src/os/solaris/vm/os_solaris.cpp

Thu, 13 Mar 2014 14:57:01 -0700

author
kvn
date
Thu, 13 Mar 2014 14:57:01 -0700
changeset 6513
bbfbe9b06038
parent 6472
2b8e28fdf503
parent 6326
d1621038becf
child 6518
62c54fcc0a35
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_solaris.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_solaris.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_solaris.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/java.hpp"
    48 #include "runtime/javaCalls.hpp"
    49 #include "runtime/mutexLocker.hpp"
    50 #include "runtime/objectMonitor.hpp"
    51 #include "runtime/osThread.hpp"
    52 #include "runtime/perfMemory.hpp"
    53 #include "runtime/sharedRuntime.hpp"
    54 #include "runtime/statSampler.hpp"
    55 #include "runtime/stubRoutines.hpp"
    56 #include "runtime/thread.inline.hpp"
    57 #include "runtime/threadCritical.hpp"
    58 #include "runtime/timer.hpp"
    59 #include "services/attachListener.hpp"
    60 #include "services/memTracker.hpp"
    61 #include "services/runtimeService.hpp"
    62 #include "utilities/decoder.hpp"
    63 #include "utilities/defaultStream.hpp"
    64 #include "utilities/events.hpp"
    65 #include "utilities/growableArray.hpp"
    66 #include "utilities/vmError.hpp"
    68 // put OS-includes here
    69 # include <dlfcn.h>
    70 # include <errno.h>
    71 # include <exception>
    72 # include <link.h>
    73 # include <poll.h>
    74 # include <pthread.h>
    75 # include <pwd.h>
    76 # include <schedctl.h>
    77 # include <setjmp.h>
    78 # include <signal.h>
    79 # include <stdio.h>
    80 # include <alloca.h>
    81 # include <sys/filio.h>
    82 # include <sys/ipc.h>
    83 # include <sys/lwp.h>
    84 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
    85 # include <sys/mman.h>
    86 # include <sys/processor.h>
    87 # include <sys/procset.h>
    88 # include <sys/pset.h>
    89 # include <sys/resource.h>
    90 # include <sys/shm.h>
    91 # include <sys/socket.h>
    92 # include <sys/stat.h>
    93 # include <sys/systeminfo.h>
    94 # include <sys/time.h>
    95 # include <sys/times.h>
    96 # include <sys/types.h>
    97 # include <sys/wait.h>
    98 # include <sys/utsname.h>
    99 # include <thread.h>
   100 # include <unistd.h>
   101 # include <sys/priocntl.h>
   102 # include <sys/rtpriocntl.h>
   103 # include <sys/tspriocntl.h>
   104 # include <sys/iapriocntl.h>
   105 # include <sys/fxpriocntl.h>
   106 # include <sys/loadavg.h>
   107 # include <string.h>
   108 # include <stdio.h>
   110 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
   111 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
   113 #define MAX_PATH (2 * K)
   115 // for timer info max values which include all bits
   116 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   119 // Here are some liblgrp types from sys/lgrp_user.h to be able to
   120 // compile on older systems without this header file.
   122 #ifndef MADV_ACCESS_LWP
   123 # define  MADV_ACCESS_LWP         7       /* next LWP to access heavily */
   124 #endif
   125 #ifndef MADV_ACCESS_MANY
   126 # define  MADV_ACCESS_MANY        8       /* many processes to access heavily */
   127 #endif
   129 #ifndef LGRP_RSRC_CPU
   130 # define LGRP_RSRC_CPU           0       /* CPU resources */
   131 #endif
   132 #ifndef LGRP_RSRC_MEM
   133 # define LGRP_RSRC_MEM           1       /* memory resources */
   134 #endif
   136 // see thr_setprio(3T) for the basis of these numbers
   137 #define MinimumPriority 0
   138 #define NormalPriority  64
   139 #define MaximumPriority 127
   141 // Values for ThreadPriorityPolicy == 1
   142 int prio_policy1[CriticalPriority+1] = {
   143   -99999,  0, 16,  32,  48,  64,
   144           80, 96, 112, 124, 127, 127 };
   146 // System parameters used internally
   147 static clock_t clock_tics_per_sec = 100;
   149 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
   150 static bool enabled_extended_FILE_stdio = false;
   152 // For diagnostics to print a message once. see run_periodic_checks
   153 static bool check_addr0_done = false;
   154 static sigset_t check_signal_done;
   155 static bool check_signals = true;
   157 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
   158 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
   160 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
   163 // "default" initializers for missing libc APIs
   164 extern "C" {
   165   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   166   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
   168   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   169   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
   170 }
   172 // "default" initializers for pthread-based synchronization
   173 extern "C" {
   174   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   175   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   176 }
   178 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   180 // Thread Local Storage
   181 // This is common to all Solaris platforms so it is defined here,
   182 // in this common file.
   183 // The declarations are in the os_cpu threadLS*.hpp files.
   184 //
   185 // Static member initialization for TLS
   186 Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
   188 #ifndef PRODUCT
   189 #define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
   191 int ThreadLocalStorage::_tcacheHit = 0;
   192 int ThreadLocalStorage::_tcacheMiss = 0;
   194 void ThreadLocalStorage::print_statistics() {
   195   int total = _tcacheMiss+_tcacheHit;
   196   tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
   197                 _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
   198 }
   199 #undef _PCT
   200 #endif // PRODUCT
   202 Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
   203                                                         int index) {
   204   Thread *thread = get_thread_slow();
   205   if (thread != NULL) {
   206     address sp = os::current_stack_pointer();
   207     guarantee(thread->_stack_base == NULL ||
   208               (sp <= thread->_stack_base &&
   209                  sp >= thread->_stack_base - thread->_stack_size) ||
   210                is_error_reported(),
   211               "sp must be inside of selected thread stack");
   213     thread->set_self_raw_id(raw_id);  // mark for quick retrieval
   214     _get_thread_cache[ index ] = thread;
   215   }
   216   return thread;
   217 }
   220 static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
   221 #define NO_CACHED_THREAD ((Thread*)all_zero)
   223 void ThreadLocalStorage::pd_set_thread(Thread* thread) {
   225   // Store the new value before updating the cache to prevent a race
   226   // between get_thread_via_cache_slowly() and this store operation.
   227   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
   229   // Update thread cache with new thread if setting on thread create,
   230   // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
   231   uintptr_t raw = pd_raw_thread_id();
   232   int ix = pd_cache_index(raw);
   233   _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
   234 }
   236 void ThreadLocalStorage::pd_init() {
   237   for (int i = 0; i < _pd_cache_size; i++) {
   238     _get_thread_cache[i] = NO_CACHED_THREAD;
   239   }
   240 }
   242 // Invalidate all the caches (happens to be the same as pd_init).
   243 void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
   245 #undef NO_CACHED_THREAD
   247 // END Thread Local Storage
   249 static inline size_t adjust_stack_size(address base, size_t size) {
   250   if ((ssize_t)size < 0) {
   251     // 4759953: Compensate for ridiculous stack size.
   252     size = max_intx;
   253   }
   254   if (size > (size_t)base) {
   255     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
   256     size = (size_t)base;
   257   }
   258   return size;
   259 }
   261 static inline stack_t get_stack_info() {
   262   stack_t st;
   263   int retval = thr_stksegment(&st);
   264   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
   265   assert(retval == 0, "incorrect return value from thr_stksegment");
   266   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
   267   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
   268   return st;
   269 }
   271 address os::current_stack_base() {
   272   int r = thr_main() ;
   273   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   274   bool is_primordial_thread = r;
   276   // Workaround 4352906, avoid calls to thr_stksegment by
   277   // thr_main after the first one (it looks like we trash
   278   // some data, causing the value for ss_sp to be incorrect).
   279   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
   280     stack_t st = get_stack_info();
   281     if (is_primordial_thread) {
   282       // cache initial value of stack base
   283       os::Solaris::_main_stack_base = (address)st.ss_sp;
   284     }
   285     return (address)st.ss_sp;
   286   } else {
   287     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
   288     return os::Solaris::_main_stack_base;
   289   }
   290 }
   292 size_t os::current_stack_size() {
   293   size_t size;
   295   int r = thr_main() ;
   296   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   297   if(!r) {
   298     size = get_stack_info().ss_size;
   299   } else {
   300     struct rlimit limits;
   301     getrlimit(RLIMIT_STACK, &limits);
   302     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
   303   }
   304   // base may not be page aligned
   305   address base = current_stack_base();
   306   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
   307   return (size_t)(base - bottom);
   308 }
   310 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
   311   return localtime_r(clock, res);
   312 }
   314 // interruptible infrastructure
   316 // setup_interruptible saves the thread state before going into an
   317 // interruptible system call.
   318 // The saved state is used to restore the thread to
   319 // its former state whether or not an interrupt is received.
   320 // Used by classloader os::read
   321 // os::restartable_read calls skip this layer and stay in _thread_in_native
   323 void os::Solaris::setup_interruptible(JavaThread* thread) {
   325   JavaThreadState thread_state = thread->thread_state();
   327   assert(thread_state != _thread_blocked, "Coming from the wrong thread");
   328   assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
   329   OSThread* osthread = thread->osthread();
   330   osthread->set_saved_interrupt_thread_state(thread_state);
   331   thread->frame_anchor()->make_walkable(thread);
   332   ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
   333 }
   335 // Version of setup_interruptible() for threads that are already in
   336 // _thread_blocked. Used by os_sleep().
   337 void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
   338   thread->frame_anchor()->make_walkable(thread);
   339 }
   341 JavaThread* os::Solaris::setup_interruptible() {
   342   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   343   setup_interruptible(thread);
   344   return thread;
   345 }
   347 void os::Solaris::try_enable_extended_io() {
   348   typedef int (*enable_extended_FILE_stdio_t)(int, int);
   350   if (!UseExtendedFileIO) {
   351     return;
   352   }
   354   enable_extended_FILE_stdio_t enabler =
   355     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
   356                                          "enable_extended_FILE_stdio");
   357   if (enabler) {
   358     enabler(-1, -1);
   359   }
   360 }
   363 #ifdef ASSERT
   365 JavaThread* os::Solaris::setup_interruptible_native() {
   366   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   367   JavaThreadState thread_state = thread->thread_state();
   368   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   369   return thread;
   370 }
   372 void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
   373   JavaThreadState thread_state = thread->thread_state();
   374   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   375 }
   376 #endif
   378 // cleanup_interruptible reverses the effects of setup_interruptible
   379 // setup_interruptible_already_blocked() does not need any cleanup.
   381 void os::Solaris::cleanup_interruptible(JavaThread* thread) {
   382   OSThread* osthread = thread->osthread();
   384   ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
   385 }
   387 // I/O interruption related counters called in _INTERRUPTIBLE
   389 void os::Solaris::bump_interrupted_before_count() {
   390   RuntimeService::record_interrupted_before_count();
   391 }
   393 void os::Solaris::bump_interrupted_during_count() {
   394   RuntimeService::record_interrupted_during_count();
   395 }
   397 static int _processors_online = 0;
   399          jint os::Solaris::_os_thread_limit = 0;
   400 volatile jint os::Solaris::_os_thread_count = 0;
   402 julong os::available_memory() {
   403   return Solaris::available_memory();
   404 }
   406 julong os::Solaris::available_memory() {
   407   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
   408 }
   410 julong os::Solaris::_physical_memory = 0;
   412 julong os::physical_memory() {
   413    return Solaris::physical_memory();
   414 }
   416 static hrtime_t first_hrtime = 0;
   417 static const hrtime_t hrtime_hz = 1000*1000*1000;
   418 const int LOCK_BUSY = 1;
   419 const int LOCK_FREE = 0;
   420 const int LOCK_INVALID = -1;
   421 static volatile hrtime_t max_hrtime = 0;
   422 static volatile int max_hrtime_lock = LOCK_FREE;     // Update counter with LSB as lock-in-progress
   425 void os::Solaris::initialize_system_info() {
   426   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   427   _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
   428   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   429 }
   431 int os::active_processor_count() {
   432   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
   433   pid_t pid = getpid();
   434   psetid_t pset = PS_NONE;
   435   // Are we running in a processor set or is there any processor set around?
   436   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
   437     uint_t pset_cpus;
   438     // Query the number of cpus available to us.
   439     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
   440       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
   441       _processors_online = pset_cpus;
   442       return pset_cpus;
   443     }
   444   }
   445   // Otherwise return number of online cpus
   446   return online_cpus;
   447 }
   449 static bool find_processors_in_pset(psetid_t        pset,
   450                                     processorid_t** id_array,
   451                                     uint_t*         id_length) {
   452   bool result = false;
   453   // Find the number of processors in the processor set.
   454   if (pset_info(pset, NULL, id_length, NULL) == 0) {
   455     // Make up an array to hold their ids.
   456     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
   457     // Fill in the array with their processor ids.
   458     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
   459       result = true;
   460     }
   461   }
   462   return result;
   463 }
   465 // Callers of find_processors_online() must tolerate imprecise results --
   466 // the system configuration can change asynchronously because of DR
   467 // or explicit psradm operations.
   468 //
   469 // We also need to take care that the loop (below) terminates as the
   470 // number of processors online can change between the _SC_NPROCESSORS_ONLN
   471 // request and the loop that builds the list of processor ids.   Unfortunately
   472 // there's no reliable way to determine the maximum valid processor id,
   473 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
   474 // man pages, which claim the processor id set is "sparse, but
   475 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
   476 // exit the loop.
   477 //
   478 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
   479 // not available on S8.0.
   481 static bool find_processors_online(processorid_t** id_array,
   482                                    uint*           id_length) {
   483   const processorid_t MAX_PROCESSOR_ID = 100000 ;
   484   // Find the number of processors online.
   485   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
   486   // Make up an array to hold their ids.
   487   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
   488   // Processors need not be numbered consecutively.
   489   long found = 0;
   490   processorid_t next = 0;
   491   while (found < *id_length && next < MAX_PROCESSOR_ID) {
   492     processor_info_t info;
   493     if (processor_info(next, &info) == 0) {
   494       // NB, PI_NOINTR processors are effectively online ...
   495       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
   496         (*id_array)[found] = next;
   497         found += 1;
   498       }
   499     }
   500     next += 1;
   501   }
   502   if (found < *id_length) {
   503       // The loop above didn't identify the expected number of processors.
   504       // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
   505       // and re-running the loop, above, but there's no guarantee of progress
   506       // if the system configuration is in flux.  Instead, we just return what
   507       // we've got.  Note that in the worst case find_processors_online() could
   508       // return an empty set.  (As a fall-back in the case of the empty set we
   509       // could just return the ID of the current processor).
   510       *id_length = found ;
   511   }
   513   return true;
   514 }
   516 static bool assign_distribution(processorid_t* id_array,
   517                                 uint           id_length,
   518                                 uint*          distribution,
   519                                 uint           distribution_length) {
   520   // We assume we can assign processorid_t's to uint's.
   521   assert(sizeof(processorid_t) == sizeof(uint),
   522          "can't convert processorid_t to uint");
   523   // Quick check to see if we won't succeed.
   524   if (id_length < distribution_length) {
   525     return false;
   526   }
   527   // Assign processor ids to the distribution.
   528   // Try to shuffle processors to distribute work across boards,
   529   // assuming 4 processors per board.
   530   const uint processors_per_board = ProcessDistributionStride;
   531   // Find the maximum processor id.
   532   processorid_t max_id = 0;
   533   for (uint m = 0; m < id_length; m += 1) {
   534     max_id = MAX2(max_id, id_array[m]);
   535   }
   536   // The next id, to limit loops.
   537   const processorid_t limit_id = max_id + 1;
   538   // Make up markers for available processors.
   539   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
   540   for (uint c = 0; c < limit_id; c += 1) {
   541     available_id[c] = false;
   542   }
   543   for (uint a = 0; a < id_length; a += 1) {
   544     available_id[id_array[a]] = true;
   545   }
   546   // Step by "boards", then by "slot", copying to "assigned".
   547   // NEEDS_CLEANUP: The assignment of processors should be stateful,
   548   //                remembering which processors have been assigned by
   549   //                previous calls, etc., so as to distribute several
   550   //                independent calls of this method.  What we'd like is
   551   //                It would be nice to have an API that let us ask
   552   //                how many processes are bound to a processor,
   553   //                but we don't have that, either.
   554   //                In the short term, "board" is static so that
   555   //                subsequent distributions don't all start at board 0.
   556   static uint board = 0;
   557   uint assigned = 0;
   558   // Until we've found enough processors ....
   559   while (assigned < distribution_length) {
   560     // ... find the next available processor in the board.
   561     for (uint slot = 0; slot < processors_per_board; slot += 1) {
   562       uint try_id = board * processors_per_board + slot;
   563       if ((try_id < limit_id) && (available_id[try_id] == true)) {
   564         distribution[assigned] = try_id;
   565         available_id[try_id] = false;
   566         assigned += 1;
   567         break;
   568       }
   569     }
   570     board += 1;
   571     if (board * processors_per_board + 0 >= limit_id) {
   572       board = 0;
   573     }
   574   }
   575   if (available_id != NULL) {
   576     FREE_C_HEAP_ARRAY(bool, available_id, mtInternal);
   577   }
   578   return true;
   579 }
   581 void os::set_native_thread_name(const char *name) {
   582   // Not yet implemented.
   583   return;
   584 }
   586 bool os::distribute_processes(uint length, uint* distribution) {
   587   bool result = false;
   588   // Find the processor id's of all the available CPUs.
   589   processorid_t* id_array  = NULL;
   590   uint           id_length = 0;
   591   // There are some races between querying information and using it,
   592   // since processor sets can change dynamically.
   593   psetid_t pset = PS_NONE;
   594   // Are we running in a processor set?
   595   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
   596     result = find_processors_in_pset(pset, &id_array, &id_length);
   597   } else {
   598     result = find_processors_online(&id_array, &id_length);
   599   }
   600   if (result == true) {
   601     if (id_length >= length) {
   602       result = assign_distribution(id_array, id_length, distribution, length);
   603     } else {
   604       result = false;
   605     }
   606   }
   607   if (id_array != NULL) {
   608     FREE_C_HEAP_ARRAY(processorid_t, id_array, mtInternal);
   609   }
   610   return result;
   611 }
   613 bool os::bind_to_processor(uint processor_id) {
   614   // We assume that a processorid_t can be stored in a uint.
   615   assert(sizeof(uint) == sizeof(processorid_t),
   616          "can't convert uint to processorid_t");
   617   int bind_result =
   618     processor_bind(P_LWPID,                       // bind LWP.
   619                    P_MYID,                        // bind current LWP.
   620                    (processorid_t) processor_id,  // id.
   621                    NULL);                         // don't return old binding.
   622   return (bind_result == 0);
   623 }
   625 bool os::getenv(const char* name, char* buffer, int len) {
   626   char* val = ::getenv( name );
   627   if ( val == NULL
   628   ||   strlen(val) + 1  >  len ) {
   629     if (len > 0)  buffer[0] = 0; // return a null string
   630     return false;
   631   }
   632   strcpy( buffer, val );
   633   return true;
   634 }
   637 // Return true if user is running as root.
   639 bool os::have_special_privileges() {
   640   static bool init = false;
   641   static bool privileges = false;
   642   if (!init) {
   643     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   644     init = true;
   645   }
   646   return privileges;
   647 }
   650 void os::init_system_properties_values() {
   651   char arch[12];
   652   sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   654   // The next steps are taken in the product version:
   655   //
   656   // Obtain the JAVA_HOME value from the location of libjvm.so.
   657   // This library should be located at:
   658   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   659   //
   660   // If "/jre/lib/" appears at the right place in the path, then we
   661   // assume libjvm.so is installed in a JDK and we use this path.
   662   //
   663   // Otherwise exit with message: "Could not create the Java virtual machine."
   664   //
   665   // The following extra steps are taken in the debugging version:
   666   //
   667   // If "/jre/lib/" does NOT appear at the right place in the path
   668   // instead of exit check for $JAVA_HOME environment variable.
   669   //
   670   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   671   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   672   // it looks like libjvm.so is installed there
   673   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   674   //
   675   // Otherwise exit.
   676   //
   677   // Important note: if the location of libjvm.so changes this
   678   // code needs to be changed accordingly.
   680   // The next few definitions allow the code to be verbatim:
   681 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
   682 #define free(p) FREE_C_HEAP_ARRAY(char, p, mtInternal)
   683 #define getenv(n) ::getenv(n)
   685 #define EXTENSIONS_DIR  "/lib/ext"
   686 #define ENDORSED_DIR    "/lib/endorsed"
   687 #define COMMON_DIR      "/usr/jdk/packages"
   689   {
   690     /* sysclasspath, java_home, dll_dir */
   691     {
   692         char *home_path;
   693         char *dll_path;
   694         char *pslash;
   695         char buf[MAXPATHLEN];
   696         os::jvm_path(buf, sizeof(buf));
   698         // Found the full path to libjvm.so.
   699         // Now cut the path to <java_home>/jre if we can.
   700         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   701         pslash = strrchr(buf, '/');
   702         if (pslash != NULL)
   703             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   704         dll_path = malloc(strlen(buf) + 1);
   705         if (dll_path == NULL)
   706             return;
   707         strcpy(dll_path, buf);
   708         Arguments::set_dll_dir(dll_path);
   710         if (pslash != NULL) {
   711             pslash = strrchr(buf, '/');
   712             if (pslash != NULL) {
   713                 *pslash = '\0';       /* get rid of /<arch> */
   714                 pslash = strrchr(buf, '/');
   715                 if (pslash != NULL)
   716                     *pslash = '\0';   /* get rid of /lib */
   717             }
   718         }
   720         home_path = malloc(strlen(buf) + 1);
   721         if (home_path == NULL)
   722             return;
   723         strcpy(home_path, buf);
   724         Arguments::set_java_home(home_path);
   726         if (!set_boot_path('/', ':'))
   727             return;
   728     }
   730     /*
   731      * Where to look for native libraries
   732      */
   733     {
   734       // Use dlinfo() to determine the correct java.library.path.
   735       //
   736       // If we're launched by the Java launcher, and the user
   737       // does not set java.library.path explicitly on the commandline,
   738       // the Java launcher sets LD_LIBRARY_PATH for us and unsets
   739       // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
   740       // dlinfo returns LD_LIBRARY_PATH + crle settings (including
   741       // /usr/lib), which is exactly what we want.
   742       //
   743       // If the user does set java.library.path, it completely
   744       // overwrites this setting, and always has.
   745       //
   746       // If we're not launched by the Java launcher, we may
   747       // get here with any/all of the LD_LIBRARY_PATH[_32|64]
   748       // settings.  Again, dlinfo does exactly what we want.
   750       Dl_serinfo     _info, *info = &_info;
   751       Dl_serpath     *path;
   752       char*          library_path;
   753       char           *common_path;
   754       int            i;
   756       // determine search path count and required buffer size
   757       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
   758         vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
   759       }
   761       // allocate new buffer and initialize
   762       info = (Dl_serinfo*)malloc(_info.dls_size);
   763       if (info == NULL) {
   764         vm_exit_out_of_memory(_info.dls_size, OOM_MALLOC_ERROR,
   765                               "init_system_properties_values info");
   766       }
   767       info->dls_size = _info.dls_size;
   768       info->dls_cnt = _info.dls_cnt;
   770       // obtain search path information
   771       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
   772         free(info);
   773         vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
   774       }
   776       path = &info->dls_serpath[0];
   778       // Note: Due to a legacy implementation, most of the library path
   779       // is set in the launcher.  This was to accomodate linking restrictions
   780       // on legacy Solaris implementations (which are no longer supported).
   781       // Eventually, all the library path setting will be done here.
   782       //
   783       // However, to prevent the proliferation of improperly built native
   784       // libraries, the new path component /usr/jdk/packages is added here.
   786       // Determine the actual CPU architecture.
   787       char cpu_arch[12];
   788       sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
   789 #ifdef _LP64
   790       // If we are a 64-bit vm, perform the following translations:
   791       //   sparc   -> sparcv9
   792       //   i386    -> amd64
   793       if (strcmp(cpu_arch, "sparc") == 0)
   794         strcat(cpu_arch, "v9");
   795       else if (strcmp(cpu_arch, "i386") == 0)
   796         strcpy(cpu_arch, "amd64");
   797 #endif
   799       // Construct the invariant part of ld_library_path. Note that the
   800       // space for the colon and the trailing null are provided by the
   801       // nulls included by the sizeof operator.
   802       size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
   803       common_path = malloc(bufsize);
   804       if (common_path == NULL) {
   805         free(info);
   806         vm_exit_out_of_memory(bufsize, OOM_MALLOC_ERROR,
   807                               "init_system_properties_values common_path");
   808       }
   809       sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
   811       // struct size is more than sufficient for the path components obtained
   812       // through the dlinfo() call, so only add additional space for the path
   813       // components explicitly added here.
   814       bufsize = info->dls_size + strlen(common_path);
   815       library_path = malloc(bufsize);
   816       if (library_path == NULL) {
   817         free(info);
   818         free(common_path);
   819         vm_exit_out_of_memory(bufsize, OOM_MALLOC_ERROR,
   820                               "init_system_properties_values library_path");
   821       }
   822       library_path[0] = '\0';
   824       // Construct the desired Java library path from the linker's library
   825       // search path.
