src/share/vm/opto/macro.cpp

Wed, 25 Nov 2009 12:09:02 -0800

author
cfang
date
Wed, 25 Nov 2009 12:09:02 -0800
changeset 1516
bd12fff78df5
parent 1515
7c57aead6d3e
child 1535
f96a1a986f7b
permissions
-rw-r--r--

6904191: OptimizeStringConcat should be product instead of experimental
Summary: Make OptimizeStringConcat a product VM option(contributed by never)
Reviewed-by: never

     1 /*
     2  * Copyright 2005-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_macro.cpp.incl"
    29 //
    30 // Replace any references to "oldref" in inputs to "use" with "newref".
    31 // Returns the number of replacements made.
    32 //
    33 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
    34   int nreplacements = 0;
    35   uint req = use->req();
    36   for (uint j = 0; j < use->len(); j++) {
    37     Node *uin = use->in(j);
    38     if (uin == oldref) {
    39       if (j < req)
    40         use->set_req(j, newref);
    41       else
    42         use->set_prec(j, newref);
    43       nreplacements++;
    44     } else if (j >= req && uin == NULL) {
    45       break;
    46     }
    47   }
    48   return nreplacements;
    49 }
    51 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
    52   // Copy debug information and adjust JVMState information
    53   uint old_dbg_start = oldcall->tf()->domain()->cnt();
    54   uint new_dbg_start = newcall->tf()->domain()->cnt();
    55   int jvms_adj  = new_dbg_start - old_dbg_start;
    56   assert (new_dbg_start == newcall->req(), "argument count mismatch");
    58   Dict* sosn_map = new Dict(cmpkey,hashkey);
    59   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
    60     Node* old_in = oldcall->in(i);
    61     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
    62     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
    63       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
    64       uint old_unique = C->unique();
    65       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
    66       if (old_unique != C->unique()) {
    67         new_in->set_req(0, newcall->in(0)); // reset control edge
    68         new_in = transform_later(new_in); // Register new node.
    69       }
    70       old_in = new_in;
    71     }
    72     newcall->add_req(old_in);
    73   }
    75   newcall->set_jvms(oldcall->jvms());
    76   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
    77     jvms->set_map(newcall);
    78     jvms->set_locoff(jvms->locoff()+jvms_adj);
    79     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
    80     jvms->set_monoff(jvms->monoff()+jvms_adj);
    81     jvms->set_scloff(jvms->scloff()+jvms_adj);
    82     jvms->set_endoff(jvms->endoff()+jvms_adj);
    83   }
    84 }
    86 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
    87   Node* cmp;
    88   if (mask != 0) {
    89     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
    90     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
    91   } else {
    92     cmp = word;
    93   }
    94   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
    95   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
    96   transform_later(iff);
    98   // Fast path taken.
    99   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
   101   // Fast path not-taken, i.e. slow path
   102   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
   104   if (return_fast_path) {
   105     region->init_req(edge, slow_taken); // Capture slow-control
   106     return fast_taken;
   107   } else {
   108     region->init_req(edge, fast_taken); // Capture fast-control
   109     return slow_taken;
   110   }
   111 }
   113 //--------------------copy_predefined_input_for_runtime_call--------------------
   114 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
   115   // Set fixed predefined input arguments
   116   call->init_req( TypeFunc::Control, ctrl );
   117   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
   118   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
   119   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
   120   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
   121 }
   123 //------------------------------make_slow_call---------------------------------
   124 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
   126   // Slow-path call
   127   int size = slow_call_type->domain()->cnt();
   128  CallNode *call = leaf_name
   129    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
   130    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
   132   // Slow path call has no side-effects, uses few values
   133   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
   134   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
   135   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
   136   copy_call_debug_info(oldcall, call);
   137   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
   138   _igvn.hash_delete(oldcall);
   139   _igvn.subsume_node(oldcall, call);
   140   transform_later(call);
   142   return call;
   143 }
   145 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
   146   _fallthroughproj = NULL;
   147   _fallthroughcatchproj = NULL;
   148   _ioproj_fallthrough = NULL;
   149   _ioproj_catchall = NULL;
   150   _catchallcatchproj = NULL;
   151   _memproj_fallthrough = NULL;
   152   _memproj_catchall = NULL;
   153   _resproj = NULL;
   154   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
   155     ProjNode *pn = call->fast_out(i)->as_Proj();
   156     switch (pn->_con) {
   157       case TypeFunc::Control:
   158       {
   159         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   160         _fallthroughproj = pn;
   161         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   162         const Node *cn = pn->fast_out(j);
   163         if (cn->is_Catch()) {
   164           ProjNode *cpn = NULL;
   165           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   166             cpn = cn->fast_out(k)->as_Proj();
   167             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   168             if (cpn->_con == CatchProjNode::fall_through_index)
   169               _fallthroughcatchproj = cpn;
   170             else {
   171               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   172               _catchallcatchproj = cpn;
   173             }
   174           }
   175         }
   176         break;
   177       }
   178       case TypeFunc::I_O:
   179         if (pn->_is_io_use)
   180           _ioproj_catchall = pn;
   181         else
   182           _ioproj_fallthrough = pn;
   183         break;
   184       case TypeFunc::Memory:
   185         if (pn->_is_io_use)
   186           _memproj_catchall = pn;
   187         else
   188           _memproj_fallthrough = pn;
   189         break;
   190       case TypeFunc::Parms:
   191         _resproj = pn;
   192         break;
   193       default:
   194         assert(false, "unexpected projection from allocation node.");
   195     }
   196   }
   198 }
   200 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
   201 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
   202   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
   203   if (!UseG1GC) {
   204     // vanilla/CMS post barrier
   205     Node *shift = p2x->unique_out();
   206     Node *addp = shift->unique_out();
   207     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
   208       Node *st = addp->last_out(j);
   209       assert(st->is_Store(), "store required");
   210       _igvn.replace_node(st, st->in(MemNode::Memory));
   211     }
   212   } else {
   213     // G1 pre/post barriers
   214     assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
   215     // It could be only one user, URShift node, in Object.clone() instrinsic
   216     // but the new allocation is passed to arraycopy stub and it could not
   217     // be scalar replaced. So we don't check the case.
   219     // Remove G1 post barrier.
   221     // Search for CastP2X->Xor->URShift->Cmp path which
   222     // checks if the store done to a different from the value's region.
   223     // And replace Cmp with #0 (false) to collapse G1 post barrier.
   224     Node* xorx = NULL;
   225     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
   226       Node* u = p2x->fast_out(i);
   227       if (u->Opcode() == Op_XorX) {
   228         xorx = u;
   229         break;
   230       }
   231     }
   232     assert(xorx != NULL, "missing G1 post barrier");
   233     Node* shift = xorx->unique_out();
   234     Node* cmpx = shift->unique_out();
   235     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
   236     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
   237     "missing region check in G1 post barrier");
   238     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   240     // Remove G1 pre barrier.
   242     // Search "if (marking != 0)" check and set it to "false".
   243     Node* this_region = p2x->in(0);
   244     assert(this_region != NULL, "");
   245     // There is no G1 pre barrier if previous stored value is NULL
   246     // (for example, after initialization).
   247     if (this_region->is_Region() && this_region->req() == 3) {
   248       int ind = 1;
   249       if (!this_region->in(ind)->is_IfFalse()) {
   250         ind = 2;
   251       }
   252       if (this_region->in(ind)->is_IfFalse()) {
   253         Node* bol = this_region->in(ind)->in(0)->in(1);
   254         assert(bol->is_Bool(), "");
   255         cmpx = bol->in(1);
   256         if (bol->as_Bool()->_test._test == BoolTest::ne &&
   257             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
   258             cmpx->in(1)->is_Load()) {
   259           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
   260           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
   261                                               PtrQueue::byte_offset_of_active());
   262           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
   263               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   264               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
   265             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   266           }
   267         }
   268       }
   269     }
   270     // Now CastP2X can be removed since it is used only on dead path
   271     // which currently still alive until igvn optimize it.
   272     assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
   273     _igvn.replace_node(p2x, top());
   274   }
   275 }
   277 // Search for a memory operation for the specified memory slice.
   278 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
   279   Node *orig_mem = mem;
   280   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   281   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
   282   while (true) {
   283     if (mem == alloc_mem || mem == start_mem ) {
   284       return mem;  // hit one of our sentinels
   285     } else if (mem->is_MergeMem()) {
   286       mem = mem->as_MergeMem()->memory_at(alias_idx);
   287     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
   288       Node *in = mem->in(0);
   289       // we can safely skip over safepoints, calls, locks and membars because we
   290       // already know that the object is safe to eliminate.
   291       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
   292         return in;
   293       } else if (in->is_Call()) {
   294         CallNode *call = in->as_Call();
   295         if (!call->may_modify(tinst, phase)) {
   296           mem = call->in(TypeFunc::Memory);
   297         }
   298         mem = in->in(TypeFunc::Memory);
   299       } else if (in->is_MemBar()) {
   300         mem = in->in(TypeFunc::Memory);
   301       } else {
   302         assert(false, "unexpected projection");
   303       }
   304     } else if (mem->is_Store()) {
   305       const TypePtr* atype = mem->as_Store()->adr_type();
   306       int adr_idx = Compile::current()->get_alias_index(atype);
   307       if (adr_idx == alias_idx) {
   308         assert(atype->isa_oopptr(), "address type must be oopptr");
   309         int adr_offset = atype->offset();
   310         uint adr_iid = atype->is_oopptr()->instance_id();
   311         // Array elements references have the same alias_idx
   312         // but different offset and different instance_id.
   313         if (adr_offset == offset && adr_iid == alloc->_idx)
   314           return mem;
   315       } else {
   316         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
   317       }
   318       mem = mem->in(MemNode::Memory);
   319     } else if (mem->Opcode() == Op_SCMemProj) {
   320       assert(mem->in(0)->is_LoadStore(), "sanity");
   321       const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
   322       int adr_idx = Compile::current()->get_alias_index(atype);
   323       if (adr_idx == alias_idx) {
   324         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   325         return NULL;
   326       }
   327       mem = mem->in(0)->in(MemNode::Memory);
   328     } else {
   329       return mem;
   330     }
   331     assert(mem != orig_mem, "dead memory loop");
   332   }
   333 }
   335 //
   336 // Given a Memory Phi, compute a value Phi containing the values from stores
   337 // on the input paths.
   338 // Note: this function is recursive, its depth is limied by the "level" argument
   339 // Returns the computed Phi, or NULL if it cannot compute it.
   340 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
   341   assert(mem->is_Phi(), "sanity");
   342   int alias_idx = C->get_alias_index(adr_t);
   343   int offset = adr_t->offset();
   344   int instance_id = adr_t->instance_id();
   346   // Check if an appropriate value phi already exists.
   347   Node* region = mem->in(0);
   348   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
   349     Node* phi = region->fast_out(k);
   350     if (phi->is_Phi() && phi != mem &&
   351         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
   352       return phi;
   353     }
   354   }
   355   // Check if an appropriate new value phi already exists.
   356   Node* new_phi = NULL;
   357   uint size = value_phis->size();
   358   for (uint i=0; i < size; i++) {
   359     if ( mem->_idx == value_phis->index_at(i) ) {
   360       return value_phis->node_at(i);
   361     }
   362   }
   364   if (level <= 0) {
   365     return NULL; // Give up: phi tree too deep
   366   }
   367   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   368   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   370   uint length = mem->req();
   371   GrowableArray <Node *> values(length, length, NULL);
   373   // create a new Phi for the value
   374   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
   375   transform_later(phi);
   376   value_phis->push(phi, mem->_idx);
   378   for (uint j = 1; j < length; j++) {
   379     Node *in = mem->in(j);
   380     if (in == NULL || in->is_top()) {
   381       values.at_put(j, in);
   382     } else  {
   383       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
   384       if (val == start_mem || val == alloc_mem) {
   385         // hit a sentinel, return appropriate 0 value
   386         values.at_put(j, _igvn.zerocon(ft));
   387         continue;
   388       }
   389       if (val->is_Initialize()) {
   390         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   391       }
   392       if (val == NULL) {
   393         return NULL;  // can't find a value on this path
   394       }
   395       if (val == mem) {
   396         values.at_put(j, mem);
   397       } else if (val->is_Store()) {
   398         values.at_put(j, val->in(MemNode::ValueIn));
   399       } else if(val->is_Proj() && val->in(0) == alloc) {
   400         values.at_put(j, _igvn.zerocon(ft));
   401       } else if (val->is_Phi()) {
   402         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
   403         if (val == NULL) {
   404           return NULL;
   405         }
   406         values.at_put(j, val);
   407       } else if (val->Opcode() == Op_SCMemProj) {
   408         assert(val->in(0)->is_LoadStore(), "sanity");
   409         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   410         return NULL;
   411       } else {
   412 #ifdef ASSERT
   413         val->dump();
   414         assert(false, "unknown node on this path");
   415 #endif
   416         return NULL;  // unknown node on this path
   417       }
   418     }
   419   }
   420   // Set Phi's inputs
   421   for (uint j = 1; j < length; j++) {
   422     if (values.at(j) == mem) {
   423       phi->init_req(j, phi);
   424     } else {
   425       phi->init_req(j, values.at(j));
   426     }
   427   }
   428   return phi;
   429 }
   431 // Search the last value stored into the object's field.
   432 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
   433   assert(adr_t->is_known_instance_field(), "instance required");
   434   int instance_id = adr_t->instance_id();
   435   assert((uint)instance_id == alloc->_idx, "wrong allocation");
   437   int alias_idx = C->get_alias_index(adr_t);
   438   int offset = adr_t->offset();
   439   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   440   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
   441   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   442   Arena *a = Thread::current()->resource_area();
   443   VectorSet visited(a);
   446   bool done = sfpt_mem == alloc_mem;
   447   Node *mem = sfpt_mem;
   448   while (!done) {
   449     if (visited.test_set(mem->_idx)) {
   450       return NULL;  // found a loop, give up
   451     }
   452     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
   453     if (mem == start_mem || mem == alloc_mem) {
   454       done = true;  // hit a sentinel, return appropriate 0 value
   455     } else if (mem->is_Initialize()) {
   456       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   457       if (mem == NULL) {
   458         done = true; // Something go wrong.
   459       } else if (mem->is_Store()) {
   460         const TypePtr* atype = mem->as_Store()->adr_type();
   461         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
   462         done = true;
   463       }
   464     } else if (mem->is_Store()) {
   465       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
   466       assert(atype != NULL, "address type must be oopptr");
   467       assert(C->get_alias_index(atype) == alias_idx &&
   468              atype->is_known_instance_field() && atype->offset() == offset &&
   469              atype->instance_id() == instance_id, "store is correct memory slice");
   470       done = true;
   471     } else if (mem->is_Phi()) {
   472       // try to find a phi's unique input
   473       Node *unique_input = NULL;
   474       Node *top = C->top();
   475       for (uint i = 1; i < mem->req(); i++) {
   476         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
   477         if (n == NULL || n == top || n == mem) {
   478           continue;
   479         } else if (unique_input == NULL) {
   480           unique_input = n;
   481         } else if (unique_input != n) {
   482           unique_input = top;
   483           break;
   484         }
   485       }
   486       if (unique_input != NULL && unique_input != top) {
   487         mem = unique_input;
   488       } else {
   489         done = true;
   490       }
   491     } else {
   492       assert(false, "unexpected node");
   493     }
   494   }
   495   if (mem != NULL) {
   496     if (mem == start_mem || mem == alloc_mem) {
   497       // hit a sentinel, return appropriate 0 value
   498       return _igvn.zerocon(ft);
   499     } else if (mem->is_Store()) {
   500       return mem->in(MemNode::ValueIn);
   501     } else if (mem->is_Phi()) {
   502       // attempt to produce a Phi reflecting the values on the input paths of the Phi
   503       Node_Stack value_phis(a, 8);
   504       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
   505       if (phi != NULL) {
   506         return phi;
   507       } else {
   508         // Kill all new Phis
   509         while(value_phis.is_nonempty()) {
   510           Node* n = value_phis.node();
   511           _igvn.hash_delete(n);
   512           _igvn.subsume_node(n, C->top());
   513           value_phis.pop();
   514         }
   515       }
   516     }
   517   }
   518   // Something go wrong.
   519   return NULL;
   520 }
   522 // Check the possibility of scalar replacement.
   523 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   524   //  Scan the uses of the allocation to check for anything that would
   525   //  prevent us from eliminating it.
   526   NOT_PRODUCT( const char* fail_eliminate = NULL; )
   527   DEBUG_ONLY( Node* disq_node = NULL; )
   528   bool  can_eliminate = true;
   530   Node* res = alloc->result_cast();
   531   const TypeOopPtr* res_type = NULL;
   532   if (res == NULL) {
   533     // All users were eliminated.
   534   } else if (!res->is_CheckCastPP()) {
   535     alloc->_is_scalar_replaceable = false;  // don't try again
   536     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
   537     can_eliminate = false;
   538   } else {
   539     res_type = _igvn.type(res)->isa_oopptr();
   540     if (res_type == NULL) {
   541       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
   542       can_eliminate = false;
   543     } else if (res_type->isa_aryptr()) {
   544       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   545       if (length < 0) {
   546         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
   547         can_eliminate = false;
   548       }
   549     }
   550   }
   552   if (can_eliminate && res != NULL) {
   553     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
   554                                j < jmax && can_eliminate; j++) {
   555       Node* use = res->fast_out(j);
   557       if (use->is_AddP()) {
   558         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
   559         int offset = addp_type->offset();
   561         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
   562           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
   563           can_eliminate = false;
   564           break;
   565         }
   566         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
   567                                    k < kmax && can_eliminate; k++) {
   568           Node* n = use->fast_out(k);
   569           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
   570             DEBUG_ONLY(disq_node = n;)
   571             if (n->is_Load() || n->is_LoadStore()) {
   572               NOT_PRODUCT(fail_eliminate = "Field load";)
   573             } else {
   574               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
   575             }
   576             can_eliminate = false;
   577           }
   578         }
   579       } else if (use->is_SafePoint()) {
   580         SafePointNode* sfpt = use->as_SafePoint();
   581         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
   582           // Object is passed as argument.
   583           DEBUG_ONLY(disq_node = use;)
   584           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
   585           can_eliminate = false;
   586         }
   587         Node* sfptMem = sfpt->memory();
   588         if (sfptMem == NULL || sfptMem->is_top()) {
   589           DEBUG_ONLY(disq_node = use;)
   590           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
   591           can_eliminate = false;
   592         } else {
   593           safepoints.append_if_missing(sfpt);
   594         }
   595       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
   596         if (use->is_Phi()) {
   597           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
   598             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   599           } else {
   600             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
   601           }
   602           DEBUG_ONLY(disq_node = use;)
   603         } else {
   604           if (use->Opcode() == Op_Return) {
   605             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   606           }else {
   607             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
   608           }
   609           DEBUG_ONLY(disq_node = use;)
   610         }
   611         can_eliminate = false;
   612       }
   613     }
   614   }
   616 #ifndef PRODUCT
   617   if (PrintEliminateAllocations) {
   618     if (can_eliminate) {
   619       tty->print("Scalar ");
   620       if (res == NULL)
   621         alloc->dump();
   622       else
   623         res->dump();
   624     } else {
   625       tty->print("NotScalar (%s)", fail_eliminate);
   626       if (res == NULL)
   627         alloc->dump();
   628       else
   629         res->dump();
   630 #ifdef ASSERT
   631       if (disq_node != NULL) {
   632           tty->print("  >>>> ");
   633           disq_node->dump();
   634       }
   635 #endif /*ASSERT*/
   636     }
   637   }
   638 #endif
   639   return can_eliminate;
   640 }
   642 // Do scalar replacement.
   643 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   644   GrowableArray <SafePointNode *> safepoints_done;
   646   ciKlass* klass = NULL;
   647   ciInstanceKlass* iklass = NULL;
   648   int nfields = 0;
   649   int array_base;
   650   int element_size;
   651   BasicType basic_elem_type;
   652   ciType* elem_type;
   654   Node* res = alloc->result_cast();
   655   const TypeOopPtr* res_type = NULL;
   656   if (res != NULL) { // Could be NULL when there are no users
   657     res_type = _igvn.type(res)->isa_oopptr();
   658   }
   660   if (res != NULL) {
   661     klass = res_type->klass();
   662     if (res_type->isa_instptr()) {
   663       // find the fields of the class which will be needed for safepoint debug information
   664       assert(klass->is_instance_klass(), "must be an instance klass.");
   665       iklass = klass->as_instance_klass();
   666       nfields = iklass->nof_nonstatic_fields();
   667     } else {
   668       // find the array's elements which will be needed for safepoint debug information
   669       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   670       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
   671       elem_type = klass->as_array_klass()->element_type();
   672       basic_elem_type = elem_type->basic_type();
   673       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
   674       element_size = type2aelembytes(basic_elem_type);
   675     }
   676   }
   677   //
   678   // Process the safepoint uses
   679   //
   680   while (safepoints.length() > 0) {
   681     SafePointNode* sfpt = safepoints.pop();
   682     Node* mem = sfpt->memory();
   683     uint first_ind = sfpt->req();
   684     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
   685 #ifdef ASSERT
   686                                                  alloc,
   687 #endif
   688                                                  first_ind, nfields);
   689     sobj->init_req(0, sfpt->in(TypeFunc::Control));
   690     transform_later(sobj);
   692     // Scan object's fields adding an input to the safepoint for each field.
   693     for (int j = 0; j < nfields; j++) {
   694       intptr_t offset;
   695       ciField* field = NULL;
   696       if (iklass != NULL) {
   697         field = iklass->nonstatic_field_at(j);
   698         offset = field->offset();
   699         elem_type = field->type();
   700         basic_elem_type = field->layout_type();
   701       } else {
   702         offset = array_base + j * (intptr_t)element_size;
   703       }
   705       const Type *field_type;
   706       // The next code is taken from Parse::do_get_xxx().
   707       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
   708         if (!elem_type->is_loaded()) {
   709           field_type = TypeInstPtr::BOTTOM;
   710         } else if (field != NULL && field->is_constant()) {
   711           // This can happen if the constant oop is non-perm.
   712           ciObject* con = field->constant_value().as_object();
   713           // Do not "join" in the previous type; it doesn't add value,
   714           // and may yield a vacuous result if the field is of interface type.
   715           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
   716           assert(field_type != NULL, "field singleton type must be consistent");
   717         } else {
   718           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
   719         }
   720         if (UseCompressedOops) {
   721           field_type = field_type->make_narrowoop();
   722           basic_elem_type = T_NARROWOOP;
   723         }
   724       } else {
   725         field_type = Type::get_const_basic_type(basic_elem_type);
   726       }
   728       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
   730       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
   731       if (field_val == NULL) {
   732         // we weren't able to find a value for this field,
   733         // give up on eliminating this allocation
   734         alloc->_is_scalar_replaceable = false;  // don't try again
   735         // remove any extra entries we added to the safepoint
   736         uint last = sfpt->req() - 1;
   737         for (int k = 0;  k < j; k++) {
   738           sfpt->del_req(last--);
   739         }
   740         // rollback processed safepoints
   741         while (safepoints_done.length() > 0) {
   742           SafePointNode* sfpt_done = safepoints_done.pop();
   743           // remove any extra entries we added to the safepoint
   744           last = sfpt_done->req() - 1;
   745           for (int k = 0;  k < nfields; k++) {
   746             sfpt_done->del_req(last--);
   747           }
   748           JVMState *jvms = sfpt_done->jvms();
   749           jvms->set_endoff(sfpt_done->req());
   750           // Now make a pass over the debug information replacing any references
   751           // to SafePointScalarObjectNode with the allocated object.
   752           int start = jvms->debug_start();
   753           int end   = jvms->debug_end();
   754           for (int i = start; i < end; i++) {
   755             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
   756               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
   757               if (scobj->first_index() == sfpt_done->req() &&
   758                   scobj->n_fields() == (uint)nfields) {
   759                 assert(scobj->alloc() == alloc, "sanity");
   760                 sfpt_done->set_req(i, res);
   761               }
   762             }
   763           }
   764         }
   765 #ifndef PRODUCT
   766         if (PrintEliminateAllocations) {
   767           if (field != NULL) {
   768             tty->print("=== At SafePoint node %d can't find value of Field: ",
   769                        sfpt->_idx);
   770             field->print();
   771             int field_idx = C->get_alias_index(field_addr_type);
   772             tty->print(" (alias_idx=%d)", field_idx);
   773           } else { // Array's element
   774             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
   775                        sfpt->_idx, j);
   776           }
   777           tty->print(", which prevents elimination of: ");
   778           if (res == NULL)
   779             alloc->dump();
   780           else
   781             res->dump();
   782         }
   783 #endif
   784         return false;
   785       }
   786       if (UseCompressedOops && field_type->isa_narrowoop()) {
   787         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
   788         // to be able scalar replace the allocation.
   789         if (field_val->is_EncodeP()) {
   790           field_val = field_val->in(1);
   791         } else {
   792           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
   793         }
   794       }
   795       sfpt->add_req(field_val);
   796     }
   797     JVMState *jvms = sfpt->jvms();
   798     jvms->set_endoff(sfpt->req());
   799     // Now make a pass over the debug information replacing any references
   800     // to the allocated object with "sobj"
   801     int start = jvms->debug_start();
   802     int end   = jvms->debug_end();
   803     for (int i = start; i < end; i++) {
   804       if (sfpt->in(i) == res) {
   805         sfpt->set_req(i, sobj);
   806       }
   807     }
   808     safepoints_done.append_if_missing(sfpt); // keep it for rollback
   809   }
   810   return true;
   811 }
   813 // Process users of eliminated allocation.
   814 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
   815   Node* res = alloc->result_cast();
   816   if (res != NULL) {
   817     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
   818       Node *use = res->last_out(j);
   819       uint oc1 = res->outcnt();
   821       if (use->is_AddP()) {
   822         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
   823           Node *n = use->last_out(k);
   824           uint oc2 = use->outcnt();
   825           if (n->is_Store()) {
   826             _igvn.replace_node(n, n->in(MemNode::Memory));
   827           } else {
   828             eliminate_card_mark(n);
   829           }
   830           k -= (oc2 - use->outcnt());
   831         }
   832       } else {
   833         eliminate_card_mark(use);
   834       }
   835       j -= (oc1 - res->outcnt());
   836     }
   837     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
   838     _igvn.remove_dead_node(res);
   839   }
   841   //
   842   // Process other users of allocation's projections
   843   //
   844   if (_resproj != NULL && _resproj->outcnt() != 0) {
   845     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
   846       Node *use = _resproj->last_out(j);
   847       uint oc1 = _resproj->outcnt();
   848       if (use->is_Initialize()) {
   849         // Eliminate Initialize node.
   850         InitializeNode *init = use->as_Initialize();
   851         assert(init->outcnt() <= 2, "only a control and memory projection expected");
   852         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
   853         if (ctrl_proj != NULL) {
   854            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
   855           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
   856         }
   857         Node *mem_proj = init->proj_out(TypeFunc::Memory);
   858         if (mem_proj != NULL) {
   859           Node *mem = init->in(TypeFunc::Memory);
   860 #ifdef ASSERT
   861           if (mem->is_MergeMem()) {
   862             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
   863           } else {
   864             assert(mem == _memproj_fallthrough, "allocation memory projection");
   865           }
   866 #endif
   867           _igvn.replace_node(mem_proj, mem);
   868         }
   869       } else if (use->is_AddP()) {
   870         // raw memory addresses used only by the initialization
   871         _igvn.replace_node(use, C->top());
   872       } else  {
   873         assert(false, "only Initialize or AddP expected");
   874       }
   875       j -= (oc1 - _resproj->outcnt());
   876     }
   877   }
   878   if (_fallthroughcatchproj != NULL) {
   879     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
   880   }
   881   if (_memproj_fallthrough != NULL) {
   882     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
   883   }
   884   if (_memproj_catchall != NULL) {
   885     _igvn.replace_node(_memproj_catchall, C->top());
   886   }
   887   if (_ioproj_fallthrough != NULL) {
   888     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
   889   }
   890   if (_ioproj_catchall != NULL) {
   891     _igvn.replace_node(_ioproj_catchall, C->top());
   892   }
   893   if (_catchallcatchproj != NULL) {
   894     _igvn.replace_node(_catchallcatchproj, C->top());
   895   }
   896 }
   898 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
   900   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
   901     return false;
   902   }
   904   extract_call_projections(alloc);
   906   GrowableArray <SafePointNode *> safepoints;
   907   if (!can_eliminate_allocation(alloc, safepoints)) {
   908     return false;
   909   }
   911   if (!scalar_replacement(alloc, safepoints)) {
   912     return false;
   913   }
   915   CompileLog* log = C->log();
   916   if (log != NULL) {
   917     Node* klass = alloc->in(AllocateNode::KlassNode);
   918     const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
   919     log->head("eliminate_allocation type='%d'",
   920               log->identify(tklass->klass()));
   921     JVMState* p = alloc->jvms();
   922     while (p != NULL) {
   923       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
   924       p = p->caller();
   925     }
   926     log->tail("eliminate_allocation");
   927   }
   929   process_users_of_allocation(alloc);
   931 #ifndef PRODUCT
   932   if (PrintEliminateAllocations) {
   933     if (alloc->is_AllocateArray())
   934       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
   935     else
   936       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
   937   }
   938 #endif
   940   return true;
   941 }
   944 //---------------------------set_eden_pointers-------------------------
   945 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
   946   if (UseTLAB) {                // Private allocation: load from TLS
   947     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
   948     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
   949     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
   950     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
   951     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
   952   } else {                      // Shared allocation: load from globals
   953     CollectedHeap* ch = Universe::heap();
   954     address top_adr = (address)ch->top_addr();
   955     address end_adr = (address)ch->end_addr();
   956     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
   957     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
   958   }
   959 }
   962 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
   963   Node* adr = basic_plus_adr(base, offset);
   964   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
   965   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
   966   transform_later(value);
   967   return value;
   968 }
   971 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
   972   Node* adr = basic_plus_adr(base, offset);
   973   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
   974   transform_later(mem);
   975   return mem;
   976 }
   978 //=============================================================================
   979 //
   980 //                              A L L O C A T I O N
   981 //
   982 // Allocation attempts to be fast in the case of frequent small objects.
   983 // It breaks down like this:
   984 //
   985 // 1) Size in doublewords is computed.  This is a constant for objects and
   986 // variable for most arrays.  Doubleword units are used to avoid size
   987 // overflow of huge doubleword arrays.  We need doublewords in the end for
   988 // rounding.
   989 //
   990 // 2) Size is checked for being 'too large'.  Too-large allocations will go
   991 // the slow path into the VM.  The slow path can throw any required
   992 // exceptions, and does all the special checks for very large arrays.  The
   993 // size test can constant-fold away for objects.  For objects with
   994 // finalizers it constant-folds the otherway: you always go slow with
   995 // finalizers.
   996 //
   997 // 3) If NOT using TLABs, this is the contended loop-back point.
   998 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
   999 //
  1000 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
  1001 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
  1002 // "size*8" we always enter the VM, where "largish" is a constant picked small
  1003 // enough that there's always space between the eden max and 4Gig (old space is
  1004 // there so it's quite large) and large enough that the cost of entering the VM
  1005 // is dwarfed by the cost to initialize the space.
  1006 //
  1007 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
  1008 // down.  If contended, repeat at step 3.  If using TLABs normal-store
  1009 // adjusted heap top back down; there is no contention.
  1010 //
  1011 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
  1012 // fields.
  1013 //
  1014 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
  1015 // oop flavor.
  1016 //
  1017 //=============================================================================
  1018 // FastAllocateSizeLimit value is in DOUBLEWORDS.
  1019 // Allocations bigger than this always go the slow route.
  1020 // This value must be small enough that allocation attempts that need to
  1021 // trigger exceptions go the slow route.  Also, it must be small enough so
  1022 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
  1023 //=============================================================================j//
  1024 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
  1025 // The allocator will coalesce int->oop copies away.  See comment in
  1026 // coalesce.cpp about how this works.  It depends critically on the exact
  1027 // code shape produced here, so if you are changing this code shape
  1028 // make sure the GC info for the heap-top is correct in and around the
  1029 // slow-path call.
  1030 //
  1032 void PhaseMacroExpand::expand_allocate_common(
  1033             AllocateNode* alloc, // allocation node to be expanded
  1034             Node* length,  // array length for an array allocation
  1035             const TypeFunc* slow_call_type, // Type of slow call
  1036             address slow_call_address  // Address of slow call
  1040   Node* ctrl = alloc->in(TypeFunc::Control);
  1041   Node* mem  = alloc->in(TypeFunc::Memory);
  1042   Node* i_o  = alloc->in(TypeFunc::I_O);
  1043   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
  1044   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
  1045   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
  1047   assert(ctrl != NULL, "must have control");
  1048   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
  1049   // they will not be used if "always_slow" is set
  1050   enum { slow_result_path = 1, fast_result_path = 2 };
  1051   Node *result_region;
  1052   Node *result_phi_rawmem;
  1053   Node *result_phi_rawoop;
  1054   Node *result_phi_i_o;
  1056   // The initial slow comparison is a size check, the comparison
  1057   // we want to do is a BoolTest::gt
  1058   bool always_slow = false;
  1059   int tv = _igvn.find_int_con(initial_slow_test, -1);
  1060   if (tv >= 0) {
  1061     always_slow = (tv == 1);
  1062     initial_slow_test = NULL;
  1063   } else {
  1064     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
  1067   if (C->env()->dtrace_alloc_probes() ||
  1068       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
  1069                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
  1070     // Force slow-path allocation
  1071     always_slow = true;
  1072     initial_slow_test = NULL;
  1076   enum { too_big_or_final_path = 1, need_gc_path = 2 };
  1077   Node *slow_region = NULL;
  1078   Node *toobig_false = ctrl;
  1080   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
  1081   // generate the initial test if necessary
  1082   if (initial_slow_test != NULL ) {
  1083     slow_region = new (C, 3) RegionNode(3);
  1085     // Now make the initial failure test.  Usually a too-big test but
  1086     // might be a TRUE for finalizers or a fancy class check for
  1087     // newInstance0.
  1088     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
  1089     transform_later(toobig_iff);
  1090     // Plug the failing-too-big test into the slow-path region
  1091     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
  1092     transform_later(toobig_true);
  1093     slow_region    ->init_req( too_big_or_final_path, toobig_true );
  1094     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
  1095     transform_later(toobig_false);
  1096   } else {         // No initial test, just fall into next case
  1097     toobig_false = ctrl;
  1098     debug_only(slow_region = NodeSentinel);
  1101   Node *slow_mem = mem;  // save the current memory state for slow path
  1102   // generate the fast allocation code unless we know that the initial test will always go slow
  1103   if (!always_slow) {
  1104     // Fast path modifies only raw memory.
  1105     if (mem->is_MergeMem()) {
  1106       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
  1109     Node* eden_top_adr;
  1110     Node* eden_end_adr;
  1112     set_eden_pointers(eden_top_adr, eden_end_adr);
  1114     // Load Eden::end.  Loop invariant and hoisted.
  1115     //
  1116     // Note: We set the control input on "eden_end" and "old_eden_top" when using
  1117     //       a TLAB to work around a bug where these values were being moved across
  1118     //       a safepoint.  These are not oops, so they cannot be include in the oop
  1119     //       map, but the can be changed by a GC.   The proper way to fix this would
  1120     //       be to set the raw memory state when generating a  SafepointNode.  However
  1121     //       this will require extensive changes to the loop optimization in order to
  1122     //       prevent a degradation of the optimization.
  1123     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
  1124     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
  1126     // allocate the Region and Phi nodes for the result
  1127     result_region = new (C, 3) RegionNode(3);
  1128     result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
  1129     result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
  1130     result_phi_i_o    = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
  1132     // We need a Region for the loop-back contended case.
  1133     enum { fall_in_path = 1, contended_loopback_path = 2 };
  1134     Node *contended_region;
  1135     Node *contended_phi_rawmem;
  1136     if( UseTLAB ) {
  1137       contended_region = toobig_false;
  1138       contended_phi_rawmem = mem;
  1139     } else {
  1140       contended_region = new (C, 3) RegionNode(3);
  1141       contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1142       // Now handle the passing-too-big test.  We fall into the contended
  1143       // loop-back merge point.
  1144       contended_region    ->init_req( fall_in_path, toobig_false );
  1145       contended_phi_rawmem->init_req( fall_in_path, mem );
  1146       transform_later(contended_region);
  1147       transform_later(contended_phi_rawmem);
  1150     // Load(-locked) the heap top.
  1151     // See note above concerning the control input when using a TLAB
  1152     Node *old_eden_top = UseTLAB
  1153       ? new (C, 3) LoadPNode     ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
  1154       : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
  1156     transform_later(old_eden_top);
  1157     // Add to heap top to get a new heap top
  1158     Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
  1159     transform_later(new_eden_top);
  1160     // Check for needing a GC; compare against heap end
  1161     Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
  1162     transform_later(needgc_cmp);
  1163     Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
  1164     transform_later(needgc_bol);
  1165     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
  1166     transform_later(needgc_iff);
  1168     // Plug the failing-heap-space-need-gc test into the slow-path region
  1169     Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
  1170     transform_later(needgc_true);
  1171     if( initial_slow_test ) {
  1172       slow_region    ->init_req( need_gc_path, needgc_true );
  1173       // This completes all paths into the slow merge point
  1174       transform_later(slow_region);
  1175     } else {                      // No initial slow path needed!
  1176       // Just fall from the need-GC path straight into the VM call.
  1177       slow_region    = needgc_true;
  1179     // No need for a GC.  Setup for the Store-Conditional
  1180     Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
  1181     transform_later(needgc_false);
  1183     // Grab regular I/O before optional prefetch may change it.
  1184     // Slow-path does no I/O so just set it to the original I/O.
  1185     result_phi_i_o->init_req( slow_result_path, i_o );
  1187     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
  1188                               old_eden_top, new_eden_top, length);
  1190     // Store (-conditional) the modified eden top back down.
  1191     // StorePConditional produces flags for a test PLUS a modified raw
  1192     // memory state.
  1193     Node *store_eden_top;
  1194     Node *fast_oop_ctrl;
  1195     if( UseTLAB ) {
  1196       store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
  1197       transform_later(store_eden_top);
  1198       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
  1199     } else {
  1200       store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
  1201       transform_later(store_eden_top);
  1202       Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
  1203       transform_later(contention_check);
  1204       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
  1205       transform_later(store_eden_top);
  1207       // If not using TLABs, check to see if there was contention.
  1208       IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
  1209       transform_later(contention_iff);
  1210       Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
  1211       transform_later(contention_true);
  1212       // If contention, loopback and try again.
  1213       contended_region->init_req( contended_loopback_path, contention_true );
  1214       contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
  1216       // Fast-path succeeded with no contention!
  1217       Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
  1218       transform_later(contention_false);
  1219       fast_oop_ctrl = contention_false;
  1222     // Rename successful fast-path variables to make meaning more obvious
  1223     Node* fast_oop        = old_eden_top;
  1224     Node* fast_oop_rawmem = store_eden_top;
  1225     fast_oop_rawmem = initialize_object(alloc,
  1226                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
  1227                                         klass_node, length, size_in_bytes);
  1229     if (C->env()->dtrace_extended_probes()) {
  1230       // Slow-path call
  1231       int size = TypeFunc::Parms + 2;
  1232       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
  1233                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
  1234                                                       "dtrace_object_alloc",
  1235                                                       TypeRawPtr::BOTTOM);
  1237       // Get base of thread-local storage area
  1238       Node* thread = new (C, 1) ThreadLocalNode();
  1239       transform_later(thread);
  1241       call->init_req(TypeFunc::Parms+0, thread);
  1242       call->init_req(TypeFunc::Parms+1, fast_oop);
  1243       call->init_req( TypeFunc::Control, fast_oop_ctrl );
  1244       call->init_req( TypeFunc::I_O    , top() )        ;   // does no i/o
  1245       call->init_req( TypeFunc::Memory , fast_oop_rawmem );
  1246       call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  1247       call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
  1248       transform_later(call);
  1249       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
  1250       transform_later(fast_oop_ctrl);
  1251       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
  1252       transform_later(fast_oop_rawmem);
  1255     // Plug in the successful fast-path into the result merge point
  1256     result_region    ->init_req( fast_result_path, fast_oop_ctrl );
  1257     result_phi_rawoop->init_req( fast_result_path, fast_oop );
  1258     result_phi_i_o   ->init_req( fast_result_path, i_o );
  1259     result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
  1260   } else {
  1261     slow_region = ctrl;
  1264   // Generate slow-path call
  1265   CallNode *call = new (C, slow_call_type->domain()->cnt())
  1266     CallStaticJavaNode(slow_call_type, slow_call_address,
  1267                        OptoRuntime::stub_name(slow_call_address),
  1268                        alloc->jvms()->bci(),
  1269                        TypePtr::BOTTOM);
  1270   call->init_req( TypeFunc::Control, slow_region );
  1271   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  1272   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
  1273   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  1274   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
  1276   call->init_req(TypeFunc::Parms+0, klass_node);
  1277   if (length != NULL) {
  1278     call->init_req(TypeFunc::Parms+1, length);
  1281   // Copy debug information and adjust JVMState information, then replace
  1282   // allocate node with the call
  1283   copy_call_debug_info((CallNode *) alloc,  call);
  1284   if (!always_slow) {
  1285     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
  1287   _igvn.hash_delete(alloc);
  1288   _igvn.subsume_node(alloc, call);
  1289   transform_later(call);
  1291   // Identify the output projections from the allocate node and
  1292   // adjust any references to them.
  1293   // The control and io projections look like:
  1294   //
  1295   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
  1296   //  Allocate                   Catch
  1297   //        ^---Proj(io) <-------+   ^---CatchProj(io)
  1298   //
  1299   //  We are interested in the CatchProj nodes.
  1300   //
  1301   extract_call_projections(call);
  1303   // An allocate node has separate memory projections for the uses on the control and i_o paths
  1304   // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
  1305   if (!always_slow && _memproj_fallthrough != NULL) {
  1306     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1307       Node *use = _memproj_fallthrough->fast_out(i);
  1308       _igvn.hash_delete(use);
  1309       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
  1310       _igvn._worklist.push(use);
  1311       // back up iterator
  1312       --i;
  1315   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
  1316   // we end up with a call that has only 1 memory projection
  1317   if (_memproj_catchall != NULL ) {
  1318     if (_memproj_fallthrough == NULL) {
  1319       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
  1320       transform_later(_memproj_fallthrough);
  1322     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
  1323       Node *use = _memproj_catchall->fast_out(i);
  1324       _igvn.hash_delete(use);
  1325       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
  1326       _igvn._worklist.push(use);
  1327       // back up iterator
  1328       --i;
  1332   // An allocate node has separate i_o projections for the uses on the control and i_o paths
  1333   // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
  1334   if (_ioproj_fallthrough == NULL) {
  1335     _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
  1336     transform_later(_ioproj_fallthrough);
  1337   } else if (!always_slow) {
  1338     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1339       Node *use = _ioproj_fallthrough->fast_out(i);
  1341       _igvn.hash_delete(use);
  1342       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
  1343       _igvn._worklist.push(use);
  1344       // back up iterator
  1345       --i;
  1348   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
  1349   // we end up with a call that has only 1 control projection
  1350   if (_ioproj_catchall != NULL ) {
  1351     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
  1352       Node *use = _ioproj_catchall->fast_out(i);
  1353       _igvn.hash_delete(use);
  1354       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
  1355       _igvn._worklist.push(use);
  1356       // back up iterator
  1357       --i;
  1361   // if we generated only a slow call, we are done
  1362   if (always_slow)
  1363     return;
  1366   if (_fallthroughcatchproj != NULL) {
  1367     ctrl = _fallthroughcatchproj->clone();
  1368     transform_later(ctrl);
  1369     _igvn.replace_node(_fallthroughcatchproj, result_region);
  1370   } else {
  1371     ctrl = top();
  1373   Node *slow_result;
  1374   if (_resproj == NULL) {
  1375     // no uses of the allocation result
  1376     slow_result = top();
  1377   } else {
  1378     slow_result = _resproj->clone();
  1379     transform_later(slow_result);
  1380     _igvn.replace_node(_resproj, result_phi_rawoop);
  1383   // Plug slow-path into result merge point
  1384   result_region    ->init_req( slow_result_path, ctrl );
  1385   result_phi_rawoop->init_req( slow_result_path, slow_result);
  1386   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
  1387   transform_later(result_region);
  1388   transform_later(result_phi_rawoop);
  1389   transform_later(result_phi_rawmem);
  1390   transform_later(result_phi_i_o);
  1391   // This completes all paths into the result merge point
  1395 // Helper for PhaseMacroExpand::expand_allocate_common.
  1396 // Initializes the newly-allocated storage.
  1397 Node*
  1398 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
  1399                                     Node* control, Node* rawmem, Node* object,
  1400                                     Node* klass_node, Node* length,
  1401                                     Node* size_in_bytes) {
  1402   InitializeNode* init = alloc->initialization();
  1403   // Store the klass & mark bits
  1404   Node* mark_node = NULL;
  1405   // For now only enable fast locking for non-array types
  1406   if (UseBiasedLocking && (length == NULL)) {
  1407     mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
  1408   } else {
  1409     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
  1411   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
  1413   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
  1414   int header_size = alloc->minimum_header_size();  // conservatively small
  1416   // Array length
  1417   if (length != NULL) {         // Arrays need length field
  1418     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
  1419     // conservatively small header size:
  1420     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1421     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  1422     if (k->is_array_klass())    // we know the exact header size in most cases:
  1423       header_size = Klass::layout_helper_header_size(k->layout_helper());
  1426   // Clear the object body, if necessary.
  1427   if (init == NULL) {
  1428     // The init has somehow disappeared; be cautious and clear everything.
  1429     //
  1430     // This can happen if a node is allocated but an uncommon trap occurs
  1431     // immediately.  In this case, the Initialize gets associated with the
  1432     // trap, and may be placed in a different (outer) loop, if the Allocate
  1433     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
  1434     // there can be two Allocates to one Initialize.  The answer in all these
  1435     // edge cases is safety first.  It is always safe to clear immediately
  1436     // within an Allocate, and then (maybe or maybe not) clear some more later.
  1437     if (!ZeroTLAB)
  1438       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
  1439                                             header_size, size_in_bytes,
  1440                                             &_igvn);
  1441   } else {
  1442     if (!init->is_complete()) {
  1443       // Try to win by zeroing only what the init does not store.
  1444       // We can also try to do some peephole optimizations,
  1445       // such as combining some adjacent subword stores.
  1446       rawmem = init->complete_stores(control, rawmem, object,
  1447                                      header_size, size_in_bytes, &_igvn);
  1449     // We have no more use for this link, since the AllocateNode goes away:
  1450     init->set_req(InitializeNode::RawAddress, top());
  1451     // (If we keep the link, it just confuses the register allocator,
  1452     // who thinks he sees a real use of the address by the membar.)
  1455   return rawmem;
  1458 // Generate prefetch instructions for next allocations.
  1459 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
  1460                                         Node*& contended_phi_rawmem,
  1461                                         Node* old_eden_top, Node* new_eden_top,
  1462                                         Node* length) {
  1463    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
  1464       // Generate prefetch allocation with watermark check.
  1465       // As an allocation hits the watermark, we will prefetch starting
  1466       // at a "distance" away from watermark.
  1467       enum { fall_in_path = 1, pf_path = 2 };
  1469       Node *pf_region = new (C, 3) RegionNode(3);
  1470       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1471                                                 TypeRawPtr::BOTTOM );
  1472       // I/O is used for Prefetch
  1473       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
  1475       Node *thread = new (C, 1) ThreadLocalNode();
  1476       transform_later(thread);
  1478       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
  1479                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
  1480       transform_later(eden_pf_adr);
  1482       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
  1483                                    contended_phi_rawmem, eden_pf_adr,
  1484                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
  1485       transform_later(old_pf_wm);
  1487       // check against new_eden_top
  1488       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
  1489       transform_later(need_pf_cmp);
  1490       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
  1491       transform_later(need_pf_bol);
  1492       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
  1493                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
  1494       transform_later(need_pf_iff);
  1496       // true node, add prefetchdistance
  1497       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
  1498       transform_later(need_pf_true);
  1500       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
  1501       transform_later(need_pf_false);
  1503       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
  1504                                     _igvn.MakeConX(AllocatePrefetchDistance) );
  1505       transform_later(new_pf_wmt );
  1506       new_pf_wmt->set_req(0, need_pf_true);
  1508       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
  1509                                        contended_phi_rawmem, eden_pf_adr,
  1510                                        TypeRawPtr::BOTTOM, new_pf_wmt );
  1511       transform_later(store_new_wmt);
  1513       // adding prefetches
  1514       pf_phi_abio->init_req( fall_in_path, i_o );
  1516       Node *prefetch_adr;
  1517       Node *prefetch;
  1518       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
  1519       uint step_size = AllocatePrefetchStepSize;
  1520       uint distance = 0;
  1522       for ( uint i = 0; i < lines; i++ ) {
  1523         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
  1524                                             _igvn.MakeConX(distance) );
  1525         transform_later(prefetch_adr);
  1526         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
  1527         transform_later(prefetch);
  1528         distance += step_size;
  1529         i_o = prefetch;
  1531       pf_phi_abio->set_req( pf_path, i_o );
  1533       pf_region->init_req( fall_in_path, need_pf_false );
  1534       pf_region->init_req( pf_path, need_pf_true );
  1536       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
  1537       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
  1539       transform_later(pf_region);
  1540       transform_later(pf_phi_rawmem);
  1541       transform_later(pf_phi_abio);
  1543       needgc_false = pf_region;
  1544       contended_phi_rawmem = pf_phi_rawmem;
  1545       i_o = pf_phi_abio;
  1546    } else if( AllocatePrefetchStyle > 0 ) {
  1547       // Insert a prefetch for each allocation only on the fast-path
  1548       Node *prefetch_adr;
  1549       Node *prefetch;
  1550       // Generate several prefetch instructions only for arrays.
  1551       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
  1552       uint step_size = AllocatePrefetchStepSize;
  1553       uint distance = AllocatePrefetchDistance;
  1554       for ( uint i = 0; i < lines; i++ ) {
  1555         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
  1556                                             _igvn.MakeConX(distance) );
  1557         transform_later(prefetch_adr);
  1558         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
  1559         // Do not let it float too high, since if eden_top == eden_end,
  1560         // both might be null.
  1561         if( i == 0 ) { // Set control for first prefetch, next follows it
  1562           prefetch->init_req(0, needgc_false);
  1564         transform_later(prefetch);
  1565         distance += step_size;
  1566         i_o = prefetch;
  1569    return i_o;
  1573 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
  1574   expand_allocate_common(alloc, NULL,
  1575                          OptoRuntime::new_instance_Type(),
  1576                          OptoRuntime::new_instance_Java());
  1579 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
  1580   Node* length = alloc->in(AllocateNode::ALength);
  1581   expand_allocate_common(alloc, length,
  1582                          OptoRuntime::new_array_Type(),
  1583                          OptoRuntime::new_array_Java());
  1587 // we have determined that this lock/unlock can be eliminated, we simply
  1588 // eliminate the node without expanding it.
  1589 //
  1590 // Note:  The membar's associated with the lock/unlock are currently not
  1591 //        eliminated.  This should be investigated as a future enhancement.
  1592 //
  1593 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
  1595   if (!alock->is_eliminated()) {
  1596     return false;
  1598   if (alock->is_Lock() && !alock->is_coarsened()) {
  1599       // Create new "eliminated" BoxLock node and use it
  1600       // in monitor debug info for the same object.
  1601       BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
  1602       Node* obj = alock->obj_node();
  1603       if (!oldbox->is_eliminated()) {
  1604         BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
  1605         newbox->set_eliminated();
  1606         transform_later(newbox);
  1607         // Replace old box node with new box for all users
  1608         // of the same object.
  1609         for (uint i = 0; i < oldbox->outcnt();) {
  1611           bool next_edge = true;
  1612           Node* u = oldbox->raw_out(i);
  1613           if (u == alock) {
  1614             i++;
  1615             continue; // It will be removed below
  1617           if (u->is_Lock() &&
  1618               u->as_Lock()->obj_node() == obj &&
  1619               // oldbox could be referenced in debug info also
  1620               u->as_Lock()->box_node() == oldbox) {
  1621             assert(u->as_Lock()->is_eliminated(), "sanity");
  1622             _igvn.hash_delete(u);
  1623             u->set_req(TypeFunc::Parms + 1, newbox);
  1624             next_edge = false;
  1625 #ifdef ASSERT
  1626           } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
  1627             assert(u->as_Unlock()->is_eliminated(), "sanity");
  1628 #endif
  1630           // Replace old box in monitor debug info.
  1631           if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
  1632             SafePointNode* sfn = u->as_SafePoint();
  1633             JVMState* youngest_jvms = sfn->jvms();
  1634             int max_depth = youngest_jvms->depth();
  1635             for (int depth = 1; depth <= max_depth; depth++) {
  1636               JVMState* jvms = youngest_jvms->of_depth(depth);
  1637               int num_mon  = jvms->nof_monitors();
  1638               // Loop over monitors
  1639               for (int idx = 0; idx < num_mon; idx++) {
  1640                 Node* obj_node = sfn->monitor_obj(jvms, idx);
  1641                 Node* box_node = sfn->monitor_box(jvms, idx);
  1642                 if (box_node == oldbox && obj_node == obj) {
  1643                   int j = jvms->monitor_box_offset(idx);
  1644                   _igvn.hash_delete(u);
  1645                   u->set_req(j, newbox);
  1646                   next_edge = false;
  1648               } // for (int idx = 0;
  1649             } // for (int depth = 1;
  1650           } // if (u->is_SafePoint()
  1651           if (next_edge) i++;
  1652         } // for (uint i = 0; i < oldbox->outcnt();)
  1653       } // if (!oldbox->is_eliminated())
  1654   } // if (alock->is_Lock() && !lock->is_coarsened())
  1656   CompileLog* log = C->log();
  1657   if (log != NULL) {
  1658     log->head("eliminate_lock lock='%d'",
  1659               alock->is_Lock());
  1660     JVMState* p = alock->jvms();
  1661     while (p != NULL) {
  1662       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  1663       p = p->caller();
  1665     log->tail("eliminate_lock");
  1668   #ifndef PRODUCT
  1669   if (PrintEliminateLocks) {
  1670     if (alock->is_Lock()) {
  1671       tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
  1672     } else {
  1673       tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
  1676   #endif
  1678   Node* mem  = alock->in(TypeFunc::Memory);
  1679   Node* ctrl = alock->in(TypeFunc::Control);
  1681   extract_call_projections(alock);
  1682   // There are 2 projections from the lock.  The lock node will
  1683   // be deleted when its last use is subsumed below.
  1684   assert(alock->outcnt() == 2 &&
  1685          _fallthroughproj != NULL &&
  1686          _memproj_fallthrough != NULL,
  1687          "Unexpected projections from Lock/Unlock");
  1689   Node* fallthroughproj = _fallthroughproj;
  1690   Node* memproj_fallthrough = _memproj_fallthrough;
  1692   // The memory projection from a lock/unlock is RawMem
  1693   // The input to a Lock is merged memory, so extract its RawMem input
  1694   // (unless the MergeMem has been optimized away.)
  1695   if (alock->is_Lock()) {
  1696     // Seach for MemBarAcquire node and delete it also.
  1697     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
  1698     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
  1699     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
  1700     Node* memproj = membar->proj_out(TypeFunc::Memory);
  1701     _igvn.replace_node(ctrlproj, fallthroughproj);
  1702     _igvn.replace_node(memproj, memproj_fallthrough);
  1704     // Delete FastLock node also if this Lock node is unique user
  1705     // (a loop peeling may clone a Lock node).
  1706     Node* flock = alock->as_Lock()->fastlock_node();
  1707     if (flock->outcnt() == 1) {
  1708       assert(flock->unique_out() == alock, "sanity");
  1709       _igvn.replace_node(flock, top());
  1713   // Seach for MemBarRelease node and delete it also.
  1714   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
  1715       ctrl->in(0)->is_MemBar()) {
  1716     MemBarNode* membar = ctrl->in(0)->as_MemBar();
  1717     assert(membar->Opcode() == Op_MemBarRelease &&
  1718            mem->is_Proj() && membar == mem->in(0), "");
  1719     _igvn.replace_node(fallthroughproj, ctrl);
  1720     _igvn.replace_node(memproj_fallthrough, mem);
  1721     fallthroughproj = ctrl;
  1722     memproj_fallthrough = mem;
  1723     ctrl = membar->in(TypeFunc::Control);
  1724     mem  = membar->in(TypeFunc::Memory);
  1727   _igvn.replace_node(fallthroughproj, ctrl);
  1728   _igvn.replace_node(memproj_fallthrough, mem);
  1729   return true;
  1733 //------------------------------expand_lock_node----------------------
  1734 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
  1736   Node* ctrl = lock->in(TypeFunc::Control);
  1737   Node* mem = lock->in(TypeFunc::Memory);
  1738   Node* obj = lock->obj_node();
  1739   Node* box = lock->box_node();
  1740   Node* flock = lock->fastlock_node();
  1742   // Make the merge point
  1743   Node *region;
  1744   Node *mem_phi;
  1745   Node *slow_path;
  1747   if (UseOptoBiasInlining) {
  1748     /*
  1749      *  See the full description in MacroAssembler::biased_locking_enter().
  1751      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
  1752      *    // The object is biased.
  1753      *    proto_node = klass->prototype_header;
  1754      *    o_node = thread | proto_node;
  1755      *    x_node = o_node ^ mark_word;
  1756      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
  1757      *      // Done.
  1758      *    } else {
  1759      *      if( (x_node & biased_lock_mask) != 0 ) {
  1760      *        // The klass's prototype header is no longer biased.
  1761      *        cas(&mark_word, mark_word, proto_node)
  1762      *        goto cas_lock;
  1763      *      } else {
  1764      *        // The klass's prototype header is still biased.
  1765      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
  1766      *          old = mark_word;
  1767      *          new = o_node;
  1768      *        } else {
  1769      *          // Different thread or anonymous biased.
  1770      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
  1771      *          new = thread | old;
  1772      *        }
  1773      *        // Try to rebias.
  1774      *        if( cas(&mark_word, old, new) == 0 ) {
  1775      *          // Done.
  1776      *        } else {
  1777      *          goto slow_path; // Failed.
  1778      *        }
  1779      *      }
  1780      *    }
  1781      *  } else {
  1782      *    // The object is not biased.
  1783      *    cas_lock:
  1784      *    if( FastLock(obj) == 0 ) {
  1785      *      // Done.
  1786      *    } else {
  1787      *      slow_path:
  1788      *      OptoRuntime::complete_monitor_locking_Java(obj);
  1789      *    }
  1790      *  }
  1791      */
  1793     region  = new (C, 5) RegionNode(5);
  1794     // create a Phi for the memory state
  1795     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1797     Node* fast_lock_region  = new (C, 3) RegionNode(3);
  1798     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1800     // First, check mark word for the biased lock pattern.
  1801     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  1803     // Get fast path - mark word has the biased lock pattern.
  1804     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
  1805                          markOopDesc::biased_lock_mask_in_place,
  1806                          markOopDesc::biased_lock_pattern, true);
  1807     // fast_lock_region->in(1) is set to slow path.
  1808     fast_lock_mem_phi->init_req(1, mem);
  1810     // Now check that the lock is biased to the current thread and has
  1811     // the same epoch and bias as Klass::_prototype_header.
  1813     // Special-case a fresh allocation to avoid building nodes:
  1814     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
  1815     if (klass_node == NULL) {
  1816       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  1817       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
  1818 #ifdef _LP64
  1819       if (UseCompressedOops && klass_node->is_DecodeN()) {
  1820         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
  1821         klass_node->in(1)->init_req(0, ctrl);
  1822       } else
  1823 #endif
  1824       klass_node->init_req(0, ctrl);
  1826     Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
  1828     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
  1829     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  1830     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
  1831     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
  1833     // Get slow path - mark word does NOT match the value.
  1834     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
  1835                                       (~markOopDesc::age_mask_in_place), 0);
  1836     // region->in(3) is set to fast path - the object is biased to the current thread.
  1837     mem_phi->init_req(3, mem);
  1840     // Mark word does NOT match the value (thread | Klass::_prototype_header).
  1843     // First, check biased pattern.
  1844     // Get fast path - _prototype_header has the same biased lock pattern.
  1845     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
  1846                           markOopDesc::biased_lock_mask_in_place, 0, true);
  1848     not_biased_ctrl = fast_lock_region->in(2); // Slow path
  1849     // fast_lock_region->in(2) - the prototype header is no longer biased
  1850     // and we have to revoke the bias on this object.
  1851     // We are going to try to reset the mark of this object to the prototype
  1852     // value and fall through to the CAS-based locking scheme.
  1853     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  1854     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
  1855                                                  proto_node, mark_node);
  1856     transform_later(cas);
  1857     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
  1858     fast_lock_mem_phi->init_req(2, proj);
  1861     // Second, check epoch bits.
  1862     Node* rebiased_region  = new (C, 3) RegionNode(3);
  1863     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  1864     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  1866     // Get slow path - mark word does NOT match epoch bits.
  1867     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
  1868                                       markOopDesc::epoch_mask_in_place, 0);
  1869     // The epoch of the current bias is not valid, attempt to rebias the object
  1870     // toward the current thread.
  1871     rebiased_region->init_req(2, epoch_ctrl);
  1872     old_phi->init_req(2, mark_node);
  1873     new_phi->init_req(2, o_node);
  1875     // rebiased_region->in(1) is set to fast path.
  1876     // The epoch of the current bias is still valid but we know
  1877     // nothing about the owner; it might be set or it might be clear.
  1878     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
  1879                              markOopDesc::age_mask_in_place |
  1880                              markOopDesc::epoch_mask_in_place);
  1881     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
  1882     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  1883     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
  1884     old_phi->init_req(1, old);
  1885     new_phi->init_req(1, new_mark);
  1887     transform_later(rebiased_region);
  1888     transform_later(old_phi);
  1889     transform_later(new_phi);
  1891     // Try to acquire the bias of the object using an atomic operation.
  1892     // If this fails we will go in to the runtime to revoke the object's bias.
  1893     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
  1894                                            new_phi, old_phi);
  1895     transform_later(cas);
  1896     proj = transform_later( new (C, 1) SCMemProjNode(cas));
  1898     // Get slow path - Failed to CAS.
  1899     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
  1900     mem_phi->init_req(4, proj);
  1901     // region->in(4) is set to fast path - the object is rebiased to the current thread.
  1903     // Failed to CAS.
  1904     slow_path  = new (C, 3) RegionNode(3);
  1905     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
  1907     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
  1908     slow_mem->init_req(1, proj);
  1910     // Call CAS-based locking scheme (FastLock node).
  1912     transform_later(fast_lock_region);
  1913     transform_later(fast_lock_mem_phi);
  1915     // Get slow path - FastLock failed to lock the object.
  1916     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
  1917     mem_phi->init_req(2, fast_lock_mem_phi);
  1918     // region->in(2) is set to fast path - the object is locked to the current thread.
  1920     slow_path->init_req(2, ctrl); // Capture slow-control
  1921     slow_mem->init_req(2, fast_lock_mem_phi);
  1923     transform_later(slow_path);
  1924     transform_later(slow_mem);
  1925     // Reset lock's memory edge.
  1926     lock->set_req(TypeFunc::Memory, slow_mem);
  1928   } else {
  1929     region  = new (C, 3) RegionNode(3);
  1930     // create a Phi for the memory state
  1931     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1933     // Optimize test; set region slot 2
  1934     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
  1935     mem_phi->init_req(2, mem);
  1938   // Make slow path call
  1939   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
  1941   extract_call_projections(call);
  1943   // Slow path can only throw asynchronous exceptions, which are always
  1944   // de-opted.  So the compiler thinks the slow-call can never throw an
  1945   // exception.  If it DOES throw an exception we would need the debug
  1946   // info removed first (since if it throws there is no monitor).
  1947   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  1948            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  1950   // Capture slow path
  1951   // disconnect fall-through projection from call and create a new one
  1952   // hook up users of fall-through projection to region
  1953   Node *slow_ctrl = _fallthroughproj->clone();
  1954   transform_later(slow_ctrl);
  1955   _igvn.hash_delete(_fallthroughproj);
  1956   _fallthroughproj->disconnect_inputs(NULL);
  1957   region->init_req(1, slow_ctrl);
  1958   // region inputs are now complete
  1959   transform_later(region);
  1960   _igvn.replace_node(_fallthroughproj, region);
  1962   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  1963   mem_phi->init_req(1, memproj );
  1964   transform_later(mem_phi);
  1965   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  1968 //------------------------------expand_unlock_node----------------------
  1969 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
  1971   Node* ctrl = unlock->in(TypeFunc::Control);
  1972   Node* mem = unlock->in(TypeFunc::Memory);
  1973   Node* obj = unlock->obj_node();
  1974   Node* box = unlock->box_node();
  1976   // No need for a null check on unlock
  1978   // Make the merge point
  1979   Node *region;
  1980   Node *mem_phi;
  1982   if (UseOptoBiasInlining) {
  1983     // Check for biased locking unlock case, which is a no-op.
  1984     // See the full description in MacroAssembler::biased_locking_exit().
  1985     region  = new (C, 4) RegionNode(4);
  1986     // create a Phi for the memory state
  1987     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1988     mem_phi->init_req(3, mem);
  1990     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  1991     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
  1992                          markOopDesc::biased_lock_mask_in_place,
  1993                          markOopDesc::biased_lock_pattern);
  1994   } else {
  1995     region  = new (C, 3) RegionNode(3);
  1996     // create a Phi for the memory state
  1997     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2000   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
  2001   funlock = transform_later( funlock )->as_FastUnlock();
  2002   // Optimize test; set region slot 2
  2003   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
  2005   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
  2007   extract_call_projections(call);
  2009   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2010            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2012   // No exceptions for unlocking
  2013   // Capture slow path
  2014   // disconnect fall-through projection from call and create a new one
  2015   // hook up users of fall-through projection to region
  2016   Node *slow_ctrl = _fallthroughproj->clone();
  2017   transform_later(slow_ctrl);
  2018   _igvn.hash_delete(_fallthroughproj);
  2019   _fallthroughproj->disconnect_inputs(NULL);
  2020   region->init_req(1, slow_ctrl);
  2021   // region inputs are now complete
  2022   transform_later(region);
  2023   _igvn.replace_node(_fallthroughproj, region);
  2025   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2026   mem_phi->init_req(1, memproj );
  2027   mem_phi->init_req(2, mem);
  2028   transform_later(mem_phi);
  2029   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2032 //------------------------------expand_macro_nodes----------------------
  2033 //  Returns true if a failure occurred.
  2034 bool PhaseMacroExpand::expand_macro_nodes() {
  2035   if (C->macro_count() == 0)
  2036     return false;
  2037   // First, attempt to eliminate locks
  2038   bool progress = true;
  2039   while (progress) {
  2040     progress = false;
  2041     for (int i = C->macro_count(); i > 0; i--) {
  2042       Node * n = C->macro_node(i-1);
  2043       bool success = false;
  2044       debug_only(int old_macro_count = C->macro_count(););
  2045       if (n->is_AbstractLock()) {
  2046         success = eliminate_locking_node(n->as_AbstractLock());
  2047       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
  2048         _igvn.replace_node(n, n->in(1));
  2049         success = true;
  2051       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2052       progress = progress || success;
  2055   // Next, attempt to eliminate allocations
  2056   progress = true;
  2057   while (progress) {
  2058     progress = false;
  2059     for (int i = C->macro_count(); i > 0; i--) {
  2060       Node * n = C->macro_node(i-1);
  2061       bool success = false;
  2062       debug_only(int old_macro_count = C->macro_count(););
  2063       switch (n->class_id()) {
  2064       case Node::Class_Allocate:
  2065       case Node::Class_AllocateArray:
  2066         success = eliminate_allocate_node(n->as_Allocate());
  2067         break;
  2068       case Node::Class_Lock:
  2069       case Node::Class_Unlock:
  2070         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
  2071         break;
  2072       default:
  2073         assert(false, "unknown node type in macro list");
  2075       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2076       progress = progress || success;
  2079   // Make sure expansion will not cause node limit to be exceeded.
  2080   // Worst case is a macro node gets expanded into about 50 nodes.
  2081   // Allow 50% more for optimization.
  2082   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
  2083     return true;
  2085   // expand "macro" nodes
  2086   // nodes are removed from the macro list as they are processed
  2087   while (C->macro_count() > 0) {
  2088     int macro_count = C->macro_count();
  2089     Node * n = C->macro_node(macro_count-1);
  2090     assert(n->is_macro(), "only macro nodes expected here");
  2091     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
  2092       // node is unreachable, so don't try to expand it
  2093       C->remove_macro_node(n);
  2094       continue;
  2096     switch (n->class_id()) {
  2097     case Node::Class_Allocate:
  2098       expand_allocate(n->as_Allocate());
  2099       break;
  2100     case Node::Class_AllocateArray:
  2101       expand_allocate_array(n->as_AllocateArray());
  2102       break;
  2103     case Node::Class_Lock:
  2104       expand_lock_node(n->as_Lock());
  2105       break;
  2106     case Node::Class_Unlock:
  2107       expand_unlock_node(n->as_Unlock());
  2108       break;
  2109     default:
  2110       assert(false, "unknown node type in macro list");
  2112     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
  2113     if (C->failing())  return true;
  2116   _igvn.set_delay_transform(false);
  2117   _igvn.optimize();
  2118   return false;

mercurial