src/cpu/x86/vm/templateTable_x86_32.cpp

Thu, 24 Oct 2013 16:23:07 -0700

author
twisti
date
Thu, 24 Oct 2013 16:23:07 -0700
changeset 6039
bd3237e0e18d
parent 5914
d13d7aba8c12
child 6064
42790b7e4d48
permissions
-rw-r--r--

8026328: Setting a breakpoint on invokedynamic crashes the JVM
Reviewed-by: jrose, roland

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "interpreter/templateTable.hpp"
    30 #include "memory/universe.inline.hpp"
    31 #include "oops/methodData.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/synchronizer.hpp"
    38 #include "utilities/macros.hpp"
    40 #ifndef CC_INTERP
    41 #define __ _masm->
    43 //----------------------------------------------------------------------------------------------------
    44 // Platform-dependent initialization
    46 void TemplateTable::pd_initialize() {
    47   // No i486 specific initialization
    48 }
    50 //----------------------------------------------------------------------------------------------------
    51 // Address computation
    53 // local variables
    54 static inline Address iaddress(int n)            {
    55   return Address(rdi, Interpreter::local_offset_in_bytes(n));
    56 }
    58 static inline Address laddress(int n)            { return iaddress(n + 1); }
    59 static inline Address haddress(int n)            { return iaddress(n + 0); }
    60 static inline Address faddress(int n)            { return iaddress(n); }
    61 static inline Address daddress(int n)            { return laddress(n); }
    62 static inline Address aaddress(int n)            { return iaddress(n); }
    64 static inline Address iaddress(Register r)       {
    65   return Address(rdi, r, Interpreter::stackElementScale());
    66 }
    67 static inline Address laddress(Register r)       {
    68   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
    69 }
    70 static inline Address haddress(Register r)       {
    71   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
    72 }
    74 static inline Address faddress(Register r)       { return iaddress(r); }
    75 static inline Address daddress(Register r)       { return laddress(r); }
    76 static inline Address aaddress(Register r)       { return iaddress(r); }
    78 // expression stack
    79 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
    80 // data beyond the rsp which is potentially unsafe in an MT environment;
    81 // an interrupt may overwrite that data.)
    82 static inline Address at_rsp   () {
    83   return Address(rsp, 0);
    84 }
    86 // At top of Java expression stack which may be different than rsp().  It
    87 // isn't for category 1 objects.
    88 static inline Address at_tos   () {
    89   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    90   return tos;
    91 }
    93 static inline Address at_tos_p1() {
    94   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    95 }
    97 static inline Address at_tos_p2() {
    98   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    99 }
   101 // Condition conversion
   102 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   103   switch (cc) {
   104     case TemplateTable::equal        : return Assembler::notEqual;
   105     case TemplateTable::not_equal    : return Assembler::equal;
   106     case TemplateTable::less         : return Assembler::greaterEqual;
   107     case TemplateTable::less_equal   : return Assembler::greater;
   108     case TemplateTable::greater      : return Assembler::lessEqual;
   109     case TemplateTable::greater_equal: return Assembler::less;
   110   }
   111   ShouldNotReachHere();
   112   return Assembler::zero;
   113 }
   116 //----------------------------------------------------------------------------------------------------
   117 // Miscelaneous helper routines
   119 // Store an oop (or NULL) at the address described by obj.
   120 // If val == noreg this means store a NULL
   122 static void do_oop_store(InterpreterMacroAssembler* _masm,
   123                          Address obj,
   124                          Register val,
   125                          BarrierSet::Name barrier,
   126                          bool precise) {
   127   assert(val == noreg || val == rax, "parameter is just for looks");
   128   switch (barrier) {
   129 #if INCLUDE_ALL_GCS
   130     case BarrierSet::G1SATBCT:
   131     case BarrierSet::G1SATBCTLogging:
   132       {
   133         // flatten object address if needed
   134         // We do it regardless of precise because we need the registers
   135         if (obj.index() == noreg && obj.disp() == 0) {
   136           if (obj.base() != rdx) {
   137             __ movl(rdx, obj.base());
   138           }
   139         } else {
   140           __ leal(rdx, obj);
   141         }
   142         __ get_thread(rcx);
   143         __ save_bcp();
   144         __ g1_write_barrier_pre(rdx /* obj */,
   145                                 rbx /* pre_val */,
   146                                 rcx /* thread */,
   147                                 rsi /* tmp */,
   148                                 val != noreg /* tosca_live */,
   149                                 false /* expand_call */);
   151         // Do the actual store
   152         // noreg means NULL
   153         if (val == noreg) {
   154           __ movptr(Address(rdx, 0), NULL_WORD);
   155           // No post barrier for NULL
   156         } else {
   157           __ movl(Address(rdx, 0), val);
   158           __ g1_write_barrier_post(rdx /* store_adr */,
   159                                    val /* new_val */,
   160                                    rcx /* thread */,
   161                                    rbx /* tmp */,
   162                                    rsi /* tmp2 */);
   163         }
   164         __ restore_bcp();
   166       }
   167       break;
   168 #endif // INCLUDE_ALL_GCS
   169     case BarrierSet::CardTableModRef:
   170     case BarrierSet::CardTableExtension:
   171       {
   172         if (val == noreg) {
   173           __ movptr(obj, NULL_WORD);
   174         } else {
   175           __ movl(obj, val);
   176           // flatten object address if needed
   177           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   178             __ store_check(obj.base());
   179           } else {
   180             __ leal(rdx, obj);
   181             __ store_check(rdx);
   182           }
   183         }
   184       }
   185       break;
   186     case BarrierSet::ModRef:
   187     case BarrierSet::Other:
   188       if (val == noreg) {
   189         __ movptr(obj, NULL_WORD);
   190       } else {
   191         __ movl(obj, val);
   192       }
   193       break;
   194     default      :
   195       ShouldNotReachHere();
   197   }
   198 }
   200 Address TemplateTable::at_bcp(int offset) {
   201   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   202   return Address(rsi, offset);
   203 }
   206 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   207                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   208                                    int byte_no) {
   209   if (!RewriteBytecodes)  return;
   210   Label L_patch_done;
   212   switch (bc) {
   213   case Bytecodes::_fast_aputfield:
   214   case Bytecodes::_fast_bputfield:
   215   case Bytecodes::_fast_cputfield:
   216   case Bytecodes::_fast_dputfield:
   217   case Bytecodes::_fast_fputfield:
   218   case Bytecodes::_fast_iputfield:
   219   case Bytecodes::_fast_lputfield:
   220   case Bytecodes::_fast_sputfield:
   221     {
   222       // We skip bytecode quickening for putfield instructions when
   223       // the put_code written to the constant pool cache is zero.
   224       // This is required so that every execution of this instruction
   225       // calls out to InterpreterRuntime::resolve_get_put to do
   226       // additional, required work.
   227       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   228       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   229       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
   230       __ movl(bc_reg, bc);
   231       __ cmpl(temp_reg, (int) 0);
   232       __ jcc(Assembler::zero, L_patch_done);  // don't patch
   233     }
   234     break;
   235   default:
   236     assert(byte_no == -1, "sanity");
   237     // the pair bytecodes have already done the load.
   238     if (load_bc_into_bc_reg) {
   239       __ movl(bc_reg, bc);
   240     }
   241   }
   243   if (JvmtiExport::can_post_breakpoint()) {
   244     Label L_fast_patch;
   245     // if a breakpoint is present we can't rewrite the stream directly
   246     __ movzbl(temp_reg, at_bcp(0));
   247     __ cmpl(temp_reg, Bytecodes::_breakpoint);
   248     __ jcc(Assembler::notEqual, L_fast_patch);
   249     __ get_method(temp_reg);
   250     // Let breakpoint table handling rewrite to quicker bytecode
   251     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rsi, bc_reg);
   252 #ifndef ASSERT
   253     __ jmpb(L_patch_done);
   254 #else
   255     __ jmp(L_patch_done);
   256 #endif
   257     __ bind(L_fast_patch);
   258   }
   260 #ifdef ASSERT
   261   Label L_okay;
   262   __ load_unsigned_byte(temp_reg, at_bcp(0));
   263   __ cmpl(temp_reg, (int)Bytecodes::java_code(bc));
   264   __ jccb(Assembler::equal, L_okay);
   265   __ cmpl(temp_reg, bc_reg);
   266   __ jcc(Assembler::equal, L_okay);
   267   __ stop("patching the wrong bytecode");
   268   __ bind(L_okay);
   269 #endif
   271   // patch bytecode
   272   __ movb(at_bcp(0), bc_reg);
   273   __ bind(L_patch_done);
   274 }
   276 //----------------------------------------------------------------------------------------------------
   277 // Individual instructions
   279 void TemplateTable::nop() {
   280   transition(vtos, vtos);
   281   // nothing to do
   282 }
   284 void TemplateTable::shouldnotreachhere() {
   285   transition(vtos, vtos);
   286   __ stop("shouldnotreachhere bytecode");
   287 }
   291 void TemplateTable::aconst_null() {
   292   transition(vtos, atos);
   293   __ xorptr(rax, rax);
   294 }
   297 void TemplateTable::iconst(int value) {
   298   transition(vtos, itos);
   299   if (value == 0) {
   300     __ xorptr(rax, rax);
   301   } else {
   302     __ movptr(rax, value);
   303   }
   304 }
   307 void TemplateTable::lconst(int value) {
   308   transition(vtos, ltos);
   309   if (value == 0) {
   310     __ xorptr(rax, rax);
   311   } else {
   312     __ movptr(rax, value);
   313   }
   314   assert(value >= 0, "check this code");
   315   __ xorptr(rdx, rdx);
   316 }
   319 void TemplateTable::fconst(int value) {
   320   transition(vtos, ftos);
   321          if (value == 0) { __ fldz();
   322   } else if (value == 1) { __ fld1();
   323   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
   324   } else                 { ShouldNotReachHere();
   325   }
   326 }
   329 void TemplateTable::dconst(int value) {
   330   transition(vtos, dtos);
   331          if (value == 0) { __ fldz();
   332   } else if (value == 1) { __ fld1();
   333   } else                 { ShouldNotReachHere();
   334   }
   335 }
   338 void TemplateTable::bipush() {
   339   transition(vtos, itos);
   340   __ load_signed_byte(rax, at_bcp(1));
   341 }
   344 void TemplateTable::sipush() {
   345   transition(vtos, itos);
   346   __ load_unsigned_short(rax, at_bcp(1));
   347   __ bswapl(rax);
   348   __ sarl(rax, 16);
   349 }
   351 void TemplateTable::ldc(bool wide) {
   352   transition(vtos, vtos);
   353   Label call_ldc, notFloat, notClass, Done;
   355   if (wide) {
   356     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   357   } else {
   358     __ load_unsigned_byte(rbx, at_bcp(1));
   359   }
   360   __ get_cpool_and_tags(rcx, rax);
   361   const int base_offset = ConstantPool::header_size() * wordSize;
   362   const int tags_offset = Array<u1>::base_offset_in_bytes();
   364   // get type
   365   __ xorptr(rdx, rdx);
   366   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   368   // unresolved class - get the resolved class
   369   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   370   __ jccb(Assembler::equal, call_ldc);
   372   // unresolved class in error (resolution failed) - call into runtime
   373   // so that the same error from first resolution attempt is thrown.
   374   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   375   __ jccb(Assembler::equal, call_ldc);
   377   // resolved class - need to call vm to get java mirror of the class
   378   __ cmpl(rdx, JVM_CONSTANT_Class);
   379   __ jcc(Assembler::notEqual, notClass);
   381   __ bind(call_ldc);
   382   __ movl(rcx, wide);
   383   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
   384   __ push(atos);
   385   __ jmp(Done);
   387   __ bind(notClass);
   388   __ cmpl(rdx, JVM_CONSTANT_Float);
   389   __ jccb(Assembler::notEqual, notFloat);
   390   // ftos
   391   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
   392   __ push(ftos);
   393   __ jmp(Done);
   395   __ bind(notFloat);
   396 #ifdef ASSERT
   397   { Label L;
   398     __ cmpl(rdx, JVM_CONSTANT_Integer);
   399     __ jcc(Assembler::equal, L);
   400     // String and Object are rewritten to fast_aldc
   401     __ stop("unexpected tag type in ldc");
   402     __ bind(L);
   403   }
   404 #endif
   405   // itos JVM_CONSTANT_Integer only
   406   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   407   __ push(itos);
   408   __ bind(Done);
   409 }
   411 // Fast path for caching oop constants.
   412 void TemplateTable::fast_aldc(bool wide) {
   413   transition(vtos, atos);
   415   Register result = rax;
   416   Register tmp = rdx;
   417   int index_size = wide ? sizeof(u2) : sizeof(u1);
   419   Label resolved;
   421   // We are resolved if the resolved reference cache entry contains a
   422   // non-null object (String, MethodType, etc.)
   423   assert_different_registers(result, tmp);
   424   __ get_cache_index_at_bcp(tmp, 1, index_size);
   425   __ load_resolved_reference_at_index(result, tmp);
   426   __ testl(result, result);
   427   __ jcc(Assembler::notZero, resolved);
   429   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
   431   // first time invocation - must resolve first
   432   __ movl(tmp, (int)bytecode());
   433   __ call_VM(result, entry, tmp);
   435   __ bind(resolved);
   437   if (VerifyOops) {
   438     __ verify_oop(result);
   439   }
   440 }
   442 void TemplateTable::ldc2_w() {
   443   transition(vtos, vtos);
   444   Label Long, Done;
   445   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   447   __ get_cpool_and_tags(rcx, rax);
   448   const int base_offset = ConstantPool::header_size() * wordSize;
   449   const int tags_offset = Array<u1>::base_offset_in_bytes();
   451   // get type
   452   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
   453   __ jccb(Assembler::notEqual, Long);
   454   // dtos
   455   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
   456   __ push(dtos);
   457   __ jmpb(Done);
   459   __ bind(Long);
   460   // ltos
   461   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
   462   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
   464   __ push(ltos);
   466   __ bind(Done);
   467 }
   470 void TemplateTable::locals_index(Register reg, int offset) {
   471   __ load_unsigned_byte(reg, at_bcp(offset));
   472   __ negptr(reg);
   473 }
   476 void TemplateTable::iload() {
   477   transition(vtos, itos);
   478   if (RewriteFrequentPairs) {
   479     Label rewrite, done;
   481     // get next byte
   482     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   483     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   484     // last two iloads in a pair.  Comparing against fast_iload means that
   485     // the next bytecode is neither an iload or a caload, and therefore
   486     // an iload pair.
   487     __ cmpl(rbx, Bytecodes::_iload);
   488     __ jcc(Assembler::equal, done);
   490     __ cmpl(rbx, Bytecodes::_fast_iload);
   491     __ movl(rcx, Bytecodes::_fast_iload2);
   492     __ jccb(Assembler::equal, rewrite);
   494     // if _caload, rewrite to fast_icaload
   495     __ cmpl(rbx, Bytecodes::_caload);
   496     __ movl(rcx, Bytecodes::_fast_icaload);
   497     __ jccb(Assembler::equal, rewrite);
   499     // rewrite so iload doesn't check again.
   500     __ movl(rcx, Bytecodes::_fast_iload);
   502     // rewrite
   503     // rcx: fast bytecode
   504     __ bind(rewrite);
   505     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
   506     __ bind(done);
   507   }
   509   // Get the local value into tos
   510   locals_index(rbx);
   511   __ movl(rax, iaddress(rbx));
   512 }
   515 void TemplateTable::fast_iload2() {
   516   transition(vtos, itos);
   517   locals_index(rbx);
   518   __ movl(rax, iaddress(rbx));
   519   __ push(itos);
   520   locals_index(rbx, 3);
   521   __ movl(rax, iaddress(rbx));
   522 }
   524 void TemplateTable::fast_iload() {
   525   transition(vtos, itos);
   526   locals_index(rbx);
   527   __ movl(rax, iaddress(rbx));
   528 }
   531 void TemplateTable::lload() {
   532   transition(vtos, ltos);
   533   locals_index(rbx);
   534   __ movptr(rax, laddress(rbx));
   535   NOT_LP64(__ movl(rdx, haddress(rbx)));
   536 }
   539 void TemplateTable::fload() {
   540   transition(vtos, ftos);
   541   locals_index(rbx);
   542   __ fld_s(faddress(rbx));
   543 }
   546 void TemplateTable::dload() {
   547   transition(vtos, dtos);
   548   locals_index(rbx);
   549   __ fld_d(daddress(rbx));
   550 }
   553 void TemplateTable::aload() {
   554   transition(vtos, atos);
   555   locals_index(rbx);
   556   __ movptr(rax, aaddress(rbx));
   557 }
   560 void TemplateTable::locals_index_wide(Register reg) {
   561   __ movl(reg, at_bcp(2));
   562   __ bswapl(reg);
   563   __ shrl(reg, 16);
   564   __ negptr(reg);
   565 }
   568 void TemplateTable::wide_iload() {
   569   transition(vtos, itos);
   570   locals_index_wide(rbx);
   571   __ movl(rax, iaddress(rbx));
   572 }
   575 void TemplateTable::wide_lload() {
   576   transition(vtos, ltos);
   577   locals_index_wide(rbx);
   578   __ movptr(rax, laddress(rbx));
   579   NOT_LP64(__ movl(rdx, haddress(rbx)));
   580 }
   583 void TemplateTable::wide_fload() {
   584   transition(vtos, ftos);
   585   locals_index_wide(rbx);
   586   __ fld_s(faddress(rbx));
   587 }
   590 void TemplateTable::wide_dload() {
   591   transition(vtos, dtos);
   592   locals_index_wide(rbx);
   593   __ fld_d(daddress(rbx));
   594 }
   597 void TemplateTable::wide_aload() {
   598   transition(vtos, atos);
   599   locals_index_wide(rbx);
   600   __ movptr(rax, aaddress(rbx));
   601 }
   603 void TemplateTable::index_check(Register array, Register index) {
   604   // Pop ptr into array
   605   __ pop_ptr(array);
   606   index_check_without_pop(array, index);
   607 }
   609 void TemplateTable::index_check_without_pop(Register array, Register index) {
   610   // destroys rbx,
   611   // check array
   612   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   613   LP64_ONLY(__ movslq(index, index));
   614   // check index
   615   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   616   if (index != rbx) {
   617     // ??? convention: move aberrant index into rbx, for exception message
   618     assert(rbx != array, "different registers");
   619     __ mov(rbx, index);
   620   }
   621   __ jump_cc(Assembler::aboveEqual,
   622              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   623 }
   626 void TemplateTable::iaload() {
   627   transition(itos, itos);
   628   // rdx: array
   629   index_check(rdx, rax);  // kills rbx,
   630   // rax,: index
   631   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
   632 }
   635 void TemplateTable::laload() {
   636   transition(itos, ltos);
   637   // rax,: index
   638   // rdx: array
   639   index_check(rdx, rax);
   640   __ mov(rbx, rax);
   641   // rbx,: index
   642   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
   643   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
   644 }
   647 void TemplateTable::faload() {
   648   transition(itos, ftos);
   649   // rdx: array
   650   index_check(rdx, rax);  // kills rbx,
   651   // rax,: index
   652   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   653 }
   656 void TemplateTable::daload() {
   657   transition(itos, dtos);
   658   // rdx: array
   659   index_check(rdx, rax);  // kills rbx,
   660   // rax,: index
   661   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   662 }
   665 void TemplateTable::aaload() {
   666   transition(itos, atos);
   667   // rdx: array
   668   index_check(rdx, rax);  // kills rbx,
   669   // rax,: index
   670   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   671 }
   674 void TemplateTable::baload() {
   675   transition(itos, itos);
   676   // rdx: array
   677   index_check(rdx, rax);  // kills rbx,
   678   // rax,: index
   679   // can do better code for P5 - fix this at some point
   680   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   681   __ mov(rax, rbx);
   682 }
   685 void TemplateTable::caload() {
   686   transition(itos, itos);
   687   // rdx: array
   688   index_check(rdx, rax);  // kills rbx,
   689   // rax,: index
   690   // can do better code for P5 - may want to improve this at some point
   691   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   692   __ mov(rax, rbx);
   693 }
   695 // iload followed by caload frequent pair
   696 void TemplateTable::fast_icaload() {
   697   transition(vtos, itos);
   698   // load index out of locals
   699   locals_index(rbx);
   700   __ movl(rax, iaddress(rbx));
   702   // rdx: array
   703   index_check(rdx, rax);
   704   // rax,: index
   705   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   706   __ mov(rax, rbx);
   707 }
   709 void TemplateTable::saload() {
   710   transition(itos, itos);
   711   // rdx: array
   712   index_check(rdx, rax);  // kills rbx,
   713   // rax,: index
   714   // can do better code for P5 - may want to improve this at some point
   715   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   716   __ mov(rax, rbx);
   717 }
   720 void TemplateTable::iload(int n) {
   721   transition(vtos, itos);
   722   __ movl(rax, iaddress(n));
   723 }
   726 void TemplateTable::lload(int n) {
   727   transition(vtos, ltos);
   728   __ movptr(rax, laddress(n));
   729   NOT_LP64(__ movptr(rdx, haddress(n)));
   730 }
   733 void TemplateTable::fload(int n) {
   734   transition(vtos, ftos);
   735   __ fld_s(faddress(n));
   736 }
   739 void TemplateTable::dload(int n) {
   740   transition(vtos, dtos);
   741   __ fld_d(daddress(n));
   742 }
   745 void TemplateTable::aload(int n) {
   746   transition(vtos, atos);
   747   __ movptr(rax, aaddress(n));
   748 }
   751 void TemplateTable::aload_0() {
   752   transition(vtos, atos);
   753   // According to bytecode histograms, the pairs:
   754   //
   755   // _aload_0, _fast_igetfield
   756   // _aload_0, _fast_agetfield
   757   // _aload_0, _fast_fgetfield
   758   //
   759   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   760   // bytecode checks if the next bytecode is either _fast_igetfield,
   761   // _fast_agetfield or _fast_fgetfield and then rewrites the
   762   // current bytecode into a pair bytecode; otherwise it rewrites the current
   763   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   764   //
   765   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
   766   //       otherwise we may miss an opportunity for a pair.
   767   //
   768   // Also rewrite frequent pairs
   769   //   aload_0, aload_1
   770   //   aload_0, iload_1
   771   // These bytecodes with a small amount of code are most profitable to rewrite
   772   if (RewriteFrequentPairs) {
   773     Label rewrite, done;
   774     // get next byte
   775     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   777     // do actual aload_0
   778     aload(0);
   780     // if _getfield then wait with rewrite
   781     __ cmpl(rbx, Bytecodes::_getfield);
   782     __ jcc(Assembler::equal, done);
   784     // if _igetfield then reqrite to _fast_iaccess_0
   785     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   786     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   787     __ movl(rcx, Bytecodes::_fast_iaccess_0);
   788     __ jccb(Assembler::equal, rewrite);
   790     // if _agetfield then reqrite to _fast_aaccess_0
   791     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   792     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   793     __ movl(rcx, Bytecodes::_fast_aaccess_0);
   794     __ jccb(Assembler::equal, rewrite);
   796     // if _fgetfield then reqrite to _fast_faccess_0
   797     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   798     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   799     __ movl(rcx, Bytecodes::_fast_faccess_0);
   800     __ jccb(Assembler::equal, rewrite);
   802     // else rewrite to _fast_aload0
   803     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
   804     __ movl(rcx, Bytecodes::_fast_aload_0);
   806     // rewrite
   807     // rcx: fast bytecode
   808     __ bind(rewrite);
   809     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
   811     __ bind(done);
   812   } else {
   813     aload(0);
   814   }
   815 }
   817 void TemplateTable::istore() {
   818   transition(itos, vtos);
   819   locals_index(rbx);
   820   __ movl(iaddress(rbx), rax);
   821 }
   824 void TemplateTable::lstore() {
   825   transition(ltos, vtos);
   826   locals_index(rbx);
   827   __ movptr(laddress(rbx), rax);
   828   NOT_LP64(__ movptr(haddress(rbx), rdx));
   829 }
   832 void TemplateTable::fstore() {
   833   transition(ftos, vtos);
   834   locals_index(rbx);
   835   __ fstp_s(faddress(rbx));
   836 }
   839 void TemplateTable::dstore() {
   840   transition(dtos, vtos);
   841   locals_index(rbx);
   842   __ fstp_d(daddress(rbx));
   843 }
   846 void TemplateTable::astore() {
   847   transition(vtos, vtos);
   848   __ pop_ptr(rax);
   849   locals_index(rbx);
   850   __ movptr(aaddress(rbx), rax);
   851 }
   854 void TemplateTable::wide_istore() {
   855   transition(vtos, vtos);
   856   __ pop_i(rax);
   857   locals_index_wide(rbx);
   858   __ movl(iaddress(rbx), rax);
   859 }
   862 void TemplateTable::wide_lstore() {
   863   transition(vtos, vtos);
   864   __ pop_l(rax, rdx);
   865   locals_index_wide(rbx);
   866   __ movptr(laddress(rbx), rax);
   867   NOT_LP64(__ movl(haddress(rbx), rdx));
   868 }
   871 void TemplateTable::wide_fstore() {
   872   wide_istore();
   873 }
   876 void TemplateTable::wide_dstore() {
   877   wide_lstore();
   878 }
   881 void TemplateTable::wide_astore() {
   882   transition(vtos, vtos);
   883   __ pop_ptr(rax);
   884   locals_index_wide(rbx);
   885   __ movptr(aaddress(rbx), rax);
   886 }
   889 void TemplateTable::iastore() {
   890   transition(itos, vtos);
   891   __ pop_i(rbx);
   892   // rax,: value
   893   // rdx: array
   894   index_check(rdx, rbx);  // prefer index in rbx,
   895   // rbx,: index
   896   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
   897 }
   900 void TemplateTable::lastore() {
   901   transition(ltos, vtos);
   902   __ pop_i(rbx);
   903   // rax,: low(value)
   904   // rcx: array
   905   // rdx: high(value)
   906   index_check(rcx, rbx);  // prefer index in rbx,
   907   // rbx,: index
   908   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
   909   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
   910 }
   913 void TemplateTable::fastore() {
   914   transition(ftos, vtos);
   915   __ pop_i(rbx);
   916   // rdx: array
   917   // st0: value
   918   index_check(rdx, rbx);  // prefer index in rbx,
   919   // rbx,: index
   920   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   921 }
   924 void TemplateTable::dastore() {
   925   transition(dtos, vtos);
   926   __ pop_i(rbx);
   927   // rdx: array
   928   // st0: value
   929   index_check(rdx, rbx);  // prefer index in rbx,
   930   // rbx,: index
   931   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   932 }
   935 void TemplateTable::aastore() {
   936   Label is_null, ok_is_subtype, done;
   937   transition(vtos, vtos);
   938   // stack: ..., array, index, value
   939   __ movptr(rax, at_tos());     // Value
   940   __ movl(rcx, at_tos_p1());  // Index
   941   __ movptr(rdx, at_tos_p2());  // Array
   943   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   944   index_check_without_pop(rdx, rcx);      // kills rbx,
   945   // do array store check - check for NULL value first
   946   __ testptr(rax, rax);
   947   __ jcc(Assembler::zero, is_null);
   949   // Move subklass into EBX
   950   __ load_klass(rbx, rax);
   951   // Move superklass into EAX
   952   __ load_klass(rax, rdx);
   953   __ movptr(rax, Address(rax, ObjArrayKlass::element_klass_offset()));
   954   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
   955   __ lea(rdx, element_address);
   957   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
   958   // Superklass in EAX.  Subklass in EBX.
   959   __ gen_subtype_check( rbx, ok_is_subtype );
   961   // Come here on failure
   962   // object is at TOS
   963   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   965   // Come here on success
   966   __ bind(ok_is_subtype);
   968   // Get the value to store
   969   __ movptr(rax, at_rsp());
   970   // and store it with appropriate barrier
   971   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   973   __ jmp(done);
   975   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
   976   __ bind(is_null);
   977   __ profile_null_seen(rbx);
   979   // Store NULL, (noreg means NULL to do_oop_store)
   980   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   982   // Pop stack arguments
   983   __ bind(done);
   984   __ addptr(rsp, 3 * Interpreter::stackElementSize);
   985 }
   988 void TemplateTable::bastore() {
   989   transition(itos, vtos);
   990   __ pop_i(rbx);
   991   // rax,: value
   992   // rdx: array
   993   index_check(rdx, rbx);  // prefer index in rbx,
   994   // rbx,: index
   995   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
   996 }
   999 void TemplateTable::castore() {
  1000   transition(itos, vtos);
  1001   __ pop_i(rbx);
  1002   // rax,: value
  1003   // rdx: array
  1004   index_check(rdx, rbx);  // prefer index in rbx,
  1005   // rbx,: index
  1006   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
  1010 void TemplateTable::sastore() {
  1011   castore();
  1015 void TemplateTable::istore(int n) {
  1016   transition(itos, vtos);
  1017   __ movl(iaddress(n), rax);
  1021 void TemplateTable::lstore(int n) {
  1022   transition(ltos, vtos);
  1023   __ movptr(laddress(n), rax);
  1024   NOT_LP64(__ movptr(haddress(n), rdx));
  1028 void TemplateTable::fstore(int n) {
  1029   transition(ftos, vtos);
  1030   __ fstp_s(faddress(n));
  1034 void TemplateTable::dstore(int n) {
  1035   transition(dtos, vtos);
  1036   __ fstp_d(daddress(n));
  1040 void TemplateTable::astore(int n) {
  1041   transition(vtos, vtos);
  1042   __ pop_ptr(rax);
  1043   __ movptr(aaddress(n), rax);
  1047 void TemplateTable::pop() {
  1048   transition(vtos, vtos);
  1049   __ addptr(rsp, Interpreter::stackElementSize);
  1053 void TemplateTable::pop2() {
  1054   transition(vtos, vtos);
  1055   __ addptr(rsp, 2*Interpreter::stackElementSize);
  1059 void TemplateTable::dup() {
  1060   transition(vtos, vtos);
  1061   // stack: ..., a
  1062   __ load_ptr(0, rax);
  1063   __ push_ptr(rax);
  1064   // stack: ..., a, a
  1068 void TemplateTable::dup_x1() {
  1069   transition(vtos, vtos);
  1070   // stack: ..., a, b
  1071   __ load_ptr( 0, rax);  // load b
  1072   __ load_ptr( 1, rcx);  // load a
  1073   __ store_ptr(1, rax);  // store b
  1074   __ store_ptr(0, rcx);  // store a
  1075   __ push_ptr(rax);      // push b
  1076   // stack: ..., b, a, b
  1080 void TemplateTable::dup_x2() {
  1081   transition(vtos, vtos);
  1082   // stack: ..., a, b, c
  1083   __ load_ptr( 0, rax);  // load c
  1084   __ load_ptr( 2, rcx);  // load a
  1085   __ store_ptr(2, rax);  // store c in a
  1086   __ push_ptr(rax);      // push c
  1087   // stack: ..., c, b, c, c
  1088   __ load_ptr( 2, rax);  // load b
  1089   __ store_ptr(2, rcx);  // store a in b
  1090   // stack: ..., c, a, c, c
  1091   __ store_ptr(1, rax);  // store b in c
  1092   // stack: ..., c, a, b, c
  1096 void TemplateTable::dup2() {
  1097   transition(vtos, vtos);
  1098   // stack: ..., a, b
  1099   __ load_ptr(1, rax);  // load a
  1100   __ push_ptr(rax);     // push a
  1101   __ load_ptr(1, rax);  // load b
  1102   __ push_ptr(rax);     // push b
  1103   // stack: ..., a, b, a, b
  1107 void TemplateTable::dup2_x1() {
  1108   transition(vtos, vtos);
  1109   // stack: ..., a, b, c
  1110   __ load_ptr( 0, rcx);  // load c
  1111   __ load_ptr( 1, rax);  // load b
  1112   __ push_ptr(rax);      // push b
  1113   __ push_ptr(rcx);      // push c
  1114   // stack: ..., a, b, c, b, c
  1115   __ store_ptr(3, rcx);  // store c in b
  1116   // stack: ..., a, c, c, b, c
  1117   __ load_ptr( 4, rcx);  // load a
  1118   __ store_ptr(2, rcx);  // store a in 2nd c
  1119   // stack: ..., a, c, a, b, c
  1120   __ store_ptr(4, rax);  // store b in a
  1121   // stack: ..., b, c, a, b, c
  1122   // stack: ..., b, c, a, b, c
  1126 void TemplateTable::dup2_x2() {
  1127   transition(vtos, vtos);
  1128   // stack: ..., a, b, c, d
  1129   __ load_ptr( 0, rcx);  // load d
  1130   __ load_ptr( 1, rax);  // load c
  1131   __ push_ptr(rax);      // push c
  1132   __ push_ptr(rcx);      // push d
  1133   // stack: ..., a, b, c, d, c, d
  1134   __ load_ptr( 4, rax);  // load b
  1135   __ store_ptr(2, rax);  // store b in d
  1136   __ store_ptr(4, rcx);  // store d in b
  1137   // stack: ..., a, d, c, b, c, d
  1138   __ load_ptr( 5, rcx);  // load a
  1139   __ load_ptr( 3, rax);  // load c
  1140   __ store_ptr(3, rcx);  // store a in c
  1141   __ store_ptr(5, rax);  // store c in a
  1142   // stack: ..., c, d, a, b, c, d
  1143   // stack: ..., c, d, a, b, c, d
  1147 void TemplateTable::swap() {
  1148   transition(vtos, vtos);
  1149   // stack: ..., a, b
  1150   __ load_ptr( 1, rcx);  // load a
  1151   __ load_ptr( 0, rax);  // load b
  1152   __ store_ptr(0, rcx);  // store a in b
  1153   __ store_ptr(1, rax);  // store b in a
  1154   // stack: ..., b, a
  1158 void TemplateTable::iop2(Operation op) {
  1159   transition(itos, itos);
  1160   switch (op) {
  1161     case add  :                   __ pop_i(rdx); __ addl (rax, rdx); break;
  1162     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1163     case mul  :                   __ pop_i(rdx); __ imull(rax, rdx); break;
  1164     case _and :                   __ pop_i(rdx); __ andl (rax, rdx); break;
  1165     case _or  :                   __ pop_i(rdx); __ orl  (rax, rdx); break;
  1166     case _xor :                   __ pop_i(rdx); __ xorl (rax, rdx); break;
  1167     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1168     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1169     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1170     default   : ShouldNotReachHere();
  1175 void TemplateTable::lop2(Operation op) {
  1176   transition(ltos, ltos);
  1177   __ pop_l(rbx, rcx);
  1178   switch (op) {
  1179     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
  1180     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
  1181                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
  1182     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
  1183     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
  1184     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
  1185     default   : ShouldNotReachHere();
  1190 void TemplateTable::idiv() {
  1191   transition(itos, itos);
  1192   __ mov(rcx, rax);
  1193   __ pop_i(rax);
  1194   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1195   //       they are not equal, one could do a normal division (no correction
  1196   //       needed), which may speed up this implementation for the common case.
  1197   //       (see also JVM spec., p.243 & p.271)
  1198   __ corrected_idivl(rcx);
  1202 void TemplateTable::irem() {
  1203   transition(itos, itos);
  1204   __ mov(rcx, rax);
  1205   __ pop_i(rax);
  1206   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1207   //       they are not equal, one could do a normal division (no correction
  1208   //       needed), which may speed up this implementation for the common case.
  1209   //       (see also JVM spec., p.243 & p.271)
  1210   __ corrected_idivl(rcx);
  1211   __ mov(rax, rdx);
  1215 void TemplateTable::lmul() {
  1216   transition(ltos, ltos);
  1217   __ pop_l(rbx, rcx);
  1218   __ push(rcx); __ push(rbx);
  1219   __ push(rdx); __ push(rax);
  1220   __ lmul(2 * wordSize, 0);
  1221   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1225 void TemplateTable::ldiv() {
  1226   transition(ltos, ltos);
  1227   __ pop_l(rbx, rcx);
  1228   __ push(rcx); __ push(rbx);
  1229   __ push(rdx); __ push(rax);
  1230   // check if y = 0
  1231   __ orl(rax, rdx);
  1232   __ jump_cc(Assembler::zero,
  1233              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1234   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1235   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1239 void TemplateTable::lrem() {
  1240   transition(ltos, ltos);
  1241   __ pop_l(rbx, rcx);
  1242   __ push(rcx); __ push(rbx);
  1243   __ push(rdx); __ push(rax);
  1244   // check if y = 0
  1245   __ orl(rax, rdx);
  1246   __ jump_cc(Assembler::zero,
  1247              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1248   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1249   __ addptr(rsp, 4 * wordSize);
  1253 void TemplateTable::lshl() {
  1254   transition(itos, ltos);
  1255   __ movl(rcx, rax);                             // get shift count
  1256   __ pop_l(rax, rdx);                            // get shift value
  1257   __ lshl(rdx, rax);
  1261 void TemplateTable::lshr() {
  1262   transition(itos, ltos);
  1263   __ mov(rcx, rax);                              // get shift count
  1264   __ pop_l(rax, rdx);                            // get shift value
  1265   __ lshr(rdx, rax, true);
  1269 void TemplateTable::lushr() {
  1270   transition(itos, ltos);
  1271   __ mov(rcx, rax);                              // get shift count
  1272   __ pop_l(rax, rdx);                            // get shift value
  1273   __ lshr(rdx, rax);
  1277 void TemplateTable::fop2(Operation op) {
  1278   transition(ftos, ftos);
  1279   switch (op) {
  1280     case add: __ fadd_s (at_rsp());                break;
  1281     case sub: __ fsubr_s(at_rsp());                break;
  1282     case mul: __ fmul_s (at_rsp());                break;
  1283     case div: __ fdivr_s(at_rsp());                break;
  1284     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
  1285     default : ShouldNotReachHere();
  1287   __ f2ieee();
  1288   __ pop(rax);  // pop float thing off
  1292 void TemplateTable::dop2(Operation op) {
  1293   transition(dtos, dtos);
  1295   switch (op) {
  1296     case add: __ fadd_d (at_rsp());                break;
  1297     case sub: __ fsubr_d(at_rsp());                break;
  1298     case mul: {
  1299       Label L_strict;
  1300       Label L_join;
  1301       const Address access_flags      (rcx, Method::access_flags_offset());
  1302       __ get_method(rcx);
  1303       __ movl(rcx, access_flags);
  1304       __ testl(rcx, JVM_ACC_STRICT);
  1305       __ jccb(Assembler::notZero, L_strict);
  1306       __ fmul_d (at_rsp());
  1307       __ jmpb(L_join);
  1308       __ bind(L_strict);
  1309       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1310       __ fmulp();
  1311       __ fmul_d (at_rsp());
  1312       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1313       __ fmulp();
  1314       __ bind(L_join);
  1315       break;
  1317     case div: {
  1318       Label L_strict;
  1319       Label L_join;
  1320       const Address access_flags      (rcx, Method::access_flags_offset());
  1321       __ get_method(rcx);
  1322       __ movl(rcx, access_flags);
  1323       __ testl(rcx, JVM_ACC_STRICT);
  1324       __ jccb(Assembler::notZero, L_strict);
  1325       __ fdivr_d(at_rsp());
  1326       __ jmp(L_join);
  1327       __ bind(L_strict);
  1328       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1329       __ fmul_d (at_rsp());
  1330       __ fdivrp();
  1331       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1332       __ fmulp();
  1333       __ bind(L_join);
  1334       break;
  1336     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
  1337     default : ShouldNotReachHere();
  1339   __ d2ieee();
  1340   // Pop double precision number from rsp.
  1341   __ pop(rax);
  1342   __ pop(rdx);
  1346 void TemplateTable::ineg() {
  1347   transition(itos, itos);
  1348   __ negl(rax);
  1352 void TemplateTable::lneg() {
  1353   transition(ltos, ltos);
  1354   __ lneg(rdx, rax);
  1358 void TemplateTable::fneg() {
  1359   transition(ftos, ftos);
  1360   __ fchs();
  1364 void TemplateTable::dneg() {
  1365   transition(dtos, dtos);
  1366   __ fchs();
  1370 void TemplateTable::iinc() {
  1371   transition(vtos, vtos);
  1372   __ load_signed_byte(rdx, at_bcp(2));           // get constant
  1373   locals_index(rbx);
  1374   __ addl(iaddress(rbx), rdx);
  1378 void TemplateTable::wide_iinc() {
  1379   transition(vtos, vtos);
  1380   __ movl(rdx, at_bcp(4));                       // get constant
  1381   locals_index_wide(rbx);
  1382   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
  1383   __ sarl(rdx, 16);
  1384   __ addl(iaddress(rbx), rdx);
  1385   // Note: should probably use only one movl to get both
  1386   //       the index and the constant -> fix this
  1390 void TemplateTable::convert() {
  1391   // Checking
  1392 #ifdef ASSERT
  1393   { TosState tos_in  = ilgl;
  1394     TosState tos_out = ilgl;
  1395     switch (bytecode()) {
  1396       case Bytecodes::_i2l: // fall through
  1397       case Bytecodes::_i2f: // fall through
  1398       case Bytecodes::_i2d: // fall through
  1399       case Bytecodes::_i2b: // fall through
  1400       case Bytecodes::_i2c: // fall through
  1401       case Bytecodes::_i2s: tos_in = itos; break;
  1402       case Bytecodes::_l2i: // fall through
  1403       case Bytecodes::_l2f: // fall through
  1404       case Bytecodes::_l2d: tos_in = ltos; break;
  1405       case Bytecodes::_f2i: // fall through
  1406       case Bytecodes::_f2l: // fall through
  1407       case Bytecodes::_f2d: tos_in = ftos; break;
  1408       case Bytecodes::_d2i: // fall through
  1409       case Bytecodes::_d2l: // fall through
  1410       case Bytecodes::_d2f: tos_in = dtos; break;
  1411       default             : ShouldNotReachHere();
  1413     switch (bytecode()) {
  1414       case Bytecodes::_l2i: // fall through
  1415       case Bytecodes::_f2i: // fall through
  1416       case Bytecodes::_d2i: // fall through
  1417       case Bytecodes::_i2b: // fall through
  1418       case Bytecodes::_i2c: // fall through
  1419       case Bytecodes::_i2s: tos_out = itos; break;
  1420       case Bytecodes::_i2l: // fall through
  1421       case Bytecodes::_f2l: // fall through
  1422       case Bytecodes::_d2l: tos_out = ltos; break;
  1423       case Bytecodes::_i2f: // fall through
  1424       case Bytecodes::_l2f: // fall through
  1425       case Bytecodes::_d2f: tos_out = ftos; break;
  1426       case Bytecodes::_i2d: // fall through
  1427       case Bytecodes::_l2d: // fall through
  1428       case Bytecodes::_f2d: tos_out = dtos; break;
  1429       default             : ShouldNotReachHere();
  1431     transition(tos_in, tos_out);
  1433 #endif // ASSERT
  1435   // Conversion
  1436   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
  1437   switch (bytecode()) {
  1438     case Bytecodes::_i2l:
  1439       __ extend_sign(rdx, rax);
  1440       break;
  1441     case Bytecodes::_i2f:
  1442       __ push(rax);          // store int on tos
  1443       __ fild_s(at_rsp());   // load int to ST0
  1444       __ f2ieee();           // truncate to float size
  1445       __ pop(rcx);           // adjust rsp
  1446       break;
  1447     case Bytecodes::_i2d:
  1448       __ push(rax);          // add one slot for d2ieee()
  1449       __ push(rax);          // store int on tos
  1450       __ fild_s(at_rsp());   // load int to ST0
  1451       __ d2ieee();           // truncate to double size
  1452       __ pop(rcx);           // adjust rsp
  1453       __ pop(rcx);
  1454       break;
  1455     case Bytecodes::_i2b:
  1456       __ shll(rax, 24);      // truncate upper 24 bits
  1457       __ sarl(rax, 24);      // and sign-extend byte
  1458       LP64_ONLY(__ movsbl(rax, rax));
  1459       break;
  1460     case Bytecodes::_i2c:
  1461       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
  1462       LP64_ONLY(__ movzwl(rax, rax));
  1463       break;
  1464     case Bytecodes::_i2s:
  1465       __ shll(rax, 16);      // truncate upper 16 bits
  1466       __ sarl(rax, 16);      // and sign-extend short
  1467       LP64_ONLY(__ movswl(rax, rax));
  1468       break;
  1469     case Bytecodes::_l2i:
  1470       /* nothing to do */
  1471       break;
  1472     case Bytecodes::_l2f:
  1473       __ push(rdx);          // store long on tos
  1474       __ push(rax);
  1475       __ fild_d(at_rsp());   // load long to ST0
  1476       __ f2ieee();           // truncate to float size
  1477       __ pop(rcx);           // adjust rsp
  1478       __ pop(rcx);
  1479       break;
  1480     case Bytecodes::_l2d:
  1481       __ push(rdx);          // store long on tos
  1482       __ push(rax);
  1483       __ fild_d(at_rsp());   // load long to ST0
  1484       __ d2ieee();           // truncate to double size
  1485       __ pop(rcx);           // adjust rsp
  1486       __ pop(rcx);
  1487       break;
  1488     case Bytecodes::_f2i:
  1489       __ push(rcx);          // reserve space for argument
  1490       __ fstp_s(at_rsp());   // pass float argument on stack
  1491       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1492       break;
  1493     case Bytecodes::_f2l:
  1494       __ push(rcx);          // reserve space for argument
  1495       __ fstp_s(at_rsp());   // pass float argument on stack
  1496       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1497       break;
  1498     case Bytecodes::_f2d:
  1499       /* nothing to do */
  1500       break;
  1501     case Bytecodes::_d2i:
  1502       __ push(rcx);          // reserve space for argument
  1503       __ push(rcx);
  1504       __ fstp_d(at_rsp());   // pass double argument on stack
  1505       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
  1506       break;
  1507     case Bytecodes::_d2l:
  1508       __ push(rcx);          // reserve space for argument
  1509       __ push(rcx);
  1510       __ fstp_d(at_rsp());   // pass double argument on stack
  1511       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
  1512       break;
  1513     case Bytecodes::_d2f:
  1514       __ push(rcx);          // reserve space for f2ieee()
  1515       __ f2ieee();           // truncate to float size
  1516       __ pop(rcx);           // adjust rsp
  1517       break;
  1518     default             :
  1519       ShouldNotReachHere();
  1524 void TemplateTable::lcmp() {
  1525   transition(ltos, itos);
  1526   // y = rdx:rax
  1527   __ pop_l(rbx, rcx);             // get x = rcx:rbx
  1528   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
  1529   __ mov(rax, rcx);
  1533 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1534   if (is_float) {
  1535     __ fld_s(at_rsp());
  1536   } else {
  1537     __ fld_d(at_rsp());
  1538     __ pop(rdx);
  1540   __ pop(rcx);
  1541   __ fcmp2int(rax, unordered_result < 0);
  1545 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1546   __ get_method(rcx);           // ECX holds method
  1547   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
  1549   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
  1550                              InvocationCounter::counter_offset();
  1551   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
  1552                               InvocationCounter::counter_offset();
  1554   // Load up EDX with the branch displacement
  1555   __ movl(rdx, at_bcp(1));
  1556   __ bswapl(rdx);
  1557   if (!is_wide) __ sarl(rdx, 16);
  1558   LP64_ONLY(__ movslq(rdx, rdx));
  1561   // Handle all the JSR stuff here, then exit.
  1562   // It's much shorter and cleaner than intermingling with the
  1563   // non-JSR normal-branch stuff occurring below.
  1564   if (is_jsr) {
  1565     // Pre-load the next target bytecode into EBX
  1566     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
  1568     // compute return address as bci in rax,
  1569     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset())));
  1570     __ subptr(rax, Address(rcx, Method::const_offset()));
  1571     // Adjust the bcp in RSI by the displacement in EDX
  1572     __ addptr(rsi, rdx);
  1573     // Push return address
  1574     __ push_i(rax);
  1575     // jsr returns vtos
  1576     __ dispatch_only_noverify(vtos);
  1577     return;
  1580   // Normal (non-jsr) branch handling
  1582   // Adjust the bcp in RSI by the displacement in EDX
  1583   __ addptr(rsi, rdx);
  1585   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
  1586   Label backedge_counter_overflow;
  1587   Label profile_method;
  1588   Label dispatch;
  1589   if (UseLoopCounter) {
  1590     // increment backedge counter for backward branches
  1591     // rax,: MDO
  1592     // rbx,: MDO bumped taken-count
  1593     // rcx: method
  1594     // rdx: target offset
  1595     // rsi: target bcp
  1596     // rdi: locals pointer
  1597     __ testl(rdx, rdx);             // check if forward or backward branch
  1598     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1600     // check if MethodCounters exists
  1601     Label has_counters;
  1602     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
  1603     __ testptr(rax, rax);
  1604     __ jcc(Assembler::notZero, has_counters);
  1605     __ push(rdx);
  1606     __ push(rcx);
  1607     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
  1608                rcx);
  1609     __ pop(rcx);
  1610     __ pop(rdx);
  1611     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
  1612     __ testptr(rax, rax);
  1613     __ jcc(Assembler::zero, dispatch);
  1614     __ bind(has_counters);
  1616     if (TieredCompilation) {
  1617       Label no_mdo;
  1618       int increment = InvocationCounter::count_increment;
  1619       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1620       if (ProfileInterpreter) {
  1621         // Are we profiling?
  1622         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
  1623         __ testptr(rbx, rbx);
  1624         __ jccb(Assembler::zero, no_mdo);
  1625         // Increment the MDO backedge counter
  1626         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
  1627                                                 in_bytes(InvocationCounter::counter_offset()));
  1628         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1629                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1630         __ jmp(dispatch);
  1632       __ bind(no_mdo);
  1633       // Increment backedge counter in MethodCounters*
  1634       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
  1635       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1636                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1637     } else {
  1638       // increment counter
  1639       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
  1640       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1641       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1642       __ movl(Address(rcx, be_offset), rax);        // store counter
  1644       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1646       __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
  1647       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1649       if (ProfileInterpreter) {
  1650         // Test to see if we should create a method data oop
  1651         __ cmp32(rax,
  1652                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1653         __ jcc(Assembler::less, dispatch);
  1655         // if no method data exists, go to profile method
  1656         __ test_method_data_pointer(rax, profile_method);
  1658         if (UseOnStackReplacement) {
  1659           // check for overflow against rbx, which is the MDO taken count
  1660           __ cmp32(rbx,
  1661                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1662           __ jcc(Assembler::below, dispatch);
  1664           // When ProfileInterpreter is on, the backedge_count comes from the
  1665           // MethodData*, which value does not get reset on the call to
  1666           // frequency_counter_overflow().  To avoid excessive calls to the overflow
  1667           // routine while the method is being compiled, add a second test to make
  1668           // sure the overflow function is called only once every overflow_frequency.
  1669           const int overflow_frequency = 1024;
  1670           __ andptr(rbx, overflow_frequency-1);
  1671           __ jcc(Assembler::zero, backedge_counter_overflow);
  1673       } else {
  1674         if (UseOnStackReplacement) {
  1675           // check for overflow against rax, which is the sum of the counters
  1676           __ cmp32(rax,
  1677                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1678           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1683     __ bind(dispatch);
  1686   // Pre-load the next target bytecode into EBX
  1687   __ load_unsigned_byte(rbx, Address(rsi, 0));
  1689   // continue with the bytecode @ target
  1690   // rax,: return bci for jsr's, unused otherwise
  1691   // rbx,: target bytecode
  1692   // rsi: target bcp
  1693   __ dispatch_only(vtos);
  1695   if (UseLoopCounter) {
  1696     if (ProfileInterpreter) {
  1697       // Out-of-line code to allocate method data oop.
  1698       __ bind(profile_method);
  1699       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1700       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1701       __ set_method_data_pointer_for_bcp();
  1702       __ jmp(dispatch);
  1705     if (UseOnStackReplacement) {
  1707       // invocation counter overflow
  1708       __ bind(backedge_counter_overflow);
  1709       __ negptr(rdx);
  1710       __ addptr(rdx, rsi);        // branch bcp
  1711       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
  1712       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1714       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
  1715       // rbx,: target bytecode
  1716       // rdx: scratch
  1717       // rdi: locals pointer
  1718       // rsi: bcp
  1719       __ testptr(rax, rax);                      // test result
  1720       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1721       // nmethod may have been invalidated (VM may block upon call_VM return)
  1722       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1723       __ cmpl(rcx, InvalidOSREntryBci);
  1724       __ jcc(Assembler::equal, dispatch);
  1726       // We have the address of an on stack replacement routine in rax,
  1727       // We need to prepare to execute the OSR method. First we must
  1728       // migrate the locals and monitors off of the stack.
  1730       __ mov(rbx, rax);                             // save the nmethod
  1732       const Register thread = rcx;
  1733       __ get_thread(thread);
  1734       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1735       // rax, is OSR buffer, move it to expected parameter location
  1736       __ mov(rcx, rax);
  1738       // pop the interpreter frame
  1739       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1740       __ leave();                                // remove frame anchor
  1741       __ pop(rdi);                               // get return address
  1742       __ mov(rsp, rdx);                          // set sp to sender sp
  1744       // Align stack pointer for compiled code (note that caller is
  1745       // responsible for undoing this fixup by remembering the old SP
  1746       // in an rbp,-relative location)
  1747       __ andptr(rsp, -(StackAlignmentInBytes));
  1749       // push the (possibly adjusted) return address
  1750       __ push(rdi);
  1752       // and begin the OSR nmethod
  1753       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
  1759 void TemplateTable::if_0cmp(Condition cc) {
  1760   transition(itos, vtos);
  1761   // assume branch is more often taken than not (loops use backward branches)
  1762   Label not_taken;
  1763   __ testl(rax, rax);
  1764   __ jcc(j_not(cc), not_taken);
  1765   branch(false, false);
  1766   __ bind(not_taken);
  1767   __ profile_not_taken_branch(rax);
  1771 void TemplateTable::if_icmp(Condition cc) {
  1772   transition(itos, vtos);
  1773   // assume branch is more often taken than not (loops use backward branches)
  1774   Label not_taken;
  1775   __ pop_i(rdx);
  1776   __ cmpl(rdx, rax);
  1777   __ jcc(j_not(cc), not_taken);
  1778   branch(false, false);
  1779   __ bind(not_taken);
  1780   __ profile_not_taken_branch(rax);
  1784 void TemplateTable::if_nullcmp(Condition cc) {
  1785   transition(atos, vtos);
  1786   // assume branch is more often taken than not (loops use backward branches)
  1787   Label not_taken;
  1788   __ testptr(rax, rax);
  1789   __ jcc(j_not(cc), not_taken);
  1790   branch(false, false);
  1791   __ bind(not_taken);
  1792   __ profile_not_taken_branch(rax);
  1796 void TemplateTable::if_acmp(Condition cc) {
  1797   transition(atos, vtos);
  1798   // assume branch is more often taken than not (loops use backward branches)
  1799   Label not_taken;
  1800   __ pop_ptr(rdx);
  1801   __ cmpptr(rdx, rax);
  1802   __ jcc(j_not(cc), not_taken);
  1803   branch(false, false);
  1804   __ bind(not_taken);
  1805   __ profile_not_taken_branch(rax);
  1809 void TemplateTable::ret() {
  1810   transition(vtos, vtos);
  1811   locals_index(rbx);
  1812   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1813   __ profile_ret(rbx, rcx);
  1814   __ get_method(rax);
  1815   __ movptr(rsi, Address(rax, Method::const_offset()));
  1816   __ lea(rsi, Address(rsi, rbx, Address::times_1,
  1817                       ConstMethod::codes_offset()));
  1818   __ dispatch_next(vtos);
  1822 void TemplateTable::wide_ret() {
  1823   transition(vtos, vtos);
  1824   locals_index_wide(rbx);
  1825   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1826   __ profile_ret(rbx, rcx);
  1827   __ get_method(rax);
  1828   __ movptr(rsi, Address(rax, Method::const_offset()));
  1829   __ lea(rsi, Address(rsi, rbx, Address::times_1, ConstMethod::codes_offset()));
  1830   __ dispatch_next(vtos);
  1834 void TemplateTable::tableswitch() {
  1835   Label default_case, continue_execution;
  1836   transition(itos, vtos);
  1837   // align rsi
  1838   __ lea(rbx, at_bcp(wordSize));
  1839   __ andptr(rbx, -wordSize);
  1840   // load lo & hi
  1841   __ movl(rcx, Address(rbx, 1 * wordSize));
  1842   __ movl(rdx, Address(rbx, 2 * wordSize));
  1843   __ bswapl(rcx);
  1844   __ bswapl(rdx);
  1845   // check against lo & hi
  1846   __ cmpl(rax, rcx);
  1847   __ jccb(Assembler::less, default_case);
  1848   __ cmpl(rax, rdx);
  1849   __ jccb(Assembler::greater, default_case);
  1850   // lookup dispatch offset
  1851   __ subl(rax, rcx);
  1852   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1853   __ profile_switch_case(rax, rbx, rcx);
  1854   // continue execution
  1855   __ bind(continue_execution);
  1856   __ bswapl(rdx);
  1857   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1858   __ addptr(rsi, rdx);
  1859   __ dispatch_only(vtos);
  1860   // handle default
  1861   __ bind(default_case);
  1862   __ profile_switch_default(rax);
  1863   __ movl(rdx, Address(rbx, 0));
  1864   __ jmp(continue_execution);
  1868 void TemplateTable::lookupswitch() {
  1869   transition(itos, itos);
  1870   __ stop("lookupswitch bytecode should have been rewritten");
  1874 void TemplateTable::fast_linearswitch() {
  1875   transition(itos, vtos);
  1876   Label loop_entry, loop, found, continue_execution;
  1877   // bswapl rax, so we can avoid bswapping the table entries
  1878   __ bswapl(rax);
  1879   // align rsi
  1880   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
  1881   __ andptr(rbx, -wordSize);
  1882   // set counter
  1883   __ movl(rcx, Address(rbx, wordSize));
  1884   __ bswapl(rcx);
  1885   __ jmpb(loop_entry);
  1886   // table search
  1887   __ bind(loop);
  1888   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
  1889   __ jccb(Assembler::equal, found);
  1890   __ bind(loop_entry);
  1891   __ decrementl(rcx);
  1892   __ jcc(Assembler::greaterEqual, loop);
  1893   // default case
  1894   __ profile_switch_default(rax);
  1895   __ movl(rdx, Address(rbx, 0));
  1896   __ jmpb(continue_execution);
  1897   // entry found -> get offset
  1898   __ bind(found);
  1899   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
  1900   __ profile_switch_case(rcx, rax, rbx);
  1901   // continue execution
  1902   __ bind(continue_execution);
  1903   __ bswapl(rdx);
  1904   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1905   __ addptr(rsi, rdx);
  1906   __ dispatch_only(vtos);
  1910 void TemplateTable::fast_binaryswitch() {
  1911   transition(itos, vtos);
  1912   // Implementation using the following core algorithm:
  1913   //
  1914   // int binary_search(int key, LookupswitchPair* array, int n) {
  1915   //   // Binary search according to "Methodik des Programmierens" by
  1916   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1917   //   int i = 0;
  1918   //   int j = n;
  1919   //   while (i+1 < j) {
  1920   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1921   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1922   //     // where a stands for the array and assuming that the (inexisting)
  1923   //     // element a[n] is infinitely big.
  1924   //     int h = (i + j) >> 1;
  1925   //     // i < h < j
  1926   //     if (key < array[h].fast_match()) {
  1927   //       j = h;
  1928   //     } else {
  1929   //       i = h;
  1930   //     }
  1931   //   }
  1932   //   // R: a[i] <= key < a[i+1] or Q
  1933   //   // (i.e., if key is within array, i is the correct index)
  1934   //   return i;
  1935   // }
  1937   // register allocation
  1938   const Register key   = rax;                    // already set (tosca)
  1939   const Register array = rbx;
  1940   const Register i     = rcx;
  1941   const Register j     = rdx;
  1942   const Register h     = rdi;                    // needs to be restored
  1943   const Register temp  = rsi;
  1944   // setup array
  1945   __ save_bcp();
  1947   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
  1948   __ andptr(array, -wordSize);
  1949   // initialize i & j
  1950   __ xorl(i, i);                                 // i = 0;
  1951   __ movl(j, Address(array, -wordSize));         // j = length(array);
  1952   // Convert j into native byteordering
  1953   __ bswapl(j);
  1954   // and start
  1955   Label entry;
  1956   __ jmp(entry);
  1958   // binary search loop
  1959   { Label loop;
  1960     __ bind(loop);
  1961     // int h = (i + j) >> 1;
  1962     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1963     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1964     // if (key < array[h].fast_match()) {
  1965     //   j = h;
  1966     // } else {
  1967     //   i = h;
  1968     // }
  1969     // Convert array[h].match to native byte-ordering before compare
  1970     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
  1971     __ bswapl(temp);
  1972     __ cmpl(key, temp);
  1973     // j = h if (key <  array[h].fast_match())
  1974     __ cmov32(Assembler::less        , j, h);
  1975     // i = h if (key >= array[h].fast_match())
  1976     __ cmov32(Assembler::greaterEqual, i, h);
  1977     // while (i+1 < j)
  1978     __ bind(entry);
  1979     __ leal(h, Address(i, 1));                   // i+1
  1980     __ cmpl(h, j);                               // i+1 < j
  1981     __ jcc(Assembler::less, loop);
  1984   // end of binary search, result index is i (must check again!)
  1985   Label default_case;
  1986   // Convert array[i].match to native byte-ordering before compare
  1987   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
  1988   __ bswapl(temp);
  1989   __ cmpl(key, temp);
  1990   __ jcc(Assembler::notEqual, default_case);
  1992   // entry found -> j = offset
  1993   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
  1994   __ profile_switch_case(i, key, array);
  1995   __ bswapl(j);
  1996   LP64_ONLY(__ movslq(j, j));
  1997   __ restore_bcp();
  1998   __ restore_locals();                           // restore rdi
  1999   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  2001   __ addptr(rsi, j);
  2002   __ dispatch_only(vtos);
  2004   // default case -> j = default offset
  2005   __ bind(default_case);
  2006   __ profile_switch_default(i);
  2007   __ movl(j, Address(array, -2*wordSize));
  2008   __ bswapl(j);
  2009   LP64_ONLY(__ movslq(j, j));
  2010   __ restore_bcp();
  2011   __ restore_locals();                           // restore rdi
  2012   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  2013   __ addptr(rsi, j);
  2014   __ dispatch_only(vtos);
  2018 void TemplateTable::_return(TosState state) {
  2019   transition(state, state);
  2020   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
  2022   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2023     assert(state == vtos, "only valid state");
  2024     __ movptr(rax, aaddress(0));
  2025     __ load_klass(rdi, rax);
  2026     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
  2027     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2028     Label skip_register_finalizer;
  2029     __ jcc(Assembler::zero, skip_register_finalizer);
  2031     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
  2033     __ bind(skip_register_finalizer);
  2036   __ remove_activation(state, rsi);
  2037   __ jmp(rsi);
  2041 // ----------------------------------------------------------------------------
  2042 // Volatile variables demand their effects be made known to all CPU's in
  2043 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2044 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2045 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2046 // reorder volatile references, the hardware also must not reorder them).
  2047 //
  2048 // According to the new Java Memory Model (JMM):
  2049 // (1) All volatiles are serialized wrt to each other.
  2050 // ALSO reads & writes act as aquire & release, so:
  2051 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2052 // the read float up to before the read.  It's OK for non-volatile memory refs
  2053 // that happen before the volatile read to float down below it.
  2054 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2055 // that happen BEFORE the write float down to after the write.  It's OK for
  2056 // non-volatile memory refs that happen after the volatile write to float up
  2057 // before it.
  2058 //
  2059 // We only put in barriers around volatile refs (they are expensive), not
  2060 // _between_ memory refs (that would require us to track the flavor of the
  2061 // previous memory refs).  Requirements (2) and (3) require some barriers
  2062 // before volatile stores and after volatile loads.  These nearly cover
  2063 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2064 // case is placed after volatile-stores although it could just as well go
  2065 // before volatile-loads.
  2066 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
  2067   // Helper function to insert a is-volatile test and memory barrier
  2068   if( !os::is_MP() ) return;    // Not needed on single CPU
  2069   __ membar(order_constraint);
  2072 void TemplateTable::resolve_cache_and_index(int byte_no,
  2073                                             Register Rcache,
  2074                                             Register index,
  2075                                             size_t index_size) {
  2076   const Register temp = rbx;
  2077   assert_different_registers(Rcache, index, temp);
  2079   Label resolved;
  2080     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2081     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
  2082     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
  2083     __ jcc(Assembler::equal, resolved);
  2085   // resolve first time through
  2086   address entry;
  2087   switch (bytecode()) {
  2088     case Bytecodes::_getstatic      : // fall through
  2089     case Bytecodes::_putstatic      : // fall through
  2090     case Bytecodes::_getfield       : // fall through
  2091     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);        break;
  2092     case Bytecodes::_invokevirtual  : // fall through
  2093     case Bytecodes::_invokespecial  : // fall through
  2094     case Bytecodes::_invokestatic   : // fall through
  2095     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);         break;
  2096     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);   break;
  2097     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
  2098     default:
  2099       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
  2100       break;
  2102   __ movl(temp, (int)bytecode());
  2103   __ call_VM(noreg, entry, temp);
  2104   // Update registers with resolved info
  2105   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2106   __ bind(resolved);
  2110 // The cache and index registers must be set before call
  2111 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2112                                               Register cache,
  2113                                               Register index,
  2114                                               Register off,
  2115                                               Register flags,
  2116                                               bool is_static = false) {
  2117   assert_different_registers(cache, index, flags, off);
  2119   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2120   // Field offset
  2121   __ movptr(off, Address(cache, index, Address::times_ptr,
  2122                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
  2123   // Flags
  2124   __ movl(flags, Address(cache, index, Address::times_ptr,
  2125            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
  2127   // klass overwrite register
  2128   if (is_static) {
  2129     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2130                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
  2131     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  2132     __ movptr(obj, Address(obj, mirror_offset));
  2136 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2137                                                Register method,
  2138                                                Register itable_index,
  2139                                                Register flags,
  2140                                                bool is_invokevirtual,
  2141                                                bool is_invokevfinal, /*unused*/
  2142                                                bool is_invokedynamic) {
  2143   // setup registers
  2144   const Register cache = rcx;
  2145   const Register index = rdx;
  2146   assert_different_registers(method, flags);
  2147   assert_different_registers(method, cache, index);
  2148   assert_different_registers(itable_index, flags);
  2149   assert_different_registers(itable_index, cache, index);
  2150   // determine constant pool cache field offsets
  2151   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  2152   const int method_offset = in_bytes(
  2153     ConstantPoolCache::base_offset() +
  2154       ((byte_no == f2_byte)
  2155        ? ConstantPoolCacheEntry::f2_offset()
  2156        : ConstantPoolCacheEntry::f1_offset()));
  2157   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
  2158                                     ConstantPoolCacheEntry::flags_offset());
  2159   // access constant pool cache fields
  2160   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
  2161                                     ConstantPoolCacheEntry::f2_offset());
  2163   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
  2164   resolve_cache_and_index(byte_no, cache, index, index_size);
  2165     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2167   if (itable_index != noreg) {
  2168     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2170   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2174 // The registers cache and index expected to be set before call.
  2175 // Correct values of the cache and index registers are preserved.
  2176 void TemplateTable::jvmti_post_field_access(Register cache,
  2177                                             Register index,
  2178                                             bool is_static,
  2179                                             bool has_tos) {
  2180   if (JvmtiExport::can_post_field_access()) {
  2181     // Check to see if a field access watch has been set before we take
  2182     // the time to call into the VM.
  2183     Label L1;
  2184     assert_different_registers(cache, index, rax);
  2185     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2186     __ testl(rax,rax);
  2187     __ jcc(Assembler::zero, L1);
  2189     // cache entry pointer
  2190     __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
  2191     __ shll(index, LogBytesPerWord);
  2192     __ addptr(cache, index);
  2193     if (is_static) {
  2194       __ xorptr(rax, rax);      // NULL object reference
  2195     } else {
  2196       __ pop(atos);         // Get the object
  2197       __ verify_oop(rax);
  2198       __ push(atos);        // Restore stack state
  2200     // rax,:   object pointer or NULL
  2201     // cache: cache entry pointer
  2202     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2203                rax, cache);
  2204     __ get_cache_and_index_at_bcp(cache, index, 1);
  2205     __ bind(L1);
  2209 void TemplateTable::pop_and_check_object(Register r) {
  2210   __ pop_ptr(r);
  2211   __ null_check(r);  // for field access must check obj.
  2212   __ verify_oop(r);
  2215 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2216   transition(vtos, vtos);
  2218   const Register cache = rcx;
  2219   const Register index = rdx;
  2220   const Register obj   = rcx;
  2221   const Register off   = rbx;
  2222   const Register flags = rax;
  2224   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2225   jvmti_post_field_access(cache, index, is_static, false);
  2226   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2228   if (!is_static) pop_and_check_object(obj);
  2230   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2231   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2233   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2235   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2236   assert(btos == 0, "change code, btos != 0");
  2237   // btos
  2238   __ andptr(flags, ConstantPoolCacheEntry::tos_state_mask);
  2239   __ jcc(Assembler::notZero, notByte);
  2241   __ load_signed_byte(rax, lo );
  2242   __ push(btos);
  2243   // Rewrite bytecode to be faster
  2244   if (!is_static) {
  2245     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
  2247   __ jmp(Done);
  2249   __ bind(notByte);
  2250   // itos
  2251   __ cmpl(flags, itos );
  2252   __ jcc(Assembler::notEqual, notInt);
  2254   __ movl(rax, lo );
  2255   __ push(itos);
  2256   // Rewrite bytecode to be faster
  2257   if (!is_static) {
  2258     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
  2260   __ jmp(Done);
  2262   __ bind(notInt);
  2263   // atos
  2264   __ cmpl(flags, atos );
  2265   __ jcc(Assembler::notEqual, notObj);
  2267   __ movl(rax, lo );
  2268   __ push(atos);
  2269   if (!is_static) {
  2270     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
  2272   __ jmp(Done);
  2274   __ bind(notObj);
  2275   // ctos
  2276   __ cmpl(flags, ctos );
  2277   __ jcc(Assembler::notEqual, notChar);
  2279   __ load_unsigned_short(rax, lo );
  2280   __ push(ctos);
  2281   if (!is_static) {
  2282     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
  2284   __ jmp(Done);
  2286   __ bind(notChar);
  2287   // stos
  2288   __ cmpl(flags, stos );
  2289   __ jcc(Assembler::notEqual, notShort);
  2291   __ load_signed_short(rax, lo );
  2292   __ push(stos);
  2293   if (!is_static) {
  2294     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
  2296   __ jmp(Done);
  2298   __ bind(notShort);
  2299   // ltos
  2300   __ cmpl(flags, ltos );
  2301   __ jcc(Assembler::notEqual, notLong);
  2303   // Generate code as if volatile.  There just aren't enough registers to
  2304   // save that information and this code is faster than the test.
  2305   __ fild_d(lo);                // Must load atomically
  2306   __ subptr(rsp,2*wordSize);    // Make space for store
  2307   __ fistp_d(Address(rsp,0));
  2308   __ pop(rax);
  2309   __ pop(rdx);
  2311   __ push(ltos);
  2312   // Don't rewrite to _fast_lgetfield for potential volatile case.
  2313   __ jmp(Done);
  2315   __ bind(notLong);
  2316   // ftos
  2317   __ cmpl(flags, ftos );
  2318   __ jcc(Assembler::notEqual, notFloat);
  2320   __ fld_s(lo);
  2321   __ push(ftos);
  2322   if (!is_static) {
  2323     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
  2325   __ jmp(Done);
  2327   __ bind(notFloat);
  2328   // dtos
  2329   __ cmpl(flags, dtos );
  2330   __ jcc(Assembler::notEqual, notDouble);
  2332   __ fld_d(lo);
  2333   __ push(dtos);
  2334   if (!is_static) {
  2335     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
  2337   __ jmpb(Done);
  2339   __ bind(notDouble);
  2341   __ stop("Bad state");
  2343   __ bind(Done);
  2344   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2345   // volatile_barrier( );
  2349 void TemplateTable::getfield(int byte_no) {
  2350   getfield_or_static(byte_no, false);
  2354 void TemplateTable::getstatic(int byte_no) {
  2355   getfield_or_static(byte_no, true);
  2358 // The registers cache and index expected to be set before call.
  2359 // The function may destroy various registers, just not the cache and index registers.
  2360 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2362   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2364   if (JvmtiExport::can_post_field_modification()) {
  2365     // Check to see if a field modification watch has been set before we take
  2366     // the time to call into the VM.
  2367     Label L1;
  2368     assert_different_registers(cache, index, rax);
  2369     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2370     __ testl(rax, rax);
  2371     __ jcc(Assembler::zero, L1);
  2373     // The cache and index registers have been already set.
  2374     // This allows to eliminate this call but the cache and index
  2375     // registers have to be correspondingly used after this line.
  2376     __ get_cache_and_index_at_bcp(rax, rdx, 1);
  2378     if (is_static) {
  2379       // Life is simple.  Null out the object pointer.
  2380       __ xorptr(rbx, rbx);
  2381     } else {
  2382       // Life is harder. The stack holds the value on top, followed by the object.
  2383       // We don't know the size of the value, though; it could be one or two words
  2384       // depending on its type. As a result, we must find the type to determine where
  2385       // the object is.
  2386       Label two_word, valsize_known;
  2387       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
  2388                                    ConstantPoolCacheEntry::flags_offset())));
  2389       __ mov(rbx, rsp);
  2390       __ shrl(rcx, ConstantPoolCacheEntry::tos_state_shift);
  2391       // Make sure we don't need to mask rcx after the above shift
  2392       ConstantPoolCacheEntry::verify_tos_state_shift();
  2393       __ cmpl(rcx, ltos);
  2394       __ jccb(Assembler::equal, two_word);
  2395       __ cmpl(rcx, dtos);
  2396       __ jccb(Assembler::equal, two_word);
  2397       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
  2398       __ jmpb(valsize_known);
  2400       __ bind(two_word);
  2401       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
  2403       __ bind(valsize_known);
  2404       // setup object pointer
  2405       __ movptr(rbx, Address(rbx, 0));
  2407     // cache entry pointer
  2408     __ addptr(rax, in_bytes(cp_base_offset));
  2409     __ shll(rdx, LogBytesPerWord);
  2410     __ addptr(rax, rdx);
  2411     // object (tos)
  2412     __ mov(rcx, rsp);
  2413     // rbx,: object pointer set up above (NULL if static)
  2414     // rax,: cache entry pointer
  2415     // rcx: jvalue object on the stack
  2416     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2417                rbx, rax, rcx);
  2418     __ get_cache_and_index_at_bcp(cache, index, 1);
  2419     __ bind(L1);
  2424 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2425   transition(vtos, vtos);
  2427   const Register cache = rcx;
  2428   const Register index = rdx;
  2429   const Register obj   = rcx;
  2430   const Register off   = rbx;
  2431   const Register flags = rax;
  2433   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2434   jvmti_post_field_mod(cache, index, is_static);
  2435   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2437   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2438   // volatile_barrier( );
  2440   Label notVolatile, Done;
  2441   __ movl(rdx, flags);
  2442   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2443   __ andl(rdx, 0x1);
  2445   // field addresses
  2446   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2447   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2449   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2451   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2452   assert(btos == 0, "change code, btos != 0");
  2453   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2454   __ jcc(Assembler::notZero, notByte);
  2456   // btos
  2458     __ pop(btos);
  2459     if (!is_static) pop_and_check_object(obj);
  2460     __ movb(lo, rax);
  2461     if (!is_static) {
  2462       patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx, true, byte_no);
  2464     __ jmp(Done);
  2467   __ bind(notByte);
  2468   __ cmpl(flags, itos);
  2469   __ jcc(Assembler::notEqual, notInt);
  2471   // itos
  2473     __ pop(itos);
  2474     if (!is_static) pop_and_check_object(obj);
  2475     __ movl(lo, rax);
  2476     if (!is_static) {
  2477       patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx, true, byte_no);
  2479     __ jmp(Done);
  2482   __ bind(notInt);
  2483   __ cmpl(flags, atos);
  2484   __ jcc(Assembler::notEqual, notObj);
  2486   // atos
  2488     __ pop(atos);
  2489     if (!is_static) pop_and_check_object(obj);
  2490     do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2491     if (!is_static) {
  2492       patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx, true, byte_no);
  2494     __ jmp(Done);
  2497   __ bind(notObj);
  2498   __ cmpl(flags, ctos);
  2499   __ jcc(Assembler::notEqual, notChar);
  2501   // ctos
  2503     __ pop(ctos);
  2504     if (!is_static) pop_and_check_object(obj);
  2505     __ movw(lo, rax);
  2506     if (!is_static) {
  2507       patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx, true, byte_no);
  2509     __ jmp(Done);
  2512   __ bind(notChar);
  2513   __ cmpl(flags, stos);
  2514   __ jcc(Assembler::notEqual, notShort);
  2516   // stos
  2518     __ pop(stos);
  2519     if (!is_static) pop_and_check_object(obj);
  2520     __ movw(lo, rax);
  2521     if (!is_static) {
  2522       patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx, true, byte_no);
  2524     __ jmp(Done);
  2527   __ bind(notShort);
  2528   __ cmpl(flags, ltos);
  2529   __ jcc(Assembler::notEqual, notLong);
  2531   // ltos
  2533     Label notVolatileLong;
  2534     __ testl(rdx, rdx);
  2535     __ jcc(Assembler::zero, notVolatileLong);
  2537     __ pop(ltos);  // overwrites rdx, do this after testing volatile.
  2538     if (!is_static) pop_and_check_object(obj);
  2540     // Replace with real volatile test
  2541     __ push(rdx);
  2542     __ push(rax);                 // Must update atomically with FIST
  2543     __ fild_d(Address(rsp,0));    // So load into FPU register
  2544     __ fistp_d(lo);               // and put into memory atomically
  2545     __ addptr(rsp, 2*wordSize);
  2546     // volatile_barrier();
  2547     volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2548                                                  Assembler::StoreStore));
  2549     // Don't rewrite volatile version
  2550     __ jmp(notVolatile);
  2552     __ bind(notVolatileLong);
  2554     __ pop(ltos);  // overwrites rdx
  2555     if (!is_static) pop_and_check_object(obj);
  2556     NOT_LP64(__ movptr(hi, rdx));
  2557     __ movptr(lo, rax);
  2558     if (!is_static) {
  2559       patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx, true, byte_no);
  2561     __ jmp(notVolatile);
  2564   __ bind(notLong);
  2565   __ cmpl(flags, ftos);
  2566   __ jcc(Assembler::notEqual, notFloat);
  2568   // ftos
  2570     __ pop(ftos);
  2571     if (!is_static) pop_and_check_object(obj);
  2572     __ fstp_s(lo);
  2573     if (!is_static) {
  2574       patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx, true, byte_no);
  2576     __ jmp(Done);
  2579   __ bind(notFloat);
  2580 #ifdef ASSERT
  2581   __ cmpl(flags, dtos);
  2582   __ jcc(Assembler::notEqual, notDouble);
  2583 #endif
  2585   // dtos
  2587     __ pop(dtos);
  2588     if (!is_static) pop_and_check_object(obj);
  2589     __ fstp_d(lo);
  2590     if (!is_static) {
  2591       patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx, true, byte_no);
  2593     __ jmp(Done);
  2596 #ifdef ASSERT
  2597   __ bind(notDouble);
  2598   __ stop("Bad state");
  2599 #endif
  2601   __ bind(Done);
  2603   // Check for volatile store
  2604   __ testl(rdx, rdx);
  2605   __ jcc(Assembler::zero, notVolatile);
  2606   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2607                                                Assembler::StoreStore));
  2608   __ bind(notVolatile);
  2612 void TemplateTable::putfield(int byte_no) {
  2613   putfield_or_static(byte_no, false);
  2617 void TemplateTable::putstatic(int byte_no) {
  2618   putfield_or_static(byte_no, true);
  2621 void TemplateTable::jvmti_post_fast_field_mod() {
  2622   if (JvmtiExport::can_post_field_modification()) {
  2623     // Check to see if a field modification watch has been set before we take
  2624     // the time to call into the VM.
  2625     Label L2;
  2626      __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2627      __ testl(rcx,rcx);
  2628      __ jcc(Assembler::zero, L2);
  2629      __ pop_ptr(rbx);               // copy the object pointer from tos
  2630      __ verify_oop(rbx);
  2631      __ push_ptr(rbx);              // put the object pointer back on tos
  2633      // Save tos values before call_VM() clobbers them. Since we have
  2634      // to do it for every data type, we use the saved values as the
  2635      // jvalue object.
  2636      switch (bytecode()) {          // load values into the jvalue object
  2637      case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
  2638      case Bytecodes::_fast_bputfield: // fall through
  2639      case Bytecodes::_fast_sputfield: // fall through
  2640      case Bytecodes::_fast_cputfield: // fall through
  2641      case Bytecodes::_fast_iputfield: __ push_i(rax); break;
  2642      case Bytecodes::_fast_dputfield: __ push_d(); break;
  2643      case Bytecodes::_fast_fputfield: __ push_f(); break;
  2644      case Bytecodes::_fast_lputfield: __ push_l(rax); break;
  2646      default:
  2647        ShouldNotReachHere();
  2649      __ mov(rcx, rsp);              // points to jvalue on the stack
  2650      // access constant pool cache entry
  2651      __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
  2652      __ verify_oop(rbx);
  2653      // rbx,: object pointer copied above
  2654      // rax,: cache entry pointer
  2655      // rcx: jvalue object on the stack
  2656      __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
  2658      switch (bytecode()) {             // restore tos values
  2659      case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
  2660      case Bytecodes::_fast_bputfield: // fall through
  2661      case Bytecodes::_fast_sputfield: // fall through
  2662      case Bytecodes::_fast_cputfield: // fall through
  2663      case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
  2664      case Bytecodes::_fast_dputfield: __ pop_d(); break;
  2665      case Bytecodes::_fast_fputfield: __ pop_f(); break;
  2666      case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
  2668      __ bind(L2);
  2672 void TemplateTable::fast_storefield(TosState state) {
  2673   transition(state, vtos);
  2675   ByteSize base = ConstantPoolCache::base_offset();
  2677   jvmti_post_fast_field_mod();
  2679   // access constant pool cache
  2680   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2682   // test for volatile with rdx but rdx is tos register for lputfield.
  2683   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2684   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
  2685                        ConstantPoolCacheEntry::flags_offset())));
  2687   // replace index with field offset from cache entry
  2688   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2690   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2691   // volatile_barrier( );
  2693   Label notVolatile, Done;
  2694   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2695   __ andl(rdx, 0x1);
  2696   // Check for volatile store
  2697   __ testl(rdx, rdx);
  2698   __ jcc(Assembler::zero, notVolatile);
  2700   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2702   // Get object from stack
  2703   pop_and_check_object(rcx);
  2705   // field addresses
  2706   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
  2707   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
  2709   // access field
  2710   switch (bytecode()) {
  2711     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2712     case Bytecodes::_fast_sputfield: // fall through
  2713     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2714     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2715     case Bytecodes::_fast_lputfield:
  2716       NOT_LP64(__ movptr(hi, rdx));
  2717       __ movptr(lo, rax);
  2718       break;
  2719     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2720     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2721     case Bytecodes::_fast_aputfield: {
  2722       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2723       break;
  2725     default:
  2726       ShouldNotReachHere();
  2729   Label done;
  2730   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2731                                                Assembler::StoreStore));
  2732   // Barriers are so large that short branch doesn't reach!
  2733   __ jmp(done);
  2735   // Same code as above, but don't need rdx to test for volatile.
  2736   __ bind(notVolatile);
  2738   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2740   // Get object from stack
  2741   pop_and_check_object(rcx);
  2743   // access field
  2744   switch (bytecode()) {
  2745     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2746     case Bytecodes::_fast_sputfield: // fall through
  2747     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2748     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2749     case Bytecodes::_fast_lputfield:
  2750       NOT_LP64(__ movptr(hi, rdx));
  2751       __ movptr(lo, rax);
  2752       break;
  2753     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2754     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2755     case Bytecodes::_fast_aputfield: {
  2756       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2757       break;
  2759     default:
  2760       ShouldNotReachHere();
  2762   __ bind(done);
  2766 void TemplateTable::fast_accessfield(TosState state) {
  2767   transition(atos, state);
  2769   // do the JVMTI work here to avoid disturbing the register state below
  2770   if (JvmtiExport::can_post_field_access()) {
  2771     // Check to see if a field access watch has been set before we take
  2772     // the time to call into the VM.
  2773     Label L1;
  2774     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2775     __ testl(rcx,rcx);
  2776     __ jcc(Assembler::zero, L1);
  2777     // access constant pool cache entry
  2778     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
  2779     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2780     __ verify_oop(rax);
  2781     // rax,: object pointer copied above
  2782     // rcx: cache entry pointer
  2783     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
  2784     __ pop_ptr(rax);   // restore object pointer
  2785     __ bind(L1);
  2788   // access constant pool cache
  2789   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2790   // replace index with field offset from cache entry
  2791   __ movptr(rbx, Address(rcx,
  2792                          rbx,
  2793                          Address::times_ptr,
  2794                          in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2797   // rax,: object
  2798   __ verify_oop(rax);
  2799   __ null_check(rax);
  2800   // field addresses
  2801   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2802   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
  2804   // access field
  2805   switch (bytecode()) {
  2806     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
  2807     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
  2808     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
  2809     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
  2810     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
  2811     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
  2812     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
  2813     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
  2814     default:
  2815       ShouldNotReachHere();
  2818   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
  2819   // volatile_barrier( );
  2822 void TemplateTable::fast_xaccess(TosState state) {
  2823   transition(vtos, state);
  2824   // get receiver
  2825   __ movptr(rax, aaddress(0));
  2826   // access constant pool cache
  2827   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2828   __ movptr(rbx, Address(rcx,
  2829                          rdx,
  2830                          Address::times_ptr,
  2831                          in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2832   // make sure exception is reported in correct bcp range (getfield is next instruction)
  2833   __ increment(rsi);
  2834   __ null_check(rax);
  2835   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2836   if (state == itos) {
  2837     __ movl(rax, lo);
  2838   } else if (state == atos) {
  2839     __ movptr(rax, lo);
  2840     __ verify_oop(rax);
  2841   } else if (state == ftos) {
  2842     __ fld_s(lo);
  2843   } else {
  2844     ShouldNotReachHere();
  2846   __ decrement(rsi);
  2851 //----------------------------------------------------------------------------------------------------
  2852 // Calls
  2854 void TemplateTable::count_calls(Register method, Register temp) {
  2855   // implemented elsewhere
  2856   ShouldNotReachHere();
  2860 void TemplateTable::prepare_invoke(int byte_no,
  2861                                    Register method,  // linked method (or i-klass)
  2862                                    Register index,   // itable index, MethodType, etc.
  2863                                    Register recv,    // if caller wants to see it
  2864                                    Register flags    // if caller wants to test it
  2865                                    ) {
  2866   // determine flags
  2867   const Bytecodes::Code code = bytecode();
  2868   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2869   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2870   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  2871   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2872   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2873   const bool load_receiver       = (recv  != noreg);
  2874   const bool save_flags          = (flags != noreg);
  2875   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
  2876   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
  2877   assert(flags == noreg || flags == rdx, "");
  2878   assert(recv  == noreg || recv  == rcx, "");
  2880   // setup registers & access constant pool cache
  2881   if (recv  == noreg)  recv  = rcx;
  2882   if (flags == noreg)  flags = rdx;
  2883   assert_different_registers(method, index, recv, flags);
  2885   // save 'interpreter return address'
  2886   __ save_bcp();
  2888   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2890   // maybe push appendix to arguments (just before return address)
  2891   if (is_invokedynamic || is_invokehandle) {
  2892     Label L_no_push;
  2893     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
  2894     __ jccb(Assembler::zero, L_no_push);
  2895     // Push the appendix as a trailing parameter.
  2896     // This must be done before we get the receiver,
  2897     // since the parameter_size includes it.
  2898     __ push(rbx);
  2899     __ mov(rbx, index);
  2900     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
  2901     __ load_resolved_reference_at_index(index, rbx);
  2902     __ pop(rbx);
  2903     __ push(index);  // push appendix (MethodType, CallSite, etc.)
  2904     __ bind(L_no_push);
  2907   // load receiver if needed (note: no return address pushed yet)
  2908   if (load_receiver) {
  2909     __ movl(recv, flags);
  2910     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
  2911     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
  2912     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
  2913     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
  2914     __ movptr(recv, recv_addr);
  2915     __ verify_oop(recv);
  2918   if (save_flags) {
  2919     __ mov(rsi, flags);
  2922   // compute return type
  2923   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2924   // Make sure we don't need to mask flags after the above shift
  2925   ConstantPoolCacheEntry::verify_tos_state_shift();
  2926   // load return address
  2928     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
  2929     ExternalAddress table(table_addr);
  2930     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
  2933   // push return address
  2934   __ push(flags);
  2936   // Restore flags value from the constant pool cache, and restore rsi
  2937   // for later null checks.  rsi is the bytecode pointer
  2938   if (save_flags) {
  2939     __ mov(flags, rsi);
  2940     __ restore_bcp();
  2945 void TemplateTable::invokevirtual_helper(Register index,
  2946                                          Register recv,
  2947                                          Register flags) {
  2948   // Uses temporary registers rax, rdx
  2949   assert_different_registers(index, recv, rax, rdx);
  2950   assert(index == rbx, "");
  2951   assert(recv  == rcx, "");
  2953   // Test for an invoke of a final method
  2954   Label notFinal;
  2955   __ movl(rax, flags);
  2956   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
  2957   __ jcc(Assembler::zero, notFinal);
  2959   const Register method = index;  // method must be rbx
  2960   assert(method == rbx,
  2961          "Method* must be rbx for interpreter calling convention");
  2963   // do the call - the index is actually the method to call
  2964   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
  2966   // It's final, need a null check here!
  2967   __ null_check(recv);
  2969   // profile this call
  2970   __ profile_final_call(rax);
  2971   __ profile_arguments_type(rax, method, rsi, true);
  2973   __ jump_from_interpreted(method, rax);
  2975   __ bind(notFinal);
  2977   // get receiver klass
  2978   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2979   __ load_klass(rax, recv);
  2981   // profile this call
  2982   __ profile_virtual_call(rax, rdi, rdx);
  2984   // get target Method* & entry point
  2985   __ lookup_virtual_method(rax, index, method);
  2986   __ profile_arguments_type(rdx, method, rsi, true);
  2987   __ jump_from_interpreted(method, rdx);
  2991 void TemplateTable::invokevirtual(int byte_no) {
  2992   transition(vtos, vtos);
  2993   assert(byte_no == f2_byte, "use this argument");
  2994   prepare_invoke(byte_no,
  2995                  rbx,    // method or vtable index
  2996                  noreg,  // unused itable index
  2997                  rcx, rdx); // recv, flags
  2999   // rbx: index
  3000   // rcx: receiver
  3001   // rdx: flags
  3003   invokevirtual_helper(rbx, rcx, rdx);
  3007 void TemplateTable::invokespecial(int byte_no) {
  3008   transition(vtos, vtos);
  3009   assert(byte_no == f1_byte, "use this argument");
  3010   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
  3011                  rcx);  // get receiver also for null check
  3012   __ verify_oop(rcx);
  3013   __ null_check(rcx);
  3014   // do the call
  3015   __ profile_call(rax);
  3016   __ profile_arguments_type(rax, rbx, rsi, false);
  3017   __ jump_from_interpreted(rbx, rax);
  3021 void TemplateTable::invokestatic(int byte_no) {
  3022   transition(vtos, vtos);
  3023   assert(byte_no == f1_byte, "use this argument");
  3024   prepare_invoke(byte_no, rbx);  // get f1 Method*
  3025   // do the call
  3026   __ profile_call(rax);
  3027   __ profile_arguments_type(rax, rbx, rsi, false);
  3028   __ jump_from_interpreted(rbx, rax);
  3032 void TemplateTable::fast_invokevfinal(int byte_no) {
  3033   transition(vtos, vtos);
  3034   assert(byte_no == f2_byte, "use this argument");
  3035   __ stop("fast_invokevfinal not used on x86");
  3039 void TemplateTable::invokeinterface(int byte_no) {
  3040   transition(vtos, vtos);
  3041   assert(byte_no == f1_byte, "use this argument");
  3042   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
  3043                  rcx, rdx); // recv, flags
  3045   // rax: interface klass (from f1)
  3046   // rbx: itable index (from f2)
  3047   // rcx: receiver
  3048   // rdx: flags
  3050   // Special case of invokeinterface called for virtual method of
  3051   // java.lang.Object.  See cpCacheOop.cpp for details.
  3052   // This code isn't produced by javac, but could be produced by
  3053   // another compliant java compiler.
  3054   Label notMethod;
  3055   __ movl(rdi, rdx);
  3056   __ andl(rdi, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
  3057   __ jcc(Assembler::zero, notMethod);
  3059   invokevirtual_helper(rbx, rcx, rdx);
  3060   __ bind(notMethod);
  3062   // Get receiver klass into rdx - also a null check
  3063   __ restore_locals();  // restore rdi
  3064   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
  3065   __ load_klass(rdx, rcx);
  3067   // profile this call
  3068   __ profile_virtual_call(rdx, rsi, rdi);
  3070   Label no_such_interface, no_such_method;
  3072   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3073                              rdx, rax, rbx,
  3074                              // outputs: method, scan temp. reg
  3075                              rbx, rsi,
  3076                              no_such_interface);
  3078   // rbx: Method* to call
  3079   // rcx: receiver
  3080   // Check for abstract method error
  3081   // Note: This should be done more efficiently via a throw_abstract_method_error
  3082   //       interpreter entry point and a conditional jump to it in case of a null
  3083   //       method.
  3084   __ testptr(rbx, rbx);
  3085   __ jcc(Assembler::zero, no_such_method);
  3087   __ profile_arguments_type(rdx, rbx, rsi, true);
  3089   // do the call
  3090   // rcx: receiver
  3091   // rbx,: Method*
  3092   __ jump_from_interpreted(rbx, rdx);
  3093   __ should_not_reach_here();
  3095   // exception handling code follows...
  3096   // note: must restore interpreter registers to canonical
  3097   //       state for exception handling to work correctly!
  3099   __ bind(no_such_method);
  3100   // throw exception
  3101   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3102   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3103   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3104   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3105   // the call_VM checks for exception, so we should never return here.
  3106   __ should_not_reach_here();
  3108   __ bind(no_such_interface);
  3109   // throw exception
  3110   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3111   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3112   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3113   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3114                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3115   // the call_VM checks for exception, so we should never return here.
  3116   __ should_not_reach_here();
  3119 void TemplateTable::invokehandle(int byte_no) {
  3120   transition(vtos, vtos);
  3121   assert(byte_no == f1_byte, "use this argument");
  3122   const Register rbx_method = rbx;
  3123   const Register rax_mtype  = rax;
  3124   const Register rcx_recv   = rcx;
  3125   const Register rdx_flags  = rdx;
  3127   if (!EnableInvokeDynamic) {
  3128     // rewriter does not generate this bytecode
  3129     __ should_not_reach_here();
  3130     return;
  3133   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
  3134   __ verify_method_ptr(rbx_method);
  3135   __ verify_oop(rcx_recv);
  3136   __ null_check(rcx_recv);
  3138   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
  3139   // rbx: MH.invokeExact_MT method (from f2)
  3141   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
  3143   // FIXME: profile the LambdaForm also
  3144   __ profile_final_call(rax);
  3145   __ profile_arguments_type(rdx, rbx_method, rsi, true);
  3147   __ jump_from_interpreted(rbx_method, rdx);
  3151 void TemplateTable::invokedynamic(int byte_no) {
  3152   transition(vtos, vtos);
  3153   assert(byte_no == f1_byte, "use this argument");
  3155   if (!EnableInvokeDynamic) {
  3156     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3157     // The verifier will stop it.  However, if we get past the verifier,
  3158     // this will stop the thread in a reasonable way, without crashing the JVM.
  3159     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3160                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3161     // the call_VM checks for exception, so we should never return here.
  3162     __ should_not_reach_here();
  3163     return;
  3166   const Register rbx_method   = rbx;
  3167   const Register rax_callsite = rax;
  3169   prepare_invoke(byte_no, rbx_method, rax_callsite);
  3171   // rax: CallSite object (from cpool->resolved_references[f1])
  3172   // rbx: MH.linkToCallSite method (from f2)
  3174   // Note:  rax_callsite is already pushed by prepare_invoke
  3176   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3177   // profile this call
  3178   __ profile_call(rsi);
  3179   __ profile_arguments_type(rdx, rbx, rsi, false);
  3181   __ verify_oop(rax_callsite);
  3183   __ jump_from_interpreted(rbx_method, rdx);
  3186 //----------------------------------------------------------------------------------------------------
  3187 // Allocation
  3189 void TemplateTable::_new() {
  3190   transition(vtos, atos);
  3191   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3192   Label slow_case;
  3193   Label slow_case_no_pop;
  3194   Label done;
  3195   Label initialize_header;
  3196   Label initialize_object;  // including clearing the fields
  3197   Label allocate_shared;
  3199   __ get_cpool_and_tags(rcx, rax);
  3201   // Make sure the class we're about to instantiate has been resolved.
  3202   // This is done before loading InstanceKlass to be consistent with the order
  3203   // how Constant Pool is updated (see ConstantPool::klass_at_put)
  3204   const int tags_offset = Array<u1>::base_offset_in_bytes();
  3205   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
  3206   __ jcc(Assembler::notEqual, slow_case_no_pop);
  3208   // get InstanceKlass
  3209   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(ConstantPool)));
  3210   __ push(rcx);  // save the contexts of klass for initializing the header
  3212   // make sure klass is initialized & doesn't have finalizer
  3213   // make sure klass is fully initialized
  3214   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
  3215   __ jcc(Assembler::notEqual, slow_case);
  3217   // get instance_size in InstanceKlass (scaled to a count of bytes)
  3218   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
  3219   // test to see if it has a finalizer or is malformed in some way
  3220   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3221   __ jcc(Assembler::notZero, slow_case);
  3223   //
  3224   // Allocate the instance
  3225   // 1) Try to allocate in the TLAB
  3226   // 2) if fail and the object is large allocate in the shared Eden
  3227   // 3) if the above fails (or is not applicable), go to a slow case
  3228   // (creates a new TLAB, etc.)
  3230   const bool allow_shared_alloc =
  3231     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3233   const Register thread = rcx;
  3234   if (UseTLAB || allow_shared_alloc) {
  3235     __ get_thread(thread);
  3238   if (UseTLAB) {
  3239     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
  3240     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3241     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
  3242     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3243     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3244     if (ZeroTLAB) {
  3245       // the fields have been already cleared
  3246       __ jmp(initialize_header);
  3247     } else {
  3248       // initialize both the header and fields
  3249       __ jmp(initialize_object);
  3253   // Allocation in the shared Eden, if allowed.
  3254   //
  3255   // rdx: instance size in bytes
  3256   if (allow_shared_alloc) {
  3257     __ bind(allocate_shared);
  3259     ExternalAddress heap_top((address)Universe::heap()->top_addr());
  3261     Label retry;
  3262     __ bind(retry);
  3263     __ movptr(rax, heap_top);
  3264     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3265     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
  3266     __ jcc(Assembler::above, slow_case);
  3268     // Compare rax, with the top addr, and if still equal, store the new
  3269     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
  3270     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3271     //
  3272     // rax,: object begin
  3273     // rbx,: object end
  3274     // rdx: instance size in bytes
  3275     __ locked_cmpxchgptr(rbx, heap_top);
  3277     // if someone beat us on the allocation, try again, otherwise continue
  3278     __ jcc(Assembler::notEqual, retry);
  3280     __ incr_allocated_bytes(thread, rdx, 0);
  3283   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3284     // The object is initialized before the header.  If the object size is
  3285     // zero, go directly to the header initialization.
  3286     __ bind(initialize_object);
  3287     __ decrement(rdx, sizeof(oopDesc));
  3288     __ jcc(Assembler::zero, initialize_header);
  3290     // Initialize topmost object field, divide rdx by 8, check if odd and
  3291     // test if zero.
  3292     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
  3293     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
  3295     // rdx must have been multiple of 8
  3296 #ifdef ASSERT
  3297     // make sure rdx was multiple of 8
  3298     Label L;
  3299     // Ignore partial flag stall after shrl() since it is debug VM
  3300     __ jccb(Assembler::carryClear, L);
  3301     __ stop("object size is not multiple of 2 - adjust this code");
  3302     __ bind(L);
  3303     // rdx must be > 0, no extra check needed here
  3304 #endif
  3306     // initialize remaining object fields: rdx was a multiple of 8
  3307     { Label loop;
  3308     __ bind(loop);
  3309     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
  3310     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
  3311     __ decrement(rdx);
  3312     __ jcc(Assembler::notZero, loop);
  3315     // initialize object header only.
  3316     __ bind(initialize_header);
  3317     if (UseBiasedLocking) {
  3318       __ pop(rcx);   // get saved klass back in the register.
  3319       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
  3320       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
  3321     } else {
  3322       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
  3323                 (int32_t)markOopDesc::prototype()); // header
  3324       __ pop(rcx);   // get saved klass back in the register.
  3326     __ store_klass(rax, rcx);  // klass
  3329       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
  3330       // Trigger dtrace event for fastpath
  3331       __ push(atos);
  3332       __ call_VM_leaf(
  3333            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3334       __ pop(atos);
  3337     __ jmp(done);
  3340   // slow case
  3341   __ bind(slow_case);
  3342   __ pop(rcx);   // restore stack pointer to what it was when we came in.
  3343   __ bind(slow_case_no_pop);
  3344   __ get_constant_pool(rax);
  3345   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3346   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
  3348   // continue
  3349   __ bind(done);
  3353 void TemplateTable::newarray() {
  3354   transition(itos, atos);
  3355   __ push_i(rax);                                 // make sure everything is on the stack
  3356   __ load_unsigned_byte(rdx, at_bcp(1));
  3357   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
  3358   __ pop_i(rdx);                                  // discard size
  3362 void TemplateTable::anewarray() {
  3363   transition(itos, atos);
  3364   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3365   __ get_constant_pool(rcx);
  3366   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
  3370 void TemplateTable::arraylength() {
  3371   transition(atos, itos);
  3372   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3373   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3377 void TemplateTable::checkcast() {
  3378   transition(atos, atos);
  3379   Label done, is_null, ok_is_subtype, quicked, resolved;
  3380   __ testptr(rax, rax);   // Object is in EAX
  3381   __ jcc(Assembler::zero, is_null);
  3383   // Get cpool & tags index
  3384   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3385   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3386   // See if bytecode has already been quicked
  3387   __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class);
  3388   __ jcc(Assembler::equal, quicked);
  3390   __ push(atos);
  3391   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3392   // vm_result_2 has metadata result
  3393   // borrow rdi from locals
  3394   __ get_thread(rdi);
  3395   __ get_vm_result_2(rax, rdi);
  3396   __ restore_locals();
  3397   __ pop_ptr(rdx);
  3398   __ jmpb(resolved);
  3400   // Get superklass in EAX and subklass in EBX
  3401   __ bind(quicked);
  3402   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
  3403   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool)));
  3405   __ bind(resolved);
  3406   __ load_klass(rbx, rdx);
  3408   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
  3409   // Superklass in EAX.  Subklass in EBX.
  3410   __ gen_subtype_check( rbx, ok_is_subtype );
  3412   // Come here on failure
  3413   __ push(rdx);
  3414   // object is at TOS
  3415   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3417   // Come here on success
  3418   __ bind(ok_is_subtype);
  3419   __ mov(rax,rdx);           // Restore object in EDX
  3421   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3422   if (ProfileInterpreter) {
  3423     __ jmp(done);
  3424     __ bind(is_null);
  3425     __ profile_null_seen(rcx);
  3426   } else {
  3427     __ bind(is_null);   // same as 'done'
  3429   __ bind(done);
  3433 void TemplateTable::instanceof() {
  3434   transition(atos, itos);
  3435   Label done, is_null, ok_is_subtype, quicked, resolved;
  3436   __ testptr(rax, rax);
  3437   __ jcc(Assembler::zero, is_null);
  3439   // Get cpool & tags index
  3440   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3441   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3442   // See if bytecode has already been quicked
  3443   __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class);
  3444   __ jcc(Assembler::equal, quicked);
  3446   __ push(atos);
  3447   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3448   // vm_result_2 has metadata result
  3449   // borrow rdi from locals
  3450   __ get_thread(rdi);
  3451   __ get_vm_result_2(rax, rdi);
  3452   __ restore_locals();
  3453   __ pop_ptr(rdx);
  3454   __ load_klass(rdx, rdx);
  3455   __ jmp(resolved);
  3457   // Get superklass in EAX and subklass in EDX
  3458   __ bind(quicked);
  3459   __ load_klass(rdx, rax);
  3460   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool)));
  3462   __ bind(resolved);
  3464   // Generate subtype check.  Blows ECX.  Resets EDI.
  3465   // Superklass in EAX.  Subklass in EDX.
  3466   __ gen_subtype_check( rdx, ok_is_subtype );
  3468   // Come here on failure
  3469   __ xorl(rax,rax);
  3470   __ jmpb(done);
  3471   // Come here on success
  3472   __ bind(ok_is_subtype);
  3473   __ movl(rax, 1);
  3475   // Collect counts on whether this test sees NULLs a lot or not.
  3476   if (ProfileInterpreter) {
  3477     __ jmp(done);
  3478     __ bind(is_null);
  3479     __ profile_null_seen(rcx);
  3480   } else {
  3481     __ bind(is_null);   // same as 'done'
  3483   __ bind(done);
  3484   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
  3485   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
  3489 //----------------------------------------------------------------------------------------------------
  3490 // Breakpoints
  3491 void TemplateTable::_breakpoint() {
  3493   // Note: We get here even if we are single stepping..
  3494   // jbug inists on setting breakpoints at every bytecode
  3495   // even if we are in single step mode.
  3497   transition(vtos, vtos);
  3499   // get the unpatched byte code
  3500   __ get_method(rcx);
  3501   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
  3502   __ mov(rbx, rax);
  3504   // post the breakpoint event
  3505   __ get_method(rcx);
  3506   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
  3508   // complete the execution of original bytecode
  3509   __ dispatch_only_normal(vtos);
  3513 //----------------------------------------------------------------------------------------------------
  3514 // Exceptions
  3516 void TemplateTable::athrow() {
  3517   transition(atos, vtos);
  3518   __ null_check(rax);
  3519   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3523 //----------------------------------------------------------------------------------------------------
  3524 // Synchronization
  3525 //
  3526 // Note: monitorenter & exit are symmetric routines; which is reflected
  3527 //       in the assembly code structure as well
  3528 //
  3529 // Stack layout:
  3530 //
  3531 // [expressions  ] <--- rsp               = expression stack top
  3532 // ..
  3533 // [expressions  ]
  3534 // [monitor entry] <--- monitor block top = expression stack bot
  3535 // ..
  3536 // [monitor entry]
  3537 // [frame data   ] <--- monitor block bot
  3538 // ...
  3539 // [saved rbp,    ] <--- rbp,
  3542 void TemplateTable::monitorenter() {
  3543   transition(atos, vtos);
  3545   // check for NULL object
  3546   __ null_check(rax);
  3548   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3549   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3550   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3551   Label allocated;
  3553   // initialize entry pointer
  3554   __ xorl(rdx, rdx);                             // points to free slot or NULL
  3556   // find a free slot in the monitor block (result in rdx)
  3557   { Label entry, loop, exit;
  3558     __ movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
  3560     __ lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
  3561     __ jmpb(entry);
  3563     __ bind(loop);
  3564     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
  3565     __ cmovptr(Assembler::equal, rdx, rcx);      // if not used then remember entry in rdx
  3566     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3567     __ jccb(Assembler::equal, exit);             // if same object then stop searching
  3568     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
  3569     __ bind(entry);
  3570     __ cmpptr(rcx, rbx);                         // check if bottom reached
  3571     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3572     __ bind(exit);
  3575   __ testptr(rdx, rdx);                          // check if a slot has been found
  3576   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
  3578   // allocate one if there's no free slot
  3579   { Label entry, loop;
  3580     // 1. compute new pointers                   // rsp: old expression stack top
  3581     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
  3582     __ subptr(rsp, entry_size);                  // move expression stack top
  3583     __ subptr(rdx, entry_size);                  // move expression stack bottom
  3584     __ mov(rcx, rsp);                            // set start value for copy loop
  3585     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
  3586     __ jmp(entry);
  3587     // 2. move expression stack contents
  3588     __ bind(loop);
  3589     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
  3590     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
  3591     __ addptr(rcx, wordSize);                    // advance to next word
  3592     __ bind(entry);
  3593     __ cmpptr(rcx, rdx);                         // check if bottom reached
  3594     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
  3597   // call run-time routine
  3598   // rdx: points to monitor entry
  3599   __ bind(allocated);
  3601   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3602   // The object has already been poped from the stack, so the expression stack looks correct.
  3603   __ increment(rsi);
  3605   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
  3606   __ lock_object(rdx);
  3608   // check to make sure this monitor doesn't cause stack overflow after locking
  3609   __ save_bcp();  // in case of exception
  3610   __ generate_stack_overflow_check(0);
  3612   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3613   __ dispatch_next(vtos);
  3617 void TemplateTable::monitorexit() {
  3618   transition(atos, vtos);
  3620   // check for NULL object
  3621   __ null_check(rax);
  3623   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3624   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3625   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3626   Label found;
  3628   // find matching slot
  3629   { Label entry, loop;
  3630     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
  3631     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3632     __ jmpb(entry);
  3634     __ bind(loop);
  3635     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3636     __ jcc(Assembler::equal, found);             // if same object then stop searching
  3637     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
  3638     __ bind(entry);
  3639     __ cmpptr(rdx, rbx);                         // check if bottom reached
  3640     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3643   // error handling. Unlocking was not block-structured
  3644   Label end;
  3645   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3646   __ should_not_reach_here();
  3648   // call run-time routine
  3649   // rcx: points to monitor entry
  3650   __ bind(found);
  3651   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
  3652   __ unlock_object(rdx);
  3653   __ pop_ptr(rax);                                  // discard object
  3654   __ bind(end);
  3658 //----------------------------------------------------------------------------------------------------
  3659 // Wide instructions
  3661 void TemplateTable::wide() {
  3662   transition(vtos, vtos);
  3663   __ load_unsigned_byte(rbx, at_bcp(1));
  3664   ExternalAddress wtable((address)Interpreter::_wentry_point);
  3665   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
  3666   // Note: the rsi increment step is part of the individual wide bytecode implementations
  3670 //----------------------------------------------------------------------------------------------------
  3671 // Multi arrays
  3673 void TemplateTable::multianewarray() {
  3674   transition(vtos, atos);
  3675   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3676   // last dim is on top of stack; we want address of first one:
  3677   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
  3678   // the latter wordSize to point to the beginning of the array.
  3679   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
  3680   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
  3681   __ load_unsigned_byte(rbx, at_bcp(3));
  3682   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
  3685 #endif /* !CC_INTERP */

mercurial