mem (StoreL mem src));
  5858   ins_cost(MEMORY_REF_COST);
  5859   size(4);
  5860   format %{ "STX    $src,$mem\t! long" %}
  5861   opcode(Assembler::stx_op3);
  5862   ins_encode(simple_form3_mem_reg( mem, src ) );
  5863   ins_pipe(istore_mem_reg);
  5864 %}
  5866 instruct storeI0(memory mem, immI0 src) %{
  5867   match(Set mem (StoreI mem src));
  5868   ins_cost(MEMORY_REF_COST);
  5870   size(4);
  5871   format %{ "STW    $src,$mem" %}
  5872   opcode(Assembler::stw_op3);
  5873   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5874   ins_pipe(istore_mem_zero);
  5875 %}
  5877 instruct storeL0(memory mem, immL0 src) %{
  5878   match(Set mem (StoreL mem src));
  5879   ins_cost(MEMORY_REF_COST);
  5881   size(4);
  5882   format %{ "STX    $src,$mem" %}
  5883   opcode(Assembler::stx_op3);
  5884   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5885   ins_pipe(istore_mem_zero);
  5886 %}
  5888 // Store Integer from float register (used after fstoi)
  5889 instruct storeI_Freg(memory mem, regF src) %{
  5890   match(Set mem (StoreI mem src));
  5891   ins_cost(MEMORY_REF_COST);
  5893   size(4);
  5894   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  5895   opcode(Assembler::stf_op3);
  5896   ins_encode(simple_form3_mem_reg( mem, src ) );
  5897   ins_pipe(fstoreF_mem_reg);
  5898 %}
  5900 // Store Pointer
  5901 instruct storeP(memory dst, sp_ptr_RegP src) %{
  5902   match(Set dst (StoreP dst src));
  5903   ins_cost(MEMORY_REF_COST);
  5904   size(4);
  5906 #ifndef _LP64
  5907   format %{ "STW    $src,$dst\t! ptr" %}
  5908   opcode(Assembler::stw_op3, 0, REGP_OP);
  5909 #else
  5910   format %{ "STX    $src,$dst\t! ptr" %}
  5911   opcode(Assembler::stx_op3, 0, REGP_OP);
  5912 #endif
  5913   ins_encode( form3_mem_reg( dst, src ) );
  5914   ins_pipe(istore_mem_spORreg);
  5915 %}
  5917 instruct storeP0(memory dst, immP0 src) %{
  5918   match(Set dst (StoreP dst src));
  5919   ins_cost(MEMORY_REF_COST);
  5920   size(4);
  5922 #ifndef _LP64
  5923   format %{ "STW    $src,$dst\t! ptr" %}
  5924   opcode(Assembler::stw_op3, 0, REGP_OP);
  5925 #else
  5926   format %{ "STX    $src,$dst\t! ptr" %}
  5927   opcode(Assembler::stx_op3, 0, REGP_OP);
  5928 #endif
  5929   ins_encode( form3_mem_reg( dst, R_G0 ) );
  5930   ins_pipe(istore_mem_zero);
  5931 %}
  5933 // Store Compressed Pointer
  5934 instruct storeN(memory dst, iRegN src) %{
  5935    match(Set dst (StoreN dst src));
  5936    ins_cost(MEMORY_REF_COST);
  5937    size(4);
  5939    format %{ "STW    $src,$dst\t! compressed ptr" %}
  5940    ins_encode %{
  5941      Register base = as_Register($dst$$base);
  5942      Register index = as_Register($dst$$index);
  5943      Register src = $src$$Register;
  5944      if (index != G0) {
  5945        __ stw(src, base, index);
  5946      } else {
  5947        __ stw(src, base, $dst$$disp);
  5949    %}
  5950    ins_pipe(istore_mem_spORreg);
  5951 %}
  5953 instruct storeN0(memory dst, immN0 src) %{
  5954    match(Set dst (StoreN dst src));
  5955    ins_cost(MEMORY_REF_COST);
  5956    size(4);
  5958    format %{ "STW    $src,$dst\t! compressed ptr" %}
  5959    ins_encode %{
  5960      Register base = as_Register($dst$$base);
  5961      Register index = as_Register($dst$$index);
  5962      if (index != G0) {
  5963        __ stw(0, base, index);
  5964      } else {
  5965        __ stw(0, base, $dst$$disp);
  5967    %}
  5968    ins_pipe(istore_mem_zero);
  5969 %}
  5971 // Store Double
  5972 instruct storeD( memory mem, regD src) %{
  5973   match(Set mem (StoreD mem src));
  5974   ins_cost(MEMORY_REF_COST);
  5976   size(4);
  5977   format %{ "STDF   $src,$mem" %}
  5978   opcode(Assembler::stdf_op3);
  5979   ins_encode(simple_form3_mem_reg( mem, src ) );
  5980   ins_pipe(fstoreD_mem_reg);
  5981 %}
  5983 instruct storeD0( memory mem, immD0 src) %{
  5984   match(Set mem (StoreD mem src));
  5985   ins_cost(MEMORY_REF_COST);
  5987   size(4);
  5988   format %{ "STX    $src,$mem" %}
  5989   opcode(Assembler::stx_op3);
  5990   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5991   ins_pipe(fstoreD_mem_zero);
  5992 %}
  5994 // Store Float
  5995 instruct storeF( memory mem, regF src) %{
  5996   match(Set mem (StoreF mem src));
  5997   ins_cost(MEMORY_REF_COST);
  5999   size(4);
  6000   format %{ "STF    $src,$mem" %}
  6001   opcode(Assembler::stf_op3);
  6002   ins_encode(simple_form3_mem_reg( mem, src ) );
  6003   ins_pipe(fstoreF_mem_reg);
  6004 %}
  6006 instruct storeF0( memory mem, immF0 src) %{
  6007   match(Set mem (StoreF mem src));
  6008   ins_cost(MEMORY_REF_COST);
  6010   size(4);
  6011   format %{ "STW    $src,$mem\t! storeF0" %}
  6012   opcode(Assembler::stw_op3);
  6013   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6014   ins_pipe(fstoreF_mem_zero);
  6015 %}
  6017 // Store Aligned Packed Bytes in Double register to memory
  6018 instruct storeA8B(memory mem, regD src) %{
  6019   match(Set mem (Store8B mem src));
  6020   ins_cost(MEMORY_REF_COST);
  6021   size(4);
  6022   format %{ "STDF   $src,$mem\t! packed8B" %}
  6023   opcode(Assembler::stdf_op3);
  6024   ins_encode(simple_form3_mem_reg( mem, src ) );
  6025   ins_pipe(fstoreD_mem_reg);
  6026 %}
  6028 // Convert oop pointer into compressed form
  6029 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6030   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6031   match(Set dst (EncodeP src));
  6032   format %{ "encode_heap_oop $src, $dst" %}
  6033   ins_encode %{
  6034     __ encode_heap_oop($src$$Register, $dst$$Register);
  6035   %}
  6036   ins_pipe(ialu_reg);
  6037 %}
  6039 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6040   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6041   match(Set dst (EncodeP src));
  6042   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6043   ins_encode %{
  6044     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6045   %}
  6046   ins_pipe(ialu_reg);
  6047 %}
  6049 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6050   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6051             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6052   match(Set dst (DecodeN src));
  6053   format %{ "decode_heap_oop $src, $dst" %}
  6054   ins_encode %{
  6055     __ decode_heap_oop($src$$Register, $dst$$Register);
  6056   %}
  6057   ins_pipe(ialu_reg);
  6058 %}
  6060 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6061   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6062             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6063   match(Set dst (DecodeN src));
  6064   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6065   ins_encode %{
  6066     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6067   %}
  6068   ins_pipe(ialu_reg);
  6069 %}
  6072 // Store Zero into Aligned Packed Bytes
  6073 instruct storeA8B0(memory mem, immI0 zero) %{
  6074   match(Set mem (Store8B mem zero));
  6075   ins_cost(MEMORY_REF_COST);
  6076   size(4);
  6077   format %{ "STX    $zero,$mem\t! packed8B" %}
  6078   opcode(Assembler::stx_op3);
  6079   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6080   ins_pipe(fstoreD_mem_zero);
  6081 %}
  6083 // Store Aligned Packed Chars/Shorts in Double register to memory
  6084 instruct storeA4C(memory mem, regD src) %{
  6085   match(Set mem (Store4C mem src));
  6086   ins_cost(MEMORY_REF_COST);
  6087   size(4);
  6088   format %{ "STDF   $src,$mem\t! packed4C" %}
  6089   opcode(Assembler::stdf_op3);
  6090   ins_encode(simple_form3_mem_reg( mem, src ) );
  6091   ins_pipe(fstoreD_mem_reg);
  6092 %}
  6094 // Store Zero into Aligned Packed Chars/Shorts
  6095 instruct storeA4C0(memory mem, immI0 zero) %{
  6096   match(Set mem (Store4C mem (Replicate4C zero)));
  6097   ins_cost(MEMORY_REF_COST);
  6098   size(4);
  6099   format %{ "STX    $zero,$mem\t! packed4C" %}
  6100   opcode(Assembler::stx_op3);
  6101   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6102   ins_pipe(fstoreD_mem_zero);
  6103 %}
  6105 // Store Aligned Packed Ints in Double register to memory
  6106 instruct storeA2I(memory mem, regD src) %{
  6107   match(Set mem (Store2I mem src));
  6108   ins_cost(MEMORY_REF_COST);
  6109   size(4);
  6110   format %{ "STDF   $src,$mem\t! packed2I" %}
  6111   opcode(Assembler::stdf_op3);
  6112   ins_encode(simple_form3_mem_reg( mem, src ) );
  6113   ins_pipe(fstoreD_mem_reg);
  6114 %}
  6116 // Store Zero into Aligned Packed Ints
  6117 instruct storeA2I0(memory mem, immI0 zero) %{
  6118   match(Set mem (Store2I mem zero));
  6119   ins_cost(MEMORY_REF_COST);
  6120   size(4);
  6121   format %{ "STX    $zero,$mem\t! packed2I" %}
  6122   opcode(Assembler::stx_op3);
  6123   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6124   ins_pipe(fstoreD_mem_zero);
  6125 %}
  6128 //----------MemBar Instructions-----------------------------------------------
  6129 // Memory barrier flavors
  6131 instruct membar_acquire() %{
  6132   match(MemBarAcquire);
  6133   ins_cost(4*MEMORY_REF_COST);
  6135   size(0);
  6136   format %{ "MEMBAR-acquire" %}
  6137   ins_encode( enc_membar_acquire );
  6138   ins_pipe(long_memory_op);
  6139 %}
  6141 instruct membar_acquire_lock() %{
  6142   match(MemBarAcquire);
  6143   predicate(Matcher::prior_fast_lock(n));
  6144   ins_cost(0);
  6146   size(0);
  6147   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6148   ins_encode( );
  6149   ins_pipe(empty);
  6150 %}
  6152 instruct membar_release() %{
  6153   match(MemBarRelease);
  6154   ins_cost(4*MEMORY_REF_COST);
  6156   size(0);
  6157   format %{ "MEMBAR-release" %}
  6158   ins_encode( enc_membar_release );
  6159   ins_pipe(long_memory_op);
  6160 %}
  6162 instruct membar_release_lock() %{
  6163   match(MemBarRelease);
  6164   predicate(Matcher::post_fast_unlock(n));
  6165   ins_cost(0);
  6167   size(0);
  6168   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6169   ins_encode( );
  6170   ins_pipe(empty);
  6171 %}
  6173 instruct membar_volatile() %{
  6174   match(MemBarVolatile);
  6175   ins_cost(4*MEMORY_REF_COST);
  6177   size(4);
  6178   format %{ "MEMBAR-volatile" %}
  6179   ins_encode( enc_membar_volatile );
  6180   ins_pipe(long_memory_op);
  6181 %}
  6183 instruct unnecessary_membar_volatile() %{
  6184   match(MemBarVolatile);
  6185   predicate(Matcher::post_store_load_barrier(n));
  6186   ins_cost(0);
  6188   size(0);
  6189   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6190   ins_encode( );
  6191   ins_pipe(empty);
  6192 %}
  6194 //----------Register Move Instructions-----------------------------------------
  6195 instruct roundDouble_nop(regD dst) %{
  6196   match(Set dst (RoundDouble dst));
  6197   ins_cost(0);
  6198   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6199   ins_encode( );
  6200   ins_pipe(empty);
  6201 %}
  6204 instruct roundFloat_nop(regF dst) %{
  6205   match(Set dst (RoundFloat dst));
  6206   ins_cost(0);
  6207   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6208   ins_encode( );
  6209   ins_pipe(empty);
  6210 %}
  6213 // Cast Index to Pointer for unsafe natives
  6214 instruct castX2P(iRegX src, iRegP dst) %{
  6215   match(Set dst (CastX2P src));
  6217   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6218   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6219   ins_pipe(ialu_reg);
  6220 %}
  6222 // Cast Pointer to Index for unsafe natives
  6223 instruct castP2X(iRegP src, iRegX dst) %{
  6224   match(Set dst (CastP2X src));
  6226   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6227   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6228   ins_pipe(ialu_reg);
  6229 %}
  6231 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6232   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6233   match(Set stkSlot src);   // chain rule
  6234   ins_cost(MEMORY_REF_COST);
  6235   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6236   opcode(Assembler::stdf_op3);
  6237   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6238   ins_pipe(fstoreD_stk_reg);
  6239 %}
  6241 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6242   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6243   match(Set dst stkSlot);   // chain rule
  6244   ins_cost(MEMORY_REF_COST);
  6245   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6246   opcode(Assembler::lddf_op3);
  6247   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6248   ins_pipe(floadD_stk);
  6249 %}
  6251 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6252   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6253   match(Set stkSlot src);   // chain rule
  6254   ins_cost(MEMORY_REF_COST);
  6255   format %{ "STF   $src,$stkSlot\t!stk" %}
  6256   opcode(Assembler::stf_op3);
  6257   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6258   ins_pipe(fstoreF_stk_reg);
  6259 %}
  6261 //----------Conditional Move---------------------------------------------------
  6262 // Conditional move
  6263 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6264   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6265   ins_cost(150);
  6266   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6267   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6268   ins_pipe(ialu_reg);
  6269 %}
  6271 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6272   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6273   ins_cost(140);
  6274   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6275   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6276   ins_pipe(ialu_imm);
  6277 %}
  6279 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6280   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6281   ins_cost(150);
  6282   size(4);
  6283   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6284   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6285   ins_pipe(ialu_reg);
  6286 %}
  6288 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6289   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6290   ins_cost(140);
  6291   size(4);
  6292   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6293   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6294   ins_pipe(ialu_imm);
  6295 %}
  6297 instruct cmovII_U_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6298   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6299   ins_cost(150);
  6300   size(4);
  6301   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6302   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6303   ins_pipe(ialu_reg);
  6304 %}
  6306 instruct cmovII_U_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6307   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6308   ins_cost(140);
  6309   size(4);
  6310   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6311   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6312   ins_pipe(ialu_imm);
  6313 %}
  6315 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6316   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6317   ins_cost(150);
  6318   size(4);
  6319   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6320   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6321   ins_pipe(ialu_reg);
  6322 %}
  6324 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6325   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6326   ins_cost(140);
  6327   size(4);
  6328   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6329   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6330   ins_pipe(ialu_imm);
  6331 %}
  6333 // Conditional move for RegN. Only cmov(reg,reg).
  6334 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6335   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6336   ins_cost(150);
  6337   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6338   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6339   ins_pipe(ialu_reg);
  6340 %}
  6342 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6343 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6344   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6345   ins_cost(150);
  6346   size(4);
  6347   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6348   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6349   ins_pipe(ialu_reg);
  6350 %}
  6352 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6353   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6354   ins_cost(150);
  6355   size(4);
  6356   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6357   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6358   ins_pipe(ialu_reg);
  6359 %}
  6361 // Conditional move
  6362 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6363   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6364   ins_cost(150);
  6365   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6366   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6367   ins_pipe(ialu_reg);
  6368 %}
  6370 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6371   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6372   ins_cost(140);
  6373   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6374   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6375   ins_pipe(ialu_imm);
  6376 %}
  6378 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6379 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6380   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6381   ins_cost(150);
  6383   size(4);
  6384   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6385   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6386   ins_pipe(ialu_reg);
  6387 %}
  6389 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6390   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6391   ins_cost(140);
  6393   size(4);
  6394   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6395   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6396   ins_pipe(ialu_imm);
  6397 %}
  6399 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6400   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6401   ins_cost(150);
  6402   size(4);
  6403   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6404   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6405   ins_pipe(ialu_imm);
  6406 %}
  6408 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6409   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6410   ins_cost(140);
  6411   size(4);
  6412   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6413   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6414   ins_pipe(ialu_imm);
  6415 %}
  6417 // Conditional move
  6418 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6419   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6420   ins_cost(150);
  6421   opcode(0x101);
  6422   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6423   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6424   ins_pipe(int_conditional_float_move);
  6425 %}
  6427 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6428   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6429   ins_cost(150);
  6431   size(4);
  6432   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6433   opcode(0x101);
  6434   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6435   ins_pipe(int_conditional_float_move);
  6436 %}
  6438 // Conditional move,
  6439 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6440   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6441   ins_cost(150);
  6442   size(4);
  6443   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6444   opcode(0x1);
  6445   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6446   ins_pipe(int_conditional_double_move);
  6447 %}
  6449 // Conditional move
  6450 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6451   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6452   ins_cost(150);
  6453   size(4);
  6454   opcode(0x102);
  6455   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6456   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6457   ins_pipe(int_conditional_double_move);
  6458 %}
  6460 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6461   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6462   ins_cost(150);
  6464   size(4);
  6465   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6466   opcode(0x102);
  6467   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6468   ins_pipe(int_conditional_double_move);
  6469 %}
  6471 // Conditional move,
  6472 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6473   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6474   ins_cost(150);
  6475   size(4);
  6476   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  6477   opcode(0x2);
  6478   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6479   ins_pipe(int_conditional_double_move);
  6480 %}
  6482 // Conditional move
  6483 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  6484   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6485   ins_cost(150);
  6486   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6487   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6488   ins_pipe(ialu_reg);
  6489 %}
  6491 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  6492   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6493   ins_cost(140);
  6494   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6495   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6496   ins_pipe(ialu_imm);
  6497 %}
  6499 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  6500   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  6501   ins_cost(150);
  6503   size(4);
  6504   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  6505   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6506   ins_pipe(ialu_reg);
  6507 %}
  6510 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  6511   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  6512   ins_cost(150);
  6514   size(4);
  6515   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  6516   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6517   ins_pipe(ialu_reg);
  6518 %}
  6522 //----------OS and Locking Instructions----------------------------------------
  6524 // This name is KNOWN by the ADLC and cannot be changed.
  6525 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  6526 // for this guy.
  6527 instruct tlsLoadP(g2RegP dst) %{
  6528   match(Set dst (ThreadLocal));
  6530   size(0);
  6531   ins_cost(0);
  6532   format %{ "# TLS is in G2" %}
  6533   ins_encode( /*empty encoding*/ );
  6534   ins_pipe(ialu_none);
  6535 %}
  6537 instruct checkCastPP( iRegP dst ) %{
  6538   match(Set dst (CheckCastPP dst));
  6540   size(0);
  6541   format %{ "# checkcastPP of $dst" %}
  6542   ins_encode( /*empty encoding*/ );
  6543   ins_pipe(empty);
  6544 %}
  6547 instruct castPP( iRegP dst ) %{
  6548   match(Set dst (CastPP dst));
  6549   format %{ "# castPP of $dst" %}
  6550   ins_encode( /*empty encoding*/ );
  6551   ins_pipe(empty);
  6552 %}
  6554 instruct castII( iRegI dst ) %{
  6555   match(Set dst (CastII dst));
  6556   format %{ "# castII of $dst" %}
  6557   ins_encode( /*empty encoding*/ );
  6558   ins_cost(0);
  6559   ins_pipe(empty);
  6560 %}
  6562 //----------Arithmetic Instructions--------------------------------------------
  6563 // Addition Instructions
  6564 // Register Addition
  6565 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6566   match(Set dst (AddI src1 src2));
  6568   size(4);
  6569   format %{ "ADD    $src1,$src2,$dst" %}
  6570   ins_encode %{
  6571     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  6572   %}
  6573   ins_pipe(ialu_reg_reg);
  6574 %}
  6576 // Immediate Addition
  6577 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6578   match(Set dst (AddI src1 src2));
  6580   size(4);
  6581   format %{ "ADD    $src1,$src2,$dst" %}
  6582   opcode(Assembler::add_op3, Assembler::arith_op);
  6583   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6584   ins_pipe(ialu_reg_imm);
  6585 %}
  6587 // Pointer Register Addition
  6588 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  6589   match(Set dst (AddP src1 src2));
  6591   size(4);
  6592   format %{ "ADD    $src1,$src2,$dst" %}
  6593   opcode(Assembler::add_op3, Assembler::arith_op);
  6594   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6595   ins_pipe(ialu_reg_reg);
  6596 %}
  6598 // Pointer Immediate Addition
  6599 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  6600   match(Set dst (AddP src1 src2));
  6602   size(4);
  6603   format %{ "ADD    $src1,$src2,$dst" %}
  6604   opcode(Assembler::add_op3, Assembler::arith_op);
  6605   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6606   ins_pipe(ialu_reg_imm);
  6607 %}
  6609 // Long Addition
  6610 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6611   match(Set dst (AddL src1 src2));
  6613   size(4);
  6614   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  6615   opcode(Assembler::add_op3, Assembler::arith_op);
  6616   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6617   ins_pipe(ialu_reg_reg);
  6618 %}
  6620 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  6621   match(Set dst (AddL src1 con));
  6623   size(4);
  6624   format %{ "ADD    $src1,$con,$dst" %}
  6625   opcode(Assembler::add_op3, Assembler::arith_op);
  6626   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  6627   ins_pipe(ialu_reg_imm);
  6628 %}
  6630 //----------Conditional_store--------------------------------------------------
  6631 // Conditional-store of the updated heap-top.
  6632 // Used during allocation of the shared heap.
  6633 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  6635 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  6636 instruct loadPLocked(iRegP dst, memory mem) %{
  6637   match(Set dst (LoadPLocked mem));
  6638   ins_cost(MEMORY_REF_COST);
  6640 #ifndef _LP64
  6641   size(4);
  6642   format %{ "LDUW   $mem,$dst\t! ptr" %}
  6643   opcode(Assembler::lduw_op3, 0, REGP_OP);
  6644 #else
  6645   format %{ "LDX    $mem,$dst\t! ptr" %}
  6646   opcode(Assembler::ldx_op3, 0, REGP_OP);
  6647 #endif
  6648   ins_encode( form3_mem_reg( mem, dst ) );
  6649   ins_pipe(iload_mem);
  6650 %}
  6652 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  6653 instruct loadLLocked(iRegL dst, memory mem) %{
  6654   match(Set dst (LoadLLocked mem));
  6655   ins_cost(MEMORY_REF_COST);
  6656   size(4);
  6657   format %{ "LDX    $mem,$dst\t! long" %}
  6658   opcode(Assembler::ldx_op3);
  6659   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6660   ins_pipe(iload_mem);
  6661 %}
  6663 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  6664   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  6665   effect( KILL newval );
  6666   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  6667             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  6668   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  6669   ins_pipe( long_memory_op );
  6670 %}
  6672 // Conditional-store of an int value.
  6673 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  6674   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  6675   effect( KILL newval );
  6676   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  6677             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  6678   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  6679   ins_pipe( long_memory_op );
  6680 %}
  6682 // Conditional-store of a long value.
  6683 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  6684   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  6685   effect( KILL newval );
  6686   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  6687             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  6688   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  6689   ins_pipe( long_memory_op );
  6690 %}
  6692 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  6694 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6695   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  6696   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6697   format %{
  6698             "MOV    $newval,O7\n\t"
  6699             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6700             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6701             "MOV    1,$res\n\t"
  6702             "MOVne  xcc,R_G0,$res"
  6703   %}
  6704   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6705               enc_lflags_ne_to_boolean(res) );
  6706   ins_pipe( long_memory_op );
  6707 %}
  6710 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6711   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  6712   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6713   format %{
  6714             "MOV    $newval,O7\n\t"
  6715             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6716             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6717             "MOV    1,$res\n\t"
  6718             "MOVne  icc,R_G0,$res"
  6719   %}
  6720   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6721               enc_iflags_ne_to_boolean(res) );
  6722   ins_pipe( long_memory_op );
  6723 %}
  6725 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6726   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  6727   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6728   format %{
  6729             "MOV    $newval,O7\n\t"
  6730             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6731             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6732             "MOV    1,$res\n\t"
  6733             "MOVne  xcc,R_G0,$res"
  6734   %}
  6735 #ifdef _LP64
  6736   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6737               enc_lflags_ne_to_boolean(res) );
  6738 #else
  6739   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6740               enc_iflags_ne_to_boolean(res) );
  6741 #endif
  6742   ins_pipe( long_memory_op );
  6743 %}
  6745 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6746   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  6747   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6748   format %{
  6749             "MOV    $newval,O7\n\t"
  6750             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6751             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6752             "MOV    1,$res\n\t"
  6753             "MOVne  icc,R_G0,$res"
  6754   %}
  6755   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6756               enc_iflags_ne_to_boolean(res) );
  6757   ins_pipe( long_memory_op );
  6758 %}
  6760 //---------------------
  6761 // Subtraction Instructions
  6762 // Register Subtraction
  6763 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6764   match(Set dst (SubI src1 src2));
  6766   size(4);
  6767   format %{ "SUB    $src1,$src2,$dst" %}
  6768   opcode(Assembler::sub_op3, Assembler::arith_op);
  6769   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6770   ins_pipe(ialu_reg_reg);
  6771 %}
  6773 // Immediate Subtraction
  6774 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6775   match(Set dst (SubI src1 src2));
  6777   size(4);
  6778   format %{ "SUB    $src1,$src2,$dst" %}
  6779   opcode(Assembler::sub_op3, Assembler::arith_op);
  6780   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6781   ins_pipe(ialu_reg_imm);
  6782 %}
  6784 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  6785   match(Set dst (SubI zero src2));
  6787   size(4);
  6788   format %{ "NEG    $src2,$dst" %}
  6789   opcode(Assembler::sub_op3, Assembler::arith_op);
  6790   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  6791   ins_pipe(ialu_zero_reg);
  6792 %}
  6794 // Long subtraction
  6795 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6796   match(Set dst (SubL src1 src2));
  6798   size(4);
  6799   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  6800   opcode(Assembler::sub_op3, Assembler::arith_op);
  6801   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6802   ins_pipe(ialu_reg_reg);
  6803 %}
  6805 // Immediate Subtraction
  6806 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  6807   match(Set dst (SubL src1 con));
  6809   size(4);
  6810   format %{ "SUB    $src1,$con,$dst\t! long" %}
  6811   opcode(Assembler::sub_op3, Assembler::arith_op);
  6812   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  6813   ins_pipe(ialu_reg_imm);
  6814 %}
  6816 // Long negation
  6817 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  6818   match(Set dst (SubL zero src2));
  6820   size(4);
  6821   format %{ "NEG    $src2,$dst\t! long" %}
  6822   opcode(Assembler::sub_op3, Assembler::arith_op);
  6823   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  6824   ins_pipe(ialu_zero_reg);
  6825 %}
  6827 // Multiplication Instructions
  6828 // Integer Multiplication
  6829 // Register Multiplication
  6830 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6831   match(Set dst (MulI src1 src2));
  6833   size(4);
  6834   format %{ "MULX   $src1,$src2,$dst" %}
  6835   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6836   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6837   ins_pipe(imul_reg_reg);
  6838 %}
  6840 // Immediate Multiplication
  6841 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6842   match(Set dst (MulI src1 src2));
  6844   size(4);
  6845   format %{ "MULX   $src1,$src2,$dst" %}
  6846   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6847   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6848   ins_pipe(imul_reg_imm);
  6849 %}
  6851 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6852   match(Set dst (MulL src1 src2));
  6853   ins_cost(DEFAULT_COST * 5);
  6854   size(4);
  6855   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  6856   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6857   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6858   ins_pipe(mulL_reg_reg);
  6859 %}
  6861 // Immediate Multiplication
  6862 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  6863   match(Set dst (MulL src1 src2));
  6864   ins_cost(DEFAULT_COST * 5);
  6865   size(4);
  6866   format %{ "MULX   $src1,$src2,$dst" %}
  6867   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6868   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6869   ins_pipe(mulL_reg_imm);
  6870 %}
  6872 // Integer Division
  6873 // Register Division
  6874 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  6875   match(Set dst (DivI src1 src2));
  6876   ins_cost((2+71)*DEFAULT_COST);
  6878   format %{ "SRA     $src2,0,$src2\n\t"
  6879             "SRA     $src1,0,$src1\n\t"
  6880             "SDIVX   $src1,$src2,$dst" %}
  6881   ins_encode( idiv_reg( src1, src2, dst ) );
  6882   ins_pipe(sdiv_reg_reg);
  6883 %}
  6885 // Immediate Division
  6886 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  6887   match(Set dst (DivI src1 src2));
  6888   ins_cost((2+71)*DEFAULT_COST);
  6890   format %{ "SRA     $src1,0,$src1\n\t"
  6891             "SDIVX   $src1,$src2,$dst" %}
  6892   ins_encode( idiv_imm( src1, src2, dst ) );
  6893   ins_pipe(sdiv_reg_imm);
  6894 %}
  6896 //----------Div-By-10-Expansion------------------------------------------------
  6897 // Extract hi bits of a 32x32->64 bit multiply.
  6898 // Expand rule only, not matched
  6899 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  6900   effect( DEF dst, USE src1, USE src2 );
  6901   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  6902             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  6903   ins_encode( enc_mul_hi(dst,src1,src2));
  6904   ins_pipe(sdiv_reg_reg);
  6905 %}
  6907 // Magic constant, reciprocal of 10
  6908 instruct loadConI_x66666667(iRegIsafe dst) %{
  6909   effect( DEF dst );
  6911   size(8);
  6912   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  6913   ins_encode( Set32(0x66666667, dst) );
  6914   ins_pipe(ialu_hi_lo_reg);
  6915 %}
  6917 // Register Shift Right Arithmetic Long by 32-63
  6918 instruct sra_31( iRegI dst, iRegI src ) %{
  6919   effect( DEF dst, USE src );
  6920   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  6921   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  6922   ins_pipe(ialu_reg_reg);
  6923 %}
  6925 // Arithmetic Shift Right by 8-bit immediate
  6926 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  6927   effect( DEF dst, USE src );
  6928   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  6929   opcode(Assembler::sra_op3, Assembler::arith_op);
  6930   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  6931   ins_pipe(ialu_reg_imm);
  6932 %}
  6934 // Integer DIV with 10
  6935 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  6936   match(Set dst (DivI src div));
  6937   ins_cost((6+6)*DEFAULT_COST);
  6938   expand %{
  6939     iRegIsafe tmp1;               // Killed temps;
  6940     iRegIsafe tmp2;               // Killed temps;
  6941     iRegI tmp3;                   // Killed temps;
  6942     iRegI tmp4;                   // Killed temps;
  6943     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  6944     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  6945     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  6946     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  6947     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  6948   %}
  6949 %}
  6951 // Register Long Division
  6952 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6953   match(Set dst (DivL src1 src2));
  6954   ins_cost(DEFAULT_COST*71);
  6955   size(4);
  6956   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6957   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6958   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6959   ins_pipe(divL_reg_reg);
  6960 %}
  6962 // Register Long Division
  6963 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  6964   match(Set dst (DivL src1 src2));
  6965   ins_cost(DEFAULT_COST*71);
  6966   size(4);
  6967   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6968   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6969   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6970   ins_pipe(divL_reg_imm);
  6971 %}
  6973 // Integer Remainder
  6974 // Register Remainder
  6975 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  6976   match(Set dst (ModI src1 src2));
  6977   effect( KILL ccr, KILL temp);
  6979   format %{ "SREM   $src1,$src2,$dst" %}
  6980   ins_encode( irem_reg(src1, src2, dst, temp) );
  6981   ins_pipe(sdiv_reg_reg);
  6982 %}
  6984 // Immediate Remainder
  6985 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  6986   match(Set dst (ModI src1 src2));
  6987   effect( KILL ccr, KILL temp);
  6989   format %{ "SREM   $src1,$src2,$dst" %}
  6990   ins_encode( irem_imm(src1, src2, dst, temp) );
  6991   ins_pipe(sdiv_reg_imm);
  6992 %}
  6994 // Register Long Remainder
  6995 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  6996   effect(DEF dst, USE src1, USE src2);
  6997   size(4);
  6998   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6999   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7000   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7001   ins_pipe(divL_reg_reg);
  7002 %}
  7004 // Register Long Division
  7005 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7006   effect(DEF dst, USE src1, USE src2);
  7007   size(4);
  7008   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7009   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7010   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7011   ins_pipe(divL_reg_imm);
  7012 %}
  7014 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7015   effect(DEF dst, USE src1, USE src2);
  7016   size(4);
  7017   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7018   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7019   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7020   ins_pipe(mulL_reg_reg);
  7021 %}
  7023 // Immediate Multiplication
  7024 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7025   effect(DEF dst, USE src1, USE src2);
  7026   size(4);
  7027   format %{ "MULX   $src1,$src2,$dst" %}
  7028   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7029   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7030   ins_pipe(mulL_reg_imm);
  7031 %}
  7033 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7034   effect(DEF dst, USE src1, USE src2);
  7035   size(4);
  7036   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7037   opcode(Assembler::sub_op3, Assembler::arith_op);
  7038   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7039   ins_pipe(ialu_reg_reg);
  7040 %}
  7042 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7043   effect(DEF dst, USE src1, USE src2);
  7044   size(4);
  7045   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7046   opcode(Assembler::sub_op3, Assembler::arith_op);
  7047   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7048   ins_pipe(ialu_reg_reg);
  7049 %}
  7051 // Register Long Remainder
  7052 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7053   match(Set dst (ModL src1 src2));
  7054   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7055   expand %{
  7056     iRegL tmp1;
  7057     iRegL tmp2;
  7058     divL_reg_reg_1(tmp1, src1, src2);
  7059     mulL_reg_reg_1(tmp2, tmp1, src2);
  7060     subL_reg_reg_1(dst,  src1, tmp2);
  7061   %}
  7062 %}
  7064 // Register Long Remainder
  7065 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7066   match(Set dst (ModL src1 src2));
  7067   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7068   expand %{
  7069     iRegL tmp1;
  7070     iRegL tmp2;
  7071     divL_reg_imm13_1(tmp1, src1, src2);
  7072     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7073     subL_reg_reg_2  (dst,  src1, tmp2);
  7074   %}
  7075 %}
  7077 // Integer Shift Instructions
  7078 // Register Shift Left
  7079 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7080   match(Set dst (LShiftI src1 src2));
  7082   size(4);
  7083   format %{ "SLL    $src1,$src2,$dst" %}
  7084   opcode(Assembler::sll_op3, Assembler::arith_op);
  7085   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7086   ins_pipe(ialu_reg_reg);
  7087 %}
  7089 // Register Shift Left Immediate
  7090 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7091   match(Set dst (LShiftI src1 src2));
  7093   size(4);
  7094   format %{ "SLL    $src1,$src2,$dst" %}
  7095   opcode(Assembler::sll_op3, Assembler::arith_op);
  7096   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7097   ins_pipe(ialu_reg_imm);
  7098 %}
  7100 // Register Shift Left
  7101 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7102   match(Set dst (LShiftL src1 src2));
  7104   size(4);
  7105   format %{ "SLLX   $src1,$src2,$dst" %}
  7106   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7107   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7108   ins_pipe(ialu_reg_reg);
  7109 %}
  7111 // Register Shift Left Immediate
  7112 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7113   match(Set dst (LShiftL src1 src2));
  7115   size(4);
  7116   format %{ "SLLX   $src1,$src2,$dst" %}
  7117   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7118   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7119   ins_pipe(ialu_reg_imm);
  7120 %}
  7122 // Register Arithmetic Shift Right
  7123 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7124   match(Set dst (RShiftI src1 src2));
  7125   size(4);
  7126   format %{ "SRA    $src1,$src2,$dst" %}
  7127   opcode(Assembler::sra_op3, Assembler::arith_op);
  7128   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7129   ins_pipe(ialu_reg_reg);
  7130 %}
  7132 // Register Arithmetic Shift Right Immediate
  7133 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7134   match(Set dst (RShiftI src1 src2));
  7136   size(4);
  7137   format %{ "SRA    $src1,$src2,$dst" %}
  7138   opcode(Assembler::sra_op3, Assembler::arith_op);
  7139   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7140   ins_pipe(ialu_reg_imm);
  7141 %}
  7143 // Register Shift Right Arithmatic Long
  7144 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7145   match(Set dst (RShiftL src1 src2));
  7147   size(4);
  7148   format %{ "SRAX   $src1,$src2,$dst" %}
  7149   opcode(Assembler::srax_op3, Assembler::arith_op);
  7150   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7151   ins_pipe(ialu_reg_reg);
  7152 %}
  7154 // Register Shift Left Immediate
  7155 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7156   match(Set dst (RShiftL src1 src2));
  7158   size(4);
  7159   format %{ "SRAX   $src1,$src2,$dst" %}
  7160   opcode(Assembler::srax_op3, Assembler::arith_op);
  7161   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7162   ins_pipe(ialu_reg_imm);
  7163 %}
  7165 // Register Shift Right
  7166 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7167   match(Set dst (URShiftI src1 src2));
  7169   size(4);
  7170   format %{ "SRL    $src1,$src2,$dst" %}
  7171   opcode(Assembler::srl_op3, Assembler::arith_op);
  7172   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7173   ins_pipe(ialu_reg_reg);
  7174 %}
  7176 // Register Shift Right Immediate
  7177 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7178   match(Set dst (URShiftI src1 src2));
  7180   size(4);
  7181   format %{ "SRL    $src1,$src2,$dst" %}
  7182   opcode(Assembler::srl_op3, Assembler::arith_op);
  7183   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7184   ins_pipe(ialu_reg_imm);
  7185 %}
  7187 // Register Shift Right
  7188 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7189   match(Set dst (URShiftL src1 src2));
  7191   size(4);
  7192   format %{ "SRLX   $src1,$src2,$dst" %}
  7193   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7194   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7195   ins_pipe(ialu_reg_reg);
  7196 %}
  7198 // Register Shift Right Immediate
  7199 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7200   match(Set dst (URShiftL src1 src2));
  7202   size(4);
  7203   format %{ "SRLX   $src1,$src2,$dst" %}
  7204   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7205   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7206   ins_pipe(ialu_reg_imm);
  7207 %}
  7209 // Register Shift Right Immediate with a CastP2X
  7210 #ifdef _LP64
  7211 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7212   match(Set dst (URShiftL (CastP2X src1) src2));
  7213   size(4);
  7214   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7215   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7216   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7217   ins_pipe(ialu_reg_imm);
  7218 %}
  7219 #else
  7220 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7221   match(Set dst (URShiftI (CastP2X src1) src2));
  7222   size(4);
  7223   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7224   opcode(Assembler::srl_op3, Assembler::arith_op);
  7225   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7226   ins_pipe(ialu_reg_imm);
  7227 %}
  7228 #endif
  7231 //----------Floating Point Arithmetic Instructions-----------------------------
  7233 //  Add float single precision
  7234 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7235   match(Set dst (AddF src1 src2));
  7237   size(4);
  7238   format %{ "FADDS  $src1,$src2,$dst" %}
  7239   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7240   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7241   ins_pipe(faddF_reg_reg);
  7242 %}
  7244 //  Add float double precision
  7245 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7246   match(Set dst (AddD src1 src2));
  7248   size(4);
  7249   format %{ "FADDD  $src1,$src2,$dst" %}
  7250   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7251   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7252   ins_pipe(faddD_reg_reg);
  7253 %}
  7255 //  Sub float single precision
  7256 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7257   match(Set dst (SubF src1 src2));
  7259   size(4);
  7260   format %{ "FSUBS  $src1,$src2,$dst" %}
  7261   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7262   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7263   ins_pipe(faddF_reg_reg);
  7264 %}
  7266 //  Sub float double precision
  7267 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7268   match(Set dst (SubD src1 src2));
  7270   size(4);
  7271   format %{ "FSUBD  $src1,$src2,$dst" %}
  7272   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7273   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7274   ins_pipe(faddD_reg_reg);
  7275 %}
  7277 //  Mul float single precision
  7278 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7279   match(Set dst (MulF src1 src2));
  7281   size(4);
  7282   format %{ "FMULS  $src1,$src2,$dst" %}
  7283   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7284   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7285   ins_pipe(fmulF_reg_reg);
  7286 %}
  7288 //  Mul float double precision
  7289 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7290   match(Set dst (MulD src1 src2));
  7292   size(4);
  7293   format %{ "FMULD  $src1,$src2,$dst" %}
  7294   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7295   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7296   ins_pipe(fmulD_reg_reg);
  7297 %}
  7299 //  Div float single precision
  7300 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7301   match(Set dst (DivF src1 src2));
  7303   size(4);
  7304   format %{ "FDIVS  $src1,$src2,$dst" %}
  7305   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7306   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7307   ins_pipe(fdivF_reg_reg);
  7308 %}
  7310 //  Div float double precision
  7311 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7312   match(Set dst (DivD src1 src2));
  7314   size(4);
  7315   format %{ "FDIVD  $src1,$src2,$dst" %}
  7316   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7317   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7318   ins_pipe(fdivD_reg_reg);
  7319 %}
  7321 //  Absolute float double precision
  7322 instruct absD_reg(regD dst, regD src) %{
  7323   match(Set dst (AbsD src));
  7325   format %{ "FABSd  $src,$dst" %}
  7326   ins_encode(fabsd(dst, src));
  7327   ins_pipe(faddD_reg);
  7328 %}
  7330 //  Absolute float single precision
  7331 instruct absF_reg(regF dst, regF src) %{
  7332   match(Set dst (AbsF src));
  7334   format %{ "FABSs  $src,$dst" %}
  7335   ins_encode(fabss(dst, src));
  7336   ins_pipe(faddF_reg);
  7337 %}
  7339 instruct negF_reg(regF dst, regF src) %{
  7340   match(Set dst (NegF src));
  7342   size(4);
  7343   format %{ "FNEGs  $src,$dst" %}
  7344   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7345   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7346   ins_pipe(faddF_reg);
  7347 %}
  7349 instruct negD_reg(regD dst, regD src) %{
  7350   match(Set dst (NegD src));
  7352   format %{ "FNEGd  $src,$dst" %}
  7353   ins_encode(fnegd(dst, src));
  7354   ins_pipe(faddD_reg);
  7355 %}
  7357 //  Sqrt float double precision
  7358 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7359   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7361   size(4);
  7362   format %{ "FSQRTS $src,$dst" %}
  7363   ins_encode(fsqrts(dst, src));
  7364   ins_pipe(fdivF_reg_reg);
  7365 %}
  7367 //  Sqrt float double precision
  7368 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7369   match(Set dst (SqrtD src));
  7371   size(4);
  7372   format %{ "FSQRTD $src,$dst" %}
  7373   ins_encode(fsqrtd(dst, src));
  7374   ins_pipe(fdivD_reg_reg);
  7375 %}
  7377 //----------Logical Instructions-----------------------------------------------
  7378 // And Instructions
  7379 // Register And
  7380 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7381   match(Set dst (AndI src1 src2));
  7383   size(4);
  7384   format %{ "AND    $src1,$src2,$dst" %}
  7385   opcode(Assembler::and_op3, Assembler::arith_op);
  7386   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7387   ins_pipe(ialu_reg_reg);
  7388 %}
  7390 // Immediate And
  7391 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7392   match(Set dst (AndI src1 src2));
  7394   size(4);
  7395   format %{ "AND    $src1,$src2,$dst" %}
  7396   opcode(Assembler::and_op3, Assembler::arith_op);
  7397   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7398   ins_pipe(ialu_reg_imm);
  7399 %}
  7401 // Register And Long
  7402 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7403   match(Set dst (AndL src1 src2));
  7405   ins_cost(DEFAULT_COST);
  7406   size(4);
  7407   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7408   opcode(Assembler::and_op3, Assembler::arith_op);
  7409   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7410   ins_pipe(ialu_reg_reg);
  7411 %}
  7413 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7414   match(Set dst (AndL src1 con));
  7416   ins_cost(DEFAULT_COST);
  7417   size(4);
  7418   format %{ "AND    $src1,$con,$dst\t! long" %}
  7419   opcode(Assembler::and_op3, Assembler::arith_op);
  7420   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7421   ins_pipe(ialu_reg_imm);
  7422 %}
  7424 // Or Instructions
  7425 // Register Or
  7426 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7427   match(Set dst (OrI src1 src2));
  7429   size(4);
  7430   format %{ "OR     $src1,$src2,$dst" %}
  7431   opcode(Assembler::or_op3, Assembler::arith_op);
  7432   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7433   ins_pipe(ialu_reg_reg);
  7434 %}
  7436 // Immediate Or
  7437 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7438   match(Set dst (OrI src1 src2));
  7440   size(4);
  7441   format %{ "OR     $src1,$src2,$dst" %}
  7442   opcode(Assembler::or_op3, Assembler::arith_op);
  7443   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7444   ins_pipe(ialu_reg_imm);
  7445 %}
  7447 // Register Or Long
  7448 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7449   match(Set dst (OrL src1 src2));
  7451   ins_cost(DEFAULT_COST);
  7452   size(4);
  7453   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7454   opcode(Assembler::or_op3, Assembler::arith_op);
  7455   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7456   ins_pipe(ialu_reg_reg);
  7457 %}
  7459 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7460   match(Set dst (OrL src1 con));
  7461   ins_cost(DEFAULT_COST*2);
  7463   ins_cost(DEFAULT_COST);
  7464   size(4);
  7465   format %{ "OR     $src1,$con,$dst\t! long" %}
  7466   opcode(Assembler::or_op3, Assembler::arith_op);
  7467   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7468   ins_pipe(ialu_reg_imm);
  7469 %}
  7471 #ifndef _LP64
  7473 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  7474 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  7475   match(Set dst (OrI src1 (CastP2X src2)));
  7477   size(4);
  7478   format %{ "OR     $src1,$src2,$dst" %}
  7479   opcode(Assembler::or_op3, Assembler::arith_op);
  7480   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7481   ins_pipe(ialu_reg_reg);
  7482 %}
  7484 #else
  7486 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  7487   match(Set dst (OrL src1 (CastP2X src2)));
  7489   ins_cost(DEFAULT_COST);
  7490   size(4);
  7491   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7492   opcode(Assembler::or_op3, Assembler::arith_op);
  7493   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7494   ins_pipe(ialu_reg_reg);
  7495 %}
  7497 #endif
  7499 // Xor Instructions
  7500 // Register Xor
  7501 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7502   match(Set dst (XorI src1 src2));
  7504   size(4);
  7505   format %{ "XOR    $src1,$src2,$dst" %}
  7506   opcode(Assembler::xor_op3, Assembler::arith_op);
  7507   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7508   ins_pipe(ialu_reg_reg);
  7509 %}
  7511 // Immediate Xor
  7512 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7513   match(Set dst (XorI src1 src2));
  7515   size(4);
  7516   format %{ "XOR    $src1,$src2,$dst" %}
  7517   opcode(Assembler::xor_op3, Assembler::arith_op);
  7518   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7519   ins_pipe(ialu_reg_imm);
  7520 %}
  7522 // Register Xor Long
  7523 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7524   match(Set dst (XorL src1 src2));
  7526   ins_cost(DEFAULT_COST);
  7527   size(4);
  7528   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  7529   opcode(Assembler::xor_op3, Assembler::arith_op);
  7530   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7531   ins_pipe(ialu_reg_reg);
  7532 %}
  7534 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7535   match(Set dst (XorL src1 con));
  7537   ins_cost(DEFAULT_COST);
  7538   size(4);
  7539   format %{ "XOR    $src1,$con,$dst\t! long" %}
  7540   opcode(Assembler::xor_op3, Assembler::arith_op);
  7541   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7542   ins_pipe(ialu_reg_imm);
  7543 %}
  7545 //----------Convert to Boolean-------------------------------------------------
  7546 // Nice hack for 32-bit tests but doesn't work for
  7547 // 64-bit pointers.
  7548 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  7549   match(Set dst (Conv2B src));
  7550   effect( KILL ccr );
  7551   ins_cost(DEFAULT_COST*2);
  7552   format %{ "CMP    R_G0,$src\n\t"
  7553             "ADDX   R_G0,0,$dst" %}
  7554   ins_encode( enc_to_bool( src, dst ) );
  7555   ins_pipe(ialu_reg_ialu);
  7556 %}
  7558 #ifndef _LP64
  7559 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  7560   match(Set dst (Conv2B src));
  7561   effect( KILL ccr );
  7562   ins_cost(DEFAULT_COST*2);
  7563   format %{ "CMP    R_G0,$src\n\t"
  7564             "ADDX   R_G0,0,$dst" %}
  7565   ins_encode( enc_to_bool( src, dst ) );
  7566   ins_pipe(ialu_reg_ialu);
  7567 %}
  7568 #else
  7569 instruct convP2B( iRegI dst, iRegP src ) %{
  7570   match(Set dst (Conv2B src));
  7571   ins_cost(DEFAULT_COST*2);
  7572   format %{ "MOV    $src,$dst\n\t"
  7573             "MOVRNZ $src,1,$dst" %}
  7574   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  7575   ins_pipe(ialu_clr_and_mover);
  7576 %}
  7577 #endif
  7579 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  7580   match(Set dst (CmpLTMask p q));
  7581   effect( KILL ccr );
  7582   ins_cost(DEFAULT_COST*4);
  7583   format %{ "CMP    $p,$q\n\t"
  7584             "MOV    #0,$dst\n\t"
  7585             "BLT,a  .+8\n\t"
  7586             "MOV    #-1,$dst" %}
  7587   ins_encode( enc_ltmask(p,q,dst) );
  7588   ins_pipe(ialu_reg_reg_ialu);
  7589 %}
  7591 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  7592   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  7593   effect(KILL ccr, TEMP tmp);
  7594   ins_cost(DEFAULT_COST*3);
  7596   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  7597             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  7598             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  7599   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  7600   ins_pipe( cadd_cmpltmask );
  7601 %}
  7603 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  7604   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
  7605   effect( KILL ccr, TEMP tmp);
  7606   ins_cost(DEFAULT_COST*3);
  7608   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  7609             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  7610             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  7611   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  7612   ins_pipe( cadd_cmpltmask );
  7613 %}
  7615 //----------Arithmetic Conversion Instructions---------------------------------
  7616 // The conversions operations are all Alpha sorted.  Please keep it that way!
  7618 instruct convD2F_reg(regF dst, regD src) %{
  7619   match(Set dst (ConvD2F src));
  7620   size(4);
  7621   format %{ "FDTOS  $src,$dst" %}
  7622   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  7623   ins_encode(form3_opf_rs2D_rdF(src, dst));
  7624   ins_pipe(fcvtD2F);
  7625 %}
  7628 // Convert a double to an int in a float register.
  7629 // If the double is a NAN, stuff a zero in instead.
  7630 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  7631   effect(DEF dst, USE src, KILL fcc0);
  7632   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  7633             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7634             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  7635             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  7636             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  7637       "skip:" %}
  7638   ins_encode(form_d2i_helper(src,dst));
  7639   ins_pipe(fcvtD2I);
  7640 %}
  7642 instruct convD2I_reg(stackSlotI dst, regD src) %{
  7643   match(Set dst (ConvD2I src));
  7644   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7645   expand %{
  7646     regF tmp;
  7647     convD2I_helper(tmp, src);
  7648     regF_to_stkI(dst, tmp);
  7649   %}
  7650 %}
  7652 // Convert a double to a long in a double register.
  7653 // If the double is a NAN, stuff a zero in instead.
  7654 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  7655   effect(DEF dst, USE src, KILL fcc0);
  7656   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  7657             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7658             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  7659             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  7660             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  7661       "skip:" %}
  7662   ins_encode(form_d2l_helper(src,dst));
  7663   ins_pipe(fcvtD2L);
  7664 %}
  7667 // Double to Long conversion
  7668 instruct convD2L_reg(stackSlotL dst, regD src) %{
  7669   match(Set dst (ConvD2L src));
  7670   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7671   expand %{
  7672     regD tmp;
  7673     convD2L_helper(tmp, src);
  7674     regD_to_stkL(dst, tmp);
  7675   %}
  7676 %}
  7679 instruct convF2D_reg(regD dst, regF src) %{
  7680   match(Set dst (ConvF2D src));
  7681   format %{ "FSTOD  $src,$dst" %}
  7682   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  7683   ins_encode(form3_opf_rs2F_rdD(src, dst));
  7684   ins_pipe(fcvtF2D);
  7685 %}
  7688 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  7689   effect(DEF dst, USE src, KILL fcc0);
  7690   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  7691             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7692             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  7693             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  7694             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  7695       "skip:" %}
  7696   ins_encode(form_f2i_helper(src,dst));
  7697   ins_pipe(fcvtF2I);
  7698 %}
  7700 instruct convF2I_reg(stackSlotI dst, regF src) %{
  7701   match(Set dst (ConvF2I src));
  7702   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7703   expand %{
  7704     regF tmp;
  7705     convF2I_helper(tmp, src);
  7706     regF_to_stkI(dst, tmp);
  7707   %}
  7708 %}
  7711 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  7712   effect(DEF dst, USE src, KILL fcc0);
  7713   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  7714             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7715             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  7716             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  7717             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  7718       "skip:" %}
  7719   ins_encode(form_f2l_helper(src,dst));
  7720   ins_pipe(fcvtF2L);
  7721 %}
  7723 // Float to Long conversion
  7724 instruct convF2L_reg(stackSlotL dst, regF src) %{
  7725   match(Set dst (ConvF2L src));
  7726   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7727   expand %{
  7728     regD tmp;
  7729     convF2L_helper(tmp, src);
  7730     regD_to_stkL(dst, tmp);
  7731   %}
  7732 %}
  7735 instruct convI2D_helper(regD dst, regF tmp) %{
  7736   effect(USE tmp, DEF dst);
  7737   format %{ "FITOD  $tmp,$dst" %}
  7738   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  7739   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  7740   ins_pipe(fcvtI2D);
  7741 %}
  7743 instruct convI2D_reg(stackSlotI src, regD dst) %{
  7744   match(Set dst (ConvI2D src));
  7745   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7746   expand %{
  7747     regF tmp;
  7748     stkI_to_regF( tmp, src);
  7749     convI2D_helper( dst, tmp);
  7750   %}
  7751 %}
  7753 instruct convI2D_mem( regD_low dst, memory mem ) %{
  7754   match(Set dst (ConvI2D (LoadI mem)));
  7755   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7756   size(8);
  7757   format %{ "LDF    $mem,$dst\n\t"
  7758             "FITOD  $dst,$dst" %}
  7759   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  7760   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  7761   ins_pipe(floadF_mem);
  7762 %}
  7765 instruct convI2F_helper(regF dst, regF tmp) %{
  7766   effect(DEF dst, USE tmp);
  7767   format %{ "FITOS  $tmp,$dst" %}
  7768   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  7769   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  7770   ins_pipe(fcvtI2F);
  7771 %}
  7773 instruct convI2F_reg( regF dst, stackSlotI src ) %{
  7774   match(Set dst (ConvI2F src));
  7775   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7776   expand %{
  7777     regF tmp;
  7778     stkI_to_regF(tmp,src);
  7779     convI2F_helper(dst, tmp);
  7780   %}
  7781 %}
  7783 instruct convI2F_mem( regF dst, memory mem ) %{
  7784   match(Set dst (ConvI2F (LoadI mem)));
  7785   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7786   size(8);
  7787   format %{ "LDF    $mem,$dst\n\t"
  7788             "FITOS  $dst,$dst" %}
  7789   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  7790   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  7791   ins_pipe(floadF_mem);
  7792 %}
  7795 instruct convI2L_reg(iRegL dst, iRegI src) %{
  7796   match(Set dst (ConvI2L src));
  7797   size(4);
  7798   format %{ "SRA    $src,0,$dst\t! int->long" %}
  7799   opcode(Assembler::sra_op3, Assembler::arith_op);
  7800   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7801   ins_pipe(ialu_reg_reg);
  7802 %}
  7804 // Zero-extend convert int to long
  7805 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  7806   match(Set dst (AndL (ConvI2L src) mask) );
  7807   size(4);
  7808   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  7809   opcode(Assembler::srl_op3, Assembler::arith_op);
  7810   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7811   ins_pipe(ialu_reg_reg);
  7812 %}
  7814 // Zero-extend long
  7815 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  7816   match(Set dst (AndL src mask) );
  7817   size(4);
  7818   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  7819   opcode(Assembler::srl_op3, Assembler::arith_op);
  7820   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7821   ins_pipe(ialu_reg_reg);
  7822 %}
  7824 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  7825   match(Set dst (MoveF2I src));
  7826   effect(DEF dst, USE src);
  7827   ins_cost(MEMORY_REF_COST);
  7829   size(4);
  7830   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  7831   opcode(Assembler::lduw_op3);
  7832   ins_encode(simple_form3_mem_reg( src, dst ) );
  7833   ins_pipe(iload_mem);
  7834 %}
  7836 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  7837   match(Set dst (MoveI2F src));
  7838   effect(DEF dst, USE src);
  7839   ins_cost(MEMORY_REF_COST);
  7841   size(4);
  7842   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  7843   opcode(Assembler::ldf_op3);
  7844   ins_encode(simple_form3_mem_reg(src, dst));
  7845   ins_pipe(floadF_stk);
  7846 %}
  7848 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  7849   match(Set dst (MoveD2L src));
  7850   effect(DEF dst, USE src);
  7851   ins_cost(MEMORY_REF_COST);
  7853   size(4);
  7854   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  7855   opcode(Assembler::ldx_op3);
  7856   ins_encode(simple_form3_mem_reg( src, dst ) );
  7857   ins_pipe(iload_mem);
  7858 %}
  7860 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  7861   match(Set dst (MoveL2D src));
  7862   effect(DEF dst, USE src);
  7863   ins_cost(MEMORY_REF_COST);
  7865   size(4);
  7866   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  7867   opcode(Assembler::lddf_op3);
  7868   ins_encode(simple_form3_mem_reg(src, dst));
  7869   ins_pipe(floadD_stk);
  7870 %}
  7872 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  7873   match(Set dst (MoveF2I src));
  7874   effect(DEF dst, USE src);
  7875   ins_cost(MEMORY_REF_COST);
  7877   size(4);
  7878   format %{ "STF   $src,$dst\t!MoveF2I" %}
  7879   opcode(Assembler::stf_op3);
  7880   ins_encode(simple_form3_mem_reg(dst, src));
  7881   ins_pipe(fstoreF_stk_reg);
  7882 %}
  7884 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  7885   match(Set dst (MoveI2F src));
  7886   effect(DEF dst, USE src);
  7887   ins_cost(MEMORY_REF_COST);
  7889   size(4);
  7890   format %{ "STW    $src,$dst\t!MoveI2F" %}
  7891   opcode(Assembler::stw_op3);
  7892   ins_encode(simple_form3_mem_reg( dst, src ) );
  7893   ins_pipe(istore_mem_reg);
  7894 %}
  7896 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  7897   match(Set dst (MoveD2L src));
  7898   effect(DEF dst, USE src);
  7899   ins_cost(MEMORY_REF_COST);
  7901   size(4);
  7902   format %{ "STDF   $src,$dst\t!MoveD2L" %}
  7903   opcode(Assembler::stdf_op3);
  7904   ins_encode(simple_form3_mem_reg(dst, src));
  7905   ins_pipe(fstoreD_stk_reg);
  7906 %}
  7908 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  7909   match(Set dst (MoveL2D src));
  7910   effect(DEF dst, USE src);
  7911   ins_cost(MEMORY_REF_COST);
  7913   size(4);
  7914   format %{ "STX    $src,$dst\t!MoveL2D" %}
  7915   opcode(Assembler::stx_op3);
  7916   ins_encode(simple_form3_mem_reg( dst, src ) );
  7917   ins_pipe(istore_mem_reg);
  7918 %}
  7921 //-----------
  7922 // Long to Double conversion using V8 opcodes.
  7923 // Still useful because cheetah traps and becomes
  7924 // amazingly slow for some common numbers.
  7926 // Magic constant, 0x43300000
  7927 instruct loadConI_x43300000(iRegI dst) %{
  7928   effect(DEF dst);
  7929   size(4);
  7930   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  7931   ins_encode(SetHi22(0x43300000, dst));
  7932   ins_pipe(ialu_none);
  7933 %}
  7935 // Magic constant, 0x41f00000
  7936 instruct loadConI_x41f00000(iRegI dst) %{
  7937   effect(DEF dst);
  7938   size(4);
  7939   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  7940   ins_encode(SetHi22(0x41f00000, dst));
  7941   ins_pipe(ialu_none);
  7942 %}
  7944 // Construct a double from two float halves
  7945 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  7946   effect(DEF dst, USE src1, USE src2);
  7947   size(8);
  7948   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  7949             "FMOVS  $src2.lo,$dst.lo" %}
  7950   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  7951   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  7952   ins_pipe(faddD_reg_reg);
  7953 %}
  7955 // Convert integer in high half of a double register (in the lower half of
  7956 // the double register file) to double
  7957 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  7958   effect(DEF dst, USE src);
  7959   size(4);
  7960   format %{ "FITOD  $src,$dst" %}
  7961   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  7962   ins_encode(form3_opf_rs2D_rdD(src, dst));
  7963   ins_pipe(fcvtLHi2D);
  7964 %}
  7966 // Add float double precision
  7967 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  7968   effect(DEF dst, USE src1, USE src2);
  7969   size(4);
  7970   format %{ "FADDD  $src1,$src2,$dst" %}
  7971   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7972   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7973   ins_pipe(faddD_reg_reg);
  7974 %}
  7976 // Sub float double precision
  7977 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  7978   effect(DEF dst, USE src1, USE src2);
  7979   size(4);
  7980   format %{ "FSUBD  $src1,$src2,$dst" %}
  7981   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7982   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7983   ins_pipe(faddD_reg_reg);
  7984 %}
  7986 // Mul float double precision
  7987 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  7988   effect(DEF dst, USE src1, USE src2);
  7989   size(4);
  7990   format %{ "FMULD  $src1,$src2,$dst" %}
  7991   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7992   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7993   ins_pipe(fmulD_reg_reg);
  7994 %}
  7996 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  7997   match(Set dst (ConvL2D src));
  7998   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8000   expand %{
  8001     regD_low   tmpsrc;
  8002     iRegI      ix43300000;
  8003     iRegI      ix41f00000;
  8004     stackSlotL lx43300000;
  8005     stackSlotL lx41f00000;
  8006     regD_low   dx43300000;
  8007     regD       dx41f00000;
  8008     regD       tmp1;
  8009     regD_low   tmp2;
  8010     regD       tmp3;
  8011     regD       tmp4;
  8013     stkL_to_regD(tmpsrc, src);
  8015     loadConI_x43300000(ix43300000);
  8016     loadConI_x41f00000(ix41f00000);
  8017     regI_to_stkLHi(lx43300000, ix43300000);
  8018     regI_to_stkLHi(lx41f00000, ix41f00000);
  8019     stkL_to_regD(dx43300000, lx43300000);
  8020     stkL_to_regD(dx41f00000, lx41f00000);
  8022     convI2D_regDHi_regD(tmp1, tmpsrc);
  8023     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8024     subD_regD_regD(tmp3, tmp2, dx43300000);
  8025     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8026     addD_regD_regD(dst, tmp3, tmp4);
  8027   %}
  8028 %}
  8030 // Long to Double conversion using fast fxtof
  8031 instruct convL2D_helper(regD dst, regD tmp) %{
  8032   effect(DEF dst, USE tmp);
  8033   size(4);
  8034   format %{ "FXTOD  $tmp,$dst" %}
  8035   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8036   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8037   ins_pipe(fcvtL2D);
  8038 %}
  8040 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
  8041   predicate(VM_Version::has_fast_fxtof());
  8042   match(Set dst (ConvL2D src));
  8043   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8044   expand %{
  8045     regD tmp;
  8046     stkL_to_regD(tmp, src);
  8047     convL2D_helper(dst, tmp);
  8048   %}
  8049 %}
  8051 //-----------
  8052 // Long to Float conversion using V8 opcodes.
  8053 // Still useful because cheetah traps and becomes
  8054 // amazingly slow for some common numbers.
  8056 // Long to Float conversion using fast fxtof
  8057 instruct convL2F_helper(regF dst, regD tmp) %{
  8058   effect(DEF dst, USE tmp);
  8059   size(4);
  8060   format %{ "FXTOS  $tmp,$dst" %}
  8061   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8062   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8063   ins_pipe(fcvtL2F);
  8064 %}
  8066 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
  8067   match(Set dst (ConvL2F src));
  8068   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8069   expand %{
  8070     regD tmp;
  8071     stkL_to_regD(tmp, src);
  8072     convL2F_helper(dst, tmp);
  8073   %}
  8074 %}
  8075 //-----------
  8077 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8078   match(Set dst (ConvL2I src));
  8079 #ifndef _LP64
  8080   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8081   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8082   ins_pipe(ialu_move_reg_I_to_L);
  8083 #else
  8084   size(4);
  8085   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8086   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8087   ins_pipe(ialu_reg);
  8088 #endif
  8089 %}
  8091 // Register Shift Right Immediate
  8092 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8093   match(Set dst (ConvL2I (RShiftL src cnt)));
  8095   size(4);
  8096   format %{ "SRAX   $src,$cnt,$dst" %}
  8097   opcode(Assembler::srax_op3, Assembler::arith_op);
  8098   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8099   ins_pipe(ialu_reg_imm);
  8100 %}
  8102 // Replicate scalar to packed byte values in Double register
  8103 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8104   effect(DEF dst, USE src);
  8105   format %{ "SLLX  $src,56,$dst\n\t"
  8106             "SRLX  $dst, 8,O7\n\t"
  8107             "OR    $dst,O7,$dst\n\t"
  8108             "SRLX  $dst,16,O7\n\t"
  8109             "OR    $dst,O7,$dst\n\t"
  8110             "SRLX  $dst,32,O7\n\t"
  8111             "OR    $dst,O7,$dst\t! replicate8B" %}
  8112   ins_encode( enc_repl8b(src, dst));
  8113   ins_pipe(ialu_reg);
  8114 %}
  8116 // Replicate scalar to packed byte values in Double register
  8117 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8118   match(Set dst (Replicate8B src));
  8119   expand %{
  8120     iRegL tmp;
  8121     Repl8B_reg_helper(tmp, src);
  8122     regL_to_stkD(dst, tmp);
  8123   %}
  8124 %}
  8126 // Replicate scalar constant to packed byte values in Double register
  8127 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
  8128   match(Set dst (Replicate8B src));
  8129 #ifdef _LP64
  8130   size(36);
  8131 #else
  8132   size(8);
  8133 #endif
  8134   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
  8135             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
  8136   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
  8137   ins_pipe(loadConFD);
  8138 %}
  8140 // Replicate scalar to packed char values into stack slot
  8141 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8142   effect(DEF dst, USE src);
  8143   format %{ "SLLX  $src,48,$dst\n\t"
  8144             "SRLX  $dst,16,O7\n\t"
  8145             "OR    $dst,O7,$dst\n\t"
  8146             "SRLX  $dst,32,O7\n\t"
  8147             "OR    $dst,O7,$dst\t! replicate4C" %}
  8148   ins_encode( enc_repl4s(src, dst) );
  8149   ins_pipe(ialu_reg);
  8150 %}
  8152 // Replicate scalar to packed char values into stack slot
  8153 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8154   match(Set dst (Replicate4C src));
  8155   expand %{
  8156     iRegL tmp;
  8157     Repl4C_reg_helper(tmp, src);
  8158     regL_to_stkD(dst, tmp);
  8159   %}
  8160 %}
  8162 // Replicate scalar constant to packed char values in Double register
  8163 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
  8164   match(Set dst (Replicate4C src));
  8165 #ifdef _LP64
  8166   size(36);
  8167 #else
  8168   size(8);
  8169 #endif
  8170   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
  8171             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8172   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8173   ins_pipe(loadConFD);
  8174 %}
  8176 // Replicate scalar to packed short values into stack slot
  8177 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8178   effect(DEF dst, USE src);
  8179   format %{ "SLLX  $src,48,$dst\n\t"
  8180             "SRLX  $dst,16,O7\n\t"
  8181             "OR    $dst,O7,$dst\n\t"
  8182             "SRLX  $dst,32,O7\n\t"
  8183             "OR    $dst,O7,$dst\t! replicate4S" %}
  8184   ins_encode( enc_repl4s(src, dst) );
  8185   ins_pipe(ialu_reg);
  8186 %}
  8188 // Replicate scalar to packed short values into stack slot
  8189 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8190   match(Set dst (Replicate4S src));
  8191   expand %{
  8192     iRegL tmp;
  8193     Repl4S_reg_helper(tmp, src);
  8194     regL_to_stkD(dst, tmp);
  8195   %}
  8196 %}
  8198 // Replicate scalar constant to packed short values in Double register
  8199 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
  8200   match(Set dst (Replicate4S src));
  8201 #ifdef _LP64
  8202   size(36);
  8203 #else
  8204   size(8);
  8205 #endif
  8206   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
  8207             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8208   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8209   ins_pipe(loadConFD);
  8210 %}
  8212 // Replicate scalar to packed int values in Double register
  8213 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8214   effect(DEF dst, USE src);
  8215   format %{ "SLLX  $src,32,$dst\n\t"
  8216             "SRLX  $dst,32,O7\n\t"
  8217             "OR    $dst,O7,$dst\t! replicate2I" %}
  8218   ins_encode( enc_repl2i(src, dst));
  8219   ins_pipe(ialu_reg);
  8220 %}
  8222 // Replicate scalar to packed int values in Double register
  8223 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8224   match(Set dst (Replicate2I src));
  8225   expand %{
  8226     iRegL tmp;
  8227     Repl2I_reg_helper(tmp, src);
  8228     regL_to_stkD(dst, tmp);
  8229   %}
  8230 %}
  8232 // Replicate scalar zero constant to packed int values in Double register
  8233 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
  8234   match(Set dst (Replicate2I src));
  8235 #ifdef _LP64
  8236   size(36);
  8237 #else
  8238   size(8);
  8239 #endif
  8240   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
  8241             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
  8242   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
  8243   ins_pipe(loadConFD);
  8244 %}
  8246 //----------Control Flow Instructions------------------------------------------
  8247 // Compare Instructions
  8248 // Compare Integers
  8249 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8250   match(Set icc (CmpI op1 op2));
  8251   effect( DEF icc, USE op1, USE op2 );
  8253   size(4);
  8254   format %{ "CMP    $op1,$op2" %}
  8255   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8256   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8257   ins_pipe(ialu_cconly_reg_reg);
  8258 %}
  8260 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8261   match(Set icc (CmpU op1 op2));
  8263   size(4);
  8264   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8265   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8266   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8267   ins_pipe(ialu_cconly_reg_reg);
  8268 %}
  8270 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8271   match(Set icc (CmpI op1 op2));
  8272   effect( DEF icc, USE op1 );
  8274   size(4);
  8275   format %{ "CMP    $op1,$op2" %}
  8276   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8277   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8278   ins_pipe(ialu_cconly_reg_imm);
  8279 %}
  8281 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8282   match(Set icc (CmpI (AndI op1 op2) zero));
  8284   size(4);
  8285   format %{ "BTST   $op2,$op1" %}
  8286   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8287   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8288   ins_pipe(ialu_cconly_reg_reg_zero);
  8289 %}
  8291 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8292   match(Set icc (CmpI (AndI op1 op2) zero));
  8294   size(4);
  8295   format %{ "BTST   $op2,$op1" %}
  8296   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8297   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8298   ins_pipe(ialu_cconly_reg_imm_zero);
  8299 %}
  8301 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8302   match(Set xcc (CmpL op1 op2));
  8303   effect( DEF xcc, USE op1, USE op2 );
  8305   size(4);
  8306   format %{ "CMP    $op1,$op2\t\t! long" %}
  8307   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8308   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8309   ins_pipe(ialu_cconly_reg_reg);
  8310 %}
  8312 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8313   match(Set xcc (CmpL op1 con));
  8314   effect( DEF xcc, USE op1, USE con );
  8316   size(4);
  8317   format %{ "CMP    $op1,$con\t\t! long" %}
  8318   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8319   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8320   ins_pipe(ialu_cconly_reg_reg);
  8321 %}
  8323 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8324   match(Set xcc (CmpL (AndL op1 op2) zero));
  8325   effect( DEF xcc, USE op1, USE op2 );
  8327   size(4);
  8328   format %{ "BTST   $op1,$op2\t\t! long" %}
  8329   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8330   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8331   ins_pipe(ialu_cconly_reg_reg);
  8332 %}
  8334 // useful for checking the alignment of a pointer:
  8335 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8336   match(Set xcc (CmpL (AndL op1 con) zero));
  8337   effect( DEF xcc, USE op1, USE con );
  8339   size(4);
  8340   format %{ "BTST   $op1,$con\t\t! long" %}
  8341   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8342   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8343   ins_pipe(ialu_cconly_reg_reg);
  8344 %}
  8346 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8347   match(Set icc (CmpU op1 op2));
  8349   size(4);
  8350   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8351   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8352   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8353   ins_pipe(ialu_cconly_reg_imm);
  8354 %}
  8356 // Compare Pointers
  8357 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8358   match(Set pcc (CmpP op1 op2));
  8360   size(4);
  8361   format %{ "CMP    $op1,$op2\t! ptr" %}
  8362   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8363   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8364   ins_pipe(ialu_cconly_reg_reg);
  8365 %}
  8367 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8368   match(Set pcc (CmpP op1 op2));
  8370   size(4);
  8371   format %{ "CMP    $op1,$op2\t! ptr" %}
  8372   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8373   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8374   ins_pipe(ialu_cconly_reg_imm);
  8375 %}
  8377 // Compare Narrow oops
  8378 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8379   match(Set icc (CmpN op1 op2));
  8381   size(4);
  8382   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8383   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8384   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8385   ins_pipe(ialu_cconly_reg_reg);
  8386 %}
  8388 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8389   match(Set icc (CmpN op1 op2));
  8391   size(4);
  8392   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8393   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8394   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8395   ins_pipe(ialu_cconly_reg_imm);
  8396 %}
  8398 //----------Max and Min--------------------------------------------------------
  8399 // Min Instructions
  8400 // Conditional move for min
  8401 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8402   effect( USE_DEF op2, USE op1, USE icc );
  8404   size(4);
  8405   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8406   opcode(Assembler::less);
  8407   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8408   ins_pipe(ialu_reg_flags);
  8409 %}
  8411 // Min Register with Register.
  8412 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8413   match(Set op2 (MinI op1 op2));
  8414   ins_cost(DEFAULT_COST*2);
  8415   expand %{
  8416     flagsReg icc;
  8417     compI_iReg(icc,op1,op2);
  8418     cmovI_reg_lt(op2,op1,icc);
  8419   %}
  8420 %}
  8422 // Max Instructions
  8423 // Conditional move for max
  8424 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8425   effect( USE_DEF op2, USE op1, USE icc );
  8426   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8427   opcode(Assembler::greater);
  8428   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8429   ins_pipe(ialu_reg_flags);
  8430 %}
  8432 // Max Register with Register
  8433 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8434   match(Set op2 (MaxI op1 op2));
  8435   ins_cost(DEFAULT_COST*2);
  8436   expand %{
  8437     flagsReg icc;
  8438     compI_iReg(icc,op1,op2);
  8439     cmovI_reg_gt(op2,op1,icc);
  8440   %}
  8441 %}
  8444 //----------Float Compares----------------------------------------------------
  8445 // Compare floating, generate condition code
  8446 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8447   match(Set fcc (CmpF src1 src2));
  8449   size(4);
  8450   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8451   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  8452   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  8453   ins_pipe(faddF_fcc_reg_reg_zero);
  8454 %}
  8456 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  8457   match(Set fcc (CmpD src1 src2));
  8459   size(4);
  8460   format %{ "FCMPd  $fcc,$src1,$src2" %}
  8461   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  8462   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  8463   ins_pipe(faddD_fcc_reg_reg_zero);
  8464 %}
  8467 // Compare floating, generate -1,0,1
  8468 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  8469   match(Set dst (CmpF3 src1 src2));
  8470   effect(KILL fcc0);
  8471   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8472   format %{ "fcmpl  $dst,$src1,$src2" %}
  8473   // Primary = float
  8474   opcode( true );
  8475   ins_encode( floating_cmp( dst, src1, src2 ) );
  8476   ins_pipe( floating_cmp );
  8477 %}
  8479 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  8480   match(Set dst (CmpD3 src1 src2));
  8481   effect(KILL fcc0);
  8482   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8483   format %{ "dcmpl  $dst,$src1,$src2" %}
  8484   // Primary = double (not float)
  8485   opcode( false );
  8486   ins_encode( floating_cmp( dst, src1, src2 ) );
  8487   ins_pipe( floating_cmp );
  8488 %}
  8490 //----------Branches---------------------------------------------------------
  8491 // Jump
  8492 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  8493 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  8494   match(Jump switch_val);
  8496   ins_cost(350);
  8498   format %{  "SETHI  [hi(table_base)],O7\n\t"
  8499              "ADD    O7, lo(table_base), O7\n\t"
  8500              "LD     [O7+$switch_val], O7\n\t"
  8501              "JUMP   O7"
  8502          %}
  8503   ins_encode( jump_enc( switch_val, table) );
  8504   ins_pc_relative(1);
  8505   ins_pipe(ialu_reg_reg);
  8506 %}
  8508 // Direct Branch.  Use V8 version with longer range.
  8509 instruct branch(label labl) %{
  8510   match(Goto);
  8511   effect(USE labl);
  8513   size(8);
  8514   ins_cost(BRANCH_COST);
  8515   format %{ "BA     $labl" %}
  8516   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
  8517   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
  8518   ins_encode( enc_ba( labl ) );
  8519   ins_pc_relative(1);
  8520   ins_pipe(br);
  8521 %}
  8523 // Conditional Direct Branch
  8524 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  8525   match(If cmp icc);
  8526   effect(USE labl);
  8528   size(8);
  8529   ins_cost(BRANCH_COST);
  8530   format %{ "BP$cmp   $icc,$labl" %}
  8531   // Prim = bits 24-22, Secnd = bits 31-30
  8532   ins_encode( enc_bp( labl, cmp, icc ) );
  8533   ins_pc_relative(1);
  8534   ins_pipe(br_cc);
  8535 %}
  8537 // Branch-on-register tests all 64 bits.  We assume that values
  8538 // in 64-bit registers always remains zero or sign extended
  8539 // unless our code munges the high bits.  Interrupts can chop
  8540 // the high order bits to zero or sign at any time.
  8541 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  8542   match(If cmp (CmpI op1 zero));
  8543   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8544   effect(USE labl);
  8546   size(8);
  8547   ins_cost(BRANCH_COST);
  8548   format %{ "BR$cmp   $op1,$labl" %}
  8549   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8550   ins_pc_relative(1);
  8551   ins_pipe(br_reg);
  8552 %}
  8554 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  8555   match(If cmp (CmpP op1 null));
  8556   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8557   effect(USE labl);
  8559   size(8);
  8560   ins_cost(BRANCH_COST);
  8561   format %{ "BR$cmp   $op1,$labl" %}
  8562   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8563   ins_pc_relative(1);
  8564   ins_pipe(br_reg);
  8565 %}
  8567 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  8568   match(If cmp (CmpL op1 zero));
  8569   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8570   effect(USE labl);
  8572   size(8);
  8573   ins_cost(BRANCH_COST);
  8574   format %{ "BR$cmp   $op1,$labl" %}
  8575   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8576   ins_pc_relative(1);
  8577   ins_pipe(br_reg);
  8578 %}
  8580 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  8581   match(If cmp icc);
  8582   effect(USE labl);
  8584   format %{ "BP$cmp  $icc,$labl" %}
  8585   // Prim = bits 24-22, Secnd = bits 31-30
  8586   ins_encode( enc_bp( labl, cmp, icc ) );
  8587   ins_pc_relative(1);
  8588   ins_pipe(br_cc);
  8589 %}
  8591 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  8592   match(If cmp pcc);
  8593   effect(USE labl);
  8595   size(8);
  8596   ins_cost(BRANCH_COST);
  8597   format %{ "BP$cmp  $pcc,$labl" %}
  8598   // Prim = bits 24-22, Secnd = bits 31-30
  8599   ins_encode( enc_bpx( labl, cmp, pcc ) );
  8600   ins_pc_relative(1);
  8601   ins_pipe(br_cc);
  8602 %}
  8604 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  8605   match(If cmp fcc);
  8606   effect(USE labl);
  8608   size(8);
  8609   ins_cost(BRANCH_COST);
  8610   format %{ "FBP$cmp $fcc,$labl" %}
  8611   // Prim = bits 24-22, Secnd = bits 31-30
  8612   ins_encode( enc_fbp( labl, cmp, fcc ) );
  8613   ins_pc_relative(1);
  8614   ins_pipe(br_fcc);
  8615 %}
  8617 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  8618   match(CountedLoopEnd cmp icc);
  8619   effect(USE labl);
  8621   size(8);
  8622   ins_cost(BRANCH_COST);
  8623   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  8624   // Prim = bits 24-22, Secnd = bits 31-30
  8625   ins_encode( enc_bp( labl, cmp, icc ) );
  8626   ins_pc_relative(1);
  8627   ins_pipe(br_cc);
  8628 %}
  8630 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  8631   match(CountedLoopEnd cmp icc);
  8632   effect(USE labl);
  8634   size(8);
  8635   ins_cost(BRANCH_COST);
  8636   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  8637   // Prim = bits 24-22, Secnd = bits 31-30
  8638   ins_encode( enc_bp( labl, cmp, icc ) );
  8639   ins_pc_relative(1);
  8640   ins_pipe(br_cc);
  8641 %}
  8643 // ============================================================================
  8644 // Long Compare
  8645 //
  8646 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  8647 // is tricky.  The flavor of compare used depends on whether we are testing
  8648 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  8649 // The GE test is the negated LT test.  The LE test can be had by commuting
  8650 // the operands (yielding a GE test) and then negating; negate again for the
  8651 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  8652 // NE test is negated from that.
  8654 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  8655 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  8656 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  8657 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  8658 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  8659 // foo match ends up with the wrong leaf.  One fix is to not match both
  8660 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  8661 // both forms beat the trinary form of long-compare and both are very useful
  8662 // on Intel which has so few registers.
  8664 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  8665   match(If cmp xcc);
  8666   effect(USE labl);
  8668   size(8);
  8669   ins_cost(BRANCH_COST);
  8670   format %{ "BP$cmp   $xcc,$labl" %}
  8671   // Prim = bits 24-22, Secnd = bits 31-30
  8672   ins_encode( enc_bpl( labl, cmp, xcc ) );
  8673   ins_pc_relative(1);
  8674   ins_pipe(br_cc);
  8675 %}
  8677 // Manifest a CmpL3 result in an integer register.  Very painful.
  8678 // This is the test to avoid.
  8679 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  8680   match(Set dst (CmpL3 src1 src2) );
  8681   effect( KILL ccr );
  8682   ins_cost(6*DEFAULT_COST);
  8683   size(24);
  8684   format %{ "CMP    $src1,$src2\t\t! long\n"
  8685           "\tBLT,a,pn done\n"
  8686           "\tMOV    -1,$dst\t! delay slot\n"
  8687           "\tBGT,a,pn done\n"
  8688           "\tMOV    1,$dst\t! delay slot\n"
  8689           "\tCLR    $dst\n"
  8690     "done:"     %}
  8691   ins_encode( cmpl_flag(src1,src2,dst) );
  8692   ins_pipe(cmpL_reg);
  8693 %}
  8695 // Conditional move
  8696 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  8697   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  8698   ins_cost(150);
  8699   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  8700   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8701   ins_pipe(ialu_reg);
  8702 %}
  8704 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  8705   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  8706   ins_cost(140);
  8707   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  8708   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8709   ins_pipe(ialu_imm);
  8710 %}
  8712 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  8713   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  8714   ins_cost(150);
  8715   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8716   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8717   ins_pipe(ialu_reg);
  8718 %}
  8720 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  8721   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  8722   ins_cost(140);
  8723   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8724   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8725   ins_pipe(ialu_imm);
  8726 %}
  8728 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  8729   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  8730   ins_cost(150);
  8731   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8732   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8733   ins_pipe(ialu_reg);
  8734 %}
  8736 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  8737   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  8738   ins_cost(150);
  8739   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8740   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8741   ins_pipe(ialu_reg);
  8742 %}
  8744 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  8745   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  8746   ins_cost(140);
  8747   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8748   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8749   ins_pipe(ialu_imm);
  8750 %}
  8752 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  8753   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  8754   ins_cost(150);
  8755   opcode(0x101);
  8756   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  8757   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  8758   ins_pipe(int_conditional_float_move);
  8759 %}
  8761 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  8762   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  8763   ins_cost(150);
  8764   opcode(0x102);
  8765   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  8766   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  8767   ins_pipe(int_conditional_float_move);
  8768 %}
  8770 // ============================================================================
  8771 // Safepoint Instruction
  8772 instruct safePoint_poll(iRegP poll) %{
  8773   match(SafePoint poll);
  8774   effect(USE poll);
  8776   size(4);
  8777 #ifdef _LP64
  8778   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  8779 #else
  8780   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  8781 #endif
  8782   ins_encode %{
  8783     __ relocate(relocInfo::poll_type);
  8784     __ ld_ptr($poll$$Register, 0, G0);
  8785   %}
  8786   ins_pipe(loadPollP);
  8787 %}
  8789 // ============================================================================
  8790 // Call Instructions
  8791 // Call Java Static Instruction
  8792 instruct CallStaticJavaDirect( method meth ) %{
  8793   match(CallStaticJava);
  8794   effect(USE meth);
  8796   size(8);
  8797   ins_cost(CALL_COST);
  8798   format %{ "CALL,static  ; NOP ==> " %}
  8799   ins_encode( Java_Static_Call( meth ), call_epilog );
  8800   ins_pc_relative(1);
  8801   ins_pipe(simple_call);
  8802 %}
  8804 // Call Java Dynamic Instruction
  8805 instruct CallDynamicJavaDirect( method meth ) %{
  8806   match(CallDynamicJava);
  8807   effect(USE meth);
  8809   ins_cost(CALL_COST);
  8810   format %{ "SET    (empty),R_G5\n\t"
  8811             "CALL,dynamic  ; NOP ==> " %}
  8812   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  8813   ins_pc_relative(1);
  8814   ins_pipe(call);
  8815 %}
  8817 // Call Runtime Instruction
  8818 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  8819   match(CallRuntime);
  8820   effect(USE meth, KILL l7);
  8821   ins_cost(CALL_COST);
  8822   format %{ "CALL,runtime" %}
  8823   ins_encode( Java_To_Runtime( meth ),
  8824               call_epilog, adjust_long_from_native_call );
  8825   ins_pc_relative(1);
  8826   ins_pipe(simple_call);
  8827 %}
  8829 // Call runtime without safepoint - same as CallRuntime
  8830 instruct CallLeafDirect(method meth, l7RegP l7) %{
  8831   match(CallLeaf);
  8832   effect(USE meth, KILL l7);
  8833   ins_cost(CALL_COST);
  8834   format %{ "CALL,runtime leaf" %}
  8835   ins_encode( Java_To_Runtime( meth ),
  8836               call_epilog,
  8837               adjust_long_from_native_call );
  8838   ins_pc_relative(1);
  8839   ins_pipe(simple_call);
  8840 %}
  8842 // Call runtime without safepoint - same as CallLeaf
  8843 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  8844   match(CallLeafNoFP);
  8845   effect(USE meth, KILL l7);
  8846   ins_cost(CALL_COST);
  8847   format %{ "CALL,runtime leaf nofp" %}
  8848   ins_encode( Java_To_Runtime( meth ),
  8849               call_epilog,
  8850               adjust_long_from_native_call );
  8851   ins_pc_relative(1);
  8852   ins_pipe(simple_call);
  8853 %}
  8855 // Tail Call; Jump from runtime stub to Java code.
  8856 // Also known as an 'interprocedural jump'.
  8857 // Target of jump will eventually return to caller.
  8858 // TailJump below removes the return address.
  8859 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  8860   match(TailCall jump_target method_oop );
  8862   ins_cost(CALL_COST);
  8863   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  8864   ins_encode(form_jmpl(jump_target));
  8865   ins_pipe(tail_call);
  8866 %}
  8869 // Return Instruction
  8870 instruct Ret() %{
  8871   match(Return);
  8873   // The epilogue node did the ret already.
  8874   size(0);
  8875   format %{ "! return" %}
  8876   ins_encode();
  8877   ins_pipe(empty);
  8878 %}
  8881 // Tail Jump; remove the return address; jump to target.
  8882 // TailCall above leaves the return address around.
  8883 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  8884 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  8885 // "restore" before this instruction (in Epilogue), we need to materialize it
  8886 // in %i0.
  8887 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  8888   match( TailJump jump_target ex_oop );
  8889   ins_cost(CALL_COST);
  8890   format %{ "! discard R_O7\n\t"
  8891             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  8892   ins_encode(form_jmpl_set_exception_pc(jump_target));
  8893   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  8894   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  8895   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  8896   ins_pipe(tail_call);
  8897 %}
  8899 // Create exception oop: created by stack-crawling runtime code.
  8900 // Created exception is now available to this handler, and is setup
  8901 // just prior to jumping to this handler.  No code emitted.
  8902 instruct CreateException( o0RegP ex_oop )
  8903 %{
  8904   match(Set ex_oop (CreateEx));
  8905   ins_cost(0);
  8907   size(0);
  8908   // use the following format syntax
  8909   format %{ "! exception oop is in R_O0; no code emitted" %}
  8910   ins_encode();
  8911   ins_pipe(empty);
  8912 %}
  8915 // Rethrow exception:
  8916 // The exception oop will come in the first argument position.
  8917 // Then JUMP (not call) to the rethrow stub code.
  8918 instruct RethrowException()
  8919 %{
  8920   match(Rethrow);
  8921   ins_cost(CALL_COST);
  8923   // use the following format syntax
  8924   format %{ "Jmp    rethrow_stub" %}
  8925   ins_encode(enc_rethrow);
  8926   ins_pipe(tail_call);
  8927 %}
  8930 // Die now
  8931 instruct ShouldNotReachHere( )
  8932 %{
  8933   match(Halt);
  8934   ins_cost(CALL_COST);
  8936   size(4);
  8937   // Use the following format syntax
  8938   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  8939   ins_encode( form2_illtrap() );
  8940   ins_pipe(tail_call);
  8941 %}
  8943 // ============================================================================
  8944 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  8945 // array for an instance of the superklass.  Set a hidden internal cache on a
  8946 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  8947 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  8948 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  8949   match(Set index (PartialSubtypeCheck sub super));
  8950   effect( KILL pcc, KILL o7 );
  8951   ins_cost(DEFAULT_COST*10);
  8952   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  8953   ins_encode( enc_PartialSubtypeCheck() );
  8954   ins_pipe(partial_subtype_check_pipe);
  8955 %}
  8957 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  8958   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  8959   effect( KILL idx, KILL o7 );
  8960   ins_cost(DEFAULT_COST*10);
  8961   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  8962   ins_encode( enc_PartialSubtypeCheck() );
  8963   ins_pipe(partial_subtype_check_pipe);
  8964 %}
  8967 // ============================================================================
  8968 // inlined locking and unlocking
  8970 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  8971   match(Set pcc (FastLock object box));
  8973   effect(KILL scratch, TEMP scratch2);
  8974   ins_cost(100);
  8976   size(4*112);       // conservative overestimation ...
  8977   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  8978   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  8979   ins_pipe(long_memory_op);
  8980 %}
  8983 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  8984   match(Set pcc (FastUnlock object box));
  8985   effect(KILL scratch, TEMP scratch2);
  8986   ins_cost(100);
  8988   size(4*120);       // conservative overestimation ...
  8989   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  8990   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  8991   ins_pipe(long_memory_op);
  8992 %}
  8994 // Count and Base registers are fixed because the allocator cannot
  8995 // kill unknown registers.  The encodings are generic.
  8996 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  8997   match(Set dummy (ClearArray cnt base));
  8998   effect(TEMP temp, KILL ccr);
  8999   ins_cost(300);
  9000   format %{ "MOV    $cnt,$temp\n"
  9001     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  9002     "        BRge   loop\t\t! Clearing loop\n"
  9003     "        STX    G0,[$base+$temp]\t! delay slot" %}
  9004   ins_encode( enc_Clear_Array(cnt, base, temp) );
  9005   ins_pipe(long_memory_op);
  9006 %}
  9008 instruct string_compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
  9009                         o7RegI tmp3, flagsReg ccr) %{
  9010   match(Set result (StrComp str1 str2));
  9011   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
  9012   ins_cost(300);
  9013   format %{ "String Compare $str1,$str2 -> $result" %}
  9014   ins_encode( enc_String_Compare(str1, str2, tmp1, tmp2, result) );
  9015   ins_pipe(long_memory_op);
  9016 %}
  9019 //---------- Population Count Instructions -------------------------------------
  9021 instruct popCountI(iRegI dst, iRegI src) %{
  9022   predicate(UsePopCountInstruction);
  9023   match(Set dst (PopCountI src));
  9025   format %{ "POPC   $src, $dst" %}
  9026   ins_encode %{
  9027     __ popc($src$$Register, $dst$$Register);
  9028   %}
  9029   ins_pipe(ialu_reg);
  9030 %}
  9032 // Note: Long.bitCount(long) returns an int.
  9033 instruct popCountL(iRegI dst, iRegL src) %{
  9034   predicate(UsePopCountInstruction);
  9035   match(Set dst (PopCountL src));
  9037   format %{ "POPC   $src, $dst" %}
  9038   ins_encode %{
  9039     __ popc($src$$Register, $dst$$Register);
  9040   %}
  9041   ins_pipe(ialu_reg);
  9042 %}
  9045 // ============================================================================
  9046 //------------Bytes reverse--------------------------------------------------
  9048 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  9049   match(Set dst (ReverseBytesI src));
  9050   effect(DEF dst, USE src);
  9052   // Op cost is artificially doubled to make sure that load or store
  9053   // instructions are preferred over this one which requires a spill
  9054   // onto a stack slot.
  9055   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9056   size(8);
  9057   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9058   opcode(Assembler::lduwa_op3);
  9059   ins_encode( form3_mem_reg_little(src, dst) );
  9060   ins_pipe( iload_mem );
  9061 %}
  9063 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  9064   match(Set dst (ReverseBytesL src));
  9065   effect(DEF dst, USE src);
  9067   // Op cost is artificially doubled to make sure that load or store
  9068   // instructions are preferred over this one which requires a spill
  9069   // onto a stack slot.
  9070   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9071   size(8);
  9072   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9074   opcode(Assembler::ldxa_op3);
  9075   ins_encode( form3_mem_reg_little(src, dst) );
  9076   ins_pipe( iload_mem );
  9077 %}
  9079 // Load Integer reversed byte order
  9080 instruct loadI_reversed(iRegI dst, memory src) %{
  9081   match(Set dst (ReverseBytesI (LoadI src)));
  9083   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  9084   size(8);
  9085   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9087   opcode(Assembler::lduwa_op3);
  9088   ins_encode( form3_mem_reg_little( src, dst) );
  9089   ins_pipe(iload_mem);
  9090 %}
  9092 // Load Long - aligned and reversed
  9093 instruct loadL_reversed(iRegL dst, memory src) %{
  9094   match(Set dst (ReverseBytesL (LoadL src)));
  9096   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  9097   size(8);
  9098   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9100   opcode(Assembler::ldxa_op3);
  9101   ins_encode( form3_mem_reg_little( src, dst ) );
  9102   ins_pipe(iload_mem);
  9103 %}
  9105 // Store Integer reversed byte order
  9106 instruct storeI_reversed(memory dst, iRegI src) %{
  9107   match(Set dst (StoreI dst (ReverseBytesI src)));
  9109   ins_cost(MEMORY_REF_COST);
  9110   size(8);
  9111   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
  9113   opcode(Assembler::stwa_op3);
  9114   ins_encode( form3_mem_reg_little( dst, src) );
  9115   ins_pipe(istore_mem_reg);
  9116 %}
  9118 // Store Long reversed byte order
  9119 instruct storeL_reversed(memory dst, iRegL src) %{
  9120   match(Set dst (StoreL dst (ReverseBytesL src)));
  9122   ins_cost(MEMORY_REF_COST);
  9123   size(8);
  9124   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
  9126   opcode(Assembler::stxa_op3);
  9127   ins_encode( form3_mem_reg_little( dst, src) );
  9128   ins_pipe(istore_mem_reg);
  9129 %}
  9131 //----------PEEPHOLE RULES-----------------------------------------------------
  9132 // These must follow all instruction definitions as they use the names
  9133 // defined in the instructions definitions.
  9134 //
  9135 // peepmatch ( root_instr_name [preceding_instruction]* );
  9136 //
  9137 // peepconstraint %{
  9138 // (instruction_number.operand_name relational_op instruction_number.operand_name
  9139 //  [, ...] );
  9140 // // instruction numbers are zero-based using left to right order in peepmatch
  9141 //
  9142 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
  9143 // // provide an instruction_number.operand_name for each operand that appears
  9144 // // in the replacement instruction's match rule
  9145 //
  9146 // ---------VM FLAGS---------------------------------------------------------
  9147 //
  9148 // All peephole optimizations can be turned off using -XX:-OptoPeephole
  9149 //
  9150 // Each peephole rule is given an identifying number starting with zero and
  9151 // increasing by one in the order seen by the parser.  An individual peephole
  9152 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
  9153 // on the command-line.
  9154 //
  9155 // ---------CURRENT LIMITATIONS----------------------------------------------
  9156 //
  9157 // Only match adjacent instructions in same basic block
  9158 // Only equality constraints
  9159 // Only constraints between operands, not (0.dest_reg == EAX_enc)
  9160 // Only one replacement instruction
  9161 //
  9162 // ---------EXAMPLE----------------------------------------------------------
  9163 //
  9164 // // pertinent parts of existing instructions in architecture description
  9165 // instruct movI(eRegI dst, eRegI src) %{
  9166 //   match(Set dst (CopyI src));
  9167 // %}
  9168 //
  9169 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  9170 //   match(Set dst (AddI dst src));
  9171 //   effect(KILL cr);
  9172 // %}
  9173 //
  9174 // // Change (inc mov) to lea
  9175 // peephole %{
  9176 //   // increment preceeded by register-register move
  9177 //   peepmatch ( incI_eReg movI );
  9178 //   // require that the destination register of the increment
  9179 //   // match the destination register of the move
  9180 //   peepconstraint ( 0.dst == 1.dst );
  9181 //   // construct a replacement instruction that sets
  9182 //   // the destination to ( move's source register + one )
  9183 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
  9184 // %}
  9185 //
  9187 // // Change load of spilled value to only a spill
  9188 // instruct storeI(memory mem, eRegI src) %{
  9189 //   match(Set mem (StoreI mem src));
  9190 // %}
  9191 //
  9192 // instruct loadI(eRegI dst, memory mem) %{
  9193 //   match(Set dst (LoadI mem));
  9194 // %}
  9195 //
  9196 // peephole %{
  9197 //   peepmatch ( loadI storeI );
  9198 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
  9199 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
  9200 // %}
  9202 //----------SMARTSPILL RULES---------------------------------------------------
  9203 // These must follow all instruction definitions as they use the names
  9204 // defined in the instructions definitions.
  9205 //
  9206 // SPARC will probably not have any of these rules due to RISC instruction set.
  9208 //----------PIPELINE-----------------------------------------------------------
  9209 // Rules which define the behavior of the target architectures pipeline.

mercurial