   826       //
   827       // For compatibility, it is optimal that we insert the additional path
   828       // components specific to the Java VM after those components specified
   829       // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
   830       // infrastructure.
   831       if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
   832         strcpy(library_path, common_path);
   833       } else {
   834         int inserted = 0;
   835         for (i = 0; i < info->dls_cnt; i++, path++) {
   836           uint_t flags = path->dls_flags & LA_SER_MASK;
   837           if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
   838             strcat(library_path, common_path);
   839             strcat(library_path, os::path_separator());
   840             inserted = 1;
   841           }
   842           strcat(library_path, path->dls_name);
   843           strcat(library_path, os::path_separator());
   844         }
   845         // eliminate trailing path separator
   846         library_path[strlen(library_path)-1] = '\0';
   847       }
   849       // happens before argument parsing - can't use a trace flag
   850       // tty->print_raw("init_system_properties_values: native lib path: ");
   851       // tty->print_raw_cr(library_path);
   853       // callee copies into its own buffer
   854       Arguments::set_library_path(library_path);
   856       free(common_path);
   857       free(library_path);
   858       free(info);
   859     }
   861     /*
   862      * Extensions directories.
   863      *
   864      * Note that the space for the colon and the trailing null are provided
   865      * by the nulls included by the sizeof operator (so actually one byte more
   866      * than necessary is allocated).
   867      */
   868     {
   869         char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
   870             sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
   871             sizeof(EXTENSIONS_DIR));
   872         sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
   873             Arguments::get_java_home());
   874         Arguments::set_ext_dirs(buf);
   875     }
   877     /* Endorsed standards default directory. */
   878     {
   879         char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   880         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   881         Arguments::set_endorsed_dirs(buf);
   882     }
   883   }
   885 #undef malloc
   886 #undef free
   887 #undef getenv
   888 #undef EXTENSIONS_DIR
   889 #undef ENDORSED_DIR
   890 #undef COMMON_DIR
   892 }
   894 void os::breakpoint() {
   895   BREAKPOINT;
   896 }
   898 bool os::obsolete_option(const JavaVMOption *option)
   899 {
   900   if (!strncmp(option->optionString, "-Xt", 3)) {
   901     return true;
   902   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
   903     return true;
   904   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
   905     return true;
   906   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
   907     return true;
   908   }
   909   return false;
   910 }
   912 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
   913   address  stackStart  = (address)thread->stack_base();
   914   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
   915   if (sp < stackStart && sp >= stackEnd ) return true;
   916   return false;
   917 }
   919 extern "C" void breakpoint() {
   920   // use debugger to set breakpoint here
   921 }
   923 static thread_t main_thread;
   925 // Thread start routine for all new Java threads
   926 extern "C" void* java_start(void* thread_addr) {
   927   // Try to randomize the cache line index of hot stack frames.
   928   // This helps when threads of the same stack traces evict each other's
   929   // cache lines. The threads can be either from the same JVM instance, or
   930   // from different JVM instances. The benefit is especially true for
   931   // processors with hyperthreading technology.
   932   static int counter = 0;
   933   int pid = os::current_process_id();
   934   alloca(((pid ^ counter++) & 7) * 128);
   936   int prio;
   937   Thread* thread = (Thread*)thread_addr;
   938   OSThread* osthr = thread->osthread();
   940   osthr->set_lwp_id( _lwp_self() );  // Store lwp in case we are bound
   941   thread->_schedctl = (void *) schedctl_init () ;
   943   if (UseNUMA) {
   944     int lgrp_id = os::numa_get_group_id();
   945     if (lgrp_id != -1) {
   946       thread->set_lgrp_id(lgrp_id);
   947     }
   948   }
   950   // If the creator called set priority before we started,
   951   // we need to call set_native_priority now that we have an lwp.
   952   // We used to get the priority from thr_getprio (we called
   953   // thr_setprio way back in create_thread) and pass it to
   954   // set_native_priority, but Solaris scales the priority
   955   // in java_to_os_priority, so when we read it back here,
   956   // we pass trash to set_native_priority instead of what's
   957   // in java_to_os_priority. So we save the native priority
   958   // in the osThread and recall it here.
   960   if ( osthr->thread_id() != -1 ) {
   961     if ( UseThreadPriorities ) {
   962       int prio = osthr->native_priority();
   963       if (ThreadPriorityVerbose) {
   964         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
   965                       INTPTR_FORMAT ", setting priority: %d\n",
   966                       osthr->thread_id(), osthr->lwp_id(), prio);
   967       }
   968       os::set_native_priority(thread, prio);
   969     }
   970   } else if (ThreadPriorityVerbose) {
   971     warning("Can't set priority in _start routine, thread id hasn't been set\n");
   972   }
   974   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   976   // initialize signal mask for this thread
   977   os::Solaris::hotspot_sigmask(thread);
   979   thread->run();
   981   // One less thread is executing
   982   // When the VMThread gets here, the main thread may have already exited
   983   // which frees the CodeHeap containing the Atomic::dec code
   984   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   985     Atomic::dec(&os::Solaris::_os_thread_count);
   986   }
   988   if (UseDetachedThreads) {
   989     thr_exit(NULL);
   990     ShouldNotReachHere();
   991   }
   992   return NULL;
   993 }
   995 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
   996   // Allocate the OSThread object
   997   OSThread* osthread = new OSThread(NULL, NULL);
   998   if (osthread == NULL) return NULL;
  1000   // Store info on the Solaris thread into the OSThread
  1001   osthread->set_thread_id(thread_id);
  1002   osthread->set_lwp_id(_lwp_self());
  1003   thread->_schedctl = (void *) schedctl_init () ;
  1005   if (UseNUMA) {
  1006     int lgrp_id = os::numa_get_group_id();
  1007     if (lgrp_id != -1) {
  1008       thread->set_lgrp_id(lgrp_id);
  1012   if ( ThreadPriorityVerbose ) {
  1013     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
  1014                   osthread->thread_id(), osthread->lwp_id() );
  1017   // Initial thread state is INITIALIZED, not SUSPENDED
  1018   osthread->set_state(INITIALIZED);
  1020   return osthread;
  1023 void os::Solaris::hotspot_sigmask(Thread* thread) {
  1025   //Save caller's signal mask
  1026   sigset_t sigmask;
  1027   thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
  1028   OSThread *osthread = thread->osthread();
  1029   osthread->set_caller_sigmask(sigmask);
  1031   thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
  1032   if (!ReduceSignalUsage) {
  1033     if (thread->is_VM_thread()) {
  1034       // Only the VM thread handles BREAK_SIGNAL ...
  1035       thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
  1036     } else {
  1037       // ... all other threads block BREAK_SIGNAL
  1038       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
  1039       thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
  1044 bool os::create_attached_thread(JavaThread* thread) {
  1045 #ifdef ASSERT
  1046   thread->verify_not_published();
  1047 #endif
  1048   OSThread* osthread = create_os_thread(thread, thr_self());
  1049   if (osthread == NULL) {
  1050      return false;
  1053   // Initial thread state is RUNNABLE
  1054   osthread->set_state(RUNNABLE);
  1055   thread->set_osthread(osthread);
  1057   // initialize signal mask for this thread
  1058   // and save the caller's signal mask
  1059   os::Solaris::hotspot_sigmask(thread);
  1061   return true;
  1064 bool os::create_main_thread(JavaThread* thread) {
  1065 #ifdef ASSERT
  1066   thread->verify_not_published();
  1067 #endif
  1068   if (_starting_thread == NULL) {
  1069     _starting_thread = create_os_thread(thread, main_thread);
  1070      if (_starting_thread == NULL) {
  1071         return false;
  1075   // The primodial thread is runnable from the start
  1076   _starting_thread->set_state(RUNNABLE);
  1078   thread->set_osthread(_starting_thread);
  1080   // initialize signal mask for this thread
  1081   // and save the caller's signal mask
  1082   os::Solaris::hotspot_sigmask(thread);
  1084   return true;
  1087 // _T2_libthread is true if we believe we are running with the newer
  1088 // SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
  1089 bool os::Solaris::_T2_libthread = false;
  1091 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
  1092   // Allocate the OSThread object
  1093   OSThread* osthread = new OSThread(NULL, NULL);
  1094   if (osthread == NULL) {
  1095     return false;
  1098   if ( ThreadPriorityVerbose ) {
  1099     char *thrtyp;
  1100     switch ( thr_type ) {
  1101       case vm_thread:
  1102         thrtyp = (char *)"vm";
  1103         break;
  1104       case cgc_thread:
  1105         thrtyp = (char *)"cgc";
  1106         break;
  1107       case pgc_thread:
  1108         thrtyp = (char *)"pgc";
  1109         break;
  1110       case java_thread:
  1111         thrtyp = (char *)"java";
  1112         break;
  1113       case compiler_thread:
  1114         thrtyp = (char *)"compiler";
  1115         break;
  1116       case watcher_thread:
  1117         thrtyp = (char *)"watcher";
  1118         break;
  1119       default:
  1120         thrtyp = (char *)"unknown";
  1121         break;
  1123     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
  1126   // Calculate stack size if it's not specified by caller.
  1127   if (stack_size == 0) {
  1128     // The default stack size 1M (2M for LP64).
  1129     stack_size = (BytesPerWord >> 2) * K * K;
  1131     switch (thr_type) {
  1132     case os::java_thread:
  1133       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
  1134       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
  1135       break;
  1136     case os::compiler_thread:
  1137       if (CompilerThreadStackSize > 0) {
  1138         stack_size = (size_t)(CompilerThreadStackSize * K);
  1139         break;
  1140       } // else fall through:
  1141         // use VMThreadStackSize if CompilerThreadStackSize is not defined
  1142     case os::vm_thread:
  1143     case os::pgc_thread:
  1144     case os::cgc_thread:
  1145     case os::watcher_thread:
  1146       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
  1147       break;
  1150   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
  1152   // Initial state is ALLOCATED but not INITIALIZED
  1153   osthread->set_state(ALLOCATED);
  1155   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
  1156     // We got lots of threads. Check if we still have some address space left.
  1157     // Need to be at least 5Mb of unreserved address space. We do check by
  1158     // trying to reserve some.
  1159     const size_t VirtualMemoryBangSize = 20*K*K;
  1160     char* mem = os::reserve_memory(VirtualMemoryBangSize);
  1161     if (mem == NULL) {
  1162       delete osthread;
  1163       return false;
  1164     } else {
  1165       // Release the memory again
  1166       os::release_memory(mem, VirtualMemoryBangSize);
  1170   // Setup osthread because the child thread may need it.
  1171   thread->set_osthread(osthread);
  1173   // Create the Solaris thread
  1174   // explicit THR_BOUND for T2_libthread case in case
  1175   // that assumption is not accurate, but our alternate signal stack
  1176   // handling is based on it which must have bound threads
  1177   thread_t tid = 0;
  1178   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
  1179                    | ((UseBoundThreads || os::Solaris::T2_libthread() ||
  1180                        (thr_type == vm_thread) ||
  1181                        (thr_type == cgc_thread) ||
  1182                        (thr_type == pgc_thread) ||
  1183                        (thr_type == compiler_thread && BackgroundCompilation)) ?
  1184                       THR_BOUND : 0);
  1185   int      status;
  1187   // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
  1188   //
  1189   // On multiprocessors systems, libthread sometimes under-provisions our
  1190   // process with LWPs.  On a 30-way systems, for instance, we could have
  1191   // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
  1192   // to our process.  This can result in under utilization of PEs.
  1193   // I suspect the problem is related to libthread's LWP
  1194   // pool management and to the kernel's SIGBLOCKING "last LWP parked"
  1195   // upcall policy.
  1196   //
  1197   // The following code is palliative -- it attempts to ensure that our
  1198   // process has sufficient LWPs to take advantage of multiple PEs.
  1199   // Proper long-term cures include using user-level threads bound to LWPs
  1200   // (THR_BOUND) or using LWP-based synchronization.  Note that there is a
  1201   // slight timing window with respect to sampling _os_thread_count, but
  1202   // the race is benign.  Also, we should periodically recompute
  1203   // _processors_online as the min of SC_NPROCESSORS_ONLN and the
  1204   // the number of PEs in our partition.  You might be tempted to use
  1205   // THR_NEW_LWP here, but I'd recommend against it as that could
  1206   // result in undesirable growth of the libthread's LWP pool.
  1207   // The fix below isn't sufficient; for instance, it doesn't take into count
  1208   // LWPs parked on IO.  It does, however, help certain CPU-bound benchmarks.
  1209   //
  1210   // Some pathologies this scheme doesn't handle:
  1211   // *  Threads can block, releasing the LWPs.  The LWPs can age out.
  1212   //    When a large number of threads become ready again there aren't
  1213   //    enough LWPs available to service them.  This can occur when the
  1214   //    number of ready threads oscillates.
  1215   // *  LWPs/Threads park on IO, thus taking the LWP out of circulation.
  1216   //
  1217   // Finally, we should call thr_setconcurrency() periodically to refresh
  1218   // the LWP pool and thwart the LWP age-out mechanism.
  1219   // The "+3" term provides a little slop -- we want to slightly overprovision.
  1221   if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
  1222     if (!(flags & THR_BOUND)) {
  1223       thr_setconcurrency (os::Solaris::_os_thread_count);       // avoid starvation
  1226   // Although this doesn't hurt, we should warn of undefined behavior
  1227   // when using unbound T1 threads with schedctl().  This should never
  1228   // happen, as the compiler and VM threads are always created bound
  1229   DEBUG_ONLY(
  1230       if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
  1231           (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
  1232           ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
  1233            (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
  1234          warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
  1236   );
  1239   // Mark that we don't have an lwp or thread id yet.
  1240   // In case we attempt to set the priority before the thread starts.
  1241   osthread->set_lwp_id(-1);
  1242   osthread->set_thread_id(-1);
  1244   status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
  1245   if (status != 0) {
  1246     if (PrintMiscellaneous && (Verbose || WizardMode)) {
  1247       perror("os::create_thread");
  1249     thread->set_osthread(NULL);
  1250     // Need to clean up stuff we've allocated so far
  1251     delete osthread;
  1252     return false;
  1255   Atomic::inc(&os::Solaris::_os_thread_count);
  1257   // Store info on the Solaris thread into the OSThread
  1258   osthread->set_thread_id(tid);
  1260   // Remember that we created this thread so we can set priority on it
  1261   osthread->set_vm_created();
  1263   // Set the default thread priority.  If using bound threads, setting
  1264   // lwp priority will be delayed until thread start.
  1265   set_native_priority(thread,
  1266                       DefaultThreadPriority == -1 ?
  1267                         java_to_os_priority[NormPriority] :
  1268                         DefaultThreadPriority);
  1270   // Initial thread state is INITIALIZED, not SUSPENDED
  1271   osthread->set_state(INITIALIZED);
  1273   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
  1274   return true;
  1277 /* defined for >= Solaris 10. This allows builds on earlier versions
  1278  *  of Solaris to take advantage of the newly reserved Solaris JVM signals
  1279  *  With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
  1280  *  and -XX:+UseAltSigs does nothing since these should have no conflict
  1281  */
  1282 #if !defined(SIGJVM1)
  1283 #define SIGJVM1 39
  1284 #define SIGJVM2 40
  1285 #endif
  1287 debug_only(static bool signal_sets_initialized = false);
  1288 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
  1289 int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
  1290 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
  1292 bool os::Solaris::is_sig_ignored(int sig) {
  1293       struct sigaction oact;
  1294       sigaction(sig, (struct sigaction*)NULL, &oact);
  1295       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
  1296                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
  1297       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
  1298            return true;
  1299       else
  1300            return false;
  1303 // Note: SIGRTMIN is a macro that calls sysconf() so it will
  1304 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
  1305 static bool isJVM1available() {
  1306   return SIGJVM1 < SIGRTMIN;
  1309 void os::Solaris::signal_sets_init() {
  1310   // Should also have an assertion stating we are still single-threaded.
  1311   assert(!signal_sets_initialized, "Already initialized");
  1312   // Fill in signals that are necessarily unblocked for all threads in
  1313   // the VM. Currently, we unblock the following signals:
  1314   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
  1315   //                         by -Xrs (=ReduceSignalUsage));
  1316   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
  1317   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
  1318   // the dispositions or masks wrt these signals.
  1319   // Programs embedding the VM that want to use the above signals for their
  1320   // own purposes must, at this time, use the "-Xrs" option to prevent
  1321   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
  1322   // (See bug 4345157, and other related bugs).
  1323   // In reality, though, unblocking these signals is really a nop, since
  1324   // these signals are not blocked by default.
  1325   sigemptyset(&unblocked_sigs);
  1326   sigemptyset(&allowdebug_blocked_sigs);
  1327   sigaddset(&unblocked_sigs, SIGILL);
  1328   sigaddset(&unblocked_sigs, SIGSEGV);
  1329   sigaddset(&unblocked_sigs, SIGBUS);
  1330   sigaddset(&unblocked_sigs, SIGFPE);
  1332   if (isJVM1available) {
  1333     os::Solaris::set_SIGinterrupt(SIGJVM1);
  1334     os::Solaris::set_SIGasync(SIGJVM2);
  1335   } else if (UseAltSigs) {
  1336     os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
  1337     os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
  1338   } else {
  1339     os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
  1340     os::Solaris::set_SIGasync(ASYNC_SIGNAL);
  1343   sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
  1344   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
  1346   if (!ReduceSignalUsage) {
  1347    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
  1348       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
  1349       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
  1351    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
  1352       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
  1353       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
  1355    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
  1356       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
  1357       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
  1360   // Fill in signals that are blocked by all but the VM thread.
  1361   sigemptyset(&vm_sigs);
  1362   if (!ReduceSignalUsage)
  1363     sigaddset(&vm_sigs, BREAK_SIGNAL);
  1364   debug_only(signal_sets_initialized = true);
  1366   // For diagnostics only used in run_periodic_checks
  1367   sigemptyset(&check_signal_done);
  1370 // These are signals that are unblocked while a thread is running Java.
  1371 // (For some reason, they get blocked by default.)
  1372 sigset_t* os::Solaris::unblocked_signals() {
  1373   assert(signal_sets_initialized, "Not initialized");
  1374   return &unblocked_sigs;
  1377 // These are the signals that are blocked while a (non-VM) thread is
  1378 // running Java. Only the VM thread handles these signals.
  1379 sigset_t* os::Solaris::vm_signals() {
  1380   assert(signal_sets_initialized, "Not initialized");
  1381   return &vm_sigs;
  1384 // These are signals that are blocked during cond_wait to allow debugger in
  1385 sigset_t* os::Solaris::allowdebug_blocked_signals() {
  1386   assert(signal_sets_initialized, "Not initialized");
  1387   return &allowdebug_blocked_sigs;
  1391 void _handle_uncaught_cxx_exception() {
  1392   VMError err("An uncaught C++ exception");
  1393   err.report_and_die();
  1397 // First crack at OS-specific initialization, from inside the new thread.
  1398 void os::initialize_thread(Thread* thr) {
  1399   int r = thr_main() ;
  1400   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
  1401   if (r) {
  1402     JavaThread* jt = (JavaThread *)thr;
  1403     assert(jt != NULL,"Sanity check");
  1404     size_t stack_size;
  1405     address base = jt->stack_base();
  1406     if (Arguments::created_by_java_launcher()) {
  1407       // Use 2MB to allow for Solaris 7 64 bit mode.
  1408       stack_size = JavaThread::stack_size_at_create() == 0
  1409         ? 2048*K : JavaThread::stack_size_at_create();
  1411       // There are rare cases when we may have already used more than
  1412       // the basic stack size allotment before this method is invoked.
  1413       // Attempt to allow for a normally sized java_stack.
  1414       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
  1415       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
  1416     } else {
  1417       // 6269555: If we were not created by a Java launcher, i.e. if we are
  1418       // running embedded in a native application, treat the primordial thread
  1419       // as much like a native attached thread as possible.  This means using
  1420       // the current stack size from thr_stksegment(), unless it is too large
  1421       // to reliably setup guard pages.  A reasonable max size is 8MB.
  1422       size_t current_size = current_stack_size();
  1423       // This should never happen, but just in case....
  1424       if (current_size == 0) current_size = 2 * K * K;
  1425       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
  1427     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
  1428     stack_size = (size_t)(base - bottom);
  1430     assert(stack_size > 0, "Stack size calculation problem");
  1432     if (stack_size > jt->stack_size()) {
  1433       NOT_PRODUCT(
  1434         struct rlimit limits;
  1435         getrlimit(RLIMIT_STACK, &limits);
  1436         size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
  1437         assert(size >= jt->stack_size(), "Stack size problem in main thread");
  1439       tty->print_cr(
  1440         "Stack size of %d Kb exceeds current limit of %d Kb.\n"
  1441         "(Stack sizes are rounded up to a multiple of the system page size.)\n"
  1442         "See limit(1) to increase the stack size limit.",
  1443         stack_size / K, jt->stack_size() / K);
  1444       vm_exit(1);
  1446     assert(jt->stack_size() >= stack_size,
  1447           "Attempt to map more stack than was allocated");
  1448     jt->set_stack_size(stack_size);
  1451    // 5/22/01: Right now alternate signal stacks do not handle
  1452    // throwing stack overflow exceptions, see bug 4463178
  1453    // Until a fix is found for this, T2 will NOT imply alternate signal
  1454    // stacks.
  1455    // If using T2 libthread threads, install an alternate signal stack.
  1456    // Because alternate stacks associate with LWPs on Solaris,
  1457    // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
  1458    // we prefer to explicitly stack bang.
  1459    // If not using T2 libthread, but using UseBoundThreads any threads
  1460    // (primordial thread, jni_attachCurrentThread) we do not create,
  1461    // probably are not bound, therefore they can not have an alternate
  1462    // signal stack. Since our stack banging code is generated and
  1463    // is shared across threads, all threads must be bound to allow
  1464    // using alternate signal stacks.  The alternative is to interpose
  1465    // on _lwp_create to associate an alt sig stack with each LWP,
  1466    // and this could be a problem when the JVM is embedded.
  1467    // We would prefer to use alternate signal stacks with T2
  1468    // Since there is currently no accurate way to detect T2
  1469    // we do not. Assuming T2 when running T1 causes sig 11s or assertions
  1470    // on installing alternate signal stacks
  1473    // 05/09/03: removed alternate signal stack support for Solaris
  1474    // The alternate signal stack mechanism is no longer needed to
  1475    // handle stack overflow. This is now handled by allocating
  1476    // guard pages (red zone) and stackbanging.
  1477    // Initially the alternate signal stack mechanism was removed because
  1478    // it did not work with T1 llibthread. Alternate
  1479    // signal stacks MUST have all threads bound to lwps. Applications
  1480    // can create their own threads and attach them without their being
  1481    // bound under T1. This is frequently the case for the primordial thread.
  1482    // If we were ever to reenable this mechanism we would need to
  1483    // use the dynamic check for T2 libthread.
  1485   os::Solaris::init_thread_fpu_state();
  1486   std::set_terminate(_handle_uncaught_cxx_exception);
  1491 // Free Solaris resources related to the OSThread
  1492 void os::free_thread(OSThread* osthread) {
  1493   assert(osthread != NULL, "os::free_thread but osthread not set");
  1496   // We are told to free resources of the argument thread,
  1497   // but we can only really operate on the current thread.
  1498   // The main thread must take the VMThread down synchronously
  1499   // before the main thread exits and frees up CodeHeap
  1500   guarantee((Thread::current()->osthread() == osthread
  1501      || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
  1502   if (Thread::current()->osthread() == osthread) {
  1503     // Restore caller's signal mask
  1504     sigset_t sigmask = osthread->caller_sigmask();
  1505     thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
  1507   delete osthread;
  1510 void os::pd_start_thread(Thread* thread) {
  1511   int status = thr_continue(thread->osthread()->thread_id());
  1512   assert_status(status == 0, status, "thr_continue failed");
  1516 intx os::current_thread_id() {
  1517   return (intx)thr_self();
  1520 static pid_t _initial_pid = 0;
  1522 int os::current_process_id() {
  1523   return (int)(_initial_pid ? _initial_pid : getpid());
  1526 int os::allocate_thread_local_storage() {
  1527   // %%%       in Win32 this allocates a memory segment pointed to by a
  1528   //           register.  Dan Stein can implement a similar feature in
  1529   //           Solaris.  Alternatively, the VM can do the same thing
  1530   //           explicitly: malloc some storage and keep the pointer in a
  1531   //           register (which is part of the thread's context) (or keep it
  1532   //           in TLS).
  1533   // %%%       In current versions of Solaris, thr_self and TSD can
  1534   //           be accessed via short sequences of displaced indirections.
  1535   //           The value of thr_self is available as %g7(36).
  1536   //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
  1537   //           assuming that the current thread already has a value bound to k.
  1538   //           It may be worth experimenting with such access patterns,
  1539   //           and later having the parameters formally exported from a Solaris
  1540   //           interface.  I think, however, that it will be faster to
  1541   //           maintain the invariant that %g2 always contains the
  1542   //           JavaThread in Java code, and have stubs simply
  1543   //           treat %g2 as a caller-save register, preserving it in a %lN.
  1544   thread_key_t tk;
  1545   if (thr_keycreate( &tk, NULL ) )
  1546     fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
  1547                   "(%s)", strerror(errno)));
  1548   return int(tk);
  1551 void os::free_thread_local_storage(int index) {
  1552   // %%% don't think we need anything here
  1553   // if ( pthread_key_delete((pthread_key_t) tk) )
  1554   //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
  1557 #define SMALLINT 32   // libthread allocate for tsd_common is a version specific
  1558                       // small number - point is NO swap space available
  1559 void os::thread_local_storage_at_put(int index, void* value) {
  1560   // %%% this is used only in threadLocalStorage.cpp
  1561   if (thr_setspecific((thread_key_t)index, value)) {
  1562     if (errno == ENOMEM) {
  1563        vm_exit_out_of_memory(SMALLINT, OOM_MALLOC_ERROR,
  1564                              "thr_setspecific: out of swap space");
  1565     } else {
  1566       fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
  1567                     "(%s)", strerror(errno)));
  1569   } else {
  1570       ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
  1574 // This function could be called before TLS is initialized, for example, when
  1575 // VM receives an async signal or when VM causes a fatal error during
  1576 // initialization. Return NULL if thr_getspecific() fails.
  1577 void* os::thread_local_storage_at(int index) {
  1578   // %%% this is used only in threadLocalStorage.cpp
  1579   void* r = NULL;
  1580   return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
  1584 // gethrtime can move backwards if read from one cpu and then a different cpu
  1585 // getTimeNanos is guaranteed to not move backward on Solaris
  1586 // local spinloop created as faster for a CAS on an int than
  1587 // a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
  1588 // supported on sparc v8 or pre supports_cx8 intel boxes.
  1589 // oldgetTimeNanos for systems which do not support CAS on 64bit jlong
  1590 // i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
  1591 inline hrtime_t oldgetTimeNanos() {
  1592   int gotlock = LOCK_INVALID;
  1593   hrtime_t newtime = gethrtime();
  1595   for (;;) {
  1596 // grab lock for max_hrtime
  1597     int curlock = max_hrtime_lock;
  1598     if (curlock & LOCK_BUSY)  continue;
  1599     if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
  1600     if (newtime > max_hrtime) {
  1601       max_hrtime = newtime;
  1602     } else {
  1603       newtime = max_hrtime;
  1605     // release lock
  1606     max_hrtime_lock = LOCK_FREE;
  1607     return newtime;
  1610 // gethrtime can move backwards if read from one cpu and then a different cpu
  1611 // getTimeNanos is guaranteed to not move backward on Solaris
  1612 inline hrtime_t getTimeNanos() {
  1613   if (VM_Version::supports_cx8()) {
  1614     const hrtime_t now = gethrtime();
  1615     // Use atomic long load since 32-bit x86 uses 2 registers to keep long.
  1616     const hrtime_t prev = Atomic::load((volatile jlong*)&max_hrtime);
  1617     if (now <= prev)  return prev;   // same or retrograde time;
  1618     const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
  1619     assert(obsv >= prev, "invariant");   // Monotonicity
  1620     // If the CAS succeeded then we're done and return "now".
  1621     // If the CAS failed and the observed value "obs" is >= now then
  1622     // we should return "obs".  If the CAS failed and now > obs > prv then
  1623     // some other thread raced this thread and installed a new value, in which case
  1624     // we could either (a) retry the entire operation, (b) retry trying to install now
  1625     // or (c) just return obs.  We use (c).   No loop is required although in some cases
  1626     // we might discard a higher "now" value in deference to a slightly lower but freshly
  1627     // installed obs value.   That's entirely benign -- it admits no new orderings compared
  1628     // to (a) or (b) -- and greatly reduces coherence traffic.
  1629     // We might also condition (c) on the magnitude of the delta between obs and now.
  1630     // Avoiding excessive CAS operations to hot RW locations is critical.
  1631     // See http://blogs.sun.com/dave/entry/cas_and_cache_trivia_invalidate
  1632     return (prev == obsv) ? now : obsv ;
  1633   } else {
  1634     return oldgetTimeNanos();
  1638 // Time since start-up in seconds to a fine granularity.
  1639 // Used by VMSelfDestructTimer and the MemProfiler.
  1640 double os::elapsedTime() {
  1641   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
  1644 jlong os::elapsed_counter() {
  1645   return (jlong)(getTimeNanos() - first_hrtime);
  1648 jlong os::elapsed_frequency() {
  1649    return hrtime_hz;
  1652 // Return the real, user, and system times in seconds from an
  1653 // arbitrary fixed point in the past.
  1654 bool os::getTimesSecs(double* process_real_time,
  1655                   double* process_user_time,
  1656                   double* process_system_time) {
  1657   struct tms ticks;
  1658   clock_t real_ticks = times(&ticks);
  1660   if (real_ticks == (clock_t) (-1)) {
  1661     return false;
  1662   } else {
  1663     double ticks_per_second = (double) clock_tics_per_sec;
  1664     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1665     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1666     // For consistency return the real time from getTimeNanos()
  1667     // converted to seconds.
  1668     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
  1670     return true;
  1674 bool os::supports_vtime() { return true; }
  1676 bool os::enable_vtime() {
  1677   int fd = ::open("/proc/self/ctl", O_WRONLY);
  1678   if (fd == -1)
  1679     return false;
  1681   long cmd[] = { PCSET, PR_MSACCT };
  1682   int res = ::write(fd, cmd, sizeof(long) * 2);
  1683   ::close(fd);
  1684   if (res != sizeof(long) * 2)
  1685     return false;
  1687   return true;
  1690 bool os::vtime_enabled() {
  1691   int fd = ::open("/proc/self/status", O_RDONLY);
  1692   if (fd == -1)
  1693     return false;
  1695   pstatus_t status;
  1696   int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
  1697   ::close(fd);
  1698   if (res != sizeof(pstatus_t))
  1699     return false;
  1701   return status.pr_flags & PR_MSACCT;
  1704 double os::elapsedVTime() {
  1705   return (double)gethrvtime() / (double)hrtime_hz;
  1708 // Used internally for comparisons only
  1709 // getTimeMillis guaranteed to not move backwards on Solaris
  1710 jlong getTimeMillis() {
  1711   jlong nanotime = getTimeNanos();
  1712   return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
  1715 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
  1716 jlong os::javaTimeMillis() {
  1717   timeval t;
  1718   if (gettimeofday( &t, NULL) == -1)
  1719     fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
  1720   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
  1723 jlong os::javaTimeNanos() {
  1724   return (jlong)getTimeNanos();
  1727 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1728   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
  1729   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
  1730   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
  1731   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
  1734 char * os::local_time_string(char *buf, size_t buflen) {
  1735   struct tm t;
  1736   time_t long_time;
  1737   time(&long_time);
  1738   localtime_r(&long_time, &t);
  1739   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1740                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1741                t.tm_hour, t.tm_min, t.tm_sec);
  1742   return buf;
  1745 // Note: os::shutdown() might be called very early during initialization, or
  1746 // called from signal handler. Before adding something to os::shutdown(), make
  1747 // sure it is async-safe and can handle partially initialized VM.
  1748 void os::shutdown() {
  1750   // allow PerfMemory to attempt cleanup of any persistent resources
  1751   perfMemory_exit();
  1753   // needs to remove object in file system
  1754   AttachListener::abort();
  1756   // flush buffered output, finish log files
  1757   ostream_abort();
  1759   // Check for abort hook
  1760   abort_hook_t abort_hook = Arguments::abort_hook();
  1761   if (abort_hook != NULL) {
  1762     abort_hook();
  1766 // Note: os::abort() might be called very early during initialization, or
  1767 // called from signal handler. Before adding something to os::abort(), make
  1768 // sure it is async-safe and can handle partially initialized VM.
  1769 void os::abort(bool dump_core) {
  1770   os::shutdown();
  1771   if (dump_core) {
  1772 #ifndef PRODUCT
  1773     fdStream out(defaultStream::output_fd());
  1774     out.print_raw("Current thread is ");
  1775     char buf[16];
  1776     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1777     out.print_raw_cr(buf);
  1778     out.print_raw_cr("Dumping core ...");
  1779 #endif
  1780     ::abort(); // dump core (for debugging)
  1783   ::exit(1);
  1786 // Die immediately, no exit hook, no abort hook, no cleanup.
  1787 void os::die() {
  1788   ::abort(); // dump core (for debugging)
  1791 // unused
  1792 void os::set_error_file(const char *logfile) {}
  1794 // DLL functions
  1796 const char* os::dll_file_extension() { return ".so"; }
  1798 // This must be hard coded because it's the system's temporary
  1799 // directory not the java application's temp directory, ala java.io.tmpdir.
  1800 const char* os::get_temp_directory() { return "/tmp"; }
  1802 static bool file_exists(const char* filename) {
  1803   struct stat statbuf;
  1804   if (filename == NULL || strlen(filename) == 0) {
  1805     return false;
  1807   return os::stat(filename, &statbuf) == 0;
  1810 bool os::dll_build_name(char* buffer, size_t buflen,
  1811                         const char* pname, const char* fname) {
  1812   bool retval = false;
  1813   const size_t pnamelen = pname ? strlen(pname) : 0;
  1815   // Return error on buffer overflow.
  1816   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1817     return retval;
  1820   if (pnamelen == 0) {
  1821     snprintf(buffer, buflen, "lib%s.so", fname);
  1822     retval = true;
  1823   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1824     int n;
  1825     char** pelements = split_path(pname, &n);
  1826     if (pelements == NULL) {
  1827       return false;
  1829     for (int i = 0 ; i < n ; i++) {
  1830       // really shouldn't be NULL but what the heck, check can't hurt
  1831       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1832         continue; // skip the empty path values
  1834       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1835       if (file_exists(buffer)) {
  1836         retval = true;
  1837         break;
  1840     // release the storage
  1841     for (int i = 0 ; i < n ; i++) {
  1842       if (pelements[i] != NULL) {
  1843         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1846     if (pelements != NULL) {
  1847       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1849   } else {
  1850     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1851     retval = true;
  1853   return retval;
  1856 // check if addr is inside libjvm.so
  1857 bool os::address_is_in_vm(address addr) {
  1858   static address libjvm_base_addr;
  1859   Dl_info dlinfo;
  1861   if (libjvm_base_addr == NULL) {
  1862     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1863       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1865     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1868   if (dladdr((void *)addr, &dlinfo) != 0) {
  1869     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1872   return false;
  1875 typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
  1876 static dladdr1_func_type dladdr1_func = NULL;
  1878 bool os::dll_address_to_function_name(address addr, char *buf,
  1879                                       int buflen, int * offset) {
  1880   // buf is not optional, but offset is optional
  1881   assert(buf != NULL, "sanity check");
  1883   Dl_info dlinfo;
  1885   // dladdr1_func was initialized in os::init()
  1886   if (dladdr1_func != NULL) {
  1887     // yes, we have dladdr1
  1889     // Support for dladdr1 is checked at runtime; it may be
  1890     // available even if the vm is built on a machine that does
  1891     // not have dladdr1 support.  Make sure there is a value for
  1892     // RTLD_DL_SYMENT.
  1893     #ifndef RTLD_DL_SYMENT
  1894     #define RTLD_DL_SYMENT 1
  1895     #endif
  1896 #ifdef _LP64
  1897     Elf64_Sym * info;
  1898 #else
  1899     Elf32_Sym * info;
  1900 #endif
  1901     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
  1902                      RTLD_DL_SYMENT) != 0) {
  1903       // see if we have a matching symbol that covers our address
  1904       if (dlinfo.dli_saddr != NULL &&
  1905           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
  1906         if (dlinfo.dli_sname != NULL) {
  1907           if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1908             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1910           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1911           return true;
  1914       // no matching symbol so try for just file info
  1915       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1916         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1917                             buf, buflen, offset, dlinfo.dli_fname)) {
  1918           return true;
  1922     buf[0] = '\0';
  1923     if (offset != NULL) *offset  = -1;
  1924     return false;
  1927   // no, only dladdr is available
  1928   if (dladdr((void *)addr, &dlinfo) != 0) {
  1929     // see if we have a matching symbol
  1930     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1931       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1932         jio_snprintf(buf, buflen, dlinfo.dli_sname);
  1934       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1935       return true;
  1937     // no matching symbol so try for just file info
  1938     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1939       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1940                           buf, buflen, offset, dlinfo.dli_fname)) {
  1941         return true;
  1945   buf[0] = '\0';
  1946   if (offset != NULL) *offset  = -1;
  1947   return false;
  1950 bool os::dll_address_to_library_name(address addr, char* buf,
  1951                                      int buflen, int* offset) {
  1952   // buf is not optional, but offset is optional
  1953   assert(buf != NULL, "sanity check");
  1955   Dl_info dlinfo;
  1957   if (dladdr((void*)addr, &dlinfo) != 0) {
  1958     if (dlinfo.dli_fname != NULL) {
  1959       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1961     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1962       *offset = addr - (address)dlinfo.dli_fbase;
  1964     return true;
  1967   buf[0] = '\0';
  1968   if (offset) *offset = -1;
  1969   return false;
  1972 // Prints the names and full paths of all opened dynamic libraries
  1973 // for current process
  1974 void os::print_dll_info(outputStream * st) {
  1975   Dl_info dli;
  1976   void *handle;
  1977   Link_map *map;
  1978   Link_map *p;
  1980   st->print_cr("Dynamic libraries:"); st->flush();
  1982   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
  1983       dli.dli_fname == NULL) {
  1984     st->print_cr("Error: Cannot print dynamic libraries.");
  1985     return;
  1987   handle = dlopen(dli.dli_fname, RTLD_LAZY);
  1988   if (handle == NULL) {
  1989     st->print_cr("Error: Cannot print dynamic libraries.");
  1990     return;
  1992   dlinfo(handle, RTLD_DI_LINKMAP, &map);
  1993   if (map == NULL) {
  1994     st->print_cr("Error: Cannot print dynamic libraries.");
  1995     return;
  1998   while (map->l_prev != NULL)
  1999     map = map->l_prev;
  2001   while (map != NULL) {
  2002     st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
  2003     map = map->l_next;
  2006   dlclose(handle);
  2009   // Loads .dll/.so and
  2010   // in case of error it checks if .dll/.so was built for the
  2011   // same architecture as Hotspot is running on
  2013 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  2015   void * result= ::dlopen(filename, RTLD_LAZY);
  2016   if (result != NULL) {
  2017     // Successful loading
  2018     return result;
  2021   Elf32_Ehdr elf_head;
  2023   // Read system error message into ebuf
  2024   // It may or may not be overwritten below
  2025   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  2026   ebuf[ebuflen-1]='\0';
  2027   int diag_msg_max_length=ebuflen-strlen(ebuf);
  2028   char* diag_msg_buf=ebuf+strlen(ebuf);
  2030   if (diag_msg_max_length==0) {
  2031     // No more space in ebuf for additional diagnostics message
  2032     return NULL;
  2036   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  2038   if (file_descriptor < 0) {
  2039     // Can't open library, report dlerror() message
  2040     return NULL;
  2043   bool failed_to_read_elf_head=
  2044     (sizeof(elf_head)!=
  2045         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  2047   ::close(file_descriptor);
  2048   if (failed_to_read_elf_head) {
  2049     // file i/o error - report dlerror() msg
  2050     return NULL;
  2053   typedef struct {
  2054     Elf32_Half  code;         // Actual value as defined in elf.h
  2055     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  2056     char        elf_class;    // 32 or 64 bit
  2057     char        endianess;    // MSB or LSB
  2058     char*       name;         // String representation
  2059   } arch_t;
  2061   static const arch_t arch_array[]={
  2062     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2063     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2064     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  2065     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  2066     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2067     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2068     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  2069     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  2070     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  2071     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
  2072   };
  2074   #if  (defined IA32)
  2075     static  Elf32_Half running_arch_code=EM_386;
  2076   #elif   (defined AMD64)
  2077     static  Elf32_Half running_arch_code=EM_X86_64;
  2078   #elif  (defined IA64)
  2079     static  Elf32_Half running_arch_code=EM_IA_64;
  2080   #elif  (defined __sparc) && (defined _LP64)
  2081     static  Elf32_Half running_arch_code=EM_SPARCV9;
  2082   #elif  (defined __sparc) && (!defined _LP64)
  2083     static  Elf32_Half running_arch_code=EM_SPARC;
  2084   #elif  (defined __powerpc64__)
  2085     static  Elf32_Half running_arch_code=EM_PPC64;
  2086   #elif  (defined __powerpc__)
  2087     static  Elf32_Half running_arch_code=EM_PPC;
  2088   #elif (defined ARM)
  2089     static  Elf32_Half running_arch_code=EM_ARM;
  2090   #else
  2091     #error Method os::dll_load requires that one of following is defined:\
  2092          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
  2093   #endif
  2095   // Identify compatability class for VM's architecture and library's architecture
  2096   // Obtain string descriptions for architectures
  2098   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2099   int running_arch_index=-1;
  2101   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2102     if (running_arch_code == arch_array[i].code) {
  2103       running_arch_index    = i;
  2105     if (lib_arch.code == arch_array[i].code) {
  2106       lib_arch.compat_class = arch_array[i].compat_class;
  2107       lib_arch.name         = arch_array[i].name;
  2111   assert(running_arch_index != -1,
  2112     "Didn't find running architecture code (running_arch_code) in arch_array");
  2113   if (running_arch_index == -1) {
  2114     // Even though running architecture detection failed
  2115     // we may still continue with reporting dlerror() message
  2116     return NULL;
  2119   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2120     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2121     return NULL;
  2124   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2125     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2126     return NULL;
  2129   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2130     if ( lib_arch.name!=NULL ) {
  2131       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2132         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2133         lib_arch.name, arch_array[running_arch_index].name);
  2134     } else {
  2135       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2136       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2137         lib_arch.code,
  2138         arch_array[running_arch_index].name);
  2142   return NULL;
  2145 void* os::dll_lookup(void* handle, const char* name) {
  2146   return dlsym(handle, name);
  2149 void* os::get_default_process_handle() {
  2150   return (void*)::dlopen(NULL, RTLD_LAZY);
  2153 int os::stat(const char *path, struct stat *sbuf) {
  2154   char pathbuf[MAX_PATH];
  2155   if (strlen(path) > MAX_PATH - 1) {
  2156     errno = ENAMETOOLONG;
  2157     return -1;
  2159   os::native_path(strcpy(pathbuf, path));
  2160   return ::stat(pathbuf, sbuf);
  2163 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2164   int fd = ::open(filename, O_RDONLY);
  2165   if (fd == -1) {
  2166      return false;
  2169   char buf[32];
  2170   int bytes;
  2171   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2172     st->print_raw(buf, bytes);
  2175   ::close(fd);
  2177   return true;
  2180 void os::print_os_info_brief(outputStream* st) {
  2181   os::Solaris::print_distro_info(st);
  2183   os::Posix::print_uname_info(st);
  2185   os::Solaris::print_libversion_info(st);
  2188 void os::print_os_info(outputStream* st) {
  2189   st->print("OS:");
  2191   os::Solaris::print_distro_info(st);
  2193   os::Posix::print_uname_info(st);
  2195   os::Solaris::print_libversion_info(st);
  2197   os::Posix::print_rlimit_info(st);
  2199   os::Posix::print_load_average(st);
  2202 void os::Solaris::print_distro_info(outputStream* st) {
  2203   if (!_print_ascii_file("/etc/release", st)) {
  2204       st->print("Solaris");
  2206     st->cr();
  2209 void os::Solaris::print_libversion_info(outputStream* st) {
  2210   if (os::Solaris::T2_libthread()) {
  2211     st->print("  (T2 libthread)");
  2213   else {
  2214     st->print("  (T1 libthread)");
  2216   st->cr();
  2219 static bool check_addr0(outputStream* st) {
  2220   jboolean status = false;
  2221   int fd = ::open("/proc/self/map",O_RDONLY);
  2222   if (fd >= 0) {
  2223     prmap_t p;
  2224     while(::read(fd, &p, sizeof(p)) > 0) {
  2225       if (p.pr_vaddr == 0x0) {
  2226         st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
  2227         st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
  2228         st->print("Access:");
  2229         st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
  2230         st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
  2231         st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
  2232         st->cr();
  2233         status = true;
  2235       ::close(fd);
  2238   return status;
  2241 void os::pd_print_cpu_info(outputStream* st) {
  2242   // Nothing to do for now.
  2245 void os::print_memory_info(outputStream* st) {
  2246   st->print("Memory:");
  2247   st->print(" %dk page", os::vm_page_size()>>10);
  2248   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
  2249   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
  2250   st->cr();
  2251   (void) check_addr0(st);
  2254 void os::print_siginfo(outputStream* st, void* siginfo) {
  2255   const siginfo_t* si = (const siginfo_t*)siginfo;
  2257   os::Posix::print_siginfo_brief(st, si);
  2259   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2260       UseSharedSpaces) {
  2261     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2262     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2263       st->print("\n\nError accessing class data sharing archive."   \
  2264                 " Mapped file inaccessible during execution, "      \
  2265                 " possible disk/network problem.");
  2268   st->cr();
  2271 // Moved from whole group, because we need them here for diagnostic
  2272 // prints.
  2273 #define OLDMAXSIGNUM 32
  2274 static int Maxsignum = 0;
  2275 static int *ourSigFlags = NULL;
  2277 extern "C" void sigINTRHandler(int, siginfo_t*, void*);
  2279 int os::Solaris::get_our_sigflags(int sig) {
  2280   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2281   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2282   return ourSigFlags[sig];
  2285 void os::Solaris::set_our_sigflags(int sig, int flags) {
  2286   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2287   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2288   ourSigFlags[sig] = flags;
  2292 static const char* get_signal_handler_name(address handler,
  2293                                            char* buf, int buflen) {
  2294   int offset;
  2295   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  2296   if (found) {
  2297     // skip directory names
  2298     const char *p1, *p2;
  2299     p1 = buf;
  2300     size_t len = strlen(os::file_separator());
  2301     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  2302     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  2303   } else {
  2304     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  2306   return buf;
  2309 static void print_signal_handler(outputStream* st, int sig,
  2310                                   char* buf, size_t buflen) {
  2311   struct sigaction sa;
  2313   sigaction(sig, NULL, &sa);
  2315   st->print("%s: ", os::exception_name(sig, buf, buflen));
  2317   address handler = (sa.sa_flags & SA_SIGINFO)
  2318                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  2319                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
  2321   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  2322     st->print("SIG_DFL");
  2323   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  2324     st->print("SIG_IGN");
  2325   } else {
  2326     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  2329   st->print(", sa_mask[0]=");
  2330   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  2332   address rh = VMError::get_resetted_sighandler(sig);
  2333   // May be, handler was resetted by VMError?
  2334   if(rh != NULL) {
  2335     handler = rh;
  2336     sa.sa_flags = VMError::get_resetted_sigflags(sig);
  2339   st->print(", sa_flags=");
  2340   os::Posix::print_sa_flags(st, sa.sa_flags);
  2342   // Check: is it our handler?
  2343   if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
  2344      handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
  2345     // It is our signal handler
  2346     // check for flags
  2347     if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  2348       st->print(
  2349         ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  2350         os::Solaris::get_our_sigflags(sig));
  2353   st->cr();
  2356 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2357   st->print_cr("Signal Handlers:");
  2358   print_signal_handler(st, SIGSEGV, buf, buflen);
  2359   print_signal_handler(st, SIGBUS , buf, buflen);
  2360   print_signal_handler(st, SIGFPE , buf, buflen);
  2361   print_signal_handler(st, SIGPIPE, buf, buflen);
  2362   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2363   print_signal_handler(st, SIGILL , buf, buflen);
  2364   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2365   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
  2366   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2367   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
  2368   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2369   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
  2370   print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
  2371   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
  2374 static char saved_jvm_path[MAXPATHLEN] = { 0 };
  2376 // Find the full path to the current module, libjvm.so
  2377 void os::jvm_path(char *buf, jint buflen) {
  2378   // Error checking.
  2379   if (buflen < MAXPATHLEN) {
  2380     assert(false, "must use a large-enough buffer");
  2381     buf[0] = '\0';
  2382     return;
  2384   // Lazy resolve the path to current module.
  2385   if (saved_jvm_path[0] != 0) {
  2386     strcpy(buf, saved_jvm_path);
  2387     return;
  2390   Dl_info dlinfo;
  2391   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
  2392   assert(ret != 0, "cannot locate libjvm");
  2393   if (ret != 0 && dlinfo.dli_fname != NULL) {
  2394     realpath((char *)dlinfo.dli_fname, buf);
  2395   } else {
  2396     buf[0] = '\0';
  2397     return;
  2400   if (Arguments::created_by_gamma_launcher()) {
  2401     // Support for the gamma launcher.  Typical value for buf is
  2402     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2403     // the right place in the string, then assume we are installed in a JDK and
  2404     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2405     // up the path so it looks like libjvm.so is installed there (append a
  2406     // fake suffix hotspot/libjvm.so).
  2407     const char *p = buf + strlen(buf) - 1;
  2408     for (int count = 0; p > buf && count < 5; ++count) {
  2409       for (--p; p > buf && *p != '/'; --p)
  2410         /* empty */ ;
  2413     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2414       // Look for JAVA_HOME in the environment.
  2415       char* java_home_var = ::getenv("JAVA_HOME");
  2416       if (java_home_var != NULL && java_home_var[0] != 0) {
  2417         char cpu_arch[12];
  2418         char* jrelib_p;
  2419         int   len;
  2420         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
  2421 #ifdef _LP64
  2422         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
  2423         if (strcmp(cpu_arch, "sparc") == 0) {
  2424           strcat(cpu_arch, "v9");
  2425         } else if (strcmp(cpu_arch, "i386") == 0) {
  2426           strcpy(cpu_arch, "amd64");
  2428 #endif
  2429         // Check the current module name "libjvm.so".
  2430         p = strrchr(buf, '/');
  2431         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2433         realpath(java_home_var, buf);
  2434         // determine if this is a legacy image or modules image
  2435         // modules image doesn't have "jre" subdirectory
  2436         len = strlen(buf);
  2437         jrelib_p = buf + len;
  2438         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2439         if (0 != access(buf, F_OK)) {
  2440           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2443         if (0 == access(buf, F_OK)) {
  2444           // Use current module name "libjvm.so"
  2445           len = strlen(buf);
  2446           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2447         } else {
  2448           // Go back to path of .so
  2449           realpath((char *)dlinfo.dli_fname, buf);
  2455   strcpy(saved_jvm_path, buf);
  2459 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2460   // no prefix required, not even "_"
  2464 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2465   // no suffix required
  2468 // This method is a copy of JDK's sysGetLastErrorString
  2469 // from src/solaris/hpi/src/system_md.c
  2471 size_t os::lasterror(char *buf, size_t len) {
  2473   if (errno == 0)  return 0;
  2475   const char *s = ::strerror(errno);
  2476   size_t n = ::strlen(s);
  2477   if (n >= len) {
  2478     n = len - 1;
  2480   ::strncpy(buf, s, n);
  2481   buf[n] = '\0';
  2482   return n;
  2486 // sun.misc.Signal
  2488 extern "C" {
  2489   static void UserHandler(int sig, void *siginfo, void *context) {
  2490     // Ctrl-C is pressed during error reporting, likely because the error
  2491     // handler fails to abort. Let VM die immediately.
  2492     if (sig == SIGINT && is_error_reported()) {
  2493        os::die();
  2496     os::signal_notify(sig);
  2497     // We do not need to reinstate the signal handler each time...
  2501 void* os::user_handler() {
  2502   return CAST_FROM_FN_PTR(void*, UserHandler);
  2505 class Semaphore : public StackObj {
  2506   public:
  2507     Semaphore();
  2508     ~Semaphore();
  2509     void signal();
  2510     void wait();
  2511     bool trywait();
  2512     bool timedwait(unsigned int sec, int nsec);
  2513   private:
  2514     sema_t _semaphore;
  2515 };
  2518 Semaphore::Semaphore() {
  2519   sema_init(&_semaphore, 0, NULL, NULL);
  2522 Semaphore::~Semaphore() {
  2523   sema_destroy(&_semaphore);
  2526 void Semaphore::signal() {
  2527   sema_post(&_semaphore);
  2530 void Semaphore::wait() {
  2531   sema_wait(&_semaphore);
  2534 bool Semaphore::trywait() {
  2535   return sema_trywait(&_semaphore) == 0;
  2538 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2539   struct timespec ts;
  2540   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
  2542   while (1) {
  2543     int result = sema_timedwait(&_semaphore, &ts);
  2544     if (result == 0) {
  2545       return true;
  2546     } else if (errno == EINTR) {
  2547       continue;
  2548     } else if (errno == ETIME) {
  2549       return false;
  2550     } else {
  2551       return false;
  2556 extern "C" {
  2557   typedef void (*sa_handler_t)(int);
  2558   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2561 void* os::signal(int signal_number, void* handler) {
  2562   struct sigaction sigAct, oldSigAct;
  2563   sigfillset(&(sigAct.sa_mask));
  2564   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
  2565   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2567   if (sigaction(signal_number, &sigAct, &oldSigAct))
  2568     // -1 means registration failed
  2569     return (void *)-1;
  2571   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2574 void os::signal_raise(int signal_number) {
  2575   raise(signal_number);
  2578 /*
  2579  * The following code is moved from os.cpp for making this
  2580  * code platform specific, which it is by its very nature.
  2581  */
  2583 // a counter for each possible signal value
  2584 static int Sigexit = 0;
  2585 static int Maxlibjsigsigs;
  2586 static jint *pending_signals = NULL;
  2587 static int *preinstalled_sigs = NULL;
  2588 static struct sigaction *chainedsigactions = NULL;
  2589 static sema_t sig_sem;
  2590 typedef int (*version_getting_t)();
  2591 version_getting_t os::Solaris::get_libjsig_version = NULL;
  2592 static int libjsigversion = NULL;
  2594 int os::sigexitnum_pd() {
  2595   assert(Sigexit > 0, "signal memory not yet initialized");
  2596   return Sigexit;
  2599 void os::Solaris::init_signal_mem() {
  2600   // Initialize signal structures
  2601   Maxsignum = SIGRTMAX;
  2602   Sigexit = Maxsignum+1;
  2603   assert(Maxsignum >0, "Unable to obtain max signal number");
  2605   Maxlibjsigsigs = Maxsignum;
  2607   // pending_signals has one int per signal
  2608   // The additional signal is for SIGEXIT - exit signal to signal_thread
  2609   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
  2610   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
  2612   if (UseSignalChaining) {
  2613      chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
  2614        * (Maxsignum + 1), mtInternal);
  2615      memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
  2616      preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
  2617      memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
  2619   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ), mtInternal);
  2620   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
  2623 void os::signal_init_pd() {
  2624   int ret;
  2626   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
  2627   assert(ret == 0, "sema_init() failed");
  2630 void os::signal_notify(int signal_number) {
  2631   int ret;
  2633   Atomic::inc(&pending_signals[signal_number]);
  2634   ret = ::sema_post(&sig_sem);
  2635   assert(ret == 0, "sema_post() failed");
  2638 static int check_pending_signals(bool wait_for_signal) {
  2639   int ret;
  2640   while (true) {
  2641     for (int i = 0; i < Sigexit + 1; i++) {
  2642       jint n = pending_signals[i];
  2643       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2644         return i;
  2647     if (!wait_for_signal) {
  2648       return -1;
  2650     JavaThread *thread = JavaThread::current();
  2651     ThreadBlockInVM tbivm(thread);
  2653     bool threadIsSuspended;
  2654     do {
  2655       thread->set_suspend_equivalent();
  2656       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2657       while((ret = ::sema_wait(&sig_sem)) == EINTR)
  2659       assert(ret == 0, "sema_wait() failed");
  2661       // were we externally suspended while we were waiting?
  2662       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2663       if (threadIsSuspended) {
  2664         //
  2665         // The semaphore has been incremented, but while we were waiting
  2666         // another thread suspended us. We don't want to continue running
  2667         // while suspended because that would surprise the thread that
  2668         // suspended us.
  2669         //
  2670         ret = ::sema_post(&sig_sem);
  2671         assert(ret == 0, "sema_post() failed");
  2673         thread->java_suspend_self();
  2675     } while (threadIsSuspended);
  2679 int os::signal_lookup() {
  2680   return check_pending_signals(false);
  2683 int os::signal_wait() {
  2684   return check_pending_signals(true);
  2687 ////////////////////////////////////////////////////////////////////////////////
  2688 // Virtual Memory
  2690 static int page_size = -1;
  2692 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
  2693 // clear this var if support is not available.
  2694 static bool has_map_align = true;
  2696 int os::vm_page_size() {
  2697   assert(page_size != -1, "must call os::init");
  2698   return page_size;
  2701 // Solaris allocates memory by pages.
  2702 int os::vm_allocation_granularity() {
  2703   assert(page_size != -1, "must call os::init");
  2704   return page_size;
  2707 static bool recoverable_mmap_error(int err) {
  2708   // See if the error is one we can let the caller handle. This
  2709   // list of errno values comes from the Solaris mmap(2) man page.
  2710   switch (err) {
  2711   case EBADF:
  2712   case EINVAL:
  2713   case ENOTSUP:
  2714     // let the caller deal with these errors
  2715     return true;
  2717   default:
  2718     // Any remaining errors on this OS can cause our reserved mapping
  2719     // to be lost. That can cause confusion where different data
  2720     // structures think they have the same memory mapped. The worst
  2721     // scenario is if both the VM and a library think they have the
  2722     // same memory mapped.
  2723     return false;
  2727 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
  2728                                     int err) {
  2729   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2730           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
  2731           strerror(err), err);
  2734 static void warn_fail_commit_memory(char* addr, size_t bytes,
  2735                                     size_t alignment_hint, bool exec,
  2736                                     int err) {
  2737   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2738           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
  2739           alignment_hint, exec, strerror(err), err);
  2742 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
  2743   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2744   size_t size = bytes;
  2745   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
  2746   if (res != NULL) {
  2747     if (UseNUMAInterleaving) {
  2748       numa_make_global(addr, bytes);
  2750     return 0;
  2753   int err = errno;  // save errno from mmap() call in mmap_chunk()
  2755   if (!recoverable_mmap_error(err)) {
  2756     warn_fail_commit_memory(addr, bytes, exec, err);
  2757     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
  2760   return err;
  2763 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
  2764   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
  2767 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
  2768                                   const char* mesg) {
  2769   assert(mesg != NULL, "mesg must be specified");
  2770   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
  2771   if (err != 0) {
  2772     // the caller wants all commit errors to exit with the specified mesg:
  2773     warn_fail_commit_memory(addr, bytes, exec, err);
  2774     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
  2778 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
  2779                                     size_t alignment_hint, bool exec) {
  2780   int err = Solaris::commit_memory_impl(addr, bytes, exec);
  2781   if (err == 0) {
  2782     if (UseLargePages && (alignment_hint > (size_t)vm_page_size())) {
  2783       // If the large page size has been set and the VM
  2784       // is using large pages, use the large page size
  2785       // if it is smaller than the alignment hint. This is
  2786       // a case where the VM wants to use a larger alignment size
  2787       // for its own reasons but still want to use large pages
  2788       // (which is what matters to setting the mpss range.
  2789       size_t page_size = 0;
  2790       if (large_page_size() < alignment_hint) {
  2791         assert(UseLargePages, "Expected to be here for large page use only");
  2792         page_size = large_page_size();
  2793       } else {
  2794         // If the alignment hint is less than the large page
  2795         // size, the VM wants a particular alignment (thus the hint)
  2796         // for internal reasons.  Try to set the mpss range using
  2797         // the alignment_hint.
  2798         page_size = alignment_hint;
  2800       // Since this is a hint, ignore any failures.
  2801       (void)Solaris::setup_large_pages(addr, bytes, page_size);
  2804   return err;
  2807 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
  2808                           bool exec) {
  2809   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
  2812 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
  2813                                   size_t alignment_hint, bool exec,
  2814                                   const char* mesg) {
  2815   assert(mesg != NULL, "mesg must be specified");
  2816   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
  2817   if (err != 0) {
  2818     // the caller wants all commit errors to exit with the specified mesg:
  2819     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
  2820     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
  2824 // Uncommit the pages in a specified region.
  2825 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
  2826   if (madvise(addr, bytes, MADV_FREE) < 0) {
  2827     debug_only(warning("MADV_FREE failed."));
  2828     return;
  2832 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2833   return os::commit_memory(addr, size, !ExecMem);
  2836 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2837   return os::uncommit_memory(addr, size);
  2840 // Change the page size in a given range.
  2841 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2842   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
  2843   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
  2844   if (UseLargePages) {
  2845     Solaris::setup_large_pages(addr, bytes, alignment_hint);
  2849 // Tell the OS to make the range local to the first-touching LWP
  2850 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2851   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2852   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
  2853     debug_only(warning("MADV_ACCESS_LWP failed."));
  2857 // Tell the OS that this range would be accessed from different LWPs.
  2858 void os::numa_make_global(char *addr, size_t bytes) {
  2859   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2860   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
  2861     debug_only(warning("MADV_ACCESS_MANY failed."));
  2865 // Get the number of the locality groups.
  2866 size_t os::numa_get_groups_num() {
  2867   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
  2868   return n != -1 ? n : 1;
  2871 // Get a list of leaf locality groups. A leaf lgroup is group that
  2872 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
  2873 // board. An LWP is assigned to one of these groups upon creation.
  2874 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2875    if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
  2876      ids[0] = 0;
  2877      return 1;
  2879    int result_size = 0, top = 1, bottom = 0, cur = 0;
  2880    for (int k = 0; k < size; k++) {
  2881      int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
  2882                                     (Solaris::lgrp_id_t*)&ids[top], size - top);
  2883      if (r == -1) {
  2884        ids[0] = 0;
  2885        return 1;
  2887      if (!r) {
  2888        // That's a leaf node.
  2889        assert (bottom <= cur, "Sanity check");
  2890        // Check if the node has memory
  2891        if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
  2892                                    NULL, 0, LGRP_RSRC_MEM) > 0) {
  2893          ids[bottom++] = ids[cur];
  2896      top += r;
  2897      cur++;
  2899    if (bottom == 0) {
  2900      // Handle a situation, when the OS reports no memory available.
  2901      // Assume UMA architecture.
  2902      ids[0] = 0;
  2903      return 1;
  2905    return bottom;
  2908 // Detect the topology change. Typically happens during CPU plugging-unplugging.
  2909 bool os::numa_topology_changed() {
  2910   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
  2911   if (is_stale != -1 && is_stale) {
  2912     Solaris::lgrp_fini(Solaris::lgrp_cookie());
  2913     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
  2914     assert(c != 0, "Failure to initialize LGRP API");
  2915     Solaris::set_lgrp_cookie(c);
  2916     return true;
  2918   return false;
  2921 // Get the group id of the current LWP.
  2922 int os::numa_get_group_id() {
  2923   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
  2924   if (lgrp_id == -1) {
  2925     return 0;
  2927   const int size = os::numa_get_groups_num();
  2928   int *ids = (int*)alloca(size * sizeof(int));
  2930   // Get the ids of all lgroups with memory; r is the count.
  2931   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
  2932                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
  2933   if (r <= 0) {
  2934     return 0;
  2936   return ids[os::random() % r];
  2939 // Request information about the page.
  2940 bool os::get_page_info(char *start, page_info* info) {
  2941   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2942   uint64_t addr = (uintptr_t)start;
  2943   uint64_t outdata[2];
  2944   uint_t validity = 0;
  2946   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
  2947     return false;
  2950   info->size = 0;
  2951   info->lgrp_id = -1;
  2953   if ((validity & 1) != 0) {
  2954     if ((validity & 2) != 0) {
  2955       info->lgrp_id = outdata[0];
  2957     if ((validity & 4) != 0) {
  2958       info->size = outdata[1];
  2960     return true;
  2962   return false;
  2965 // Scan the pages from start to end until a page different than
  2966 // the one described in the info parameter is encountered.
  2967 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2968   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2969   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
  2970   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
  2971   uint_t validity[MAX_MEMINFO_CNT];
  2973   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
  2974   uint64_t p = (uint64_t)start;
  2975   while (p < (uint64_t)end) {
  2976     addrs[0] = p;
  2977     size_t addrs_count = 1;
  2978     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
  2979       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
  2980       addrs_count++;
  2983     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
  2984       return NULL;
  2987     size_t i = 0;
  2988     for (; i < addrs_count; i++) {
  2989       if ((validity[i] & 1) != 0) {
  2990         if ((validity[i] & 4) != 0) {
  2991           if (outdata[types * i + 1] != page_expected->size) {
  2992             break;
  2994         } else
  2995           if (page_expected->size != 0) {
  2996             break;
  2999         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
  3000           if (outdata[types * i] != page_expected->lgrp_id) {
  3001             break;
  3004       } else {
  3005         return NULL;
  3009     if (i != addrs_count) {
  3010       if ((validity[i] & 2) != 0) {
  3011         page_found->lgrp_id = outdata[types * i];
  3012       } else {
  3013         page_found->lgrp_id = -1;
  3015       if ((validity[i] & 4) != 0) {
  3016         page_found->size = outdata[types * i + 1];
  3017       } else {
  3018         page_found->size = 0;
  3020       return (char*)addrs[i];
  3023     p = addrs[addrs_count - 1] + page_size;
  3025   return end;
  3028 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
  3029   size_t size = bytes;
  3030   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3031   // uncommitted page. Otherwise, the read/write might succeed if we
  3032   // have enough swap space to back the physical page.
  3033   return
  3034     NULL != Solaris::mmap_chunk(addr, size,
  3035                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
  3036                                 PROT_NONE);
  3039 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
  3040   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
  3042   if (b == MAP_FAILED) {
  3043     return NULL;
  3045   return b;
  3048 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
  3049   char* addr = requested_addr;
  3050   int flags = MAP_PRIVATE | MAP_NORESERVE;
  3052   assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
  3054   if (fixed) {
  3055     flags |= MAP_FIXED;
  3056   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
  3057     flags |= MAP_ALIGN;
  3058     addr = (char*) alignment_hint;
  3061   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3062   // uncommitted page. Otherwise, the read/write might succeed if we
  3063   // have enough swap space to back the physical page.
  3064   return mmap_chunk(addr, bytes, flags, PROT_NONE);
  3067 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
  3068   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
  3070   guarantee(requested_addr == NULL || requested_addr == addr,
  3071             "OS failed to return requested mmap address.");
  3072   return addr;
  3075 // Reserve memory at an arbitrary address, only if that area is
  3076 // available (and not reserved for something else).
  3078 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3079   const int max_tries = 10;
  3080   char* base[max_tries];
  3081   size_t size[max_tries];
  3083   // Solaris adds a gap between mmap'ed regions.  The size of the gap
  3084   // is dependent on the requested size and the MMU.  Our initial gap
  3085   // value here is just a guess and will be corrected later.
  3086   bool had_top_overlap = false;
  3087   bool have_adjusted_gap = false;
  3088   size_t gap = 0x400000;
  3090   // Assert only that the size is a multiple of the page size, since
  3091   // that's all that mmap requires, and since that's all we really know
  3092   // about at this low abstraction level.  If we need higher alignment,
  3093   // we can either pass an alignment to this method or verify alignment
  3094   // in one of the methods further up the call chain.  See bug 5044738.
  3095   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3097   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
  3098   // Give it a try, if the kernel honors the hint we can return immediately.
  3099   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
  3101   volatile int err = errno;
  3102   if (addr == requested_addr) {
  3103     return addr;
  3104   } else if (addr != NULL) {
  3105     pd_unmap_memory(addr, bytes);
  3108   if (PrintMiscellaneous && Verbose) {
  3109     char buf[256];
  3110     buf[0] = '\0';
  3111     if (addr == NULL) {
  3112       jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
  3114     warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
  3115             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
  3116             "%s", bytes, requested_addr, addr, buf);
  3119   // Address hint method didn't work.  Fall back to the old method.
  3120   // In theory, once SNV becomes our oldest supported platform, this
  3121   // code will no longer be needed.
  3122   //
  3123   // Repeatedly allocate blocks until the block is allocated at the
  3124   // right spot. Give up after max_tries.
  3125   int i;
  3126   for (i = 0; i < max_tries; ++i) {
  3127     base[i] = reserve_memory(bytes);
  3129     if (base[i] != NULL) {
  3130       // Is this the block we wanted?
  3131       if (base[i] == requested_addr) {
  3132         size[i] = bytes;
  3133         break;
  3136       // check that the gap value is right
  3137       if (had_top_overlap && !have_adjusted_gap) {
  3138         size_t actual_gap = base[i-1] - base[i] - bytes;
  3139         if (gap != actual_gap) {
  3140           // adjust the gap value and retry the last 2 allocations
  3141           assert(i > 0, "gap adjustment code problem");
  3142           have_adjusted_gap = true;  // adjust the gap only once, just in case
  3143           gap = actual_gap;
  3144           if (PrintMiscellaneous && Verbose) {
  3145             warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
  3147           unmap_memory(base[i], bytes);
  3148           unmap_memory(base[i-1], size[i-1]);
  3149           i-=2;
  3150           continue;
  3154       // Does this overlap the block we wanted? Give back the overlapped
  3155       // parts and try again.
  3156       //
  3157       // There is still a bug in this code: if top_overlap == bytes,
  3158       // the overlap is offset from requested region by the value of gap.
  3159       // In this case giving back the overlapped part will not work,
  3160       // because we'll give back the entire block at base[i] and
  3161       // therefore the subsequent allocation will not generate a new gap.
  3162       // This could be fixed with a new algorithm that used larger
  3163       // or variable size chunks to find the requested region -
  3164       // but such a change would introduce additional complications.
  3165       // It's rare enough that the planets align for this bug,
  3166       // so we'll just wait for a fix for 6204603/5003415 which
  3167       // will provide a mmap flag to allow us to avoid this business.
  3169       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3170       if (top_overlap >= 0 && top_overlap < bytes) {
  3171         had_top_overlap = true;
  3172         unmap_memory(base[i], top_overlap);
  3173         base[i] += top_overlap;
  3174         size[i] = bytes - top_overlap;
  3175       } else {
  3176         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3177         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3178           if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
  3179             warning("attempt_reserve_memory_at: possible alignment bug");
  3181           unmap_memory(requested_addr, bottom_overlap);
  3182           size[i] = bytes - bottom_overlap;
  3183         } else {
  3184           size[i] = bytes;
  3190   // Give back the unused reserved pieces.
  3192   for (int j = 0; j < i; ++j) {
  3193     if (base[j] != NULL) {
  3194       unmap_memory(base[j], size[j]);
  3198   return (i < max_tries) ? requested_addr : NULL;
  3201 bool os::pd_release_memory(char* addr, size_t bytes) {
  3202   size_t size = bytes;
  3203   return munmap(addr, size) == 0;
  3206 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
  3207   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
  3208          "addr must be page aligned");
  3209   int retVal = mprotect(addr, bytes, prot);
  3210   return retVal == 0;
  3213 // Protect memory (Used to pass readonly pages through
  3214 // JNI GetArray<type>Elements with empty arrays.)
  3215 // Also, used for serialization page and for compressed oops null pointer
  3216 // checking.
  3217 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3218                         bool is_committed) {
  3219   unsigned int p = 0;
  3220   switch (prot) {
  3221   case MEM_PROT_NONE: p = PROT_NONE; break;
  3222   case MEM_PROT_READ: p = PROT_READ; break;
  3223   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3224   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3225   default:
  3226     ShouldNotReachHere();
  3228   // is_committed is unused.
  3229   return solaris_mprotect(addr, bytes, p);
  3232 // guard_memory and unguard_memory only happens within stack guard pages.
  3233 // Since ISM pertains only to the heap, guard and unguard memory should not
  3234 /// happen with an ISM region.
  3235 bool os::guard_memory(char* addr, size_t bytes) {
  3236   return solaris_mprotect(addr, bytes, PROT_NONE);
  3239 bool os::unguard_memory(char* addr, size_t bytes) {
  3240   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
  3243 // Large page support
  3244 static size_t _large_page_size = 0;
  3246 // Insertion sort for small arrays (descending order).
  3247 static void insertion_sort_descending(size_t* array, int len) {
  3248   for (int i = 0; i < len; i++) {
  3249     size_t val = array[i];
  3250     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
  3251       size_t tmp = array[key];
  3252       array[key] = array[key - 1];
  3253       array[key - 1] = tmp;
  3258 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
  3259   const unsigned int usable_count = VM_Version::page_size_count();
  3260   if (usable_count == 1) {
  3261     return false;
  3264   // Find the right getpagesizes interface.  When solaris 11 is the minimum
  3265   // build platform, getpagesizes() (without the '2') can be called directly.
  3266   typedef int (*gps_t)(size_t[], int);
  3267   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
  3268   if (gps_func == NULL) {
  3269     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
  3270     if (gps_func == NULL) {
  3271       if (warn) {
  3272         warning("MPSS is not supported by the operating system.");
  3274       return false;
  3278   // Fill the array of page sizes.
  3279   int n = (*gps_func)(_page_sizes, page_sizes_max);
  3280   assert(n > 0, "Solaris bug?");
  3282   if (n == page_sizes_max) {
  3283     // Add a sentinel value (necessary only if the array was completely filled
  3284     // since it is static (zeroed at initialization)).
  3285     _page_sizes[--n] = 0;
  3286     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
  3288   assert(_page_sizes[n] == 0, "missing sentinel");
  3289   trace_page_sizes("available page sizes", _page_sizes, n);
  3291   if (n == 1) return false;     // Only one page size available.
  3293   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
  3294   // select up to usable_count elements.  First sort the array, find the first
  3295   // acceptable value, then copy the usable sizes to the top of the array and
  3296   // trim the rest.  Make sure to include the default page size :-).
  3297   //
  3298   // A better policy could get rid of the 4M limit by taking the sizes of the
  3299   // important VM memory regions (java heap and possibly the code cache) into
  3300   // account.
  3301   insertion_sort_descending(_page_sizes, n);
  3302   const size_t size_limit =
  3303     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
  3304   int beg;
  3305   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
  3306   const int end = MIN2((int)usable_count, n) - 1;
  3307   for (int cur = 0; cur < end; ++cur, ++beg) {
  3308     _page_sizes[cur] = _page_sizes[beg];
  3310   _page_sizes[end] = vm_page_size();
  3311   _page_sizes[end + 1] = 0;
  3313   if (_page_sizes[end] > _page_sizes[end - 1]) {
  3314     // Default page size is not the smallest; sort again.
  3315     insertion_sort_descending(_page_sizes, end + 1);
  3317   *page_size = _page_sizes[0];
  3319   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
  3320   return true;
  3323 void os::large_page_init() {
  3324   if (UseLargePages) {
  3325     // print a warning if any large page related flag is specified on command line
  3326     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
  3327                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  3329     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
  3333 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
  3334   // Signal to OS that we want large pages for addresses
  3335   // from addr, addr + bytes
  3336   struct memcntl_mha mpss_struct;
  3337   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
  3338   mpss_struct.mha_pagesize = align;
  3339   mpss_struct.mha_flags = 0;
  3340   // Upon successful completion, memcntl() returns 0
  3341   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
  3342     debug_only(warning("Attempt to use MPSS failed."));
  3343     return false;
  3345   return true;
  3348 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
  3349   fatal("os::reserve_memory_special should not be called on Solaris.");
  3350   return NULL;
  3353 bool os::release_memory_special(char* base, size_t bytes) {
  3354   fatal("os::release_memory_special should not be called on Solaris.");
  3355   return false;
  3358 size_t os::large_page_size() {
  3359   return _large_page_size;
  3362 // MPSS allows application to commit large page memory on demand; with ISM
  3363 // the entire memory region must be allocated as shared memory.
  3364 bool os::can_commit_large_page_memory() {
  3365   return true;
  3368 bool os::can_execute_large_page_memory() {
  3369   return true;
  3372 static int os_sleep(jlong millis, bool interruptible) {
  3373   const jlong limit = INT_MAX;
  3374   jlong prevtime;
  3375   int res;
  3377   while (millis > limit) {
  3378     if ((res = os_sleep(limit, interruptible)) != OS_OK)
  3379       return res;
  3380     millis -= limit;
  3383   // Restart interrupted polls with new parameters until the proper delay
  3384   // has been completed.
  3386   prevtime = getTimeMillis();
  3388   while (millis > 0) {
  3389     jlong newtime;
  3391     if (!interruptible) {
  3392       // Following assert fails for os::yield_all:
  3393       // assert(!thread->is_Java_thread(), "must not be java thread");
  3394       res = poll(NULL, 0, millis);
  3395     } else {
  3396       JavaThread *jt = JavaThread::current();
  3398       INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
  3399         os::Solaris::clear_interrupted);
  3402     // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
  3403     // thread.Interrupt.
  3405     // See c/r 6751923. Poll can return 0 before time
  3406     // has elapsed if time is set via clock_settime (as NTP does).
  3407     // res == 0 if poll timed out (see man poll RETURN VALUES)
  3408     // using the logic below checks that we really did
  3409     // sleep at least "millis" if not we'll sleep again.
  3410     if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) {
  3411       newtime = getTimeMillis();
  3412       assert(newtime >= prevtime, "time moving backwards");
  3413     /* Doing prevtime and newtime in microseconds doesn't help precision,
  3414        and trying to round up to avoid lost milliseconds can result in a
  3415        too-short delay. */
  3416       millis -= newtime - prevtime;
  3417       if(millis <= 0)
  3418         return OS_OK;
  3419       prevtime = newtime;
  3420     } else
  3421       return res;
  3424   return OS_OK;
  3427 // Read calls from inside the vm need to perform state transitions
  3428 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3429   INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3432 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
  3433   INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3436 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3437   assert(thread == Thread::current(),  "thread consistency check");
  3439   // TODO-FIXME: this should be removed.
  3440   // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
  3441   // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
  3442   // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
  3443   // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
  3444   // is fooled into believing that the system is making progress. In the code below we block the
  3445   // the watcher thread while safepoint is in progress so that it would not appear as though the
  3446   // system is making progress.
  3447   if (!Solaris::T2_libthread() &&
  3448       thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
  3449     // We now try to acquire the threads lock. Since this lock is held by the VM thread during
  3450     // the entire safepoint, the watcher thread will  line up here during the safepoint.
  3451     Threads_lock->lock_without_safepoint_check();
  3452     Threads_lock->unlock();
  3455   if (thread->is_Java_thread()) {
  3456     // This is a JavaThread so we honor the _thread_blocked protocol
  3457     // even for sleeps of 0 milliseconds. This was originally done
  3458     // as a workaround for bug 4338139. However, now we also do it
  3459     // to honor the suspend-equivalent protocol.
  3461     JavaThread *jt = (JavaThread *) thread;
  3462     ThreadBlockInVM tbivm(jt);
  3464     jt->set_suspend_equivalent();
  3465     // cleared by handle_special_suspend_equivalent_condition() or
  3466     // java_suspend_self() via check_and_wait_while_suspended()
  3468     int ret_code;
  3469     if (millis <= 0) {
  3470       thr_yield();
  3471       ret_code = 0;
  3472     } else {
  3473       // The original sleep() implementation did not create an
  3474       // OSThreadWaitState helper for sleeps of 0 milliseconds.
  3475       // I'm preserving that decision for now.
  3476       OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3478       ret_code = os_sleep(millis, interruptible);
  3481     // were we externally suspended while we were waiting?
  3482     jt->check_and_wait_while_suspended();
  3484     return ret_code;
  3487   // non-JavaThread from this point on:
  3489   if (millis <= 0) {
  3490     thr_yield();
  3491     return 0;
  3494   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3496   return os_sleep(millis, interruptible);
  3499 int os::naked_sleep() {
  3500   // %% make the sleep time an integer flag. for now use 1 millisec.
  3501   return os_sleep(1, false);
  3504 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3505 void os::infinite_sleep() {
  3506   while (true) {    // sleep forever ...
  3507     ::sleep(100);   // ... 100 seconds at a time
  3511 // Used to convert frequent JVM_Yield() to nops
  3512 bool os::dont_yield() {
  3513   if (DontYieldALot) {
  3514     static hrtime_t last_time = 0;
  3515     hrtime_t diff = getTimeNanos() - last_time;
  3517     if (diff < DontYieldALotInterval * 1000000)
  3518       return true;
  3520     last_time += diff;
  3522     return false;
  3524   else {
  3525     return false;
  3529 // Caveat: Solaris os::yield() causes a thread-state transition whereas
  3530 // the linux and win32 implementations do not.  This should be checked.
  3532 void os::yield() {
  3533   // Yields to all threads with same or greater priority
  3534   os::sleep(Thread::current(), 0, false);
  3537 // Note that yield semantics are defined by the scheduling class to which
  3538 // the thread currently belongs.  Typically, yield will _not yield to
  3539 // other equal or higher priority threads that reside on the dispatch queues
  3540 // of other CPUs.
  3542 os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
  3545 // On Solaris we found that yield_all doesn't always yield to all other threads.
  3546 // There have been cases where there is a thread ready to execute but it doesn't
  3547 // get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
  3548 // The 1 millisecond wait doesn't seem long enough for the kernel to issue a
  3549 // SIGWAITING signal which will cause a new lwp to be created. So we count the
  3550 // number of times yield_all is called in the one loop and increase the sleep
  3551 // time after 8 attempts. If this fails too we increase the concurrency level
  3552 // so that the starving thread would get an lwp
  3554 void os::yield_all(int attempts) {
  3555   // Yields to all threads, including threads with lower priorities
  3556   if (attempts == 0) {
  3557     os::sleep(Thread::current(), 1, false);
  3558   } else {
  3559     int iterations = attempts % 30;
  3560     if (iterations == 0 && !os::Solaris::T2_libthread()) {
  3561       // thr_setconcurrency and _getconcurrency make sense only under T1.
  3562       int noofLWPS = thr_getconcurrency();
  3563       if (noofLWPS < (Threads::number_of_threads() + 2)) {
  3564         thr_setconcurrency(thr_getconcurrency() + 1);
  3566     } else if (iterations < 25) {
  3567       os::sleep(Thread::current(), 1, false);
  3568     } else {
  3569       os::sleep(Thread::current(), 10, false);
  3574 // Called from the tight loops to possibly influence time-sharing heuristics
  3575 void os::loop_breaker(int attempts) {
  3576   os::yield_all(attempts);
  3580 // Interface for setting lwp priorities.  If we are using T2 libthread,
  3581 // which forces the use of BoundThreads or we manually set UseBoundThreads,
  3582 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
  3583 // function is meaningless in this mode so we must adjust the real lwp's priority
  3584 // The routines below implement the getting and setting of lwp priorities.
  3585 //
  3586 // Note: There are three priority scales used on Solaris.  Java priotities
  3587 //       which range from 1 to 10, libthread "thr_setprio" scale which range
  3588 //       from 0 to 127, and the current scheduling class of the process we
  3589 //       are running in.  This is typically from -60 to +60.
  3590 //       The setting of the lwp priorities in done after a call to thr_setprio
  3591 //       so Java priorities are mapped to libthread priorities and we map from
  3592 //       the latter to lwp priorities.  We don't keep priorities stored in
  3593 //       Java priorities since some of our worker threads want to set priorities
  3594 //       higher than all Java threads.
  3595 //
  3596 // For related information:
  3597 // (1)  man -s 2 priocntl
  3598 // (2)  man -s 4 priocntl
  3599 // (3)  man dispadmin
  3600 // =    librt.so
  3601 // =    libthread/common/rtsched.c - thrp_setlwpprio().
  3602 // =    ps -cL <pid> ... to validate priority.
  3603 // =    sched_get_priority_min and _max
  3604 //              pthread_create
  3605 //              sched_setparam
  3606 //              pthread_setschedparam
  3607 //
  3608 // Assumptions:
  3609 // +    We assume that all threads in the process belong to the same
  3610 //              scheduling class.   IE. an homogenous process.
  3611 // +    Must be root or in IA group to change change "interactive" attribute.
  3612 //              Priocntl() will fail silently.  The only indication of failure is when
  3613 //              we read-back the value and notice that it hasn't changed.
  3614 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
  3615 // +    For RT, change timeslice as well.  Invariant:
  3616 //              constant "priority integral"
  3617 //              Konst == TimeSlice * (60-Priority)
  3618 //              Given a priority, compute appropriate timeslice.
  3619 // +    Higher numerical values have higher priority.
  3621 // sched class attributes
  3622 typedef struct {
  3623         int   schedPolicy;              // classID
  3624         int   maxPrio;
  3625         int   minPrio;
  3626 } SchedInfo;
  3629 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
  3631 #ifdef ASSERT
  3632 static int  ReadBackValidate = 1;
  3633 #endif
  3634 static int  myClass     = 0;
  3635 static int  myMin       = 0;
  3636 static int  myMax       = 0;
  3637 static int  myCur       = 0;
  3638 static bool priocntl_enable = false;
  3640 static const int criticalPrio = 60; // FX/60 is critical thread class/priority on T4
  3641 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
  3644 // lwp_priocntl_init
  3645 //
  3646 // Try to determine the priority scale for our process.
  3647 //
  3648 // Return errno or 0 if OK.
  3649 //
  3650 static int lwp_priocntl_init () {
  3651   int rslt;
  3652   pcinfo_t ClassInfo;
  3653   pcparms_t ParmInfo;
  3654   int i;
  3656   if (!UseThreadPriorities) return 0;
  3658   // We are using Bound threads, we need to determine our priority ranges
  3659   if (os::Solaris::T2_libthread() || UseBoundThreads) {
  3660     // If ThreadPriorityPolicy is 1, switch tables
  3661     if (ThreadPriorityPolicy == 1) {
  3662       for (i = 0 ; i < CriticalPriority+1; i++)
  3663         os::java_to_os_priority[i] = prio_policy1[i];
  3665     if (UseCriticalJavaThreadPriority) {
  3666       // MaxPriority always maps to the FX scheduling class and criticalPrio.
  3667       // See set_native_priority() and set_lwp_class_and_priority().
  3668       // Save original MaxPriority mapping in case attempt to
  3669       // use critical priority fails.
  3670       java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
  3671       // Set negative to distinguish from other priorities
  3672       os::java_to_os_priority[MaxPriority] = -criticalPrio;
  3675   // Not using Bound Threads, set to ThreadPolicy 1
  3676   else {
  3677     for ( i = 0 ; i < CriticalPriority+1; i++ ) {
  3678       os::java_to_os_priority[i] = prio_policy1[i];
  3680     return 0;
  3683   // Get IDs for a set of well-known scheduling classes.
  3684   // TODO-FIXME: GETCLINFO returns the current # of classes in the
  3685   // the system.  We should have a loop that iterates over the
  3686   // classID values, which are known to be "small" integers.
  3688   strcpy(ClassInfo.pc_clname, "TS");
  3689   ClassInfo.pc_cid = -1;
  3690   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3691   if (rslt < 0) return errno;
  3692   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
  3693   tsLimits.schedPolicy = ClassInfo.pc_cid;
  3694   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
  3695   tsLimits.minPrio = -tsLimits.maxPrio;
  3697   strcpy(ClassInfo.pc_clname, "IA");
  3698   ClassInfo.pc_cid = -1;
  3699   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3700   if (rslt < 0) return errno;
  3701   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
  3702   iaLimits.schedPolicy = ClassInfo.pc_cid;
  3703   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
  3704   iaLimits.minPrio = -iaLimits.maxPrio;
  3706   strcpy(ClassInfo.pc_clname, "RT");
  3707   ClassInfo.pc_cid = -1;
  3708   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3709   if (rslt < 0) return errno;
  3710   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
  3711   rtLimits.schedPolicy = ClassInfo.pc_cid;
  3712   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
  3713   rtLimits.minPrio = 0;
  3715   strcpy(ClassInfo.pc_clname, "FX");
  3716   ClassInfo.pc_cid = -1;
  3717   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3718   if (rslt < 0) return errno;
  3719   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
  3720   fxLimits.schedPolicy = ClassInfo.pc_cid;
  3721   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
  3722   fxLimits.minPrio = 0;
  3724   // Query our "current" scheduling class.
  3725   // This will normally be IA, TS or, rarely, FX or RT.
  3726   memset(&ParmInfo, 0, sizeof(ParmInfo));
  3727   ParmInfo.pc_cid = PC_CLNULL;
  3728   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
  3729   if (rslt < 0) return errno;
  3730   myClass = ParmInfo.pc_cid;
  3732   // We now know our scheduling classId, get specific information
  3733   // about the class.
  3734   ClassInfo.pc_cid = myClass;
  3735   ClassInfo.pc_clname[0] = 0;
  3736   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
  3737   if (rslt < 0) return errno;
  3739   if (ThreadPriorityVerbose) {
  3740     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
  3743   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3744   ParmInfo.pc_cid = PC_CLNULL;
  3745   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
  3746   if (rslt < 0) return errno;
  3748   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3749     myMin = rtLimits.minPrio;
  3750     myMax = rtLimits.maxPrio;
  3751   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3752     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3753     myMin = iaLimits.minPrio;
  3754     myMax = iaLimits.maxPrio;
  3755     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
  3756   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3757     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3758     myMin = tsLimits.minPrio;
  3759     myMax = tsLimits.maxPrio;
  3760     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
  3761   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
  3762     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
  3763     myMin = fxLimits.minPrio;
  3764     myMax = fxLimits.maxPrio;
  3765     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
  3766   } else {
  3767     // No clue - punt
  3768     if (ThreadPriorityVerbose)
  3769       tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
  3770     return EINVAL;      // no clue, punt
  3773   if (ThreadPriorityVerbose) {
  3774     tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
  3777   priocntl_enable = true;  // Enable changing priorities
  3778   return 0;
  3781 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
  3782 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
  3783 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
  3784 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
  3787 // scale_to_lwp_priority
  3788 //
  3789 // Convert from the libthread "thr_setprio" scale to our current
  3790 // lwp scheduling class scale.
  3791 //
  3792 static
  3793 int     scale_to_lwp_priority (int rMin, int rMax, int x)
  3795   int v;
  3797   if (x == 127) return rMax;            // avoid round-down
  3798     v = (((x*(rMax-rMin)))/128)+rMin;
  3799   return v;
  3803 // set_lwp_class_and_priority
  3804 //
  3805 // Set the class and priority of the lwp.  This call should only
  3806 // be made when using bound threads (T2 threads are bound by default).
  3807 //
  3808 int set_lwp_class_and_priority(int ThreadID, int lwpid,
  3809                                int newPrio, int new_class, bool scale) {
  3810   int rslt;
  3811   int Actual, Expected, prv;
  3812   pcparms_t ParmInfo;                   // for GET-SET
  3813 #ifdef ASSERT
  3814   pcparms_t ReadBack;                   // for readback
  3815 #endif
  3817   // Set priority via PC_GETPARMS, update, PC_SETPARMS
  3818   // Query current values.
  3819   // TODO: accelerate this by eliminating the PC_GETPARMS call.
  3820   // Cache "pcparms_t" in global ParmCache.
  3821   // TODO: elide set-to-same-value
  3823   // If something went wrong on init, don't change priorities.
  3824   if ( !priocntl_enable ) {
  3825     if (ThreadPriorityVerbose)
  3826       tty->print_cr("Trying to set priority but init failed, ignoring");
  3827     return EINVAL;
  3830   // If lwp hasn't started yet, just return
  3831   // the _start routine will call us again.
  3832   if ( lwpid <= 0 ) {
  3833     if (ThreadPriorityVerbose) {
  3834       tty->print_cr ("deferring the set_lwp_class_and_priority of thread "
  3835                      INTPTR_FORMAT " to %d, lwpid not set",
  3836                      ThreadID, newPrio);
  3838     return 0;
  3841   if (ThreadPriorityVerbose) {
  3842     tty->print_cr ("set_lwp_class_and_priority("
  3843                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
  3844                    ThreadID, lwpid, newPrio);
  3847   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3848   ParmInfo.pc_cid = PC_CLNULL;
  3849   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
  3850   if (rslt < 0) return errno;
  3852   int cur_class = ParmInfo.pc_cid;
  3853   ParmInfo.pc_cid = (id_t)new_class;
  3855   if (new_class == rtLimits.schedPolicy) {
  3856     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
  3857     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
  3858                                                        rtLimits.maxPrio, newPrio)
  3859                                : newPrio;
  3860     rtInfo->rt_tqsecs  = RT_NOCHANGE;
  3861     rtInfo->rt_tqnsecs = RT_NOCHANGE;
  3862     if (ThreadPriorityVerbose) {
  3863       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
  3865   } else if (new_class == iaLimits.schedPolicy) {
  3866     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3867     int maxClamped     = MIN2(iaLimits.maxPrio,
  3868                               cur_class == new_class
  3869                                 ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
  3870     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
  3871                                                        maxClamped, newPrio)
  3872                                : newPrio;
  3873     iaInfo->ia_uprilim = cur_class == new_class
  3874                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
  3875     iaInfo->ia_mode    = IA_NOCHANGE;
  3876     if (ThreadPriorityVerbose) {
  3877       tty->print_cr("IA: [%d...%d] %d->%d\n",
  3878                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
  3880   } else if (new_class == tsLimits.schedPolicy) {
  3881     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3882     int maxClamped     = MIN2(tsLimits.maxPrio,
  3883                               cur_class == new_class
  3884                                 ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
  3885     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
  3886                                                        maxClamped, newPrio)
  3887                                : newPrio;
  3888     tsInfo->ts_uprilim = cur_class == new_class
  3889                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
  3890     if (ThreadPriorityVerbose) {
  3891       tty->print_cr("TS: [%d...%d] %d->%d\n",
  3892                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
  3894   } else if (new_class == fxLimits.schedPolicy) {
  3895     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
  3896     int maxClamped     = MIN2(fxLimits.maxPrio,
  3897                               cur_class == new_class
  3898                                 ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
  3899     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
  3900                                                        maxClamped, newPrio)
  3901                                : newPrio;
  3902     fxInfo->fx_uprilim = cur_class == new_class
  3903                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
  3904     fxInfo->fx_tqsecs  = FX_NOCHANGE;
  3905     fxInfo->fx_tqnsecs = FX_NOCHANGE;
  3906     if (ThreadPriorityVerbose) {
  3907       tty->print_cr("FX: [%d...%d] %d->%d\n",
  3908                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
  3910   } else {
  3911     if (ThreadPriorityVerbose) {
  3912       tty->print_cr("Unknown new scheduling class %d\n", new_class);
  3914     return EINVAL;    // no clue, punt
  3917   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
  3918   if (ThreadPriorityVerbose && rslt) {
  3919     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
  3921   if (rslt < 0) return errno;
  3923 #ifdef ASSERT
  3924   // Sanity check: read back what we just attempted to set.
  3925   // In theory it could have changed in the interim ...
  3926   //
  3927   // The priocntl system call is tricky.
  3928   // Sometimes it'll validate the priority value argument and
  3929   // return EINVAL if unhappy.  At other times it fails silently.
  3930   // Readbacks are prudent.
  3932   if (!ReadBackValidate) return 0;
  3934   memset(&ReadBack, 0, sizeof(pcparms_t));
  3935   ReadBack.pc_cid = PC_CLNULL;
  3936   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
  3937   assert(rslt >= 0, "priocntl failed");
  3938   Actual = Expected = 0xBAD;
  3939   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
  3940   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3941     Actual   = RTPRI(ReadBack)->rt_pri;
  3942     Expected = RTPRI(ParmInfo)->rt_pri;
  3943   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3944     Actual   = IAPRI(ReadBack)->ia_upri;
  3945     Expected = IAPRI(ParmInfo)->ia_upri;
  3946   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3947     Actual   = TSPRI(ReadBack)->ts_upri;
  3948     Expected = TSPRI(ParmInfo)->ts_upri;
  3949   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
  3950     Actual   = FXPRI(ReadBack)->fx_upri;
  3951     Expected = FXPRI(ParmInfo)->fx_upri;
  3952   } else {
  3953     if (ThreadPriorityVerbose) {
  3954       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
  3955                     ParmInfo.pc_cid);
  3959   if (Actual != Expected) {
  3960     if (ThreadPriorityVerbose) {
  3961       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
  3962                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
  3965 #endif
  3967   return 0;
  3970 // Solaris only gives access to 128 real priorities at a time,
  3971 // so we expand Java's ten to fill this range.  This would be better
  3972 // if we dynamically adjusted relative priorities.
  3973 //
  3974 // The ThreadPriorityPolicy option allows us to select 2 different
  3975 // priority scales.
  3976 //
  3977 // ThreadPriorityPolicy=0
  3978 // Since the Solaris' default priority is MaximumPriority, we do not
  3979 // set a priority lower than Max unless a priority lower than
  3980 // NormPriority is requested.
  3981 //
  3982 // ThreadPriorityPolicy=1
  3983 // This mode causes the priority table to get filled with
  3984 // linear values.  NormPriority get's mapped to 50% of the
  3985 // Maximum priority an so on.  This will cause VM threads
  3986 // to get unfair treatment against other Solaris processes
  3987 // which do not explicitly alter their thread priorities.
  3988 //
  3990 int os::java_to_os_priority[CriticalPriority + 1] = {
  3991   -99999,         // 0 Entry should never be used
  3993   0,              // 1 MinPriority
  3994   32,             // 2
  3995   64,             // 3
  3997   96,             // 4
  3998   127,            // 5 NormPriority
  3999   127,            // 6
  4001   127,            // 7
  4002   127,            // 8
  4003   127,            // 9 NearMaxPriority
  4005   127,            // 10 MaxPriority
  4007   -criticalPrio   // 11 CriticalPriority
  4008 };
  4010 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4011   OSThread* osthread = thread->osthread();
  4013   // Save requested priority in case the thread hasn't been started
  4014   osthread->set_native_priority(newpri);
  4016   // Check for critical priority request
  4017   bool fxcritical = false;
  4018   if (newpri == -criticalPrio) {
  4019     fxcritical = true;
  4020     newpri = criticalPrio;
  4023   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
  4024   if (!UseThreadPriorities) return OS_OK;
  4026   int status = 0;
  4028   if (!fxcritical) {
  4029     // Use thr_setprio only if we have a priority that thr_setprio understands
  4030     status = thr_setprio(thread->osthread()->thread_id(), newpri);
  4033   if (os::Solaris::T2_libthread() ||
  4034       (UseBoundThreads && osthread->is_vm_created())) {
  4035     int lwp_status =
  4036       set_lwp_class_and_priority(osthread->thread_id(),
  4037                                  osthread->lwp_id(),
  4038                                  newpri,
  4039                                  fxcritical ? fxLimits.schedPolicy : myClass,
  4040                                  !fxcritical);
  4041     if (lwp_status != 0 && fxcritical) {
  4042       // Try again, this time without changing the scheduling class
  4043       newpri = java_MaxPriority_to_os_priority;
  4044       lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
  4045                                               osthread->lwp_id(),
  4046                                               newpri, myClass, false);
  4048     status |= lwp_status;
  4050   return (status == 0) ? OS_OK : OS_ERR;
  4054 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4055   int p;
  4056   if ( !UseThreadPriorities ) {
  4057     *priority_ptr = NormalPriority;
  4058     return OS_OK;
  4060   int status = thr_getprio(thread->osthread()->thread_id(), &p);
  4061   if (status != 0) {
  4062     return OS_ERR;
  4064   *priority_ptr = p;
  4065   return OS_OK;
  4069 // Hint to the underlying OS that a task switch would not be good.
  4070 // Void return because it's a hint and can fail.
  4071 void os::hint_no_preempt() {
  4072   schedctl_start(schedctl_init());
  4075 static void resume_clear_context(OSThread *osthread) {
  4076   osthread->set_ucontext(NULL);
  4079 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
  4080   osthread->set_ucontext(context);
  4083 static Semaphore sr_semaphore;
  4085 void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
  4086   // Save and restore errno to avoid confusing native code with EINTR
  4087   // after sigsuspend.
  4088   int old_errno = errno;
  4090   OSThread* osthread = thread->osthread();
  4091   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4093   os::SuspendResume::State current = osthread->sr.state();
  4094   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4095     suspend_save_context(osthread, uc);
  4097     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4098     os::SuspendResume::State state = osthread->sr.suspended();
  4099     if (state == os::SuspendResume::SR_SUSPENDED) {
  4100       sigset_t suspend_set;  // signals for sigsuspend()
  4102       // get current set of blocked signals and unblock resume signal
  4103       thr_sigsetmask(SIG_BLOCK, NULL, &suspend_set);
  4104       sigdelset(&suspend_set, os::Solaris::SIGasync());
  4106       sr_semaphore.signal();
  4107       // wait here until we are resumed
  4108       while (1) {
  4109         sigsuspend(&suspend_set);
  4111         os::SuspendResume::State result = osthread->sr.running();
  4112         if (result == os::SuspendResume::SR_RUNNING) {
  4113           sr_semaphore.signal();
  4114           break;
  4118     } else if (state == os::SuspendResume::SR_RUNNING) {
  4119       // request was cancelled, continue
  4120     } else {
  4121       ShouldNotReachHere();
  4124     resume_clear_context(osthread);
  4125   } else if (current == os::SuspendResume::SR_RUNNING) {
  4126     // request was cancelled, continue
  4127   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4128     // ignore
  4129   } else {
  4130     // ignore
  4133   errno = old_errno;
  4137 void os::interrupt(Thread* thread) {
  4138   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4140   OSThread* osthread = thread->osthread();
  4142   int isInterrupted = osthread->interrupted();
  4143   if (!isInterrupted) {
  4144       osthread->set_interrupted(true);
  4145       OrderAccess::fence();
  4146       // os::sleep() is implemented with either poll (NULL,0,timeout) or
  4147       // by parking on _SleepEvent.  If the former, thr_kill will unwedge
  4148       // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
  4149       ParkEvent * const slp = thread->_SleepEvent ;
  4150       if (slp != NULL) slp->unpark() ;
  4153   // For JSR166:  unpark after setting status but before thr_kill -dl
  4154   if (thread->is_Java_thread()) {
  4155     ((JavaThread*)thread)->parker()->unpark();
  4158   // Handle interruptible wait() ...
  4159   ParkEvent * const ev = thread->_ParkEvent ;
  4160   if (ev != NULL) ev->unpark() ;
  4162   // When events are used everywhere for os::sleep, then this thr_kill
  4163   // will only be needed if UseVMInterruptibleIO is true.
  4165   if (!isInterrupted) {
  4166     int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
  4167     assert_status(status == 0, status, "thr_kill");
  4169     // Bump thread interruption counter
  4170     RuntimeService::record_thread_interrupt_signaled_count();
  4175 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4176   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4178   OSThread* osthread = thread->osthread();
  4180   bool res = osthread->interrupted();
  4182   // NOTE that since there is no "lock" around these two operations,
  4183   // there is the possibility that the interrupted flag will be
  4184   // "false" but that the interrupt event will be set. This is
  4185   // intentional. The effect of this is that Object.wait() will appear
  4186   // to have a spurious wakeup, which is not harmful, and the
  4187   // possibility is so rare that it is not worth the added complexity
  4188   // to add yet another lock. It has also been recommended not to put
  4189   // the interrupted flag into the os::Solaris::Event structure,
  4190   // because it hides the issue.
  4191   if (res && clear_interrupted) {
  4192     osthread->set_interrupted(false);
  4194   return res;
  4198 void os::print_statistics() {
  4201 int os::message_box(const char* title, const char* message) {
  4202   int i;
  4203   fdStream err(defaultStream::error_fd());
  4204   for (i = 0; i < 78; i++) err.print_raw("=");
  4205   err.cr();
  4206   err.print_raw_cr(title);
  4207   for (i = 0; i < 78; i++) err.print_raw("-");
  4208   err.cr();
  4209   err.print_raw_cr(message);
  4210   for (i = 0; i < 78; i++) err.print_raw("=");
  4211   err.cr();
  4213   char buf[16];
  4214   // Prevent process from exiting upon "read error" without consuming all CPU
  4215   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4217   return buf[0] == 'y' || buf[0] == 'Y';
  4220 static int sr_notify(OSThread* osthread) {
  4221   int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
  4222   assert_status(status == 0, status, "thr_kill");
  4223   return status;
  4226 // "Randomly" selected value for how long we want to spin
  4227 // before bailing out on suspending a thread, also how often
  4228 // we send a signal to a thread we want to resume
  4229 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4230 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4232 static bool do_suspend(OSThread* osthread) {
  4233   assert(osthread->sr.is_running(), "thread should be running");
  4234   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4236   // mark as suspended and send signal
  4237   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4238     // failed to switch, state wasn't running?
  4239     ShouldNotReachHere();
  4240     return false;
  4243   if (sr_notify(osthread) != 0) {
  4244     ShouldNotReachHere();
  4247   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4248   while (true) {
  4249     if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
  4250       break;
  4251     } else {
  4252       // timeout
  4253       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4254       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4255         return false;
  4256       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4257         // make sure that we consume the signal on the semaphore as well
  4258         sr_semaphore.wait();
  4259         break;
  4260       } else {
  4261         ShouldNotReachHere();
  4262         return false;
  4267   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4268   return true;
  4271 static void do_resume(OSThread* osthread) {
  4272   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4273   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4275   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4276     // failed to switch to WAKEUP_REQUEST
  4277     ShouldNotReachHere();
  4278     return;
  4281   while (true) {
  4282     if (sr_notify(osthread) == 0) {
  4283       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4284         if (osthread->sr.is_running()) {
  4285           return;
  4288     } else {
  4289       ShouldNotReachHere();
  4293   guarantee(osthread->sr.is_running(), "Must be running!");
  4296 void os::SuspendedThreadTask::internal_do_task() {
  4297   if (do_suspend(_thread->osthread())) {
  4298     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  4299     do_task(context);
  4300     do_resume(_thread->osthread());
  4304 class PcFetcher : public os::SuspendedThreadTask {
  4305 public:
  4306   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  4307   ExtendedPC result();
  4308 protected:
  4309   void do_task(const os::SuspendedThreadTaskContext& context);
  4310 private:
  4311   ExtendedPC _epc;
  4312 };
  4314 ExtendedPC PcFetcher::result() {
  4315   guarantee(is_done(), "task is not done yet.");
  4316   return _epc;
  4319 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  4320   Thread* thread = context.thread();
  4321   OSThread* osthread = thread->osthread();
  4322   if (osthread->ucontext() != NULL) {
  4323     _epc = os::Solaris::ucontext_get_pc((ucontext_t *) context.ucontext());
  4324   } else {
  4325     // NULL context is unexpected, double-check this is the VMThread
  4326     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4330 // A lightweight implementation that does not suspend the target thread and
  4331 // thus returns only a hint. Used for profiling only!
  4332 ExtendedPC os::get_thread_pc(Thread* thread) {
  4333   // Make sure that it is called by the watcher and the Threads lock is owned.
  4334   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
  4335   // For now, is only used to profile the VM Thread
  4336   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4337   PcFetcher fetcher(thread);
  4338   fetcher.run();
  4339   return fetcher.result();
  4343 // This does not do anything on Solaris. This is basically a hook for being
  4344 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
  4345 void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
  4346   f(value, method, args, thread);
  4349 // This routine may be used by user applications as a "hook" to catch signals.
  4350 // The user-defined signal handler must pass unrecognized signals to this
  4351 // routine, and if it returns true (non-zero), then the signal handler must
  4352 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4353 // routine will never retun false (zero), but instead will execute a VM panic
  4354 // routine kill the process.
  4355 //
  4356 // If this routine returns false, it is OK to call it again.  This allows
  4357 // the user-defined signal handler to perform checks either before or after
  4358 // the VM performs its own checks.  Naturally, the user code would be making
  4359 // a serious error if it tried to handle an exception (such as a null check
  4360 // or breakpoint) that the VM was generating for its own correct operation.
  4361 //
  4362 // This routine may recognize any of the following kinds of signals:
  4363 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
  4364 // os::Solaris::SIGasync
  4365 // It should be consulted by handlers for any of those signals.
  4366 // It explicitly does not recognize os::Solaris::SIGinterrupt
  4367 //
  4368 // The caller of this routine must pass in the three arguments supplied
  4369 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4370 // field of the structure passed to sigaction().  This routine assumes that
  4371 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4372 //
  4373 // Note that the VM will print warnings if it detects conflicting signal
  4374 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4375 //
  4376 extern "C" JNIEXPORT int
  4377 JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext,
  4378                           int abort_if_unrecognized);
  4381 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
  4382   int orig_errno = errno;  // Preserve errno value over signal handler.
  4383   JVM_handle_solaris_signal(sig, info, ucVoid, true);
  4384   errno = orig_errno;
  4387 /* Do not delete - if guarantee is ever removed,  a signal handler (even empty)
  4388    is needed to provoke threads blocked on IO to return an EINTR
  4389    Note: this explicitly does NOT call JVM_handle_solaris_signal and
  4390    does NOT participate in signal chaining due to requirement for
  4391    NOT setting SA_RESTART to make EINTR work. */
  4392 extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
  4393    if (UseSignalChaining) {
  4394       struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
  4395       if (actp && actp->sa_handler) {
  4396         vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
  4401 // This boolean allows users to forward their own non-matching signals
  4402 // to JVM_handle_solaris_signal, harmlessly.
  4403 bool os::Solaris::signal_handlers_are_installed = false;
  4405 // For signal-chaining
  4406 bool os::Solaris::libjsig_is_loaded = false;
  4407 typedef struct sigaction *(*get_signal_t)(int);
  4408 get_signal_t os::Solaris::get_signal_action = NULL;
  4410 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
  4411   struct sigaction *actp = NULL;
  4413   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
  4414     // Retrieve the old signal handler from libjsig
  4415     actp = (*get_signal_action)(sig);
  4417   if (actp == NULL) {
  4418     // Retrieve the preinstalled signal handler from jvm
  4419     actp = get_preinstalled_handler(sig);
  4422   return actp;
  4425 static bool call_chained_handler(struct sigaction *actp, int sig,
  4426                                  siginfo_t *siginfo, void *context) {
  4427   // Call the old signal handler
  4428   if (actp->sa_handler == SIG_DFL) {
  4429     // It's more reasonable to let jvm treat it as an unexpected exception
  4430     // instead of taking the default action.
  4431     return false;
  4432   } else if (actp->sa_handler != SIG_IGN) {
  4433     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4434       // automaticlly block the signal
  4435       sigaddset(&(actp->sa_mask), sig);
  4438     sa_handler_t hand;
  4439     sa_sigaction_t sa;
  4440     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4441     // retrieve the chained handler
  4442     if (siginfo_flag_set) {
  4443       sa = actp->sa_sigaction;
  4444     } else {
  4445       hand = actp->sa_handler;
  4448     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4449       actp->sa_handler = SIG_DFL;
  4452     // try to honor the signal mask
  4453     sigset_t oset;
  4454     thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4456     // call into the chained handler
  4457     if (siginfo_flag_set) {
  4458       (*sa)(sig, siginfo, context);
  4459     } else {
  4460       (*hand)(sig);
  4463     // restore the signal mask
  4464     thr_sigsetmask(SIG_SETMASK, &oset, 0);
  4466   // Tell jvm's signal handler the signal is taken care of.
  4467   return true;
  4470 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4471   bool chained = false;
  4472   // signal-chaining
  4473   if (UseSignalChaining) {
  4474     struct sigaction *actp = get_chained_signal_action(sig);
  4475     if (actp != NULL) {
  4476       chained = call_chained_handler(actp, sig, siginfo, context);
  4479   return chained;
  4482 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
  4483   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4484   if (preinstalled_sigs[sig] != 0) {
  4485     return &chainedsigactions[sig];
  4487   return NULL;
  4490 void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4492   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
  4493   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4494   chainedsigactions[sig] = oldAct;
  4495   preinstalled_sigs[sig] = 1;
  4498 void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
  4499   // Check for overwrite.
  4500   struct sigaction oldAct;
  4501   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4502   void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4503                                       : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4504   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4505       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4506       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
  4507     if (AllowUserSignalHandlers || !set_installed) {
  4508       // Do not overwrite; user takes responsibility to forward to us.
  4509       return;
  4510     } else if (UseSignalChaining) {
  4511       if (oktochain) {
  4512         // save the old handler in jvm
  4513         save_preinstalled_handler(sig, oldAct);
  4514       } else {
  4515         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
  4517       // libjsig also interposes the sigaction() call below and saves the
  4518       // old sigaction on it own.
  4519     } else {
  4520       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4521                     "%#lx for signal %d.", (long)oldhand, sig));
  4525   struct sigaction sigAct;
  4526   sigfillset(&(sigAct.sa_mask));
  4527   sigAct.sa_handler = SIG_DFL;
  4529   sigAct.sa_sigaction = signalHandler;
  4530   // Handle SIGSEGV on alternate signal stack if
  4531   // not using stack banging
  4532   if (!UseStackBanging && sig == SIGSEGV) {
  4533     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
  4534   // Interruptible i/o requires SA_RESTART cleared so EINTR
  4535   // is returned instead of restarting system calls
  4536   } else if (sig == os::Solaris::SIGinterrupt()) {
  4537     sigemptyset(&sigAct.sa_mask);
  4538     sigAct.sa_handler = NULL;
  4539     sigAct.sa_flags = SA_SIGINFO;
  4540     sigAct.sa_sigaction = sigINTRHandler;
  4541   } else {
  4542     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
  4544   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
  4546   sigaction(sig, &sigAct, &oldAct);
  4548   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4549                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4550   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4554 #define DO_SIGNAL_CHECK(sig) \
  4555   if (!sigismember(&check_signal_done, sig)) \
  4556     os::Solaris::check_signal_handler(sig)
  4558 // This method is a periodic task to check for misbehaving JNI applications
  4559 // under CheckJNI, we can add any periodic checks here
  4561 void os::run_periodic_checks() {
  4562   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
  4563   // thereby preventing a NULL checks.
  4564   if(!check_addr0_done) check_addr0_done = check_addr0(tty);
  4566   if (check_signals == false) return;
  4568   // SEGV and BUS if overridden could potentially prevent
  4569   // generation of hs*.log in the event of a crash, debugging
  4570   // such a case can be very challenging, so we absolutely
  4571   // check for the following for a good measure:
  4572   DO_SIGNAL_CHECK(SIGSEGV);
  4573   DO_SIGNAL_CHECK(SIGILL);
  4574   DO_SIGNAL_CHECK(SIGFPE);
  4575   DO_SIGNAL_CHECK(SIGBUS);
  4576   DO_SIGNAL_CHECK(SIGPIPE);
  4577   DO_SIGNAL_CHECK(SIGXFSZ);
  4579   // ReduceSignalUsage allows the user to override these handlers
  4580   // see comments at the very top and jvm_solaris.h
  4581   if (!ReduceSignalUsage) {
  4582     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4583     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4584     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4585     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4588   // See comments above for using JVM1/JVM2 and UseAltSigs
  4589   DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
  4590   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
  4594 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4596 static os_sigaction_t os_sigaction = NULL;
  4598 void os::Solaris::check_signal_handler(int sig) {
  4599   char buf[O_BUFLEN];
  4600   address jvmHandler = NULL;
  4602   struct sigaction act;
  4603   if (os_sigaction == NULL) {
  4604     // only trust the default sigaction, in case it has been interposed
  4605     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4606     if (os_sigaction == NULL) return;
  4609   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4611   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4612     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4613     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4616   switch(sig) {
  4617     case SIGSEGV:
  4618     case SIGBUS:
  4619     case SIGFPE:
  4620     case SIGPIPE:
  4621     case SIGXFSZ:
  4622     case SIGILL:
  4623       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4624       break;
  4626     case SHUTDOWN1_SIGNAL:
  4627     case SHUTDOWN2_SIGNAL:
  4628     case SHUTDOWN3_SIGNAL:
  4629     case BREAK_SIGNAL:
  4630       jvmHandler = (address)user_handler();
  4631       break;
  4633     default:
  4634       int intrsig = os::Solaris::SIGinterrupt();
  4635       int asynsig = os::Solaris::SIGasync();
  4637       if (sig == intrsig) {
  4638         jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
  4639       } else if (sig == asynsig) {
  4640         jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4641       } else {
  4642         return;
  4644       break;
  4648   if (thisHandler != jvmHandler) {
  4649     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4650     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4651     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4652     // No need to check this sig any longer
  4653     sigaddset(&check_signal_done, sig);
  4654   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  4655     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4656     tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
  4657     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4658     // No need to check this sig any longer
  4659     sigaddset(&check_signal_done, sig);
  4662   // Print all the signal handler state
  4663   if (sigismember(&check_signal_done, sig)) {
  4664     print_signal_handlers(tty, buf, O_BUFLEN);
  4669 void os::Solaris::install_signal_handlers() {
  4670   bool libjsigdone = false;
  4671   signal_handlers_are_installed = true;
  4673   // signal-chaining
  4674   typedef void (*signal_setting_t)();
  4675   signal_setting_t begin_signal_setting = NULL;
  4676   signal_setting_t end_signal_setting = NULL;
  4677   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4678                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4679   if (begin_signal_setting != NULL) {
  4680     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4681                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4682     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4683                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4684     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
  4685                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
  4686     libjsig_is_loaded = true;
  4687     if (os::Solaris::get_libjsig_version != NULL) {
  4688       libjsigversion =  (*os::Solaris::get_libjsig_version)();
  4690     assert(UseSignalChaining, "should enable signal-chaining");
  4692   if (libjsig_is_loaded) {
  4693     // Tell libjsig jvm is setting signal handlers
  4694     (*begin_signal_setting)();
  4697   set_signal_handler(SIGSEGV, true, true);
  4698   set_signal_handler(SIGPIPE, true, true);
  4699   set_signal_handler(SIGXFSZ, true, true);
  4700   set_signal_handler(SIGBUS, true, true);
  4701   set_signal_handler(SIGILL, true, true);
  4702   set_signal_handler(SIGFPE, true, true);
  4705   if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
  4707     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
  4708     // can not register overridable signals which might be > 32
  4709     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
  4710     // Tell libjsig jvm has finished setting signal handlers
  4711       (*end_signal_setting)();
  4712       libjsigdone = true;
  4716   // Never ok to chain our SIGinterrupt
  4717   set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
  4718   set_signal_handler(os::Solaris::SIGasync(), true, true);
  4720   if (libjsig_is_loaded && !libjsigdone) {
  4721     // Tell libjsig jvm finishes setting signal handlers
  4722     (*end_signal_setting)();
  4725   // We don't activate signal checker if libjsig is in place, we trust ourselves
  4726   // and if UserSignalHandler is installed all bets are off.
  4727   // Log that signal checking is off only if -verbose:jni is specified.
  4728   if (CheckJNICalls) {
  4729     if (libjsig_is_loaded) {
  4730       if (PrintJNIResolving) {
  4731         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4733       check_signals = false;
  4735     if (AllowUserSignalHandlers) {
  4736       if (PrintJNIResolving) {
  4737         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4739       check_signals = false;
  4745 void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
  4747 const char * signames[] = {
  4748   "SIG0",
  4749   "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
  4750   "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
  4751   "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
  4752   "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
  4753   "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
  4754   "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
  4755   "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
  4756   "SIGCANCEL", "SIGLOST"
  4757 };
  4759 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4760   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4761     // signal
  4762     if (exception_code < sizeof(signames)/sizeof(const char*)) {
  4763        jio_snprintf(buf, size, "%s", signames[exception_code]);
  4764     } else {
  4765        jio_snprintf(buf, size, "SIG%d", exception_code);
  4767     return buf;
  4768   } else {
  4769     return NULL;
  4773 // (Static) wrappers for the new libthread API
  4774 int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
  4775 int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
  4776 int_fnP_thread_t_i os::Solaris::_thr_setmutator;
  4777 int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
  4778 int_fnP_thread_t os::Solaris::_thr_continue_mutator;
  4780 // (Static) wrapper for getisax(2) call.
  4781 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
  4783 // (Static) wrappers for the liblgrp API
  4784 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
  4785 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
  4786 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
  4787 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
  4788 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
  4789 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
  4790 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
  4791 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
  4792 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
  4794 // (Static) wrapper for meminfo() call.
  4795 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
  4797 static address resolve_symbol_lazy(const char* name) {
  4798   address addr = (address) dlsym(RTLD_DEFAULT, name);
  4799   if(addr == NULL) {
  4800     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
  4801     addr = (address) dlsym(RTLD_NEXT, name);
  4803   return addr;
  4806 static address resolve_symbol(const char* name) {
  4807   address addr = resolve_symbol_lazy(name);
  4808   if(addr == NULL) {
  4809     fatal(dlerror());
  4811   return addr;
  4816 // isT2_libthread()
  4817 //
  4818 // Routine to determine if we are currently using the new T2 libthread.
  4819 //
  4820 // We determine if we are using T2 by reading /proc/self/lstatus and
  4821 // looking for a thread with the ASLWP bit set.  If we find this status
  4822 // bit set, we must assume that we are NOT using T2.  The T2 team
  4823 // has approved this algorithm.
  4824 //
  4825 // We need to determine if we are running with the new T2 libthread
  4826 // since setting native thread priorities is handled differently
  4827 // when using this library.  All threads created using T2 are bound
  4828 // threads. Calling thr_setprio is meaningless in this case.
  4829 //
  4830 bool isT2_libthread() {
  4831   static prheader_t * lwpArray = NULL;
  4832   static int lwpSize = 0;
  4833   static int lwpFile = -1;
  4834   lwpstatus_t * that;
  4835   char lwpName [128];
  4836   bool isT2 = false;
  4838 #define ADR(x)  ((uintptr_t)(x))
  4839 #define LWPINDEX(ary,ix)   ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
  4841   lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0);
  4842   if (lwpFile < 0) {
  4843       if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
  4844       return false;
  4846   lwpSize = 16*1024;
  4847   for (;;) {
  4848     ::lseek64 (lwpFile, 0, SEEK_SET);
  4849     lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize, mtInternal);
  4850     if (::read(lwpFile, lwpArray, lwpSize) < 0) {
  4851       if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
  4852       break;
  4854     if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
  4855        // We got a good snapshot - now iterate over the list.
  4856       int aslwpcount = 0;
  4857       for (int i = 0; i < lwpArray->pr_nent; i++ ) {
  4858         that = LWPINDEX(lwpArray,i);
  4859         if (that->pr_flags & PR_ASLWP) {
  4860           aslwpcount++;
  4863       if (aslwpcount == 0) isT2 = true;
  4864       break;
  4866     lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
  4867     FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);  // retry.
  4870   FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);
  4871   ::close (lwpFile);
  4872   if (ThreadPriorityVerbose) {
  4873     if (isT2) tty->print_cr("We are running with a T2 libthread\n");
  4874     else tty->print_cr("We are not running with a T2 libthread\n");
  4876   return isT2;
  4880 void os::Solaris::libthread_init() {
  4881   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
  4883   // Determine if we are running with the new T2 libthread
  4884   os::Solaris::set_T2_libthread(isT2_libthread());
  4886   lwp_priocntl_init();
  4888   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
  4889   if(func == NULL) {
  4890     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
  4891     // Guarantee that this VM is running on an new enough OS (5.6 or
  4892     // later) that it will have a new enough libthread.so.
  4893     guarantee(func != NULL, "libthread.so is too old.");
  4896   // Initialize the new libthread getstate API wrappers
  4897   func = resolve_symbol("thr_getstate");
  4898   os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
  4900   func = resolve_symbol("thr_setstate");
  4901   os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
  4903   func = resolve_symbol("thr_setmutator");
  4904   os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
  4906   func = resolve_symbol("thr_suspend_mutator");
  4907   os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4909   func = resolve_symbol("thr_continue_mutator");
  4910   os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4912   int size;
  4913   void (*handler_info_func)(address *, int *);
  4914   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
  4915   handler_info_func(&handler_start, &size);
  4916   handler_end = handler_start + size;
  4920 int_fnP_mutex_tP os::Solaris::_mutex_lock;
  4921 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
  4922 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
  4923 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
  4924 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
  4925 int os::Solaris::_mutex_scope = USYNC_THREAD;
  4927 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
  4928 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
  4929 int_fnP_cond_tP os::Solaris::_cond_signal;
  4930 int_fnP_cond_tP os::Solaris::_cond_broadcast;
  4931 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
  4932 int_fnP_cond_tP os::Solaris::_cond_destroy;
  4933 int os::Solaris::_cond_scope = USYNC_THREAD;
  4935 void os::Solaris::synchronization_init() {
  4936   if(UseLWPSynchronization) {
  4937     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
  4938     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
  4939     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
  4940     os::Solaris::set_mutex_init(lwp_mutex_init);
  4941     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
  4942     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4944     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
  4945     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
  4946     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
  4947     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
  4948     os::Solaris::set_cond_init(lwp_cond_init);
  4949     os::Solaris::set_cond_destroy(lwp_cond_destroy);
  4950     os::Solaris::set_cond_scope(USYNC_THREAD);
  4952   else {
  4953     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4954     os::Solaris::set_cond_scope(USYNC_THREAD);
  4956     if(UsePthreads) {
  4957       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
  4958       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
  4959       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
  4960       os::Solaris::set_mutex_init(pthread_mutex_default_init);
  4961       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
  4963       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
  4964       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
  4965       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
  4966       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
  4967       os::Solaris::set_cond_init(pthread_cond_default_init);
  4968       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
  4970     else {
  4971       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
  4972       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
  4973       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
  4974       os::Solaris::set_mutex_init(::mutex_init);
  4975       os::Solaris::set_mutex_destroy(::mutex_destroy);
  4977       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
  4978       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
  4979       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
  4980       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
  4981       os::Solaris::set_cond_init(::cond_init);
  4982       os::Solaris::set_cond_destroy(::cond_destroy);
  4987 bool os::Solaris::liblgrp_init() {
  4988   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
  4989   if (handle != NULL) {
  4990     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
  4991     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
  4992     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
  4993     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
  4994     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
  4995     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
  4996     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
  4997     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
  4998                                        dlsym(handle, "lgrp_cookie_stale")));
  5000     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
  5001     set_lgrp_cookie(c);
  5002     return true;
  5004   return false;
  5007 void os::Solaris::misc_sym_init() {
  5008   address func;
  5010   // getisax
  5011   func = resolve_symbol_lazy("getisax");
  5012   if (func != NULL) {
  5013     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
  5016   // meminfo
  5017   func = resolve_symbol_lazy("meminfo");
  5018   if (func != NULL) {
  5019     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
  5023 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
  5024   assert(_getisax != NULL, "_getisax not set");
  5025   return _getisax(array, n);
  5028 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
  5029 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
  5030 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
  5032 void init_pset_getloadavg_ptr(void) {
  5033   pset_getloadavg_ptr =
  5034     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
  5035   if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
  5036     warning("pset_getloadavg function not found");
  5040 int os::Solaris::_dev_zero_fd = -1;
  5042 // this is called _before_ the global arguments have been parsed
  5043 void os::init(void) {
  5044   _initial_pid = getpid();
  5046   max_hrtime = first_hrtime = gethrtime();
  5048   init_random(1234567);
  5050   page_size = sysconf(_SC_PAGESIZE);
  5051   if (page_size == -1)
  5052     fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
  5053                   strerror(errno)));
  5054   init_page_sizes((size_t) page_size);
  5056   Solaris::initialize_system_info();
  5058   // Initialize misc. symbols as soon as possible, so we can use them
  5059   // if we need them.
  5060   Solaris::misc_sym_init();
  5062   int fd = ::open("/dev/zero", O_RDWR);
  5063   if (fd < 0) {
  5064     fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
  5065   } else {
  5066     Solaris::set_dev_zero_fd(fd);
  5068     // Close on exec, child won't inherit.
  5069     fcntl(fd, F_SETFD, FD_CLOEXEC);
  5072   clock_tics_per_sec = CLK_TCK;
  5074   // check if dladdr1() exists; dladdr1 can provide more information than
  5075   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
  5076   // and is available on linker patches for 5.7 and 5.8.
  5077   // libdl.so must have been loaded, this call is just an entry lookup
  5078   void * hdl = dlopen("libdl.so", RTLD_NOW);
  5079   if (hdl)
  5080     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
  5082   // (Solaris only) this switches to calls that actually do locking.
  5083   ThreadCritical::initialize();
  5085   main_thread = thr_self();
  5087   // Constant minimum stack size allowed. It must be at least
  5088   // the minimum of what the OS supports (thr_min_stack()), and
  5089   // enough to allow the thread to get to user bytecode execution.
  5090   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
  5091   // If the pagesize of the VM is greater than 8K determine the appropriate
  5092   // number of initial guard pages.  The user can change this with the
  5093   // command line arguments, if needed.
  5094   if (vm_page_size() > 8*K) {
  5095     StackYellowPages = 1;
  5096     StackRedPages = 1;
  5097     StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
  5101 // To install functions for atexit system call
  5102 extern "C" {
  5103   static void perfMemory_exit_helper() {
  5104     perfMemory_exit();
  5108 // this is called _after_ the global arguments have been parsed
  5109 jint os::init_2(void) {
  5110   // try to enable extended file IO ASAP, see 6431278
  5111   os::Solaris::try_enable_extended_io();
  5113   // Allocate a single page and mark it as readable for safepoint polling.  Also
  5114   // use this first mmap call to check support for MAP_ALIGN.
  5115   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
  5116                                                       page_size,
  5117                                                       MAP_PRIVATE | MAP_ALIGN,
  5118                                                       PROT_READ);
  5119   if (polling_page == NULL) {
  5120     has_map_align = false;
  5121     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
  5122                                                 PROT_READ);
  5125   os::set_polling_page(polling_page);
  5127 #ifndef PRODUCT
  5128   if( Verbose && PrintMiscellaneous )
  5129     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  5130 #endif
  5132   if (!UseMembar) {
  5133     address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
  5134     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  5135     os::set_memory_serialize_page( mem_serialize_page );
  5137 #ifndef PRODUCT
  5138     if(Verbose && PrintMiscellaneous)
  5139       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  5140 #endif
  5143   // Check minimum allowable stack size for thread creation and to initialize
  5144   // the java system classes, including StackOverflowError - depends on page
  5145   // size.  Add a page for compiler2 recursion in main thread.
  5146   // Add in 2*BytesPerWord times page size to account for VM stack during
  5147   // class initialization depending on 32 or 64 bit VM.
  5148   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
  5149             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  5150                     2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
  5152   size_t threadStackSizeInBytes = ThreadStackSize * K;
  5153   if (threadStackSizeInBytes != 0 &&
  5154     threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
  5155     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
  5156                   os::Solaris::min_stack_allowed/K);
  5157     return JNI_ERR;
  5160   // For 64kbps there will be a 64kb page size, which makes
  5161   // the usable default stack size quite a bit less.  Increase the
  5162   // stack for 64kb (or any > than 8kb) pages, this increases
  5163   // virtual memory fragmentation (since we're not creating the
  5164   // stack on a power of 2 boundary.  The real fix for this
  5165   // should be to fix the guard page mechanism.
  5167   if (vm_page_size() > 8*K) {
  5168       threadStackSizeInBytes = (threadStackSizeInBytes != 0)
  5169          ? threadStackSizeInBytes +
  5170            ((StackYellowPages + StackRedPages) * vm_page_size())
  5171          : 0;
  5172       ThreadStackSize = threadStackSizeInBytes/K;
  5175   // Make the stack size a multiple of the page size so that
  5176   // the yellow/red zones can be guarded.
  5177   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5178         vm_page_size()));
  5180   Solaris::libthread_init();
  5182   if (UseNUMA) {
  5183     if (!Solaris::liblgrp_init()) {
  5184       UseNUMA = false;
  5185     } else {
  5186       size_t lgrp_limit = os::numa_get_groups_num();
  5187       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
  5188       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
  5189       FREE_C_HEAP_ARRAY(int, lgrp_ids, mtInternal);
  5190       if (lgrp_num < 2) {
  5191         // There's only one locality group, disable NUMA.
  5192         UseNUMA = false;
  5195     if (!UseNUMA && ForceNUMA) {
  5196       UseNUMA = true;
  5200   Solaris::signal_sets_init();
  5201   Solaris::init_signal_mem();
  5202   Solaris::install_signal_handlers();
  5204   if (libjsigversion < JSIG_VERSION_1_4_1) {
  5205     Maxlibjsigsigs = OLDMAXSIGNUM;
  5208   // initialize synchronization primitives to use either thread or
  5209   // lwp synchronization (controlled by UseLWPSynchronization)
  5210   Solaris::synchronization_init();
  5212   if (MaxFDLimit) {
  5213     // set the number of file descriptors to max. print out error
  5214     // if getrlimit/setrlimit fails but continue regardless.
  5215     struct rlimit nbr_files;
  5216     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5217     if (status != 0) {
  5218       if (PrintMiscellaneous && (Verbose || WizardMode))
  5219         perror("os::init_2 getrlimit failed");
  5220     } else {
  5221       nbr_files.rlim_cur = nbr_files.rlim_max;
  5222       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5223       if (status != 0) {
  5224         if (PrintMiscellaneous && (Verbose || WizardMode))
  5225           perror("os::init_2 setrlimit failed");
  5230   // Calculate theoretical max. size of Threads to guard gainst
  5231   // artifical out-of-memory situations, where all available address-
  5232   // space has been reserved by thread stacks. Default stack size is 1Mb.
  5233   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
  5234     JavaThread::stack_size_at_create() : (1*K*K);
  5235   assert(pre_thread_stack_size != 0, "Must have a stack");
  5236   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
  5237   // we should start doing Virtual Memory banging. Currently when the threads will
  5238   // have used all but 200Mb of space.
  5239   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
  5240   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
  5242   // at-exit methods are called in the reverse order of their registration.
  5243   // In Solaris 7 and earlier, atexit functions are called on return from
  5244   // main or as a result of a call to exit(3C). There can be only 32 of
  5245   // these functions registered and atexit() does not set errno. In Solaris
  5246   // 8 and later, there is no limit to the number of functions registered
  5247   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
  5248   // functions are called upon dlclose(3DL) in addition to return from main
  5249   // and exit(3C).
  5251   if (PerfAllowAtExitRegistration) {
  5252     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5253     // atexit functions can be delayed until process exit time, which
  5254     // can be problematic for embedded VM situations. Embedded VMs should
  5255     // call DestroyJavaVM() to assure that VM resources are released.
  5257     // note: perfMemory_exit_helper atexit function may be removed in
  5258     // the future if the appropriate cleanup code can be added to the
  5259     // VM_Exit VMOperation's doit method.
  5260     if (atexit(perfMemory_exit_helper) != 0) {
  5261       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  5265   // Init pset_loadavg function pointer
  5266   init_pset_getloadavg_ptr();
  5268   return JNI_OK;
  5271 void os::init_3(void) {
  5272   return;
  5275 // Mark the polling page as unreadable
  5276 void os::make_polling_page_unreadable(void) {
  5277   if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
  5278     fatal("Could not disable polling page");
  5279 };
  5281 // Mark the polling page as readable
  5282 void os::make_polling_page_readable(void) {
  5283   if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
  5284     fatal("Could not enable polling page");
  5285 };
  5287 // OS interface.
  5289 bool os::check_heap(bool force) { return true; }
  5291 typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
  5292 static vsnprintf_t sol_vsnprintf = NULL;
  5294 int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
  5295   if (!sol_vsnprintf) {
  5296     //search  for the named symbol in the objects that were loaded after libjvm
  5297     void* where = RTLD_NEXT;
  5298     if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5299         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5300     if (!sol_vsnprintf){
  5301       //search  for the named symbol in the objects that were loaded before libjvm
  5302       where = RTLD_DEFAULT;
  5303       if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5304         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5305       assert(sol_vsnprintf != NULL, "vsnprintf not found");
  5308   return (*sol_vsnprintf)(buf, count, fmt, argptr);
  5312 // Is a (classpath) directory empty?
  5313 bool os::dir_is_empty(const char* path) {
  5314   DIR *dir = NULL;
  5315   struct dirent *ptr;
  5317   dir = opendir(path);
  5318   if (dir == NULL) return true;
  5320   /* Scan the directory */
  5321   bool result = true;
  5322   char buf[sizeof(struct dirent) + MAX_PATH];
  5323   struct dirent *dbuf = (struct dirent *) buf;
  5324   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
  5325     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5326       result = false;
  5329   closedir(dir);
  5330   return result;
  5333 // This code originates from JDK's sysOpen and open64_w
  5334 // from src/solaris/hpi/src/system_md.c
  5336 #ifndef O_DELETE
  5337 #define O_DELETE 0x10000
  5338 #endif
  5340 // Open a file. Unlink the file immediately after open returns
  5341 // if the specified oflag has the O_DELETE flag set.
  5342 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5344 int os::open(const char *path, int oflag, int mode) {
  5345   if (strlen(path) > MAX_PATH - 1) {
  5346     errno = ENAMETOOLONG;
  5347     return -1;
  5349   int fd;
  5350   int o_delete = (oflag & O_DELETE);
  5351   oflag = oflag & ~O_DELETE;
  5353   fd = ::open64(path, oflag, mode);
  5354   if (fd == -1) return -1;
  5356   //If the open succeeded, the file might still be a directory
  5358     struct stat64 buf64;
  5359     int ret = ::fstat64(fd, &buf64);
  5360     int st_mode = buf64.st_mode;
  5362     if (ret != -1) {
  5363       if ((st_mode & S_IFMT) == S_IFDIR) {
  5364         errno = EISDIR;
  5365         ::close(fd);
  5366         return -1;
  5368     } else {
  5369       ::close(fd);
  5370       return -1;
  5373     /*
  5374      * 32-bit Solaris systems suffer from:
  5376      * - an historical default soft limit of 256 per-process file
  5377      *   descriptors that is too low for many Java programs.
  5379      * - a design flaw where file descriptors created using stdio
  5380      *   fopen must be less than 256, _even_ when the first limit above
  5381      *   has been raised.  This can cause calls to fopen (but not calls to
  5382      *   open, for example) to fail mysteriously, perhaps in 3rd party
  5383      *   native code (although the JDK itself uses fopen).  One can hardly
  5384      *   criticize them for using this most standard of all functions.
  5386      * We attempt to make everything work anyways by:
  5388      * - raising the soft limit on per-process file descriptors beyond
  5389      *   256
  5391      * - As of Solaris 10u4, we can request that Solaris raise the 256
  5392      *   stdio fopen limit by calling function enable_extended_FILE_stdio.
  5393      *   This is done in init_2 and recorded in enabled_extended_FILE_stdio
  5395      * - If we are stuck on an old (pre 10u4) Solaris system, we can
  5396      *   workaround the bug by remapping non-stdio file descriptors below
  5397      *   256 to ones beyond 256, which is done below.
  5399      * See:
  5400      * 1085341: 32-bit stdio routines should support file descriptors >255
  5401      * 6533291: Work around 32-bit Solaris stdio limit of 256 open files
  5402      * 6431278: Netbeans crash on 32 bit Solaris: need to call
  5403      *          enable_extended_FILE_stdio() in VM initialisation
  5404      * Giri Mandalika's blog
  5405      * http://technopark02.blogspot.com/2005_05_01_archive.html
  5406      */
  5407 #ifndef  _LP64
  5408      if ((!enabled_extended_FILE_stdio) && fd < 256) {
  5409          int newfd = ::fcntl(fd, F_DUPFD, 256);
  5410          if (newfd != -1) {
  5411              ::close(fd);
  5412              fd = newfd;
  5415 #endif // 32-bit Solaris
  5416     /*
  5417      * All file descriptors that are opened in the JVM and not
  5418      * specifically destined for a subprocess should have the
  5419      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5420      * party native code might fork and exec without closing all
  5421      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5422      * UNIXProcess.c), and this in turn might:
  5424      * - cause end-of-file to fail to be detected on some file
  5425      *   descriptors, resulting in mysterious hangs, or
  5427      * - might cause an fopen in the subprocess to fail on a system
  5428      *   suffering from bug 1085341.
  5430      * (Yes, the default setting of the close-on-exec flag is a Unix
  5431      * design flaw)
  5433      * See:
  5434      * 1085341: 32-bit stdio routines should support file descriptors >255
  5435      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5436      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5437      */
  5438 #ifdef FD_CLOEXEC
  5440         int flags = ::fcntl(fd, F_GETFD);
  5441         if (flags != -1)
  5442             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5444 #endif
  5446   if (o_delete != 0) {
  5447     ::unlink(path);
  5449   return fd;
  5452 // create binary file, rewriting existing file if required
  5453 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5454   int oflags = O_WRONLY | O_CREAT;
  5455   if (!rewrite_existing) {
  5456     oflags |= O_EXCL;
  5458   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5461 // return current position of file pointer
  5462 jlong os::current_file_offset(int fd) {
  5463   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5466 // move file pointer to the specified offset
  5467 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5468   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5471 jlong os::lseek(int fd, jlong offset, int whence) {
  5472   return (jlong) ::lseek64(fd, offset, whence);
  5475 char * os::native_path(char *path) {
  5476   return path;
  5479 int os::ftruncate(int fd, jlong length) {
  5480   return ::ftruncate64(fd, length);
  5483 int os::fsync(int fd)  {
  5484   RESTARTABLE_RETURN_INT(::fsync(fd));
  5487 int os::available(int fd, jlong *bytes) {
  5488   jlong cur, end;
  5489   int mode;
  5490   struct stat64 buf64;
  5492   if (::fstat64(fd, &buf64) >= 0) {
  5493     mode = buf64.st_mode;
  5494     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5495       /*
  5496       * XXX: is the following call interruptible? If so, this might
  5497       * need to go through the INTERRUPT_IO() wrapper as for other
  5498       * blocking, interruptible calls in this file.
  5499       */
  5500       int n,ioctl_return;
  5502       INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
  5503       if (ioctl_return>= 0) {
  5504           *bytes = n;
  5505         return 1;
  5509   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5510     return 0;
  5511   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5512     return 0;
  5513   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5514     return 0;
  5516   *bytes = end - cur;
  5517   return 1;
  5520 // Map a block of memory.
  5521 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5522                      char *addr, size_t bytes, bool read_only,
  5523                      bool allow_exec) {
  5524   int prot;
  5525   int flags;
  5527   if (read_only) {
  5528     prot = PROT_READ;
  5529     flags = MAP_SHARED;
  5530   } else {
  5531     prot = PROT_READ | PROT_WRITE;
  5532     flags = MAP_PRIVATE;
  5535   if (allow_exec) {
  5536     prot |= PROT_EXEC;
  5539   if (addr != NULL) {
  5540     flags |= MAP_FIXED;
  5543   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5544                                      fd, file_offset);
  5545   if (mapped_address == MAP_FAILED) {
  5546     return NULL;
  5548   return mapped_address;
  5552 // Remap a block of memory.
  5553 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5554                        char *addr, size_t bytes, bool read_only,
  5555                        bool allow_exec) {
  5556   // same as map_memory() on this OS
  5557   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5558                         allow_exec);
  5562 // Unmap a block of memory.
  5563 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5564   return munmap(addr, bytes) == 0;
  5567 void os::pause() {
  5568   char filename[MAX_PATH];
  5569   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5570     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5571   } else {
  5572     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5575   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5576   if (fd != -1) {
  5577     struct stat buf;
  5578     ::close(fd);
  5579     while (::stat(filename, &buf) == 0) {
  5580       (void)::poll(NULL, 0, 100);
  5582   } else {
  5583     jio_fprintf(stderr,
  5584       "Could not open pause file '%s', continuing immediately.\n", filename);
  5588 #ifndef PRODUCT
  5589 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5590 // Turn this on if you need to trace synch operations.
  5591 // Set RECORD_SYNCH_LIMIT to a large-enough value,
  5592 // and call record_synch_enable and record_synch_disable
  5593 // around the computation of interest.
  5595 void record_synch(char* name, bool returning);  // defined below
  5597 class RecordSynch {
  5598   char* _name;
  5599  public:
  5600   RecordSynch(char* name) :_name(name)
  5601                  { record_synch(_name, false); }
  5602   ~RecordSynch() { record_synch(_name,   true);  }
  5603 };
  5605 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
  5606 extern "C" ret name params {                                    \
  5607   typedef ret name##_t params;                                  \
  5608   static name##_t* implem = NULL;                               \
  5609   static int callcount = 0;                                     \
  5610   if (implem == NULL) {                                         \
  5611     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
  5612     if (implem == NULL)  fatal(dlerror());                      \
  5613   }                                                             \
  5614   ++callcount;                                                  \
  5615   RecordSynch _rs(#name);                                       \
  5616   inner;                                                        \
  5617   return implem args;                                           \
  5619 // in dbx, examine callcounts this way:
  5620 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
  5622 #define CHECK_POINTER_OK(p) \
  5623   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
  5624 #define CHECK_MU \
  5625   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
  5626 #define CHECK_CV \
  5627   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
  5628 #define CHECK_P(p) \
  5629   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
  5631 #define CHECK_MUTEX(mutex_op) \
  5632 CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
  5634 CHECK_MUTEX(   mutex_lock)
  5635 CHECK_MUTEX(  _mutex_lock)
  5636 CHECK_MUTEX( mutex_unlock)
  5637 CHECK_MUTEX(_mutex_unlock)
  5638 CHECK_MUTEX( mutex_trylock)
  5639 CHECK_MUTEX(_mutex_trylock)
  5641 #define CHECK_COND(cond_op) \
  5642 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
  5644 CHECK_COND( cond_wait);
  5645 CHECK_COND(_cond_wait);
  5646 CHECK_COND(_cond_wait_cancel);
  5648 #define CHECK_COND2(cond_op) \
  5649 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
  5651 CHECK_COND2( cond_timedwait);
  5652 CHECK_COND2(_cond_timedwait);
  5653 CHECK_COND2(_cond_timedwait_cancel);
  5655 // do the _lwp_* versions too
  5656 #define mutex_t lwp_mutex_t
  5657 #define cond_t  lwp_cond_t
  5658 CHECK_MUTEX(  _lwp_mutex_lock)
  5659 CHECK_MUTEX(  _lwp_mutex_unlock)
  5660 CHECK_MUTEX(  _lwp_mutex_trylock)
  5661 CHECK_MUTEX( __lwp_mutex_lock)
  5662 CHECK_MUTEX( __lwp_mutex_unlock)
  5663 CHECK_MUTEX( __lwp_mutex_trylock)
  5664 CHECK_MUTEX(___lwp_mutex_lock)
  5665 CHECK_MUTEX(___lwp_mutex_unlock)
  5667 CHECK_COND(  _lwp_cond_wait);
  5668 CHECK_COND( __lwp_cond_wait);
  5669 CHECK_COND(___lwp_cond_wait);
  5671 CHECK_COND2(  _lwp_cond_timedwait);
  5672 CHECK_COND2( __lwp_cond_timedwait);
  5673 #undef mutex_t
  5674 #undef cond_t
  5676 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5677 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5678 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5679 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5680 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5681 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5682 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5683 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5686 // recording machinery:
  5688 enum { RECORD_SYNCH_LIMIT = 200 };
  5689 char* record_synch_name[RECORD_SYNCH_LIMIT];
  5690 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
  5691 bool record_synch_returning[RECORD_SYNCH_LIMIT];
  5692 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
  5693 int record_synch_count = 0;
  5694 bool record_synch_enabled = false;
  5696 // in dbx, examine recorded data this way:
  5697 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
  5699 void record_synch(char* name, bool returning) {
  5700   if (record_synch_enabled) {
  5701     if (record_synch_count < RECORD_SYNCH_LIMIT) {
  5702       record_synch_name[record_synch_count] = name;
  5703       record_synch_returning[record_synch_count] = returning;
  5704       record_synch_thread[record_synch_count] = thr_self();
  5705       record_synch_arg0ptr[record_synch_count] = &name;
  5706       record_synch_count++;
  5708     // put more checking code here:
  5709     // ...
  5713 void record_synch_enable() {
  5714   // start collecting trace data, if not already doing so
  5715   if (!record_synch_enabled)  record_synch_count = 0;
  5716   record_synch_enabled = true;
  5719 void record_synch_disable() {
  5720   // stop collecting trace data
  5721   record_synch_enabled = false;
  5724 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5725 #endif // PRODUCT
  5727 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5728 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
  5729                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5732 // JVMTI & JVM monitoring and management support
  5733 // The thread_cpu_time() and current_thread_cpu_time() are only
  5734 // supported if is_thread_cpu_time_supported() returns true.
  5735 // They are not supported on Solaris T1.
  5737 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5738 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5739 // of a thread.
  5740 //
  5741 // current_thread_cpu_time() and thread_cpu_time(Thread *)
  5742 // returns the fast estimate available on the platform.
  5744 // hrtime_t gethrvtime() return value includes
  5745 // user time but does not include system time
  5746 jlong os::current_thread_cpu_time() {
  5747   return (jlong) gethrvtime();
  5750 jlong os::thread_cpu_time(Thread *thread) {
  5751   // return user level CPU time only to be consistent with
  5752   // what current_thread_cpu_time returns.
  5753   // thread_cpu_time_info() must be changed if this changes
  5754   return os::thread_cpu_time(thread, false /* user time only */);
  5757 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5758   if (user_sys_cpu_time) {
  5759     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5760   } else {
  5761     return os::current_thread_cpu_time();
  5765 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5766   char proc_name[64];
  5767   int count;
  5768   prusage_t prusage;
  5769   jlong lwp_time;
  5770   int fd;
  5772   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
  5773                      getpid(),
  5774                      thread->osthread()->lwp_id());
  5775   fd = ::open(proc_name, O_RDONLY);
  5776   if ( fd == -1 ) return -1;
  5778   do {
  5779     count = ::pread(fd,
  5780                   (void *)&prusage.pr_utime,
  5781                   thr_time_size,
  5782                   thr_time_off);
  5783   } while (count < 0 && errno == EINTR);
  5784   ::close(fd);
  5785   if ( count < 0 ) return -1;
  5787   if (user_sys_cpu_time) {
  5788     // user + system CPU time
  5789     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
  5790                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
  5791                  (jlong)prusage.pr_stime.tv_nsec +
  5792                  (jlong)prusage.pr_utime.tv_nsec;
  5793   } else {
  5794     // user level CPU time only
  5795     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
  5796                 (jlong)prusage.pr_utime.tv_nsec;
  5799   return(lwp_time);
  5802 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5803   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5804   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5805   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5806   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5809 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5810   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5811   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5812   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5813   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5816 bool os::is_thread_cpu_time_supported() {
  5817   if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
  5818     return true;
  5819   } else {
  5820     return false;
  5824 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5825 // Return the load average for our processor set if the primitive exists
  5826 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
  5827 int os::loadavg(double loadavg[], int nelem) {
  5828   if (pset_getloadavg_ptr != NULL) {
  5829     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
  5830   } else {
  5831     return ::getloadavg(loadavg, nelem);
  5835 //---------------------------------------------------------------------------------
  5837 bool os::find(address addr, outputStream* st) {
  5838   Dl_info dlinfo;
  5839   memset(&dlinfo, 0, sizeof(dlinfo));
  5840   if (dladdr(addr, &dlinfo) != 0) {
  5841     st->print(PTR_FORMAT ": ", addr);
  5842     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5843       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
  5844     } else if (dlinfo.dli_fbase != NULL)
  5845       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
  5846     else
  5847       st->print("<absolute address>");
  5848     if (dlinfo.dli_fname != NULL) {
  5849       st->print(" in %s", dlinfo.dli_fname);
  5851     if (dlinfo.dli_fbase != NULL) {
  5852       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5854     st->cr();
  5856     if (Verbose) {
  5857       // decode some bytes around the PC
  5858       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5859       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5860       address       lowest = (address) dlinfo.dli_sname;
  5861       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5862       if (begin < lowest)  begin = lowest;
  5863       Dl_info dlinfo2;
  5864       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5865           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5866         end = (address) dlinfo2.dli_saddr;
  5867       Disassembler::decode(begin, end, st);
  5869     return true;
  5871   return false;
  5874 // Following function has been added to support HotSparc's libjvm.so running
  5875 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
  5876 // src/solaris/hpi/native_threads in the EVM codebase.
  5877 //
  5878 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
  5879 // libraries and should thus be removed. We will leave it behind for a while
  5880 // until we no longer want to able to run on top of 1.3.0 Solaris production
  5881 // JDK. See 4341971.
  5883 #define STACK_SLACK 0x800
  5885 extern "C" {
  5886   intptr_t sysThreadAvailableStackWithSlack() {
  5887     stack_t st;
  5888     intptr_t retval, stack_top;
  5889     retval = thr_stksegment(&st);
  5890     assert(retval == 0, "incorrect return value from thr_stksegment");
  5891     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
  5892     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
  5893     stack_top=(intptr_t)st.ss_sp-st.ss_size;
  5894     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
  5898 // ObjectMonitor park-unpark infrastructure ...
  5899 //
  5900 // We implement Solaris and Linux PlatformEvents with the
  5901 // obvious condvar-mutex-flag triple.
  5902 // Another alternative that works quite well is pipes:
  5903 // Each PlatformEvent consists of a pipe-pair.
  5904 // The thread associated with the PlatformEvent
  5905 // calls park(), which reads from the input end of the pipe.
  5906 // Unpark() writes into the other end of the pipe.
  5907 // The write-side of the pipe must be set NDELAY.
  5908 // Unfortunately pipes consume a large # of handles.
  5909 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
  5910 // Using pipes for the 1st few threads might be workable, however.
  5911 //
  5912 // park() is permitted to return spuriously.
  5913 // Callers of park() should wrap the call to park() in
  5914 // an appropriate loop.  A litmus test for the correct
  5915 // usage of park is the following: if park() were modified
  5916 // to immediately return 0 your code should still work,
  5917 // albeit degenerating to a spin loop.
  5918 //
  5919 // An interesting optimization for park() is to use a trylock()
  5920 // to attempt to acquire the mutex.  If the trylock() fails
  5921 // then we know that a concurrent unpark() operation is in-progress.
  5922 // in that case the park() code could simply set _count to 0
  5923 // and return immediately.  The subsequent park() operation *might*
  5924 // return immediately.  That's harmless as the caller of park() is
  5925 // expected to loop.  By using trylock() we will have avoided a
  5926 // avoided a context switch caused by contention on the per-thread mutex.
  5927 //
  5928 // TODO-FIXME:
  5929 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
  5930 //     objectmonitor implementation.
  5931 // 2.  Collapse the JSR166 parker event, and the
  5932 //     objectmonitor ParkEvent into a single "Event" construct.
  5933 // 3.  In park() and unpark() add:
  5934 //     assert (Thread::current() == AssociatedWith).
  5935 // 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
  5936 //     1-out-of-N park() operations will return immediately.
  5937 //
  5938 // _Event transitions in park()
  5939 //   -1 => -1 : illegal
  5940 //    1 =>  0 : pass - return immediately
  5941 //    0 => -1 : block
  5942 //
  5943 // _Event serves as a restricted-range semaphore.
  5944 //
  5945 // Another possible encoding of _Event would be with
  5946 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
  5947 //
  5948 // TODO-FIXME: add DTRACE probes for:
  5949 // 1.   Tx parks
  5950 // 2.   Ty unparks Tx
  5951 // 3.   Tx resumes from park
  5954 // value determined through experimentation
  5955 #define ROUNDINGFIX 11
  5957 // utility to compute the abstime argument to timedwait.
  5958 // TODO-FIXME: switch from compute_abstime() to unpackTime().
  5960 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
  5961   // millis is the relative timeout time
  5962   // abstime will be the absolute timeout time
  5963   if (millis < 0)  millis = 0;
  5964   struct timeval now;
  5965   int status = gettimeofday(&now, NULL);
  5966   assert(status == 0, "gettimeofday");
  5967   jlong seconds = millis / 1000;
  5968   jlong max_wait_period;
  5970   if (UseLWPSynchronization) {
  5971     // forward port of fix for 4275818 (not sleeping long enough)
  5972     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
  5973     // _lwp_cond_timedwait() used a round_down algorithm rather
  5974     // than a round_up. For millis less than our roundfactor
  5975     // it rounded down to 0 which doesn't meet the spec.
  5976     // For millis > roundfactor we may return a bit sooner, but
  5977     // since we can not accurately identify the patch level and
  5978     // this has already been fixed in Solaris 9 and 8 we will
  5979     // leave it alone rather than always rounding down.
  5981     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
  5982        // It appears that when we go directly through Solaris _lwp_cond_timedwait()
  5983            // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
  5984            max_wait_period = 21000000;
  5985   } else {
  5986     max_wait_period = 50000000;
  5988   millis %= 1000;
  5989   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
  5990      seconds = max_wait_period;
  5992   abstime->tv_sec = now.tv_sec  + seconds;
  5993   long       usec = now.tv_usec + millis * 1000;
  5994   if (usec >= 1000000) {
  5995     abstime->tv_sec += 1;
  5996     usec -= 1000000;
  5998   abstime->tv_nsec = usec * 1000;
  5999   return abstime;
  6002 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  6003 // Conceptually TryPark() should be equivalent to park(0).
  6005 int os::PlatformEvent::TryPark() {
  6006   for (;;) {
  6007     const int v = _Event ;
  6008     guarantee ((v == 0) || (v == 1), "invariant") ;
  6009     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  6013 void os::PlatformEvent::park() {           // AKA: down()
  6014   // Invariant: Only the thread associated with the Event/PlatformEvent
  6015   // may call park().
  6016   int v ;
  6017   for (;;) {
  6018       v = _Event ;
  6019       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  6021   guarantee (v >= 0, "invariant") ;
  6022   if (v == 0) {
  6023      // Do this the hard way by blocking ...
  6024      // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6025      // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  6026      // Only for SPARC >= V8PlusA
  6027 #if defined(__sparc) && defined(COMPILER2)
  6028      if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6029 #endif
  6030      int status = os::Solaris::mutex_lock(_mutex);
  6031      assert_status(status == 0, status,  "mutex_lock");
  6032      guarantee (_nParked == 0, "invariant") ;
  6033      ++ _nParked ;
  6034      while (_Event < 0) {
  6035         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  6036         // Treat this the same as if the wait was interrupted
  6037         // With usr/lib/lwp going to kernel, always handle ETIME
  6038         status = os::Solaris::cond_wait(_cond, _mutex);
  6039         if (status == ETIME) status = EINTR ;
  6040         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  6042      -- _nParked ;
  6043      _Event = 0 ;
  6044      status = os::Solaris::mutex_unlock(_mutex);
  6045      assert_status(status == 0, status, "mutex_unlock");
  6046     // Paranoia to ensure our locked and lock-free paths interact
  6047     // correctly with each other.
  6048     OrderAccess::fence();
  6052 int os::PlatformEvent::park(jlong millis) {
  6053   guarantee (_nParked == 0, "invariant") ;
  6054   int v ;
  6055   for (;;) {
  6056       v = _Event ;
  6057       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  6059   guarantee (v >= 0, "invariant") ;
  6060   if (v != 0) return OS_OK ;
  6062   int ret = OS_TIMEOUT;
  6063   timestruc_t abst;
  6064   compute_abstime (&abst, millis);
  6066   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6067   // For Solaris SPARC set fprs.FEF=0 prior to parking.
  6068   // Only for SPARC >= V8PlusA
  6069 #if defined(__sparc) && defined(COMPILER2)
  6070  if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6071 #endif
  6072   int status = os::Solaris::mutex_lock(_mutex);
  6073   assert_status(status == 0, status, "mutex_lock");
  6074   guarantee (_nParked == 0, "invariant") ;
  6075   ++ _nParked ;
  6076   while (_Event < 0) {
  6077      int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
  6078      assert_status(status == 0 || status == EINTR ||
  6079                    status == ETIME || status == ETIMEDOUT,
  6080                    status, "cond_timedwait");
  6081      if (!FilterSpuriousWakeups) break ;                // previous semantics
  6082      if (status == ETIME || status == ETIMEDOUT) break ;
  6083      // We consume and ignore EINTR and spurious wakeups.
  6085   -- _nParked ;
  6086   if (_Event >= 0) ret = OS_OK ;
  6087   _Event = 0 ;
  6088   status = os::Solaris::mutex_unlock(_mutex);
  6089   assert_status(status == 0, status, "mutex_unlock");
  6090   // Paranoia to ensure our locked and lock-free paths interact
  6091   // correctly with each other.
  6092   OrderAccess::fence();
  6093   return ret;
  6096 void os::PlatformEvent::unpark() {
  6097   // Transitions for _Event:
  6098   //    0 :=> 1
  6099   //    1 :=> 1
  6100   //   -1 :=> either 0 or 1; must signal target thread
  6101   //          That is, we can safely transition _Event from -1 to either
  6102   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  6103   //          unpark() calls.
  6104   // See also: "Semaphores in Plan 9" by Mullender & Cox
  6105   //
  6106   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  6107   // that it will take two back-to-back park() calls for the owning
  6108   // thread to block. This has the benefit of forcing a spurious return
  6109   // from the first park() call after an unpark() call which will help
  6110   // shake out uses of park() and unpark() without condition variables.
  6112   if (Atomic::xchg(1, &_Event) >= 0) return;
  6114   // If the thread associated with the event was parked, wake it.
  6115   // Wait for the thread assoc with the PlatformEvent to vacate.
  6116   int status = os::Solaris::mutex_lock(_mutex);
  6117   assert_status(status == 0, status, "mutex_lock");
  6118   int AnyWaiters = _nParked;
  6119   status = os::Solaris::mutex_unlock(_mutex);
  6120   assert_status(status == 0, status, "mutex_unlock");
  6121   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  6122   if (AnyWaiters != 0) {
  6123     // We intentional signal *after* dropping the lock
  6124     // to avoid a common class of futile wakeups.
  6125     status = os::Solaris::cond_signal(_cond);
  6126     assert_status(status == 0, status, "cond_signal");
  6130 // JSR166
  6131 // -------------------------------------------------------
  6133 /*
  6134  * The solaris and linux implementations of park/unpark are fairly
  6135  * conservative for now, but can be improved. They currently use a
  6136  * mutex/condvar pair, plus _counter.
  6137  * Park decrements _counter if > 0, else does a condvar wait.  Unpark
  6138  * sets count to 1 and signals condvar.  Only one thread ever waits
  6139  * on the condvar. Contention seen when trying to park implies that someone
  6140  * is unparking you, so don't wait. And spurious returns are fine, so there
  6141  * is no need to track notifications.
  6142  */
  6144 #define MAX_SECS 100000000
  6145 /*
  6146  * This code is common to linux and solaris and will be moved to a
  6147  * common place in dolphin.
  6149  * The passed in time value is either a relative time in nanoseconds
  6150  * or an absolute time in milliseconds. Either way it has to be unpacked
  6151  * into suitable seconds and nanoseconds components and stored in the
  6152  * given timespec structure.
  6153  * Given time is a 64-bit value and the time_t used in the timespec is only
  6154  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  6155  * overflow if times way in the future are given. Further on Solaris versions
  6156  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  6157  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  6158  * As it will be 28 years before "now + 100000000" will overflow we can
  6159  * ignore overflow and just impose a hard-limit on seconds using the value
  6160  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  6161  * years from "now".
  6162  */
  6163 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  6164   assert (time > 0, "convertTime");
  6166   struct timeval now;
  6167   int status = gettimeofday(&now, NULL);
  6168   assert(status == 0, "gettimeofday");
  6170   time_t max_secs = now.tv_sec + MAX_SECS;
  6172   if (isAbsolute) {
  6173     jlong secs = time / 1000;
  6174     if (secs > max_secs) {
  6175       absTime->tv_sec = max_secs;
  6177     else {
  6178       absTime->tv_sec = secs;
  6180     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6182   else {
  6183     jlong secs = time / NANOSECS_PER_SEC;
  6184     if (secs >= MAX_SECS) {
  6185       absTime->tv_sec = max_secs;
  6186       absTime->tv_nsec = 0;
  6188     else {
  6189       absTime->tv_sec = now.tv_sec + secs;
  6190       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6191       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6192         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6193         ++absTime->tv_sec; // note: this must be <= max_secs
  6197   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6198   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6199   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6200   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6203 void Parker::park(bool isAbsolute, jlong time) {
  6204   // Ideally we'd do something useful while spinning, such
  6205   // as calling unpackTime().
  6207   // Optional fast-path check:
  6208   // Return immediately if a permit is available.
  6209   // We depend on Atomic::xchg() having full barrier semantics
  6210   // since we are doing a lock-free update to _counter.
  6211   if (Atomic::xchg(0, &_counter) > 0) return;
  6213   // Optional fast-exit: Check interrupt before trying to wait
  6214   Thread* thread = Thread::current();
  6215   assert(thread->is_Java_thread(), "Must be JavaThread");
  6216   JavaThread *jt = (JavaThread *)thread;
  6217   if (Thread::is_interrupted(thread, false)) {
  6218     return;
  6221   // First, demultiplex/decode time arguments
  6222   timespec absTime;
  6223   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6224     return;
  6226   if (time > 0) {
  6227     // Warning: this code might be exposed to the old Solaris time
  6228     // round-down bugs.  Grep "roundingFix" for details.
  6229     unpackTime(&absTime, isAbsolute, time);
  6232   // Enter safepoint region
  6233   // Beware of deadlocks such as 6317397.
  6234   // The per-thread Parker:: _mutex is a classic leaf-lock.
  6235   // In particular a thread must never block on the Threads_lock while
  6236   // holding the Parker:: mutex.  If safepoints are pending both the
  6237   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6238   ThreadBlockInVM tbivm(jt);
  6240   // Don't wait if cannot get lock since interference arises from
  6241   // unblocking.  Also. check interrupt before trying wait
  6242   if (Thread::is_interrupted(thread, false) ||
  6243       os::Solaris::mutex_trylock(_mutex) != 0) {
  6244     return;
  6247   int status ;
  6249   if (_counter > 0)  { // no wait needed
  6250     _counter = 0;
  6251     status = os::Solaris::mutex_unlock(_mutex);
  6252     assert (status == 0, "invariant") ;
  6253     // Paranoia to ensure our locked and lock-free paths interact
  6254     // correctly with each other and Java-level accesses.
  6255     OrderAccess::fence();
  6256     return;
  6259 #ifdef ASSERT
  6260   // Don't catch signals while blocked; let the running threads have the signals.
  6261   // (This allows a debugger to break into the running thread.)
  6262   sigset_t oldsigs;
  6263   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
  6264   thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6265 #endif
  6267   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6268   jt->set_suspend_equivalent();
  6269   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6271   // Do this the hard way by blocking ...
  6272   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6273   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  6274   // Only for SPARC >= V8PlusA
  6275 #if defined(__sparc) && defined(COMPILER2)
  6276   if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6277 #endif
  6279   if (time == 0) {
  6280     status = os::Solaris::cond_wait (_cond, _mutex) ;
  6281   } else {
  6282     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
  6284   // Note that an untimed cond_wait() can sometimes return ETIME on older
  6285   // versions of the Solaris.
  6286   assert_status(status == 0 || status == EINTR ||
  6287                 status == ETIME || status == ETIMEDOUT,
  6288                 status, "cond_timedwait");
  6290 #ifdef ASSERT
  6291   thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
  6292 #endif
  6293   _counter = 0 ;
  6294   status = os::Solaris::mutex_unlock(_mutex);
  6295   assert_status(status == 0, status, "mutex_unlock") ;
  6296   // Paranoia to ensure our locked and lock-free paths interact
  6297   // correctly with each other and Java-level accesses.
  6298   OrderAccess::fence();
  6300   // If externally suspended while waiting, re-suspend
  6301   if (jt->handle_special_suspend_equivalent_condition()) {
  6302     jt->java_suspend_self();
  6306 void Parker::unpark() {
  6307   int s, status ;
  6308   status = os::Solaris::mutex_lock (_mutex) ;
  6309   assert (status == 0, "invariant") ;
  6310   s = _counter;
  6311   _counter = 1;
  6312   status = os::Solaris::mutex_unlock (_mutex) ;
  6313   assert (status == 0, "invariant") ;
  6315   if (s < 1) {
  6316     status = os::Solaris::cond_signal (_cond) ;
  6317     assert (status == 0, "invariant") ;
  6321 extern char** environ;
  6323 // Run the specified command in a separate process. Return its exit value,
  6324 // or -1 on failure (e.g. can't fork a new process).
  6325 // Unlike system(), this function can be called from signal handler. It
  6326 // doesn't block SIGINT et al.
  6327 int os::fork_and_exec(char* cmd) {
  6328   char * argv[4];
  6329   argv[0] = (char *)"sh";
  6330   argv[1] = (char *)"-c";
  6331   argv[2] = cmd;
  6332   argv[3] = NULL;
  6334   // fork is async-safe, fork1 is not so can't use in signal handler
  6335   pid_t pid;
  6336   Thread* t = ThreadLocalStorage::get_thread_slow();
  6337   if (t != NULL && t->is_inside_signal_handler()) {
  6338     pid = fork();
  6339   } else {
  6340     pid = fork1();
  6343   if (pid < 0) {
  6344     // fork failed
  6345     warning("fork failed: %s", strerror(errno));
  6346     return -1;
  6348   } else if (pid == 0) {
  6349     // child process
  6351     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
  6352     execve("/usr/bin/sh", argv, environ);
  6354     // execve failed
  6355     _exit(-1);
  6357   } else  {
  6358     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6359     // care about the actual exit code, for now.
  6361     int status;
  6363     // Wait for the child process to exit.  This returns immediately if
  6364     // the child has already exited. */
  6365     while (waitpid(pid, &status, 0) < 0) {
  6366         switch (errno) {
  6367         case ECHILD: return 0;
  6368         case EINTR: break;
  6369         default: return -1;
  6373     if (WIFEXITED(status)) {
  6374        // The child exited normally; get its exit code.
  6375        return WEXITSTATUS(status);
  6376     } else if (WIFSIGNALED(status)) {
  6377        // The child exited because of a signal
  6378        // The best value to return is 0x80 + signal number,
  6379        // because that is what all Unix shells do, and because
  6380        // it allows callers to distinguish between process exit and
  6381        // process death by signal.
  6382        return 0x80 + WTERMSIG(status);
  6383     } else {
  6384        // Unknown exit code; pass it through
  6385        return status;
  6390 // is_headless_jre()
  6391 //
  6392 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6393 // in order to report if we are running in a headless jre
  6394 //
  6395 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6396 // as libawt.so, and renamed libawt_xawt.so
  6397 //
  6398 bool os::is_headless_jre() {
  6399     struct stat statbuf;
  6400     char buf[MAXPATHLEN];
  6401     char libmawtpath[MAXPATHLEN];
  6402     const char *xawtstr  = "/xawt/libmawt.so";
  6403     const char *new_xawtstr = "/libawt_xawt.so";
  6404     char *p;
  6406     // Get path to libjvm.so
  6407     os::jvm_path(buf, sizeof(buf));
  6409     // Get rid of libjvm.so
  6410     p = strrchr(buf, '/');
  6411     if (p == NULL) return false;
  6412     else *p = '\0';
  6414     // Get rid of client or server
  6415     p = strrchr(buf, '/');
  6416     if (p == NULL) return false;
  6417     else *p = '\0';
  6419     // check xawt/libmawt.so
  6420     strcpy(libmawtpath, buf);
  6421     strcat(libmawtpath, xawtstr);
  6422     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6424     // check libawt_xawt.so
  6425     strcpy(libmawtpath, buf);
  6426     strcat(libmawtpath, new_xawtstr);
  6427     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6429     return true;
  6432 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
  6433   INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
  6436 int os::close(int fd) {
  6437   return ::close(fd);
  6440 int os::socket_close(int fd) {
  6441   return ::close(fd);
  6444 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
  6445   INTERRUPTIBLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6448 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
  6449   INTERRUPTIBLE_RETURN_INT((int)::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6452 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
  6453   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
  6456 // As both poll and select can be interrupted by signals, we have to be
  6457 // prepared to restart the system call after updating the timeout, unless
  6458 // a poll() is done with timeout == -1, in which case we repeat with this
  6459 // "wait forever" value.
  6461 int os::timeout(int fd, long timeout) {
  6462   int res;
  6463   struct timeval t;
  6464   julong prevtime, newtime;
  6465   static const char* aNull = 0;
  6466   struct pollfd pfd;
  6467   pfd.fd = fd;
  6468   pfd.events = POLLIN;
  6470   gettimeofday(&t, &aNull);
  6471   prevtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec / 1000;
  6473   for(;;) {
  6474     INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
  6475     if(res == OS_ERR && errno == EINTR) {
  6476         if(timeout != -1) {
  6477           gettimeofday(&t, &aNull);
  6478           newtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec /1000;
  6479           timeout -= newtime - prevtime;
  6480           if(timeout <= 0)
  6481             return OS_OK;
  6482           prevtime = newtime;
  6484     } else return res;
  6488 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
  6489   int _result;
  6490   INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,\
  6491                           os::Solaris::clear_interrupted);
  6493   // Depending on when thread interruption is reset, _result could be
  6494   // one of two values when errno == EINTR
  6496   if (((_result == OS_INTRPT) || (_result == OS_ERR))
  6497       && (errno == EINTR)) {
  6498      /* restarting a connect() changes its errno semantics */
  6499      INTERRUPTIBLE(::connect(fd, him, len), _result,\
  6500                    os::Solaris::clear_interrupted);
  6501      /* undo these changes */
  6502      if (_result == OS_ERR) {
  6503        if (errno == EALREADY) {
  6504          errno = EINPROGRESS; /* fall through */
  6505        } else if (errno == EISCONN) {
  6506          errno = 0;
  6507          return OS_OK;
  6511    return _result;
  6514 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
  6515   if (fd < 0) {
  6516     return OS_ERR;
  6518   INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him, len),\
  6519                            os::Solaris::clear_interrupted);
  6522 int os::recvfrom(int fd, char* buf, size_t nBytes, uint flags,
  6523                  sockaddr* from, socklen_t* fromlen) {
  6524   INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes, flags, from, fromlen),\
  6525                            os::Solaris::clear_interrupted);
  6528 int os::sendto(int fd, char* buf, size_t len, uint flags,
  6529                struct sockaddr* to, socklen_t tolen) {
  6530   INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags, to, tolen),\
  6531                            os::Solaris::clear_interrupted);
  6534 int os::socket_available(int fd, jint *pbytes) {
  6535   if (fd < 0) {
  6536     return OS_OK;
  6538   int ret;
  6539   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
  6540   // note: ioctl can return 0 when successful, JVM_SocketAvailable
  6541   // is expected to return 0 on failure and 1 on success to the jdk.
  6542   return (ret == OS_ERR) ? 0 : 1;
  6545 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
  6546    INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
  6547                                       os::Solaris::clear_interrupted);
  6550 // Get the default path to the core file
  6551 // Returns the length of the string
  6552 int os::get_core_path(char* buffer, size_t bufferSize) {
  6553   const char* p = get_current_directory(buffer, bufferSize);
  6555   if (p == NULL) {
  6556     assert(p != NULL, "failed to get current directory");
  6557     return 0;
  6560   return strlen(buffer);
  6563 #ifndef PRODUCT
  6564 void TestReserveMemorySpecial_test() {
  6565   // No tests available for this platform
  6567 #endif

mercurial