src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Mon, 24 Mar 2014 15:30:56 +0100

author
tschatzl
date
Mon, 24 Mar 2014 15:30:56 +0100
changeset 6408
bc22cbb8b45a
parent 6405
a07bea31ef35
child 6422
8ee855b4e667
permissions
-rw-r--r--

8035330: Remove G1ParScanPartialArrayClosure and G1ParScanHeapEvacClosure
Summary: Mentioned closures are actually wrapped methods. This adds confusion to readers, and in this case also increases code size as G1ParScanHeapEvacClosure is part of the oop_oop_iterate() methods. Move them into G1ParScanThreadState as methods.
Reviewed-by: stefank

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/evacuationInfo.hpp"
    30 #include "gc_implementation/g1/g1AllocRegion.hpp"
    31 #include "gc_implementation/g1/g1HRPrinter.hpp"
    32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    33 #include "gc_implementation/g1/g1RemSet.hpp"
    34 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    35 #include "gc_implementation/g1/g1YCTypes.hpp"
    36 #include "gc_implementation/g1/heapRegionSeq.hpp"
    37 #include "gc_implementation/g1/heapRegionSet.hpp"
    38 #include "gc_implementation/shared/hSpaceCounters.hpp"
    39 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
    40 #include "memory/barrierSet.hpp"
    41 #include "memory/memRegion.hpp"
    42 #include "memory/sharedHeap.hpp"
    43 #include "utilities/stack.hpp"
    45 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    46 // It uses the "Garbage First" heap organization and algorithm, which
    47 // may combine concurrent marking with parallel, incremental compaction of
    48 // heap subsets that will yield large amounts of garbage.
    50 // Forward declarations
    51 class HeapRegion;
    52 class HRRSCleanupTask;
    53 class GenerationSpec;
    54 class OopsInHeapRegionClosure;
    55 class G1KlassScanClosure;
    56 class G1ScanHeapEvacClosure;
    57 class ObjectClosure;
    58 class SpaceClosure;
    59 class CompactibleSpaceClosure;
    60 class Space;
    61 class G1CollectorPolicy;
    62 class GenRemSet;
    63 class G1RemSet;
    64 class HeapRegionRemSetIterator;
    65 class ConcurrentMark;
    66 class ConcurrentMarkThread;
    67 class ConcurrentG1Refine;
    68 class ConcurrentGCTimer;
    69 class GenerationCounters;
    70 class STWGCTimer;
    71 class G1NewTracer;
    72 class G1OldTracer;
    73 class EvacuationFailedInfo;
    74 class nmethod;
    75 class Ticks;
    77 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
    78 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
    80 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    81 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    83 enum GCAllocPurpose {
    84   GCAllocForTenured,
    85   GCAllocForSurvived,
    86   GCAllocPurposeCount
    87 };
    89 class YoungList : public CHeapObj<mtGC> {
    90 private:
    91   G1CollectedHeap* _g1h;
    93   HeapRegion* _head;
    95   HeapRegion* _survivor_head;
    96   HeapRegion* _survivor_tail;
    98   HeapRegion* _curr;
   100   uint        _length;
   101   uint        _survivor_length;
   103   size_t      _last_sampled_rs_lengths;
   104   size_t      _sampled_rs_lengths;
   106   void         empty_list(HeapRegion* list);
   108 public:
   109   YoungList(G1CollectedHeap* g1h);
   111   void         push_region(HeapRegion* hr);
   112   void         add_survivor_region(HeapRegion* hr);
   114   void         empty_list();
   115   bool         is_empty() { return _length == 0; }
   116   uint         length() { return _length; }
   117   uint         survivor_length() { return _survivor_length; }
   119   // Currently we do not keep track of the used byte sum for the
   120   // young list and the survivors and it'd be quite a lot of work to
   121   // do so. When we'll eventually replace the young list with
   122   // instances of HeapRegionLinkedList we'll get that for free. So,
   123   // we'll report the more accurate information then.
   124   size_t       eden_used_bytes() {
   125     assert(length() >= survivor_length(), "invariant");
   126     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
   127   }
   128   size_t       survivor_used_bytes() {
   129     return (size_t) survivor_length() * HeapRegion::GrainBytes;
   130   }
   132   void rs_length_sampling_init();
   133   bool rs_length_sampling_more();
   134   void rs_length_sampling_next();
   136   void reset_sampled_info() {
   137     _last_sampled_rs_lengths =   0;
   138   }
   139   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   141   // for development purposes
   142   void reset_auxilary_lists();
   143   void clear() { _head = NULL; _length = 0; }
   145   void clear_survivors() {
   146     _survivor_head    = NULL;
   147     _survivor_tail    = NULL;
   148     _survivor_length  = 0;
   149   }
   151   HeapRegion* first_region() { return _head; }
   152   HeapRegion* first_survivor_region() { return _survivor_head; }
   153   HeapRegion* last_survivor_region() { return _survivor_tail; }
   155   // debugging
   156   bool          check_list_well_formed();
   157   bool          check_list_empty(bool check_sample = true);
   158   void          print();
   159 };
   161 class MutatorAllocRegion : public G1AllocRegion {
   162 protected:
   163   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   164   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   165 public:
   166   MutatorAllocRegion()
   167     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   168 };
   170 class SurvivorGCAllocRegion : public G1AllocRegion {
   171 protected:
   172   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   173   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   174 public:
   175   SurvivorGCAllocRegion()
   176   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   177 };
   179 class OldGCAllocRegion : public G1AllocRegion {
   180 protected:
   181   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   182   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   183 public:
   184   OldGCAllocRegion()
   185   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   186 };
   188 // The G1 STW is alive closure.
   189 // An instance is embedded into the G1CH and used as the
   190 // (optional) _is_alive_non_header closure in the STW
   191 // reference processor. It is also extensively used during
   192 // reference processing during STW evacuation pauses.
   193 class G1STWIsAliveClosure: public BoolObjectClosure {
   194   G1CollectedHeap* _g1;
   195 public:
   196   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   197   bool do_object_b(oop p);
   198 };
   200 class RefineCardTableEntryClosure;
   202 class G1CollectedHeap : public SharedHeap {
   203   friend class VM_G1CollectForAllocation;
   204   friend class VM_G1CollectFull;
   205   friend class VM_G1IncCollectionPause;
   206   friend class VMStructs;
   207   friend class MutatorAllocRegion;
   208   friend class SurvivorGCAllocRegion;
   209   friend class OldGCAllocRegion;
   211   // Closures used in implementation.
   212   template <G1Barrier barrier, bool do_mark_object>
   213   friend class G1ParCopyClosure;
   214   friend class G1IsAliveClosure;
   215   friend class G1EvacuateFollowersClosure;
   216   friend class G1ParScanThreadState;
   217   friend class G1ParScanClosureSuper;
   218   friend class G1ParEvacuateFollowersClosure;
   219   friend class G1ParTask;
   220   friend class G1FreeGarbageRegionClosure;
   221   friend class RefineCardTableEntryClosure;
   222   friend class G1PrepareCompactClosure;
   223   friend class RegionSorter;
   224   friend class RegionResetter;
   225   friend class CountRCClosure;
   226   friend class EvacPopObjClosure;
   227   friend class G1ParCleanupCTTask;
   229   // Other related classes.
   230   friend class G1MarkSweep;
   232 private:
   233   // The one and only G1CollectedHeap, so static functions can find it.
   234   static G1CollectedHeap* _g1h;
   236   static size_t _humongous_object_threshold_in_words;
   238   // Storage for the G1 heap.
   239   VirtualSpace _g1_storage;
   240   MemRegion    _g1_reserved;
   242   // The part of _g1_storage that is currently committed.
   243   MemRegion _g1_committed;
   245   // The master free list. It will satisfy all new region allocations.
   246   FreeRegionList _free_list;
   248   // The secondary free list which contains regions that have been
   249   // freed up during the cleanup process. This will be appended to the
   250   // master free list when appropriate.
   251   FreeRegionList _secondary_free_list;
   253   // It keeps track of the old regions.
   254   HeapRegionSet _old_set;
   256   // It keeps track of the humongous regions.
   257   HeapRegionSet _humongous_set;
   259   // The number of regions we could create by expansion.
   260   uint _expansion_regions;
   262   // The block offset table for the G1 heap.
   263   G1BlockOffsetSharedArray* _bot_shared;
   265   // Tears down the region sets / lists so that they are empty and the
   266   // regions on the heap do not belong to a region set / list. The
   267   // only exception is the humongous set which we leave unaltered. If
   268   // free_list_only is true, it will only tear down the master free
   269   // list. It is called before a Full GC (free_list_only == false) or
   270   // before heap shrinking (free_list_only == true).
   271   void tear_down_region_sets(bool free_list_only);
   273   // Rebuilds the region sets / lists so that they are repopulated to
   274   // reflect the contents of the heap. The only exception is the
   275   // humongous set which was not torn down in the first place. If
   276   // free_list_only is true, it will only rebuild the master free
   277   // list. It is called after a Full GC (free_list_only == false) or
   278   // after heap shrinking (free_list_only == true).
   279   void rebuild_region_sets(bool free_list_only);
   281   // The sequence of all heap regions in the heap.
   282   HeapRegionSeq _hrs;
   284   // Alloc region used to satisfy mutator allocation requests.
   285   MutatorAllocRegion _mutator_alloc_region;
   287   // Alloc region used to satisfy allocation requests by the GC for
   288   // survivor objects.
   289   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   291   // PLAB sizing policy for survivors.
   292   PLABStats _survivor_plab_stats;
   294   // Alloc region used to satisfy allocation requests by the GC for
   295   // old objects.
   296   OldGCAllocRegion _old_gc_alloc_region;
   298   // PLAB sizing policy for tenured objects.
   299   PLABStats _old_plab_stats;
   301   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
   302     PLABStats* stats = NULL;
   304     switch (purpose) {
   305     case GCAllocForSurvived:
   306       stats = &_survivor_plab_stats;
   307       break;
   308     case GCAllocForTenured:
   309       stats = &_old_plab_stats;
   310       break;
   311     default:
   312       assert(false, "unrecognized GCAllocPurpose");
   313     }
   315     return stats;
   316   }
   318   // The last old region we allocated to during the last GC.
   319   // Typically, it is not full so we should re-use it during the next GC.
   320   HeapRegion* _retained_old_gc_alloc_region;
   322   // It specifies whether we should attempt to expand the heap after a
   323   // region allocation failure. If heap expansion fails we set this to
   324   // false so that we don't re-attempt the heap expansion (it's likely
   325   // that subsequent expansion attempts will also fail if one fails).
   326   // Currently, it is only consulted during GC and it's reset at the
   327   // start of each GC.
   328   bool _expand_heap_after_alloc_failure;
   330   // It resets the mutator alloc region before new allocations can take place.
   331   void init_mutator_alloc_region();
   333   // It releases the mutator alloc region.
   334   void release_mutator_alloc_region();
   336   // It initializes the GC alloc regions at the start of a GC.
   337   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
   339   // It releases the GC alloc regions at the end of a GC.
   340   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
   342   // It does any cleanup that needs to be done on the GC alloc regions
   343   // before a Full GC.
   344   void abandon_gc_alloc_regions();
   346   // Helper for monitoring and management support.
   347   G1MonitoringSupport* _g1mm;
   349   // Determines PLAB size for a particular allocation purpose.
   350   size_t desired_plab_sz(GCAllocPurpose purpose);
   352   // Outside of GC pauses, the number of bytes used in all regions other
   353   // than the current allocation region.
   354   size_t _summary_bytes_used;
   356   // This is used for a quick test on whether a reference points into
   357   // the collection set or not. Basically, we have an array, with one
   358   // byte per region, and that byte denotes whether the corresponding
   359   // region is in the collection set or not. The entry corresponding
   360   // the bottom of the heap, i.e., region 0, is pointed to by
   361   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   362   // biased so that it actually points to address 0 of the address
   363   // space, to make the test as fast as possible (we can simply shift
   364   // the address to address into it, instead of having to subtract the
   365   // bottom of the heap from the address before shifting it; basically
   366   // it works in the same way the card table works).
   367   bool* _in_cset_fast_test;
   369   // The allocated array used for the fast test on whether a reference
   370   // points into the collection set or not. This field is also used to
   371   // free the array.
   372   bool* _in_cset_fast_test_base;
   374   // The length of the _in_cset_fast_test_base array.
   375   uint _in_cset_fast_test_length;
   377   volatile unsigned _gc_time_stamp;
   379   size_t* _surviving_young_words;
   381   G1HRPrinter _hr_printer;
   383   void setup_surviving_young_words();
   384   void update_surviving_young_words(size_t* surv_young_words);
   385   void cleanup_surviving_young_words();
   387   // It decides whether an explicit GC should start a concurrent cycle
   388   // instead of doing a STW GC. Currently, a concurrent cycle is
   389   // explicitly started if:
   390   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   391   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   392   // (c) cause == _g1_humongous_allocation
   393   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   395   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   396   // concurrent cycles) we have started.
   397   volatile unsigned int _old_marking_cycles_started;
   399   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   400   // concurrent cycles) we have completed.
   401   volatile unsigned int _old_marking_cycles_completed;
   403   bool _concurrent_cycle_started;
   405   // This is a non-product method that is helpful for testing. It is
   406   // called at the end of a GC and artificially expands the heap by
   407   // allocating a number of dead regions. This way we can induce very
   408   // frequent marking cycles and stress the cleanup / concurrent
   409   // cleanup code more (as all the regions that will be allocated by
   410   // this method will be found dead by the marking cycle).
   411   void allocate_dummy_regions() PRODUCT_RETURN;
   413   // Clear RSets after a compaction. It also resets the GC time stamps.
   414   void clear_rsets_post_compaction();
   416   // If the HR printer is active, dump the state of the regions in the
   417   // heap after a compaction.
   418   void print_hrs_post_compaction();
   420   double verify(bool guard, const char* msg);
   421   void verify_before_gc();
   422   void verify_after_gc();
   424   void log_gc_header();
   425   void log_gc_footer(double pause_time_sec);
   427   // These are macros so that, if the assert fires, we get the correct
   428   // line number, file, etc.
   430 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   431   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   432           (_extra_message_),                                                  \
   433           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   434           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   435           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   437 #define assert_heap_locked()                                                  \
   438   do {                                                                        \
   439     assert(Heap_lock->owned_by_self(),                                        \
   440            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   441   } while (0)
   443 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   444   do {                                                                        \
   445     assert(Heap_lock->owned_by_self() ||                                      \
   446            (SafepointSynchronize::is_at_safepoint() &&                        \
   447              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   448            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   449                                         "should be at a safepoint"));         \
   450   } while (0)
   452 #define assert_heap_locked_and_not_at_safepoint()                             \
   453   do {                                                                        \
   454     assert(Heap_lock->owned_by_self() &&                                      \
   455                                     !SafepointSynchronize::is_at_safepoint(), \
   456           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   457                                        "should not be at a safepoint"));      \
   458   } while (0)
   460 #define assert_heap_not_locked()                                              \
   461   do {                                                                        \
   462     assert(!Heap_lock->owned_by_self(),                                       \
   463         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   464   } while (0)
   466 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   467   do {                                                                        \
   468     assert(!Heap_lock->owned_by_self() &&                                     \
   469                                     !SafepointSynchronize::is_at_safepoint(), \
   470       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   471                                    "should not be at a safepoint"));          \
   472   } while (0)
   474 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   475   do {                                                                        \
   476     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   477               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   478            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   479   } while (0)
   481 #define assert_not_at_safepoint()                                             \
   482   do {                                                                        \
   483     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   484            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   485   } while (0)
   487 protected:
   489   // The young region list.
   490   YoungList*  _young_list;
   492   // The current policy object for the collector.
   493   G1CollectorPolicy* _g1_policy;
   495   // This is the second level of trying to allocate a new region. If
   496   // new_region() didn't find a region on the free_list, this call will
   497   // check whether there's anything available on the
   498   // secondary_free_list and/or wait for more regions to appear on
   499   // that list, if _free_regions_coming is set.
   500   HeapRegion* new_region_try_secondary_free_list();
   502   // Try to allocate a single non-humongous HeapRegion sufficient for
   503   // an allocation of the given word_size. If do_expand is true,
   504   // attempt to expand the heap if necessary to satisfy the allocation
   505   // request.
   506   HeapRegion* new_region(size_t word_size, bool do_expand);
   508   // Attempt to satisfy a humongous allocation request of the given
   509   // size by finding a contiguous set of free regions of num_regions
   510   // length and remove them from the master free list. Return the
   511   // index of the first region or G1_NULL_HRS_INDEX if the search
   512   // was unsuccessful.
   513   uint humongous_obj_allocate_find_first(uint num_regions,
   514                                          size_t word_size);
   516   // Initialize a contiguous set of free regions of length num_regions
   517   // and starting at index first so that they appear as a single
   518   // humongous region.
   519   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
   520                                                       uint num_regions,
   521                                                       size_t word_size);
   523   // Attempt to allocate a humongous object of the given size. Return
   524   // NULL if unsuccessful.
   525   HeapWord* humongous_obj_allocate(size_t word_size);
   527   // The following two methods, allocate_new_tlab() and
   528   // mem_allocate(), are the two main entry points from the runtime
   529   // into the G1's allocation routines. They have the following
   530   // assumptions:
   531   //
   532   // * They should both be called outside safepoints.
   533   //
   534   // * They should both be called without holding the Heap_lock.
   535   //
   536   // * All allocation requests for new TLABs should go to
   537   //   allocate_new_tlab().
   538   //
   539   // * All non-TLAB allocation requests should go to mem_allocate().
   540   //
   541   // * If either call cannot satisfy the allocation request using the
   542   //   current allocating region, they will try to get a new one. If
   543   //   this fails, they will attempt to do an evacuation pause and
   544   //   retry the allocation.
   545   //
   546   // * If all allocation attempts fail, even after trying to schedule
   547   //   an evacuation pause, allocate_new_tlab() will return NULL,
   548   //   whereas mem_allocate() will attempt a heap expansion and/or
   549   //   schedule a Full GC.
   550   //
   551   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   552   //   should never be called with word_size being humongous. All
   553   //   humongous allocation requests should go to mem_allocate() which
   554   //   will satisfy them with a special path.
   556   virtual HeapWord* allocate_new_tlab(size_t word_size);
   558   virtual HeapWord* mem_allocate(size_t word_size,
   559                                  bool*  gc_overhead_limit_was_exceeded);
   561   // The following three methods take a gc_count_before_ret
   562   // parameter which is used to return the GC count if the method
   563   // returns NULL. Given that we are required to read the GC count
   564   // while holding the Heap_lock, and these paths will take the
   565   // Heap_lock at some point, it's easier to get them to read the GC
   566   // count while holding the Heap_lock before they return NULL instead
   567   // of the caller (namely: mem_allocate()) having to also take the
   568   // Heap_lock just to read the GC count.
   570   // First-level mutator allocation attempt: try to allocate out of
   571   // the mutator alloc region without taking the Heap_lock. This
   572   // should only be used for non-humongous allocations.
   573   inline HeapWord* attempt_allocation(size_t word_size,
   574                                       unsigned int* gc_count_before_ret,
   575                                       int* gclocker_retry_count_ret);
   577   // Second-level mutator allocation attempt: take the Heap_lock and
   578   // retry the allocation attempt, potentially scheduling a GC
   579   // pause. This should only be used for non-humongous allocations.
   580   HeapWord* attempt_allocation_slow(size_t word_size,
   581                                     unsigned int* gc_count_before_ret,
   582                                     int* gclocker_retry_count_ret);
   584   // Takes the Heap_lock and attempts a humongous allocation. It can
   585   // potentially schedule a GC pause.
   586   HeapWord* attempt_allocation_humongous(size_t word_size,
   587                                          unsigned int* gc_count_before_ret,
   588                                          int* gclocker_retry_count_ret);
   590   // Allocation attempt that should be called during safepoints (e.g.,
   591   // at the end of a successful GC). expect_null_mutator_alloc_region
   592   // specifies whether the mutator alloc region is expected to be NULL
   593   // or not.
   594   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   595                                        bool expect_null_mutator_alloc_region);
   597   // It dirties the cards that cover the block so that so that the post
   598   // write barrier never queues anything when updating objects on this
   599   // block. It is assumed (and in fact we assert) that the block
   600   // belongs to a young region.
   601   inline void dirty_young_block(HeapWord* start, size_t word_size);
   603   // Allocate blocks during garbage collection. Will ensure an
   604   // allocation region, either by picking one or expanding the
   605   // heap, and then allocate a block of the given size. The block
   606   // may not be a humongous - it must fit into a single heap region.
   607   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   609   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   610                                     HeapRegion*    alloc_region,
   611                                     bool           par,
   612                                     size_t         word_size);
   614   // Ensure that no further allocations can happen in "r", bearing in mind
   615   // that parallel threads might be attempting allocations.
   616   void par_allocate_remaining_space(HeapRegion* r);
   618   // Allocation attempt during GC for a survivor object / PLAB.
   619   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   621   // Allocation attempt during GC for an old object / PLAB.
   622   inline HeapWord* old_attempt_allocation(size_t word_size);
   624   // These methods are the "callbacks" from the G1AllocRegion class.
   626   // For mutator alloc regions.
   627   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   628   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   629                                    size_t allocated_bytes);
   631   // For GC alloc regions.
   632   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
   633                                   GCAllocPurpose ap);
   634   void retire_gc_alloc_region(HeapRegion* alloc_region,
   635                               size_t allocated_bytes, GCAllocPurpose ap);
   637   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   638   //   inspection request and should collect the entire heap
   639   // - if clear_all_soft_refs is true, all soft references should be
   640   //   cleared during the GC
   641   // - if explicit_gc is false, word_size describes the allocation that
   642   //   the GC should attempt (at least) to satisfy
   643   // - it returns false if it is unable to do the collection due to the
   644   //   GC locker being active, true otherwise
   645   bool do_collection(bool explicit_gc,
   646                      bool clear_all_soft_refs,
   647                      size_t word_size);
   649   // Callback from VM_G1CollectFull operation.
   650   // Perform a full collection.
   651   virtual void do_full_collection(bool clear_all_soft_refs);
   653   // Resize the heap if necessary after a full collection.  If this is
   654   // after a collect-for allocation, "word_size" is the allocation size,
   655   // and will be considered part of the used portion of the heap.
   656   void resize_if_necessary_after_full_collection(size_t word_size);
   658   // Callback from VM_G1CollectForAllocation operation.
   659   // This function does everything necessary/possible to satisfy a
   660   // failed allocation request (including collection, expansion, etc.)
   661   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   663   // Attempting to expand the heap sufficiently
   664   // to support an allocation of the given "word_size".  If
   665   // successful, perform the allocation and return the address of the
   666   // allocated block, or else "NULL".
   667   HeapWord* expand_and_allocate(size_t word_size);
   669   // Process any reference objects discovered during
   670   // an incremental evacuation pause.
   671   void process_discovered_references(uint no_of_gc_workers);
   673   // Enqueue any remaining discovered references
   674   // after processing.
   675   void enqueue_discovered_references(uint no_of_gc_workers);
   677 public:
   679   G1MonitoringSupport* g1mm() {
   680     assert(_g1mm != NULL, "should have been initialized");
   681     return _g1mm;
   682   }
   684   // Expand the garbage-first heap by at least the given size (in bytes!).
   685   // Returns true if the heap was expanded by the requested amount;
   686   // false otherwise.
   687   // (Rounds up to a HeapRegion boundary.)
   688   bool expand(size_t expand_bytes);
   690   // Do anything common to GC's.
   691   virtual void gc_prologue(bool full);
   692   virtual void gc_epilogue(bool full);
   694   // We register a region with the fast "in collection set" test. We
   695   // simply set to true the array slot corresponding to this region.
   696   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   697     assert(_in_cset_fast_test_base != NULL, "sanity");
   698     assert(r->in_collection_set(), "invariant");
   699     uint index = r->hrs_index();
   700     assert(index < _in_cset_fast_test_length, "invariant");
   701     assert(!_in_cset_fast_test_base[index], "invariant");
   702     _in_cset_fast_test_base[index] = true;
   703   }
   705   // This is a fast test on whether a reference points into the
   706   // collection set or not. Assume that the reference
   707   // points into the heap.
   708   bool in_cset_fast_test(oop obj) {
   709     assert(_in_cset_fast_test != NULL, "sanity");
   710     assert(_g1_committed.contains((HeapWord*) obj), err_msg("Given reference outside of heap, is "PTR_FORMAT, (HeapWord*)obj));
   711     // no need to subtract the bottom of the heap from obj,
   712     // _in_cset_fast_test is biased
   713     uintx index = cast_from_oop<uintx>(obj) >> HeapRegion::LogOfHRGrainBytes;
   714     bool ret = _in_cset_fast_test[index];
   715     // let's make sure the result is consistent with what the slower
   716     // test returns
   717     assert( ret || !obj_in_cs(obj), "sanity");
   718     assert(!ret ||  obj_in_cs(obj), "sanity");
   719     return ret;
   720   }
   722   void clear_cset_fast_test() {
   723     assert(_in_cset_fast_test_base != NULL, "sanity");
   724     memset(_in_cset_fast_test_base, false,
   725            (size_t) _in_cset_fast_test_length * sizeof(bool));
   726   }
   728   // This is called at the start of either a concurrent cycle or a Full
   729   // GC to update the number of old marking cycles started.
   730   void increment_old_marking_cycles_started();
   732   // This is called at the end of either a concurrent cycle or a Full
   733   // GC to update the number of old marking cycles completed. Those two
   734   // can happen in a nested fashion, i.e., we start a concurrent
   735   // cycle, a Full GC happens half-way through it which ends first,
   736   // and then the cycle notices that a Full GC happened and ends
   737   // too. The concurrent parameter is a boolean to help us do a bit
   738   // tighter consistency checking in the method. If concurrent is
   739   // false, the caller is the inner caller in the nesting (i.e., the
   740   // Full GC). If concurrent is true, the caller is the outer caller
   741   // in this nesting (i.e., the concurrent cycle). Further nesting is
   742   // not currently supported. The end of this call also notifies
   743   // the FullGCCount_lock in case a Java thread is waiting for a full
   744   // GC to happen (e.g., it called System.gc() with
   745   // +ExplicitGCInvokesConcurrent).
   746   void increment_old_marking_cycles_completed(bool concurrent);
   748   unsigned int old_marking_cycles_completed() {
   749     return _old_marking_cycles_completed;
   750   }
   752   void register_concurrent_cycle_start(const Ticks& start_time);
   753   void register_concurrent_cycle_end();
   754   void trace_heap_after_concurrent_cycle();
   756   G1YCType yc_type();
   758   G1HRPrinter* hr_printer() { return &_hr_printer; }
   760   // Frees a non-humongous region by initializing its contents and
   761   // adding it to the free list that's passed as a parameter (this is
   762   // usually a local list which will be appended to the master free
   763   // list later). The used bytes of freed regions are accumulated in
   764   // pre_used. If par is true, the region's RSet will not be freed
   765   // up. The assumption is that this will be done later.
   766   // The locked parameter indicates if the caller has already taken
   767   // care of proper synchronization. This may allow some optimizations.
   768   void free_region(HeapRegion* hr,
   769                    FreeRegionList* free_list,
   770                    bool par,
   771                    bool locked = false);
   773   // Frees a humongous region by collapsing it into individual regions
   774   // and calling free_region() for each of them. The freed regions
   775   // will be added to the free list that's passed as a parameter (this
   776   // is usually a local list which will be appended to the master free
   777   // list later). The used bytes of freed regions are accumulated in
   778   // pre_used. If par is true, the region's RSet will not be freed
   779   // up. The assumption is that this will be done later.
   780   void free_humongous_region(HeapRegion* hr,
   781                              FreeRegionList* free_list,
   782                              bool par);
   783 protected:
   785   // Shrink the garbage-first heap by at most the given size (in bytes!).
   786   // (Rounds down to a HeapRegion boundary.)
   787   virtual void shrink(size_t expand_bytes);
   788   void shrink_helper(size_t expand_bytes);
   790   #if TASKQUEUE_STATS
   791   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   792   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   793   void reset_taskqueue_stats();
   794   #endif // TASKQUEUE_STATS
   796   // Schedule the VM operation that will do an evacuation pause to
   797   // satisfy an allocation request of word_size. *succeeded will
   798   // return whether the VM operation was successful (it did do an
   799   // evacuation pause) or not (another thread beat us to it or the GC
   800   // locker was active). Given that we should not be holding the
   801   // Heap_lock when we enter this method, we will pass the
   802   // gc_count_before (i.e., total_collections()) as a parameter since
   803   // it has to be read while holding the Heap_lock. Currently, both
   804   // methods that call do_collection_pause() release the Heap_lock
   805   // before the call, so it's easy to read gc_count_before just before.
   806   HeapWord* do_collection_pause(size_t         word_size,
   807                                 unsigned int   gc_count_before,
   808                                 bool*          succeeded,
   809                                 GCCause::Cause gc_cause);
   811   // The guts of the incremental collection pause, executed by the vm
   812   // thread. It returns false if it is unable to do the collection due
   813   // to the GC locker being active, true otherwise
   814   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   816   // Actually do the work of evacuating the collection set.
   817   void evacuate_collection_set(EvacuationInfo& evacuation_info);
   819   // The g1 remembered set of the heap.
   820   G1RemSet* _g1_rem_set;
   822   // A set of cards that cover the objects for which the Rsets should be updated
   823   // concurrently after the collection.
   824   DirtyCardQueueSet _dirty_card_queue_set;
   826   // The closure used to refine a single card.
   827   RefineCardTableEntryClosure* _refine_cte_cl;
   829   // A function to check the consistency of dirty card logs.
   830   void check_ct_logs_at_safepoint();
   832   // A DirtyCardQueueSet that is used to hold cards that contain
   833   // references into the current collection set. This is used to
   834   // update the remembered sets of the regions in the collection
   835   // set in the event of an evacuation failure.
   836   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   838   // After a collection pause, make the regions in the CS into free
   839   // regions.
   840   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
   842   // Abandon the current collection set without recording policy
   843   // statistics or updating free lists.
   844   void abandon_collection_set(HeapRegion* cs_head);
   846   // Applies "scan_non_heap_roots" to roots outside the heap,
   847   // "scan_rs" to roots inside the heap (having done "set_region" to
   848   // indicate the region in which the root resides),
   849   // and does "scan_metadata" If "scan_rs" is
   850   // NULL, then this step is skipped.  The "worker_i"
   851   // param is for use with parallel roots processing, and should be
   852   // the "i" of the calling parallel worker thread's work(i) function.
   853   // In the sequential case this param will be ignored.
   854   void g1_process_strong_roots(bool is_scavenging,
   855                                ScanningOption so,
   856                                OopClosure* scan_non_heap_roots,
   857                                OopsInHeapRegionClosure* scan_rs,
   858                                G1KlassScanClosure* scan_klasses,
   859                                int worker_i);
   861   // Apply "blk" to all the weak roots of the system.  These include
   862   // JNI weak roots, the code cache, system dictionary, symbol table,
   863   // string table, and referents of reachable weak refs.
   864   void g1_process_weak_roots(OopClosure* root_closure);
   866   // Notifies all the necessary spaces that the committed space has
   867   // been updated (either expanded or shrunk). It should be called
   868   // after _g1_storage is updated.
   869   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   871   // The concurrent marker (and the thread it runs in.)
   872   ConcurrentMark* _cm;
   873   ConcurrentMarkThread* _cmThread;
   874   bool _mark_in_progress;
   876   // The concurrent refiner.
   877   ConcurrentG1Refine* _cg1r;
   879   // The parallel task queues
   880   RefToScanQueueSet *_task_queues;
   882   // True iff a evacuation has failed in the current collection.
   883   bool _evacuation_failed;
   885   EvacuationFailedInfo* _evacuation_failed_info_array;
   887   // Failed evacuations cause some logical from-space objects to have
   888   // forwarding pointers to themselves.  Reset them.
   889   void remove_self_forwarding_pointers();
   891   // Together, these store an object with a preserved mark, and its mark value.
   892   Stack<oop, mtGC>     _objs_with_preserved_marks;
   893   Stack<markOop, mtGC> _preserved_marks_of_objs;
   895   // Preserve the mark of "obj", if necessary, in preparation for its mark
   896   // word being overwritten with a self-forwarding-pointer.
   897   void preserve_mark_if_necessary(oop obj, markOop m);
   899   // The stack of evac-failure objects left to be scanned.
   900   GrowableArray<oop>*    _evac_failure_scan_stack;
   901   // The closure to apply to evac-failure objects.
   903   OopsInHeapRegionClosure* _evac_failure_closure;
   904   // Set the field above.
   905   void
   906   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   907     _evac_failure_closure = evac_failure_closure;
   908   }
   910   // Push "obj" on the scan stack.
   911   void push_on_evac_failure_scan_stack(oop obj);
   912   // Process scan stack entries until the stack is empty.
   913   void drain_evac_failure_scan_stack();
   914   // True iff an invocation of "drain_scan_stack" is in progress; to
   915   // prevent unnecessary recursion.
   916   bool _drain_in_progress;
   918   // Do any necessary initialization for evacuation-failure handling.
   919   // "cl" is the closure that will be used to process evac-failure
   920   // objects.
   921   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   922   // Do any necessary cleanup for evacuation-failure handling data
   923   // structures.
   924   void finalize_for_evac_failure();
   926   // An attempt to evacuate "obj" has failed; take necessary steps.
   927   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
   928   void handle_evacuation_failure_common(oop obj, markOop m);
   930 #ifndef PRODUCT
   931   // Support for forcing evacuation failures. Analogous to
   932   // PromotionFailureALot for the other collectors.
   934   // Records whether G1EvacuationFailureALot should be in effect
   935   // for the current GC
   936   bool _evacuation_failure_alot_for_current_gc;
   938   // Used to record the GC number for interval checking when
   939   // determining whether G1EvaucationFailureALot is in effect
   940   // for the current GC.
   941   size_t _evacuation_failure_alot_gc_number;
   943   // Count of the number of evacuations between failures.
   944   volatile size_t _evacuation_failure_alot_count;
   946   // Set whether G1EvacuationFailureALot should be in effect
   947   // for the current GC (based upon the type of GC and which
   948   // command line flags are set);
   949   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
   950                                                   bool during_initial_mark,
   951                                                   bool during_marking);
   953   inline void set_evacuation_failure_alot_for_current_gc();
   955   // Return true if it's time to cause an evacuation failure.
   956   inline bool evacuation_should_fail();
   958   // Reset the G1EvacuationFailureALot counters.  Should be called at
   959   // the end of an evacuation pause in which an evacuation failure occurred.
   960   inline void reset_evacuation_should_fail();
   961 #endif // !PRODUCT
   963   // ("Weak") Reference processing support.
   964   //
   965   // G1 has 2 instances of the reference processor class. One
   966   // (_ref_processor_cm) handles reference object discovery
   967   // and subsequent processing during concurrent marking cycles.
   968   //
   969   // The other (_ref_processor_stw) handles reference object
   970   // discovery and processing during full GCs and incremental
   971   // evacuation pauses.
   972   //
   973   // During an incremental pause, reference discovery will be
   974   // temporarily disabled for _ref_processor_cm and will be
   975   // enabled for _ref_processor_stw. At the end of the evacuation
   976   // pause references discovered by _ref_processor_stw will be
   977   // processed and discovery will be disabled. The previous
   978   // setting for reference object discovery for _ref_processor_cm
   979   // will be re-instated.
   980   //
   981   // At the start of marking:
   982   //  * Discovery by the CM ref processor is verified to be inactive
   983   //    and it's discovered lists are empty.
   984   //  * Discovery by the CM ref processor is then enabled.
   985   //
   986   // At the end of marking:
   987   //  * Any references on the CM ref processor's discovered
   988   //    lists are processed (possibly MT).
   989   //
   990   // At the start of full GC we:
   991   //  * Disable discovery by the CM ref processor and
   992   //    empty CM ref processor's discovered lists
   993   //    (without processing any entries).
   994   //  * Verify that the STW ref processor is inactive and it's
   995   //    discovered lists are empty.
   996   //  * Temporarily set STW ref processor discovery as single threaded.
   997   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   998   //    field.
   999   //  * Finally enable discovery by the STW ref processor.
  1000   //
  1001   // The STW ref processor is used to record any discovered
  1002   // references during the full GC.
  1003   //
  1004   // At the end of a full GC we:
  1005   //  * Enqueue any reference objects discovered by the STW ref processor
  1006   //    that have non-live referents. This has the side-effect of
  1007   //    making the STW ref processor inactive by disabling discovery.
  1008   //  * Verify that the CM ref processor is still inactive
  1009   //    and no references have been placed on it's discovered
  1010   //    lists (also checked as a precondition during initial marking).
  1012   // The (stw) reference processor...
  1013   ReferenceProcessor* _ref_processor_stw;
  1015   STWGCTimer* _gc_timer_stw;
  1016   ConcurrentGCTimer* _gc_timer_cm;
  1018   G1OldTracer* _gc_tracer_cm;
  1019   G1NewTracer* _gc_tracer_stw;
  1021   // During reference object discovery, the _is_alive_non_header
  1022   // closure (if non-null) is applied to the referent object to
  1023   // determine whether the referent is live. If so then the
  1024   // reference object does not need to be 'discovered' and can
  1025   // be treated as a regular oop. This has the benefit of reducing
  1026   // the number of 'discovered' reference objects that need to
  1027   // be processed.
  1028   //
  1029   // Instance of the is_alive closure for embedding into the
  1030   // STW reference processor as the _is_alive_non_header field.
  1031   // Supplying a value for the _is_alive_non_header field is
  1032   // optional but doing so prevents unnecessary additions to
  1033   // the discovered lists during reference discovery.
  1034   G1STWIsAliveClosure _is_alive_closure_stw;
  1036   // The (concurrent marking) reference processor...
  1037   ReferenceProcessor* _ref_processor_cm;
  1039   // Instance of the concurrent mark is_alive closure for embedding
  1040   // into the Concurrent Marking reference processor as the
  1041   // _is_alive_non_header field. Supplying a value for the
  1042   // _is_alive_non_header field is optional but doing so prevents
  1043   // unnecessary additions to the discovered lists during reference
  1044   // discovery.
  1045   G1CMIsAliveClosure _is_alive_closure_cm;
  1047   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
  1048   HeapRegion** _worker_cset_start_region;
  1050   // Time stamp to validate the regions recorded in the cache
  1051   // used by G1CollectedHeap::start_cset_region_for_worker().
  1052   // The heap region entry for a given worker is valid iff
  1053   // the associated time stamp value matches the current value
  1054   // of G1CollectedHeap::_gc_time_stamp.
  1055   unsigned int* _worker_cset_start_region_time_stamp;
  1057   enum G1H_process_strong_roots_tasks {
  1058     G1H_PS_filter_satb_buffers,
  1059     G1H_PS_refProcessor_oops_do,
  1060     // Leave this one last.
  1061     G1H_PS_NumElements
  1062   };
  1064   SubTasksDone* _process_strong_tasks;
  1066   volatile bool _free_regions_coming;
  1068 public:
  1070   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
  1072   void set_refine_cte_cl_concurrency(bool concurrent);
  1074   RefToScanQueue *task_queue(int i) const;
  1076   // A set of cards where updates happened during the GC
  1077   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
  1079   // A DirtyCardQueueSet that is used to hold cards that contain
  1080   // references into the current collection set. This is used to
  1081   // update the remembered sets of the regions in the collection
  1082   // set in the event of an evacuation failure.
  1083   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
  1084         { return _into_cset_dirty_card_queue_set; }
  1086   // Create a G1CollectedHeap with the specified policy.
  1087   // Must call the initialize method afterwards.
  1088   // May not return if something goes wrong.
  1089   G1CollectedHeap(G1CollectorPolicy* policy);
  1091   // Initialize the G1CollectedHeap to have the initial and
  1092   // maximum sizes and remembered and barrier sets
  1093   // specified by the policy object.
  1094   jint initialize();
  1096   // Return the (conservative) maximum heap alignment for any G1 heap
  1097   static size_t conservative_max_heap_alignment();
  1099   // Initialize weak reference processing.
  1100   virtual void ref_processing_init();
  1102   void set_par_threads(uint t) {
  1103     SharedHeap::set_par_threads(t);
  1104     // Done in SharedHeap but oddly there are
  1105     // two _process_strong_tasks's in a G1CollectedHeap
  1106     // so do it here too.
  1107     _process_strong_tasks->set_n_threads(t);
  1110   // Set _n_par_threads according to a policy TBD.
  1111   void set_par_threads();
  1113   void set_n_termination(int t) {
  1114     _process_strong_tasks->set_n_threads(t);
  1117   virtual CollectedHeap::Name kind() const {
  1118     return CollectedHeap::G1CollectedHeap;
  1121   // The current policy object for the collector.
  1122   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1124   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
  1126   // Adaptive size policy.  No such thing for g1.
  1127   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1129   // The rem set and barrier set.
  1130   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1132   unsigned get_gc_time_stamp() {
  1133     return _gc_time_stamp;
  1136   void reset_gc_time_stamp() {
  1137     _gc_time_stamp = 0;
  1138     OrderAccess::fence();
  1139     // Clear the cached CSet starting regions and time stamps.
  1140     // Their validity is dependent on the GC timestamp.
  1141     clear_cset_start_regions();
  1144   void check_gc_time_stamps() PRODUCT_RETURN;
  1146   void increment_gc_time_stamp() {
  1147     ++_gc_time_stamp;
  1148     OrderAccess::fence();
  1151   // Reset the given region's GC timestamp. If it's starts humongous,
  1152   // also reset the GC timestamp of its corresponding
  1153   // continues humongous regions too.
  1154   void reset_gc_time_stamps(HeapRegion* hr);
  1156   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1157                                   DirtyCardQueue* into_cset_dcq,
  1158                                   bool concurrent, int worker_i);
  1160   // The shared block offset table array.
  1161   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1163   // Reference Processing accessors
  1165   // The STW reference processor....
  1166   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1168   // The Concurrent Marking reference processor...
  1169   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1171   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
  1172   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
  1174   virtual size_t capacity() const;
  1175   virtual size_t used() const;
  1176   // This should be called when we're not holding the heap lock. The
  1177   // result might be a bit inaccurate.
  1178   size_t used_unlocked() const;
  1179   size_t recalculate_used() const;
  1181   // These virtual functions do the actual allocation.
  1182   // Some heaps may offer a contiguous region for shared non-blocking
  1183   // allocation, via inlined code (by exporting the address of the top and
  1184   // end fields defining the extent of the contiguous allocation region.)
  1185   // But G1CollectedHeap doesn't yet support this.
  1187   // Return an estimate of the maximum allocation that could be performed
  1188   // without triggering any collection or expansion activity.  In a
  1189   // generational collector, for example, this is probably the largest
  1190   // allocation that could be supported (without expansion) in the youngest
  1191   // generation.  It is "unsafe" because no locks are taken; the result
  1192   // should be treated as an approximation, not a guarantee, for use in
  1193   // heuristic resizing decisions.
  1194   virtual size_t unsafe_max_alloc();
  1196   virtual bool is_maximal_no_gc() const {
  1197     return _g1_storage.uncommitted_size() == 0;
  1200   // The total number of regions in the heap.
  1201   uint n_regions() { return _hrs.length(); }
  1203   // The max number of regions in the heap.
  1204   uint max_regions() { return _hrs.max_length(); }
  1206   // The number of regions that are completely free.
  1207   uint free_regions() { return _free_list.length(); }
  1209   // The number of regions that are not completely free.
  1210   uint used_regions() { return n_regions() - free_regions(); }
  1212   // The number of regions available for "regular" expansion.
  1213   uint expansion_regions() { return _expansion_regions; }
  1215   // Factory method for HeapRegion instances. It will return NULL if
  1216   // the allocation fails.
  1217   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
  1219   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1220   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1221   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1222   void verify_dirty_young_regions() PRODUCT_RETURN;
  1224   // verify_region_sets() performs verification over the region
  1225   // lists. It will be compiled in the product code to be used when
  1226   // necessary (i.e., during heap verification).
  1227   void verify_region_sets();
  1229   // verify_region_sets_optional() is planted in the code for
  1230   // list verification in non-product builds (and it can be enabled in
  1231   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1232 #if HEAP_REGION_SET_FORCE_VERIFY
  1233   void verify_region_sets_optional() {
  1234     verify_region_sets();
  1236 #else // HEAP_REGION_SET_FORCE_VERIFY
  1237   void verify_region_sets_optional() { }
  1238 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1240 #ifdef ASSERT
  1241   bool is_on_master_free_list(HeapRegion* hr) {
  1242     return hr->containing_set() == &_free_list;
  1244 #endif // ASSERT
  1246   // Wrapper for the region list operations that can be called from
  1247   // methods outside this class.
  1249   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1250     _secondary_free_list.add_as_tail(list);
  1253   void append_secondary_free_list() {
  1254     _free_list.add_as_head(&_secondary_free_list);
  1257   void append_secondary_free_list_if_not_empty_with_lock() {
  1258     // If the secondary free list looks empty there's no reason to
  1259     // take the lock and then try to append it.
  1260     if (!_secondary_free_list.is_empty()) {
  1261       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1262       append_secondary_free_list();
  1266   void old_set_remove(HeapRegion* hr) {
  1267     _old_set.remove(hr);
  1270   size_t non_young_capacity_bytes() {
  1271     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  1274   void set_free_regions_coming();
  1275   void reset_free_regions_coming();
  1276   bool free_regions_coming() { return _free_regions_coming; }
  1277   void wait_while_free_regions_coming();
  1279   // Determine whether the given region is one that we are using as an
  1280   // old GC alloc region.
  1281   bool is_old_gc_alloc_region(HeapRegion* hr) {
  1282     return hr == _retained_old_gc_alloc_region;
  1285   // Perform a collection of the heap; intended for use in implementing
  1286   // "System.gc".  This probably implies as full a collection as the
  1287   // "CollectedHeap" supports.
  1288   virtual void collect(GCCause::Cause cause);
  1290   // The same as above but assume that the caller holds the Heap_lock.
  1291   void collect_locked(GCCause::Cause cause);
  1293   // True iff an evacuation has failed in the most-recent collection.
  1294   bool evacuation_failed() { return _evacuation_failed; }
  1296   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
  1297   void prepend_to_freelist(FreeRegionList* list);
  1298   void decrement_summary_bytes(size_t bytes);
  1300   // Returns "TRUE" iff "p" points into the committed areas of the heap.
  1301   virtual bool is_in(const void* p) const;
  1303   // Return "TRUE" iff the given object address is within the collection
  1304   // set.
  1305   inline bool obj_in_cs(oop obj);
  1307   // Return "TRUE" iff the given object address is in the reserved
  1308   // region of g1.
  1309   bool is_in_g1_reserved(const void* p) const {
  1310     return _g1_reserved.contains(p);
  1313   // Returns a MemRegion that corresponds to the space that has been
  1314   // reserved for the heap
  1315   MemRegion g1_reserved() {
  1316     return _g1_reserved;
  1319   // Returns a MemRegion that corresponds to the space that has been
  1320   // committed in the heap
  1321   MemRegion g1_committed() {
  1322     return _g1_committed;
  1325   virtual bool is_in_closed_subset(const void* p) const;
  1327   G1SATBCardTableModRefBS* g1_barrier_set() {
  1328     return (G1SATBCardTableModRefBS*) barrier_set();
  1331   // This resets the card table to all zeros.  It is used after
  1332   // a collection pause which used the card table to claim cards.
  1333   void cleanUpCardTable();
  1335   // Iteration functions.
  1337   // Iterate over all the ref-containing fields of all objects, calling
  1338   // "cl.do_oop" on each.
  1339   virtual void oop_iterate(ExtendedOopClosure* cl);
  1341   // Same as above, restricted to a memory region.
  1342   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
  1344   // Iterate over all objects, calling "cl.do_object" on each.
  1345   virtual void object_iterate(ObjectClosure* cl);
  1347   virtual void safe_object_iterate(ObjectClosure* cl) {
  1348     object_iterate(cl);
  1351   // Iterate over all spaces in use in the heap, in ascending address order.
  1352   virtual void space_iterate(SpaceClosure* cl);
  1354   // Iterate over heap regions, in address order, terminating the
  1355   // iteration early if the "doHeapRegion" method returns "true".
  1356   void heap_region_iterate(HeapRegionClosure* blk) const;
  1358   // Return the region with the given index. It assumes the index is valid.
  1359   HeapRegion* region_at(uint index) const { return _hrs.at(index); }
  1361   // Divide the heap region sequence into "chunks" of some size (the number
  1362   // of regions divided by the number of parallel threads times some
  1363   // overpartition factor, currently 4).  Assumes that this will be called
  1364   // in parallel by ParallelGCThreads worker threads with discinct worker
  1365   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1366   // calls will use the same "claim_value", and that that claim value is
  1367   // different from the claim_value of any heap region before the start of
  1368   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1369   // attempting to claim the first region in each chunk, and, if
  1370   // successful, applying the closure to each region in the chunk (and
  1371   // setting the claim value of the second and subsequent regions of the
  1372   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1373   // i.e., that a closure never attempt to abort a traversal.
  1374   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1375                                        uint worker,
  1376                                        uint no_of_par_workers,
  1377                                        jint claim_value);
  1379   // It resets all the region claim values to the default.
  1380   void reset_heap_region_claim_values();
  1382   // Resets the claim values of regions in the current
  1383   // collection set to the default.
  1384   void reset_cset_heap_region_claim_values();
  1386 #ifdef ASSERT
  1387   bool check_heap_region_claim_values(jint claim_value);
  1389   // Same as the routine above but only checks regions in the
  1390   // current collection set.
  1391   bool check_cset_heap_region_claim_values(jint claim_value);
  1392 #endif // ASSERT
  1394   // Clear the cached cset start regions and (more importantly)
  1395   // the time stamps. Called when we reset the GC time stamp.
  1396   void clear_cset_start_regions();
  1398   // Given the id of a worker, obtain or calculate a suitable
  1399   // starting region for iterating over the current collection set.
  1400   HeapRegion* start_cset_region_for_worker(int worker_i);
  1402   // This is a convenience method that is used by the
  1403   // HeapRegionIterator classes to calculate the starting region for
  1404   // each worker so that they do not all start from the same region.
  1405   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
  1407   // Iterate over the regions (if any) in the current collection set.
  1408   void collection_set_iterate(HeapRegionClosure* blk);
  1410   // As above but starting from region r
  1411   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1413   // Returns the first (lowest address) compactible space in the heap.
  1414   virtual CompactibleSpace* first_compactible_space();
  1416   // A CollectedHeap will contain some number of spaces.  This finds the
  1417   // space containing a given address, or else returns NULL.
  1418   virtual Space* space_containing(const void* addr) const;
  1420   // A G1CollectedHeap will contain some number of heap regions.  This
  1421   // finds the region containing a given address, or else returns NULL.
  1422   template <class T>
  1423   inline HeapRegion* heap_region_containing(const T addr) const;
  1425   // Like the above, but requires "addr" to be in the heap (to avoid a
  1426   // null-check), and unlike the above, may return an continuing humongous
  1427   // region.
  1428   template <class T>
  1429   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1431   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1432   // each address in the (reserved) heap is a member of exactly
  1433   // one block.  The defining characteristic of a block is that it is
  1434   // possible to find its size, and thus to progress forward to the next
  1435   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1436   // represent Java objects, or they might be free blocks in a
  1437   // free-list-based heap (or subheap), as long as the two kinds are
  1438   // distinguishable and the size of each is determinable.
  1440   // Returns the address of the start of the "block" that contains the
  1441   // address "addr".  We say "blocks" instead of "object" since some heaps
  1442   // may not pack objects densely; a chunk may either be an object or a
  1443   // non-object.
  1444   virtual HeapWord* block_start(const void* addr) const;
  1446   // Requires "addr" to be the start of a chunk, and returns its size.
  1447   // "addr + size" is required to be the start of a new chunk, or the end
  1448   // of the active area of the heap.
  1449   virtual size_t block_size(const HeapWord* addr) const;
  1451   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1452   // the block is an object.
  1453   virtual bool block_is_obj(const HeapWord* addr) const;
  1455   // Does this heap support heap inspection? (+PrintClassHistogram)
  1456   virtual bool supports_heap_inspection() const { return true; }
  1458   // Section on thread-local allocation buffers (TLABs)
  1459   // See CollectedHeap for semantics.
  1461   bool supports_tlab_allocation() const;
  1462   size_t tlab_capacity(Thread* ignored) const;
  1463   size_t tlab_used(Thread* ignored) const;
  1464   size_t max_tlab_size() const;
  1465   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
  1467   // Can a compiler initialize a new object without store barriers?
  1468   // This permission only extends from the creation of a new object
  1469   // via a TLAB up to the first subsequent safepoint. If such permission
  1470   // is granted for this heap type, the compiler promises to call
  1471   // defer_store_barrier() below on any slow path allocation of
  1472   // a new object for which such initializing store barriers will
  1473   // have been elided. G1, like CMS, allows this, but should be
  1474   // ready to provide a compensating write barrier as necessary
  1475   // if that storage came out of a non-young region. The efficiency
  1476   // of this implementation depends crucially on being able to
  1477   // answer very efficiently in constant time whether a piece of
  1478   // storage in the heap comes from a young region or not.
  1479   // See ReduceInitialCardMarks.
  1480   virtual bool can_elide_tlab_store_barriers() const {
  1481     return true;
  1484   virtual bool card_mark_must_follow_store() const {
  1485     return true;
  1488   bool is_in_young(const oop obj) {
  1489     HeapRegion* hr = heap_region_containing(obj);
  1490     return hr != NULL && hr->is_young();
  1493 #ifdef ASSERT
  1494   virtual bool is_in_partial_collection(const void* p);
  1495 #endif
  1497   virtual bool is_scavengable(const void* addr);
  1499   // We don't need barriers for initializing stores to objects
  1500   // in the young gen: for the SATB pre-barrier, there is no
  1501   // pre-value that needs to be remembered; for the remembered-set
  1502   // update logging post-barrier, we don't maintain remembered set
  1503   // information for young gen objects.
  1504   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1505     return is_in_young(new_obj);
  1508   // Returns "true" iff the given word_size is "very large".
  1509   static bool isHumongous(size_t word_size) {
  1510     // Note this has to be strictly greater-than as the TLABs
  1511     // are capped at the humongous thresold and we want to
  1512     // ensure that we don't try to allocate a TLAB as
  1513     // humongous and that we don't allocate a humongous
  1514     // object in a TLAB.
  1515     return word_size > _humongous_object_threshold_in_words;
  1518   // Update mod union table with the set of dirty cards.
  1519   void updateModUnion();
  1521   // Set the mod union bits corresponding to the given memRegion.  Note
  1522   // that this is always a safe operation, since it doesn't clear any
  1523   // bits.
  1524   void markModUnionRange(MemRegion mr);
  1526   // Records the fact that a marking phase is no longer in progress.
  1527   void set_marking_complete() {
  1528     _mark_in_progress = false;
  1530   void set_marking_started() {
  1531     _mark_in_progress = true;
  1533   bool mark_in_progress() {
  1534     return _mark_in_progress;
  1537   // Print the maximum heap capacity.
  1538   virtual size_t max_capacity() const;
  1540   virtual jlong millis_since_last_gc();
  1543   // Convenience function to be used in situations where the heap type can be
  1544   // asserted to be this type.
  1545   static G1CollectedHeap* heap();
  1547   void set_region_short_lived_locked(HeapRegion* hr);
  1548   // add appropriate methods for any other surv rate groups
  1550   YoungList* young_list() const { return _young_list; }
  1552   // debugging
  1553   bool check_young_list_well_formed() {
  1554     return _young_list->check_list_well_formed();
  1557   bool check_young_list_empty(bool check_heap,
  1558                               bool check_sample = true);
  1560   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1561   // many of these need to be public.
  1563   // The functions below are helper functions that a subclass of
  1564   // "CollectedHeap" can use in the implementation of its virtual
  1565   // functions.
  1566   // This performs a concurrent marking of the live objects in a
  1567   // bitmap off to the side.
  1568   void doConcurrentMark();
  1570   bool isMarkedPrev(oop obj) const;
  1571   bool isMarkedNext(oop obj) const;
  1573   // Determine if an object is dead, given the object and also
  1574   // the region to which the object belongs. An object is dead
  1575   // iff a) it was not allocated since the last mark and b) it
  1576   // is not marked.
  1578   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1579     return
  1580       !hr->obj_allocated_since_prev_marking(obj) &&
  1581       !isMarkedPrev(obj);
  1584   // This function returns true when an object has been
  1585   // around since the previous marking and hasn't yet
  1586   // been marked during this marking.
  1588   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1589     return
  1590       !hr->obj_allocated_since_next_marking(obj) &&
  1591       !isMarkedNext(obj);
  1594   // Determine if an object is dead, given only the object itself.
  1595   // This will find the region to which the object belongs and
  1596   // then call the region version of the same function.
  1598   // Added if it is NULL it isn't dead.
  1600   bool is_obj_dead(const oop obj) const {
  1601     const HeapRegion* hr = heap_region_containing(obj);
  1602     if (hr == NULL) {
  1603       if (obj == NULL) return false;
  1604       else return true;
  1606     else return is_obj_dead(obj, hr);
  1609   bool is_obj_ill(const oop obj) const {
  1610     const HeapRegion* hr = heap_region_containing(obj);
  1611     if (hr == NULL) {
  1612       if (obj == NULL) return false;
  1613       else return true;
  1615     else return is_obj_ill(obj, hr);
  1618   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  1619   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  1620   bool is_marked(oop obj, VerifyOption vo);
  1621   const char* top_at_mark_start_str(VerifyOption vo);
  1623   ConcurrentMark* concurrent_mark() const { return _cm; }
  1625   // Refinement
  1627   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1629   // The dirty cards region list is used to record a subset of regions
  1630   // whose cards need clearing. The list if populated during the
  1631   // remembered set scanning and drained during the card table
  1632   // cleanup. Although the methods are reentrant, population/draining
  1633   // phases must not overlap. For synchronization purposes the last
  1634   // element on the list points to itself.
  1635   HeapRegion* _dirty_cards_region_list;
  1636   void push_dirty_cards_region(HeapRegion* hr);
  1637   HeapRegion* pop_dirty_cards_region();
  1639   // Optimized nmethod scanning support routines
  1641   // Register the given nmethod with the G1 heap
  1642   virtual void register_nmethod(nmethod* nm);
  1644   // Unregister the given nmethod from the G1 heap
  1645   virtual void unregister_nmethod(nmethod* nm);
  1647   // Migrate the nmethods in the code root lists of the regions
  1648   // in the collection set to regions in to-space. In the event
  1649   // of an evacuation failure, nmethods that reference objects
  1650   // that were not successfullly evacuated are not migrated.
  1651   void migrate_strong_code_roots();
  1653   // Free up superfluous code root memory.
  1654   void purge_code_root_memory();
  1656   // During an initial mark pause, mark all the code roots that
  1657   // point into regions *not* in the collection set.
  1658   void mark_strong_code_roots(uint worker_id);
  1660   // Rebuild the stong code root lists for each region
  1661   // after a full GC
  1662   void rebuild_strong_code_roots();
  1664   // Delete entries for dead interned string and clean up unreferenced symbols
  1665   // in symbol table, possibly in parallel.
  1666   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
  1668   // Redirty logged cards in the refinement queue.
  1669   void redirty_logged_cards();
  1670   // Verification
  1672   // The following is just to alert the verification code
  1673   // that a full collection has occurred and that the
  1674   // remembered sets are no longer up to date.
  1675   bool _full_collection;
  1676   void set_full_collection() { _full_collection = true;}
  1677   void clear_full_collection() {_full_collection = false;}
  1678   bool full_collection() {return _full_collection;}
  1680   // Perform any cleanup actions necessary before allowing a verification.
  1681   virtual void prepare_for_verify();
  1683   // Perform verification.
  1685   // vo == UsePrevMarking  -> use "prev" marking information,
  1686   // vo == UseNextMarking -> use "next" marking information
  1687   // vo == UseMarkWord    -> use the mark word in the object header
  1688   //
  1689   // NOTE: Only the "prev" marking information is guaranteed to be
  1690   // consistent most of the time, so most calls to this should use
  1691   // vo == UsePrevMarking.
  1692   // Currently, there is only one case where this is called with
  1693   // vo == UseNextMarking, which is to verify the "next" marking
  1694   // information at the end of remark.
  1695   // Currently there is only one place where this is called with
  1696   // vo == UseMarkWord, which is to verify the marking during a
  1697   // full GC.
  1698   void verify(bool silent, VerifyOption vo);
  1700   // Override; it uses the "prev" marking information
  1701   virtual void verify(bool silent);
  1703   // The methods below are here for convenience and dispatch the
  1704   // appropriate method depending on value of the given VerifyOption
  1705   // parameter. The values for that parameter, and their meanings,
  1706   // are the same as those above.
  1708   bool is_obj_dead_cond(const oop obj,
  1709                         const HeapRegion* hr,
  1710                         const VerifyOption vo) const {
  1711     switch (vo) {
  1712     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  1713     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  1714     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  1715     default:                            ShouldNotReachHere();
  1717     return false; // keep some compilers happy
  1720   bool is_obj_dead_cond(const oop obj,
  1721                         const VerifyOption vo) const {
  1722     switch (vo) {
  1723     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  1724     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  1725     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  1726     default:                            ShouldNotReachHere();
  1728     return false; // keep some compilers happy
  1731   // Printing
  1733   virtual void print_on(outputStream* st) const;
  1734   virtual void print_extended_on(outputStream* st) const;
  1735   virtual void print_on_error(outputStream* st) const;
  1737   virtual void print_gc_threads_on(outputStream* st) const;
  1738   virtual void gc_threads_do(ThreadClosure* tc) const;
  1740   // Override
  1741   void print_tracing_info() const;
  1743   // The following two methods are helpful for debugging RSet issues.
  1744   void print_cset_rsets() PRODUCT_RETURN;
  1745   void print_all_rsets() PRODUCT_RETURN;
  1747 public:
  1748   void stop_conc_gc_threads();
  1750   size_t pending_card_num();
  1751   size_t cards_scanned();
  1753 protected:
  1754   size_t _max_heap_capacity;
  1755 };
  1757 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1758 private:
  1759   bool        _retired;
  1761 public:
  1762   G1ParGCAllocBuffer(size_t gclab_word_size);
  1764   void set_buf(HeapWord* buf) {
  1765     ParGCAllocBuffer::set_buf(buf);
  1766     _retired = false;
  1769   void retire(bool end_of_gc, bool retain) {
  1770     if (_retired)
  1771       return;
  1772     ParGCAllocBuffer::retire(end_of_gc, retain);
  1773     _retired = true;
  1775 };
  1777 class G1ParScanThreadState : public StackObj {
  1778 protected:
  1779   G1CollectedHeap* _g1h;
  1780   RefToScanQueue*  _refs;
  1781   DirtyCardQueue   _dcq;
  1782   G1SATBCardTableModRefBS* _ct_bs;
  1783   G1RemSet* _g1_rem;
  1785   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1786   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1787   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1788   ageTable            _age_table;
  1790   G1ParScanClosure    _scanner;
  1792   size_t           _alloc_buffer_waste;
  1793   size_t           _undo_waste;
  1795   OopsInHeapRegionClosure*      _evac_failure_cl;
  1797   int  _hash_seed;
  1798   uint _queue_num;
  1800   size_t _term_attempts;
  1802   double _start;
  1803   double _start_strong_roots;
  1804   double _strong_roots_time;
  1805   double _start_term;
  1806   double _term_time;
  1808   // Map from young-age-index (0 == not young, 1 is youngest) to
  1809   // surviving words. base is what we get back from the malloc call
  1810   size_t* _surviving_young_words_base;
  1811   // this points into the array, as we use the first few entries for padding
  1812   size_t* _surviving_young_words;
  1814 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1816   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1818   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1820   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1821   G1SATBCardTableModRefBS* ctbs()                { return _ct_bs; }
  1823   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1824     if (!from->is_survivor()) {
  1825       _g1_rem->par_write_ref(from, p, tid);
  1829   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1830     // If the new value of the field points to the same region or
  1831     // is the to-space, we don't need to include it in the Rset updates.
  1832     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1833       size_t card_index = ctbs()->index_for(p);
  1834       // If the card hasn't been added to the buffer, do it.
  1835       if (ctbs()->mark_card_deferred(card_index)) {
  1836         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1841 public:
  1842   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp);
  1844   ~G1ParScanThreadState() {
  1845     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
  1848   RefToScanQueue*   refs()            { return _refs;             }
  1849   ageTable*         age_table()       { return &_age_table;       }
  1851   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1852     return _alloc_buffers[purpose];
  1855   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1856   size_t undo_waste() const                      { return _undo_waste; }
  1858 #ifdef ASSERT
  1859   bool verify_ref(narrowOop* ref) const;
  1860   bool verify_ref(oop* ref) const;
  1861   bool verify_task(StarTask ref) const;
  1862 #endif // ASSERT
  1864   template <class T> void push_on_queue(T* ref) {
  1865     assert(verify_ref(ref), "sanity");
  1866     refs()->push(ref);
  1869   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1870     if (G1DeferredRSUpdate) {
  1871       deferred_rs_update(from, p, tid);
  1872     } else {
  1873       immediate_rs_update(from, p, tid);
  1877   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1878     HeapWord* obj = NULL;
  1879     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1880     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1881       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1882       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1883       alloc_buf->retire(false /* end_of_gc */, false /* retain */);
  1885       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1886       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1887       // Otherwise.
  1888       alloc_buf->set_word_size(gclab_word_size);
  1889       alloc_buf->set_buf(buf);
  1891       obj = alloc_buf->allocate(word_sz);
  1892       assert(obj != NULL, "buffer was definitely big enough...");
  1893     } else {
  1894       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1896     return obj;
  1899   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1900     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1901     if (obj != NULL) return obj;
  1902     return allocate_slow(purpose, word_sz);
  1905   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1906     if (alloc_buffer(purpose)->contains(obj)) {
  1907       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1908              "should contain whole object");
  1909       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1910     } else {
  1911       CollectedHeap::fill_with_object(obj, word_sz);
  1912       add_to_undo_waste(word_sz);
  1916   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1917     _evac_failure_cl = evac_failure_cl;
  1919   OopsInHeapRegionClosure* evac_failure_closure() {
  1920     return _evac_failure_cl;
  1923   int* hash_seed() { return &_hash_seed; }
  1924   uint queue_num() { return _queue_num; }
  1926   size_t term_attempts() const  { return _term_attempts; }
  1927   void note_term_attempt() { _term_attempts++; }
  1929   void start_strong_roots() {
  1930     _start_strong_roots = os::elapsedTime();
  1932   void end_strong_roots() {
  1933     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1935   double strong_roots_time() const { return _strong_roots_time; }
  1937   void start_term_time() {
  1938     note_term_attempt();
  1939     _start_term = os::elapsedTime();
  1941   void end_term_time() {
  1942     _term_time += (os::elapsedTime() - _start_term);
  1944   double term_time() const { return _term_time; }
  1946   double elapsed_time() const {
  1947     return os::elapsedTime() - _start;
  1950   static void
  1951     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1952   void
  1953     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1955   size_t* surviving_young_words() {
  1956     // We add on to hide entry 0 which accumulates surviving words for
  1957     // age -1 regions (i.e. non-young ones)
  1958     return _surviving_young_words;
  1961   void retire_alloc_buffers() {
  1962     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1963       size_t waste = _alloc_buffers[ap]->words_remaining();
  1964       add_to_alloc_buffer_waste(waste);
  1965       _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
  1966                                                  true /* end_of_gc */,
  1967                                                  false /* retain */);
  1970 private:
  1971   #define G1_PARTIAL_ARRAY_MASK 0x2
  1973   inline bool has_partial_array_mask(oop* ref) const {
  1974     return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
  1977   // We never encode partial array oops as narrowOop*, so return false immediately.
  1978   // This allows the compiler to create optimized code when popping references from
  1979   // the work queue.
  1980   inline bool has_partial_array_mask(narrowOop* ref) const {
  1981     assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
  1982     return false;
  1985   // Only implement set_partial_array_mask() for regular oops, not for narrowOops.
  1986   // We always encode partial arrays as regular oop, to allow the
  1987   // specialization for has_partial_array_mask() for narrowOops above.
  1988   // This means that unintentional use of this method with narrowOops are caught
  1989   // by the compiler.
  1990   inline oop* set_partial_array_mask(oop obj) const {
  1991     assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
  1992     return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
  1995   inline oop clear_partial_array_mask(oop* ref) const {
  1996     return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
  1999   void do_oop_partial_array(oop* p) {
  2000     assert(has_partial_array_mask(p), "invariant");
  2001     oop from_obj = clear_partial_array_mask(p);
  2003     assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  2004     assert(from_obj->is_objArray(), "must be obj array");
  2005     objArrayOop from_obj_array = objArrayOop(from_obj);
  2006     // The from-space object contains the real length.
  2007     int length                 = from_obj_array->length();
  2009     assert(from_obj->is_forwarded(), "must be forwarded");
  2010     oop to_obj                 = from_obj->forwardee();
  2011     assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  2012     objArrayOop to_obj_array   = objArrayOop(to_obj);
  2013     // We keep track of the next start index in the length field of the
  2014     // to-space object.
  2015     int next_index             = to_obj_array->length();
  2016     assert(0 <= next_index && next_index < length,
  2017            err_msg("invariant, next index: %d, length: %d", next_index, length));
  2019     int start                  = next_index;
  2020     int end                    = length;
  2021     int remainder              = end - start;
  2022     // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
  2023     if (remainder > 2 * ParGCArrayScanChunk) {
  2024       end = start + ParGCArrayScanChunk;
  2025       to_obj_array->set_length(end);
  2026       // Push the remainder before we process the range in case another
  2027       // worker has run out of things to do and can steal it.
  2028       oop* from_obj_p = set_partial_array_mask(from_obj);
  2029       push_on_queue(from_obj_p);
  2030     } else {
  2031       assert(length == end, "sanity");
  2032       // We'll process the final range for this object. Restore the length
  2033       // so that the heap remains parsable in case of evacuation failure.
  2034       to_obj_array->set_length(end);
  2036     _scanner.set_region(_g1h->heap_region_containing_raw(to_obj));
  2037     // Process indexes [start,end). It will also process the header
  2038     // along with the first chunk (i.e., the chunk with start == 0).
  2039     // Note that at this point the length field of to_obj_array is not
  2040     // correct given that we are using it to keep track of the next
  2041     // start index. oop_iterate_range() (thankfully!) ignores the length
  2042     // field and only relies on the start / end parameters.  It does
  2043     // however return the size of the object which will be incorrect. So
  2044     // we have to ignore it even if we wanted to use it.
  2045     to_obj_array->oop_iterate_range(&_scanner, start, end);
  2048   // This method is applied to the fields of the objects that have just been copied.
  2049   template <class T> void do_oop_evac(T* p, HeapRegion* from) {
  2050     assert(!oopDesc::is_null(oopDesc::load_decode_heap_oop(p)),
  2051            "Reference should not be NULL here as such are never pushed to the task queue.");
  2052     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
  2054     // Although we never intentionally push references outside of the collection
  2055     // set, due to (benign) races in the claim mechanism during RSet scanning more
  2056     // than one thread might claim the same card. So the same card may be
  2057     // processed multiple times. So redo this check.
  2058     if (_g1h->in_cset_fast_test(obj)) {
  2059       oop forwardee;
  2060       if (obj->is_forwarded()) {
  2061         forwardee = obj->forwardee();
  2062       } else {
  2063         forwardee = copy_to_survivor_space(obj);
  2065       assert(forwardee != NULL, "forwardee should not be NULL");
  2066       oopDesc::encode_store_heap_oop(p, forwardee);
  2069     assert(obj != NULL, "Must be");
  2070     update_rs(from, p, queue_num());
  2072 public:
  2074   oop copy_to_survivor_space(oop const obj);
  2076   template <class T> void deal_with_reference(T* ref_to_scan) {
  2077     if (!has_partial_array_mask(ref_to_scan)) {
  2078       // Note: we can use "raw" versions of "region_containing" because
  2079       // "obj_to_scan" is definitely in the heap, and is not in a
  2080       // humongous region.
  2081       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  2082       do_oop_evac(ref_to_scan, r);
  2083     } else {
  2084       do_oop_partial_array((oop*)ref_to_scan);
  2088   void deal_with_reference(StarTask ref) {
  2089     assert(verify_task(ref), "sanity");
  2090     if (ref.is_narrow()) {
  2091       deal_with_reference((narrowOop*)ref);
  2092     } else {
  2093       deal_with_reference((oop*)ref);
  2097 public:
  2098   void trim_queue();
  2099 };
  2101 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial