src/share/vm/opto/type.cpp

Mon, 24 Sep 2018 17:18:38 -0400

author
gromero
date
Mon, 24 Sep 2018 17:18:38 -0400
changeset 9496
bcccbecdde63
parent 9333
2fccf735a116
child 9448
73d689add964
child 9512
992120803410
permissions
-rw-r--r--

8131048: ppc implement CRC32 intrinsic
Reviewed-by: goetz

     1 /*
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "ci/ciTypeFlow.hpp"
    28 #include "classfile/symbolTable.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "compiler/compileLog.hpp"
    31 #include "libadt/dict.hpp"
    32 #include "memory/gcLocker.hpp"
    33 #include "memory/oopFactory.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/instanceKlass.hpp"
    36 #include "oops/instanceMirrorKlass.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "oops/typeArrayKlass.hpp"
    39 #include "opto/matcher.hpp"
    40 #include "opto/node.hpp"
    41 #include "opto/opcodes.hpp"
    42 #include "opto/type.hpp"
    44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    46 // Portions of code courtesy of Clifford Click
    48 // Optimization - Graph Style
    50 // Dictionary of types shared among compilations.
    51 Dict* Type::_shared_type_dict = NULL;
    53 // Array which maps compiler types to Basic Types
    54 const Type::TypeInfo Type::_type_info[Type::lastype] = {
    55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
    56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
    57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
    58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
    59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
    60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
    61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
    62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
    63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
    64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
    66 #ifdef SPARC
    67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
    69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    71 #elif defined(PPC64)
    72   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    73   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
    74   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    75   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    76 #else // all other
    77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
    78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
    79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
    80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
    81 #endif
    82   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
    83   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
    84   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
    85   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
    86   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
    87   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
    88   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
    89   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
    90   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
    91   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
    92   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
    93   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
    94   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
    95   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
    96   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
    97   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
    98   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
    99   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
   100 };
   102 // Map ideal registers (machine types) to ideal types
   103 const Type *Type::mreg2type[_last_machine_leaf];
   105 // Map basic types to canonical Type* pointers.
   106 const Type* Type::     _const_basic_type[T_CONFLICT+1];
   108 // Map basic types to constant-zero Types.
   109 const Type* Type::            _zero_type[T_CONFLICT+1];
   111 // Map basic types to array-body alias types.
   112 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
   114 //=============================================================================
   115 // Convenience common pre-built types.
   116 const Type *Type::ABIO;         // State-of-machine only
   117 const Type *Type::BOTTOM;       // All values
   118 const Type *Type::CONTROL;      // Control only
   119 const Type *Type::DOUBLE;       // All doubles
   120 const Type *Type::FLOAT;        // All floats
   121 const Type *Type::HALF;         // Placeholder half of doublewide type
   122 const Type *Type::MEMORY;       // Abstract store only
   123 const Type *Type::RETURN_ADDRESS;
   124 const Type *Type::TOP;          // No values in set
   126 //------------------------------get_const_type---------------------------
   127 const Type* Type::get_const_type(ciType* type) {
   128   if (type == NULL) {
   129     return NULL;
   130   } else if (type->is_primitive_type()) {
   131     return get_const_basic_type(type->basic_type());
   132   } else {
   133     return TypeOopPtr::make_from_klass(type->as_klass());
   134   }
   135 }
   137 //---------------------------array_element_basic_type---------------------------------
   138 // Mapping to the array element's basic type.
   139 BasicType Type::array_element_basic_type() const {
   140   BasicType bt = basic_type();
   141   if (bt == T_INT) {
   142     if (this == TypeInt::INT)   return T_INT;
   143     if (this == TypeInt::CHAR)  return T_CHAR;
   144     if (this == TypeInt::BYTE)  return T_BYTE;
   145     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   146     if (this == TypeInt::SHORT) return T_SHORT;
   147     return T_VOID;
   148   }
   149   return bt;
   150 }
   152 // For two instance arrays of same dimension, return the base element types.
   153 // Otherwise or if the arrays have different dimensions, return NULL.
   154 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
   155                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
   157   if (e1) *e1 = NULL;
   158   if (e2) *e2 = NULL;
   159   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
   160   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
   162   if (a1tap != NULL && a2tap != NULL) {
   163     // Handle multidimensional arrays
   164     const TypePtr* a1tp = a1tap->elem()->make_ptr();
   165     const TypePtr* a2tp = a2tap->elem()->make_ptr();
   166     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
   167       a1tap = a1tp->is_aryptr();
   168       a2tap = a2tp->is_aryptr();
   169       a1tp = a1tap->elem()->make_ptr();
   170       a2tp = a2tap->elem()->make_ptr();
   171     }
   172     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
   173       if (e1) *e1 = a1tp->is_instptr();
   174       if (e2) *e2 = a2tp->is_instptr();
   175     }
   176   }
   177 }
   179 //---------------------------get_typeflow_type---------------------------------
   180 // Import a type produced by ciTypeFlow.
   181 const Type* Type::get_typeflow_type(ciType* type) {
   182   switch (type->basic_type()) {
   184   case ciTypeFlow::StateVector::T_BOTTOM:
   185     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   186     return Type::BOTTOM;
   188   case ciTypeFlow::StateVector::T_TOP:
   189     assert(type == ciTypeFlow::StateVector::top_type(), "");
   190     return Type::TOP;
   192   case ciTypeFlow::StateVector::T_NULL:
   193     assert(type == ciTypeFlow::StateVector::null_type(), "");
   194     return TypePtr::NULL_PTR;
   196   case ciTypeFlow::StateVector::T_LONG2:
   197     // The ciTypeFlow pass pushes a long, then the half.
   198     // We do the same.
   199     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   200     return TypeInt::TOP;
   202   case ciTypeFlow::StateVector::T_DOUBLE2:
   203     // The ciTypeFlow pass pushes double, then the half.
   204     // Our convention is the same.
   205     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   206     return Type::TOP;
   208   case T_ADDRESS:
   209     assert(type->is_return_address(), "");
   210     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   212   default:
   213     // make sure we did not mix up the cases:
   214     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   215     assert(type != ciTypeFlow::StateVector::top_type(), "");
   216     assert(type != ciTypeFlow::StateVector::null_type(), "");
   217     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   218     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   219     assert(!type->is_return_address(), "");
   221     return Type::get_const_type(type);
   222   }
   223 }
   226 //-----------------------make_from_constant------------------------------------
   227 const Type* Type::make_from_constant(ciConstant constant,
   228                                      bool require_constant, bool is_autobox_cache) {
   229   switch (constant.basic_type()) {
   230   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
   231   case T_CHAR:     return TypeInt::make(constant.as_char());
   232   case T_BYTE:     return TypeInt::make(constant.as_byte());
   233   case T_SHORT:    return TypeInt::make(constant.as_short());
   234   case T_INT:      return TypeInt::make(constant.as_int());
   235   case T_LONG:     return TypeLong::make(constant.as_long());
   236   case T_FLOAT:    return TypeF::make(constant.as_float());
   237   case T_DOUBLE:   return TypeD::make(constant.as_double());
   238   case T_ARRAY:
   239   case T_OBJECT:
   240     {
   241       // cases:
   242       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
   243       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
   244       // An oop is not scavengable if it is in the perm gen.
   245       ciObject* oop_constant = constant.as_object();
   246       if (oop_constant->is_null_object()) {
   247         return Type::get_zero_type(T_OBJECT);
   248       } else if (require_constant || oop_constant->should_be_constant()) {
   249         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
   250       }
   251     }
   252   }
   253   // Fall through to failure
   254   return NULL;
   255 }
   258 //------------------------------make-------------------------------------------
   259 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   260 // and look for an existing copy in the type dictionary.
   261 const Type *Type::make( enum TYPES t ) {
   262   return (new Type(t))->hashcons();
   263 }
   265 //------------------------------cmp--------------------------------------------
   266 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   267   if( t1->_base != t2->_base )
   268     return 1;                   // Missed badly
   269   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   270   return !t1->eq(t2);           // Return ZERO if equal
   271 }
   273 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
   274   if (!include_speculative) {
   275     return remove_speculative();
   276   }
   277   return this;
   278 }
   280 //------------------------------hash-------------------------------------------
   281 int Type::uhash( const Type *const t ) {
   282   return t->hash();
   283 }
   285 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
   287 //--------------------------Initialize_shared----------------------------------
   288 void Type::Initialize_shared(Compile* current) {
   289   // This method does not need to be locked because the first system
   290   // compilations (stub compilations) occur serially.  If they are
   291   // changed to proceed in parallel, then this section will need
   292   // locking.
   294   Arena* save = current->type_arena();
   295   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
   297   current->set_type_arena(shared_type_arena);
   298   _shared_type_dict =
   299     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   300                                   shared_type_arena, 128 );
   301   current->set_type_dict(_shared_type_dict);
   303   // Make shared pre-built types.
   304   CONTROL = make(Control);      // Control only
   305   TOP     = make(Top);          // No values in set
   306   MEMORY  = make(Memory);       // Abstract store only
   307   ABIO    = make(Abio);         // State-of-machine only
   308   RETURN_ADDRESS=make(Return_Address);
   309   FLOAT   = make(FloatBot);     // All floats
   310   DOUBLE  = make(DoubleBot);    // All doubles
   311   BOTTOM  = make(Bottom);       // Everything
   312   HALF    = make(Half);         // Placeholder half of doublewide type
   314   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   315   TypeF::ONE  = TypeF::make(1.0); // Float 1
   317   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   318   TypeD::ONE  = TypeD::make(1.0); // Double 1
   320   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   321   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   322   TypeInt::ONE     = TypeInt::make( 1);  //  1
   323   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   324   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   325   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   326   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   327   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   328   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   329   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   330   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   331   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   332   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   333   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   334   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   335   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   336   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   337   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   338   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
   339   // CmpL is overloaded both as the bytecode computation returning
   340   // a trinary (-1,0,+1) integer result AND as an efficient long
   341   // compare returning optimizer ideal-type flags.
   342   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   343   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   344   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   345   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   346   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
   348   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   349   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   350   TypeLong::ONE     = TypeLong::make( 1);        //  1
   351   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   352   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   353   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   354   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   355   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
   357   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   358   fboth[0] = Type::CONTROL;
   359   fboth[1] = Type::CONTROL;
   360   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   362   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   363   ffalse[0] = Type::CONTROL;
   364   ffalse[1] = Type::TOP;
   365   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   367   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   368   fneither[0] = Type::TOP;
   369   fneither[1] = Type::TOP;
   370   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   372   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   373   ftrue[0] = Type::TOP;
   374   ftrue[1] = Type::CONTROL;
   375   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   377   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   378   floop[0] = Type::CONTROL;
   379   floop[1] = TypeInt::INT;
   380   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   382   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   383   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   384   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   386   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   387   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   389   const Type **fmembar = TypeTuple::fields(0);
   390   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   392   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   393   fsc[0] = TypeInt::CC;
   394   fsc[1] = Type::MEMORY;
   395   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   397   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   398   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   399   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   400   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   401                                            false, 0, oopDesc::mark_offset_in_bytes());
   402   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   403                                            false, 0, oopDesc::klass_offset_in_bytes());
   404   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
   406   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
   408   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   409   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   411   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
   413   mreg2type[Op_Node] = Type::BOTTOM;
   414   mreg2type[Op_Set ] = 0;
   415   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   416   mreg2type[Op_RegI] = TypeInt::INT;
   417   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   418   mreg2type[Op_RegF] = Type::FLOAT;
   419   mreg2type[Op_RegD] = Type::DOUBLE;
   420   mreg2type[Op_RegL] = TypeLong::LONG;
   421   mreg2type[Op_RegFlags] = TypeInt::CC;
   423   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
   425   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   427 #ifdef _LP64
   428   if (UseCompressedOops) {
   429     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
   430     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   431   } else
   432 #endif
   433   {
   434     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   435     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   436   }
   437   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   438   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   439   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   440   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   441   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   442   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   443   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   445   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   446   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   447   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   448   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   449   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   450   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   451   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   452   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   453   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   454   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   455   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   456   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   458   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   459   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   461   const Type **fi2c = TypeTuple::fields(2);
   462   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
   463   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   464   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   466   const Type **intpair = TypeTuple::fields(2);
   467   intpair[0] = TypeInt::INT;
   468   intpair[1] = TypeInt::INT;
   469   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   471   const Type **longpair = TypeTuple::fields(2);
   472   longpair[0] = TypeLong::LONG;
   473   longpair[1] = TypeLong::LONG;
   474   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   476   const Type **intccpair = TypeTuple::fields(2);
   477   intccpair[0] = TypeInt::INT;
   478   intccpair[1] = TypeInt::CC;
   479   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
   481   const Type **longccpair = TypeTuple::fields(2);
   482   longccpair[0] = TypeLong::LONG;
   483   longccpair[1] = TypeInt::CC;
   484   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
   486   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
   487   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
   488   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
   489   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
   490   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
   491   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
   492   _const_basic_type[T_INT]         = TypeInt::INT;
   493   _const_basic_type[T_LONG]        = TypeLong::LONG;
   494   _const_basic_type[T_FLOAT]       = Type::FLOAT;
   495   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
   496   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
   497   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   498   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
   499   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   500   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
   502   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
   503   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
   504   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
   505   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
   506   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
   507   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
   508   _zero_type[T_INT]         = TypeInt::ZERO;
   509   _zero_type[T_LONG]        = TypeLong::ZERO;
   510   _zero_type[T_FLOAT]       = TypeF::ZERO;
   511   _zero_type[T_DOUBLE]      = TypeD::ZERO;
   512   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
   513   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
   514   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
   515   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
   517   // get_zero_type() should not happen for T_CONFLICT
   518   _zero_type[T_CONFLICT]= NULL;
   520   // Vector predefined types, it needs initialized _const_basic_type[].
   521   if (Matcher::vector_size_supported(T_BYTE,4)) {
   522     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
   523   }
   524   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   525     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
   526   }
   527   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   528     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
   529   }
   530   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   531     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
   532   }
   533   mreg2type[Op_VecS] = TypeVect::VECTS;
   534   mreg2type[Op_VecD] = TypeVect::VECTD;
   535   mreg2type[Op_VecX] = TypeVect::VECTX;
   536   mreg2type[Op_VecY] = TypeVect::VECTY;
   538   // Restore working type arena.
   539   current->set_type_arena(save);
   540   current->set_type_dict(NULL);
   541 }
   543 //------------------------------Initialize-------------------------------------
   544 void Type::Initialize(Compile* current) {
   545   assert(current->type_arena() != NULL, "must have created type arena");
   547   if (_shared_type_dict == NULL) {
   548     Initialize_shared(current);
   549   }
   551   Arena* type_arena = current->type_arena();
   553   // Create the hash-cons'ing dictionary with top-level storage allocation
   554   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   555   current->set_type_dict(tdic);
   557   // Transfer the shared types.
   558   DictI i(_shared_type_dict);
   559   for( ; i.test(); ++i ) {
   560     Type* t = (Type*)i._value;
   561     tdic->Insert(t,t);  // New Type, insert into Type table
   562   }
   563 }
   565 //------------------------------hashcons---------------------------------------
   566 // Do the hash-cons trick.  If the Type already exists in the type table,
   567 // delete the current Type and return the existing Type.  Otherwise stick the
   568 // current Type in the Type table.
   569 const Type *Type::hashcons(void) {
   570   debug_only(base());           // Check the assertion in Type::base().
   571   // Look up the Type in the Type dictionary
   572   Dict *tdic = type_dict();
   573   Type* old = (Type*)(tdic->Insert(this, this, false));
   574   if( old ) {                   // Pre-existing Type?
   575     if( old != this )           // Yes, this guy is not the pre-existing?
   576       delete this;              // Yes, Nuke this guy
   577     assert( old->_dual, "" );
   578     return old;                 // Return pre-existing
   579   }
   581   // Every type has a dual (to make my lattice symmetric).
   582   // Since we just discovered a new Type, compute its dual right now.
   583   assert( !_dual, "" );         // No dual yet
   584   _dual = xdual();              // Compute the dual
   585   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   586     _dual = this;
   587     return this;
   588   }
   589   assert( !_dual->_dual, "" );  // No reverse dual yet
   590   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   591   // New Type, insert into Type table
   592   tdic->Insert((void*)_dual,(void*)_dual);
   593   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   594 #ifdef ASSERT
   595   Type *dual_dual = (Type*)_dual->xdual();
   596   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   597   delete dual_dual;
   598 #endif
   599   return this;                  // Return new Type
   600 }
   602 //------------------------------eq---------------------------------------------
   603 // Structural equality check for Type representations
   604 bool Type::eq( const Type * ) const {
   605   return true;                  // Nothing else can go wrong
   606 }
   608 //------------------------------hash-------------------------------------------
   609 // Type-specific hashing function.
   610 int Type::hash(void) const {
   611   return _base;
   612 }
   614 //------------------------------is_finite--------------------------------------
   615 // Has a finite value
   616 bool Type::is_finite() const {
   617   return false;
   618 }
   620 //------------------------------is_nan-----------------------------------------
   621 // Is not a number (NaN)
   622 bool Type::is_nan()    const {
   623   return false;
   624 }
   626 //----------------------interface_vs_oop---------------------------------------
   627 #ifdef ASSERT
   628 bool Type::interface_vs_oop_helper(const Type *t) const {
   629   bool result = false;
   631   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
   632   const TypePtr*    t_ptr =    t->make_ptr();
   633   if( this_ptr == NULL || t_ptr == NULL )
   634     return result;
   636   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
   637   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
   638   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   639     bool this_interface = this_inst->klass()->is_interface();
   640     bool    t_interface =    t_inst->klass()->is_interface();
   641     result = this_interface ^ t_interface;
   642   }
   644   return result;
   645 }
   647 bool Type::interface_vs_oop(const Type *t) const {
   648   if (interface_vs_oop_helper(t)) {
   649     return true;
   650   }
   651   // Now check the speculative parts as well
   652   const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
   653   const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
   654   if (this_spec != NULL && t_spec != NULL) {
   655     if (this_spec->interface_vs_oop_helper(t_spec)) {
   656       return true;
   657     }
   658     return false;
   659   }
   660   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
   661     return true;
   662   }
   663   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
   664     return true;
   665   }
   666   return false;
   667 }
   669 #endif
   671 //------------------------------meet-------------------------------------------
   672 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   673 // commutative and the lattice is symmetric.
   674 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
   675   if (isa_narrowoop() && t->isa_narrowoop()) {
   676     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
   677     return result->make_narrowoop();
   678   }
   679   if (isa_narrowklass() && t->isa_narrowklass()) {
   680     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
   681     return result->make_narrowklass();
   682   }
   684   const Type *this_t = maybe_remove_speculative(include_speculative);
   685   t = t->maybe_remove_speculative(include_speculative);
   687   const Type *mt = this_t->xmeet(t);
   688   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   689   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
   690 #ifdef ASSERT
   691   assert(mt == t->xmeet(this_t), "meet not commutative");
   692   const Type* dual_join = mt->_dual;
   693   const Type *t2t    = dual_join->xmeet(t->_dual);
   694   const Type *t2this = dual_join->xmeet(this_t->_dual);
   696   // Interface meet Oop is Not Symmetric:
   697   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   698   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   700   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
   701     tty->print_cr("=== Meet Not Symmetric ===");
   702     tty->print("t   =                   ");              t->dump(); tty->cr();
   703     tty->print("this=                   ");         this_t->dump(); tty->cr();
   704     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
   706     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
   707     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
   708     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
   710     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
   711     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
   713     fatal("meet not symmetric" );
   714   }
   715 #endif
   716   return mt;
   717 }
   719 //------------------------------xmeet------------------------------------------
   720 // Compute the MEET of two types.  It returns a new Type object.
   721 const Type *Type::xmeet( const Type *t ) const {
   722   // Perform a fast test for common case; meeting the same types together.
   723   if( this == t ) return this;  // Meeting same type-rep?
   725   // Meeting TOP with anything?
   726   if( _base == Top ) return t;
   728   // Meeting BOTTOM with anything?
   729   if( _base == Bottom ) return BOTTOM;
   731   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   732   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   733   switch (t->base()) {  // Switch on original type
   735   // Cut in half the number of cases I must handle.  Only need cases for when
   736   // the given enum "t->type" is less than or equal to the local enum "type".
   737   case FloatCon:
   738   case DoubleCon:
   739   case Int:
   740   case Long:
   741     return t->xmeet(this);
   743   case OopPtr:
   744     return t->xmeet(this);
   746   case InstPtr:
   747     return t->xmeet(this);
   749   case MetadataPtr:
   750   case KlassPtr:
   751     return t->xmeet(this);
   753   case AryPtr:
   754     return t->xmeet(this);
   756   case NarrowOop:
   757     return t->xmeet(this);
   759   case NarrowKlass:
   760     return t->xmeet(this);
   762   case Bad:                     // Type check
   763   default:                      // Bogus type not in lattice
   764     typerr(t);
   765     return Type::BOTTOM;
   767   case Bottom:                  // Ye Olde Default
   768     return t;
   770   case FloatTop:
   771     if( _base == FloatTop ) return this;
   772   case FloatBot:                // Float
   773     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   774     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   775     typerr(t);
   776     return Type::BOTTOM;
   778   case DoubleTop:
   779     if( _base == DoubleTop ) return this;
   780   case DoubleBot:               // Double
   781     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   782     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   783     typerr(t);
   784     return Type::BOTTOM;
   786   // These next few cases must match exactly or it is a compile-time error.
   787   case Control:                 // Control of code
   788   case Abio:                    // State of world outside of program
   789   case Memory:
   790     if( _base == t->_base )  return this;
   791     typerr(t);
   792     return Type::BOTTOM;
   794   case Top:                     // Top of the lattice
   795     return this;
   796   }
   798   // The type is unchanged
   799   return this;
   800 }
   802 //-----------------------------filter------------------------------------------
   803 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
   804   const Type* ft = join_helper(kills, include_speculative);
   805   if (ft->empty())
   806     return Type::TOP;           // Canonical empty value
   807   return ft;
   808 }
   810 //------------------------------xdual------------------------------------------
   811 // Compute dual right now.
   812 const Type::TYPES Type::dual_type[Type::lastype] = {
   813   Bad,          // Bad
   814   Control,      // Control
   815   Bottom,       // Top
   816   Bad,          // Int - handled in v-call
   817   Bad,          // Long - handled in v-call
   818   Half,         // Half
   819   Bad,          // NarrowOop - handled in v-call
   820   Bad,          // NarrowKlass - handled in v-call
   822   Bad,          // Tuple - handled in v-call
   823   Bad,          // Array - handled in v-call
   824   Bad,          // VectorS - handled in v-call
   825   Bad,          // VectorD - handled in v-call
   826   Bad,          // VectorX - handled in v-call
   827   Bad,          // VectorY - handled in v-call
   829   Bad,          // AnyPtr - handled in v-call
   830   Bad,          // RawPtr - handled in v-call
   831   Bad,          // OopPtr - handled in v-call
   832   Bad,          // InstPtr - handled in v-call
   833   Bad,          // AryPtr - handled in v-call
   835   Bad,          //  MetadataPtr - handled in v-call
   836   Bad,          // KlassPtr - handled in v-call
   838   Bad,          // Function - handled in v-call
   839   Abio,         // Abio
   840   Return_Address,// Return_Address
   841   Memory,       // Memory
   842   FloatBot,     // FloatTop
   843   FloatCon,     // FloatCon
   844   FloatTop,     // FloatBot
   845   DoubleBot,    // DoubleTop
   846   DoubleCon,    // DoubleCon
   847   DoubleTop,    // DoubleBot
   848   Top           // Bottom
   849 };
   851 const Type *Type::xdual() const {
   852   // Note: the base() accessor asserts the sanity of _base.
   853   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
   854   return new Type(_type_info[_base].dual_type);
   855 }
   857 //------------------------------has_memory-------------------------------------
   858 bool Type::has_memory() const {
   859   Type::TYPES tx = base();
   860   if (tx == Memory) return true;
   861   if (tx == Tuple) {
   862     const TypeTuple *t = is_tuple();
   863     for (uint i=0; i < t->cnt(); i++) {
   864       tx = t->field_at(i)->base();
   865       if (tx == Memory)  return true;
   866     }
   867   }
   868   return false;
   869 }
   871 #ifndef PRODUCT
   872 //------------------------------dump2------------------------------------------
   873 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   874   st->print("%s", _type_info[_base].msg);
   875 }
   877 //------------------------------dump-------------------------------------------
   878 void Type::dump_on(outputStream *st) const {
   879   ResourceMark rm;
   880   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   881   dump2(d,1, st);
   882   if (is_ptr_to_narrowoop()) {
   883     st->print(" [narrow]");
   884   } else if (is_ptr_to_narrowklass()) {
   885     st->print(" [narrowklass]");
   886   }
   887 }
   888 #endif
   890 //------------------------------singleton--------------------------------------
   891 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   892 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   893 bool Type::singleton(void) const {
   894   return _base == Top || _base == Half;
   895 }
   897 //------------------------------empty------------------------------------------
   898 // TRUE if Type is a type with no values, FALSE otherwise.
   899 bool Type::empty(void) const {
   900   switch (_base) {
   901   case DoubleTop:
   902   case FloatTop:
   903   case Top:
   904     return true;
   906   case Half:
   907   case Abio:
   908   case Return_Address:
   909   case Memory:
   910   case Bottom:
   911   case FloatBot:
   912   case DoubleBot:
   913     return false;  // never a singleton, therefore never empty
   914   }
   916   ShouldNotReachHere();
   917   return false;
   918 }
   920 //------------------------------dump_stats-------------------------------------
   921 // Dump collected statistics to stderr
   922 #ifndef PRODUCT
   923 void Type::dump_stats() {
   924   tty->print("Types made: %d\n", type_dict()->Size());
   925 }
   926 #endif
   928 //------------------------------typerr-----------------------------------------
   929 void Type::typerr( const Type *t ) const {
   930 #ifndef PRODUCT
   931   tty->print("\nError mixing types: ");
   932   dump();
   933   tty->print(" and ");
   934   t->dump();
   935   tty->print("\n");
   936 #endif
   937   ShouldNotReachHere();
   938 }
   941 //=============================================================================
   942 // Convenience common pre-built types.
   943 const TypeF *TypeF::ZERO;       // Floating point zero
   944 const TypeF *TypeF::ONE;        // Floating point one
   946 //------------------------------make-------------------------------------------
   947 // Create a float constant
   948 const TypeF *TypeF::make(float f) {
   949   return (TypeF*)(new TypeF(f))->hashcons();
   950 }
   952 //------------------------------meet-------------------------------------------
   953 // Compute the MEET of two types.  It returns a new Type object.
   954 const Type *TypeF::xmeet( const Type *t ) const {
   955   // Perform a fast test for common case; meeting the same types together.
   956   if( this == t ) return this;  // Meeting same type-rep?
   958   // Current "this->_base" is FloatCon
   959   switch (t->base()) {          // Switch on original type
   960   case AnyPtr:                  // Mixing with oops happens when javac
   961   case RawPtr:                  // reuses local variables
   962   case OopPtr:
   963   case InstPtr:
   964   case AryPtr:
   965   case MetadataPtr:
   966   case KlassPtr:
   967   case NarrowOop:
   968   case NarrowKlass:
   969   case Int:
   970   case Long:
   971   case DoubleTop:
   972   case DoubleCon:
   973   case DoubleBot:
   974   case Bottom:                  // Ye Olde Default
   975     return Type::BOTTOM;
   977   case FloatBot:
   978     return t;
   980   default:                      // All else is a mistake
   981     typerr(t);
   983   case FloatCon:                // Float-constant vs Float-constant?
   984     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   985                                 // must compare bitwise as positive zero, negative zero and NaN have
   986                                 // all the same representation in C++
   987       return FLOAT;             // Return generic float
   988                                 // Equal constants
   989   case Top:
   990   case FloatTop:
   991     break;                      // Return the float constant
   992   }
   993   return this;                  // Return the float constant
   994 }
   996 //------------------------------xdual------------------------------------------
   997 // Dual: symmetric
   998 const Type *TypeF::xdual() const {
   999   return this;
  1002 //------------------------------eq---------------------------------------------
  1003 // Structural equality check for Type representations
  1004 bool TypeF::eq(const Type *t) const {
  1005   // Bitwise comparison to distinguish between +/-0. These values must be treated
  1006   // as different to be consistent with C1 and the interpreter.
  1007   return (jint_cast(_f) == jint_cast(t->getf()));
  1010 //------------------------------hash-------------------------------------------
  1011 // Type-specific hashing function.
  1012 int TypeF::hash(void) const {
  1013   return *(int*)(&_f);
  1016 //------------------------------is_finite--------------------------------------
  1017 // Has a finite value
  1018 bool TypeF::is_finite() const {
  1019   return g_isfinite(getf()) != 0;
  1022 //------------------------------is_nan-----------------------------------------
  1023 // Is not a number (NaN)
  1024 bool TypeF::is_nan()    const {
  1025   return g_isnan(getf()) != 0;
  1028 //------------------------------dump2------------------------------------------
  1029 // Dump float constant Type
  1030 #ifndef PRODUCT
  1031 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
  1032   Type::dump2(d,depth, st);
  1033   st->print("%f", _f);
  1035 #endif
  1037 //------------------------------singleton--------------------------------------
  1038 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1039 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1040 // or a single symbol.
  1041 bool TypeF::singleton(void) const {
  1042   return true;                  // Always a singleton
  1045 bool TypeF::empty(void) const {
  1046   return false;                 // always exactly a singleton
  1049 //=============================================================================
  1050 // Convenience common pre-built types.
  1051 const TypeD *TypeD::ZERO;       // Floating point zero
  1052 const TypeD *TypeD::ONE;        // Floating point one
  1054 //------------------------------make-------------------------------------------
  1055 const TypeD *TypeD::make(double d) {
  1056   return (TypeD*)(new TypeD(d))->hashcons();
  1059 //------------------------------meet-------------------------------------------
  1060 // Compute the MEET of two types.  It returns a new Type object.
  1061 const Type *TypeD::xmeet( const Type *t ) const {
  1062   // Perform a fast test for common case; meeting the same types together.
  1063   if( this == t ) return this;  // Meeting same type-rep?
  1065   // Current "this->_base" is DoubleCon
  1066   switch (t->base()) {          // Switch on original type
  1067   case AnyPtr:                  // Mixing with oops happens when javac
  1068   case RawPtr:                  // reuses local variables
  1069   case OopPtr:
  1070   case InstPtr:
  1071   case AryPtr:
  1072   case MetadataPtr:
  1073   case KlassPtr:
  1074   case NarrowOop:
  1075   case NarrowKlass:
  1076   case Int:
  1077   case Long:
  1078   case FloatTop:
  1079   case FloatCon:
  1080   case FloatBot:
  1081   case Bottom:                  // Ye Olde Default
  1082     return Type::BOTTOM;
  1084   case DoubleBot:
  1085     return t;
  1087   default:                      // All else is a mistake
  1088     typerr(t);
  1090   case DoubleCon:               // Double-constant vs Double-constant?
  1091     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
  1092       return DOUBLE;            // Return generic double
  1093   case Top:
  1094   case DoubleTop:
  1095     break;
  1097   return this;                  // Return the double constant
  1100 //------------------------------xdual------------------------------------------
  1101 // Dual: symmetric
  1102 const Type *TypeD::xdual() const {
  1103   return this;
  1106 //------------------------------eq---------------------------------------------
  1107 // Structural equality check for Type representations
  1108 bool TypeD::eq(const Type *t) const {
  1109   // Bitwise comparison to distinguish between +/-0. These values must be treated
  1110   // as different to be consistent with C1 and the interpreter.
  1111   return (jlong_cast(_d) == jlong_cast(t->getd()));
  1114 //------------------------------hash-------------------------------------------
  1115 // Type-specific hashing function.
  1116 int TypeD::hash(void) const {
  1117   return *(int*)(&_d);
  1120 //------------------------------is_finite--------------------------------------
  1121 // Has a finite value
  1122 bool TypeD::is_finite() const {
  1123   return g_isfinite(getd()) != 0;
  1126 //------------------------------is_nan-----------------------------------------
  1127 // Is not a number (NaN)
  1128 bool TypeD::is_nan()    const {
  1129   return g_isnan(getd()) != 0;
  1132 //------------------------------dump2------------------------------------------
  1133 // Dump double constant Type
  1134 #ifndef PRODUCT
  1135 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1136   Type::dump2(d,depth,st);
  1137   st->print("%f", _d);
  1139 #endif
  1141 //------------------------------singleton--------------------------------------
  1142 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1143 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1144 // or a single symbol.
  1145 bool TypeD::singleton(void) const {
  1146   return true;                  // Always a singleton
  1149 bool TypeD::empty(void) const {
  1150   return false;                 // always exactly a singleton
  1153 //=============================================================================
  1154 // Convience common pre-built types.
  1155 const TypeInt *TypeInt::MINUS_1;// -1
  1156 const TypeInt *TypeInt::ZERO;   // 0
  1157 const TypeInt *TypeInt::ONE;    // 1
  1158 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1159 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1160 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1161 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1162 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1163 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1164 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1165 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1166 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1167 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1168 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1169 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1170 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1171 const TypeInt *TypeInt::INT;    // 32-bit integers
  1172 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1173 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
  1175 //------------------------------TypeInt----------------------------------------
  1176 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1179 //------------------------------make-------------------------------------------
  1180 const TypeInt *TypeInt::make( jint lo ) {
  1181   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1184 static int normalize_int_widen( jint lo, jint hi, int w ) {
  1185   // Certain normalizations keep us sane when comparing types.
  1186   // The 'SMALLINT' covers constants and also CC and its relatives.
  1187   if (lo <= hi) {
  1188     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
  1189     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
  1190   } else {
  1191     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
  1192     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
  1194   return w;
  1197 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1198   w = normalize_int_widen(lo, hi, w);
  1199   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1202 //------------------------------meet-------------------------------------------
  1203 // Compute the MEET of two types.  It returns a new Type representation object
  1204 // with reference count equal to the number of Types pointing at it.
  1205 // Caller should wrap a Types around it.
  1206 const Type *TypeInt::xmeet( const Type *t ) const {
  1207   // Perform a fast test for common case; meeting the same types together.
  1208   if( this == t ) return this;  // Meeting same type?
  1210   // Currently "this->_base" is a TypeInt
  1211   switch (t->base()) {          // Switch on original type
  1212   case AnyPtr:                  // Mixing with oops happens when javac
  1213   case RawPtr:                  // reuses local variables
  1214   case OopPtr:
  1215   case InstPtr:
  1216   case AryPtr:
  1217   case MetadataPtr:
  1218   case KlassPtr:
  1219   case NarrowOop:
  1220   case NarrowKlass:
  1221   case Long:
  1222   case FloatTop:
  1223   case FloatCon:
  1224   case FloatBot:
  1225   case DoubleTop:
  1226   case DoubleCon:
  1227   case DoubleBot:
  1228   case Bottom:                  // Ye Olde Default
  1229     return Type::BOTTOM;
  1230   default:                      // All else is a mistake
  1231     typerr(t);
  1232   case Top:                     // No change
  1233     return this;
  1234   case Int:                     // Int vs Int?
  1235     break;
  1238   // Expand covered set
  1239   const TypeInt *r = t->is_int();
  1240   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1243 //------------------------------xdual------------------------------------------
  1244 // Dual: reverse hi & lo; flip widen
  1245 const Type *TypeInt::xdual() const {
  1246   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
  1247   return new TypeInt(_hi,_lo,w);
  1250 //------------------------------widen------------------------------------------
  1251 // Only happens for optimistic top-down optimizations.
  1252 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  1253   // Coming from TOP or such; no widening
  1254   if( old->base() != Int ) return this;
  1255   const TypeInt *ot = old->is_int();
  1257   // If new guy is equal to old guy, no widening
  1258   if( _lo == ot->_lo && _hi == ot->_hi )
  1259     return old;
  1261   // If new guy contains old, then we widened
  1262   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1263     // New contains old
  1264     // If new guy is already wider than old, no widening
  1265     if( _widen > ot->_widen ) return this;
  1266     // If old guy was a constant, do not bother
  1267     if (ot->_lo == ot->_hi)  return this;
  1268     // Now widen new guy.
  1269     // Check for widening too far
  1270     if (_widen == WidenMax) {
  1271       int max = max_jint;
  1272       int min = min_jint;
  1273       if (limit->isa_int()) {
  1274         max = limit->is_int()->_hi;
  1275         min = limit->is_int()->_lo;
  1277       if (min < _lo && _hi < max) {
  1278         // If neither endpoint is extremal yet, push out the endpoint
  1279         // which is closer to its respective limit.
  1280         if (_lo >= 0 ||                 // easy common case
  1281             (juint)(_lo - min) >= (juint)(max - _hi)) {
  1282           // Try to widen to an unsigned range type of 31 bits:
  1283           return make(_lo, max, WidenMax);
  1284         } else {
  1285           return make(min, _hi, WidenMax);
  1288       return TypeInt::INT;
  1290     // Returned widened new guy
  1291     return make(_lo,_hi,_widen+1);
  1294   // If old guy contains new, then we probably widened too far & dropped to
  1295   // bottom.  Return the wider fellow.
  1296   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1297     return old;
  1299   //fatal("Integer value range is not subset");
  1300   //return this;
  1301   return TypeInt::INT;
  1304 //------------------------------narrow---------------------------------------
  1305 // Only happens for pessimistic optimizations.
  1306 const Type *TypeInt::narrow( const Type *old ) const {
  1307   if (_lo >= _hi)  return this;   // already narrow enough
  1308   if (old == NULL)  return this;
  1309   const TypeInt* ot = old->isa_int();
  1310   if (ot == NULL)  return this;
  1311   jint olo = ot->_lo;
  1312   jint ohi = ot->_hi;
  1314   // If new guy is equal to old guy, no narrowing
  1315   if (_lo == olo && _hi == ohi)  return old;
  1317   // If old guy was maximum range, allow the narrowing
  1318   if (olo == min_jint && ohi == max_jint)  return this;
  1320   if (_lo < olo || _hi > ohi)
  1321     return this;                // doesn't narrow; pretty wierd
  1323   // The new type narrows the old type, so look for a "death march".
  1324   // See comments on PhaseTransform::saturate.
  1325   juint nrange = _hi - _lo;
  1326   juint orange = ohi - olo;
  1327   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1328     // Use the new type only if the range shrinks a lot.
  1329     // We do not want the optimizer computing 2^31 point by point.
  1330     return old;
  1333   return this;
  1336 //-----------------------------filter------------------------------------------
  1337 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
  1338   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
  1339   if (ft == NULL || ft->empty())
  1340     return Type::TOP;           // Canonical empty value
  1341   if (ft->_widen < this->_widen) {
  1342     // Do not allow the value of kill->_widen to affect the outcome.
  1343     // The widen bits must be allowed to run freely through the graph.
  1344     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1346   return ft;
  1349 //------------------------------eq---------------------------------------------
  1350 // Structural equality check for Type representations
  1351 bool TypeInt::eq( const Type *t ) const {
  1352   const TypeInt *r = t->is_int(); // Handy access
  1353   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1356 //------------------------------hash-------------------------------------------
  1357 // Type-specific hashing function.
  1358 int TypeInt::hash(void) const {
  1359   return _lo+_hi+_widen+(int)Type::Int;
  1362 //------------------------------is_finite--------------------------------------
  1363 // Has a finite value
  1364 bool TypeInt::is_finite() const {
  1365   return true;
  1368 //------------------------------dump2------------------------------------------
  1369 // Dump TypeInt
  1370 #ifndef PRODUCT
  1371 static const char* intname(char* buf, jint n) {
  1372   if (n == min_jint)
  1373     return "min";
  1374   else if (n < min_jint + 10000)
  1375     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1376   else if (n == max_jint)
  1377     return "max";
  1378   else if (n > max_jint - 10000)
  1379     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1380   else
  1381     sprintf(buf, INT32_FORMAT, n);
  1382   return buf;
  1385 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1386   char buf[40], buf2[40];
  1387   if (_lo == min_jint && _hi == max_jint)
  1388     st->print("int");
  1389   else if (is_con())
  1390     st->print("int:%s", intname(buf, get_con()));
  1391   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1392     st->print("bool");
  1393   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1394     st->print("byte");
  1395   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1396     st->print("char");
  1397   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1398     st->print("short");
  1399   else if (_hi == max_jint)
  1400     st->print("int:>=%s", intname(buf, _lo));
  1401   else if (_lo == min_jint)
  1402     st->print("int:<=%s", intname(buf, _hi));
  1403   else
  1404     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1406   if (_widen != 0 && this != TypeInt::INT)
  1407     st->print(":%.*s", _widen, "wwww");
  1409 #endif
  1411 //------------------------------singleton--------------------------------------
  1412 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1413 // constants.
  1414 bool TypeInt::singleton(void) const {
  1415   return _lo >= _hi;
  1418 bool TypeInt::empty(void) const {
  1419   return _lo > _hi;
  1422 //=============================================================================
  1423 // Convenience common pre-built types.
  1424 const TypeLong *TypeLong::MINUS_1;// -1
  1425 const TypeLong *TypeLong::ZERO; // 0
  1426 const TypeLong *TypeLong::ONE;  // 1
  1427 const TypeLong *TypeLong::POS;  // >=0
  1428 const TypeLong *TypeLong::LONG; // 64-bit integers
  1429 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1430 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1431 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
  1433 //------------------------------TypeLong---------------------------------------
  1434 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1437 //------------------------------make-------------------------------------------
  1438 const TypeLong *TypeLong::make( jlong lo ) {
  1439   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1442 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
  1443   // Certain normalizations keep us sane when comparing types.
  1444   // The 'SMALLINT' covers constants.
  1445   if (lo <= hi) {
  1446     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1447     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
  1448   } else {
  1449     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
  1450     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
  1452   return w;
  1455 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1456   w = normalize_long_widen(lo, hi, w);
  1457   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1461 //------------------------------meet-------------------------------------------
  1462 // Compute the MEET of two types.  It returns a new Type representation object
  1463 // with reference count equal to the number of Types pointing at it.
  1464 // Caller should wrap a Types around it.
  1465 const Type *TypeLong::xmeet( const Type *t ) const {
  1466   // Perform a fast test for common case; meeting the same types together.
  1467   if( this == t ) return this;  // Meeting same type?
  1469   // Currently "this->_base" is a TypeLong
  1470   switch (t->base()) {          // Switch on original type
  1471   case AnyPtr:                  // Mixing with oops happens when javac
  1472   case RawPtr:                  // reuses local variables
  1473   case OopPtr:
  1474   case InstPtr:
  1475   case AryPtr:
  1476   case MetadataPtr:
  1477   case KlassPtr:
  1478   case NarrowOop:
  1479   case NarrowKlass:
  1480   case Int:
  1481   case FloatTop:
  1482   case FloatCon:
  1483   case FloatBot:
  1484   case DoubleTop:
  1485   case DoubleCon:
  1486   case DoubleBot:
  1487   case Bottom:                  // Ye Olde Default
  1488     return Type::BOTTOM;
  1489   default:                      // All else is a mistake
  1490     typerr(t);
  1491   case Top:                     // No change
  1492     return this;
  1493   case Long:                    // Long vs Long?
  1494     break;
  1497   // Expand covered set
  1498   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1499   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1502 //------------------------------xdual------------------------------------------
  1503 // Dual: reverse hi & lo; flip widen
  1504 const Type *TypeLong::xdual() const {
  1505   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
  1506   return new TypeLong(_hi,_lo,w);
  1509 //------------------------------widen------------------------------------------
  1510 // Only happens for optimistic top-down optimizations.
  1511 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  1512   // Coming from TOP or such; no widening
  1513   if( old->base() != Long ) return this;
  1514   const TypeLong *ot = old->is_long();
  1516   // If new guy is equal to old guy, no widening
  1517   if( _lo == ot->_lo && _hi == ot->_hi )
  1518     return old;
  1520   // If new guy contains old, then we widened
  1521   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1522     // New contains old
  1523     // If new guy is already wider than old, no widening
  1524     if( _widen > ot->_widen ) return this;
  1525     // If old guy was a constant, do not bother
  1526     if (ot->_lo == ot->_hi)  return this;
  1527     // Now widen new guy.
  1528     // Check for widening too far
  1529     if (_widen == WidenMax) {
  1530       jlong max = max_jlong;
  1531       jlong min = min_jlong;
  1532       if (limit->isa_long()) {
  1533         max = limit->is_long()->_hi;
  1534         min = limit->is_long()->_lo;
  1536       if (min < _lo && _hi < max) {
  1537         // If neither endpoint is extremal yet, push out the endpoint
  1538         // which is closer to its respective limit.
  1539         if (_lo >= 0 ||                 // easy common case
  1540             (julong)(_lo - min) >= (julong)(max - _hi)) {
  1541           // Try to widen to an unsigned range type of 32/63 bits:
  1542           if (max >= max_juint && _hi < max_juint)
  1543             return make(_lo, max_juint, WidenMax);
  1544           else
  1545             return make(_lo, max, WidenMax);
  1546         } else {
  1547           return make(min, _hi, WidenMax);
  1550       return TypeLong::LONG;
  1552     // Returned widened new guy
  1553     return make(_lo,_hi,_widen+1);
  1556   // If old guy contains new, then we probably widened too far & dropped to
  1557   // bottom.  Return the wider fellow.
  1558   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1559     return old;
  1561   //  fatal("Long value range is not subset");
  1562   // return this;
  1563   return TypeLong::LONG;
  1566 //------------------------------narrow----------------------------------------
  1567 // Only happens for pessimistic optimizations.
  1568 const Type *TypeLong::narrow( const Type *old ) const {
  1569   if (_lo >= _hi)  return this;   // already narrow enough
  1570   if (old == NULL)  return this;
  1571   const TypeLong* ot = old->isa_long();
  1572   if (ot == NULL)  return this;
  1573   jlong olo = ot->_lo;
  1574   jlong ohi = ot->_hi;
  1576   // If new guy is equal to old guy, no narrowing
  1577   if (_lo == olo && _hi == ohi)  return old;
  1579   // If old guy was maximum range, allow the narrowing
  1580   if (olo == min_jlong && ohi == max_jlong)  return this;
  1582   if (_lo < olo || _hi > ohi)
  1583     return this;                // doesn't narrow; pretty wierd
  1585   // The new type narrows the old type, so look for a "death march".
  1586   // See comments on PhaseTransform::saturate.
  1587   julong nrange = _hi - _lo;
  1588   julong orange = ohi - olo;
  1589   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1590     // Use the new type only if the range shrinks a lot.
  1591     // We do not want the optimizer computing 2^31 point by point.
  1592     return old;
  1595   return this;
  1598 //-----------------------------filter------------------------------------------
  1599 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
  1600   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
  1601   if (ft == NULL || ft->empty())
  1602     return Type::TOP;           // Canonical empty value
  1603   if (ft->_widen < this->_widen) {
  1604     // Do not allow the value of kill->_widen to affect the outcome.
  1605     // The widen bits must be allowed to run freely through the graph.
  1606     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1608   return ft;
  1611 //------------------------------eq---------------------------------------------
  1612 // Structural equality check for Type representations
  1613 bool TypeLong::eq( const Type *t ) const {
  1614   const TypeLong *r = t->is_long(); // Handy access
  1615   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1618 //------------------------------hash-------------------------------------------
  1619 // Type-specific hashing function.
  1620 int TypeLong::hash(void) const {
  1621   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1624 //------------------------------is_finite--------------------------------------
  1625 // Has a finite value
  1626 bool TypeLong::is_finite() const {
  1627   return true;
  1630 //------------------------------dump2------------------------------------------
  1631 // Dump TypeLong
  1632 #ifndef PRODUCT
  1633 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1634   if (n > x) {
  1635     if (n >= x + 10000)  return NULL;
  1636     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
  1637   } else if (n < x) {
  1638     if (n <= x - 10000)  return NULL;
  1639     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
  1640   } else {
  1641     return xname;
  1643   return buf;
  1646 static const char* longname(char* buf, jlong n) {
  1647   const char* str;
  1648   if (n == min_jlong)
  1649     return "min";
  1650   else if (n < min_jlong + 10000)
  1651     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
  1652   else if (n == max_jlong)
  1653     return "max";
  1654   else if (n > max_jlong - 10000)
  1655     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
  1656   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1657     return str;
  1658   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1659     return str;
  1660   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1661     return str;
  1662   else
  1663     sprintf(buf, JLONG_FORMAT, n);
  1664   return buf;
  1667 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1668   char buf[80], buf2[80];
  1669   if (_lo == min_jlong && _hi == max_jlong)
  1670     st->print("long");
  1671   else if (is_con())
  1672     st->print("long:%s", longname(buf, get_con()));
  1673   else if (_hi == max_jlong)
  1674     st->print("long:>=%s", longname(buf, _lo));
  1675   else if (_lo == min_jlong)
  1676     st->print("long:<=%s", longname(buf, _hi));
  1677   else
  1678     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1680   if (_widen != 0 && this != TypeLong::LONG)
  1681     st->print(":%.*s", _widen, "wwww");
  1683 #endif
  1685 //------------------------------singleton--------------------------------------
  1686 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1687 // constants
  1688 bool TypeLong::singleton(void) const {
  1689   return _lo >= _hi;
  1692 bool TypeLong::empty(void) const {
  1693   return _lo > _hi;
  1696 //=============================================================================
  1697 // Convenience common pre-built types.
  1698 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1699 const TypeTuple *TypeTuple::IFFALSE;
  1700 const TypeTuple *TypeTuple::IFTRUE;
  1701 const TypeTuple *TypeTuple::IFNEITHER;
  1702 const TypeTuple *TypeTuple::LOOPBODY;
  1703 const TypeTuple *TypeTuple::MEMBAR;
  1704 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1705 const TypeTuple *TypeTuple::START_I2C;
  1706 const TypeTuple *TypeTuple::INT_PAIR;
  1707 const TypeTuple *TypeTuple::LONG_PAIR;
  1708 const TypeTuple *TypeTuple::INT_CC_PAIR;
  1709 const TypeTuple *TypeTuple::LONG_CC_PAIR;
  1712 //------------------------------make-------------------------------------------
  1713 // Make a TypeTuple from the range of a method signature
  1714 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1715   ciType* return_type = sig->return_type();
  1716   uint total_fields = TypeFunc::Parms + return_type->size();
  1717   const Type **field_array = fields(total_fields);
  1718   switch (return_type->basic_type()) {
  1719   case T_LONG:
  1720     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1721     field_array[TypeFunc::Parms+1] = Type::HALF;
  1722     break;
  1723   case T_DOUBLE:
  1724     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1725     field_array[TypeFunc::Parms+1] = Type::HALF;
  1726     break;
  1727   case T_OBJECT:
  1728   case T_ARRAY:
  1729   case T_BOOLEAN:
  1730   case T_CHAR:
  1731   case T_FLOAT:
  1732   case T_BYTE:
  1733   case T_SHORT:
  1734   case T_INT:
  1735     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1736     break;
  1737   case T_VOID:
  1738     break;
  1739   default:
  1740     ShouldNotReachHere();
  1742   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1745 // Make a TypeTuple from the domain of a method signature
  1746 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1747   uint total_fields = TypeFunc::Parms + sig->size();
  1749   uint pos = TypeFunc::Parms;
  1750   const Type **field_array;
  1751   if (recv != NULL) {
  1752     total_fields++;
  1753     field_array = fields(total_fields);
  1754     // Use get_const_type here because it respects UseUniqueSubclasses:
  1755     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
  1756   } else {
  1757     field_array = fields(total_fields);
  1760   int i = 0;
  1761   while (pos < total_fields) {
  1762     ciType* type = sig->type_at(i);
  1764     switch (type->basic_type()) {
  1765     case T_LONG:
  1766       field_array[pos++] = TypeLong::LONG;
  1767       field_array[pos++] = Type::HALF;
  1768       break;
  1769     case T_DOUBLE:
  1770       field_array[pos++] = Type::DOUBLE;
  1771       field_array[pos++] = Type::HALF;
  1772       break;
  1773     case T_OBJECT:
  1774     case T_ARRAY:
  1775     case T_FLOAT:
  1776     case T_INT:
  1777       field_array[pos++] = get_const_type(type);
  1778       break;
  1779     case T_BOOLEAN:
  1780     case T_CHAR:
  1781     case T_BYTE:
  1782     case T_SHORT:
  1783       field_array[pos++] = TypeInt::INT;
  1784       break;
  1785     default:
  1786       ShouldNotReachHere();
  1788     i++;
  1790   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1793 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1794   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1797 //------------------------------fields-----------------------------------------
  1798 // Subroutine call type with space allocated for argument types
  1799 const Type **TypeTuple::fields( uint arg_cnt ) {
  1800   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1801   flds[TypeFunc::Control  ] = Type::CONTROL;
  1802   flds[TypeFunc::I_O      ] = Type::ABIO;
  1803   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1804   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1805   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1807   return flds;
  1810 //------------------------------meet-------------------------------------------
  1811 // Compute the MEET of two types.  It returns a new Type object.
  1812 const Type *TypeTuple::xmeet( const Type *t ) const {
  1813   // Perform a fast test for common case; meeting the same types together.
  1814   if( this == t ) return this;  // Meeting same type-rep?
  1816   // Current "this->_base" is Tuple
  1817   switch (t->base()) {          // switch on original type
  1819   case Bottom:                  // Ye Olde Default
  1820     return t;
  1822   default:                      // All else is a mistake
  1823     typerr(t);
  1825   case Tuple: {                 // Meeting 2 signatures?
  1826     const TypeTuple *x = t->is_tuple();
  1827     assert( _cnt == x->_cnt, "" );
  1828     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1829     for( uint i=0; i<_cnt; i++ )
  1830       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1831     return TypeTuple::make(_cnt,fields);
  1833   case Top:
  1834     break;
  1836   return this;                  // Return the double constant
  1839 //------------------------------xdual------------------------------------------
  1840 // Dual: compute field-by-field dual
  1841 const Type *TypeTuple::xdual() const {
  1842   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1843   for( uint i=0; i<_cnt; i++ )
  1844     fields[i] = _fields[i]->dual();
  1845   return new TypeTuple(_cnt,fields);
  1848 //------------------------------eq---------------------------------------------
  1849 // Structural equality check for Type representations
  1850 bool TypeTuple::eq( const Type *t ) const {
  1851   const TypeTuple *s = (const TypeTuple *)t;
  1852   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1853   for (uint i = 0; i < _cnt; i++)
  1854     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1855       return false;             // Missed
  1856   return true;
  1859 //------------------------------hash-------------------------------------------
  1860 // Type-specific hashing function.
  1861 int TypeTuple::hash(void) const {
  1862   intptr_t sum = _cnt;
  1863   for( uint i=0; i<_cnt; i++ )
  1864     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1865   return sum;
  1868 //------------------------------dump2------------------------------------------
  1869 // Dump signature Type
  1870 #ifndef PRODUCT
  1871 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1872   st->print("{");
  1873   if( !depth || d[this] ) {     // Check for recursive print
  1874     st->print("...}");
  1875     return;
  1877   d.Insert((void*)this, (void*)this);   // Stop recursion
  1878   if( _cnt ) {
  1879     uint i;
  1880     for( i=0; i<_cnt-1; i++ ) {
  1881       st->print("%d:", i);
  1882       _fields[i]->dump2(d, depth-1, st);
  1883       st->print(", ");
  1885     st->print("%d:", i);
  1886     _fields[i]->dump2(d, depth-1, st);
  1888   st->print("}");
  1890 #endif
  1892 //------------------------------singleton--------------------------------------
  1893 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1894 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1895 // or a single symbol.
  1896 bool TypeTuple::singleton(void) const {
  1897   return false;                 // Never a singleton
  1900 bool TypeTuple::empty(void) const {
  1901   for( uint i=0; i<_cnt; i++ ) {
  1902     if (_fields[i]->empty())  return true;
  1904   return false;
  1907 //=============================================================================
  1908 // Convenience common pre-built types.
  1910 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1911   // Certain normalizations keep us sane when comparing types.
  1912   // We do not want arrayOop variables to differ only by the wideness
  1913   // of their index types.  Pick minimum wideness, since that is the
  1914   // forced wideness of small ranges anyway.
  1915   if (size->_widen != Type::WidenMin)
  1916     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1917   else
  1918     return size;
  1921 //------------------------------make-------------------------------------------
  1922 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
  1923   if (UseCompressedOops && elem->isa_oopptr()) {
  1924     elem = elem->make_narrowoop();
  1926   size = normalize_array_size(size);
  1927   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
  1930 //------------------------------meet-------------------------------------------
  1931 // Compute the MEET of two types.  It returns a new Type object.
  1932 const Type *TypeAry::xmeet( const Type *t ) const {
  1933   // Perform a fast test for common case; meeting the same types together.
  1934   if( this == t ) return this;  // Meeting same type-rep?
  1936   // Current "this->_base" is Ary
  1937   switch (t->base()) {          // switch on original type
  1939   case Bottom:                  // Ye Olde Default
  1940     return t;
  1942   default:                      // All else is a mistake
  1943     typerr(t);
  1945   case Array: {                 // Meeting 2 arrays?
  1946     const TypeAry *a = t->is_ary();
  1947     return TypeAry::make(_elem->meet_speculative(a->_elem),
  1948                          _size->xmeet(a->_size)->is_int(),
  1949                          _stable & a->_stable);
  1951   case Top:
  1952     break;
  1954   return this;                  // Return the double constant
  1957 //------------------------------xdual------------------------------------------
  1958 // Dual: compute field-by-field dual
  1959 const Type *TypeAry::xdual() const {
  1960   const TypeInt* size_dual = _size->dual()->is_int();
  1961   size_dual = normalize_array_size(size_dual);
  1962   return new TypeAry(_elem->dual(), size_dual, !_stable);
  1965 //------------------------------eq---------------------------------------------
  1966 // Structural equality check for Type representations
  1967 bool TypeAry::eq( const Type *t ) const {
  1968   const TypeAry *a = (const TypeAry*)t;
  1969   return _elem == a->_elem &&
  1970     _stable == a->_stable &&
  1971     _size == a->_size;
  1974 //------------------------------hash-------------------------------------------
  1975 // Type-specific hashing function.
  1976 int TypeAry::hash(void) const {
  1977   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
  1980 /**
  1981  * Return same type without a speculative part in the element
  1982  */
  1983 const Type* TypeAry::remove_speculative() const {
  1984   return make(_elem->remove_speculative(), _size, _stable);
  1987 //----------------------interface_vs_oop---------------------------------------
  1988 #ifdef ASSERT
  1989 bool TypeAry::interface_vs_oop(const Type *t) const {
  1990   const TypeAry* t_ary = t->is_ary();
  1991   if (t_ary) {
  1992     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
  1993     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
  1994     if(this_ptr != NULL && t_ptr != NULL) {
  1995       return this_ptr->interface_vs_oop(t_ptr);
  1998   return false;
  2000 #endif
  2002 //------------------------------dump2------------------------------------------
  2003 #ifndef PRODUCT
  2004 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  2005   if (_stable)  st->print("stable:");
  2006   _elem->dump2(d, depth, st);
  2007   st->print("[");
  2008   _size->dump2(d, depth, st);
  2009   st->print("]");
  2011 #endif
  2013 //------------------------------singleton--------------------------------------
  2014 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2015 // constants (Ldi nodes).  Singletons are integer, float or double constants
  2016 // or a single symbol.
  2017 bool TypeAry::singleton(void) const {
  2018   return false;                 // Never a singleton
  2021 bool TypeAry::empty(void) const {
  2022   return _elem->empty() || _size->empty();
  2025 //--------------------------ary_must_be_exact----------------------------------
  2026 bool TypeAry::ary_must_be_exact() const {
  2027   if (!UseExactTypes)       return false;
  2028   // This logic looks at the element type of an array, and returns true
  2029   // if the element type is either a primitive or a final instance class.
  2030   // In such cases, an array built on this ary must have no subclasses.
  2031   if (_elem == BOTTOM)      return false;  // general array not exact
  2032   if (_elem == TOP   )      return false;  // inverted general array not exact
  2033   const TypeOopPtr*  toop = NULL;
  2034   if (UseCompressedOops && _elem->isa_narrowoop()) {
  2035     toop = _elem->make_ptr()->isa_oopptr();
  2036   } else {
  2037     toop = _elem->isa_oopptr();
  2039   if (!toop)                return true;   // a primitive type, like int
  2040   ciKlass* tklass = toop->klass();
  2041   if (tklass == NULL)       return false;  // unloaded class
  2042   if (!tklass->is_loaded()) return false;  // unloaded class
  2043   const TypeInstPtr* tinst;
  2044   if (_elem->isa_narrowoop())
  2045     tinst = _elem->make_ptr()->isa_instptr();
  2046   else
  2047     tinst = _elem->isa_instptr();
  2048   if (tinst)
  2049     return tklass->as_instance_klass()->is_final();
  2050   const TypeAryPtr*  tap;
  2051   if (_elem->isa_narrowoop())
  2052     tap = _elem->make_ptr()->isa_aryptr();
  2053   else
  2054     tap = _elem->isa_aryptr();
  2055   if (tap)
  2056     return tap->ary()->ary_must_be_exact();
  2057   return false;
  2060 //==============================TypeVect=======================================
  2061 // Convenience common pre-built types.
  2062 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
  2063 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
  2064 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
  2065 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
  2067 //------------------------------make-------------------------------------------
  2068 const TypeVect* TypeVect::make(const Type *elem, uint length) {
  2069   BasicType elem_bt = elem->array_element_basic_type();
  2070   assert(is_java_primitive(elem_bt), "only primitive types in vector");
  2071   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
  2072   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
  2073   int size = length * type2aelembytes(elem_bt);
  2074   switch (Matcher::vector_ideal_reg(size)) {
  2075   case Op_VecS:
  2076     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
  2077   case Op_RegL:
  2078   case Op_VecD:
  2079   case Op_RegD:
  2080     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
  2081   case Op_VecX:
  2082     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
  2083   case Op_VecY:
  2084     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
  2086  ShouldNotReachHere();
  2087   return NULL;
  2090 //------------------------------meet-------------------------------------------
  2091 // Compute the MEET of two types.  It returns a new Type object.
  2092 const Type *TypeVect::xmeet( const Type *t ) const {
  2093   // Perform a fast test for common case; meeting the same types together.
  2094   if( this == t ) return this;  // Meeting same type-rep?
  2096   // Current "this->_base" is Vector
  2097   switch (t->base()) {          // switch on original type
  2099   case Bottom:                  // Ye Olde Default
  2100     return t;
  2102   default:                      // All else is a mistake
  2103     typerr(t);
  2105   case VectorS:
  2106   case VectorD:
  2107   case VectorX:
  2108   case VectorY: {                // Meeting 2 vectors?
  2109     const TypeVect* v = t->is_vect();
  2110     assert(  base() == v->base(), "");
  2111     assert(length() == v->length(), "");
  2112     assert(element_basic_type() == v->element_basic_type(), "");
  2113     return TypeVect::make(_elem->xmeet(v->_elem), _length);
  2115   case Top:
  2116     break;
  2118   return this;
  2121 //------------------------------xdual------------------------------------------
  2122 // Dual: compute field-by-field dual
  2123 const Type *TypeVect::xdual() const {
  2124   return new TypeVect(base(), _elem->dual(), _length);
  2127 //------------------------------eq---------------------------------------------
  2128 // Structural equality check for Type representations
  2129 bool TypeVect::eq(const Type *t) const {
  2130   const TypeVect *v = t->is_vect();
  2131   return (_elem == v->_elem) && (_length == v->_length);
  2134 //------------------------------hash-------------------------------------------
  2135 // Type-specific hashing function.
  2136 int TypeVect::hash(void) const {
  2137   return (intptr_t)_elem + (intptr_t)_length;
  2140 //------------------------------singleton--------------------------------------
  2141 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2142 // constants (Ldi nodes).  Vector is singleton if all elements are the same
  2143 // constant value (when vector is created with Replicate code).
  2144 bool TypeVect::singleton(void) const {
  2145 // There is no Con node for vectors yet.
  2146 //  return _elem->singleton();
  2147   return false;
  2150 bool TypeVect::empty(void) const {
  2151   return _elem->empty();
  2154 //------------------------------dump2------------------------------------------
  2155 #ifndef PRODUCT
  2156 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
  2157   switch (base()) {
  2158   case VectorS:
  2159     st->print("vectors["); break;
  2160   case VectorD:
  2161     st->print("vectord["); break;
  2162   case VectorX:
  2163     st->print("vectorx["); break;
  2164   case VectorY:
  2165     st->print("vectory["); break;
  2166   default:
  2167     ShouldNotReachHere();
  2169   st->print("%d]:{", _length);
  2170   _elem->dump2(d, depth, st);
  2171   st->print("}");
  2173 #endif
  2176 //=============================================================================
  2177 // Convenience common pre-built types.
  2178 const TypePtr *TypePtr::NULL_PTR;
  2179 const TypePtr *TypePtr::NOTNULL;
  2180 const TypePtr *TypePtr::BOTTOM;
  2182 //------------------------------meet-------------------------------------------
  2183 // Meet over the PTR enum
  2184 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  2185   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  2186   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  2187   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  2188   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  2189   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  2190   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  2191   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  2192 };
  2194 //------------------------------make-------------------------------------------
  2195 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  2196   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  2199 //------------------------------cast_to_ptr_type-------------------------------
  2200 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  2201   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  2202   if( ptr == _ptr ) return this;
  2203   return make(_base, ptr, _offset);
  2206 //------------------------------get_con----------------------------------------
  2207 intptr_t TypePtr::get_con() const {
  2208   assert( _ptr == Null, "" );
  2209   return _offset;
  2212 //------------------------------meet-------------------------------------------
  2213 // Compute the MEET of two types.  It returns a new Type object.
  2214 const Type *TypePtr::xmeet( const Type *t ) const {
  2215   // Perform a fast test for common case; meeting the same types together.
  2216   if( this == t ) return this;  // Meeting same type-rep?
  2218   // Current "this->_base" is AnyPtr
  2219   switch (t->base()) {          // switch on original type
  2220   case Int:                     // Mixing ints & oops happens when javac
  2221   case Long:                    // reuses local variables
  2222   case FloatTop:
  2223   case FloatCon:
  2224   case FloatBot:
  2225   case DoubleTop:
  2226   case DoubleCon:
  2227   case DoubleBot:
  2228   case NarrowOop:
  2229   case NarrowKlass:
  2230   case Bottom:                  // Ye Olde Default
  2231     return Type::BOTTOM;
  2232   case Top:
  2233     return this;
  2235   case AnyPtr: {                // Meeting to AnyPtrs
  2236     const TypePtr *tp = t->is_ptr();
  2237     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  2239   case RawPtr:                  // For these, flip the call around to cut down
  2240   case OopPtr:
  2241   case InstPtr:                 // on the cases I have to handle.
  2242   case AryPtr:
  2243   case MetadataPtr:
  2244   case KlassPtr:
  2245     return t->xmeet(this);      // Call in reverse direction
  2246   default:                      // All else is a mistake
  2247     typerr(t);
  2250   return this;
  2253 //------------------------------meet_offset------------------------------------
  2254 int TypePtr::meet_offset( int offset ) const {
  2255   // Either is 'TOP' offset?  Return the other offset!
  2256   if( _offset == OffsetTop ) return offset;
  2257   if( offset == OffsetTop ) return _offset;
  2258   // If either is different, return 'BOTTOM' offset
  2259   if( _offset != offset ) return OffsetBot;
  2260   return _offset;
  2263 //------------------------------dual_offset------------------------------------
  2264 int TypePtr::dual_offset( ) const {
  2265   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  2266   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  2267   return _offset;               // Map everything else into self
  2270 //------------------------------xdual------------------------------------------
  2271 // Dual: compute field-by-field dual
  2272 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  2273   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  2274 };
  2275 const Type *TypePtr::xdual() const {
  2276   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  2279 //------------------------------xadd_offset------------------------------------
  2280 int TypePtr::xadd_offset( intptr_t offset ) const {
  2281   // Adding to 'TOP' offset?  Return 'TOP'!
  2282   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2283   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2284   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2285   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  2286   offset += (intptr_t)_offset;
  2287   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  2289   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2290   // It is possible to construct a negative offset during PhaseCCP
  2292   return (int)offset;        // Sum valid offsets
  2295 //------------------------------add_offset-------------------------------------
  2296 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  2297   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2300 //------------------------------eq---------------------------------------------
  2301 // Structural equality check for Type representations
  2302 bool TypePtr::eq( const Type *t ) const {
  2303   const TypePtr *a = (const TypePtr*)t;
  2304   return _ptr == a->ptr() && _offset == a->offset();
  2307 //------------------------------hash-------------------------------------------
  2308 // Type-specific hashing function.
  2309 int TypePtr::hash(void) const {
  2310   return _ptr + _offset;
  2313 //------------------------------dump2------------------------------------------
  2314 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2315   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2316 };
  2318 #ifndef PRODUCT
  2319 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2320   if( _ptr == Null ) st->print("NULL");
  2321   else st->print("%s *", ptr_msg[_ptr]);
  2322   if( _offset == OffsetTop ) st->print("+top");
  2323   else if( _offset == OffsetBot ) st->print("+bot");
  2324   else if( _offset ) st->print("+%d", _offset);
  2326 #endif
  2328 //------------------------------singleton--------------------------------------
  2329 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2330 // constants
  2331 bool TypePtr::singleton(void) const {
  2332   // TopPTR, Null, AnyNull, Constant are all singletons
  2333   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2336 bool TypePtr::empty(void) const {
  2337   return (_offset == OffsetTop) || above_centerline(_ptr);
  2340 //=============================================================================
  2341 // Convenience common pre-built types.
  2342 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2343 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2345 //------------------------------make-------------------------------------------
  2346 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2347   assert( ptr != Constant, "what is the constant?" );
  2348   assert( ptr != Null, "Use TypePtr for NULL" );
  2349   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2352 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2353   assert( bits, "Use TypePtr for NULL" );
  2354   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2357 //------------------------------cast_to_ptr_type-------------------------------
  2358 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2359   assert( ptr != Constant, "what is the constant?" );
  2360   assert( ptr != Null, "Use TypePtr for NULL" );
  2361   assert( _bits==0, "Why cast a constant address?");
  2362   if( ptr == _ptr ) return this;
  2363   return make(ptr);
  2366 //------------------------------get_con----------------------------------------
  2367 intptr_t TypeRawPtr::get_con() const {
  2368   assert( _ptr == Null || _ptr == Constant, "" );
  2369   return (intptr_t)_bits;
  2372 //------------------------------meet-------------------------------------------
  2373 // Compute the MEET of two types.  It returns a new Type object.
  2374 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2375   // Perform a fast test for common case; meeting the same types together.
  2376   if( this == t ) return this;  // Meeting same type-rep?
  2378   // Current "this->_base" is RawPtr
  2379   switch( t->base() ) {         // switch on original type
  2380   case Bottom:                  // Ye Olde Default
  2381     return t;
  2382   case Top:
  2383     return this;
  2384   case AnyPtr:                  // Meeting to AnyPtrs
  2385     break;
  2386   case RawPtr: {                // might be top, bot, any/not or constant
  2387     enum PTR tptr = t->is_ptr()->ptr();
  2388     enum PTR ptr = meet_ptr( tptr );
  2389     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2390       if( tptr == Constant && _ptr != Constant)  return t;
  2391       if( _ptr == Constant && tptr != Constant)  return this;
  2392       ptr = NotNull;            // Fall down in lattice
  2394     return make( ptr );
  2397   case OopPtr:
  2398   case InstPtr:
  2399   case AryPtr:
  2400   case MetadataPtr:
  2401   case KlassPtr:
  2402     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2403   default:                      // All else is a mistake
  2404     typerr(t);
  2407   // Found an AnyPtr type vs self-RawPtr type
  2408   const TypePtr *tp = t->is_ptr();
  2409   switch (tp->ptr()) {
  2410   case TypePtr::TopPTR:  return this;
  2411   case TypePtr::BotPTR:  return t;
  2412   case TypePtr::Null:
  2413     if( _ptr == TypePtr::TopPTR ) return t;
  2414     return TypeRawPtr::BOTTOM;
  2415   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2416   case TypePtr::AnyNull:
  2417     if( _ptr == TypePtr::Constant) return this;
  2418     return make( meet_ptr(TypePtr::AnyNull) );
  2419   default: ShouldNotReachHere();
  2421   return this;
  2424 //------------------------------xdual------------------------------------------
  2425 // Dual: compute field-by-field dual
  2426 const Type *TypeRawPtr::xdual() const {
  2427   return new TypeRawPtr( dual_ptr(), _bits );
  2430 //------------------------------add_offset-------------------------------------
  2431 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2432   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2433   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2434   if( offset == 0 ) return this; // No change
  2435   switch (_ptr) {
  2436   case TypePtr::TopPTR:
  2437   case TypePtr::BotPTR:
  2438   case TypePtr::NotNull:
  2439     return this;
  2440   case TypePtr::Null:
  2441   case TypePtr::Constant: {
  2442     address bits = _bits+offset;
  2443     if ( bits == 0 ) return TypePtr::NULL_PTR;
  2444     return make( bits );
  2446   default:  ShouldNotReachHere();
  2448   return NULL;                  // Lint noise
  2451 //------------------------------eq---------------------------------------------
  2452 // Structural equality check for Type representations
  2453 bool TypeRawPtr::eq( const Type *t ) const {
  2454   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2455   return _bits == a->_bits && TypePtr::eq(t);
  2458 //------------------------------hash-------------------------------------------
  2459 // Type-specific hashing function.
  2460 int TypeRawPtr::hash(void) const {
  2461   return (intptr_t)_bits + TypePtr::hash();
  2464 //------------------------------dump2------------------------------------------
  2465 #ifndef PRODUCT
  2466 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2467   if( _ptr == Constant )
  2468     st->print(INTPTR_FORMAT, _bits);
  2469   else
  2470     st->print("rawptr:%s", ptr_msg[_ptr]);
  2472 #endif
  2474 //=============================================================================
  2475 // Convenience common pre-built type.
  2476 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2478 //------------------------------TypeOopPtr-------------------------------------
  2479 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
  2480   : TypePtr(t, ptr, offset),
  2481     _const_oop(o), _klass(k),
  2482     _klass_is_exact(xk),
  2483     _is_ptr_to_narrowoop(false),
  2484     _is_ptr_to_narrowklass(false),
  2485     _is_ptr_to_boxed_value(false),
  2486     _instance_id(instance_id),
  2487     _speculative(speculative),
  2488     _inline_depth(inline_depth){
  2489   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
  2490       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
  2491     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
  2493 #ifdef _LP64
  2494   if (_offset != 0) {
  2495     if (_offset == oopDesc::klass_offset_in_bytes()) {
  2496       _is_ptr_to_narrowklass = UseCompressedClassPointers;
  2497     } else if (klass() == NULL) {
  2498       // Array with unknown body type
  2499       assert(this->isa_aryptr(), "only arrays without klass");
  2500       _is_ptr_to_narrowoop = UseCompressedOops;
  2501     } else if (this->isa_aryptr()) {
  2502       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
  2503                              _offset != arrayOopDesc::length_offset_in_bytes());
  2504     } else if (klass()->is_instance_klass()) {
  2505       ciInstanceKlass* ik = klass()->as_instance_klass();
  2506       ciField* field = NULL;
  2507       if (this->isa_klassptr()) {
  2508         // Perm objects don't use compressed references
  2509       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2510         // unsafe access
  2511         _is_ptr_to_narrowoop = UseCompressedOops;
  2512       } else { // exclude unsafe ops
  2513         assert(this->isa_instptr(), "must be an instance ptr.");
  2515         if (klass() == ciEnv::current()->Class_klass() &&
  2516             (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2517              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2518           // Special hidden fields from the Class.
  2519           assert(this->isa_instptr(), "must be an instance ptr.");
  2520           _is_ptr_to_narrowoop = false;
  2521         } else if (klass() == ciEnv::current()->Class_klass() &&
  2522                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
  2523           // Static fields
  2524           assert(o != NULL, "must be constant");
  2525           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
  2526           ciField* field = k->get_field_by_offset(_offset, true);
  2527           assert(field != NULL, "missing field");
  2528           BasicType basic_elem_type = field->layout_type();
  2529           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2530                                                        basic_elem_type == T_ARRAY);
  2531         } else {
  2532           // Instance fields which contains a compressed oop references.
  2533           field = ik->get_field_by_offset(_offset, false);
  2534           if (field != NULL) {
  2535             BasicType basic_elem_type = field->layout_type();
  2536             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2537                                                          basic_elem_type == T_ARRAY);
  2538           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2539             // Compile::find_alias_type() cast exactness on all types to verify
  2540             // that it does not affect alias type.
  2541             _is_ptr_to_narrowoop = UseCompressedOops;
  2542           } else {
  2543             // Type for the copy start in LibraryCallKit::inline_native_clone().
  2544             _is_ptr_to_narrowoop = UseCompressedOops;
  2550 #endif
  2553 //------------------------------make-------------------------------------------
  2554 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2555                                    int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
  2556   assert(ptr != Constant, "no constant generic pointers");
  2557   ciKlass*  k = Compile::current()->env()->Object_klass();
  2558   bool      xk = false;
  2559   ciObject* o = NULL;
  2560   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
  2564 //------------------------------cast_to_ptr_type-------------------------------
  2565 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2566   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2567   if( ptr == _ptr ) return this;
  2568   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
  2571 //-----------------------------cast_to_instance_id----------------------------
  2572 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2573   // There are no instances of a general oop.
  2574   // Return self unchanged.
  2575   return this;
  2578 //-----------------------------cast_to_exactness-------------------------------
  2579 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2580   // There is no such thing as an exact general oop.
  2581   // Return self unchanged.
  2582   return this;
  2586 //------------------------------as_klass_type----------------------------------
  2587 // Return the klass type corresponding to this instance or array type.
  2588 // It is the type that is loaded from an object of this type.
  2589 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2590   ciKlass* k = klass();
  2591   bool    xk = klass_is_exact();
  2592   if (k == NULL)
  2593     return TypeKlassPtr::OBJECT;
  2594   else
  2595     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2598 const Type *TypeOopPtr::xmeet(const Type *t) const {
  2599   const Type* res = xmeet_helper(t);
  2600   if (res->isa_oopptr() == NULL) {
  2601     return res;
  2604   const TypeOopPtr* res_oopptr = res->is_oopptr();
  2605   if (res_oopptr->speculative() != NULL) {
  2606     // type->speculative() == NULL means that speculation is no better
  2607     // than type, i.e. type->speculative() == type. So there are 2
  2608     // ways to represent the fact that we have no useful speculative
  2609     // data and we should use a single one to be able to test for
  2610     // equality between types. Check whether type->speculative() ==
  2611     // type and set speculative to NULL if it is the case.
  2612     if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
  2613       return res_oopptr->remove_speculative();
  2617   return res;
  2620 //------------------------------meet-------------------------------------------
  2621 // Compute the MEET of two types.  It returns a new Type object.
  2622 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
  2623   // Perform a fast test for common case; meeting the same types together.
  2624   if( this == t ) return this;  // Meeting same type-rep?
  2626   // Current "this->_base" is OopPtr
  2627   switch (t->base()) {          // switch on original type
  2629   case Int:                     // Mixing ints & oops happens when javac
  2630   case Long:                    // reuses local variables
  2631   case FloatTop:
  2632   case FloatCon:
  2633   case FloatBot:
  2634   case DoubleTop:
  2635   case DoubleCon:
  2636   case DoubleBot:
  2637   case NarrowOop:
  2638   case NarrowKlass:
  2639   case Bottom:                  // Ye Olde Default
  2640     return Type::BOTTOM;
  2641   case Top:
  2642     return this;
  2644   default:                      // All else is a mistake
  2645     typerr(t);
  2647   case RawPtr:
  2648   case MetadataPtr:
  2649   case KlassPtr:
  2650     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2652   case AnyPtr: {
  2653     // Found an AnyPtr type vs self-OopPtr type
  2654     const TypePtr *tp = t->is_ptr();
  2655     int offset = meet_offset(tp->offset());
  2656     PTR ptr = meet_ptr(tp->ptr());
  2657     switch (tp->ptr()) {
  2658     case Null:
  2659       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2660       // else fall through:
  2661     case TopPTR:
  2662     case AnyNull: {
  2663       int instance_id = meet_instance_id(InstanceTop);
  2664       const TypeOopPtr* speculative = _speculative;
  2665       return make(ptr, offset, instance_id, speculative, _inline_depth);
  2667     case BotPTR:
  2668     case NotNull:
  2669       return TypePtr::make(AnyPtr, ptr, offset);
  2670     default: typerr(t);
  2674   case OopPtr: {                 // Meeting to other OopPtrs
  2675     const TypeOopPtr *tp = t->is_oopptr();
  2676     int instance_id = meet_instance_id(tp->instance_id());
  2677     const TypeOopPtr* speculative = xmeet_speculative(tp);
  2678     int depth = meet_inline_depth(tp->inline_depth());
  2679     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
  2682   case InstPtr:                  // For these, flip the call around to cut down
  2683   case AryPtr:
  2684     return t->xmeet(this);      // Call in reverse direction
  2686   } // End of switch
  2687   return this;                  // Return the double constant
  2691 //------------------------------xdual------------------------------------------
  2692 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2693 const Type *TypeOopPtr::xdual() const {
  2694   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
  2695   assert(const_oop() == NULL,             "no constants here");
  2696   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
  2699 //--------------------------make_from_klass_common-----------------------------
  2700 // Computes the element-type given a klass.
  2701 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2702   if (klass->is_instance_klass()) {
  2703     Compile* C = Compile::current();
  2704     Dependencies* deps = C->dependencies();
  2705     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2706     // Element is an instance
  2707     bool klass_is_exact = false;
  2708     if (klass->is_loaded()) {
  2709       // Try to set klass_is_exact.
  2710       ciInstanceKlass* ik = klass->as_instance_klass();
  2711       klass_is_exact = ik->is_final();
  2712       if (!klass_is_exact && klass_change
  2713           && deps != NULL && UseUniqueSubclasses) {
  2714         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2715         if (sub != NULL) {
  2716           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2717           klass = ik = sub;
  2718           klass_is_exact = sub->is_final();
  2721       if (!klass_is_exact && try_for_exact
  2722           && deps != NULL && UseExactTypes) {
  2723         if (!ik->is_interface() && !ik->has_subklass()) {
  2724           // Add a dependence; if concrete subclass added we need to recompile
  2725           deps->assert_leaf_type(ik);
  2726           klass_is_exact = true;
  2730     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2731   } else if (klass->is_obj_array_klass()) {
  2732     // Element is an object array. Recursively call ourself.
  2733     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2734     bool xk = etype->klass_is_exact();
  2735     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2736     // We used to pass NotNull in here, asserting that the sub-arrays
  2737     // are all not-null.  This is not true in generally, as code can
  2738     // slam NULLs down in the subarrays.
  2739     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2740     return arr;
  2741   } else if (klass->is_type_array_klass()) {
  2742     // Element is an typeArray
  2743     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2744     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2745     // We used to pass NotNull in here, asserting that the array pointer
  2746     // is not-null. That was not true in general.
  2747     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2748     return arr;
  2749   } else {
  2750     ShouldNotReachHere();
  2751     return NULL;
  2755 //------------------------------make_from_constant-----------------------------
  2756 // Make a java pointer from an oop constant
  2757 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
  2758                                                  bool require_constant,
  2759                                                  bool is_autobox_cache) {
  2760   assert(!o->is_null_object(), "null object not yet handled here.");
  2761   ciKlass* klass = o->klass();
  2762   if (klass->is_instance_klass()) {
  2763     // Element is an instance
  2764     if (require_constant) {
  2765       if (!o->can_be_constant())  return NULL;
  2766     } else if (!o->should_be_constant()) {
  2767       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2769     return TypeInstPtr::make(o);
  2770   } else if (klass->is_obj_array_klass()) {
  2771     // Element is an object array. Recursively call ourself.
  2772     const TypeOopPtr *etype =
  2773       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2774     if (is_autobox_cache) {
  2775       // The pointers in the autobox arrays are always non-null.
  2776       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  2778     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2779     // We used to pass NotNull in here, asserting that the sub-arrays
  2780     // are all not-null.  This is not true in generally, as code can
  2781     // slam NULLs down in the subarrays.
  2782     if (require_constant) {
  2783       if (!o->can_be_constant())  return NULL;
  2784     } else if (!o->should_be_constant()) {
  2785       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2787     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
  2788     return arr;
  2789   } else if (klass->is_type_array_klass()) {
  2790     // Element is an typeArray
  2791     const Type* etype =
  2792       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2793     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2794     // We used to pass NotNull in here, asserting that the array pointer
  2795     // is not-null. That was not true in general.
  2796     if (require_constant) {
  2797       if (!o->can_be_constant())  return NULL;
  2798     } else if (!o->should_be_constant()) {
  2799       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2801     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2802     return arr;
  2805   fatal("unhandled object type");
  2806   return NULL;
  2809 //------------------------------get_con----------------------------------------
  2810 intptr_t TypeOopPtr::get_con() const {
  2811   assert( _ptr == Null || _ptr == Constant, "" );
  2812   assert( _offset >= 0, "" );
  2814   if (_offset != 0) {
  2815     // After being ported to the compiler interface, the compiler no longer
  2816     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2817     // to a handle at compile time.  This handle is embedded in the generated
  2818     // code and dereferenced at the time the nmethod is made.  Until that time,
  2819     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2820     // have access to the addresses!).  This does not seem to currently happen,
  2821     // but this assertion here is to help prevent its occurence.
  2822     tty->print_cr("Found oop constant with non-zero offset");
  2823     ShouldNotReachHere();
  2826   return (intptr_t)const_oop()->constant_encoding();
  2830 //-----------------------------filter------------------------------------------
  2831 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2832 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
  2834   const Type* ft = join_helper(kills, include_speculative);
  2835   const TypeInstPtr* ftip = ft->isa_instptr();
  2836   const TypeInstPtr* ktip = kills->isa_instptr();
  2838   if (ft->empty()) {
  2839     // Check for evil case of 'this' being a class and 'kills' expecting an
  2840     // interface.  This can happen because the bytecodes do not contain
  2841     // enough type info to distinguish a Java-level interface variable
  2842     // from a Java-level object variable.  If we meet 2 classes which
  2843     // both implement interface I, but their meet is at 'j/l/O' which
  2844     // doesn't implement I, we have no way to tell if the result should
  2845     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2846     // into a Phi which "knows" it's an Interface type we'll have to
  2847     // uplift the type.
  2848     if (!empty()) {
  2849       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
  2850         return kills;           // Uplift to interface
  2852       // Also check for evil cases of 'this' being a class array
  2853       // and 'kills' expecting an array of interfaces.
  2854       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
  2855       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
  2856         return kills;           // Uplift to array of interface
  2860     return Type::TOP;           // Canonical empty value
  2863   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2864   // the join should report back the class.  However, if we have a J/L/Object
  2865   // class-typed Phi and an interface flows in, it's possible that the meet &
  2866   // join report an interface back out.  This isn't possible but happens
  2867   // because the type system doesn't interact well with interfaces.
  2868   if (ftip != NULL && ktip != NULL &&
  2869       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2870       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2871     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2872     assert(!ftip->klass_is_exact(), "interface could not be exact");
  2873     return ktip->cast_to_ptr_type(ftip->ptr());
  2876   return ft;
  2879 //------------------------------eq---------------------------------------------
  2880 // Structural equality check for Type representations
  2881 bool TypeOopPtr::eq( const Type *t ) const {
  2882   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2883   if (_klass_is_exact != a->_klass_is_exact ||
  2884       _instance_id != a->_instance_id ||
  2885       !eq_speculative(a) ||
  2886       _inline_depth != a->_inline_depth)  return false;
  2887   ciObject* one = const_oop();
  2888   ciObject* two = a->const_oop();
  2889   if (one == NULL || two == NULL) {
  2890     return (one == two) && TypePtr::eq(t);
  2891   } else {
  2892     return one->equals(two) && TypePtr::eq(t);
  2896 //------------------------------hash-------------------------------------------
  2897 // Type-specific hashing function.
  2898 int TypeOopPtr::hash(void) const {
  2899   return
  2900     (const_oop() ? const_oop()->hash() : 0) +
  2901     _klass_is_exact +
  2902     _instance_id +
  2903     hash_speculative() +
  2904     _inline_depth +
  2905     TypePtr::hash();
  2908 //------------------------------dump2------------------------------------------
  2909 #ifndef PRODUCT
  2910 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2911   st->print("oopptr:%s", ptr_msg[_ptr]);
  2912   if( _klass_is_exact ) st->print(":exact");
  2913   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2914   switch( _offset ) {
  2915   case OffsetTop: st->print("+top"); break;
  2916   case OffsetBot: st->print("+any"); break;
  2917   case         0: break;
  2918   default:        st->print("+%d",_offset); break;
  2920   if (_instance_id == InstanceTop)
  2921     st->print(",iid=top");
  2922   else if (_instance_id != InstanceBot)
  2923     st->print(",iid=%d",_instance_id);
  2925   dump_inline_depth(st);
  2926   dump_speculative(st);
  2929 /**
  2930  *dump the speculative part of the type
  2931  */
  2932 void TypeOopPtr::dump_speculative(outputStream *st) const {
  2933   if (_speculative != NULL) {
  2934     st->print(" (speculative=");
  2935     _speculative->dump_on(st);
  2936     st->print(")");
  2940 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
  2941   if (_inline_depth != InlineDepthBottom) {
  2942     if (_inline_depth == InlineDepthTop) {
  2943       st->print(" (inline_depth=InlineDepthTop)");
  2944     } else {
  2945       st->print(" (inline_depth=%d)", _inline_depth);
  2949 #endif
  2951 //------------------------------singleton--------------------------------------
  2952 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2953 // constants
  2954 bool TypeOopPtr::singleton(void) const {
  2955   // detune optimizer to not generate constant oop + constant offset as a constant!
  2956   // TopPTR, Null, AnyNull, Constant are all singletons
  2957   return (_offset == 0) && !below_centerline(_ptr);
  2960 //------------------------------add_offset-------------------------------------
  2961 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
  2962   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
  2965 /**
  2966  * Return same type without a speculative part
  2967  */
  2968 const Type* TypeOopPtr::remove_speculative() const {
  2969   if (_speculative == NULL) {
  2970     return this;
  2972   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  2973   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
  2976 /**
  2977  * Return same type but with a different inline depth (used for speculation)
  2979  * @param depth  depth to meet with
  2980  */
  2981 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
  2982   if (!UseInlineDepthForSpeculativeTypes) {
  2983     return this;
  2985   return make(_ptr, _offset, _instance_id, _speculative, depth);
  2988 /**
  2989  * Check whether new profiling would improve speculative type
  2991  * @param   exact_kls    class from profiling
  2992  * @param   inline_depth inlining depth of profile point
  2994  * @return  true if type profile is valuable
  2995  */
  2996 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
  2997   // no way to improve an already exact type
  2998   if (klass_is_exact()) {
  2999     return false;
  3001   // no profiling?
  3002   if (exact_kls == NULL) {
  3003     return false;
  3005   // no speculative type or non exact speculative type?
  3006   if (speculative_type() == NULL) {
  3007     return true;
  3009   // If the node already has an exact speculative type keep it,
  3010   // unless it was provided by profiling that is at a deeper
  3011   // inlining level. Profiling at a higher inlining depth is
  3012   // expected to be less accurate.
  3013   if (_speculative->inline_depth() == InlineDepthBottom) {
  3014     return false;
  3016   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
  3017   return inline_depth < _speculative->inline_depth();
  3020 //------------------------------meet_instance_id--------------------------------
  3021 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  3022   // Either is 'TOP' instance?  Return the other instance!
  3023   if( _instance_id == InstanceTop ) return  instance_id;
  3024   if(  instance_id == InstanceTop ) return _instance_id;
  3025   // If either is different, return 'BOTTOM' instance
  3026   if( _instance_id != instance_id ) return InstanceBot;
  3027   return _instance_id;
  3030 //------------------------------dual_instance_id--------------------------------
  3031 int TypeOopPtr::dual_instance_id( ) const {
  3032   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  3033   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  3034   return _instance_id;              // Map everything else into self
  3037 /**
  3038  * meet of the speculative parts of 2 types
  3040  * @param other  type to meet with
  3041  */
  3042 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
  3043   bool this_has_spec = (_speculative != NULL);
  3044   bool other_has_spec = (other->speculative() != NULL);
  3046   if (!this_has_spec && !other_has_spec) {
  3047     return NULL;
  3050   // If we are at a point where control flow meets and one branch has
  3051   // a speculative type and the other has not, we meet the speculative
  3052   // type of one branch with the actual type of the other. If the
  3053   // actual type is exact and the speculative is as well, then the
  3054   // result is a speculative type which is exact and we can continue
  3055   // speculation further.
  3056   const TypeOopPtr* this_spec = _speculative;
  3057   const TypeOopPtr* other_spec = other->speculative();
  3059   if (!this_has_spec) {
  3060     this_spec = this;
  3063   if (!other_has_spec) {
  3064     other_spec = other;
  3067   return this_spec->meet_speculative(other_spec)->is_oopptr();
  3070 /**
  3071  * dual of the speculative part of the type
  3072  */
  3073 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
  3074   if (_speculative == NULL) {
  3075     return NULL;
  3077   return _speculative->dual()->is_oopptr();
  3080 /**
  3081  * add offset to the speculative part of the type
  3083  * @param offset  offset to add
  3084  */
  3085 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
  3086   if (_speculative == NULL) {
  3087     return NULL;
  3089   return _speculative->add_offset(offset)->is_oopptr();
  3092 /**
  3093  * Are the speculative parts of 2 types equal?
  3095  * @param other  type to compare this one to
  3096  */
  3097 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
  3098   if (_speculative == NULL || other->speculative() == NULL) {
  3099     return _speculative == other->speculative();
  3102   if (_speculative->base() != other->speculative()->base()) {
  3103     return false;
  3106   return _speculative->eq(other->speculative());
  3109 /**
  3110  * Hash of the speculative part of the type
  3111  */
  3112 int TypeOopPtr::hash_speculative() const {
  3113   if (_speculative == NULL) {
  3114     return 0;
  3117   return _speculative->hash();
  3120 /**
  3121  * dual of the inline depth for this type (used for speculation)
  3122  */
  3123 int TypeOopPtr::dual_inline_depth() const {
  3124   return -inline_depth();
  3127 /**
  3128  * meet of 2 inline depth (used for speculation)
  3130  * @param depth  depth to meet with
  3131  */
  3132 int TypeOopPtr::meet_inline_depth(int depth) const {
  3133   return MAX2(inline_depth(), depth);
  3136 //=============================================================================
  3137 // Convenience common pre-built types.
  3138 const TypeInstPtr *TypeInstPtr::NOTNULL;
  3139 const TypeInstPtr *TypeInstPtr::BOTTOM;
  3140 const TypeInstPtr *TypeInstPtr::MIRROR;
  3141 const TypeInstPtr *TypeInstPtr::MARK;
  3142 const TypeInstPtr *TypeInstPtr::KLASS;
  3144 //------------------------------TypeInstPtr-------------------------------------
  3145 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
  3146   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
  3147    assert(k != NULL &&
  3148           (k->is_loaded() || o == NULL),
  3149           "cannot have constants with non-loaded klass");
  3150 };
  3152 //------------------------------make-------------------------------------------
  3153 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  3154                                      ciKlass* k,
  3155                                      bool xk,
  3156                                      ciObject* o,
  3157                                      int offset,
  3158                                      int instance_id,
  3159                                      const TypeOopPtr* speculative,
  3160                                      int inline_depth) {
  3161   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
  3162   // Either const_oop() is NULL or else ptr is Constant
  3163   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  3164           "constant pointers must have a value supplied" );
  3165   // Ptr is never Null
  3166   assert( ptr != Null, "NULL pointers are not typed" );
  3168   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3169   if (!UseExactTypes)  xk = false;
  3170   if (ptr == Constant) {
  3171     // Note:  This case includes meta-object constants, such as methods.
  3172     xk = true;
  3173   } else if (k->is_loaded()) {
  3174     ciInstanceKlass* ik = k->as_instance_klass();
  3175     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  3176     if (xk && ik->is_interface())  xk = false;  // no exact interface
  3179   // Now hash this baby
  3180   TypeInstPtr *result =
  3181     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
  3183   return result;
  3186 /**
  3187  *  Create constant type for a constant boxed value
  3188  */
  3189 const Type* TypeInstPtr::get_const_boxed_value() const {
  3190   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
  3191   assert((const_oop() != NULL), "should be called only for constant object");
  3192   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
  3193   BasicType bt = constant.basic_type();
  3194   switch (bt) {
  3195     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
  3196     case T_INT:      return TypeInt::make(constant.as_int());
  3197     case T_CHAR:     return TypeInt::make(constant.as_char());
  3198     case T_BYTE:     return TypeInt::make(constant.as_byte());
  3199     case T_SHORT:    return TypeInt::make(constant.as_short());
  3200     case T_FLOAT:    return TypeF::make(constant.as_float());
  3201     case T_DOUBLE:   return TypeD::make(constant.as_double());
  3202     case T_LONG:     return TypeLong::make(constant.as_long());
  3203     default:         break;
  3205   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
  3206   return NULL;
  3209 //------------------------------cast_to_ptr_type-------------------------------
  3210 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  3211   if( ptr == _ptr ) return this;
  3212   // Reconstruct _sig info here since not a problem with later lazy
  3213   // construction, _sig will show up on demand.
  3214   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
  3218 //-----------------------------cast_to_exactness-------------------------------
  3219 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  3220   if( klass_is_exact == _klass_is_exact ) return this;
  3221   if (!UseExactTypes)  return this;
  3222   if (!_klass->is_loaded())  return this;
  3223   ciInstanceKlass* ik = _klass->as_instance_klass();
  3224   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  3225   if( ik->is_interface() )              return this;  // cannot set xk
  3226   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
  3229 //-----------------------------cast_to_instance_id----------------------------
  3230 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  3231   if( instance_id == _instance_id ) return this;
  3232   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
  3235 //------------------------------xmeet_unloaded---------------------------------
  3236 // Compute the MEET of two InstPtrs when at least one is unloaded.
  3237 // Assume classes are different since called after check for same name/class-loader
  3238 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  3239     int off = meet_offset(tinst->offset());
  3240     PTR ptr = meet_ptr(tinst->ptr());
  3241     int instance_id = meet_instance_id(tinst->instance_id());
  3242     const TypeOopPtr* speculative = xmeet_speculative(tinst);
  3243     int depth = meet_inline_depth(tinst->inline_depth());
  3245     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  3246     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  3247     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3248       //
  3249       // Meet unloaded class with java/lang/Object
  3250       //
  3251       // Meet
  3252       //          |                     Unloaded Class
  3253       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  3254       //  ===================================================================
  3255       //   TOP    | ..........................Unloaded......................|
  3256       //  AnyNull |  U-AN    |................Unloaded......................|
  3257       // Constant | ... O-NN .................................. |   O-BOT   |
  3258       //  NotNull | ... O-NN .................................. |   O-BOT   |
  3259       //  BOTTOM  | ........................Object-BOTTOM ..................|
  3260       //
  3261       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  3262       //
  3263       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  3264       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
  3265       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  3266       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  3267         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  3268         else                                      { return TypeInstPtr::NOTNULL; }
  3270       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  3272       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  3275     // Both are unloaded, not the same class, not Object
  3276     // Or meet unloaded with a different loaded class, not java/lang/Object
  3277     if( ptr != TypePtr::BotPTR ) {
  3278       return TypeInstPtr::NOTNULL;
  3280     return TypeInstPtr::BOTTOM;
  3284 //------------------------------meet-------------------------------------------
  3285 // Compute the MEET of two types.  It returns a new Type object.
  3286 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
  3287   // Perform a fast test for common case; meeting the same types together.
  3288   if( this == t ) return this;  // Meeting same type-rep?
  3290   // Current "this->_base" is Pointer
  3291   switch (t->base()) {          // switch on original type
  3293   case Int:                     // Mixing ints & oops happens when javac
  3294   case Long:                    // reuses local variables
  3295   case FloatTop:
  3296   case FloatCon:
  3297   case FloatBot:
  3298   case DoubleTop:
  3299   case DoubleCon:
  3300   case DoubleBot:
  3301   case NarrowOop:
  3302   case NarrowKlass:
  3303   case Bottom:                  // Ye Olde Default
  3304     return Type::BOTTOM;
  3305   case Top:
  3306     return this;
  3308   default:                      // All else is a mistake
  3309     typerr(t);
  3311   case MetadataPtr:
  3312   case KlassPtr:
  3313   case RawPtr: return TypePtr::BOTTOM;
  3315   case AryPtr: {                // All arrays inherit from Object class
  3316     const TypeAryPtr *tp = t->is_aryptr();
  3317     int offset = meet_offset(tp->offset());
  3318     PTR ptr = meet_ptr(tp->ptr());
  3319     int instance_id = meet_instance_id(tp->instance_id());
  3320     const TypeOopPtr* speculative = xmeet_speculative(tp);
  3321     int depth = meet_inline_depth(tp->inline_depth());
  3322     switch (ptr) {
  3323     case TopPTR:
  3324     case AnyNull:                // Fall 'down' to dual of object klass
  3325       // For instances when a subclass meets a superclass we fall
  3326       // below the centerline when the superclass is exact. We need to
  3327       // do the same here.
  3328       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
  3329         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
  3330       } else {
  3331         // cannot subclass, so the meet has to fall badly below the centerline
  3332         ptr = NotNull;
  3333         instance_id = InstanceBot;
  3334         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
  3336     case Constant:
  3337     case NotNull:
  3338     case BotPTR:                // Fall down to object klass
  3339       // LCA is object_klass, but if we subclass from the top we can do better
  3340       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  3341         // If 'this' (InstPtr) is above the centerline and it is Object class
  3342         // then we can subclass in the Java class hierarchy.
  3343         // For instances when a subclass meets a superclass we fall
  3344         // below the centerline when the superclass is exact. We need
  3345         // to do the same here.
  3346         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
  3347           // that is, tp's array type is a subtype of my klass
  3348           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
  3349                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
  3352       // The other case cannot happen, since I cannot be a subtype of an array.
  3353       // The meet falls down to Object class below centerline.
  3354       if( ptr == Constant )
  3355          ptr = NotNull;
  3356       instance_id = InstanceBot;
  3357       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
  3358     default: typerr(t);
  3362   case OopPtr: {                // Meeting to OopPtrs
  3363     // Found a OopPtr type vs self-InstPtr type
  3364     const TypeOopPtr *tp = t->is_oopptr();
  3365     int offset = meet_offset(tp->offset());
  3366     PTR ptr = meet_ptr(tp->ptr());
  3367     switch (tp->ptr()) {
  3368     case TopPTR:
  3369     case AnyNull: {
  3370       int instance_id = meet_instance_id(InstanceTop);
  3371       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3372       int depth = meet_inline_depth(tp->inline_depth());
  3373       return make(ptr, klass(), klass_is_exact(),
  3374                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
  3376     case NotNull:
  3377     case BotPTR: {
  3378       int instance_id = meet_instance_id(tp->instance_id());
  3379       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3380       int depth = meet_inline_depth(tp->inline_depth());
  3381       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
  3383     default: typerr(t);
  3387   case AnyPtr: {                // Meeting to AnyPtrs
  3388     // Found an AnyPtr type vs self-InstPtr type
  3389     const TypePtr *tp = t->is_ptr();
  3390     int offset = meet_offset(tp->offset());
  3391     PTR ptr = meet_ptr(tp->ptr());
  3392     switch (tp->ptr()) {
  3393     case Null:
  3394       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3395       // else fall through to AnyNull
  3396     case TopPTR:
  3397     case AnyNull: {
  3398       int instance_id = meet_instance_id(InstanceTop);
  3399       const TypeOopPtr* speculative = _speculative;
  3400       return make(ptr, klass(), klass_is_exact(),
  3401                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
  3403     case NotNull:
  3404     case BotPTR:
  3405       return TypePtr::make(AnyPtr, ptr, offset);
  3406     default: typerr(t);
  3410   /*
  3411                  A-top         }
  3412                /   |   \       }  Tops
  3413            B-top A-any C-top   }
  3414               | /  |  \ |      }  Any-nulls
  3415            B-any   |   C-any   }
  3416               |    |    |
  3417            B-con A-con C-con   } constants; not comparable across classes
  3418               |    |    |
  3419            B-not   |   C-not   }
  3420               | \  |  / |      }  not-nulls
  3421            B-bot A-not C-bot   }
  3422                \   |   /       }  Bottoms
  3423                  A-bot         }
  3424   */
  3426   case InstPtr: {                // Meeting 2 Oops?
  3427     // Found an InstPtr sub-type vs self-InstPtr type
  3428     const TypeInstPtr *tinst = t->is_instptr();
  3429     int off = meet_offset( tinst->offset() );
  3430     PTR ptr = meet_ptr( tinst->ptr() );
  3431     int instance_id = meet_instance_id(tinst->instance_id());
  3432     const TypeOopPtr* speculative = xmeet_speculative(tinst);
  3433     int depth = meet_inline_depth(tinst->inline_depth());
  3435     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3436     // If we have constants, then we created oops so classes are loaded
  3437     // and we can handle the constants further down.  This case handles
  3438     // both-not-loaded or both-loaded classes
  3439     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  3440       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
  3443     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3444     ciKlass* tinst_klass = tinst->klass();
  3445     ciKlass* this_klass  = this->klass();
  3446     bool tinst_xk = tinst->klass_is_exact();
  3447     bool this_xk  = this->klass_is_exact();
  3448     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  3449       // One of these classes has not been loaded
  3450       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  3451 #ifndef PRODUCT
  3452       if( PrintOpto && Verbose ) {
  3453         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  3454         tty->print("  this == "); this->dump(); tty->cr();
  3455         tty->print(" tinst == "); tinst->dump(); tty->cr();
  3457 #endif
  3458       return unloaded_meet;
  3461     // Handle mixing oops and interfaces first.
  3462     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
  3463                                         tinst_klass == ciEnv::current()->Object_klass())) {
  3464       ciKlass *tmp = tinst_klass; // Swap interface around
  3465       tinst_klass = this_klass;
  3466       this_klass = tmp;
  3467       bool tmp2 = tinst_xk;
  3468       tinst_xk = this_xk;
  3469       this_xk = tmp2;
  3471     if (tinst_klass->is_interface() &&
  3472         !(this_klass->is_interface() ||
  3473           // Treat java/lang/Object as an honorary interface,
  3474           // because we need a bottom for the interface hierarchy.
  3475           this_klass == ciEnv::current()->Object_klass())) {
  3476       // Oop meets interface!
  3478       // See if the oop subtypes (implements) interface.
  3479       ciKlass *k;
  3480       bool xk;
  3481       if( this_klass->is_subtype_of( tinst_klass ) ) {
  3482         // Oop indeed subtypes.  Now keep oop or interface depending
  3483         // on whether we are both above the centerline or either is
  3484         // below the centerline.  If we are on the centerline
  3485         // (e.g., Constant vs. AnyNull interface), use the constant.
  3486         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  3487         // If we are keeping this_klass, keep its exactness too.
  3488         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  3489       } else {                  // Does not implement, fall to Object
  3490         // Oop does not implement interface, so mixing falls to Object
  3491         // just like the verifier does (if both are above the
  3492         // centerline fall to interface)
  3493         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  3494         xk = above_centerline(ptr) ? tinst_xk : false;
  3495         // Watch out for Constant vs. AnyNull interface.
  3496         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  3497         instance_id = InstanceBot;
  3499       ciObject* o = NULL;  // the Constant value, if any
  3500       if (ptr == Constant) {
  3501         // Find out which constant.
  3502         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  3504       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
  3507     // Either oop vs oop or interface vs interface or interface vs Object
  3509     // !!! Here's how the symmetry requirement breaks down into invariants:
  3510     // If we split one up & one down AND they subtype, take the down man.
  3511     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3512     // If both are up and they subtype, take the subtype class.
  3513     // If both are up and they do NOT subtype, "fall hard".
  3514     // If both are down and they subtype, take the supertype class.
  3515     // If both are down and they do NOT subtype, "fall hard".
  3516     // Constants treated as down.
  3518     // Now, reorder the above list; observe that both-down+subtype is also
  3519     // "fall hard"; "fall hard" becomes the default case:
  3520     // If we split one up & one down AND they subtype, take the down man.
  3521     // If both are up and they subtype, take the subtype class.
  3523     // If both are down and they subtype, "fall hard".
  3524     // If both are down and they do NOT subtype, "fall hard".
  3525     // If both are up and they do NOT subtype, "fall hard".
  3526     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3528     // If a proper subtype is exact, and we return it, we return it exactly.
  3529     // If a proper supertype is exact, there can be no subtyping relationship!
  3530     // If both types are equal to the subtype, exactness is and-ed below the
  3531     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  3533     // Check for subtyping:
  3534     ciKlass *subtype = NULL;
  3535     bool subtype_exact = false;
  3536     if( tinst_klass->equals(this_klass) ) {
  3537       subtype = this_klass;
  3538       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  3539     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  3540       subtype = this_klass;     // Pick subtyping class
  3541       subtype_exact = this_xk;
  3542     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  3543       subtype = tinst_klass;    // Pick subtyping class
  3544       subtype_exact = tinst_xk;
  3547     if( subtype ) {
  3548       if( above_centerline(ptr) ) { // both are up?
  3549         this_klass = tinst_klass = subtype;
  3550         this_xk = tinst_xk = subtype_exact;
  3551       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  3552         this_klass = tinst_klass; // tinst is down; keep down man
  3553         this_xk = tinst_xk;
  3554       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  3555         tinst_klass = this_klass; // this is down; keep down man
  3556         tinst_xk = this_xk;
  3557       } else {
  3558         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  3562     // Check for classes now being equal
  3563     if (tinst_klass->equals(this_klass)) {
  3564       // If the klasses are equal, the constants may still differ.  Fall to
  3565       // NotNull if they do (neither constant is NULL; that is a special case
  3566       // handled elsewhere).
  3567       ciObject* o = NULL;             // Assume not constant when done
  3568       ciObject* this_oop  = const_oop();
  3569       ciObject* tinst_oop = tinst->const_oop();
  3570       if( ptr == Constant ) {
  3571         if (this_oop != NULL && tinst_oop != NULL &&
  3572             this_oop->equals(tinst_oop) )
  3573           o = this_oop;
  3574         else if (above_centerline(this ->_ptr))
  3575           o = tinst_oop;
  3576         else if (above_centerline(tinst ->_ptr))
  3577           o = this_oop;
  3578         else
  3579           ptr = NotNull;
  3581       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
  3582     } // Else classes are not equal
  3584     // Since klasses are different, we require a LCA in the Java
  3585     // class hierarchy - which means we have to fall to at least NotNull.
  3586     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3587       ptr = NotNull;
  3588     instance_id = InstanceBot;
  3590     // Now we find the LCA of Java classes
  3591     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3592     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
  3593   } // End of case InstPtr
  3595   } // End of switch
  3596   return this;                  // Return the double constant
  3600 //------------------------java_mirror_type--------------------------------------
  3601 ciType* TypeInstPtr::java_mirror_type() const {
  3602   // must be a singleton type
  3603   if( const_oop() == NULL )  return NULL;
  3605   // must be of type java.lang.Class
  3606   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3608   return const_oop()->as_instance()->java_mirror_type();
  3612 //------------------------------xdual------------------------------------------
  3613 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3614 // inheritance mechanism.
  3615 const Type *TypeInstPtr::xdual() const {
  3616   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
  3619 //------------------------------eq---------------------------------------------
  3620 // Structural equality check for Type representations
  3621 bool TypeInstPtr::eq( const Type *t ) const {
  3622   const TypeInstPtr *p = t->is_instptr();
  3623   return
  3624     klass()->equals(p->klass()) &&
  3625     TypeOopPtr::eq(p);          // Check sub-type stuff
  3628 //------------------------------hash-------------------------------------------
  3629 // Type-specific hashing function.
  3630 int TypeInstPtr::hash(void) const {
  3631   int hash = klass()->hash() + TypeOopPtr::hash();
  3632   return hash;
  3635 //------------------------------dump2------------------------------------------
  3636 // Dump oop Type
  3637 #ifndef PRODUCT
  3638 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3639   // Print the name of the klass.
  3640   klass()->print_name_on(st);
  3642   switch( _ptr ) {
  3643   case Constant:
  3644     // TO DO: Make CI print the hex address of the underlying oop.
  3645     if (WizardMode || Verbose) {
  3646       const_oop()->print_oop(st);
  3648   case BotPTR:
  3649     if (!WizardMode && !Verbose) {
  3650       if( _klass_is_exact ) st->print(":exact");
  3651       break;
  3653   case TopPTR:
  3654   case AnyNull:
  3655   case NotNull:
  3656     st->print(":%s", ptr_msg[_ptr]);
  3657     if( _klass_is_exact ) st->print(":exact");
  3658     break;
  3661   if( _offset ) {               // Dump offset, if any
  3662     if( _offset == OffsetBot )      st->print("+any");
  3663     else if( _offset == OffsetTop ) st->print("+unknown");
  3664     else st->print("+%d", _offset);
  3667   st->print(" *");
  3668   if (_instance_id == InstanceTop)
  3669     st->print(",iid=top");
  3670   else if (_instance_id != InstanceBot)
  3671     st->print(",iid=%d",_instance_id);
  3673   dump_inline_depth(st);
  3674   dump_speculative(st);
  3676 #endif
  3678 //------------------------------add_offset-------------------------------------
  3679 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
  3680   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
  3683 const Type *TypeInstPtr::remove_speculative() const {
  3684   if (_speculative == NULL) {
  3685     return this;
  3687   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  3688   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
  3691 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
  3692   if (!UseInlineDepthForSpeculativeTypes) {
  3693     return this;
  3695   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
  3698 //=============================================================================
  3699 // Convenience common pre-built types.
  3700 const TypeAryPtr *TypeAryPtr::RANGE;
  3701 const TypeAryPtr *TypeAryPtr::OOPS;
  3702 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3703 const TypeAryPtr *TypeAryPtr::BYTES;
  3704 const TypeAryPtr *TypeAryPtr::SHORTS;
  3705 const TypeAryPtr *TypeAryPtr::CHARS;
  3706 const TypeAryPtr *TypeAryPtr::INTS;
  3707 const TypeAryPtr *TypeAryPtr::LONGS;
  3708 const TypeAryPtr *TypeAryPtr::FLOATS;
  3709 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3711 //------------------------------make-------------------------------------------
  3712 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
  3713   assert(!(k == NULL && ary->_elem->isa_int()),
  3714          "integral arrays must be pre-equipped with a class");
  3715   if (!xk)  xk = ary->ary_must_be_exact();
  3716   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3717   if (!UseExactTypes)  xk = (ptr == Constant);
  3718   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
  3721 //------------------------------make-------------------------------------------
  3722 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
  3723   assert(!(k == NULL && ary->_elem->isa_int()),
  3724          "integral arrays must be pre-equipped with a class");
  3725   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3726   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3727   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3728   if (!UseExactTypes)  xk = (ptr == Constant);
  3729   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
  3732 //------------------------------cast_to_ptr_type-------------------------------
  3733 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3734   if( ptr == _ptr ) return this;
  3735   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
  3739 //-----------------------------cast_to_exactness-------------------------------
  3740 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3741   if( klass_is_exact == _klass_is_exact ) return this;
  3742   if (!UseExactTypes)  return this;
  3743   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3744   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
  3747 //-----------------------------cast_to_instance_id----------------------------
  3748 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3749   if( instance_id == _instance_id ) return this;
  3750   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
  3753 //-----------------------------narrow_size_type-------------------------------
  3754 // Local cache for arrayOopDesc::max_array_length(etype),
  3755 // which is kind of slow (and cached elsewhere by other users).
  3756 static jint max_array_length_cache[T_CONFLICT+1];
  3757 static jint max_array_length(BasicType etype) {
  3758   jint& cache = max_array_length_cache[etype];
  3759   jint res = cache;
  3760   if (res == 0) {
  3761     switch (etype) {
  3762     case T_NARROWOOP:
  3763       etype = T_OBJECT;
  3764       break;
  3765     case T_NARROWKLASS:
  3766     case T_CONFLICT:
  3767     case T_ILLEGAL:
  3768     case T_VOID:
  3769       etype = T_BYTE;           // will produce conservatively high value
  3771     cache = res = arrayOopDesc::max_array_length(etype);
  3773   return res;
  3776 // Narrow the given size type to the index range for the given array base type.
  3777 // Return NULL if the resulting int type becomes empty.
  3778 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3779   jint hi = size->_hi;
  3780   jint lo = size->_lo;
  3781   jint min_lo = 0;
  3782   jint max_hi = max_array_length(elem()->basic_type());
  3783   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3784   bool chg = false;
  3785   if (lo < min_lo) {
  3786     lo = min_lo;
  3787     if (size->is_con()) {
  3788       hi = lo;
  3790     chg = true;
  3792   if (hi > max_hi) {
  3793     hi = max_hi;
  3794     if (size->is_con()) {
  3795       lo = hi;
  3797     chg = true;
  3799   // Negative length arrays will produce weird intermediate dead fast-path code
  3800   if (lo > hi)
  3801     return TypeInt::ZERO;
  3802   if (!chg)
  3803     return size;
  3804   return TypeInt::make(lo, hi, Type::WidenMin);
  3807 //-------------------------------cast_to_size----------------------------------
  3808 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3809   assert(new_size != NULL, "");
  3810   new_size = narrow_size_type(new_size);
  3811   if (new_size == size())  return this;
  3812   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
  3813   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
  3817 //------------------------------cast_to_stable---------------------------------
  3818 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
  3819   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
  3820     return this;
  3822   const Type* elem = this->elem();
  3823   const TypePtr* elem_ptr = elem->make_ptr();
  3825   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
  3826     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
  3827     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
  3830   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
  3832   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3835 //-----------------------------stable_dimension--------------------------------
  3836 int TypeAryPtr::stable_dimension() const {
  3837   if (!is_stable())  return 0;
  3838   int dim = 1;
  3839   const TypePtr* elem_ptr = elem()->make_ptr();
  3840   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
  3841     dim += elem_ptr->is_aryptr()->stable_dimension();
  3842   return dim;
  3845 //------------------------------eq---------------------------------------------
  3846 // Structural equality check for Type representations
  3847 bool TypeAryPtr::eq( const Type *t ) const {
  3848   const TypeAryPtr *p = t->is_aryptr();
  3849   return
  3850     _ary == p->_ary &&  // Check array
  3851     TypeOopPtr::eq(p);  // Check sub-parts
  3854 //------------------------------hash-------------------------------------------
  3855 // Type-specific hashing function.
  3856 int TypeAryPtr::hash(void) const {
  3857   return (intptr_t)_ary + TypeOopPtr::hash();
  3860 //------------------------------meet-------------------------------------------
  3861 // Compute the MEET of two types.  It returns a new Type object.
  3862 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
  3863   // Perform a fast test for common case; meeting the same types together.
  3864   if( this == t ) return this;  // Meeting same type-rep?
  3865   // Current "this->_base" is Pointer
  3866   switch (t->base()) {          // switch on original type
  3868   // Mixing ints & oops happens when javac reuses local variables
  3869   case Int:
  3870   case Long:
  3871   case FloatTop:
  3872   case FloatCon:
  3873   case FloatBot:
  3874   case DoubleTop:
  3875   case DoubleCon:
  3876   case DoubleBot:
  3877   case NarrowOop:
  3878   case NarrowKlass:
  3879   case Bottom:                  // Ye Olde Default
  3880     return Type::BOTTOM;
  3881   case Top:
  3882     return this;
  3884   default:                      // All else is a mistake
  3885     typerr(t);
  3887   case OopPtr: {                // Meeting to OopPtrs
  3888     // Found a OopPtr type vs self-AryPtr type
  3889     const TypeOopPtr *tp = t->is_oopptr();
  3890     int offset = meet_offset(tp->offset());
  3891     PTR ptr = meet_ptr(tp->ptr());
  3892     int depth = meet_inline_depth(tp->inline_depth());
  3893     switch (tp->ptr()) {
  3894     case TopPTR:
  3895     case AnyNull: {
  3896       int instance_id = meet_instance_id(InstanceTop);
  3897       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3898       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3899                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  3901     case BotPTR:
  3902     case NotNull: {
  3903       int instance_id = meet_instance_id(tp->instance_id());
  3904       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3905       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
  3907     default: ShouldNotReachHere();
  3911   case AnyPtr: {                // Meeting two AnyPtrs
  3912     // Found an AnyPtr type vs self-AryPtr type
  3913     const TypePtr *tp = t->is_ptr();
  3914     int offset = meet_offset(tp->offset());
  3915     PTR ptr = meet_ptr(tp->ptr());
  3916     switch (tp->ptr()) {
  3917     case TopPTR:
  3918       return this;
  3919     case BotPTR:
  3920     case NotNull:
  3921       return TypePtr::make(AnyPtr, ptr, offset);
  3922     case Null:
  3923       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3924       // else fall through to AnyNull
  3925     case AnyNull: {
  3926       int instance_id = meet_instance_id(InstanceTop);
  3927       const TypeOopPtr* speculative = _speculative;
  3928       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3929                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
  3931     default: ShouldNotReachHere();
  3935   case MetadataPtr:
  3936   case KlassPtr:
  3937   case RawPtr: return TypePtr::BOTTOM;
  3939   case AryPtr: {                // Meeting 2 references?
  3940     const TypeAryPtr *tap = t->is_aryptr();
  3941     int off = meet_offset(tap->offset());
  3942     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
  3943     PTR ptr = meet_ptr(tap->ptr());
  3944     int instance_id = meet_instance_id(tap->instance_id());
  3945     const TypeOopPtr* speculative = xmeet_speculative(tap);
  3946     int depth = meet_inline_depth(tap->inline_depth());
  3947     ciKlass* lazy_klass = NULL;
  3948     if (tary->_elem->isa_int()) {
  3949       // Integral array element types have irrelevant lattice relations.
  3950       // It is the klass that determines array layout, not the element type.
  3951       if (_klass == NULL)
  3952         lazy_klass = tap->_klass;
  3953       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3954         lazy_klass = _klass;
  3955       } else {
  3956         // Something like byte[int+] meets char[int+].
  3957         // This must fall to bottom, not (int[-128..65535])[int+].
  3958         instance_id = InstanceBot;
  3959         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3961     } else // Non integral arrays.
  3962       // Must fall to bottom if exact klasses in upper lattice
  3963       // are not equal or super klass is exact.
  3964       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
  3965           // meet with top[] and bottom[] are processed further down:
  3966           tap->_klass != NULL  && this->_klass != NULL   &&
  3967           // both are exact and not equal:
  3968           ((tap->_klass_is_exact && this->_klass_is_exact) ||
  3969            // 'tap'  is exact and super or unrelated:
  3970            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
  3971            // 'this' is exact and super or unrelated:
  3972            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
  3973       if (above_centerline(ptr)) {
  3974         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3976       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
  3979     bool xk = false;
  3980     switch (tap->ptr()) {
  3981     case AnyNull:
  3982     case TopPTR:
  3983       // Compute new klass on demand, do not use tap->_klass
  3984       if (below_centerline(this->_ptr)) {
  3985         xk = this->_klass_is_exact;
  3986       } else {
  3987         xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3989       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
  3990     case Constant: {
  3991       ciObject* o = const_oop();
  3992       if( _ptr == Constant ) {
  3993         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3994           xk = (klass() == tap->klass());
  3995           ptr = NotNull;
  3996           o = NULL;
  3997           instance_id = InstanceBot;
  3998         } else {
  3999           xk = true;
  4001       } else if(above_centerline(_ptr)) {
  4002         o = tap->const_oop();
  4003         xk = true;
  4004       } else {
  4005         // Only precise for identical arrays
  4006         xk = this->_klass_is_exact && (klass() == tap->klass());
  4008       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
  4010     case NotNull:
  4011     case BotPTR:
  4012       // Compute new klass on demand, do not use tap->_klass
  4013       if (above_centerline(this->_ptr))
  4014             xk = tap->_klass_is_exact;
  4015       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  4016               (klass() == tap->klass()); // Only precise for identical arrays
  4017       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
  4018     default: ShouldNotReachHere();
  4022   // All arrays inherit from Object class
  4023   case InstPtr: {
  4024     const TypeInstPtr *tp = t->is_instptr();
  4025     int offset = meet_offset(tp->offset());
  4026     PTR ptr = meet_ptr(tp->ptr());
  4027     int instance_id = meet_instance_id(tp->instance_id());
  4028     const TypeOopPtr* speculative = xmeet_speculative(tp);
  4029     int depth = meet_inline_depth(tp->inline_depth());
  4030     switch (ptr) {
  4031     case TopPTR:
  4032     case AnyNull:                // Fall 'down' to dual of object klass
  4033       // For instances when a subclass meets a superclass we fall
  4034       // below the centerline when the superclass is exact. We need to
  4035       // do the same here.
  4036       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
  4037         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  4038       } else {
  4039         // cannot subclass, so the meet has to fall badly below the centerline
  4040         ptr = NotNull;
  4041         instance_id = InstanceBot;
  4042         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
  4044     case Constant:
  4045     case NotNull:
  4046     case BotPTR:                // Fall down to object klass
  4047       // LCA is object_klass, but if we subclass from the top we can do better
  4048       if (above_centerline(tp->ptr())) {
  4049         // If 'tp'  is above the centerline and it is Object class
  4050         // then we can subclass in the Java class hierarchy.
  4051         // For instances when a subclass meets a superclass we fall
  4052         // below the centerline when the superclass is exact. We need
  4053         // to do the same here.
  4054         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
  4055           // that is, my array type is a subtype of 'tp' klass
  4056           return make(ptr, (ptr == Constant ? const_oop() : NULL),
  4057                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  4060       // The other case cannot happen, since t cannot be a subtype of an array.
  4061       // The meet falls down to Object class below centerline.
  4062       if( ptr == Constant )
  4063          ptr = NotNull;
  4064       instance_id = InstanceBot;
  4065       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
  4066     default: typerr(t);
  4070   return this;                  // Lint noise
  4073 //------------------------------xdual------------------------------------------
  4074 // Dual: compute field-by-field dual
  4075 const Type *TypeAryPtr::xdual() const {
  4076   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
  4079 //----------------------interface_vs_oop---------------------------------------
  4080 #ifdef ASSERT
  4081 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  4082   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  4083   if (t_aryptr) {
  4084     return _ary->interface_vs_oop(t_aryptr->_ary);
  4086   return false;
  4088 #endif
  4090 //------------------------------dump2------------------------------------------
  4091 #ifndef PRODUCT
  4092 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4093   _ary->dump2(d,depth,st);
  4094   switch( _ptr ) {
  4095   case Constant:
  4096     const_oop()->print(st);
  4097     break;
  4098   case BotPTR:
  4099     if (!WizardMode && !Verbose) {
  4100       if( _klass_is_exact ) st->print(":exact");
  4101       break;
  4103   case TopPTR:
  4104   case AnyNull:
  4105   case NotNull:
  4106     st->print(":%s", ptr_msg[_ptr]);
  4107     if( _klass_is_exact ) st->print(":exact");
  4108     break;
  4111   if( _offset != 0 ) {
  4112     int header_size = objArrayOopDesc::header_size() * wordSize;
  4113     if( _offset == OffsetTop )       st->print("+undefined");
  4114     else if( _offset == OffsetBot )  st->print("+any");
  4115     else if( _offset < header_size ) st->print("+%d", _offset);
  4116     else {
  4117       BasicType basic_elem_type = elem()->basic_type();
  4118       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4119       int elem_size = type2aelembytes(basic_elem_type);
  4120       st->print("[%d]", (_offset - array_base)/elem_size);
  4123   st->print(" *");
  4124   if (_instance_id == InstanceTop)
  4125     st->print(",iid=top");
  4126   else if (_instance_id != InstanceBot)
  4127     st->print(",iid=%d",_instance_id);
  4129   dump_inline_depth(st);
  4130   dump_speculative(st);
  4132 #endif
  4134 bool TypeAryPtr::empty(void) const {
  4135   if (_ary->empty())       return true;
  4136   return TypeOopPtr::empty();
  4139 //------------------------------add_offset-------------------------------------
  4140 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
  4141   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
  4144 const Type *TypeAryPtr::remove_speculative() const {
  4145   if (_speculative == NULL) {
  4146     return this;
  4148   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  4149   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
  4152 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
  4153   if (!UseInlineDepthForSpeculativeTypes) {
  4154     return this;
  4156   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
  4159 //=============================================================================
  4161 //------------------------------hash-------------------------------------------
  4162 // Type-specific hashing function.
  4163 int TypeNarrowPtr::hash(void) const {
  4164   return _ptrtype->hash() + 7;
  4167 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
  4168   return _ptrtype->singleton();
  4171 bool TypeNarrowPtr::empty(void) const {
  4172   return _ptrtype->empty();
  4175 intptr_t TypeNarrowPtr::get_con() const {
  4176   return _ptrtype->get_con();
  4179 bool TypeNarrowPtr::eq( const Type *t ) const {
  4180   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
  4181   if (tc != NULL) {
  4182     if (_ptrtype->base() != tc->_ptrtype->base()) {
  4183       return false;
  4185     return tc->_ptrtype->eq(_ptrtype);
  4187   return false;
  4190 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
  4191   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  4192   return make_same_narrowptr(odual);
  4196 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4197   if (isa_same_narrowptr(kills)) {
  4198     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
  4199     if (ft->empty())
  4200       return Type::TOP;           // Canonical empty value
  4201     if (ft->isa_ptr()) {
  4202       return make_hash_same_narrowptr(ft->isa_ptr());
  4204     return ft;
  4205   } else if (kills->isa_ptr()) {
  4206     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
  4207     if (ft->empty())
  4208       return Type::TOP;           // Canonical empty value
  4209     return ft;
  4210   } else {
  4211     return Type::TOP;
  4215 //------------------------------xmeet------------------------------------------
  4216 // Compute the MEET of two types.  It returns a new Type object.
  4217 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
  4218   // Perform a fast test for common case; meeting the same types together.
  4219   if( this == t ) return this;  // Meeting same type-rep?
  4221   if (t->base() == base()) {
  4222     const Type* result = _ptrtype->xmeet(t->make_ptr());
  4223     if (result->isa_ptr()) {
  4224       return make_hash_same_narrowptr(result->is_ptr());
  4226     return result;
  4229   // Current "this->_base" is NarrowKlass or NarrowOop
  4230   switch (t->base()) {          // switch on original type
  4232   case Int:                     // Mixing ints & oops happens when javac
  4233   case Long:                    // reuses local variables
  4234   case FloatTop:
  4235   case FloatCon:
  4236   case FloatBot:
  4237   case DoubleTop:
  4238   case DoubleCon:
  4239   case DoubleBot:
  4240   case AnyPtr:
  4241   case RawPtr:
  4242   case OopPtr:
  4243   case InstPtr:
  4244   case AryPtr:
  4245   case MetadataPtr:
  4246   case KlassPtr:
  4247   case NarrowOop:
  4248   case NarrowKlass:
  4250   case Bottom:                  // Ye Olde Default
  4251     return Type::BOTTOM;
  4252   case Top:
  4253     return this;
  4255   default:                      // All else is a mistake
  4256     typerr(t);
  4258   } // End of switch
  4260   return this;
  4263 #ifndef PRODUCT
  4264 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4265   _ptrtype->dump2(d, depth, st);
  4267 #endif
  4269 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  4270 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  4273 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  4274   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  4278 #ifndef PRODUCT
  4279 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  4280   st->print("narrowoop: ");
  4281   TypeNarrowPtr::dump2(d, depth, st);
  4283 #endif
  4285 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
  4287 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
  4288   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
  4291 #ifndef PRODUCT
  4292 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
  4293   st->print("narrowklass: ");
  4294   TypeNarrowPtr::dump2(d, depth, st);
  4296 #endif
  4299 //------------------------------eq---------------------------------------------
  4300 // Structural equality check for Type representations
  4301 bool TypeMetadataPtr::eq( const Type *t ) const {
  4302   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
  4303   ciMetadata* one = metadata();
  4304   ciMetadata* two = a->metadata();
  4305   if (one == NULL || two == NULL) {
  4306     return (one == two) && TypePtr::eq(t);
  4307   } else {
  4308     return one->equals(two) && TypePtr::eq(t);
  4312 //------------------------------hash-------------------------------------------
  4313 // Type-specific hashing function.
  4314 int TypeMetadataPtr::hash(void) const {
  4315   return
  4316     (metadata() ? metadata()->hash() : 0) +
  4317     TypePtr::hash();
  4320 //------------------------------singleton--------------------------------------
  4321 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4322 // constants
  4323 bool TypeMetadataPtr::singleton(void) const {
  4324   // detune optimizer to not generate constant metadta + constant offset as a constant!
  4325   // TopPTR, Null, AnyNull, Constant are all singletons
  4326   return (_offset == 0) && !below_centerline(_ptr);
  4329 //------------------------------add_offset-------------------------------------
  4330 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
  4331   return make( _ptr, _metadata, xadd_offset(offset));
  4334 //-----------------------------filter------------------------------------------
  4335 // Do not allow interface-vs.-noninterface joins to collapse to top.
  4336 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4337   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
  4338   if (ft == NULL || ft->empty())
  4339     return Type::TOP;           // Canonical empty value
  4340   return ft;
  4343  //------------------------------get_con----------------------------------------
  4344 intptr_t TypeMetadataPtr::get_con() const {
  4345   assert( _ptr == Null || _ptr == Constant, "" );
  4346   assert( _offset >= 0, "" );
  4348   if (_offset != 0) {
  4349     // After being ported to the compiler interface, the compiler no longer
  4350     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4351     // to a handle at compile time.  This handle is embedded in the generated
  4352     // code and dereferenced at the time the nmethod is made.  Until that time,
  4353     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4354     // have access to the addresses!).  This does not seem to currently happen,
  4355     // but this assertion here is to help prevent its occurence.
  4356     tty->print_cr("Found oop constant with non-zero offset");
  4357     ShouldNotReachHere();
  4360   return (intptr_t)metadata()->constant_encoding();
  4363 //------------------------------cast_to_ptr_type-------------------------------
  4364 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
  4365   if( ptr == _ptr ) return this;
  4366   return make(ptr, metadata(), _offset);
  4369 //------------------------------meet-------------------------------------------
  4370 // Compute the MEET of two types.  It returns a new Type object.
  4371 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
  4372   // Perform a fast test for common case; meeting the same types together.
  4373   if( this == t ) return this;  // Meeting same type-rep?
  4375   // Current "this->_base" is OopPtr
  4376   switch (t->base()) {          // switch on original type
  4378   case Int:                     // Mixing ints & oops happens when javac
  4379   case Long:                    // reuses local variables
  4380   case FloatTop:
  4381   case FloatCon:
  4382   case FloatBot:
  4383   case DoubleTop:
  4384   case DoubleCon:
  4385   case DoubleBot:
  4386   case NarrowOop:
  4387   case NarrowKlass:
  4388   case Bottom:                  // Ye Olde Default
  4389     return Type::BOTTOM;
  4390   case Top:
  4391     return this;
  4393   default:                      // All else is a mistake
  4394     typerr(t);
  4396   case AnyPtr: {
  4397     // Found an AnyPtr type vs self-OopPtr type
  4398     const TypePtr *tp = t->is_ptr();
  4399     int offset = meet_offset(tp->offset());
  4400     PTR ptr = meet_ptr(tp->ptr());
  4401     switch (tp->ptr()) {
  4402     case Null:
  4403       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  4404       // else fall through:
  4405     case TopPTR:
  4406     case AnyNull: {
  4407       return make(ptr, _metadata, offset);
  4409     case BotPTR:
  4410     case NotNull:
  4411       return TypePtr::make(AnyPtr, ptr, offset);
  4412     default: typerr(t);
  4416   case RawPtr:
  4417   case KlassPtr:
  4418   case OopPtr:
  4419   case InstPtr:
  4420   case AryPtr:
  4421     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  4423   case MetadataPtr: {
  4424     const TypeMetadataPtr *tp = t->is_metadataptr();
  4425     int offset = meet_offset(tp->offset());
  4426     PTR tptr = tp->ptr();
  4427     PTR ptr = meet_ptr(tptr);
  4428     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
  4429     if (tptr == TopPTR || _ptr == TopPTR ||
  4430         metadata()->equals(tp->metadata())) {
  4431       return make(ptr, md, offset);
  4433     // metadata is different
  4434     if( ptr == Constant ) {  // Cannot be equal constants, so...
  4435       if( tptr == Constant && _ptr != Constant)  return t;
  4436       if( _ptr == Constant && tptr != Constant)  return this;
  4437       ptr = NotNull;            // Fall down in lattice
  4439     return make(ptr, NULL, offset);
  4440     break;
  4442   } // End of switch
  4443   return this;                  // Return the double constant
  4447 //------------------------------xdual------------------------------------------
  4448 // Dual of a pure metadata pointer.
  4449 const Type *TypeMetadataPtr::xdual() const {
  4450   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
  4453 //------------------------------dump2------------------------------------------
  4454 #ifndef PRODUCT
  4455 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4456   st->print("metadataptr:%s", ptr_msg[_ptr]);
  4457   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
  4458   switch( _offset ) {
  4459   case OffsetTop: st->print("+top"); break;
  4460   case OffsetBot: st->print("+any"); break;
  4461   case         0: break;
  4462   default:        st->print("+%d",_offset); break;
  4465 #endif
  4468 //=============================================================================
  4469 // Convenience common pre-built type.
  4470 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
  4472 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
  4473   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
  4476 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
  4477   return make(Constant, m, 0);
  4479 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
  4480   return make(Constant, m, 0);
  4483 //------------------------------make-------------------------------------------
  4484 // Create a meta data constant
  4485 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
  4486   assert(m == NULL || !m->is_klass(), "wrong type");
  4487   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
  4491 //=============================================================================
  4492 // Convenience common pre-built types.
  4494 // Not-null object klass or below
  4495 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  4496 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  4498 //------------------------------TypeKlassPtr-----------------------------------
  4499 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  4500   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
  4503 //------------------------------make-------------------------------------------
  4504 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  4505 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  4506   assert( k != NULL, "Expect a non-NULL klass");
  4507   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
  4508   TypeKlassPtr *r =
  4509     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  4511   return r;
  4514 //------------------------------eq---------------------------------------------
  4515 // Structural equality check for Type representations
  4516 bool TypeKlassPtr::eq( const Type *t ) const {
  4517   const TypeKlassPtr *p = t->is_klassptr();
  4518   return
  4519     klass()->equals(p->klass()) &&
  4520     TypePtr::eq(p);
  4523 //------------------------------hash-------------------------------------------
  4524 // Type-specific hashing function.
  4525 int TypeKlassPtr::hash(void) const {
  4526   return klass()->hash() + TypePtr::hash();
  4529 //------------------------------singleton--------------------------------------
  4530 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4531 // constants
  4532 bool TypeKlassPtr::singleton(void) const {
  4533   // detune optimizer to not generate constant klass + constant offset as a constant!
  4534   // TopPTR, Null, AnyNull, Constant are all singletons
  4535   return (_offset == 0) && !below_centerline(_ptr);
  4538 // Do not allow interface-vs.-noninterface joins to collapse to top.
  4539 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4540   // logic here mirrors the one from TypeOopPtr::filter. See comments
  4541   // there.
  4542   const Type* ft = join_helper(kills, include_speculative);
  4543   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  4544   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  4546   if (ft->empty()) {
  4547     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  4548       return kills;             // Uplift to interface
  4550     return Type::TOP;           // Canonical empty value
  4553   // Interface klass type could be exact in opposite to interface type,
  4554   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  4555   if (ftkp != NULL && ktkp != NULL &&
  4556       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  4557       !ftkp->klass_is_exact() && // Keep exact interface klass
  4558       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  4559     return ktkp->cast_to_ptr_type(ftkp->ptr());
  4562   return ft;
  4565 //----------------------compute_klass------------------------------------------
  4566 // Compute the defining klass for this class
  4567 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
  4568   // Compute _klass based on element type.
  4569   ciKlass* k_ary = NULL;
  4570   const TypeInstPtr *tinst;
  4571   const TypeAryPtr *tary;
  4572   const Type* el = elem();
  4573   if (el->isa_narrowoop()) {
  4574     el = el->make_ptr();
  4577   // Get element klass
  4578   if ((tinst = el->isa_instptr()) != NULL) {
  4579     // Compute array klass from element klass
  4580     k_ary = ciObjArrayKlass::make(tinst->klass());
  4581   } else if ((tary = el->isa_aryptr()) != NULL) {
  4582     // Compute array klass from element klass
  4583     ciKlass* k_elem = tary->klass();
  4584     // If element type is something like bottom[], k_elem will be null.
  4585     if (k_elem != NULL)
  4586       k_ary = ciObjArrayKlass::make(k_elem);
  4587   } else if ((el->base() == Type::Top) ||
  4588              (el->base() == Type::Bottom)) {
  4589     // element type of Bottom occurs from meet of basic type
  4590     // and object; Top occurs when doing join on Bottom.
  4591     // Leave k_ary at NULL.
  4592   } else {
  4593     // Cannot compute array klass directly from basic type,
  4594     // since subtypes of TypeInt all have basic type T_INT.
  4595 #ifdef ASSERT
  4596     if (verify && el->isa_int()) {
  4597       // Check simple cases when verifying klass.
  4598       BasicType bt = T_ILLEGAL;
  4599       if (el == TypeInt::BYTE) {
  4600         bt = T_BYTE;
  4601       } else if (el == TypeInt::SHORT) {
  4602         bt = T_SHORT;
  4603       } else if (el == TypeInt::CHAR) {
  4604         bt = T_CHAR;
  4605       } else if (el == TypeInt::INT) {
  4606         bt = T_INT;
  4607       } else {
  4608         return _klass; // just return specified klass
  4610       return ciTypeArrayKlass::make(bt);
  4612 #endif
  4613     assert(!el->isa_int(),
  4614            "integral arrays must be pre-equipped with a class");
  4615     // Compute array klass directly from basic type
  4616     k_ary = ciTypeArrayKlass::make(el->basic_type());
  4618   return k_ary;
  4621 //------------------------------klass------------------------------------------
  4622 // Return the defining klass for this class
  4623 ciKlass* TypeAryPtr::klass() const {
  4624   if( _klass ) return _klass;   // Return cached value, if possible
  4626   // Oops, need to compute _klass and cache it
  4627   ciKlass* k_ary = compute_klass();
  4629   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
  4630     // The _klass field acts as a cache of the underlying
  4631     // ciKlass for this array type.  In order to set the field,
  4632     // we need to cast away const-ness.
  4633     //
  4634     // IMPORTANT NOTE: we *never* set the _klass field for the
  4635     // type TypeAryPtr::OOPS.  This Type is shared between all
  4636     // active compilations.  However, the ciKlass which represents
  4637     // this Type is *not* shared between compilations, so caching
  4638     // this value would result in fetching a dangling pointer.
  4639     //
  4640     // Recomputing the underlying ciKlass for each request is
  4641     // a bit less efficient than caching, but calls to
  4642     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  4643     ((TypeAryPtr*)this)->_klass = k_ary;
  4644     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  4645         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  4646       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  4649   return k_ary;
  4653 //------------------------------add_offset-------------------------------------
  4654 // Access internals of klass object
  4655 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  4656   return make( _ptr, klass(), xadd_offset(offset) );
  4659 //------------------------------cast_to_ptr_type-------------------------------
  4660 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  4661   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  4662   if( ptr == _ptr ) return this;
  4663   return make(ptr, _klass, _offset);
  4667 //-----------------------------cast_to_exactness-------------------------------
  4668 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  4669   if( klass_is_exact == _klass_is_exact ) return this;
  4670   if (!UseExactTypes)  return this;
  4671   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  4675 //-----------------------------as_instance_type--------------------------------
  4676 // Corresponding type for an instance of the given class.
  4677 // It will be NotNull, and exact if and only if the klass type is exact.
  4678 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  4679   ciKlass* k = klass();
  4680   bool    xk = klass_is_exact();
  4681   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  4682   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  4683   guarantee(toop != NULL, "need type for given klass");
  4684   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  4685   return toop->cast_to_exactness(xk)->is_oopptr();
  4689 //------------------------------xmeet------------------------------------------
  4690 // Compute the MEET of two types, return a new Type object.
  4691 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  4692   // Perform a fast test for common case; meeting the same types together.
  4693   if( this == t ) return this;  // Meeting same type-rep?
  4695   // Current "this->_base" is Pointer
  4696   switch (t->base()) {          // switch on original type
  4698   case Int:                     // Mixing ints & oops happens when javac
  4699   case Long:                    // reuses local variables
  4700   case FloatTop:
  4701   case FloatCon:
  4702   case FloatBot:
  4703   case DoubleTop:
  4704   case DoubleCon:
  4705   case DoubleBot:
  4706   case NarrowOop:
  4707   case NarrowKlass:
  4708   case Bottom:                  // Ye Olde Default
  4709     return Type::BOTTOM;
  4710   case Top:
  4711     return this;
  4713   default:                      // All else is a mistake
  4714     typerr(t);
  4716   case AnyPtr: {                // Meeting to AnyPtrs
  4717     // Found an AnyPtr type vs self-KlassPtr type
  4718     const TypePtr *tp = t->is_ptr();
  4719     int offset = meet_offset(tp->offset());
  4720     PTR ptr = meet_ptr(tp->ptr());
  4721     switch (tp->ptr()) {
  4722     case TopPTR:
  4723       return this;
  4724     case Null:
  4725       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  4726     case AnyNull:
  4727       return make( ptr, klass(), offset );
  4728     case BotPTR:
  4729     case NotNull:
  4730       return TypePtr::make(AnyPtr, ptr, offset);
  4731     default: typerr(t);
  4735   case RawPtr:
  4736   case MetadataPtr:
  4737   case OopPtr:
  4738   case AryPtr:                  // Meet with AryPtr
  4739   case InstPtr:                 // Meet with InstPtr
  4740     return TypePtr::BOTTOM;
  4742   //
  4743   //             A-top         }
  4744   //           /   |   \       }  Tops
  4745   //       B-top A-any C-top   }
  4746   //          | /  |  \ |      }  Any-nulls
  4747   //       B-any   |   C-any   }
  4748   //          |    |    |
  4749   //       B-con A-con C-con   } constants; not comparable across classes
  4750   //          |    |    |
  4751   //       B-not   |   C-not   }
  4752   //          | \  |  / |      }  not-nulls
  4753   //       B-bot A-not C-bot   }
  4754   //           \   |   /       }  Bottoms
  4755   //             A-bot         }
  4756   //
  4758   case KlassPtr: {  // Meet two KlassPtr types
  4759     const TypeKlassPtr *tkls = t->is_klassptr();
  4760     int  off     = meet_offset(tkls->offset());
  4761     PTR  ptr     = meet_ptr(tkls->ptr());
  4763     // Check for easy case; klasses are equal (and perhaps not loaded!)
  4764     // If we have constants, then we created oops so classes are loaded
  4765     // and we can handle the constants further down.  This case handles
  4766     // not-loaded classes
  4767     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  4768       return make( ptr, klass(), off );
  4771     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  4772     ciKlass* tkls_klass = tkls->klass();
  4773     ciKlass* this_klass = this->klass();
  4774     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  4775     assert( this_klass->is_loaded(), "This class should have been loaded.");
  4777     // If 'this' type is above the centerline and is a superclass of the
  4778     // other, we can treat 'this' as having the same type as the other.
  4779     if ((above_centerline(this->ptr())) &&
  4780         tkls_klass->is_subtype_of(this_klass)) {
  4781       this_klass = tkls_klass;
  4783     // If 'tinst' type is above the centerline and is a superclass of the
  4784     // other, we can treat 'tinst' as having the same type as the other.
  4785     if ((above_centerline(tkls->ptr())) &&
  4786         this_klass->is_subtype_of(tkls_klass)) {
  4787       tkls_klass = this_klass;
  4790     // Check for classes now being equal
  4791     if (tkls_klass->equals(this_klass)) {
  4792       // If the klasses are equal, the constants may still differ.  Fall to
  4793       // NotNull if they do (neither constant is NULL; that is a special case
  4794       // handled elsewhere).
  4795       if( ptr == Constant ) {
  4796         if (this->_ptr == Constant && tkls->_ptr == Constant &&
  4797             this->klass()->equals(tkls->klass()));
  4798         else if (above_centerline(this->ptr()));
  4799         else if (above_centerline(tkls->ptr()));
  4800         else
  4801           ptr = NotNull;
  4803       return make( ptr, this_klass, off );
  4804     } // Else classes are not equal
  4806     // Since klasses are different, we require the LCA in the Java
  4807     // class hierarchy - which means we have to fall to at least NotNull.
  4808     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  4809       ptr = NotNull;
  4810     // Now we find the LCA of Java classes
  4811     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  4812     return   make( ptr, k, off );
  4813   } // End of case KlassPtr
  4815   } // End of switch
  4816   return this;                  // Return the double constant
  4819 //------------------------------xdual------------------------------------------
  4820 // Dual: compute field-by-field dual
  4821 const Type    *TypeKlassPtr::xdual() const {
  4822   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  4825 //------------------------------get_con----------------------------------------
  4826 intptr_t TypeKlassPtr::get_con() const {
  4827   assert( _ptr == Null || _ptr == Constant, "" );
  4828   assert( _offset >= 0, "" );
  4830   if (_offset != 0) {
  4831     // After being ported to the compiler interface, the compiler no longer
  4832     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4833     // to a handle at compile time.  This handle is embedded in the generated
  4834     // code and dereferenced at the time the nmethod is made.  Until that time,
  4835     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4836     // have access to the addresses!).  This does not seem to currently happen,
  4837     // but this assertion here is to help prevent its occurence.
  4838     tty->print_cr("Found oop constant with non-zero offset");
  4839     ShouldNotReachHere();
  4842   return (intptr_t)klass()->constant_encoding();
  4844 //------------------------------dump2------------------------------------------
  4845 // Dump Klass Type
  4846 #ifndef PRODUCT
  4847 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4848   switch( _ptr ) {
  4849   case Constant:
  4850     st->print("precise ");
  4851   case NotNull:
  4853       const char *name = klass()->name()->as_utf8();
  4854       if( name ) {
  4855         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  4856       } else {
  4857         ShouldNotReachHere();
  4860   case BotPTR:
  4861     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  4862   case TopPTR:
  4863   case AnyNull:
  4864     st->print(":%s", ptr_msg[_ptr]);
  4865     if( _klass_is_exact ) st->print(":exact");
  4866     break;
  4869   if( _offset ) {               // Dump offset, if any
  4870     if( _offset == OffsetBot )      { st->print("+any"); }
  4871     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  4872     else                            { st->print("+%d", _offset); }
  4875   st->print(" *");
  4877 #endif
  4881 //=============================================================================
  4882 // Convenience common pre-built types.
  4884 //------------------------------make-------------------------------------------
  4885 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  4886   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  4889 //------------------------------make-------------------------------------------
  4890 const TypeFunc *TypeFunc::make(ciMethod* method) {
  4891   Compile* C = Compile::current();
  4892   const TypeFunc* tf = C->last_tf(method); // check cache
  4893   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  4894   const TypeTuple *domain;
  4895   if (method->is_static()) {
  4896     domain = TypeTuple::make_domain(NULL, method->signature());
  4897   } else {
  4898     domain = TypeTuple::make_domain(method->holder(), method->signature());
  4900   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  4901   tf = TypeFunc::make(domain, range);
  4902   C->set_last_tf(method, tf);  // fill cache
  4903   return tf;
  4906 //------------------------------meet-------------------------------------------
  4907 // Compute the MEET of two types.  It returns a new Type object.
  4908 const Type *TypeFunc::xmeet( const Type *t ) const {
  4909   // Perform a fast test for common case; meeting the same types together.
  4910   if( this == t ) return this;  // Meeting same type-rep?
  4912   // Current "this->_base" is Func
  4913   switch (t->base()) {          // switch on original type
  4915   case Bottom:                  // Ye Olde Default
  4916     return t;
  4918   default:                      // All else is a mistake
  4919     typerr(t);
  4921   case Top:
  4922     break;
  4924   return this;                  // Return the double constant
  4927 //------------------------------xdual------------------------------------------
  4928 // Dual: compute field-by-field dual
  4929 const Type *TypeFunc::xdual() const {
  4930   return this;
  4933 //------------------------------eq---------------------------------------------
  4934 // Structural equality check for Type representations
  4935 bool TypeFunc::eq( const Type *t ) const {
  4936   const TypeFunc *a = (const TypeFunc*)t;
  4937   return _domain == a->_domain &&
  4938     _range == a->_range;
  4941 //------------------------------hash-------------------------------------------
  4942 // Type-specific hashing function.
  4943 int TypeFunc::hash(void) const {
  4944   return (intptr_t)_domain + (intptr_t)_range;
  4947 //------------------------------dump2------------------------------------------
  4948 // Dump Function Type
  4949 #ifndef PRODUCT
  4950 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  4951   if( _range->_cnt <= Parms )
  4952     st->print("void");
  4953   else {
  4954     uint i;
  4955     for (i = Parms; i < _range->_cnt-1; i++) {
  4956       _range->field_at(i)->dump2(d,depth,st);
  4957       st->print("/");
  4959     _range->field_at(i)->dump2(d,depth,st);
  4961   st->print(" ");
  4962   st->print("( ");
  4963   if( !depth || d[this] ) {     // Check for recursive dump
  4964     st->print("...)");
  4965     return;
  4967   d.Insert((void*)this,(void*)this);    // Stop recursion
  4968   if (Parms < _domain->_cnt)
  4969     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4970   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4971     st->print(", ");
  4972     _domain->field_at(i)->dump2(d,depth-1,st);
  4974   st->print(" )");
  4976 #endif
  4978 //------------------------------singleton--------------------------------------
  4979 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4980 // constants (Ldi nodes).  Singletons are integer, float or double constants
  4981 // or a single symbol.
  4982 bool TypeFunc::singleton(void) const {
  4983   return false;                 // Never a singleton
  4986 bool TypeFunc::empty(void) const {
  4987   return false;                 // Never empty
  4991 BasicType TypeFunc::return_type() const{
  4992   if (range()->cnt() == TypeFunc::Parms) {
  4993     return T_VOID;
  4995   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial