src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Tue, 09 Aug 2011 10:16:01 -0700

author
jmasa
date
Tue, 09 Aug 2011 10:16:01 -0700
changeset 3294
bca17e38de00
parent 3289
a88de71c4e3a
child 3295
00dd86e542eb
permissions
-rw-r--r--

6593758: RFE: Enhance GC ergonomics to dynamically choose ParallelGCThreads
Summary: Select number of GC threads dynamically based on heap usage and number of Java threads
Reviewed-by: johnc, ysr, jcoomes

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "memory/collectorPolicy.hpp"
    32 // A G1CollectorPolicy makes policy decisions that determine the
    33 // characteristics of the collector.  Examples include:
    34 //   * choice of collection set.
    35 //   * when to collect.
    37 class HeapRegion;
    38 class CollectionSetChooser;
    40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    41 // over and over again and introducing subtle problems through small typos and
    42 // cutting and pasting mistakes. The macros below introduces a number
    43 // sequnce into the following two classes and the methods that access it.
    45 #define define_num_seq(name)                                                  \
    46 private:                                                                      \
    47   NumberSeq _all_##name##_times_ms;                                           \
    48 public:                                                                       \
    49   void record_##name##_time_ms(double ms) {                                   \
    50     _all_##name##_times_ms.add(ms);                                           \
    51   }                                                                           \
    52   NumberSeq* get_##name##_seq() {                                             \
    53     return &_all_##name##_times_ms;                                           \
    54   }
    56 class MainBodySummary;
    58 class PauseSummary: public CHeapObj {
    59   define_num_seq(total)
    60     define_num_seq(other)
    62 public:
    63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    64 };
    66 class MainBodySummary: public CHeapObj {
    67   define_num_seq(satb_drain) // optional
    68   define_num_seq(parallel) // parallel only
    69     define_num_seq(ext_root_scan)
    70     define_num_seq(mark_stack_scan)
    71     define_num_seq(update_rs)
    72     define_num_seq(scan_rs)
    73     define_num_seq(obj_copy)
    74     define_num_seq(termination) // parallel only
    75     define_num_seq(parallel_other) // parallel only
    76   define_num_seq(mark_closure)
    77   define_num_seq(clear_ct)
    78 };
    80 class Summary: public PauseSummary,
    81                public MainBodySummary {
    82 public:
    83   virtual MainBodySummary*    main_body_summary()    { return this; }
    84 };
    86 class G1CollectorPolicy: public CollectorPolicy {
    87 private:
    88   // either equal to the number of parallel threads, if ParallelGCThreads
    89   // has been set, or 1 otherwise
    90   int _parallel_gc_threads;
    92   // The number of GC threads currently active.
    93   uintx _no_of_gc_threads;
    95   enum SomePrivateConstants {
    96     NumPrevPausesForHeuristics = 10
    97   };
    99   G1MMUTracker* _mmu_tracker;
   101   void initialize_flags();
   103   void initialize_all() {
   104     initialize_flags();
   105     initialize_size_info();
   106     initialize_perm_generation(PermGen::MarkSweepCompact);
   107   }
   109   CollectionSetChooser* _collectionSetChooser;
   111   double _cur_collection_start_sec;
   112   size_t _cur_collection_pause_used_at_start_bytes;
   113   size_t _cur_collection_pause_used_regions_at_start;
   114   size_t _prev_collection_pause_used_at_end_bytes;
   115   double _cur_collection_par_time_ms;
   116   double _cur_satb_drain_time_ms;
   117   double _cur_clear_ct_time_ms;
   118   double _cur_ref_proc_time_ms;
   119   double _cur_ref_enq_time_ms;
   121 #ifndef PRODUCT
   122   // Card Table Count Cache stats
   123   double _min_clear_cc_time_ms;         // min
   124   double _max_clear_cc_time_ms;         // max
   125   double _cur_clear_cc_time_ms;         // clearing time during current pause
   126   double _cum_clear_cc_time_ms;         // cummulative clearing time
   127   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   128 #endif
   130   // These exclude marking times.
   131   TruncatedSeq* _recent_gc_times_ms;
   133   TruncatedSeq* _concurrent_mark_remark_times_ms;
   134   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   136   Summary*           _summary;
   138   NumberSeq* _all_pause_times_ms;
   139   NumberSeq* _all_full_gc_times_ms;
   140   double _stop_world_start;
   141   NumberSeq* _all_stop_world_times_ms;
   142   NumberSeq* _all_yield_times_ms;
   144   int        _aux_num;
   145   NumberSeq* _all_aux_times_ms;
   146   double*    _cur_aux_start_times_ms;
   147   double*    _cur_aux_times_ms;
   148   bool*      _cur_aux_times_set;
   150   double* _par_last_gc_worker_start_times_ms;
   151   double* _par_last_ext_root_scan_times_ms;
   152   double* _par_last_mark_stack_scan_times_ms;
   153   double* _par_last_update_rs_times_ms;
   154   double* _par_last_update_rs_processed_buffers;
   155   double* _par_last_scan_rs_times_ms;
   156   double* _par_last_obj_copy_times_ms;
   157   double* _par_last_termination_times_ms;
   158   double* _par_last_termination_attempts;
   159   double* _par_last_gc_worker_end_times_ms;
   160   double* _par_last_gc_worker_times_ms;
   162   // Each workers 'other' time i.e. the elapsed time of the parallel
   163   // phase of the pause minus the sum of the individual sub-phase
   164   // times for a given worker thread.
   165   double* _par_last_gc_worker_other_times_ms;
   167   // indicates whether we are in full young or partially young GC mode
   168   bool _full_young_gcs;
   170   // if true, then it tries to dynamically adjust the length of the
   171   // young list
   172   bool _adaptive_young_list_length;
   173   size_t _young_list_target_length;
   174   size_t _young_list_fixed_length;
   175   size_t _prev_eden_capacity; // used for logging
   177   // The max number of regions we can extend the eden by while the GC
   178   // locker is active. This should be >= _young_list_target_length;
   179   size_t _young_list_max_length;
   181   bool   _last_young_gc_full;
   183   unsigned              _full_young_pause_num;
   184   unsigned              _partial_young_pause_num;
   186   bool                  _during_marking;
   187   bool                  _in_marking_window;
   188   bool                  _in_marking_window_im;
   190   SurvRateGroup*        _short_lived_surv_rate_group;
   191   SurvRateGroup*        _survivor_surv_rate_group;
   192   // add here any more surv rate groups
   194   double                _gc_overhead_perc;
   196   double _reserve_factor;
   197   size_t _reserve_regions;
   199   bool during_marking() {
   200     return _during_marking;
   201   }
   203 private:
   204   enum PredictionConstants {
   205     TruncatedSeqLength = 10
   206   };
   208   TruncatedSeq* _alloc_rate_ms_seq;
   209   double        _prev_collection_pause_end_ms;
   211   TruncatedSeq* _pending_card_diff_seq;
   212   TruncatedSeq* _rs_length_diff_seq;
   213   TruncatedSeq* _cost_per_card_ms_seq;
   214   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   215   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   216   TruncatedSeq* _cost_per_entry_ms_seq;
   217   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   218   TruncatedSeq* _cost_per_byte_ms_seq;
   219   TruncatedSeq* _constant_other_time_ms_seq;
   220   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   221   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   223   TruncatedSeq* _pending_cards_seq;
   224   TruncatedSeq* _rs_lengths_seq;
   226   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   228   TruncatedSeq* _young_gc_eff_seq;
   230   bool   _using_new_ratio_calculations;
   231   size_t _min_desired_young_length; // as set on the command line or default calculations
   232   size_t _max_desired_young_length; // as set on the command line or default calculations
   234   size_t _eden_cset_region_length;
   235   size_t _survivor_cset_region_length;
   236   size_t _old_cset_region_length;
   238   void init_cset_region_lengths(size_t eden_cset_region_length,
   239                                 size_t survivor_cset_region_length);
   241   size_t eden_cset_region_length()     { return _eden_cset_region_length;     }
   242   size_t survivor_cset_region_length() { return _survivor_cset_region_length; }
   243   size_t old_cset_region_length()      { return _old_cset_region_length;      }
   245   size_t _free_regions_at_end_of_collection;
   247   size_t _recorded_rs_lengths;
   248   size_t _max_rs_lengths;
   250   double _recorded_young_free_cset_time_ms;
   251   double _recorded_non_young_free_cset_time_ms;
   253   double _sigma;
   254   double _expensive_region_limit_ms;
   256   size_t _rs_lengths_prediction;
   258   size_t _known_garbage_bytes;
   259   double _known_garbage_ratio;
   261   double sigma() {
   262     return _sigma;
   263   }
   265   // A function that prevents us putting too much stock in small sample
   266   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   267   // of samples.  5 or more samples yields one; fewer scales linearly from
   268   // 2.0 at 1 sample to 1.0 at 5.
   269   double confidence_factor(int samples) {
   270     if (samples > 4) return 1.0;
   271     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   272   }
   274   double get_new_neg_prediction(TruncatedSeq* seq) {
   275     return seq->davg() - sigma() * seq->dsd();
   276   }
   278 #ifndef PRODUCT
   279   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   280 #endif // PRODUCT
   282   void adjust_concurrent_refinement(double update_rs_time,
   283                                     double update_rs_processed_buffers,
   284                                     double goal_ms);
   286   uintx no_of_gc_threads() { return _no_of_gc_threads; }
   287   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
   289   double _pause_time_target_ms;
   290   double _recorded_young_cset_choice_time_ms;
   291   double _recorded_non_young_cset_choice_time_ms;
   292   size_t _pending_cards;
   293   size_t _max_pending_cards;
   295 public:
   296   // Accessors
   298   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
   299     hr->set_young();
   300     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   301     hr->set_young_index_in_cset(young_index_in_cset);
   302   }
   304   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
   305     assert(hr->is_young() && hr->is_survivor(), "pre-condition");
   306     hr->install_surv_rate_group(_survivor_surv_rate_group);
   307     hr->set_young_index_in_cset(young_index_in_cset);
   308   }
   310 #ifndef PRODUCT
   311   bool verify_young_ages();
   312 #endif // PRODUCT
   314   double get_new_prediction(TruncatedSeq* seq) {
   315     return MAX2(seq->davg() + sigma() * seq->dsd(),
   316                 seq->davg() * confidence_factor(seq->num()));
   317   }
   319   void record_max_rs_lengths(size_t rs_lengths) {
   320     _max_rs_lengths = rs_lengths;
   321   }
   323   size_t predict_pending_card_diff() {
   324     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   325     if (prediction < 0.00001)
   326       return 0;
   327     else
   328       return (size_t) prediction;
   329   }
   331   size_t predict_pending_cards() {
   332     size_t max_pending_card_num = _g1->max_pending_card_num();
   333     size_t diff = predict_pending_card_diff();
   334     size_t prediction;
   335     if (diff > max_pending_card_num)
   336       prediction = max_pending_card_num;
   337     else
   338       prediction = max_pending_card_num - diff;
   340     return prediction;
   341   }
   343   size_t predict_rs_length_diff() {
   344     return (size_t) get_new_prediction(_rs_length_diff_seq);
   345   }
   347   double predict_alloc_rate_ms() {
   348     return get_new_prediction(_alloc_rate_ms_seq);
   349   }
   351   double predict_cost_per_card_ms() {
   352     return get_new_prediction(_cost_per_card_ms_seq);
   353   }
   355   double predict_rs_update_time_ms(size_t pending_cards) {
   356     return (double) pending_cards * predict_cost_per_card_ms();
   357   }
   359   double predict_fully_young_cards_per_entry_ratio() {
   360     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   361   }
   363   double predict_partially_young_cards_per_entry_ratio() {
   364     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   365       return predict_fully_young_cards_per_entry_ratio();
   366     else
   367       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   368   }
   370   size_t predict_young_card_num(size_t rs_length) {
   371     return (size_t) ((double) rs_length *
   372                      predict_fully_young_cards_per_entry_ratio());
   373   }
   375   size_t predict_non_young_card_num(size_t rs_length) {
   376     return (size_t) ((double) rs_length *
   377                      predict_partially_young_cards_per_entry_ratio());
   378   }
   380   double predict_rs_scan_time_ms(size_t card_num) {
   381     if (full_young_gcs())
   382       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   383     else
   384       return predict_partially_young_rs_scan_time_ms(card_num);
   385   }
   387   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   388     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   389       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   390     else
   391       return (double) card_num *
   392         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   393   }
   395   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   396     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   397       return 1.1 * (double) bytes_to_copy *
   398         get_new_prediction(_cost_per_byte_ms_seq);
   399     else
   400       return (double) bytes_to_copy *
   401         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   402   }
   404   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   405     if (_in_marking_window && !_in_marking_window_im)
   406       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   407     else
   408       return (double) bytes_to_copy *
   409         get_new_prediction(_cost_per_byte_ms_seq);
   410   }
   412   double predict_constant_other_time_ms() {
   413     return get_new_prediction(_constant_other_time_ms_seq);
   414   }
   416   double predict_young_other_time_ms(size_t young_num) {
   417     return
   418       (double) young_num *
   419       get_new_prediction(_young_other_cost_per_region_ms_seq);
   420   }
   422   double predict_non_young_other_time_ms(size_t non_young_num) {
   423     return
   424       (double) non_young_num *
   425       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   426   }
   428   void check_if_region_is_too_expensive(double predicted_time_ms);
   430   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   431   double predict_base_elapsed_time_ms(size_t pending_cards);
   432   double predict_base_elapsed_time_ms(size_t pending_cards,
   433                                       size_t scanned_cards);
   434   size_t predict_bytes_to_copy(HeapRegion* hr);
   435   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   437   void set_recorded_rs_lengths(size_t rs_lengths);
   439   size_t cset_region_length()       { return young_cset_region_length() +
   440                                              old_cset_region_length(); }
   441   size_t young_cset_region_length() { return eden_cset_region_length() +
   442                                              survivor_cset_region_length(); }
   444   void record_young_free_cset_time_ms(double time_ms) {
   445     _recorded_young_free_cset_time_ms = time_ms;
   446   }
   448   void record_non_young_free_cset_time_ms(double time_ms) {
   449     _recorded_non_young_free_cset_time_ms = time_ms;
   450   }
   452   double predict_young_gc_eff() {
   453     return get_new_neg_prediction(_young_gc_eff_seq);
   454   }
   456   double predict_survivor_regions_evac_time();
   458   void cset_regions_freed() {
   459     bool propagate = _last_young_gc_full && !_in_marking_window;
   460     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   461     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   462     // also call it on any more surv rate groups
   463   }
   465   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   466     _known_garbage_bytes = known_garbage_bytes;
   467     size_t heap_bytes = _g1->capacity();
   468     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   469   }
   471   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   472     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   474     _known_garbage_bytes -= known_garbage_bytes;
   475     size_t heap_bytes = _g1->capacity();
   476     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   477   }
   479   G1MMUTracker* mmu_tracker() {
   480     return _mmu_tracker;
   481   }
   483   double max_pause_time_ms() {
   484     return _mmu_tracker->max_gc_time() * 1000.0;
   485   }
   487   double predict_remark_time_ms() {
   488     return get_new_prediction(_concurrent_mark_remark_times_ms);
   489   }
   491   double predict_cleanup_time_ms() {
   492     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   493   }
   495   // Returns an estimate of the survival rate of the region at yg-age
   496   // "yg_age".
   497   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   498     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   499     if (seq->num() == 0)
   500       gclog_or_tty->print("BARF! age is %d", age);
   501     guarantee( seq->num() > 0, "invariant" );
   502     double pred = get_new_prediction(seq);
   503     if (pred > 1.0)
   504       pred = 1.0;
   505     return pred;
   506   }
   508   double predict_yg_surv_rate(int age) {
   509     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   510   }
   512   double accum_yg_surv_rate_pred(int age) {
   513     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   514   }
   516 private:
   517   void print_stats(int level, const char* str, double value);
   518   void print_stats(int level, const char* str, int value);
   520   void print_par_stats(int level, const char* str, double* data);
   521   void print_par_sizes(int level, const char* str, double* data);
   523   void check_other_times(int level,
   524                          NumberSeq* other_times_ms,
   525                          NumberSeq* calc_other_times_ms) const;
   527   void print_summary (PauseSummary* stats) const;
   529   void print_summary (int level, const char* str, NumberSeq* seq) const;
   530   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   532   double avg_value (double* data);
   533   double max_value (double* data);
   534   double sum_of_values (double* data);
   535   double max_sum (double* data1, double* data2);
   537   int _last_satb_drain_processed_buffers;
   538   double _last_pause_time_ms;
   540   size_t _bytes_in_collection_set_before_gc;
   541   size_t _bytes_copied_during_gc;
   543   // Used to count used bytes in CS.
   544   friend class CountCSClosure;
   546   // Statistics kept per GC stoppage, pause or full.
   547   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   549   // Add a new GC of the given duration and end time to the record.
   550   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   552   // The head of the list (via "next_in_collection_set()") representing the
   553   // current collection set. Set from the incrementally built collection
   554   // set at the start of the pause.
   555   HeapRegion* _collection_set;
   557   // The number of bytes in the collection set before the pause. Set from
   558   // the incrementally built collection set at the start of an evacuation
   559   // pause.
   560   size_t _collection_set_bytes_used_before;
   562   // The associated information that is maintained while the incremental
   563   // collection set is being built with young regions. Used to populate
   564   // the recorded info for the evacuation pause.
   566   enum CSetBuildType {
   567     Active,             // We are actively building the collection set
   568     Inactive            // We are not actively building the collection set
   569   };
   571   CSetBuildType _inc_cset_build_state;
   573   // The head of the incrementally built collection set.
   574   HeapRegion* _inc_cset_head;
   576   // The tail of the incrementally built collection set.
   577   HeapRegion* _inc_cset_tail;
   579   // The number of bytes in the incrementally built collection set.
   580   // Used to set _collection_set_bytes_used_before at the start of
   581   // an evacuation pause.
   582   size_t _inc_cset_bytes_used_before;
   584   // Used to record the highest end of heap region in collection set
   585   HeapWord* _inc_cset_max_finger;
   587   // The RSet lengths recorded for regions in the collection set
   588   // (updated by the periodic sampling of the regions in the
   589   // young list/collection set).
   590   size_t _inc_cset_recorded_rs_lengths;
   592   // The predicted elapsed time it will take to collect the regions
   593   // in the collection set (updated by the periodic sampling of the
   594   // regions in the young list/collection set).
   595   double _inc_cset_predicted_elapsed_time_ms;
   597   // Stash a pointer to the g1 heap.
   598   G1CollectedHeap* _g1;
   600   // The ratio of gc time to elapsed time, computed over recent pauses.
   601   double _recent_avg_pause_time_ratio;
   603   double recent_avg_pause_time_ratio() {
   604     return _recent_avg_pause_time_ratio;
   605   }
   607   // At the end of a pause we check the heap occupancy and we decide
   608   // whether we will start a marking cycle during the next pause. If
   609   // we decide that we want to do that, we will set this parameter to
   610   // true. So, this parameter will stay true between the end of a
   611   // pause and the beginning of a subsequent pause (not necessarily
   612   // the next one, see the comments on the next field) when we decide
   613   // that we will indeed start a marking cycle and do the initial-mark
   614   // work.
   615   volatile bool _initiate_conc_mark_if_possible;
   617   // If initiate_conc_mark_if_possible() is set at the beginning of a
   618   // pause, it is a suggestion that the pause should start a marking
   619   // cycle by doing the initial-mark work. However, it is possible
   620   // that the concurrent marking thread is still finishing up the
   621   // previous marking cycle (e.g., clearing the next marking
   622   // bitmap). If that is the case we cannot start a new cycle and
   623   // we'll have to wait for the concurrent marking thread to finish
   624   // what it is doing. In this case we will postpone the marking cycle
   625   // initiation decision for the next pause. When we eventually decide
   626   // to start a cycle, we will set _during_initial_mark_pause which
   627   // will stay true until the end of the initial-mark pause and it's
   628   // the condition that indicates that a pause is doing the
   629   // initial-mark work.
   630   volatile bool _during_initial_mark_pause;
   632   bool _should_revert_to_full_young_gcs;
   633   bool _last_full_young_gc;
   635   // This set of variables tracks the collector efficiency, in order to
   636   // determine whether we should initiate a new marking.
   637   double _cur_mark_stop_world_time_ms;
   638   double _mark_remark_start_sec;
   639   double _mark_cleanup_start_sec;
   640   double _mark_closure_time_ms;
   642   // Update the young list target length either by setting it to the
   643   // desired fixed value or by calculating it using G1's pause
   644   // prediction model. If no rs_lengths parameter is passed, predict
   645   // the RS lengths using the prediction model, otherwise use the
   646   // given rs_lengths as the prediction.
   647   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
   649   // Calculate and return the minimum desired young list target
   650   // length. This is the minimum desired young list length according
   651   // to the user's inputs.
   652   size_t calculate_young_list_desired_min_length(size_t base_min_length);
   654   // Calculate and return the maximum desired young list target
   655   // length. This is the maximum desired young list length according
   656   // to the user's inputs.
   657   size_t calculate_young_list_desired_max_length();
   659   // Calculate and return the maximum young list target length that
   660   // can fit into the pause time goal. The parameters are: rs_lengths
   661   // represent the prediction of how large the young RSet lengths will
   662   // be, base_min_length is the alreay existing number of regions in
   663   // the young list, min_length and max_length are the desired min and
   664   // max young list length according to the user's inputs.
   665   size_t calculate_young_list_target_length(size_t rs_lengths,
   666                                             size_t base_min_length,
   667                                             size_t desired_min_length,
   668                                             size_t desired_max_length);
   670   // Check whether a given young length (young_length) fits into the
   671   // given target pause time and whether the prediction for the amount
   672   // of objects to be copied for the given length will fit into the
   673   // given free space (expressed by base_free_regions).  It is used by
   674   // calculate_young_list_target_length().
   675   bool predict_will_fit(size_t young_length, double base_time_ms,
   676                         size_t base_free_regions, double target_pause_time_ms);
   678   // Count the number of bytes used in the CS.
   679   void count_CS_bytes_used();
   681   void update_young_list_size_using_newratio(size_t number_of_heap_regions);
   683 public:
   685   G1CollectorPolicy();
   687   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   689   virtual CollectorPolicy::Name kind() {
   690     return CollectorPolicy::G1CollectorPolicyKind;
   691   }
   693   // Check the current value of the young list RSet lengths and
   694   // compare it against the last prediction. If the current value is
   695   // higher, recalculate the young list target length prediction.
   696   void revise_young_list_target_length_if_necessary();
   698   size_t bytes_in_collection_set() {
   699     return _bytes_in_collection_set_before_gc;
   700   }
   702   unsigned calc_gc_alloc_time_stamp() {
   703     return _all_pause_times_ms->num() + 1;
   704   }
   706   // This should be called after the heap is resized.
   707   void record_new_heap_size(size_t new_number_of_regions);
   709 public:
   711   void init();
   713   // Create jstat counters for the policy.
   714   virtual void initialize_gc_policy_counters();
   716   virtual HeapWord* mem_allocate_work(size_t size,
   717                                       bool is_tlab,
   718                                       bool* gc_overhead_limit_was_exceeded);
   720   // This method controls how a collector handles one or more
   721   // of its generations being fully allocated.
   722   virtual HeapWord* satisfy_failed_allocation(size_t size,
   723                                               bool is_tlab);
   725   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   727   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   729   // Update the heuristic info to record a collection pause of the given
   730   // start time, where the given number of bytes were used at the start.
   731   // This may involve changing the desired size of a collection set.
   733   void record_stop_world_start();
   735   void record_collection_pause_start(double start_time_sec, size_t start_used);
   737   // Must currently be called while the world is stopped.
   738   void record_concurrent_mark_init_end(double
   739                                            mark_init_elapsed_time_ms);
   741   void record_mark_closure_time(double mark_closure_time_ms);
   743   void record_concurrent_mark_remark_start();
   744   void record_concurrent_mark_remark_end();
   746   void record_concurrent_mark_cleanup_start();
   747   void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
   748   void record_concurrent_mark_cleanup_completed();
   750   void record_concurrent_pause();
   751   void record_concurrent_pause_end();
   753   void record_collection_pause_end(int no_of_gc_threads);
   754   void print_heap_transition();
   756   // Record the fact that a full collection occurred.
   757   void record_full_collection_start();
   758   void record_full_collection_end();
   760   void record_gc_worker_start_time(int worker_i, double ms) {
   761     _par_last_gc_worker_start_times_ms[worker_i] = ms;
   762   }
   764   void record_ext_root_scan_time(int worker_i, double ms) {
   765     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   766   }
   768   void record_mark_stack_scan_time(int worker_i, double ms) {
   769     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   770   }
   772   void record_satb_drain_time(double ms) {
   773     assert(_g1->mark_in_progress(), "shouldn't be here otherwise");
   774     _cur_satb_drain_time_ms = ms;
   775   }
   777   void record_satb_drain_processed_buffers(int processed_buffers) {
   778     assert(_g1->mark_in_progress(), "shouldn't be here otherwise");
   779     _last_satb_drain_processed_buffers = processed_buffers;
   780   }
   782   void record_update_rs_time(int thread, double ms) {
   783     _par_last_update_rs_times_ms[thread] = ms;
   784   }
   786   void record_update_rs_processed_buffers (int thread,
   787                                            double processed_buffers) {
   788     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   789   }
   791   void record_scan_rs_time(int thread, double ms) {
   792     _par_last_scan_rs_times_ms[thread] = ms;
   793   }
   795   void reset_obj_copy_time(int thread) {
   796     _par_last_obj_copy_times_ms[thread] = 0.0;
   797   }
   799   void reset_obj_copy_time() {
   800     reset_obj_copy_time(0);
   801   }
   803   void record_obj_copy_time(int thread, double ms) {
   804     _par_last_obj_copy_times_ms[thread] += ms;
   805   }
   807   void record_termination(int thread, double ms, size_t attempts) {
   808     _par_last_termination_times_ms[thread] = ms;
   809     _par_last_termination_attempts[thread] = (double) attempts;
   810   }
   812   void record_gc_worker_end_time(int worker_i, double ms) {
   813     _par_last_gc_worker_end_times_ms[worker_i] = ms;
   814   }
   816   void record_pause_time_ms(double ms) {
   817     _last_pause_time_ms = ms;
   818   }
   820   void record_clear_ct_time(double ms) {
   821     _cur_clear_ct_time_ms = ms;
   822   }
   824   void record_par_time(double ms) {
   825     _cur_collection_par_time_ms = ms;
   826   }
   828   void record_aux_start_time(int i) {
   829     guarantee(i < _aux_num, "should be within range");
   830     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   831   }
   833   void record_aux_end_time(int i) {
   834     guarantee(i < _aux_num, "should be within range");
   835     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   836     _cur_aux_times_set[i] = true;
   837     _cur_aux_times_ms[i] += ms;
   838   }
   840   void record_ref_proc_time(double ms) {
   841     _cur_ref_proc_time_ms = ms;
   842   }
   844   void record_ref_enq_time(double ms) {
   845     _cur_ref_enq_time_ms = ms;
   846   }
   848 #ifndef PRODUCT
   849   void record_cc_clear_time(double ms) {
   850     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   851       _min_clear_cc_time_ms = ms;
   852     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   853       _max_clear_cc_time_ms = ms;
   854     _cur_clear_cc_time_ms = ms;
   855     _cum_clear_cc_time_ms += ms;
   856     _num_cc_clears++;
   857   }
   858 #endif
   860   // Record how much space we copied during a GC. This is typically
   861   // called when a GC alloc region is being retired.
   862   void record_bytes_copied_during_gc(size_t bytes) {
   863     _bytes_copied_during_gc += bytes;
   864   }
   866   // The amount of space we copied during a GC.
   867   size_t bytes_copied_during_gc() {
   868     return _bytes_copied_during_gc;
   869   }
   871   // Choose a new collection set.  Marks the chosen regions as being
   872   // "in_collection_set", and links them together.  The head and number of
   873   // the collection set are available via access methods.
   874   void choose_collection_set(double target_pause_time_ms);
   876   // The head of the list (via "next_in_collection_set()") representing the
   877   // current collection set.
   878   HeapRegion* collection_set() { return _collection_set; }
   880   void clear_collection_set() { _collection_set = NULL; }
   882   // Add old region "hr" to the CSet.
   883   void add_old_region_to_cset(HeapRegion* hr);
   885   // Incremental CSet Support
   887   // The head of the incrementally built collection set.
   888   HeapRegion* inc_cset_head() { return _inc_cset_head; }
   890   // The tail of the incrementally built collection set.
   891   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
   893   // Initialize incremental collection set info.
   894   void start_incremental_cset_building();
   896   void clear_incremental_cset() {
   897     _inc_cset_head = NULL;
   898     _inc_cset_tail = NULL;
   899   }
   901   // Stop adding regions to the incremental collection set
   902   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
   904   // Add/remove information about hr to the aggregated information
   905   // for the incrementally built collection set.
   906   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
   907   void remove_from_incremental_cset_info(HeapRegion* hr);
   909   // Update information about hr in the aggregated information for
   910   // the incrementally built collection set.
   911   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
   913 private:
   914   // Update the incremental cset information when adding a region
   915   // (should not be called directly).
   916   void add_region_to_incremental_cset_common(HeapRegion* hr);
   918 public:
   919   // Add hr to the LHS of the incremental collection set.
   920   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
   922   // Add hr to the RHS of the incremental collection set.
   923   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
   925 #ifndef PRODUCT
   926   void print_collection_set(HeapRegion* list_head, outputStream* st);
   927 #endif // !PRODUCT
   929   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
   930   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
   931   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
   933   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
   934   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
   935   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
   937   // This sets the initiate_conc_mark_if_possible() flag to start a
   938   // new cycle, as long as we are not already in one. It's best if it
   939   // is called during a safepoint when the test whether a cycle is in
   940   // progress or not is stable.
   941   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
   943   // This is called at the very beginning of an evacuation pause (it
   944   // has to be the first thing that the pause does). If
   945   // initiate_conc_mark_if_possible() is true, and the concurrent
   946   // marking thread has completed its work during the previous cycle,
   947   // it will set during_initial_mark_pause() to so that the pause does
   948   // the initial-mark work and start a marking cycle.
   949   void decide_on_conc_mark_initiation();
   951   // If an expansion would be appropriate, because recent GC overhead had
   952   // exceeded the desired limit, return an amount to expand by.
   953   size_t expansion_amount();
   955 #ifndef PRODUCT
   956   // Check any appropriate marked bytes info, asserting false if
   957   // something's wrong, else returning "true".
   958   bool assertMarkedBytesDataOK();
   959 #endif
   961   // Print tracing information.
   962   void print_tracing_info() const;
   964   // Print stats on young survival ratio
   965   void print_yg_surv_rate_info() const;
   967   void finished_recalculating_age_indexes(bool is_survivors) {
   968     if (is_survivors) {
   969       _survivor_surv_rate_group->finished_recalculating_age_indexes();
   970     } else {
   971       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
   972     }
   973     // do that for any other surv rate groups
   974   }
   976   bool is_young_list_full() {
   977     size_t young_list_length = _g1->young_list()->length();
   978     size_t young_list_target_length = _young_list_target_length;
   979     return young_list_length >= young_list_target_length;
   980   }
   982   bool can_expand_young_list() {
   983     size_t young_list_length = _g1->young_list()->length();
   984     size_t young_list_max_length = _young_list_max_length;
   985     return young_list_length < young_list_max_length;
   986   }
   988   size_t young_list_max_length() {
   989     return _young_list_max_length;
   990   }
   992   bool full_young_gcs() {
   993     return _full_young_gcs;
   994   }
   995   void set_full_young_gcs(bool full_young_gcs) {
   996     _full_young_gcs = full_young_gcs;
   997   }
   999   bool adaptive_young_list_length() {
  1000     return _adaptive_young_list_length;
  1002   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1003     _adaptive_young_list_length = adaptive_young_list_length;
  1006   inline double get_gc_eff_factor() {
  1007     double ratio = _known_garbage_ratio;
  1009     double square = ratio * ratio;
  1010     // square = square * square;
  1011     double ret = square * 9.0 + 1.0;
  1012 #if 0
  1013     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1014 #endif // 0
  1015     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1016     return ret;
  1019 private:
  1020   //
  1021   // Survivor regions policy.
  1022   //
  1024   // Current tenuring threshold, set to 0 if the collector reaches the
  1025   // maximum amount of suvivors regions.
  1026   int _tenuring_threshold;
  1028   // The limit on the number of regions allocated for survivors.
  1029   size_t _max_survivor_regions;
  1031   // For reporting purposes.
  1032   size_t _eden_bytes_before_gc;
  1033   size_t _survivor_bytes_before_gc;
  1034   size_t _capacity_before_gc;
  1036   // The amount of survor regions after a collection.
  1037   size_t _recorded_survivor_regions;
  1038   // List of survivor regions.
  1039   HeapRegion* _recorded_survivor_head;
  1040   HeapRegion* _recorded_survivor_tail;
  1042   ageTable _survivors_age_table;
  1044 public:
  1046   inline GCAllocPurpose
  1047     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1048       if (age < _tenuring_threshold && src_region->is_young()) {
  1049         return GCAllocForSurvived;
  1050       } else {
  1051         return GCAllocForTenured;
  1055   inline bool track_object_age(GCAllocPurpose purpose) {
  1056     return purpose == GCAllocForSurvived;
  1059   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1061   size_t max_regions(int purpose);
  1063   // The limit on regions for a particular purpose is reached.
  1064   void note_alloc_region_limit_reached(int purpose) {
  1065     if (purpose == GCAllocForSurvived) {
  1066       _tenuring_threshold = 0;
  1070   void note_start_adding_survivor_regions() {
  1071     _survivor_surv_rate_group->start_adding_regions();
  1074   void note_stop_adding_survivor_regions() {
  1075     _survivor_surv_rate_group->stop_adding_regions();
  1078   void record_survivor_regions(size_t      regions,
  1079                                HeapRegion* head,
  1080                                HeapRegion* tail) {
  1081     _recorded_survivor_regions = regions;
  1082     _recorded_survivor_head    = head;
  1083     _recorded_survivor_tail    = tail;
  1086   size_t recorded_survivor_regions() {
  1087     return _recorded_survivor_regions;
  1090   void record_thread_age_table(ageTable* age_table)
  1092     _survivors_age_table.merge_par(age_table);
  1095   void update_max_gc_locker_expansion();
  1097   // Calculates survivor space parameters.
  1098   void update_survivors_policy();
  1100 };
  1102 // This should move to some place more general...
  1104 // If we have "n" measurements, and we've kept track of their "sum" and the
  1105 // "sum_of_squares" of the measurements, this returns the variance of the
  1106 // sequence.
  1107 inline double variance(int n, double sum_of_squares, double sum) {
  1108   double n_d = (double)n;
  1109   double avg = sum/n_d;
  1110   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1113 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial