src/share/vm/gc_implementation/parallelScavenge/psScavenge.cpp

Tue, 09 Aug 2011 10:16:01 -0700

author
jmasa
date
Tue, 09 Aug 2011 10:16:01 -0700
changeset 3294
bca17e38de00
parent 3175
4dfb2df418f2
child 3499
aa3d708d67c4
permissions
-rw-r--r--

6593758: RFE: Enhance GC ergonomics to dynamically choose ParallelGCThreads
Summary: Select number of GC threads dynamically based on heap usage and number of Java threads
Reviewed-by: johnc, ysr, jcoomes

     1 /*
     2  * Copyright (c) 2002, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
    28 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    29 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    30 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    31 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    32 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    33 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    34 #include "gc_implementation/parallelScavenge/psScavenge.inline.hpp"
    35 #include "gc_implementation/parallelScavenge/psTasks.hpp"
    36 #include "gc_implementation/shared/isGCActiveMark.hpp"
    37 #include "gc_implementation/shared/spaceDecorator.hpp"
    38 #include "gc_interface/gcCause.hpp"
    39 #include "memory/collectorPolicy.hpp"
    40 #include "memory/gcLocker.inline.hpp"
    41 #include "memory/referencePolicy.hpp"
    42 #include "memory/referenceProcessor.hpp"
    43 #include "memory/resourceArea.hpp"
    44 #include "oops/oop.inline.hpp"
    45 #include "oops/oop.psgc.inline.hpp"
    46 #include "runtime/biasedLocking.hpp"
    47 #include "runtime/fprofiler.hpp"
    48 #include "runtime/handles.inline.hpp"
    49 #include "runtime/threadCritical.hpp"
    50 #include "runtime/vmThread.hpp"
    51 #include "runtime/vm_operations.hpp"
    52 #include "services/memoryService.hpp"
    53 #include "utilities/stack.inline.hpp"
    56 HeapWord*                  PSScavenge::_to_space_top_before_gc = NULL;
    57 int                        PSScavenge::_consecutive_skipped_scavenges = 0;
    58 ReferenceProcessor*        PSScavenge::_ref_processor = NULL;
    59 CardTableExtension*        PSScavenge::_card_table = NULL;
    60 bool                       PSScavenge::_survivor_overflow = false;
    61 int                        PSScavenge::_tenuring_threshold = 0;
    62 HeapWord*                  PSScavenge::_young_generation_boundary = NULL;
    63 elapsedTimer               PSScavenge::_accumulated_time;
    64 Stack<markOop>             PSScavenge::_preserved_mark_stack;
    65 Stack<oop>                 PSScavenge::_preserved_oop_stack;
    66 CollectorCounters*         PSScavenge::_counters = NULL;
    67 bool                       PSScavenge::_promotion_failed = false;
    69 // Define before use
    70 class PSIsAliveClosure: public BoolObjectClosure {
    71 public:
    72   void do_object(oop p) {
    73     assert(false, "Do not call.");
    74   }
    75   bool do_object_b(oop p) {
    76     return (!PSScavenge::is_obj_in_young((HeapWord*) p)) || p->is_forwarded();
    77   }
    78 };
    80 PSIsAliveClosure PSScavenge::_is_alive_closure;
    82 class PSKeepAliveClosure: public OopClosure {
    83 protected:
    84   MutableSpace* _to_space;
    85   PSPromotionManager* _promotion_manager;
    87 public:
    88   PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
    89     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    90     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    91     _to_space = heap->young_gen()->to_space();
    93     assert(_promotion_manager != NULL, "Sanity");
    94   }
    96   template <class T> void do_oop_work(T* p) {
    97     assert (!oopDesc::is_null(*p), "expected non-null ref");
    98     assert ((oopDesc::load_decode_heap_oop_not_null(p))->is_oop(),
    99             "expected an oop while scanning weak refs");
   101     // Weak refs may be visited more than once.
   102     if (PSScavenge::should_scavenge(p, _to_space)) {
   103       PSScavenge::copy_and_push_safe_barrier(_promotion_manager, p);
   104     }
   105   }
   106   virtual void do_oop(oop* p)       { PSKeepAliveClosure::do_oop_work(p); }
   107   virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); }
   108 };
   110 class PSEvacuateFollowersClosure: public VoidClosure {
   111  private:
   112   PSPromotionManager* _promotion_manager;
   113  public:
   114   PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {}
   116   virtual void do_void() {
   117     assert(_promotion_manager != NULL, "Sanity");
   118     _promotion_manager->drain_stacks(true);
   119     guarantee(_promotion_manager->stacks_empty(),
   120               "stacks should be empty at this point");
   121   }
   122 };
   124 class PSPromotionFailedClosure : public ObjectClosure {
   125   virtual void do_object(oop obj) {
   126     if (obj->is_forwarded()) {
   127       obj->init_mark();
   128     }
   129   }
   130 };
   132 class PSRefProcTaskProxy: public GCTask {
   133   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
   134   ProcessTask & _rp_task;
   135   uint          _work_id;
   136 public:
   137   PSRefProcTaskProxy(ProcessTask & rp_task, uint work_id)
   138     : _rp_task(rp_task),
   139       _work_id(work_id)
   140   { }
   142 private:
   143   virtual char* name() { return (char *)"Process referents by policy in parallel"; }
   144   virtual void do_it(GCTaskManager* manager, uint which);
   145 };
   147 void PSRefProcTaskProxy::do_it(GCTaskManager* manager, uint which)
   148 {
   149   PSPromotionManager* promotion_manager =
   150     PSPromotionManager::gc_thread_promotion_manager(which);
   151   assert(promotion_manager != NULL, "sanity check");
   152   PSKeepAliveClosure keep_alive(promotion_manager);
   153   PSEvacuateFollowersClosure evac_followers(promotion_manager);
   154   PSIsAliveClosure is_alive;
   155   _rp_task.work(_work_id, is_alive, keep_alive, evac_followers);
   156 }
   158 class PSRefEnqueueTaskProxy: public GCTask {
   159   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
   160   EnqueueTask& _enq_task;
   161   uint         _work_id;
   163 public:
   164   PSRefEnqueueTaskProxy(EnqueueTask& enq_task, uint work_id)
   165     : _enq_task(enq_task),
   166       _work_id(work_id)
   167   { }
   169   virtual char* name() { return (char *)"Enqueue reference objects in parallel"; }
   170   virtual void do_it(GCTaskManager* manager, uint which)
   171   {
   172     _enq_task.work(_work_id);
   173   }
   174 };
   176 class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
   177   virtual void execute(ProcessTask& task);
   178   virtual void execute(EnqueueTask& task);
   179 };
   181 void PSRefProcTaskExecutor::execute(ProcessTask& task)
   182 {
   183   GCTaskQueue* q = GCTaskQueue::create();
   184   GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
   185   for(uint i=0; i < manager->active_workers(); i++) {
   186     q->enqueue(new PSRefProcTaskProxy(task, i));
   187   }
   188   ParallelTaskTerminator terminator(manager->active_workers(),
   189                  (TaskQueueSetSuper*) PSPromotionManager::stack_array_depth());
   190   if (task.marks_oops_alive() && manager->active_workers() > 1) {
   191     for (uint j = 0; j < manager->active_workers(); j++) {
   192       q->enqueue(new StealTask(&terminator));
   193     }
   194   }
   195   manager->execute_and_wait(q);
   196 }
   199 void PSRefProcTaskExecutor::execute(EnqueueTask& task)
   200 {
   201   GCTaskQueue* q = GCTaskQueue::create();
   202   GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
   203   for(uint i=0; i < manager->active_workers(); i++) {
   204     q->enqueue(new PSRefEnqueueTaskProxy(task, i));
   205   }
   206   manager->execute_and_wait(q);
   207 }
   209 // This method contains all heap specific policy for invoking scavenge.
   210 // PSScavenge::invoke_no_policy() will do nothing but attempt to
   211 // scavenge. It will not clean up after failed promotions, bail out if
   212 // we've exceeded policy time limits, or any other special behavior.
   213 // All such policy should be placed here.
   214 //
   215 // Note that this method should only be called from the vm_thread while
   216 // at a safepoint!
   217 void PSScavenge::invoke() {
   218   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   219   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   220   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   222   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   223   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   225   PSAdaptiveSizePolicy* policy = heap->size_policy();
   226   IsGCActiveMark mark;
   228   bool scavenge_was_done = PSScavenge::invoke_no_policy();
   230   PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   231   if (UsePerfData)
   232     counters->update_full_follows_scavenge(0);
   233   if (!scavenge_was_done ||
   234       policy->should_full_GC(heap->old_gen()->free_in_bytes())) {
   235     if (UsePerfData)
   236       counters->update_full_follows_scavenge(full_follows_scavenge);
   237     GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
   238     CollectorPolicy* cp = heap->collector_policy();
   239     const bool clear_all_softrefs = cp->should_clear_all_soft_refs();
   241     if (UseParallelOldGC) {
   242       PSParallelCompact::invoke_no_policy(clear_all_softrefs);
   243     } else {
   244       PSMarkSweep::invoke_no_policy(clear_all_softrefs);
   245     }
   246   }
   247 }
   249 // This method contains no policy. You should probably
   250 // be calling invoke() instead.
   251 bool PSScavenge::invoke_no_policy() {
   252   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   253   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   255   assert(_preserved_mark_stack.is_empty(), "should be empty");
   256   assert(_preserved_oop_stack.is_empty(), "should be empty");
   258   TimeStamp scavenge_entry;
   259   TimeStamp scavenge_midpoint;
   260   TimeStamp scavenge_exit;
   262   scavenge_entry.update();
   264   if (GC_locker::check_active_before_gc()) {
   265     return false;
   266   }
   268   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   269   GCCause::Cause gc_cause = heap->gc_cause();
   270   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   272   // Check for potential problems.
   273   if (!should_attempt_scavenge()) {
   274     return false;
   275   }
   277   bool promotion_failure_occurred = false;
   279   PSYoungGen* young_gen = heap->young_gen();
   280   PSOldGen* old_gen = heap->old_gen();
   281   PSPermGen* perm_gen = heap->perm_gen();
   282   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
   283   heap->increment_total_collections();
   285   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
   287   if ((gc_cause != GCCause::_java_lang_system_gc) ||
   288        UseAdaptiveSizePolicyWithSystemGC) {
   289     // Gather the feedback data for eden occupancy.
   290     young_gen->eden_space()->accumulate_statistics();
   291   }
   293   if (ZapUnusedHeapArea) {
   294     // Save information needed to minimize mangling
   295     heap->record_gen_tops_before_GC();
   296   }
   298   if (PrintHeapAtGC) {
   299     Universe::print_heap_before_gc();
   300   }
   302   assert(!NeverTenure || _tenuring_threshold == markOopDesc::max_age + 1, "Sanity");
   303   assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity");
   305   size_t prev_used = heap->used();
   306   assert(promotion_failed() == false, "Sanity");
   308   // Fill in TLABs
   309   heap->accumulate_statistics_all_tlabs();
   310   heap->ensure_parsability(true);  // retire TLABs
   312   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   313     HandleMark hm;  // Discard invalid handles created during verification
   314     gclog_or_tty->print(" VerifyBeforeGC:");
   315     Universe::verify(true);
   316   }
   318   {
   319     ResourceMark rm;
   320     HandleMark hm;
   322     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   323     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   324     TraceTime t1("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
   325     TraceCollectorStats tcs(counters());
   326     TraceMemoryManagerStats tms(false /* not full GC */,gc_cause);
   328     if (TraceGen0Time) accumulated_time()->start();
   330     // Let the size policy know we're starting
   331     size_policy->minor_collection_begin();
   333     // Verify the object start arrays.
   334     if (VerifyObjectStartArray &&
   335         VerifyBeforeGC) {
   336       old_gen->verify_object_start_array();
   337       perm_gen->verify_object_start_array();
   338     }
   340     // Verify no unmarked old->young roots
   341     if (VerifyRememberedSets) {
   342       CardTableExtension::verify_all_young_refs_imprecise();
   343     }
   345     if (!ScavengeWithObjectsInToSpace) {
   346       assert(young_gen->to_space()->is_empty(),
   347              "Attempt to scavenge with live objects in to_space");
   348       young_gen->to_space()->clear(SpaceDecorator::Mangle);
   349     } else if (ZapUnusedHeapArea) {
   350       young_gen->to_space()->mangle_unused_area();
   351     }
   352     save_to_space_top_before_gc();
   354     COMPILER2_PRESENT(DerivedPointerTable::clear());
   356     reference_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   357     reference_processor()->setup_policy(false);
   359     // We track how much was promoted to the next generation for
   360     // the AdaptiveSizePolicy.
   361     size_t old_gen_used_before = old_gen->used_in_bytes();
   363     // For PrintGCDetails
   364     size_t young_gen_used_before = young_gen->used_in_bytes();
   366     // Reset our survivor overflow.
   367     set_survivor_overflow(false);
   369     // We need to save the old/perm top values before
   370     // creating the promotion_manager. We pass the top
   371     // values to the card_table, to prevent it from
   372     // straying into the promotion labs.
   373     HeapWord* old_top = old_gen->object_space()->top();
   374     HeapWord* perm_top = perm_gen->object_space()->top();
   376     // Release all previously held resources
   377     gc_task_manager()->release_all_resources();
   379     // Set the number of GC threads to be used in this collection
   380     gc_task_manager()->set_active_gang();
   381     gc_task_manager()->task_idle_workers();
   382     // Get the active number of workers here and use that value
   383     // throughout the methods.
   384     uint active_workers = gc_task_manager()->active_workers();
   385     heap->set_par_threads(active_workers);
   387     PSPromotionManager::pre_scavenge();
   389     // We'll use the promotion manager again later.
   390     PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager();
   391     {
   392       // TraceTime("Roots");
   393       ParallelScavengeHeap::ParStrongRootsScope psrs;
   395       GCTaskQueue* q = GCTaskQueue::create();
   397       uint stripe_total = active_workers;
   398       for(uint i=0; i < stripe_total; i++) {
   399         q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i, stripe_total));
   400       }
   402       q->enqueue(new SerialOldToYoungRootsTask(perm_gen, perm_top));
   404       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::universe));
   405       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jni_handles));
   406       // We scan the thread roots in parallel
   407       Threads::create_thread_roots_tasks(q);
   408       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::object_synchronizer));
   409       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::flat_profiler));
   410       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::management));
   411       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::system_dictionary));
   412       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jvmti));
   413       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache));
   415       ParallelTaskTerminator terminator(
   416         active_workers,
   417                   (TaskQueueSetSuper*) promotion_manager->stack_array_depth());
   418       if (active_workers > 1) {
   419         for (uint j = 0; j < active_workers; j++) {
   420           q->enqueue(new StealTask(&terminator));
   421         }
   422       }
   424       gc_task_manager()->execute_and_wait(q);
   425     }
   427     scavenge_midpoint.update();
   429     // Process reference objects discovered during scavenge
   430     {
   431       reference_processor()->setup_policy(false); // not always_clear
   432       reference_processor()->set_active_mt_degree(active_workers);
   433       PSKeepAliveClosure keep_alive(promotion_manager);
   434       PSEvacuateFollowersClosure evac_followers(promotion_manager);
   435       if (reference_processor()->processing_is_mt()) {
   436         PSRefProcTaskExecutor task_executor;
   437         reference_processor()->process_discovered_references(
   438           &_is_alive_closure, &keep_alive, &evac_followers, &task_executor);
   439       } else {
   440         reference_processor()->process_discovered_references(
   441           &_is_alive_closure, &keep_alive, &evac_followers, NULL);
   442       }
   443     }
   445     // Enqueue reference objects discovered during scavenge.
   446     if (reference_processor()->processing_is_mt()) {
   447       PSRefProcTaskExecutor task_executor;
   448       reference_processor()->enqueue_discovered_references(&task_executor);
   449     } else {
   450       reference_processor()->enqueue_discovered_references(NULL);
   451     }
   453     if (!JavaObjectsInPerm) {
   454       // Unlink any dead interned Strings
   455       StringTable::unlink(&_is_alive_closure);
   456       // Process the remaining live ones
   457       PSScavengeRootsClosure root_closure(promotion_manager);
   458       StringTable::oops_do(&root_closure);
   459     }
   461     // Finally, flush the promotion_manager's labs, and deallocate its stacks.
   462     PSPromotionManager::post_scavenge();
   464     promotion_failure_occurred = promotion_failed();
   465     if (promotion_failure_occurred) {
   466       clean_up_failed_promotion();
   467       if (PrintGC) {
   468         gclog_or_tty->print("--");
   469       }
   470     }
   472     // Let the size policy know we're done.  Note that we count promotion
   473     // failure cleanup time as part of the collection (otherwise, we're
   474     // implicitly saying it's mutator time).
   475     size_policy->minor_collection_end(gc_cause);
   477     if (!promotion_failure_occurred) {
   478       // Swap the survivor spaces.
   481       young_gen->eden_space()->clear(SpaceDecorator::Mangle);
   482       young_gen->from_space()->clear(SpaceDecorator::Mangle);
   483       young_gen->swap_spaces();
   485       size_t survived = young_gen->from_space()->used_in_bytes();
   486       size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
   487       size_policy->update_averages(_survivor_overflow, survived, promoted);
   489       // A successful scavenge should restart the GC time limit count which is
   490       // for full GC's.
   491       size_policy->reset_gc_overhead_limit_count();
   492       if (UseAdaptiveSizePolicy) {
   493         // Calculate the new survivor size and tenuring threshold
   495         if (PrintAdaptiveSizePolicy) {
   496           gclog_or_tty->print("AdaptiveSizeStart: ");
   497           gclog_or_tty->stamp();
   498           gclog_or_tty->print_cr(" collection: %d ",
   499                          heap->total_collections());
   501           if (Verbose) {
   502             gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
   503               " perm_gen_capacity: %d ",
   504               old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
   505               perm_gen->capacity_in_bytes());
   506           }
   507         }
   510         if (UsePerfData) {
   511           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   512           counters->update_old_eden_size(
   513             size_policy->calculated_eden_size_in_bytes());
   514           counters->update_old_promo_size(
   515             size_policy->calculated_promo_size_in_bytes());
   516           counters->update_old_capacity(old_gen->capacity_in_bytes());
   517           counters->update_young_capacity(young_gen->capacity_in_bytes());
   518           counters->update_survived(survived);
   519           counters->update_promoted(promoted);
   520           counters->update_survivor_overflowed(_survivor_overflow);
   521         }
   523         size_t survivor_limit =
   524           size_policy->max_survivor_size(young_gen->max_size());
   525         _tenuring_threshold =
   526           size_policy->compute_survivor_space_size_and_threshold(
   527                                                            _survivor_overflow,
   528                                                            _tenuring_threshold,
   529                                                            survivor_limit);
   531        if (PrintTenuringDistribution) {
   532          gclog_or_tty->cr();
   533          gclog_or_tty->print_cr("Desired survivor size %ld bytes, new threshold %d (max %d)",
   534                                 size_policy->calculated_survivor_size_in_bytes(),
   535                                 _tenuring_threshold, MaxTenuringThreshold);
   536        }
   538         if (UsePerfData) {
   539           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   540           counters->update_tenuring_threshold(_tenuring_threshold);
   541           counters->update_survivor_size_counters();
   542         }
   544         // Do call at minor collections?
   545         // Don't check if the size_policy is ready at this
   546         // level.  Let the size_policy check that internally.
   547         if (UseAdaptiveSizePolicy &&
   548             UseAdaptiveGenerationSizePolicyAtMinorCollection &&
   549             ((gc_cause != GCCause::_java_lang_system_gc) ||
   550               UseAdaptiveSizePolicyWithSystemGC)) {
   552           // Calculate optimial free space amounts
   553           assert(young_gen->max_size() >
   554             young_gen->from_space()->capacity_in_bytes() +
   555             young_gen->to_space()->capacity_in_bytes(),
   556             "Sizes of space in young gen are out-of-bounds");
   557           size_t max_eden_size = young_gen->max_size() -
   558             young_gen->from_space()->capacity_in_bytes() -
   559             young_gen->to_space()->capacity_in_bytes();
   560           size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
   561                                    young_gen->eden_space()->used_in_bytes(),
   562                                    old_gen->used_in_bytes(),
   563                                    perm_gen->used_in_bytes(),
   564                                    young_gen->eden_space()->capacity_in_bytes(),
   565                                    old_gen->max_gen_size(),
   566                                    max_eden_size,
   567                                    false  /* full gc*/,
   568                                    gc_cause,
   569                                    heap->collector_policy());
   571         }
   572         // Resize the young generation at every collection
   573         // even if new sizes have not been calculated.  This is
   574         // to allow resizes that may have been inhibited by the
   575         // relative location of the "to" and "from" spaces.
   577         // Resizing the old gen at minor collects can cause increases
   578         // that don't feed back to the generation sizing policy until
   579         // a major collection.  Don't resize the old gen here.
   581         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
   582                         size_policy->calculated_survivor_size_in_bytes());
   584         if (PrintAdaptiveSizePolicy) {
   585           gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
   586                          heap->total_collections());
   587         }
   588       }
   590       // Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can
   591       // cause the change of the heap layout. Make sure eden is reshaped if that's the case.
   592       // Also update() will case adaptive NUMA chunk resizing.
   593       assert(young_gen->eden_space()->is_empty(), "eden space should be empty now");
   594       young_gen->eden_space()->update();
   596       heap->gc_policy_counters()->update_counters();
   598       heap->resize_all_tlabs();
   600       assert(young_gen->to_space()->is_empty(), "to space should be empty now");
   601     }
   603     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   605     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
   607     // Re-verify object start arrays
   608     if (VerifyObjectStartArray &&
   609         VerifyAfterGC) {
   610       old_gen->verify_object_start_array();
   611       perm_gen->verify_object_start_array();
   612     }
   614     // Verify all old -> young cards are now precise
   615     if (VerifyRememberedSets) {
   616       // Precise verification will give false positives. Until this is fixed,
   617       // use imprecise verification.
   618       // CardTableExtension::verify_all_young_refs_precise();
   619       CardTableExtension::verify_all_young_refs_imprecise();
   620     }
   622     if (TraceGen0Time) accumulated_time()->stop();
   624     if (PrintGC) {
   625       if (PrintGCDetails) {
   626         // Don't print a GC timestamp here.  This is after the GC so
   627         // would be confusing.
   628         young_gen->print_used_change(young_gen_used_before);
   629       }
   630       heap->print_heap_change(prev_used);
   631     }
   633     // Track memory usage and detect low memory
   634     MemoryService::track_memory_usage();
   635     heap->update_counters();
   637     gc_task_manager()->release_idle_workers();
   638   }
   640   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
   641     HandleMark hm;  // Discard invalid handles created during verification
   642     gclog_or_tty->print(" VerifyAfterGC:");
   643     Universe::verify(false);
   644   }
   646   if (PrintHeapAtGC) {
   647     Universe::print_heap_after_gc();
   648   }
   650   if (ZapUnusedHeapArea) {
   651     young_gen->eden_space()->check_mangled_unused_area_complete();
   652     young_gen->from_space()->check_mangled_unused_area_complete();
   653     young_gen->to_space()->check_mangled_unused_area_complete();
   654   }
   656   scavenge_exit.update();
   658   if (PrintGCTaskTimeStamps) {
   659     tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " " INT64_FORMAT,
   660                   scavenge_entry.ticks(), scavenge_midpoint.ticks(),
   661                   scavenge_exit.ticks());
   662     gc_task_manager()->print_task_time_stamps();
   663   }
   665 #ifdef TRACESPINNING
   666   ParallelTaskTerminator::print_termination_counts();
   667 #endif
   669   return !promotion_failure_occurred;
   670 }
   672 // This method iterates over all objects in the young generation,
   673 // unforwarding markOops. It then restores any preserved mark oops,
   674 // and clears the _preserved_mark_stack.
   675 void PSScavenge::clean_up_failed_promotion() {
   676   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   677   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   678   assert(promotion_failed(), "Sanity");
   680   PSYoungGen* young_gen = heap->young_gen();
   682   {
   683     ResourceMark rm;
   685     // Unforward all pointers in the young gen.
   686     PSPromotionFailedClosure unforward_closure;
   687     young_gen->object_iterate(&unforward_closure);
   689     if (PrintGC && Verbose) {
   690       gclog_or_tty->print_cr("Restoring %d marks", _preserved_oop_stack.size());
   691     }
   693     // Restore any saved marks.
   694     while (!_preserved_oop_stack.is_empty()) {
   695       oop obj      = _preserved_oop_stack.pop();
   696       markOop mark = _preserved_mark_stack.pop();
   697       obj->set_mark(mark);
   698     }
   700     // Clear the preserved mark and oop stack caches.
   701     _preserved_mark_stack.clear(true);
   702     _preserved_oop_stack.clear(true);
   703     _promotion_failed = false;
   704   }
   706   // Reset the PromotionFailureALot counters.
   707   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   708 }
   710 // This method is called whenever an attempt to promote an object
   711 // fails. Some markOops will need preservation, some will not. Note
   712 // that the entire eden is traversed after a failed promotion, with
   713 // all forwarded headers replaced by the default markOop. This means
   714 // it is not neccessary to preserve most markOops.
   715 void PSScavenge::oop_promotion_failed(oop obj, markOop obj_mark) {
   716   _promotion_failed = true;
   717   if (obj_mark->must_be_preserved_for_promotion_failure(obj)) {
   718     // Should use per-worker private stakcs hetre rather than
   719     // locking a common pair of stacks.
   720     ThreadCritical tc;
   721     _preserved_oop_stack.push(obj);
   722     _preserved_mark_stack.push(obj_mark);
   723   }
   724 }
   726 bool PSScavenge::should_attempt_scavenge() {
   727   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   728   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   729   PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   731   if (UsePerfData) {
   732     counters->update_scavenge_skipped(not_skipped);
   733   }
   735   PSYoungGen* young_gen = heap->young_gen();
   736   PSOldGen* old_gen = heap->old_gen();
   738   if (!ScavengeWithObjectsInToSpace) {
   739     // Do not attempt to promote unless to_space is empty
   740     if (!young_gen->to_space()->is_empty()) {
   741       _consecutive_skipped_scavenges++;
   742       if (UsePerfData) {
   743         counters->update_scavenge_skipped(to_space_not_empty);
   744       }
   745       return false;
   746     }
   747   }
   749   // Test to see if the scavenge will likely fail.
   750   PSAdaptiveSizePolicy* policy = heap->size_policy();
   752   // A similar test is done in the policy's should_full_GC().  If this is
   753   // changed, decide if that test should also be changed.
   754   size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes();
   755   size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes());
   756   bool result = promotion_estimate < old_gen->free_in_bytes();
   758   if (PrintGCDetails && Verbose) {
   759     gclog_or_tty->print(result ? "  do scavenge: " : "  skip scavenge: ");
   760     gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
   761       " padded_average_promoted " SIZE_FORMAT
   762       " free in old gen " SIZE_FORMAT,
   763       (size_t) policy->average_promoted_in_bytes(),
   764       (size_t) policy->padded_average_promoted_in_bytes(),
   765       old_gen->free_in_bytes());
   766     if (young_gen->used_in_bytes() <
   767         (size_t) policy->padded_average_promoted_in_bytes()) {
   768       gclog_or_tty->print_cr(" padded_promoted_average is greater"
   769         " than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes());
   770     }
   771   }
   773   if (result) {
   774     _consecutive_skipped_scavenges = 0;
   775   } else {
   776     _consecutive_skipped_scavenges++;
   777     if (UsePerfData) {
   778       counters->update_scavenge_skipped(promoted_too_large);
   779     }
   780   }
   781   return result;
   782 }
   784   // Used to add tasks
   785 GCTaskManager* const PSScavenge::gc_task_manager() {
   786   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
   787    "shouldn't return NULL");
   788   return ParallelScavengeHeap::gc_task_manager();
   789 }
   791 void PSScavenge::initialize() {
   792   // Arguments must have been parsed
   794   if (AlwaysTenure) {
   795     _tenuring_threshold = 0;
   796   } else if (NeverTenure) {
   797     _tenuring_threshold = markOopDesc::max_age + 1;
   798   } else {
   799     // We want to smooth out our startup times for the AdaptiveSizePolicy
   800     _tenuring_threshold = (UseAdaptiveSizePolicy) ? InitialTenuringThreshold :
   801                                                     MaxTenuringThreshold;
   802   }
   804   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   805   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   807   PSYoungGen* young_gen = heap->young_gen();
   808   PSOldGen* old_gen = heap->old_gen();
   809   PSPermGen* perm_gen = heap->perm_gen();
   811   // Set boundary between young_gen and old_gen
   812   assert(perm_gen->reserved().end() <= old_gen->object_space()->bottom(),
   813          "perm above old");
   814   assert(old_gen->reserved().end() <= young_gen->eden_space()->bottom(),
   815          "old above young");
   816   _young_generation_boundary = young_gen->eden_space()->bottom();
   818   // Initialize ref handling object for scavenging.
   819   MemRegion mr = young_gen->reserved();
   821   _ref_processor =
   822     new ReferenceProcessor(mr,                         // span
   823                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
   824                            (int) ParallelGCThreads,    // mt processing degree
   825                            true,                       // mt discovery
   826                            (int) ParallelGCThreads,    // mt discovery degree
   827                            true,                       // atomic_discovery
   828                            NULL,                       // header provides liveness info
   829                            false);                     // next field updates do not need write barrier
   831   // Cache the cardtable
   832   BarrierSet* bs = Universe::heap()->barrier_set();
   833   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   834   _card_table = (CardTableExtension*)bs;
   836   _counters = new CollectorCounters("PSScavenge", 0);
   837 }

mercurial