src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Tue, 09 Aug 2011 10:16:01 -0700

author
jmasa
date
Tue, 09 Aug 2011 10:16:01 -0700
changeset 3294
bca17e38de00
parent 3289
a88de71c4e3a
child 3295
00dd86e542eb
permissions
-rw-r--r--

6593758: RFE: Enhance GC ergonomics to dynamically choose ParallelGCThreads
Summary: Select number of GC threads dynamically based on heap usage and number of Java threads
Reviewed-by: johnc, ysr, jcoomes

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    33 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    34 #include "runtime/arguments.hpp"
    35 #include "runtime/java.hpp"
    36 #include "runtime/mutexLocker.hpp"
    37 #include "utilities/debug.hpp"
    39 // Different defaults for different number of GC threads
    40 // They were chosen by running GCOld and SPECjbb on debris with different
    41 //   numbers of GC threads and choosing them based on the results
    43 // all the same
    44 static double rs_length_diff_defaults[] = {
    45   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    46 };
    48 static double cost_per_card_ms_defaults[] = {
    49   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    50 };
    52 // all the same
    53 static double fully_young_cards_per_entry_ratio_defaults[] = {
    54   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    55 };
    57 static double cost_per_entry_ms_defaults[] = {
    58   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    59 };
    61 static double cost_per_byte_ms_defaults[] = {
    62   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    63 };
    65 // these should be pretty consistent
    66 static double constant_other_time_ms_defaults[] = {
    67   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    68 };
    71 static double young_other_cost_per_region_ms_defaults[] = {
    72   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    73 };
    75 static double non_young_other_cost_per_region_ms_defaults[] = {
    76   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    77 };
    79 // Help class for avoiding interleaved logging
    80 class LineBuffer: public StackObj {
    82 private:
    83   static const int BUFFER_LEN = 1024;
    84   static const int INDENT_CHARS = 3;
    85   char _buffer[BUFFER_LEN];
    86   int _indent_level;
    87   int _cur;
    89   void vappend(const char* format, va_list ap) {
    90     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
    91     if (res != -1) {
    92       _cur += res;
    93     } else {
    94       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
    95       _buffer[BUFFER_LEN -1] = 0;
    96       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
    97     }
    98   }
   100 public:
   101   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
   102     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
   103       _buffer[_cur] = ' ';
   104     }
   105   }
   107 #ifndef PRODUCT
   108   ~LineBuffer() {
   109     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
   110   }
   111 #endif
   113   void append(const char* format, ...) {
   114     va_list ap;
   115     va_start(ap, format);
   116     vappend(format, ap);
   117     va_end(ap);
   118   }
   120   void append_and_print_cr(const char* format, ...) {
   121     va_list ap;
   122     va_start(ap, format);
   123     vappend(format, ap);
   124     va_end(ap);
   125     gclog_or_tty->print_cr("%s", _buffer);
   126     _cur = _indent_level * INDENT_CHARS;
   127   }
   128 };
   130 G1CollectorPolicy::G1CollectorPolicy() :
   131   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
   132                         ? ParallelGCThreads : 1),
   134   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   135   _all_pause_times_ms(new NumberSeq()),
   136   _stop_world_start(0.0),
   137   _all_stop_world_times_ms(new NumberSeq()),
   138   _all_yield_times_ms(new NumberSeq()),
   139   _using_new_ratio_calculations(false),
   141   _summary(new Summary()),
   143   _cur_clear_ct_time_ms(0.0),
   145   _cur_ref_proc_time_ms(0.0),
   146   _cur_ref_enq_time_ms(0.0),
   148 #ifndef PRODUCT
   149   _min_clear_cc_time_ms(-1.0),
   150   _max_clear_cc_time_ms(-1.0),
   151   _cur_clear_cc_time_ms(0.0),
   152   _cum_clear_cc_time_ms(0.0),
   153   _num_cc_clears(0L),
   154 #endif
   156   _aux_num(10),
   157   _all_aux_times_ms(new NumberSeq[_aux_num]),
   158   _cur_aux_start_times_ms(new double[_aux_num]),
   159   _cur_aux_times_ms(new double[_aux_num]),
   160   _cur_aux_times_set(new bool[_aux_num]),
   162   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   163   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   165   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   166   _prev_collection_pause_end_ms(0.0),
   167   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   168   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   169   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   170   _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   171   _partially_young_cards_per_entry_ratio_seq(
   172                                          new TruncatedSeq(TruncatedSeqLength)),
   173   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   174   _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   175   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   176   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   177   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   178   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   179   _non_young_other_cost_per_region_ms_seq(
   180                                          new TruncatedSeq(TruncatedSeqLength)),
   182   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   183   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   185   _pause_time_target_ms((double) MaxGCPauseMillis),
   187   _full_young_gcs(true),
   188   _full_young_pause_num(0),
   189   _partial_young_pause_num(0),
   191   _during_marking(false),
   192   _in_marking_window(false),
   193   _in_marking_window_im(false),
   195   _known_garbage_ratio(0.0),
   196   _known_garbage_bytes(0),
   198   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
   200    _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),
   202   _recent_avg_pause_time_ratio(0.0),
   204   _all_full_gc_times_ms(new NumberSeq()),
   206   _initiate_conc_mark_if_possible(false),
   207   _during_initial_mark_pause(false),
   208   _should_revert_to_full_young_gcs(false),
   209   _last_full_young_gc(false),
   211   _eden_bytes_before_gc(0),
   212   _survivor_bytes_before_gc(0),
   213   _capacity_before_gc(0),
   215   _prev_collection_pause_used_at_end_bytes(0),
   217   _eden_cset_region_length(0),
   218   _survivor_cset_region_length(0),
   219   _old_cset_region_length(0),
   221   _collection_set(NULL),
   222   _collection_set_bytes_used_before(0),
   224   // Incremental CSet attributes
   225   _inc_cset_build_state(Inactive),
   226   _inc_cset_head(NULL),
   227   _inc_cset_tail(NULL),
   228   _inc_cset_bytes_used_before(0),
   229   _inc_cset_max_finger(NULL),
   230   _inc_cset_recorded_rs_lengths(0),
   231   _inc_cset_predicted_elapsed_time_ms(0.0),
   233 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   234 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   235 #endif // _MSC_VER
   237   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   238                                                  G1YoungSurvRateNumRegionsSummary)),
   239   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   240                                               G1YoungSurvRateNumRegionsSummary)),
   241   // add here any more surv rate groups
   242   _recorded_survivor_regions(0),
   243   _recorded_survivor_head(NULL),
   244   _recorded_survivor_tail(NULL),
   245   _survivors_age_table(true),
   247   _gc_overhead_perc(0.0) {
   249   // Set up the region size and associated fields. Given that the
   250   // policy is created before the heap, we have to set this up here,
   251   // so it's done as soon as possible.
   252   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   253   HeapRegionRemSet::setup_remset_size();
   255   G1ErgoVerbose::initialize();
   256   if (PrintAdaptiveSizePolicy) {
   257     // Currently, we only use a single switch for all the heuristics.
   258     G1ErgoVerbose::set_enabled(true);
   259     // Given that we don't currently have a verboseness level
   260     // parameter, we'll hardcode this to high. This can be easily
   261     // changed in the future.
   262     G1ErgoVerbose::set_level(ErgoHigh);
   263   } else {
   264     G1ErgoVerbose::set_enabled(false);
   265   }
   267   // Verify PLAB sizes
   268   const size_t region_size = HeapRegion::GrainWords;
   269   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   270     char buffer[128];
   271     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
   272                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   273     vm_exit_during_initialization(buffer);
   274   }
   276   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   277   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   279   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
   280   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
   281   _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];
   283   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
   284   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
   286   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
   288   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
   290   _par_last_termination_times_ms = new double[_parallel_gc_threads];
   291   _par_last_termination_attempts = new double[_parallel_gc_threads];
   292   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
   293   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
   294   _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads];
   296   // start conservatively
   297   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
   299   int index;
   300   if (ParallelGCThreads == 0)
   301     index = 0;
   302   else if (ParallelGCThreads > 8)
   303     index = 7;
   304   else
   305     index = ParallelGCThreads - 1;
   307   _pending_card_diff_seq->add(0.0);
   308   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   309   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   310   _fully_young_cards_per_entry_ratio_seq->add(
   311                             fully_young_cards_per_entry_ratio_defaults[index]);
   312   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   313   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   314   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   315   _young_other_cost_per_region_ms_seq->add(
   316                                young_other_cost_per_region_ms_defaults[index]);
   317   _non_young_other_cost_per_region_ms_seq->add(
   318                            non_young_other_cost_per_region_ms_defaults[index]);
   320   // Below, we might need to calculate the pause time target based on
   321   // the pause interval. When we do so we are going to give G1 maximum
   322   // flexibility and allow it to do pauses when it needs to. So, we'll
   323   // arrange that the pause interval to be pause time target + 1 to
   324   // ensure that a) the pause time target is maximized with respect to
   325   // the pause interval and b) we maintain the invariant that pause
   326   // time target < pause interval. If the user does not want this
   327   // maximum flexibility, they will have to set the pause interval
   328   // explicitly.
   330   // First make sure that, if either parameter is set, its value is
   331   // reasonable.
   332   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   333     if (MaxGCPauseMillis < 1) {
   334       vm_exit_during_initialization("MaxGCPauseMillis should be "
   335                                     "greater than 0");
   336     }
   337   }
   338   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   339     if (GCPauseIntervalMillis < 1) {
   340       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   341                                     "greater than 0");
   342     }
   343   }
   345   // Then, if the pause time target parameter was not set, set it to
   346   // the default value.
   347   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   348     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   349       // The default pause time target in G1 is 200ms
   350       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   351     } else {
   352       // We do not allow the pause interval to be set without the
   353       // pause time target
   354       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   355                                     "without setting MaxGCPauseMillis");
   356     }
   357   }
   359   // Then, if the interval parameter was not set, set it according to
   360   // the pause time target (this will also deal with the case when the
   361   // pause time target is the default value).
   362   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   363     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   364   }
   366   // Finally, make sure that the two parameters are consistent.
   367   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   368     char buffer[256];
   369     jio_snprintf(buffer, 256,
   370                  "MaxGCPauseMillis (%u) should be less than "
   371                  "GCPauseIntervalMillis (%u)",
   372                  MaxGCPauseMillis, GCPauseIntervalMillis);
   373     vm_exit_during_initialization(buffer);
   374   }
   376   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   377   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   378   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   379   _sigma = (double) G1ConfidencePercent / 100.0;
   381   // start conservatively (around 50ms is about right)
   382   _concurrent_mark_remark_times_ms->add(0.05);
   383   _concurrent_mark_cleanup_times_ms->add(0.20);
   384   _tenuring_threshold = MaxTenuringThreshold;
   385   // _max_survivor_regions will be calculated by
   386   // update_young_list_target_length() during initialization.
   387   _max_survivor_regions = 0;
   389   assert(GCTimeRatio > 0,
   390          "we should have set it to a default value set_g1_gc_flags() "
   391          "if a user set it to 0");
   392   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   394   uintx reserve_perc = G1ReservePercent;
   395   // Put an artificial ceiling on this so that it's not set to a silly value.
   396   if (reserve_perc > 50) {
   397     reserve_perc = 50;
   398     warning("G1ReservePercent is set to a value that is too large, "
   399             "it's been updated to %u", reserve_perc);
   400   }
   401   _reserve_factor = (double) reserve_perc / 100.0;
   402   // This will be set when the heap is expanded
   403   // for the first time during initialization.
   404   _reserve_regions = 0;
   406   initialize_all();
   407   _collectionSetChooser = new CollectionSetChooser();
   408 }
   410 // Increment "i", mod "len"
   411 static void inc_mod(int& i, int len) {
   412   i++; if (i == len) i = 0;
   413 }
   415 void G1CollectorPolicy::initialize_flags() {
   416   set_min_alignment(HeapRegion::GrainBytes);
   417   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   418   if (SurvivorRatio < 1) {
   419     vm_exit_during_initialization("Invalid survivor ratio specified");
   420   }
   421   CollectorPolicy::initialize_flags();
   422 }
   424 // The easiest way to deal with the parsing of the NewSize /
   425 // MaxNewSize / etc. parameteres is to re-use the code in the
   426 // TwoGenerationCollectorPolicy class. This is similar to what
   427 // ParallelScavenge does with its GenerationSizer class (see
   428 // ParallelScavengeHeap::initialize()). We might change this in the
   429 // future, but it's a good start.
   430 class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
   431 private:
   432   size_t size_to_region_num(size_t byte_size) {
   433     return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
   434   }
   436 public:
   437   G1YoungGenSizer() {
   438     initialize_flags();
   439     initialize_size_info();
   440   }
   441   size_t min_young_region_num() {
   442     return size_to_region_num(_min_gen0_size);
   443   }
   444   size_t initial_young_region_num() {
   445     return size_to_region_num(_initial_gen0_size);
   446   }
   447   size_t max_young_region_num() {
   448     return size_to_region_num(_max_gen0_size);
   449   }
   450 };
   452 void G1CollectorPolicy::update_young_list_size_using_newratio(size_t number_of_heap_regions) {
   453   assert(number_of_heap_regions > 0, "Heap must be initialized");
   454   size_t young_size = number_of_heap_regions / (NewRatio + 1);
   455   _min_desired_young_length = young_size;
   456   _max_desired_young_length = young_size;
   457 }
   459 void G1CollectorPolicy::init() {
   460   // Set aside an initial future to_space.
   461   _g1 = G1CollectedHeap::heap();
   463   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   465   initialize_gc_policy_counters();
   467   G1YoungGenSizer sizer;
   468   _min_desired_young_length = sizer.min_young_region_num();
   469   _max_desired_young_length = sizer.max_young_region_num();
   471   if (FLAG_IS_CMDLINE(NewRatio)) {
   472     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   473       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   474     } else {
   475       // Treat NewRatio as a fixed size that is only recalculated when the heap size changes
   476       update_young_list_size_using_newratio(_g1->n_regions());
   477       _using_new_ratio_calculations = true;
   478     }
   479   }
   481   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
   483   set_adaptive_young_list_length(_min_desired_young_length < _max_desired_young_length);
   484   if (adaptive_young_list_length()) {
   485     _young_list_fixed_length = 0;
   486   } else {
   487     assert(_min_desired_young_length == _max_desired_young_length, "Min and max young size differ");
   488     _young_list_fixed_length = _min_desired_young_length;
   489   }
   490   _free_regions_at_end_of_collection = _g1->free_regions();
   491   update_young_list_target_length();
   492   _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
   494   // We may immediately start allocating regions and placing them on the
   495   // collection set list. Initialize the per-collection set info
   496   start_incremental_cset_building();
   497 }
   499 // Create the jstat counters for the policy.
   500 void G1CollectorPolicy::initialize_gc_policy_counters() {
   501   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   502 }
   504 bool G1CollectorPolicy::predict_will_fit(size_t young_length,
   505                                          double base_time_ms,
   506                                          size_t base_free_regions,
   507                                          double target_pause_time_ms) {
   508   if (young_length >= base_free_regions) {
   509     // end condition 1: not enough space for the young regions
   510     return false;
   511   }
   513   double accum_surv_rate = accum_yg_surv_rate_pred((int)(young_length - 1));
   514   size_t bytes_to_copy =
   515                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   516   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   517   double young_other_time_ms = predict_young_other_time_ms(young_length);
   518   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   519   if (pause_time_ms > target_pause_time_ms) {
   520     // end condition 2: prediction is over the target pause time
   521     return false;
   522   }
   524   size_t free_bytes =
   525                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
   526   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   527     // end condition 3: out-of-space (conservatively!)
   528     return false;
   529   }
   531   // success!
   532   return true;
   533 }
   535 void G1CollectorPolicy::record_new_heap_size(size_t new_number_of_regions) {
   536   // re-calculate the necessary reserve
   537   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   538   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   539   // smaller than 1.0) we'll get 1.
   540   _reserve_regions = (size_t) ceil(reserve_regions_d);
   542   if (_using_new_ratio_calculations) {
   543     // -XX:NewRatio was specified so we need to update the
   544     // young gen length when the heap size has changed.
   545     update_young_list_size_using_newratio(new_number_of_regions);
   546   }
   547 }
   549 size_t G1CollectorPolicy::calculate_young_list_desired_min_length(
   550                                                      size_t base_min_length) {
   551   size_t desired_min_length = 0;
   552   if (adaptive_young_list_length()) {
   553     if (_alloc_rate_ms_seq->num() > 3) {
   554       double now_sec = os::elapsedTime();
   555       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   556       double alloc_rate_ms = predict_alloc_rate_ms();
   557       desired_min_length = (size_t) ceil(alloc_rate_ms * when_ms);
   558     } else {
   559       // otherwise we don't have enough info to make the prediction
   560     }
   561   }
   562   desired_min_length += base_min_length;
   563   // make sure we don't go below any user-defined minimum bound
   564   return MAX2(_min_desired_young_length, desired_min_length);
   565 }
   567 size_t G1CollectorPolicy::calculate_young_list_desired_max_length() {
   568   // Here, we might want to also take into account any additional
   569   // constraints (i.e., user-defined minimum bound). Currently, we
   570   // effectively don't set this bound.
   571   return _max_desired_young_length;
   572 }
   574 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   575   if (rs_lengths == (size_t) -1) {
   576     // if it's set to the default value (-1), we should predict it;
   577     // otherwise, use the given value.
   578     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   579   }
   581   // Calculate the absolute and desired min bounds.
   583   // This is how many young regions we already have (currently: the survivors).
   584   size_t base_min_length = recorded_survivor_regions();
   585   // This is the absolute minimum young length, which ensures that we
   586   // can allocate one eden region in the worst-case.
   587   size_t absolute_min_length = base_min_length + 1;
   588   size_t desired_min_length =
   589                      calculate_young_list_desired_min_length(base_min_length);
   590   if (desired_min_length < absolute_min_length) {
   591     desired_min_length = absolute_min_length;
   592   }
   594   // Calculate the absolute and desired max bounds.
   596   // We will try our best not to "eat" into the reserve.
   597   size_t absolute_max_length = 0;
   598   if (_free_regions_at_end_of_collection > _reserve_regions) {
   599     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   600   }
   601   size_t desired_max_length = calculate_young_list_desired_max_length();
   602   if (desired_max_length > absolute_max_length) {
   603     desired_max_length = absolute_max_length;
   604   }
   606   size_t young_list_target_length = 0;
   607   if (adaptive_young_list_length()) {
   608     if (full_young_gcs()) {
   609       young_list_target_length =
   610                         calculate_young_list_target_length(rs_lengths,
   611                                                            base_min_length,
   612                                                            desired_min_length,
   613                                                            desired_max_length);
   614       _rs_lengths_prediction = rs_lengths;
   615     } else {
   616       // Don't calculate anything and let the code below bound it to
   617       // the desired_min_length, i.e., do the next GC as soon as
   618       // possible to maximize how many old regions we can add to it.
   619     }
   620   } else {
   621     if (full_young_gcs()) {
   622       young_list_target_length = _young_list_fixed_length;
   623     } else {
   624       // A bit arbitrary: during partially-young GCs we allocate half
   625       // the young regions to try to add old regions to the CSet.
   626       young_list_target_length = _young_list_fixed_length / 2;
   627       // We choose to accept that we might go under the desired min
   628       // length given that we intentionally ask for a smaller young gen.
   629       desired_min_length = absolute_min_length;
   630     }
   631   }
   633   // Make sure we don't go over the desired max length, nor under the
   634   // desired min length. In case they clash, desired_min_length wins
   635   // which is why that test is second.
   636   if (young_list_target_length > desired_max_length) {
   637     young_list_target_length = desired_max_length;
   638   }
   639   if (young_list_target_length < desired_min_length) {
   640     young_list_target_length = desired_min_length;
   641   }
   643   assert(young_list_target_length > recorded_survivor_regions(),
   644          "we should be able to allocate at least one eden region");
   645   assert(young_list_target_length >= absolute_min_length, "post-condition");
   646   _young_list_target_length = young_list_target_length;
   648   update_max_gc_locker_expansion();
   649 }
   651 size_t
   652 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   653                                                    size_t base_min_length,
   654                                                    size_t desired_min_length,
   655                                                    size_t desired_max_length) {
   656   assert(adaptive_young_list_length(), "pre-condition");
   657   assert(full_young_gcs(), "only call this for fully-young GCs");
   659   // In case some edge-condition makes the desired max length too small...
   660   if (desired_max_length <= desired_min_length) {
   661     return desired_min_length;
   662   }
   664   // We'll adjust min_young_length and max_young_length not to include
   665   // the already allocated young regions (i.e., so they reflect the
   666   // min and max eden regions we'll allocate). The base_min_length
   667   // will be reflected in the predictions by the
   668   // survivor_regions_evac_time prediction.
   669   assert(desired_min_length > base_min_length, "invariant");
   670   size_t min_young_length = desired_min_length - base_min_length;
   671   assert(desired_max_length > base_min_length, "invariant");
   672   size_t max_young_length = desired_max_length - base_min_length;
   674   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   675   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   676   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   677   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   678   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   679   double base_time_ms =
   680     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   681     survivor_regions_evac_time;
   682   size_t available_free_regions = _free_regions_at_end_of_collection;
   683   size_t base_free_regions = 0;
   684   if (available_free_regions > _reserve_regions) {
   685     base_free_regions = available_free_regions - _reserve_regions;
   686   }
   688   // Here, we will make sure that the shortest young length that
   689   // makes sense fits within the target pause time.
   691   if (predict_will_fit(min_young_length, base_time_ms,
   692                        base_free_regions, target_pause_time_ms)) {
   693     // The shortest young length will fit into the target pause time;
   694     // we'll now check whether the absolute maximum number of young
   695     // regions will fit in the target pause time. If not, we'll do
   696     // a binary search between min_young_length and max_young_length.
   697     if (predict_will_fit(max_young_length, base_time_ms,
   698                          base_free_regions, target_pause_time_ms)) {
   699       // The maximum young length will fit into the target pause time.
   700       // We are done so set min young length to the maximum length (as
   701       // the result is assumed to be returned in min_young_length).
   702       min_young_length = max_young_length;
   703     } else {
   704       // The maximum possible number of young regions will not fit within
   705       // the target pause time so we'll search for the optimal
   706       // length. The loop invariants are:
   707       //
   708       // min_young_length < max_young_length
   709       // min_young_length is known to fit into the target pause time
   710       // max_young_length is known not to fit into the target pause time
   711       //
   712       // Going into the loop we know the above hold as we've just
   713       // checked them. Every time around the loop we check whether
   714       // the middle value between min_young_length and
   715       // max_young_length fits into the target pause time. If it
   716       // does, it becomes the new min. If it doesn't, it becomes
   717       // the new max. This way we maintain the loop invariants.
   719       assert(min_young_length < max_young_length, "invariant");
   720       size_t diff = (max_young_length - min_young_length) / 2;
   721       while (diff > 0) {
   722         size_t young_length = min_young_length + diff;
   723         if (predict_will_fit(young_length, base_time_ms,
   724                              base_free_regions, target_pause_time_ms)) {
   725           min_young_length = young_length;
   726         } else {
   727           max_young_length = young_length;
   728         }
   729         assert(min_young_length <  max_young_length, "invariant");
   730         diff = (max_young_length - min_young_length) / 2;
   731       }
   732       // The results is min_young_length which, according to the
   733       // loop invariants, should fit within the target pause time.
   735       // These are the post-conditions of the binary search above:
   736       assert(min_young_length < max_young_length,
   737              "otherwise we should have discovered that max_young_length "
   738              "fits into the pause target and not done the binary search");
   739       assert(predict_will_fit(min_young_length, base_time_ms,
   740                               base_free_regions, target_pause_time_ms),
   741              "min_young_length, the result of the binary search, should "
   742              "fit into the pause target");
   743       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   744                                base_free_regions, target_pause_time_ms),
   745              "min_young_length, the result of the binary search, should be "
   746              "optimal, so no larger length should fit into the pause target");
   747     }
   748   } else {
   749     // Even the minimum length doesn't fit into the pause time
   750     // target, return it as the result nevertheless.
   751   }
   752   return base_min_length + min_young_length;
   753 }
   755 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   756   double survivor_regions_evac_time = 0.0;
   757   for (HeapRegion * r = _recorded_survivor_head;
   758        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   759        r = r->get_next_young_region()) {
   760     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
   761   }
   762   return survivor_regions_evac_time;
   763 }
   765 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   766   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   768   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   769   if (rs_lengths > _rs_lengths_prediction) {
   770     // add 10% to avoid having to recalculate often
   771     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   772     update_young_list_target_length(rs_lengths_prediction);
   773   }
   774 }
   778 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   779                                                bool is_tlab,
   780                                                bool* gc_overhead_limit_was_exceeded) {
   781   guarantee(false, "Not using this policy feature yet.");
   782   return NULL;
   783 }
   785 // This method controls how a collector handles one or more
   786 // of its generations being fully allocated.
   787 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   788                                                        bool is_tlab) {
   789   guarantee(false, "Not using this policy feature yet.");
   790   return NULL;
   791 }
   794 #ifndef PRODUCT
   795 bool G1CollectorPolicy::verify_young_ages() {
   796   HeapRegion* head = _g1->young_list()->first_region();
   797   return
   798     verify_young_ages(head, _short_lived_surv_rate_group);
   799   // also call verify_young_ages on any additional surv rate groups
   800 }
   802 bool
   803 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   804                                      SurvRateGroup *surv_rate_group) {
   805   guarantee( surv_rate_group != NULL, "pre-condition" );
   807   const char* name = surv_rate_group->name();
   808   bool ret = true;
   809   int prev_age = -1;
   811   for (HeapRegion* curr = head;
   812        curr != NULL;
   813        curr = curr->get_next_young_region()) {
   814     SurvRateGroup* group = curr->surv_rate_group();
   815     if (group == NULL && !curr->is_survivor()) {
   816       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   817       ret = false;
   818     }
   820     if (surv_rate_group == group) {
   821       int age = curr->age_in_surv_rate_group();
   823       if (age < 0) {
   824         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   825         ret = false;
   826       }
   828       if (age <= prev_age) {
   829         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   830                                "(%d, %d)", name, age, prev_age);
   831         ret = false;
   832       }
   833       prev_age = age;
   834     }
   835   }
   837   return ret;
   838 }
   839 #endif // PRODUCT
   841 void G1CollectorPolicy::record_full_collection_start() {
   842   _cur_collection_start_sec = os::elapsedTime();
   843   // Release the future to-space so that it is available for compaction into.
   844   _g1->set_full_collection();
   845 }
   847 void G1CollectorPolicy::record_full_collection_end() {
   848   // Consider this like a collection pause for the purposes of allocation
   849   // since last pause.
   850   double end_sec = os::elapsedTime();
   851   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
   852   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   854   _all_full_gc_times_ms->add(full_gc_time_ms);
   856   update_recent_gc_times(end_sec, full_gc_time_ms);
   858   _g1->clear_full_collection();
   860   // "Nuke" the heuristics that control the fully/partially young GC
   861   // transitions and make sure we start with fully young GCs after the
   862   // Full GC.
   863   set_full_young_gcs(true);
   864   _last_full_young_gc = false;
   865   _should_revert_to_full_young_gcs = false;
   866   clear_initiate_conc_mark_if_possible();
   867   clear_during_initial_mark_pause();
   868   _known_garbage_bytes = 0;
   869   _known_garbage_ratio = 0.0;
   870   _in_marking_window = false;
   871   _in_marking_window_im = false;
   873   _short_lived_surv_rate_group->start_adding_regions();
   874   // also call this on any additional surv rate groups
   876   record_survivor_regions(0, NULL, NULL);
   878   _free_regions_at_end_of_collection = _g1->free_regions();
   879   // Reset survivors SurvRateGroup.
   880   _survivor_surv_rate_group->reset();
   881   update_young_list_target_length();
   882   _collectionSetChooser->updateAfterFullCollection();
   883 }
   885 void G1CollectorPolicy::record_stop_world_start() {
   886   _stop_world_start = os::elapsedTime();
   887 }
   889 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
   890                                                       size_t start_used) {
   891   if (PrintGCDetails) {
   892     gclog_or_tty->stamp(PrintGCTimeStamps);
   893     gclog_or_tty->print("[GC pause");
   894     gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
   895   }
   897   // We only need to do this here as the policy will only be applied
   898   // to the GC we're about to start. so, no point is calculating this
   899   // every time we calculate / recalculate the target young length.
   900   update_survivors_policy();
   902   assert(_g1->used() == _g1->recalculate_used(),
   903          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   904                  _g1->used(), _g1->recalculate_used()));
   906   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   907   _all_stop_world_times_ms->add(s_w_t_ms);
   908   _stop_world_start = 0.0;
   910   _cur_collection_start_sec = start_time_sec;
   911   _cur_collection_pause_used_at_start_bytes = start_used;
   912   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
   913   _pending_cards = _g1->pending_card_num();
   914   _max_pending_cards = _g1->max_pending_card_num();
   916   _bytes_in_collection_set_before_gc = 0;
   917   _bytes_copied_during_gc = 0;
   919   YoungList* young_list = _g1->young_list();
   920   _eden_bytes_before_gc = young_list->eden_used_bytes();
   921   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
   922   _capacity_before_gc = _g1->capacity();
   924 #ifdef DEBUG
   925   // initialise these to something well known so that we can spot
   926   // if they are not set properly
   928   for (int i = 0; i < _parallel_gc_threads; ++i) {
   929     _par_last_gc_worker_start_times_ms[i] = -1234.0;
   930     _par_last_ext_root_scan_times_ms[i] = -1234.0;
   931     _par_last_mark_stack_scan_times_ms[i] = -1234.0;
   932     _par_last_update_rs_times_ms[i] = -1234.0;
   933     _par_last_update_rs_processed_buffers[i] = -1234.0;
   934     _par_last_scan_rs_times_ms[i] = -1234.0;
   935     _par_last_obj_copy_times_ms[i] = -1234.0;
   936     _par_last_termination_times_ms[i] = -1234.0;
   937     _par_last_termination_attempts[i] = -1234.0;
   938     _par_last_gc_worker_end_times_ms[i] = -1234.0;
   939     _par_last_gc_worker_times_ms[i] = -1234.0;
   940     _par_last_gc_worker_other_times_ms[i] = -1234.0;
   941   }
   942 #endif
   944   for (int i = 0; i < _aux_num; ++i) {
   945     _cur_aux_times_ms[i] = 0.0;
   946     _cur_aux_times_set[i] = false;
   947   }
   949   // These are initialized to zero here and they are set during
   950   // the evacuation pause if marking is in progress.
   951   _cur_satb_drain_time_ms = 0.0;
   952   _last_satb_drain_processed_buffers = 0;
   954   _last_young_gc_full = false;
   956   // do that for any other surv rate groups
   957   _short_lived_surv_rate_group->stop_adding_regions();
   958   _survivors_age_table.clear();
   960   assert( verify_young_ages(), "region age verification" );
   961 }
   963 void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
   964   _mark_closure_time_ms = mark_closure_time_ms;
   965 }
   967 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   968                                                    mark_init_elapsed_time_ms) {
   969   _during_marking = true;
   970   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   971   clear_during_initial_mark_pause();
   972   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   973 }
   975 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   976   _mark_remark_start_sec = os::elapsedTime();
   977   _during_marking = false;
   978 }
   980 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   981   double end_time_sec = os::elapsedTime();
   982   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   983   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   984   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   985   _prev_collection_pause_end_ms += elapsed_time_ms;
   987   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   988 }
   990 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   991   _mark_cleanup_start_sec = os::elapsedTime();
   992 }
   994 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   995   _should_revert_to_full_young_gcs = false;
   996   _last_full_young_gc = true;
   997   _in_marking_window = false;
   998 }
  1000 void G1CollectorPolicy::record_concurrent_pause() {
  1001   if (_stop_world_start > 0.0) {
  1002     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
  1003     _all_yield_times_ms->add(yield_ms);
  1007 void G1CollectorPolicy::record_concurrent_pause_end() {
  1010 template<class T>
  1011 T sum_of(T* sum_arr, int start, int n, int N) {
  1012   T sum = (T)0;
  1013   for (int i = 0; i < n; i++) {
  1014     int j = (start + i) % N;
  1015     sum += sum_arr[j];
  1017   return sum;
  1020 void G1CollectorPolicy::print_par_stats(int level,
  1021                                         const char* str,
  1022                                         double* data) {
  1023   double min = data[0], max = data[0];
  1024   double total = 0.0;
  1025   LineBuffer buf(level);
  1026   buf.append("[%s (ms):", str);
  1027   for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1028     double val = data[i];
  1029     if (val < min)
  1030       min = val;
  1031     if (val > max)
  1032       max = val;
  1033     total += val;
  1034     buf.append("  %3.1lf", val);
  1036   buf.append_and_print_cr("");
  1037   double avg = total / (double) no_of_gc_threads();
  1038   buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
  1039     avg, min, max, max - min);
  1042 void G1CollectorPolicy::print_par_sizes(int level,
  1043                                         const char* str,
  1044                                         double* data) {
  1045   double min = data[0], max = data[0];
  1046   double total = 0.0;
  1047   LineBuffer buf(level);
  1048   buf.append("[%s :", str);
  1049   for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1050     double val = data[i];
  1051     if (val < min)
  1052       min = val;
  1053     if (val > max)
  1054       max = val;
  1055     total += val;
  1056     buf.append(" %d", (int) val);
  1058   buf.append_and_print_cr("");
  1059   double avg = total / (double) no_of_gc_threads();
  1060   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
  1061     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
  1064 void G1CollectorPolicy::print_stats(int level,
  1065                                     const char* str,
  1066                                     double value) {
  1067   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
  1070 void G1CollectorPolicy::print_stats(int level,
  1071                                     const char* str,
  1072                                     int value) {
  1073   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
  1076 double G1CollectorPolicy::avg_value(double* data) {
  1077   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1078     double ret = 0.0;
  1079     for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1080       ret += data[i];
  1082     return ret / (double) no_of_gc_threads();
  1083   } else {
  1084     return data[0];
  1088 double G1CollectorPolicy::max_value(double* data) {
  1089   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1090     double ret = data[0];
  1091     for (uint i = 1; i < no_of_gc_threads(); ++i) {
  1092       if (data[i] > ret) {
  1093         ret = data[i];
  1096     return ret;
  1097   } else {
  1098     return data[0];
  1102 double G1CollectorPolicy::sum_of_values(double* data) {
  1103   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1104     double sum = 0.0;
  1105     for (uint i = 0; i < no_of_gc_threads(); i++) {
  1106       sum += data[i];
  1108     return sum;
  1109   } else {
  1110     return data[0];
  1114 double G1CollectorPolicy::max_sum(double* data1, double* data2) {
  1115   double ret = data1[0] + data2[0];
  1117   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1118     for (uint i = 1; i < no_of_gc_threads(); ++i) {
  1119       double data = data1[i] + data2[i];
  1120       if (data > ret) {
  1121         ret = data;
  1125   return ret;
  1128 // Anything below that is considered to be zero
  1129 #define MIN_TIMER_GRANULARITY 0.0000001
  1131 void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) {
  1132   double end_time_sec = os::elapsedTime();
  1133   double elapsed_ms = _last_pause_time_ms;
  1134   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1135   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
  1136          "otherwise, the subtraction below does not make sense");
  1137   size_t rs_size =
  1138             _cur_collection_pause_used_regions_at_start - cset_region_length();
  1139   size_t cur_used_bytes = _g1->used();
  1140   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  1141   bool last_pause_included_initial_mark = false;
  1142   bool update_stats = !_g1->evacuation_failed();
  1143   set_no_of_gc_threads(no_of_gc_threads);
  1145 #ifndef PRODUCT
  1146   if (G1YoungSurvRateVerbose) {
  1147     gclog_or_tty->print_cr("");
  1148     _short_lived_surv_rate_group->print();
  1149     // do that for any other surv rate groups too
  1151 #endif // PRODUCT
  1153   last_pause_included_initial_mark = during_initial_mark_pause();
  1154   if (last_pause_included_initial_mark)
  1155     record_concurrent_mark_init_end(0.0);
  1157   size_t marking_initiating_used_threshold =
  1158     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  1160   if (!_g1->mark_in_progress() && !_last_full_young_gc) {
  1161     assert(!last_pause_included_initial_mark, "invariant");
  1162     if (cur_used_bytes > marking_initiating_used_threshold) {
  1163       if (cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
  1164         assert(!during_initial_mark_pause(), "we should not see this here");
  1166         ergo_verbose3(ErgoConcCycles,
  1167                       "request concurrent cycle initiation",
  1168                       ergo_format_reason("occupancy higher than threshold")
  1169                       ergo_format_byte("occupancy")
  1170                       ergo_format_byte_perc("threshold"),
  1171                       cur_used_bytes,
  1172                       marking_initiating_used_threshold,
  1173                       (double) InitiatingHeapOccupancyPercent);
  1175         // Note: this might have already been set, if during the last
  1176         // pause we decided to start a cycle but at the beginning of
  1177         // this pause we decided to postpone it. That's OK.
  1178         set_initiate_conc_mark_if_possible();
  1179       } else {
  1180         ergo_verbose2(ErgoConcCycles,
  1181                   "do not request concurrent cycle initiation",
  1182                   ergo_format_reason("occupancy lower than previous occupancy")
  1183                   ergo_format_byte("occupancy")
  1184                   ergo_format_byte("previous occupancy"),
  1185                   cur_used_bytes,
  1186                   _prev_collection_pause_used_at_end_bytes);
  1191   _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
  1193   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
  1194                           end_time_sec, false);
  1196   // This assert is exempted when we're doing parallel collection pauses,
  1197   // because the fragmentation caused by the parallel GC allocation buffers
  1198   // can lead to more memory being used during collection than was used
  1199   // before. Best leave this out until the fragmentation problem is fixed.
  1200   // Pauses in which evacuation failed can also lead to negative
  1201   // collections, since no space is reclaimed from a region containing an
  1202   // object whose evacuation failed.
  1203   // Further, we're now always doing parallel collection.  But I'm still
  1204   // leaving this here as a placeholder for a more precise assertion later.
  1205   // (DLD, 10/05.)
  1206   assert((true || parallel) // Always using GC LABs now.
  1207          || _g1->evacuation_failed()
  1208          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
  1209          "Negative collection");
  1211   size_t freed_bytes =
  1212     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  1213   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
  1215   double survival_fraction =
  1216     (double)surviving_bytes/
  1217     (double)_collection_set_bytes_used_before;
  1219   // These values are used to update the summary information that is
  1220   // displayed when TraceGen0Time is enabled, and are output as part
  1221   // of the PrintGCDetails output, in the non-parallel case.
  1223   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  1224   double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
  1225   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  1226   double update_rs_processed_buffers =
  1227     sum_of_values(_par_last_update_rs_processed_buffers);
  1228   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  1229   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  1230   double termination_time = avg_value(_par_last_termination_times_ms);
  1232   double known_time = ext_root_scan_time +
  1233                       mark_stack_scan_time +
  1234                       update_rs_time +
  1235                       scan_rs_time +
  1236                       obj_copy_time;
  1238   double other_time_ms = elapsed_ms;
  1240   // Subtract the SATB drain time. It's initialized to zero at the
  1241   // start of the pause and is updated during the pause if marking
  1242   // is in progress.
  1243   other_time_ms -= _cur_satb_drain_time_ms;
  1245   if (parallel) {
  1246     other_time_ms -= _cur_collection_par_time_ms;
  1247   } else {
  1248     other_time_ms -= known_time;
  1251   // Subtract the time taken to clean the card table from the
  1252   // current value of "other time"
  1253   other_time_ms -= _cur_clear_ct_time_ms;
  1255   // TraceGen0Time and TraceGen1Time summary info updating.
  1256   _all_pause_times_ms->add(elapsed_ms);
  1258   if (update_stats) {
  1259     _summary->record_total_time_ms(elapsed_ms);
  1260     _summary->record_other_time_ms(other_time_ms);
  1262     MainBodySummary* body_summary = _summary->main_body_summary();
  1263     assert(body_summary != NULL, "should not be null!");
  1265     // This will be non-zero iff marking is currently in progress (i.e.
  1266     // _g1->mark_in_progress() == true) and the currrent pause was not
  1267     // an initial mark pause. Since the body_summary items are NumberSeqs,
  1268     // however, they have to be consistent and updated in lock-step with
  1269     // each other. Therefore we unconditionally record the SATB drain
  1270     // time - even if it's zero.
  1271     body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
  1273     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
  1274     body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
  1275     body_summary->record_update_rs_time_ms(update_rs_time);
  1276     body_summary->record_scan_rs_time_ms(scan_rs_time);
  1277     body_summary->record_obj_copy_time_ms(obj_copy_time);
  1279     if (parallel) {
  1280       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
  1281       body_summary->record_termination_time_ms(termination_time);
  1283       double parallel_known_time = known_time + termination_time;
  1284       double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
  1285       body_summary->record_parallel_other_time_ms(parallel_other_time);
  1288     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
  1289     body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
  1291     // We exempt parallel collection from this check because Alloc Buffer
  1292     // fragmentation can produce negative collections.  Same with evac
  1293     // failure.
  1294     // Further, we're now always doing parallel collection.  But I'm still
  1295     // leaving this here as a placeholder for a more precise assertion later.
  1296     // (DLD, 10/05.
  1297     assert((true || parallel)
  1298            || _g1->evacuation_failed()
  1299            || surviving_bytes <= _collection_set_bytes_used_before,
  1300            "Or else negative collection!");
  1302     // this is where we update the allocation rate of the application
  1303     double app_time_ms =
  1304       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
  1305     if (app_time_ms < MIN_TIMER_GRANULARITY) {
  1306       // This usually happens due to the timer not having the required
  1307       // granularity. Some Linuxes are the usual culprits.
  1308       // We'll just set it to something (arbitrarily) small.
  1309       app_time_ms = 1.0;
  1311     // We maintain the invariant that all objects allocated by mutator
  1312     // threads will be allocated out of eden regions. So, we can use
  1313     // the eden region number allocated since the previous GC to
  1314     // calculate the application's allocate rate. The only exception
  1315     // to that is humongous objects that are allocated separately. But
  1316     // given that humongous object allocations do not really affect
  1317     // either the pause's duration nor when the next pause will take
  1318     // place we can safely ignore them here.
  1319     size_t regions_allocated = eden_cset_region_length();
  1320     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
  1321     _alloc_rate_ms_seq->add(alloc_rate_ms);
  1323     double interval_ms =
  1324       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
  1325     update_recent_gc_times(end_time_sec, elapsed_ms);
  1326     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
  1327     if (recent_avg_pause_time_ratio() < 0.0 ||
  1328         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
  1329 #ifndef PRODUCT
  1330       // Dump info to allow post-facto debugging
  1331       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
  1332       gclog_or_tty->print_cr("-------------------------------------------");
  1333       gclog_or_tty->print_cr("Recent GC Times (ms):");
  1334       _recent_gc_times_ms->dump();
  1335       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
  1336       _recent_prev_end_times_for_all_gcs_sec->dump();
  1337       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
  1338                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
  1339       // In debug mode, terminate the JVM if the user wants to debug at this point.
  1340       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
  1341 #endif  // !PRODUCT
  1342       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
  1343       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
  1344       if (_recent_avg_pause_time_ratio < 0.0) {
  1345         _recent_avg_pause_time_ratio = 0.0;
  1346       } else {
  1347         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1348         _recent_avg_pause_time_ratio = 1.0;
  1353   for (int i = 0; i < _aux_num; ++i) {
  1354     if (_cur_aux_times_set[i]) {
  1355       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
  1359   // PrintGCDetails output
  1360   if (PrintGCDetails) {
  1361     bool print_marking_info =
  1362       _g1->mark_in_progress() && !last_pause_included_initial_mark;
  1364     gclog_or_tty->print_cr("%s, %1.8lf secs]",
  1365                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
  1366                            elapsed_ms / 1000.0);
  1368     if (print_marking_info) {
  1369       print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
  1370       print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
  1373     if (parallel) {
  1374       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
  1375       print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms);
  1376       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
  1377       if (print_marking_info) {
  1378         print_par_stats(2, "Mark Stack Scanning", _par_last_mark_stack_scan_times_ms);
  1380       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
  1381       print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
  1382       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
  1383       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
  1384       print_par_stats(2, "Termination", _par_last_termination_times_ms);
  1385       print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
  1386       print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms);
  1388       for (int i = 0; i < _parallel_gc_threads; i++) {
  1389         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];
  1391         double worker_known_time = _par_last_ext_root_scan_times_ms[i] +
  1392                                    _par_last_mark_stack_scan_times_ms[i] +
  1393                                    _par_last_update_rs_times_ms[i] +
  1394                                    _par_last_scan_rs_times_ms[i] +
  1395                                    _par_last_obj_copy_times_ms[i] +
  1396                                    _par_last_termination_times_ms[i];
  1398         _par_last_gc_worker_other_times_ms[i] = _cur_collection_par_time_ms - worker_known_time;
  1400       print_par_stats(2, "GC Worker", _par_last_gc_worker_times_ms);
  1401       print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms);
  1402     } else {
  1403       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
  1404       if (print_marking_info) {
  1405         print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
  1407       print_stats(1, "Update RS", update_rs_time);
  1408       print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers);
  1409       print_stats(1, "Scan RS", scan_rs_time);
  1410       print_stats(1, "Object Copying", obj_copy_time);
  1412     print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
  1413 #ifndef PRODUCT
  1414     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
  1415     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
  1416     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
  1417     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
  1418     if (_num_cc_clears > 0) {
  1419       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
  1421 #endif
  1422     print_stats(1, "Other", other_time_ms);
  1423     print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);
  1424     print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
  1425     print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
  1427     for (int i = 0; i < _aux_num; ++i) {
  1428       if (_cur_aux_times_set[i]) {
  1429         char buffer[96];
  1430         sprintf(buffer, "Aux%d", i);
  1431         print_stats(1, buffer, _cur_aux_times_ms[i]);
  1436   // Update the efficiency-since-mark vars.
  1437   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  1438   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
  1439     // This usually happens due to the timer not having the required
  1440     // granularity. Some Linuxes are the usual culprits.
  1441     // We'll just set it to something (arbitrarily) small.
  1442     proc_ms = 1.0;
  1444   double cur_efficiency = (double) freed_bytes / proc_ms;
  1446   bool new_in_marking_window = _in_marking_window;
  1447   bool new_in_marking_window_im = false;
  1448   if (during_initial_mark_pause()) {
  1449     new_in_marking_window = true;
  1450     new_in_marking_window_im = true;
  1453   if (_last_full_young_gc) {
  1454     if (!last_pause_included_initial_mark) {
  1455       ergo_verbose2(ErgoPartiallyYoungGCs,
  1456                     "start partially-young GCs",
  1457                     ergo_format_byte_perc("known garbage"),
  1458                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
  1459       set_full_young_gcs(false);
  1460     } else {
  1461       ergo_verbose0(ErgoPartiallyYoungGCs,
  1462                     "do not start partially-young GCs",
  1463                     ergo_format_reason("concurrent cycle is about to start"));
  1465     _last_full_young_gc = false;
  1468   if ( !_last_young_gc_full ) {
  1469     if (_should_revert_to_full_young_gcs) {
  1470       ergo_verbose2(ErgoPartiallyYoungGCs,
  1471                     "end partially-young GCs",
  1472                     ergo_format_reason("partially-young GCs end requested")
  1473                     ergo_format_byte_perc("known garbage"),
  1474                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
  1475       set_full_young_gcs(true);
  1476     } else if (_known_garbage_ratio < 0.05) {
  1477       ergo_verbose3(ErgoPartiallyYoungGCs,
  1478                "end partially-young GCs",
  1479                ergo_format_reason("known garbage percent lower than threshold")
  1480                ergo_format_byte_perc("known garbage")
  1481                ergo_format_perc("threshold"),
  1482                _known_garbage_bytes, _known_garbage_ratio * 100.0,
  1483                0.05 * 100.0);
  1484       set_full_young_gcs(true);
  1485     } else if (adaptive_young_list_length() &&
  1486               (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) {
  1487       ergo_verbose5(ErgoPartiallyYoungGCs,
  1488                     "end partially-young GCs",
  1489                     ergo_format_reason("current GC efficiency lower than "
  1490                                        "predicted fully-young GC efficiency")
  1491                     ergo_format_double("GC efficiency factor")
  1492                     ergo_format_double("current GC efficiency")
  1493                     ergo_format_double("predicted fully-young GC efficiency")
  1494                     ergo_format_byte_perc("known garbage"),
  1495                     get_gc_eff_factor(), cur_efficiency,
  1496                     predict_young_gc_eff(),
  1497                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
  1498       set_full_young_gcs(true);
  1501   _should_revert_to_full_young_gcs = false;
  1503   if (_last_young_gc_full && !_during_marking) {
  1504     _young_gc_eff_seq->add(cur_efficiency);
  1507   _short_lived_surv_rate_group->start_adding_regions();
  1508   // do that for any other surv rate groupsx
  1510   if (update_stats) {
  1511     double pause_time_ms = elapsed_ms;
  1513     size_t diff = 0;
  1514     if (_max_pending_cards >= _pending_cards)
  1515       diff = _max_pending_cards - _pending_cards;
  1516     _pending_card_diff_seq->add((double) diff);
  1518     double cost_per_card_ms = 0.0;
  1519     if (_pending_cards > 0) {
  1520       cost_per_card_ms = update_rs_time / (double) _pending_cards;
  1521       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1524     size_t cards_scanned = _g1->cards_scanned();
  1526     double cost_per_entry_ms = 0.0;
  1527     if (cards_scanned > 10) {
  1528       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
  1529       if (_last_young_gc_full)
  1530         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1531       else
  1532         _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1535     if (_max_rs_lengths > 0) {
  1536       double cards_per_entry_ratio =
  1537         (double) cards_scanned / (double) _max_rs_lengths;
  1538       if (_last_young_gc_full)
  1539         _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1540       else
  1541         _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1544     size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1545     if (rs_length_diff >= 0)
  1546       _rs_length_diff_seq->add((double) rs_length_diff);
  1548     size_t copied_bytes = surviving_bytes;
  1549     double cost_per_byte_ms = 0.0;
  1550     if (copied_bytes > 0) {
  1551       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
  1552       if (_in_marking_window)
  1553         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1554       else
  1555         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1558     double all_other_time_ms = pause_time_ms -
  1559       (update_rs_time + scan_rs_time + obj_copy_time +
  1560        _mark_closure_time_ms + termination_time);
  1562     double young_other_time_ms = 0.0;
  1563     if (young_cset_region_length() > 0) {
  1564       young_other_time_ms =
  1565         _recorded_young_cset_choice_time_ms +
  1566         _recorded_young_free_cset_time_ms;
  1567       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1568                                           (double) young_cset_region_length());
  1570     double non_young_other_time_ms = 0.0;
  1571     if (old_cset_region_length() > 0) {
  1572       non_young_other_time_ms =
  1573         _recorded_non_young_cset_choice_time_ms +
  1574         _recorded_non_young_free_cset_time_ms;
  1576       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1577                                             (double) old_cset_region_length());
  1580     double constant_other_time_ms = all_other_time_ms -
  1581       (young_other_time_ms + non_young_other_time_ms);
  1582     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1584     double survival_ratio = 0.0;
  1585     if (_bytes_in_collection_set_before_gc > 0) {
  1586       survival_ratio = (double) _bytes_copied_during_gc /
  1587                                    (double) _bytes_in_collection_set_before_gc;
  1590     _pending_cards_seq->add((double) _pending_cards);
  1591     _rs_lengths_seq->add((double) _max_rs_lengths);
  1593     double expensive_region_limit_ms =
  1594       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
  1595     if (expensive_region_limit_ms < 0.0) {
  1596       // this means that the other time was predicted to be longer than
  1597       // than the max pause time
  1598       expensive_region_limit_ms = (double) MaxGCPauseMillis;
  1600     _expensive_region_limit_ms = expensive_region_limit_ms;
  1603   _in_marking_window = new_in_marking_window;
  1604   _in_marking_window_im = new_in_marking_window_im;
  1605   _free_regions_at_end_of_collection = _g1->free_regions();
  1606   update_young_list_target_length();
  1608   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1609   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1610   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
  1612   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
  1615 #define EXT_SIZE_FORMAT "%d%s"
  1616 #define EXT_SIZE_PARAMS(bytes)                                  \
  1617   byte_size_in_proper_unit((bytes)),                            \
  1618   proper_unit_for_byte_size((bytes))
  1620 void G1CollectorPolicy::print_heap_transition() {
  1621   if (PrintGCDetails) {
  1622     YoungList* young_list = _g1->young_list();
  1623     size_t eden_bytes = young_list->eden_used_bytes();
  1624     size_t survivor_bytes = young_list->survivor_used_bytes();
  1625     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
  1626     size_t used = _g1->used();
  1627     size_t capacity = _g1->capacity();
  1628     size_t eden_capacity =
  1629       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
  1631     gclog_or_tty->print_cr(
  1632       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
  1633       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1634       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1635       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1636       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
  1637       EXT_SIZE_PARAMS(_prev_eden_capacity),
  1638       EXT_SIZE_PARAMS(eden_bytes),
  1639       EXT_SIZE_PARAMS(eden_capacity),
  1640       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
  1641       EXT_SIZE_PARAMS(survivor_bytes),
  1642       EXT_SIZE_PARAMS(used_before_gc),
  1643       EXT_SIZE_PARAMS(_capacity_before_gc),
  1644       EXT_SIZE_PARAMS(used),
  1645       EXT_SIZE_PARAMS(capacity));
  1647     _prev_eden_capacity = eden_capacity;
  1648   } else if (PrintGC) {
  1649     _g1->print_size_transition(gclog_or_tty,
  1650                                _cur_collection_pause_used_at_start_bytes,
  1651                                _g1->used(), _g1->capacity());
  1655 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1656                                                      double update_rs_processed_buffers,
  1657                                                      double goal_ms) {
  1658   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1659   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1661   if (G1UseAdaptiveConcRefinement) {
  1662     const int k_gy = 3, k_gr = 6;
  1663     const double inc_k = 1.1, dec_k = 0.9;
  1665     int g = cg1r->green_zone();
  1666     if (update_rs_time > goal_ms) {
  1667       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1668     } else {
  1669       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1670         g = (int)MAX2(g * inc_k, g + 1.0);
  1673     // Change the refinement threads params
  1674     cg1r->set_green_zone(g);
  1675     cg1r->set_yellow_zone(g * k_gy);
  1676     cg1r->set_red_zone(g * k_gr);
  1677     cg1r->reinitialize_threads();
  1679     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1680     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1681                                     cg1r->yellow_zone());
  1682     // Change the barrier params
  1683     dcqs.set_process_completed_threshold(processing_threshold);
  1684     dcqs.set_max_completed_queue(cg1r->red_zone());
  1687   int curr_queue_size = dcqs.completed_buffers_num();
  1688   if (curr_queue_size >= cg1r->yellow_zone()) {
  1689     dcqs.set_completed_queue_padding(curr_queue_size);
  1690   } else {
  1691     dcqs.set_completed_queue_padding(0);
  1693   dcqs.notify_if_necessary();
  1696 double
  1697 G1CollectorPolicy::
  1698 predict_young_collection_elapsed_time_ms(size_t adjustment) {
  1699   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
  1701   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1702   size_t young_num = g1h->young_list()->length();
  1703   if (young_num == 0)
  1704     return 0.0;
  1706   young_num += adjustment;
  1707   size_t pending_cards = predict_pending_cards();
  1708   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
  1709                       predict_rs_length_diff();
  1710   size_t card_num;
  1711   if (full_young_gcs())
  1712     card_num = predict_young_card_num(rs_lengths);
  1713   else
  1714     card_num = predict_non_young_card_num(rs_lengths);
  1715   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  1716   double accum_yg_surv_rate =
  1717     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
  1719   size_t bytes_to_copy =
  1720     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
  1722   return
  1723     predict_rs_update_time_ms(pending_cards) +
  1724     predict_rs_scan_time_ms(card_num) +
  1725     predict_object_copy_time_ms(bytes_to_copy) +
  1726     predict_young_other_time_ms(young_num) +
  1727     predict_constant_other_time_ms();
  1730 double
  1731 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1732   size_t rs_length = predict_rs_length_diff();
  1733   size_t card_num;
  1734   if (full_young_gcs())
  1735     card_num = predict_young_card_num(rs_length);
  1736   else
  1737     card_num = predict_non_young_card_num(rs_length);
  1738   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1741 double
  1742 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1743                                                 size_t scanned_cards) {
  1744   return
  1745     predict_rs_update_time_ms(pending_cards) +
  1746     predict_rs_scan_time_ms(scanned_cards) +
  1747     predict_constant_other_time_ms();
  1750 double
  1751 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1752                                                   bool young) {
  1753   size_t rs_length = hr->rem_set()->occupied();
  1754   size_t card_num;
  1755   if (full_young_gcs())
  1756     card_num = predict_young_card_num(rs_length);
  1757   else
  1758     card_num = predict_non_young_card_num(rs_length);
  1759   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1761   double region_elapsed_time_ms =
  1762     predict_rs_scan_time_ms(card_num) +
  1763     predict_object_copy_time_ms(bytes_to_copy);
  1765   if (young)
  1766     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1767   else
  1768     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1770   return region_elapsed_time_ms;
  1773 size_t
  1774 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1775   size_t bytes_to_copy;
  1776   if (hr->is_marked())
  1777     bytes_to_copy = hr->max_live_bytes();
  1778   else {
  1779     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
  1780                "invariant" );
  1781     int age = hr->age_in_surv_rate_group();
  1782     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1783     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1786   return bytes_to_copy;
  1789 void
  1790 G1CollectorPolicy::init_cset_region_lengths(size_t eden_cset_region_length,
  1791                                           size_t survivor_cset_region_length) {
  1792   _eden_cset_region_length     = eden_cset_region_length;
  1793   _survivor_cset_region_length = survivor_cset_region_length;
  1794   _old_cset_region_length      = 0;
  1797 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1798   _recorded_rs_lengths = rs_lengths;
  1801 void G1CollectorPolicy::check_if_region_is_too_expensive(double
  1802                                                            predicted_time_ms) {
  1803   // I don't think we need to do this when in young GC mode since
  1804   // marking will be initiated next time we hit the soft limit anyway...
  1805   if (predicted_time_ms > _expensive_region_limit_ms) {
  1806     ergo_verbose2(ErgoPartiallyYoungGCs,
  1807               "request partially-young GCs end",
  1808               ergo_format_reason("predicted region time higher than threshold")
  1809               ergo_format_ms("predicted region time")
  1810               ergo_format_ms("threshold"),
  1811               predicted_time_ms, _expensive_region_limit_ms);
  1812     // no point in doing another partial one
  1813     _should_revert_to_full_young_gcs = true;
  1817 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1818                                                double elapsed_ms) {
  1819   _recent_gc_times_ms->add(elapsed_ms);
  1820   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1821   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1824 size_t G1CollectorPolicy::expansion_amount() {
  1825   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1826   double threshold = _gc_overhead_perc;
  1827   if (recent_gc_overhead > threshold) {
  1828     // We will double the existing space, or take
  1829     // G1ExpandByPercentOfAvailable % of the available expansion
  1830     // space, whichever is smaller, bounded below by a minimum
  1831     // expansion (unless that's all that's left.)
  1832     const size_t min_expand_bytes = 1*M;
  1833     size_t reserved_bytes = _g1->max_capacity();
  1834     size_t committed_bytes = _g1->capacity();
  1835     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1836     size_t expand_bytes;
  1837     size_t expand_bytes_via_pct =
  1838       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1839     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1840     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1841     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1843     ergo_verbose5(ErgoHeapSizing,
  1844                   "attempt heap expansion",
  1845                   ergo_format_reason("recent GC overhead higher than "
  1846                                      "threshold after GC")
  1847                   ergo_format_perc("recent GC overhead")
  1848                   ergo_format_perc("threshold")
  1849                   ergo_format_byte("uncommitted")
  1850                   ergo_format_byte_perc("calculated expansion amount"),
  1851                   recent_gc_overhead, threshold,
  1852                   uncommitted_bytes,
  1853                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1855     return expand_bytes;
  1856   } else {
  1857     return 0;
  1861 class CountCSClosure: public HeapRegionClosure {
  1862   G1CollectorPolicy* _g1_policy;
  1863 public:
  1864   CountCSClosure(G1CollectorPolicy* g1_policy) :
  1865     _g1_policy(g1_policy) {}
  1866   bool doHeapRegion(HeapRegion* r) {
  1867     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
  1868     return false;
  1870 };
  1872 void G1CollectorPolicy::count_CS_bytes_used() {
  1873   CountCSClosure cs_closure(this);
  1874   _g1->collection_set_iterate(&cs_closure);
  1877 void G1CollectorPolicy::print_summary(int level,
  1878                                       const char* str,
  1879                                       NumberSeq* seq) const {
  1880   double sum = seq->sum();
  1881   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
  1882                 str, sum / 1000.0, seq->avg());
  1885 void G1CollectorPolicy::print_summary_sd(int level,
  1886                                          const char* str,
  1887                                          NumberSeq* seq) const {
  1888   print_summary(level, str, seq);
  1889   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  1890                 seq->num(), seq->sd(), seq->maximum());
  1893 void G1CollectorPolicy::check_other_times(int level,
  1894                                         NumberSeq* other_times_ms,
  1895                                         NumberSeq* calc_other_times_ms) const {
  1896   bool should_print = false;
  1897   LineBuffer buf(level + 2);
  1899   double max_sum = MAX2(fabs(other_times_ms->sum()),
  1900                         fabs(calc_other_times_ms->sum()));
  1901   double min_sum = MIN2(fabs(other_times_ms->sum()),
  1902                         fabs(calc_other_times_ms->sum()));
  1903   double sum_ratio = max_sum / min_sum;
  1904   if (sum_ratio > 1.1) {
  1905     should_print = true;
  1906     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
  1909   double max_avg = MAX2(fabs(other_times_ms->avg()),
  1910                         fabs(calc_other_times_ms->avg()));
  1911   double min_avg = MIN2(fabs(other_times_ms->avg()),
  1912                         fabs(calc_other_times_ms->avg()));
  1913   double avg_ratio = max_avg / min_avg;
  1914   if (avg_ratio > 1.1) {
  1915     should_print = true;
  1916     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
  1919   if (other_times_ms->sum() < -0.01) {
  1920     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
  1923   if (other_times_ms->avg() < -0.01) {
  1924     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
  1927   if (calc_other_times_ms->sum() < -0.01) {
  1928     should_print = true;
  1929     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
  1932   if (calc_other_times_ms->avg() < -0.01) {
  1933     should_print = true;
  1934     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
  1937   if (should_print)
  1938     print_summary(level, "Other(Calc)", calc_other_times_ms);
  1941 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
  1942   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1943   MainBodySummary*    body_summary = summary->main_body_summary();
  1944   if (summary->get_total_seq()->num() > 0) {
  1945     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
  1946     if (body_summary != NULL) {
  1947       print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
  1948       if (parallel) {
  1949         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
  1950         print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
  1951         print_summary(2, "Mark Stack Scanning", body_summary->get_mark_stack_scan_seq());
  1952         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
  1953         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
  1954         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
  1955         print_summary(2, "Termination", body_summary->get_termination_seq());
  1956         print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq());
  1958           NumberSeq* other_parts[] = {
  1959             body_summary->get_ext_root_scan_seq(),
  1960             body_summary->get_mark_stack_scan_seq(),
  1961             body_summary->get_update_rs_seq(),
  1962             body_summary->get_scan_rs_seq(),
  1963             body_summary->get_obj_copy_seq(),
  1964             body_summary->get_termination_seq()
  1965           };
  1966           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
  1967                                         6, other_parts);
  1968           check_other_times(2, body_summary->get_parallel_other_seq(),
  1969                             &calc_other_times_ms);
  1971       } else {
  1972         print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
  1973         print_summary(1, "Mark Stack Scanning", body_summary->get_mark_stack_scan_seq());
  1974         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
  1975         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
  1976         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
  1979     print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
  1980     print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
  1981     print_summary(1, "Other", summary->get_other_seq());
  1983       if (body_summary != NULL) {
  1984         NumberSeq calc_other_times_ms;
  1985         if (parallel) {
  1986           // parallel
  1987           NumberSeq* other_parts[] = {
  1988             body_summary->get_satb_drain_seq(),
  1989             body_summary->get_parallel_seq(),
  1990             body_summary->get_clear_ct_seq()
  1991           };
  1992           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  1993                                                 3, other_parts);
  1994         } else {
  1995           // serial
  1996           NumberSeq* other_parts[] = {
  1997             body_summary->get_satb_drain_seq(),
  1998             body_summary->get_update_rs_seq(),
  1999             body_summary->get_ext_root_scan_seq(),
  2000             body_summary->get_mark_stack_scan_seq(),
  2001             body_summary->get_scan_rs_seq(),
  2002             body_summary->get_obj_copy_seq()
  2003           };
  2004           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2005                                                 6, other_parts);
  2007         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
  2010   } else {
  2011     LineBuffer(1).append_and_print_cr("none");
  2013   LineBuffer(0).append_and_print_cr("");
  2016 void G1CollectorPolicy::print_tracing_info() const {
  2017   if (TraceGen0Time) {
  2018     gclog_or_tty->print_cr("ALL PAUSES");
  2019     print_summary_sd(0, "Total", _all_pause_times_ms);
  2020     gclog_or_tty->print_cr("");
  2021     gclog_or_tty->print_cr("");
  2022     gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
  2023     gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
  2024     gclog_or_tty->print_cr("");
  2026     gclog_or_tty->print_cr("EVACUATION PAUSES");
  2027     print_summary(_summary);
  2029     gclog_or_tty->print_cr("MISC");
  2030     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
  2031     print_summary_sd(0, "Yields", _all_yield_times_ms);
  2032     for (int i = 0; i < _aux_num; ++i) {
  2033       if (_all_aux_times_ms[i].num() > 0) {
  2034         char buffer[96];
  2035         sprintf(buffer, "Aux%d", i);
  2036         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
  2040   if (TraceGen1Time) {
  2041     if (_all_full_gc_times_ms->num() > 0) {
  2042       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2043                  _all_full_gc_times_ms->num(),
  2044                  _all_full_gc_times_ms->sum() / 1000.0);
  2045       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
  2046       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2047                     _all_full_gc_times_ms->sd(),
  2048                     _all_full_gc_times_ms->maximum());
  2053 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  2054 #ifndef PRODUCT
  2055   _short_lived_surv_rate_group->print_surv_rate_summary();
  2056   // add this call for any other surv rate groups
  2057 #endif // PRODUCT
  2060 #ifndef PRODUCT
  2061 // for debugging, bit of a hack...
  2062 static char*
  2063 region_num_to_mbs(int length) {
  2064   static char buffer[64];
  2065   double bytes = (double) (length * HeapRegion::GrainBytes);
  2066   double mbs = bytes / (double) (1024 * 1024);
  2067   sprintf(buffer, "%7.2lfMB", mbs);
  2068   return buffer;
  2070 #endif // PRODUCT
  2072 size_t G1CollectorPolicy::max_regions(int purpose) {
  2073   switch (purpose) {
  2074     case GCAllocForSurvived:
  2075       return _max_survivor_regions;
  2076     case GCAllocForTenured:
  2077       return REGIONS_UNLIMITED;
  2078     default:
  2079       ShouldNotReachHere();
  2080       return REGIONS_UNLIMITED;
  2081   };
  2084 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  2085   size_t expansion_region_num = 0;
  2086   if (GCLockerEdenExpansionPercent > 0) {
  2087     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  2088     double expansion_region_num_d = perc * (double) _young_list_target_length;
  2089     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  2090     // less than 1.0) we'll get 1.
  2091     expansion_region_num = (size_t) ceil(expansion_region_num_d);
  2092   } else {
  2093     assert(expansion_region_num == 0, "sanity");
  2095   _young_list_max_length = _young_list_target_length + expansion_region_num;
  2096   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  2099 // Calculates survivor space parameters.
  2100 void G1CollectorPolicy::update_survivors_policy() {
  2101   double max_survivor_regions_d =
  2102                  (double) _young_list_target_length / (double) SurvivorRatio;
  2103   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  2104   // smaller than 1.0) we'll get 1.
  2105   _max_survivor_regions = (size_t) ceil(max_survivor_regions_d);
  2107   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  2108         HeapRegion::GrainWords * _max_survivor_regions);
  2111 #ifndef PRODUCT
  2112 class HRSortIndexIsOKClosure: public HeapRegionClosure {
  2113   CollectionSetChooser* _chooser;
  2114 public:
  2115   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
  2116     _chooser(chooser) {}
  2118   bool doHeapRegion(HeapRegion* r) {
  2119     if (!r->continuesHumongous()) {
  2120       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
  2122     return false;
  2124 };
  2126 bool G1CollectorPolicy::assertMarkedBytesDataOK() {
  2127   HRSortIndexIsOKClosure cl(_collectionSetChooser);
  2128   _g1->heap_region_iterate(&cl);
  2129   return true;
  2131 #endif
  2133 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  2134                                                      GCCause::Cause gc_cause) {
  2135   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2136   if (!during_cycle) {
  2137     ergo_verbose1(ErgoConcCycles,
  2138                   "request concurrent cycle initiation",
  2139                   ergo_format_reason("requested by GC cause")
  2140                   ergo_format_str("GC cause"),
  2141                   GCCause::to_string(gc_cause));
  2142     set_initiate_conc_mark_if_possible();
  2143     return true;
  2144   } else {
  2145     ergo_verbose1(ErgoConcCycles,
  2146                   "do not request concurrent cycle initiation",
  2147                   ergo_format_reason("concurrent cycle already in progress")
  2148                   ergo_format_str("GC cause"),
  2149                   GCCause::to_string(gc_cause));
  2150     return false;
  2154 void
  2155 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  2156   // We are about to decide on whether this pause will be an
  2157   // initial-mark pause.
  2159   // First, during_initial_mark_pause() should not be already set. We
  2160   // will set it here if we have to. However, it should be cleared by
  2161   // the end of the pause (it's only set for the duration of an
  2162   // initial-mark pause).
  2163   assert(!during_initial_mark_pause(), "pre-condition");
  2165   if (initiate_conc_mark_if_possible()) {
  2166     // We had noticed on a previous pause that the heap occupancy has
  2167     // gone over the initiating threshold and we should start a
  2168     // concurrent marking cycle. So we might initiate one.
  2170     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2171     if (!during_cycle) {
  2172       // The concurrent marking thread is not "during a cycle", i.e.,
  2173       // it has completed the last one. So we can go ahead and
  2174       // initiate a new cycle.
  2176       set_during_initial_mark_pause();
  2177       // We do not allow non-full young GCs during marking.
  2178       if (!full_young_gcs()) {
  2179         set_full_young_gcs(true);
  2180         ergo_verbose0(ErgoPartiallyYoungGCs,
  2181                       "end partially-young GCs",
  2182                       ergo_format_reason("concurrent cycle is about to start"));
  2185       // And we can now clear initiate_conc_mark_if_possible() as
  2186       // we've already acted on it.
  2187       clear_initiate_conc_mark_if_possible();
  2189       ergo_verbose0(ErgoConcCycles,
  2190                   "initiate concurrent cycle",
  2191                   ergo_format_reason("concurrent cycle initiation requested"));
  2192     } else {
  2193       // The concurrent marking thread is still finishing up the
  2194       // previous cycle. If we start one right now the two cycles
  2195       // overlap. In particular, the concurrent marking thread might
  2196       // be in the process of clearing the next marking bitmap (which
  2197       // we will use for the next cycle if we start one). Starting a
  2198       // cycle now will be bad given that parts of the marking
  2199       // information might get cleared by the marking thread. And we
  2200       // cannot wait for the marking thread to finish the cycle as it
  2201       // periodically yields while clearing the next marking bitmap
  2202       // and, if it's in a yield point, it's waiting for us to
  2203       // finish. So, at this point we will not start a cycle and we'll
  2204       // let the concurrent marking thread complete the last one.
  2205       ergo_verbose0(ErgoConcCycles,
  2206                     "do not initiate concurrent cycle",
  2207                     ergo_format_reason("concurrent cycle already in progress"));
  2212 class KnownGarbageClosure: public HeapRegionClosure {
  2213   CollectionSetChooser* _hrSorted;
  2215 public:
  2216   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  2217     _hrSorted(hrSorted)
  2218   {}
  2220   bool doHeapRegion(HeapRegion* r) {
  2221     // We only include humongous regions in collection
  2222     // sets when concurrent mark shows that their contained object is
  2223     // unreachable.
  2225     // Do we have any marking information for this region?
  2226     if (r->is_marked()) {
  2227       // We don't include humongous regions in collection
  2228       // sets because we collect them immediately at the end of a marking
  2229       // cycle.  We also don't include young regions because we *must*
  2230       // include them in the next collection pause.
  2231       if (!r->isHumongous() && !r->is_young()) {
  2232         _hrSorted->addMarkedHeapRegion(r);
  2235     return false;
  2237 };
  2239 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  2240   CollectionSetChooser* _hrSorted;
  2241   jint _marked_regions_added;
  2242   jint _chunk_size;
  2243   jint _cur_chunk_idx;
  2244   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  2245   int _worker;
  2246   int _invokes;
  2248   void get_new_chunk() {
  2249     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
  2250     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  2252   void add_region(HeapRegion* r) {
  2253     if (_cur_chunk_idx == _cur_chunk_end) {
  2254       get_new_chunk();
  2256     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
  2257     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
  2258     _marked_regions_added++;
  2259     _cur_chunk_idx++;
  2262 public:
  2263   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  2264                            jint chunk_size,
  2265                            int worker) :
  2266     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
  2267     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
  2268     _invokes(0)
  2269   {}
  2271   bool doHeapRegion(HeapRegion* r) {
  2272     // We only include humongous regions in collection
  2273     // sets when concurrent mark shows that their contained object is
  2274     // unreachable.
  2275     _invokes++;
  2277     // Do we have any marking information for this region?
  2278     if (r->is_marked()) {
  2279       // We don't include humongous regions in collection
  2280       // sets because we collect them immediately at the end of a marking
  2281       // cycle.
  2282       // We also do not include young regions in collection sets
  2283       if (!r->isHumongous() && !r->is_young()) {
  2284         add_region(r);
  2287     return false;
  2289   jint marked_regions_added() { return _marked_regions_added; }
  2290   int invokes() { return _invokes; }
  2291 };
  2293 class ParKnownGarbageTask: public AbstractGangTask {
  2294   CollectionSetChooser* _hrSorted;
  2295   jint _chunk_size;
  2296   G1CollectedHeap* _g1;
  2297 public:
  2298   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
  2299     AbstractGangTask("ParKnownGarbageTask"),
  2300     _hrSorted(hrSorted), _chunk_size(chunk_size),
  2301     _g1(G1CollectedHeap::heap())
  2302   {}
  2304   void work(int i) {
  2305     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
  2306     // Back to zero for the claim value.
  2307     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
  2308                                          _g1->workers()->active_workers(),
  2309                                          HeapRegion::InitialClaimValue);
  2310     jint regions_added = parKnownGarbageCl.marked_regions_added();
  2311     _hrSorted->incNumMarkedHeapRegions(regions_added);
  2312     if (G1PrintParCleanupStats) {
  2313       gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
  2314                  i, parKnownGarbageCl.invokes(), regions_added);
  2317 };
  2319 void
  2320 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  2321   double start_sec;
  2322   if (G1PrintParCleanupStats) {
  2323     start_sec = os::elapsedTime();
  2326   _collectionSetChooser->clearMarkedHeapRegions();
  2327   double clear_marked_end_sec;
  2328   if (G1PrintParCleanupStats) {
  2329     clear_marked_end_sec = os::elapsedTime();
  2330     gclog_or_tty->print_cr("  clear marked regions: %8.3f ms.",
  2331                            (clear_marked_end_sec - start_sec) * 1000.0);
  2334   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2335     const size_t OverpartitionFactor = 4;
  2336     size_t WorkUnit;
  2337     // The use of MinChunkSize = 8 in the original code
  2338     // causes some assertion failures when the total number of
  2339     // region is less than 8.  The code here tries to fix that.
  2340     // Should the original code also be fixed?
  2341     if (no_of_gc_threads > 0) {
  2342       const size_t MinWorkUnit =
  2343         MAX2(_g1->n_regions() / no_of_gc_threads, (size_t) 1U);
  2344       WorkUnit =
  2345         MAX2(_g1->n_regions() / (no_of_gc_threads * OverpartitionFactor),
  2346              MinWorkUnit);
  2347     } else {
  2348       assert(no_of_gc_threads > 0,
  2349         "The active gc workers should be greater than 0");
  2350       // In a product build do something reasonable to avoid a crash.
  2351       const size_t MinWorkUnit =
  2352         MAX2(_g1->n_regions() / ParallelGCThreads, (size_t) 1U);
  2353       WorkUnit =
  2354         MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
  2355              MinWorkUnit);
  2357     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
  2358                                                              WorkUnit);
  2359     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  2360                                             (int) WorkUnit);
  2361     _g1->workers()->run_task(&parKnownGarbageTask);
  2363     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2364            "sanity check");
  2365   } else {
  2366     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  2367     _g1->heap_region_iterate(&knownGarbagecl);
  2369   double known_garbage_end_sec;
  2370   if (G1PrintParCleanupStats) {
  2371     known_garbage_end_sec = os::elapsedTime();
  2372     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
  2373                       (known_garbage_end_sec - clear_marked_end_sec) * 1000.0);
  2376   _collectionSetChooser->sortMarkedHeapRegions();
  2377   double end_sec = os::elapsedTime();
  2378   if (G1PrintParCleanupStats) {
  2379     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
  2380                            (end_sec - known_garbage_end_sec) * 1000.0);
  2383   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  2384   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  2385   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  2386   _prev_collection_pause_end_ms += elapsed_time_ms;
  2387   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  2390 // Add the heap region at the head of the non-incremental collection set
  2391 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  2392   assert(_inc_cset_build_state == Active, "Precondition");
  2393   assert(!hr->is_young(), "non-incremental add of young region");
  2395   if (_g1->mark_in_progress())
  2396     _g1->concurrent_mark()->registerCSetRegion(hr);
  2398   assert(!hr->in_collection_set(), "should not already be in the CSet");
  2399   hr->set_in_collection_set(true);
  2400   hr->set_next_in_collection_set(_collection_set);
  2401   _collection_set = hr;
  2402   _collection_set_bytes_used_before += hr->used();
  2403   _g1->register_region_with_in_cset_fast_test(hr);
  2404   size_t rs_length = hr->rem_set()->occupied();
  2405   _recorded_rs_lengths += rs_length;
  2406   _old_cset_region_length += 1;
  2409 // Initialize the per-collection-set information
  2410 void G1CollectorPolicy::start_incremental_cset_building() {
  2411   assert(_inc_cset_build_state == Inactive, "Precondition");
  2413   _inc_cset_head = NULL;
  2414   _inc_cset_tail = NULL;
  2415   _inc_cset_bytes_used_before = 0;
  2417   _inc_cset_max_finger = 0;
  2418   _inc_cset_recorded_rs_lengths = 0;
  2419   _inc_cset_predicted_elapsed_time_ms = 0;
  2420   _inc_cset_build_state = Active;
  2423 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  2424   // This routine is used when:
  2425   // * adding survivor regions to the incremental cset at the end of an
  2426   //   evacuation pause,
  2427   // * adding the current allocation region to the incremental cset
  2428   //   when it is retired, and
  2429   // * updating existing policy information for a region in the
  2430   //   incremental cset via young list RSet sampling.
  2431   // Therefore this routine may be called at a safepoint by the
  2432   // VM thread, or in-between safepoints by mutator threads (when
  2433   // retiring the current allocation region) or a concurrent
  2434   // refine thread (RSet sampling).
  2436   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2437   size_t used_bytes = hr->used();
  2439   _inc_cset_recorded_rs_lengths += rs_length;
  2440   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  2442   _inc_cset_bytes_used_before += used_bytes;
  2444   // Cache the values we have added to the aggregated informtion
  2445   // in the heap region in case we have to remove this region from
  2446   // the incremental collection set, or it is updated by the
  2447   // rset sampling code
  2448   hr->set_recorded_rs_length(rs_length);
  2449   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  2452 void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
  2453   // This routine is currently only called as part of the updating of
  2454   // existing policy information for regions in the incremental cset that
  2455   // is performed by the concurrent refine thread(s) as part of young list
  2456   // RSet sampling. Therefore we should not be at a safepoint.
  2458   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
  2459   assert(hr->is_young(), "it should be");
  2461   size_t used_bytes = hr->used();
  2462   size_t old_rs_length = hr->recorded_rs_length();
  2463   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  2465   // Subtract the old recorded/predicted policy information for
  2466   // the given heap region from the collection set info.
  2467   _inc_cset_recorded_rs_lengths -= old_rs_length;
  2468   _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;
  2470   _inc_cset_bytes_used_before -= used_bytes;
  2472   // Clear the values cached in the heap region
  2473   hr->set_recorded_rs_length(0);
  2474   hr->set_predicted_elapsed_time_ms(0);
  2477 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
  2478   // Update the collection set information that is dependent on the new RS length
  2479   assert(hr->is_young(), "Precondition");
  2481   remove_from_incremental_cset_info(hr);
  2482   add_to_incremental_cset_info(hr, new_rs_length);
  2485 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  2486   assert(hr->is_young(), "invariant");
  2487   assert(hr->young_index_in_cset() > -1, "should have already been set");
  2488   assert(_inc_cset_build_state == Active, "Precondition");
  2490   // We need to clear and set the cached recorded/cached collection set
  2491   // information in the heap region here (before the region gets added
  2492   // to the collection set). An individual heap region's cached values
  2493   // are calculated, aggregated with the policy collection set info,
  2494   // and cached in the heap region here (initially) and (subsequently)
  2495   // by the Young List sampling code.
  2497   size_t rs_length = hr->rem_set()->occupied();
  2498   add_to_incremental_cset_info(hr, rs_length);
  2500   HeapWord* hr_end = hr->end();
  2501   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  2503   assert(!hr->in_collection_set(), "invariant");
  2504   hr->set_in_collection_set(true);
  2505   assert( hr->next_in_collection_set() == NULL, "invariant");
  2507   _g1->register_region_with_in_cset_fast_test(hr);
  2510 // Add the region at the RHS of the incremental cset
  2511 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  2512   // We should only ever be appending survivors at the end of a pause
  2513   assert( hr->is_survivor(), "Logic");
  2515   // Do the 'common' stuff
  2516   add_region_to_incremental_cset_common(hr);
  2518   // Now add the region at the right hand side
  2519   if (_inc_cset_tail == NULL) {
  2520     assert(_inc_cset_head == NULL, "invariant");
  2521     _inc_cset_head = hr;
  2522   } else {
  2523     _inc_cset_tail->set_next_in_collection_set(hr);
  2525   _inc_cset_tail = hr;
  2528 // Add the region to the LHS of the incremental cset
  2529 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  2530   // Survivors should be added to the RHS at the end of a pause
  2531   assert(!hr->is_survivor(), "Logic");
  2533   // Do the 'common' stuff
  2534   add_region_to_incremental_cset_common(hr);
  2536   // Add the region at the left hand side
  2537   hr->set_next_in_collection_set(_inc_cset_head);
  2538   if (_inc_cset_head == NULL) {
  2539     assert(_inc_cset_tail == NULL, "Invariant");
  2540     _inc_cset_tail = hr;
  2542   _inc_cset_head = hr;
  2545 #ifndef PRODUCT
  2546 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  2547   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  2549   st->print_cr("\nCollection_set:");
  2550   HeapRegion* csr = list_head;
  2551   while (csr != NULL) {
  2552     HeapRegion* next = csr->next_in_collection_set();
  2553     assert(csr->in_collection_set(), "bad CS");
  2554     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
  2555                  "age: %4d, y: %d, surv: %d",
  2556                         csr->bottom(), csr->end(),
  2557                         csr->top(),
  2558                         csr->prev_top_at_mark_start(),
  2559                         csr->next_top_at_mark_start(),
  2560                         csr->top_at_conc_mark_count(),
  2561                         csr->age_in_surv_rate_group_cond(),
  2562                         csr->is_young(),
  2563                         csr->is_survivor());
  2564     csr = next;
  2567 #endif // !PRODUCT
  2569 void G1CollectorPolicy::choose_collection_set(double target_pause_time_ms) {
  2570   // Set this here - in case we're not doing young collections.
  2571   double non_young_start_time_sec = os::elapsedTime();
  2573   YoungList* young_list = _g1->young_list();
  2575   guarantee(target_pause_time_ms > 0.0,
  2576             err_msg("target_pause_time_ms = %1.6lf should be positive",
  2577                     target_pause_time_ms));
  2578   guarantee(_collection_set == NULL, "Precondition");
  2580   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  2581   double predicted_pause_time_ms = base_time_ms;
  2583   double time_remaining_ms = target_pause_time_ms - base_time_ms;
  2585   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2586                 "start choosing CSet",
  2587                 ergo_format_ms("predicted base time")
  2588                 ergo_format_ms("remaining time")
  2589                 ergo_format_ms("target pause time"),
  2590                 base_time_ms, time_remaining_ms, target_pause_time_ms);
  2592   // the 10% and 50% values are arbitrary...
  2593   double threshold = 0.10 * target_pause_time_ms;
  2594   if (time_remaining_ms < threshold) {
  2595     double prev_time_remaining_ms = time_remaining_ms;
  2596     time_remaining_ms = 0.50 * target_pause_time_ms;
  2597     ergo_verbose3(ErgoCSetConstruction,
  2598                   "adjust remaining time",
  2599                   ergo_format_reason("remaining time lower than threshold")
  2600                   ergo_format_ms("remaining time")
  2601                   ergo_format_ms("threshold")
  2602                   ergo_format_ms("adjusted remaining time"),
  2603                   prev_time_remaining_ms, threshold, time_remaining_ms);
  2606   size_t expansion_bytes = _g1->expansion_regions() * HeapRegion::GrainBytes;
  2608   HeapRegion* hr;
  2609   double young_start_time_sec = os::elapsedTime();
  2611   _collection_set_bytes_used_before = 0;
  2612   _last_young_gc_full = full_young_gcs() ? true : false;
  2614   if (_last_young_gc_full) {
  2615     ++_full_young_pause_num;
  2616   } else {
  2617     ++_partial_young_pause_num;
  2620   // The young list is laid with the survivor regions from the previous
  2621   // pause are appended to the RHS of the young list, i.e.
  2622   //   [Newly Young Regions ++ Survivors from last pause].
  2624   size_t survivor_region_length = young_list->survivor_length();
  2625   size_t eden_region_length = young_list->length() - survivor_region_length;
  2626   init_cset_region_lengths(eden_region_length, survivor_region_length);
  2627   hr = young_list->first_survivor_region();
  2628   while (hr != NULL) {
  2629     assert(hr->is_survivor(), "badly formed young list");
  2630     hr->set_young();
  2631     hr = hr->get_next_young_region();
  2634   // Clear the fields that point to the survivor list - they are all young now.
  2635   young_list->clear_survivors();
  2637   if (_g1->mark_in_progress())
  2638     _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
  2640   _collection_set = _inc_cset_head;
  2641   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  2642   time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  2643   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  2645   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2646                 "add young regions to CSet",
  2647                 ergo_format_region("eden")
  2648                 ergo_format_region("survivors")
  2649                 ergo_format_ms("predicted young region time"),
  2650                 eden_region_length, survivor_region_length,
  2651                 _inc_cset_predicted_elapsed_time_ms);
  2653   // The number of recorded young regions is the incremental
  2654   // collection set's current size
  2655   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  2657   double young_end_time_sec = os::elapsedTime();
  2658   _recorded_young_cset_choice_time_ms =
  2659     (young_end_time_sec - young_start_time_sec) * 1000.0;
  2661   // We are doing young collections so reset this.
  2662   non_young_start_time_sec = young_end_time_sec;
  2664   if (!full_young_gcs()) {
  2665     bool should_continue = true;
  2666     NumberSeq seq;
  2667     double avg_prediction = 100000000000000000.0; // something very large
  2669     double prev_predicted_pause_time_ms = predicted_pause_time_ms;
  2670     do {
  2671       // Note that add_old_region_to_cset() increments the
  2672       // _old_cset_region_length field and cset_region_length() returns the
  2673       // sum of _eden_cset_region_length, _survivor_cset_region_length, and
  2674       // _old_cset_region_length. So, as old regions are added to the
  2675       // CSet, _old_cset_region_length will be incremented and
  2676       // cset_region_length(), which is used below, will always reflect
  2677       // the the total number of regions added up to this point to the CSet.
  2679       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
  2680                                                       avg_prediction);
  2681       if (hr != NULL) {
  2682         _g1->old_set_remove(hr);
  2683         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
  2684         time_remaining_ms -= predicted_time_ms;
  2685         predicted_pause_time_ms += predicted_time_ms;
  2686         add_old_region_to_cset(hr);
  2687         seq.add(predicted_time_ms);
  2688         avg_prediction = seq.avg() + seq.sd();
  2691       should_continue = true;
  2692       if (hr == NULL) {
  2693         // No need for an ergo verbose message here,
  2694         // getNextMarkRegion() does this when it returns NULL.
  2695         should_continue = false;
  2696       } else {
  2697         if (adaptive_young_list_length()) {
  2698           if (time_remaining_ms < 0.0) {
  2699             ergo_verbose1(ErgoCSetConstruction,
  2700                           "stop adding old regions to CSet",
  2701                           ergo_format_reason("remaining time is lower than 0")
  2702                           ergo_format_ms("remaining time"),
  2703                           time_remaining_ms);
  2704             should_continue = false;
  2706         } else {
  2707           if (cset_region_length() >= _young_list_fixed_length) {
  2708             ergo_verbose2(ErgoCSetConstruction,
  2709                           "stop adding old regions to CSet",
  2710                           ergo_format_reason("CSet length reached target")
  2711                           ergo_format_region("CSet")
  2712                           ergo_format_region("young target"),
  2713                           cset_region_length(), _young_list_fixed_length);
  2714             should_continue = false;
  2718     } while (should_continue);
  2720     if (!adaptive_young_list_length() &&
  2721                              cset_region_length() < _young_list_fixed_length) {
  2722       ergo_verbose2(ErgoCSetConstruction,
  2723                     "request partially-young GCs end",
  2724                     ergo_format_reason("CSet length lower than target")
  2725                     ergo_format_region("CSet")
  2726                     ergo_format_region("young target"),
  2727                     cset_region_length(), _young_list_fixed_length);
  2728       _should_revert_to_full_young_gcs  = true;
  2731     ergo_verbose2(ErgoCSetConstruction | ErgoHigh,
  2732                   "add old regions to CSet",
  2733                   ergo_format_region("old")
  2734                   ergo_format_ms("predicted old region time"),
  2735                   old_cset_region_length(),
  2736                   predicted_pause_time_ms - prev_predicted_pause_time_ms);
  2739   stop_incremental_cset_building();
  2741   count_CS_bytes_used();
  2743   ergo_verbose5(ErgoCSetConstruction,
  2744                 "finish choosing CSet",
  2745                 ergo_format_region("eden")
  2746                 ergo_format_region("survivors")
  2747                 ergo_format_region("old")
  2748                 ergo_format_ms("predicted pause time")
  2749                 ergo_format_ms("target pause time"),
  2750                 eden_region_length, survivor_region_length,
  2751                 old_cset_region_length(),
  2752                 predicted_pause_time_ms, target_pause_time_ms);
  2754   double non_young_end_time_sec = os::elapsedTime();
  2755   _recorded_non_young_cset_choice_time_ms =
  2756     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;

mercurial