src/share/vm/memory/genCollectedHeap.cpp

Mon, 03 May 2010 20:19:05 -0700

author
ysr
date
Mon, 03 May 2010 20:19:05 -0700
changeset 1875
bb843ebc7c55
parent 1822
0bfd3fb24150
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6919638: CMS: ExplicitGCInvokesConcurrent misinteracts with gc locker
Summary: GC-locker induced concurrent full gc should be asynchronous; policy now controlled by a separate flag, which defaults to false.
Reviewed-by: jmasa

     1 /*
     2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_genCollectedHeap.cpp.incl"
    28 GenCollectedHeap* GenCollectedHeap::_gch;
    29 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
    31 // The set of potentially parallel tasks in strong root scanning.
    32 enum GCH_process_strong_roots_tasks {
    33   // We probably want to parallelize both of these internally, but for now...
    34   GCH_PS_younger_gens,
    35   // Leave this one last.
    36   GCH_PS_NumElements
    37 };
    39 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
    40   SharedHeap(policy),
    41   _gen_policy(policy),
    42   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
    43   _full_collections_completed(0)
    44 {
    45   if (_gen_process_strong_tasks == NULL ||
    46       !_gen_process_strong_tasks->valid()) {
    47     vm_exit_during_initialization("Failed necessary allocation.");
    48   }
    49   assert(policy != NULL, "Sanity check");
    50   _preloading_shared_classes = false;
    51 }
    53 jint GenCollectedHeap::initialize() {
    54   CollectedHeap::pre_initialize();
    56   int i;
    57   _n_gens = gen_policy()->number_of_generations();
    59   // While there are no constraints in the GC code that HeapWordSize
    60   // be any particular value, there are multiple other areas in the
    61   // system which believe this to be true (e.g. oop->object_size in some
    62   // cases incorrectly returns the size in wordSize units rather than
    63   // HeapWordSize).
    64   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
    66   // The heap must be at least as aligned as generations.
    67   size_t alignment = Generation::GenGrain;
    69   _gen_specs = gen_policy()->generations();
    70   PermanentGenerationSpec *perm_gen_spec =
    71                                 collector_policy()->permanent_generation();
    73   // Make sure the sizes are all aligned.
    74   for (i = 0; i < _n_gens; i++) {
    75     _gen_specs[i]->align(alignment);
    76   }
    77   perm_gen_spec->align(alignment);
    79   // If we are dumping the heap, then allocate a wasted block of address
    80   // space in order to push the heap to a lower address.  This extra
    81   // address range allows for other (or larger) libraries to be loaded
    82   // without them occupying the space required for the shared spaces.
    84   if (DumpSharedSpaces) {
    85     uintx reserved = 0;
    86     uintx block_size = 64*1024*1024;
    87     while (reserved < SharedDummyBlockSize) {
    88       char* dummy = os::reserve_memory(block_size);
    89       reserved += block_size;
    90     }
    91   }
    93   // Allocate space for the heap.
    95   char* heap_address;
    96   size_t total_reserved = 0;
    97   int n_covered_regions = 0;
    98   ReservedSpace heap_rs(0);
   100   heap_address = allocate(alignment, perm_gen_spec, &total_reserved,
   101                           &n_covered_regions, &heap_rs);
   103   if (UseSharedSpaces) {
   104     if (!heap_rs.is_reserved() || heap_address != heap_rs.base()) {
   105       if (heap_rs.is_reserved()) {
   106         heap_rs.release();
   107       }
   108       FileMapInfo* mapinfo = FileMapInfo::current_info();
   109       mapinfo->fail_continue("Unable to reserve shared region.");
   110       allocate(alignment, perm_gen_spec, &total_reserved, &n_covered_regions,
   111                &heap_rs);
   112     }
   113   }
   115   if (!heap_rs.is_reserved()) {
   116     vm_shutdown_during_initialization(
   117       "Could not reserve enough space for object heap");
   118     return JNI_ENOMEM;
   119   }
   121   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   122                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   124   // It is important to do this in a way such that concurrent readers can't
   125   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
   126   _reserved.set_word_size(0);
   127   _reserved.set_start((HeapWord*)heap_rs.base());
   128   size_t actual_heap_size = heap_rs.size() - perm_gen_spec->misc_data_size()
   129                                            - perm_gen_spec->misc_code_size();
   130   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
   132   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
   133   set_barrier_set(rem_set()->bs());
   135   _gch = this;
   137   for (i = 0; i < _n_gens; i++) {
   138     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(),
   139                                               UseSharedSpaces, UseSharedSpaces);
   140     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
   141     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
   142   }
   143   _perm_gen = perm_gen_spec->init(heap_rs, PermSize, rem_set());
   145   clear_incremental_collection_will_fail();
   146   clear_last_incremental_collection_failed();
   148 #ifndef SERIALGC
   149   // If we are running CMS, create the collector responsible
   150   // for collecting the CMS generations.
   151   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
   152     bool success = create_cms_collector();
   153     if (!success) return JNI_ENOMEM;
   154   }
   155 #endif // SERIALGC
   157   return JNI_OK;
   158 }
   161 char* GenCollectedHeap::allocate(size_t alignment,
   162                                  PermanentGenerationSpec* perm_gen_spec,
   163                                  size_t* _total_reserved,
   164                                  int* _n_covered_regions,
   165                                  ReservedSpace* heap_rs){
   166   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
   167     "the maximum representable size";
   169   // Now figure out the total size.
   170   size_t total_reserved = 0;
   171   int n_covered_regions = 0;
   172   const size_t pageSize = UseLargePages ?
   173       os::large_page_size() : os::vm_page_size();
   175   for (int i = 0; i < _n_gens; i++) {
   176     total_reserved += _gen_specs[i]->max_size();
   177     if (total_reserved < _gen_specs[i]->max_size()) {
   178       vm_exit_during_initialization(overflow_msg);
   179     }
   180     n_covered_regions += _gen_specs[i]->n_covered_regions();
   181   }
   182   assert(total_reserved % pageSize == 0, "Gen size");
   183   total_reserved += perm_gen_spec->max_size();
   184   assert(total_reserved % pageSize == 0, "Perm Gen size");
   186   if (total_reserved < perm_gen_spec->max_size()) {
   187     vm_exit_during_initialization(overflow_msg);
   188   }
   189   n_covered_regions += perm_gen_spec->n_covered_regions();
   191   // Add the size of the data area which shares the same reserved area
   192   // as the heap, but which is not actually part of the heap.
   193   size_t s = perm_gen_spec->misc_data_size() + perm_gen_spec->misc_code_size();
   195   total_reserved += s;
   196   if (total_reserved < s) {
   197     vm_exit_during_initialization(overflow_msg);
   198   }
   200   if (UseLargePages) {
   201     assert(total_reserved != 0, "total_reserved cannot be 0");
   202     total_reserved = round_to(total_reserved, os::large_page_size());
   203     if (total_reserved < os::large_page_size()) {
   204       vm_exit_during_initialization(overflow_msg);
   205     }
   206   }
   208   // Calculate the address at which the heap must reside in order for
   209   // the shared data to be at the required address.
   211   char* heap_address;
   212   if (UseSharedSpaces) {
   214     // Calculate the address of the first word beyond the heap.
   215     FileMapInfo* mapinfo = FileMapInfo::current_info();
   216     int lr = CompactingPermGenGen::n_regions - 1;
   217     size_t capacity = align_size_up(mapinfo->space_capacity(lr), alignment);
   218     heap_address = mapinfo->region_base(lr) + capacity;
   220     // Calculate the address of the first word of the heap.
   221     heap_address -= total_reserved;
   222   } else {
   223     heap_address = NULL;  // any address will do.
   224     if (UseCompressedOops) {
   225       heap_address = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
   226       *_total_reserved = total_reserved;
   227       *_n_covered_regions = n_covered_regions;
   228       *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   229                                    UseLargePages, heap_address);
   231       if (heap_address != NULL && !heap_rs->is_reserved()) {
   232         // Failed to reserve at specified address - the requested memory
   233         // region is taken already, for example, by 'java' launcher.
   234         // Try again to reserver heap higher.
   235         heap_address = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
   236         *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   237                                      UseLargePages, heap_address);
   239         if (heap_address != NULL && !heap_rs->is_reserved()) {
   240           // Failed to reserve at specified address again - give up.
   241           heap_address = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
   242           assert(heap_address == NULL, "");
   243           *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   244                                        UseLargePages, heap_address);
   245         }
   246       }
   247       return heap_address;
   248     }
   249   }
   251   *_total_reserved = total_reserved;
   252   *_n_covered_regions = n_covered_regions;
   253   *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   254                                UseLargePages, heap_address);
   256   return heap_address;
   257 }
   260 void GenCollectedHeap::post_initialize() {
   261   SharedHeap::post_initialize();
   262   TwoGenerationCollectorPolicy *policy =
   263     (TwoGenerationCollectorPolicy *)collector_policy();
   264   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
   265   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
   266   assert(def_new_gen->kind() == Generation::DefNew ||
   267          def_new_gen->kind() == Generation::ParNew ||
   268          def_new_gen->kind() == Generation::ASParNew,
   269          "Wrong generation kind");
   271   Generation* old_gen = get_gen(1);
   272   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
   273          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
   274          old_gen->kind() == Generation::MarkSweepCompact,
   275     "Wrong generation kind");
   277   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
   278                                  old_gen->capacity(),
   279                                  def_new_gen->from()->capacity());
   280   policy->initialize_gc_policy_counters();
   281 }
   283 void GenCollectedHeap::ref_processing_init() {
   284   SharedHeap::ref_processing_init();
   285   for (int i = 0; i < _n_gens; i++) {
   286     _gens[i]->ref_processor_init();
   287   }
   288 }
   290 size_t GenCollectedHeap::capacity() const {
   291   size_t res = 0;
   292   for (int i = 0; i < _n_gens; i++) {
   293     res += _gens[i]->capacity();
   294   }
   295   return res;
   296 }
   298 size_t GenCollectedHeap::used() const {
   299   size_t res = 0;
   300   for (int i = 0; i < _n_gens; i++) {
   301     res += _gens[i]->used();
   302   }
   303   return res;
   304 }
   306 // Save the "used_region" for generations level and lower,
   307 // and, if perm is true, for perm gen.
   308 void GenCollectedHeap::save_used_regions(int level, bool perm) {
   309   assert(level < _n_gens, "Illegal level parameter");
   310   for (int i = level; i >= 0; i--) {
   311     _gens[i]->save_used_region();
   312   }
   313   if (perm) {
   314     perm_gen()->save_used_region();
   315   }
   316 }
   318 size_t GenCollectedHeap::max_capacity() const {
   319   size_t res = 0;
   320   for (int i = 0; i < _n_gens; i++) {
   321     res += _gens[i]->max_capacity();
   322   }
   323   return res;
   324 }
   326 // Update the _full_collections_completed counter
   327 // at the end of a stop-world full GC.
   328 unsigned int GenCollectedHeap::update_full_collections_completed() {
   329   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   330   assert(_full_collections_completed <= _total_full_collections,
   331          "Can't complete more collections than were started");
   332   _full_collections_completed = _total_full_collections;
   333   ml.notify_all();
   334   return _full_collections_completed;
   335 }
   337 // Update the _full_collections_completed counter, as appropriate,
   338 // at the end of a concurrent GC cycle. Note the conditional update
   339 // below to allow this method to be called by a concurrent collector
   340 // without synchronizing in any manner with the VM thread (which
   341 // may already have initiated a STW full collection "concurrently").
   342 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
   343   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   344   assert((_full_collections_completed <= _total_full_collections) &&
   345          (count <= _total_full_collections),
   346          "Can't complete more collections than were started");
   347   if (count > _full_collections_completed) {
   348     _full_collections_completed = count;
   349     ml.notify_all();
   350   }
   351   return _full_collections_completed;
   352 }
   355 #ifndef PRODUCT
   356 // Override of memory state checking method in CollectedHeap:
   357 // Some collectors (CMS for example) can't have badHeapWordVal written
   358 // in the first two words of an object. (For instance , in the case of
   359 // CMS these words hold state used to synchronize between certain
   360 // (concurrent) GC steps and direct allocating mutators.)
   361 // The skip_header_HeapWords() method below, allows us to skip
   362 // over the requisite number of HeapWord's. Note that (for
   363 // generational collectors) this means that those many words are
   364 // skipped in each object, irrespective of the generation in which
   365 // that object lives. The resultant loss of precision seems to be
   366 // harmless and the pain of avoiding that imprecision appears somewhat
   367 // higher than we are prepared to pay for such rudimentary debugging
   368 // support.
   369 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
   370                                                          size_t size) {
   371   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   372     // We are asked to check a size in HeapWords,
   373     // but the memory is mangled in juint words.
   374     juint* start = (juint*) (addr + skip_header_HeapWords());
   375     juint* end   = (juint*) (addr + size);
   376     for (juint* slot = start; slot < end; slot += 1) {
   377       assert(*slot == badHeapWordVal,
   378              "Found non badHeapWordValue in pre-allocation check");
   379     }
   380   }
   381 }
   382 #endif
   384 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
   385                                                bool is_tlab,
   386                                                bool first_only) {
   387   HeapWord* res;
   388   for (int i = 0; i < _n_gens; i++) {
   389     if (_gens[i]->should_allocate(size, is_tlab)) {
   390       res = _gens[i]->allocate(size, is_tlab);
   391       if (res != NULL) return res;
   392       else if (first_only) break;
   393     }
   394   }
   395   // Otherwise...
   396   return NULL;
   397 }
   399 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
   400                                          bool is_large_noref,
   401                                          bool is_tlab,
   402                                          bool* gc_overhead_limit_was_exceeded) {
   403   return collector_policy()->mem_allocate_work(size,
   404                                                is_tlab,
   405                                                gc_overhead_limit_was_exceeded);
   406 }
   408 bool GenCollectedHeap::must_clear_all_soft_refs() {
   409   return _gc_cause == GCCause::_last_ditch_collection;
   410 }
   412 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
   413   return UseConcMarkSweepGC &&
   414          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
   415           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
   416 }
   418 void GenCollectedHeap::do_collection(bool  full,
   419                                      bool   clear_all_soft_refs,
   420                                      size_t size,
   421                                      bool   is_tlab,
   422                                      int    max_level) {
   423   bool prepared_for_verification = false;
   424   ResourceMark rm;
   425   DEBUG_ONLY(Thread* my_thread = Thread::current();)
   427   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   428   assert(my_thread->is_VM_thread() ||
   429          my_thread->is_ConcurrentGC_thread(),
   430          "incorrect thread type capability");
   431   assert(Heap_lock->is_locked(),
   432          "the requesting thread should have the Heap_lock");
   433   guarantee(!is_gc_active(), "collection is not reentrant");
   434   assert(max_level < n_gens(), "sanity check");
   436   if (GC_locker::check_active_before_gc()) {
   437     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   438   }
   440   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
   441                           collector_policy()->should_clear_all_soft_refs();
   443   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
   445   const size_t perm_prev_used = perm_gen()->used();
   447   if (PrintHeapAtGC) {
   448     Universe::print_heap_before_gc();
   449     if (Verbose) {
   450       gclog_or_tty->print_cr("GC Cause: %s", GCCause::to_string(gc_cause()));
   451     }
   452   }
   454   {
   455     FlagSetting fl(_is_gc_active, true);
   457     bool complete = full && (max_level == (n_gens()-1));
   458     const char* gc_cause_str = "GC ";
   459     if (complete) {
   460       GCCause::Cause cause = gc_cause();
   461       if (cause == GCCause::_java_lang_system_gc) {
   462         gc_cause_str = "Full GC (System) ";
   463       } else {
   464         gc_cause_str = "Full GC ";
   465       }
   466     }
   467     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   468     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   469     TraceTime t(gc_cause_str, PrintGCDetails, false, gclog_or_tty);
   471     gc_prologue(complete);
   472     increment_total_collections(complete);
   474     size_t gch_prev_used = used();
   476     int starting_level = 0;
   477     if (full) {
   478       // Search for the oldest generation which will collect all younger
   479       // generations, and start collection loop there.
   480       for (int i = max_level; i >= 0; i--) {
   481         if (_gens[i]->full_collects_younger_generations()) {
   482           starting_level = i;
   483           break;
   484         }
   485       }
   486     }
   488     bool must_restore_marks_for_biased_locking = false;
   490     int max_level_collected = starting_level;
   491     for (int i = starting_level; i <= max_level; i++) {
   492       if (_gens[i]->should_collect(full, size, is_tlab)) {
   493         if (i == n_gens() - 1) {  // a major collection is to happen
   494           if (!complete) {
   495             // The full_collections increment was missed above.
   496             increment_total_full_collections();
   497           }
   498           pre_full_gc_dump();    // do any pre full gc dumps
   499         }
   500         // Timer for individual generations. Last argument is false: no CR
   501         TraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, gclog_or_tty);
   502         TraceCollectorStats tcs(_gens[i]->counters());
   503         TraceMemoryManagerStats tmms(_gens[i]->kind());
   505         size_t prev_used = _gens[i]->used();
   506         _gens[i]->stat_record()->invocations++;
   507         _gens[i]->stat_record()->accumulated_time.start();
   509         // Must be done anew before each collection because
   510         // a previous collection will do mangling and will
   511         // change top of some spaces.
   512         record_gen_tops_before_GC();
   514         if (PrintGC && Verbose) {
   515           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
   516                      i,
   517                      _gens[i]->stat_record()->invocations,
   518                      size*HeapWordSize);
   519         }
   521         if (VerifyBeforeGC && i >= VerifyGCLevel &&
   522             total_collections() >= VerifyGCStartAt) {
   523           HandleMark hm;  // Discard invalid handles created during verification
   524           if (!prepared_for_verification) {
   525             prepare_for_verify();
   526             prepared_for_verification = true;
   527           }
   528           gclog_or_tty->print(" VerifyBeforeGC:");
   529           Universe::verify(true);
   530         }
   531         COMPILER2_PRESENT(DerivedPointerTable::clear());
   533         if (!must_restore_marks_for_biased_locking &&
   534             _gens[i]->performs_in_place_marking()) {
   535           // We perform this mark word preservation work lazily
   536           // because it's only at this point that we know whether we
   537           // absolutely have to do it; we want to avoid doing it for
   538           // scavenge-only collections where it's unnecessary
   539           must_restore_marks_for_biased_locking = true;
   540           BiasedLocking::preserve_marks();
   541         }
   543         // Do collection work
   544         {
   545           // Note on ref discovery: For what appear to be historical reasons,
   546           // GCH enables and disabled (by enqueing) refs discovery.
   547           // In the future this should be moved into the generation's
   548           // collect method so that ref discovery and enqueueing concerns
   549           // are local to a generation. The collect method could return
   550           // an appropriate indication in the case that notification on
   551           // the ref lock was needed. This will make the treatment of
   552           // weak refs more uniform (and indeed remove such concerns
   553           // from GCH). XXX
   555           HandleMark hm;  // Discard invalid handles created during gc
   556           save_marks();   // save marks for all gens
   557           // We want to discover references, but not process them yet.
   558           // This mode is disabled in process_discovered_references if the
   559           // generation does some collection work, or in
   560           // enqueue_discovered_references if the generation returns
   561           // without doing any work.
   562           ReferenceProcessor* rp = _gens[i]->ref_processor();
   563           // If the discovery of ("weak") refs in this generation is
   564           // atomic wrt other collectors in this configuration, we
   565           // are guaranteed to have empty discovered ref lists.
   566           if (rp->discovery_is_atomic()) {
   567             rp->verify_no_references_recorded();
   568             rp->enable_discovery();
   569             rp->setup_policy(do_clear_all_soft_refs);
   570           } else {
   571             // collect() below will enable discovery as appropriate
   572           }
   573           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
   574           if (!rp->enqueuing_is_done()) {
   575             rp->enqueue_discovered_references();
   576           } else {
   577             rp->set_enqueuing_is_done(false);
   578           }
   579           rp->verify_no_references_recorded();
   580         }
   581         max_level_collected = i;
   583         // Determine if allocation request was met.
   584         if (size > 0) {
   585           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
   586             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
   587               size = 0;
   588             }
   589           }
   590         }
   592         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   594         _gens[i]->stat_record()->accumulated_time.stop();
   596         update_gc_stats(i, full);
   598         if (VerifyAfterGC && i >= VerifyGCLevel &&
   599             total_collections() >= VerifyGCStartAt) {
   600           HandleMark hm;  // Discard invalid handles created during verification
   601           gclog_or_tty->print(" VerifyAfterGC:");
   602           Universe::verify(false);
   603         }
   605         if (PrintGCDetails) {
   606           gclog_or_tty->print(":");
   607           _gens[i]->print_heap_change(prev_used);
   608         }
   609       }
   610     }
   612     // Update "complete" boolean wrt what actually transpired --
   613     // for instance, a promotion failure could have led to
   614     // a whole heap collection.
   615     complete = complete || (max_level_collected == n_gens() - 1);
   617     if (complete) { // We did a "major" collection
   618       post_full_gc_dump();   // do any post full gc dumps
   619     }
   621     if (PrintGCDetails) {
   622       print_heap_change(gch_prev_used);
   624       // Print perm gen info for full GC with PrintGCDetails flag.
   625       if (complete) {
   626         print_perm_heap_change(perm_prev_used);
   627       }
   628     }
   630     for (int j = max_level_collected; j >= 0; j -= 1) {
   631       // Adjust generation sizes.
   632       _gens[j]->compute_new_size();
   633     }
   635     if (complete) {
   636       // Ask the permanent generation to adjust size for full collections
   637       perm()->compute_new_size();
   638       update_full_collections_completed();
   639     }
   641     // Track memory usage and detect low memory after GC finishes
   642     MemoryService::track_memory_usage();
   644     gc_epilogue(complete);
   646     if (must_restore_marks_for_biased_locking) {
   647       BiasedLocking::restore_marks();
   648     }
   649   }
   651   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
   652   AdaptiveSizePolicyOutput(sp, total_collections());
   654   if (PrintHeapAtGC) {
   655     Universe::print_heap_after_gc();
   656   }
   658 #ifdef TRACESPINNING
   659   ParallelTaskTerminator::print_termination_counts();
   660 #endif
   662   if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
   663     tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
   664     vm_exit(-1);
   665   }
   666 }
   668 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
   669   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
   670 }
   672 void GenCollectedHeap::set_par_threads(int t) {
   673   SharedHeap::set_par_threads(t);
   674   _gen_process_strong_tasks->set_par_threads(t);
   675 }
   677 class AssertIsPermClosure: public OopClosure {
   678 public:
   679   void do_oop(oop* p) {
   680     assert((*p) == NULL || (*p)->is_perm(), "Referent should be perm.");
   681   }
   682   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
   683 };
   684 static AssertIsPermClosure assert_is_perm_closure;
   686 void GenCollectedHeap::
   687 gen_process_strong_roots(int level,
   688                          bool younger_gens_as_roots,
   689                          bool activate_scope,
   690                          bool collecting_perm_gen,
   691                          SharedHeap::ScanningOption so,
   692                          OopsInGenClosure* not_older_gens,
   693                          bool do_code_roots,
   694                          OopsInGenClosure* older_gens) {
   695   // General strong roots.
   697   if (!do_code_roots) {
   698     SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
   699                                      not_older_gens, NULL, older_gens);
   700   } else {
   701     bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
   702     CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
   703     SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
   704                                      not_older_gens, &code_roots, older_gens);
   705   }
   707   if (younger_gens_as_roots) {
   708     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
   709       for (int i = 0; i < level; i++) {
   710         not_older_gens->set_generation(_gens[i]);
   711         _gens[i]->oop_iterate(not_older_gens);
   712       }
   713       not_older_gens->reset_generation();
   714     }
   715   }
   716   // When collection is parallel, all threads get to cooperate to do
   717   // older-gen scanning.
   718   for (int i = level+1; i < _n_gens; i++) {
   719     older_gens->set_generation(_gens[i]);
   720     rem_set()->younger_refs_iterate(_gens[i], older_gens);
   721     older_gens->reset_generation();
   722   }
   724   _gen_process_strong_tasks->all_tasks_completed();
   725 }
   727 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
   728                                               CodeBlobClosure* code_roots,
   729                                               OopClosure* non_root_closure) {
   730   SharedHeap::process_weak_roots(root_closure, code_roots, non_root_closure);
   731   // "Local" "weak" refs
   732   for (int i = 0; i < _n_gens; i++) {
   733     _gens[i]->ref_processor()->weak_oops_do(root_closure);
   734   }
   735 }
   737 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
   738 void GenCollectedHeap::                                                 \
   739 oop_since_save_marks_iterate(int level,                                 \
   740                              OopClosureType* cur,                       \
   741                              OopClosureType* older) {                   \
   742   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
   743   for (int i = level+1; i < n_gens(); i++) {                            \
   744     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
   745   }                                                                     \
   746   perm_gen()->oop_since_save_marks_iterate##nv_suffix(older);           \
   747 }
   749 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
   751 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
   753 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
   754   for (int i = level; i < _n_gens; i++) {
   755     if (!_gens[i]->no_allocs_since_save_marks()) return false;
   756   }
   757   return perm_gen()->no_allocs_since_save_marks();
   758 }
   760 bool GenCollectedHeap::supports_inline_contig_alloc() const {
   761   return _gens[0]->supports_inline_contig_alloc();
   762 }
   764 HeapWord** GenCollectedHeap::top_addr() const {
   765   return _gens[0]->top_addr();
   766 }
   768 HeapWord** GenCollectedHeap::end_addr() const {
   769   return _gens[0]->end_addr();
   770 }
   772 size_t GenCollectedHeap::unsafe_max_alloc() {
   773   return _gens[0]->unsafe_max_alloc_nogc();
   774 }
   776 // public collection interfaces
   778 void GenCollectedHeap::collect(GCCause::Cause cause) {
   779   if (should_do_concurrent_full_gc(cause)) {
   780 #ifndef SERIALGC
   781     // mostly concurrent full collection
   782     collect_mostly_concurrent(cause);
   783 #else  // SERIALGC
   784     ShouldNotReachHere();
   785 #endif // SERIALGC
   786   } else {
   787 #ifdef ASSERT
   788     if (cause == GCCause::_scavenge_alot) {
   789       // minor collection only
   790       collect(cause, 0);
   791     } else {
   792       // Stop-the-world full collection
   793       collect(cause, n_gens() - 1);
   794     }
   795 #else
   796     // Stop-the-world full collection
   797     collect(cause, n_gens() - 1);
   798 #endif
   799   }
   800 }
   802 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
   803   // The caller doesn't have the Heap_lock
   804   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   805   MutexLocker ml(Heap_lock);
   806   collect_locked(cause, max_level);
   807 }
   809 // This interface assumes that it's being called by the
   810 // vm thread. It collects the heap assuming that the
   811 // heap lock is already held and that we are executing in
   812 // the context of the vm thread.
   813 void GenCollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
   814   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   815   assert(Heap_lock->is_locked(), "Precondition#2");
   816   GCCauseSetter gcs(this, cause);
   817   switch (cause) {
   818     case GCCause::_heap_inspection:
   819     case GCCause::_heap_dump: {
   820       HandleMark hm;
   821       do_full_collection(false,         // don't clear all soft refs
   822                          n_gens() - 1);
   823       break;
   824     }
   825     default: // XXX FIX ME
   826       ShouldNotReachHere(); // Unexpected use of this function
   827   }
   828 }
   830 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
   831   // The caller has the Heap_lock
   832   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
   833   collect_locked(cause, n_gens() - 1);
   834 }
   836 // this is the private collection interface
   837 // The Heap_lock is expected to be held on entry.
   839 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
   840   if (_preloading_shared_classes) {
   841     warning("\nThe permanent generation is not large enough to preload "
   842             "requested classes.\nUse -XX:PermSize= to increase the initial "
   843             "size of the permanent generation.\n");
   844     vm_exit(2);
   845   }
   846   // Read the GC count while holding the Heap_lock
   847   unsigned int gc_count_before      = total_collections();
   848   unsigned int full_gc_count_before = total_full_collections();
   849   {
   850     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
   851     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
   852                          cause, max_level);
   853     VMThread::execute(&op);
   854   }
   855 }
   857 #ifndef SERIALGC
   858 bool GenCollectedHeap::create_cms_collector() {
   860   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
   861          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)) &&
   862          _perm_gen->as_gen()->kind() == Generation::ConcurrentMarkSweep,
   863          "Unexpected generation kinds");
   864   // Skip two header words in the block content verification
   865   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
   866   CMSCollector* collector = new CMSCollector(
   867     (ConcurrentMarkSweepGeneration*)_gens[1],
   868     (ConcurrentMarkSweepGeneration*)_perm_gen->as_gen(),
   869     _rem_set->as_CardTableRS(),
   870     (ConcurrentMarkSweepPolicy*) collector_policy());
   872   if (collector == NULL || !collector->completed_initialization()) {
   873     if (collector) {
   874       delete collector;  // Be nice in embedded situation
   875     }
   876     vm_shutdown_during_initialization("Could not create CMS collector");
   877     return false;
   878   }
   879   return true;  // success
   880 }
   882 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
   883   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
   885   MutexLocker ml(Heap_lock);
   886   // Read the GC counts while holding the Heap_lock
   887   unsigned int full_gc_count_before = total_full_collections();
   888   unsigned int gc_count_before      = total_collections();
   889   {
   890     MutexUnlocker mu(Heap_lock);
   891     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
   892     VMThread::execute(&op);
   893   }
   894 }
   895 #endif // SERIALGC
   898 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
   899                                           int max_level) {
   900   int local_max_level;
   901   if (!incremental_collection_will_fail() &&
   902       gc_cause() == GCCause::_gc_locker) {
   903     local_max_level = 0;
   904   } else {
   905     local_max_level = max_level;
   906   }
   908   do_collection(true                 /* full */,
   909                 clear_all_soft_refs  /* clear_all_soft_refs */,
   910                 0                    /* size */,
   911                 false                /* is_tlab */,
   912                 local_max_level      /* max_level */);
   913   // Hack XXX FIX ME !!!
   914   // A scavenge may not have been attempted, or may have
   915   // been attempted and failed, because the old gen was too full
   916   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
   917       incremental_collection_will_fail()) {
   918     if (PrintGCDetails) {
   919       gclog_or_tty->print_cr("GC locker: Trying a full collection "
   920                              "because scavenge failed");
   921     }
   922     // This time allow the old gen to be collected as well
   923     do_collection(true                 /* full */,
   924                   clear_all_soft_refs  /* clear_all_soft_refs */,
   925                   0                    /* size */,
   926                   false                /* is_tlab */,
   927                   n_gens() - 1         /* max_level */);
   928   }
   929 }
   931 // Returns "TRUE" iff "p" points into the allocated area of the heap.
   932 bool GenCollectedHeap::is_in(const void* p) const {
   933   #ifndef ASSERT
   934   guarantee(VerifyBeforeGC   ||
   935             VerifyDuringGC   ||
   936             VerifyBeforeExit ||
   937             PrintAssembly    ||
   938             tty->count() != 0 ||   // already printing
   939             VerifyAfterGC, "too expensive");
   940   #endif
   941   // This might be sped up with a cache of the last generation that
   942   // answered yes.
   943   for (int i = 0; i < _n_gens; i++) {
   944     if (_gens[i]->is_in(p)) return true;
   945   }
   946   if (_perm_gen->as_gen()->is_in(p)) return true;
   947   // Otherwise...
   948   return false;
   949 }
   951 // Returns "TRUE" iff "p" points into the allocated area of the heap.
   952 bool GenCollectedHeap::is_in_youngest(void* p) {
   953   return _gens[0]->is_in(p);
   954 }
   956 void GenCollectedHeap::oop_iterate(OopClosure* cl) {
   957   for (int i = 0; i < _n_gens; i++) {
   958     _gens[i]->oop_iterate(cl);
   959   }
   960 }
   962 void GenCollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
   963   for (int i = 0; i < _n_gens; i++) {
   964     _gens[i]->oop_iterate(mr, cl);
   965   }
   966 }
   968 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
   969   for (int i = 0; i < _n_gens; i++) {
   970     _gens[i]->object_iterate(cl);
   971   }
   972   perm_gen()->object_iterate(cl);
   973 }
   975 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
   976   for (int i = 0; i < _n_gens; i++) {
   977     _gens[i]->safe_object_iterate(cl);
   978   }
   979   perm_gen()->safe_object_iterate(cl);
   980 }
   982 void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
   983   for (int i = 0; i < _n_gens; i++) {
   984     _gens[i]->object_iterate_since_last_GC(cl);
   985   }
   986 }
   988 Space* GenCollectedHeap::space_containing(const void* addr) const {
   989   for (int i = 0; i < _n_gens; i++) {
   990     Space* res = _gens[i]->space_containing(addr);
   991     if (res != NULL) return res;
   992   }
   993   Space* res = perm_gen()->space_containing(addr);
   994   if (res != NULL) return res;
   995   // Otherwise...
   996   assert(false, "Could not find containing space");
   997   return NULL;
   998 }
  1001 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
  1002   assert(is_in_reserved(addr), "block_start of address outside of heap");
  1003   for (int i = 0; i < _n_gens; i++) {
  1004     if (_gens[i]->is_in_reserved(addr)) {
  1005       assert(_gens[i]->is_in(addr),
  1006              "addr should be in allocated part of generation");
  1007       return _gens[i]->block_start(addr);
  1010   if (perm_gen()->is_in_reserved(addr)) {
  1011     assert(perm_gen()->is_in(addr),
  1012            "addr should be in allocated part of perm gen");
  1013     return perm_gen()->block_start(addr);
  1015   assert(false, "Some generation should contain the address");
  1016   return NULL;
  1019 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
  1020   assert(is_in_reserved(addr), "block_size of address outside of heap");
  1021   for (int i = 0; i < _n_gens; i++) {
  1022     if (_gens[i]->is_in_reserved(addr)) {
  1023       assert(_gens[i]->is_in(addr),
  1024              "addr should be in allocated part of generation");
  1025       return _gens[i]->block_size(addr);
  1028   if (perm_gen()->is_in_reserved(addr)) {
  1029     assert(perm_gen()->is_in(addr),
  1030            "addr should be in allocated part of perm gen");
  1031     return perm_gen()->block_size(addr);
  1033   assert(false, "Some generation should contain the address");
  1034   return 0;
  1037 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
  1038   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
  1039   assert(block_start(addr) == addr, "addr must be a block start");
  1040   for (int i = 0; i < _n_gens; i++) {
  1041     if (_gens[i]->is_in_reserved(addr)) {
  1042       return _gens[i]->block_is_obj(addr);
  1045   if (perm_gen()->is_in_reserved(addr)) {
  1046     return perm_gen()->block_is_obj(addr);
  1048   assert(false, "Some generation should contain the address");
  1049   return false;
  1052 bool GenCollectedHeap::supports_tlab_allocation() const {
  1053   for (int i = 0; i < _n_gens; i += 1) {
  1054     if (_gens[i]->supports_tlab_allocation()) {
  1055       return true;
  1058   return false;
  1061 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
  1062   size_t result = 0;
  1063   for (int i = 0; i < _n_gens; i += 1) {
  1064     if (_gens[i]->supports_tlab_allocation()) {
  1065       result += _gens[i]->tlab_capacity();
  1068   return result;
  1071 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
  1072   size_t result = 0;
  1073   for (int i = 0; i < _n_gens; i += 1) {
  1074     if (_gens[i]->supports_tlab_allocation()) {
  1075       result += _gens[i]->unsafe_max_tlab_alloc();
  1078   return result;
  1081 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
  1082   bool gc_overhead_limit_was_exceeded;
  1083   HeapWord* result = mem_allocate(size   /* size */,
  1084                                   false  /* is_large_noref */,
  1085                                   true   /* is_tlab */,
  1086                                   &gc_overhead_limit_was_exceeded);
  1087   return result;
  1090 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
  1091 // from the list headed by "*prev_ptr".
  1092 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
  1093   bool first = true;
  1094   size_t min_size = 0;   // "first" makes this conceptually infinite.
  1095   ScratchBlock **smallest_ptr, *smallest;
  1096   ScratchBlock  *cur = *prev_ptr;
  1097   while (cur) {
  1098     assert(*prev_ptr == cur, "just checking");
  1099     if (first || cur->num_words < min_size) {
  1100       smallest_ptr = prev_ptr;
  1101       smallest     = cur;
  1102       min_size     = smallest->num_words;
  1103       first        = false;
  1105     prev_ptr = &cur->next;
  1106     cur     =  cur->next;
  1108   smallest      = *smallest_ptr;
  1109   *smallest_ptr = smallest->next;
  1110   return smallest;
  1113 // Sort the scratch block list headed by res into decreasing size order,
  1114 // and set "res" to the result.
  1115 static void sort_scratch_list(ScratchBlock*& list) {
  1116   ScratchBlock* sorted = NULL;
  1117   ScratchBlock* unsorted = list;
  1118   while (unsorted) {
  1119     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
  1120     smallest->next  = sorted;
  1121     sorted          = smallest;
  1123   list = sorted;
  1126 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
  1127                                                size_t max_alloc_words) {
  1128   ScratchBlock* res = NULL;
  1129   for (int i = 0; i < _n_gens; i++) {
  1130     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
  1132   sort_scratch_list(res);
  1133   return res;
  1136 void GenCollectedHeap::release_scratch() {
  1137   for (int i = 0; i < _n_gens; i++) {
  1138     _gens[i]->reset_scratch();
  1142 size_t GenCollectedHeap::large_typearray_limit() {
  1143   return gen_policy()->large_typearray_limit();
  1146 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
  1147   void do_generation(Generation* gen) {
  1148     gen->prepare_for_verify();
  1150 };
  1152 void GenCollectedHeap::prepare_for_verify() {
  1153   ensure_parsability(false);        // no need to retire TLABs
  1154   GenPrepareForVerifyClosure blk;
  1155   generation_iterate(&blk, false);
  1156   perm_gen()->prepare_for_verify();
  1160 void GenCollectedHeap::generation_iterate(GenClosure* cl,
  1161                                           bool old_to_young) {
  1162   if (old_to_young) {
  1163     for (int i = _n_gens-1; i >= 0; i--) {
  1164       cl->do_generation(_gens[i]);
  1166   } else {
  1167     for (int i = 0; i < _n_gens; i++) {
  1168       cl->do_generation(_gens[i]);
  1173 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
  1174   for (int i = 0; i < _n_gens; i++) {
  1175     _gens[i]->space_iterate(cl, true);
  1177   perm_gen()->space_iterate(cl, true);
  1180 bool GenCollectedHeap::is_maximal_no_gc() const {
  1181   for (int i = 0; i < _n_gens; i++) {  // skip perm gen
  1182     if (!_gens[i]->is_maximal_no_gc()) {
  1183       return false;
  1186   return true;
  1189 void GenCollectedHeap::save_marks() {
  1190   for (int i = 0; i < _n_gens; i++) {
  1191     _gens[i]->save_marks();
  1193   perm_gen()->save_marks();
  1196 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
  1197   for (int i = 0; i <= collectedGen; i++) {
  1198     _gens[i]->compute_new_size();
  1202 GenCollectedHeap* GenCollectedHeap::heap() {
  1203   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
  1204   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
  1205   return _gch;
  1209 void GenCollectedHeap::prepare_for_compaction() {
  1210   Generation* scanning_gen = _gens[_n_gens-1];
  1211   // Start by compacting into same gen.
  1212   CompactPoint cp(scanning_gen, NULL, NULL);
  1213   while (scanning_gen != NULL) {
  1214     scanning_gen->prepare_for_compaction(&cp);
  1215     scanning_gen = prev_gen(scanning_gen);
  1219 GCStats* GenCollectedHeap::gc_stats(int level) const {
  1220   return _gens[level]->gc_stats();
  1223 void GenCollectedHeap::verify(bool allow_dirty, bool silent, bool option /* ignored */) {
  1224   if (!silent) {
  1225     gclog_or_tty->print("permgen ");
  1227   perm_gen()->verify(allow_dirty);
  1228   for (int i = _n_gens-1; i >= 0; i--) {
  1229     Generation* g = _gens[i];
  1230     if (!silent) {
  1231       gclog_or_tty->print(g->name());
  1232       gclog_or_tty->print(" ");
  1234     g->verify(allow_dirty);
  1236   if (!silent) {
  1237     gclog_or_tty->print("remset ");
  1239   rem_set()->verify();
  1240   if (!silent) {
  1241      gclog_or_tty->print("ref_proc ");
  1243   ReferenceProcessor::verify();
  1246 void GenCollectedHeap::print() const { print_on(tty); }
  1247 void GenCollectedHeap::print_on(outputStream* st) const {
  1248   for (int i = 0; i < _n_gens; i++) {
  1249     _gens[i]->print_on(st);
  1251   perm_gen()->print_on(st);
  1254 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  1255   if (workers() != NULL) {
  1256     workers()->threads_do(tc);
  1258 #ifndef SERIALGC
  1259   if (UseConcMarkSweepGC) {
  1260     ConcurrentMarkSweepThread::threads_do(tc);
  1262 #endif // SERIALGC
  1265 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
  1266 #ifndef SERIALGC
  1267   if (UseParNewGC) {
  1268     workers()->print_worker_threads_on(st);
  1270   if (UseConcMarkSweepGC) {
  1271     ConcurrentMarkSweepThread::print_all_on(st);
  1273 #endif // SERIALGC
  1276 void GenCollectedHeap::print_tracing_info() const {
  1277   if (TraceGen0Time) {
  1278     get_gen(0)->print_summary_info();
  1280   if (TraceGen1Time) {
  1281     get_gen(1)->print_summary_info();
  1285 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
  1286   if (PrintGCDetails && Verbose) {
  1287     gclog_or_tty->print(" "  SIZE_FORMAT
  1288                         "->" SIZE_FORMAT
  1289                         "("  SIZE_FORMAT ")",
  1290                         prev_used, used(), capacity());
  1291   } else {
  1292     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  1293                         "->" SIZE_FORMAT "K"
  1294                         "("  SIZE_FORMAT "K)",
  1295                         prev_used / K, used() / K, capacity() / K);
  1299 //New method to print perm gen info with PrintGCDetails flag
  1300 void GenCollectedHeap::print_perm_heap_change(size_t perm_prev_used) const {
  1301   gclog_or_tty->print(", [%s :", perm_gen()->short_name());
  1302   perm_gen()->print_heap_change(perm_prev_used);
  1303   gclog_or_tty->print("]");
  1306 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
  1307  private:
  1308   bool _full;
  1309  public:
  1310   void do_generation(Generation* gen) {
  1311     gen->gc_prologue(_full);
  1313   GenGCPrologueClosure(bool full) : _full(full) {};
  1314 };
  1316 void GenCollectedHeap::gc_prologue(bool full) {
  1317   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  1319   always_do_update_barrier = false;
  1320   // Fill TLAB's and such
  1321   CollectedHeap::accumulate_statistics_all_tlabs();
  1322   ensure_parsability(true);   // retire TLABs
  1324   // Call allocation profiler
  1325   AllocationProfiler::iterate_since_last_gc();
  1326   // Walk generations
  1327   GenGCPrologueClosure blk(full);
  1328   generation_iterate(&blk, false);  // not old-to-young.
  1329   perm_gen()->gc_prologue(full);
  1330 };
  1332 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
  1333  private:
  1334   bool _full;
  1335  public:
  1336   void do_generation(Generation* gen) {
  1337     gen->gc_epilogue(_full);
  1339   GenGCEpilogueClosure(bool full) : _full(full) {};
  1340 };
  1342 void GenCollectedHeap::gc_epilogue(bool full) {
  1343   // Remember if a partial collection of the heap failed, and
  1344   // we did a complete collection.
  1345   if (full && incremental_collection_will_fail()) {
  1346     set_last_incremental_collection_failed();
  1347   } else {
  1348     clear_last_incremental_collection_failed();
  1350   // Clear the flag, if set; the generation gc_epilogues will set the
  1351   // flag again if the condition persists despite the collection.
  1352   clear_incremental_collection_will_fail();
  1354 #ifdef COMPILER2
  1355   assert(DerivedPointerTable::is_empty(), "derived pointer present");
  1356   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
  1357   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
  1358 #endif /* COMPILER2 */
  1360   resize_all_tlabs();
  1362   GenGCEpilogueClosure blk(full);
  1363   generation_iterate(&blk, false);  // not old-to-young.
  1364   perm_gen()->gc_epilogue(full);
  1366   always_do_update_barrier = UseConcMarkSweepGC;
  1367 };
  1369 #ifndef PRODUCT
  1370 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
  1371  private:
  1372  public:
  1373   void do_generation(Generation* gen) {
  1374     gen->record_spaces_top();
  1376 };
  1378 void GenCollectedHeap::record_gen_tops_before_GC() {
  1379   if (ZapUnusedHeapArea) {
  1380     GenGCSaveTopsBeforeGCClosure blk;
  1381     generation_iterate(&blk, false);  // not old-to-young.
  1382     perm_gen()->record_spaces_top();
  1385 #endif  // not PRODUCT
  1387 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
  1388  public:
  1389   void do_generation(Generation* gen) {
  1390     gen->ensure_parsability();
  1392 };
  1394 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
  1395   CollectedHeap::ensure_parsability(retire_tlabs);
  1396   GenEnsureParsabilityClosure ep_cl;
  1397   generation_iterate(&ep_cl, false);
  1398   perm_gen()->ensure_parsability();
  1401 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
  1402                                               oop obj,
  1403                                               size_t obj_size) {
  1404   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1405   HeapWord* result = NULL;
  1407   // First give each higher generation a chance to allocate the promoted object.
  1408   Generation* allocator = next_gen(gen);
  1409   if (allocator != NULL) {
  1410     do {
  1411       result = allocator->allocate(obj_size, false);
  1412     } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
  1415   if (result == NULL) {
  1416     // Then give gen and higher generations a chance to expand and allocate the
  1417     // object.
  1418     do {
  1419       result = gen->expand_and_allocate(obj_size, false);
  1420     } while (result == NULL && (gen = next_gen(gen)) != NULL);
  1423   if (result != NULL) {
  1424     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
  1426   return oop(result);
  1429 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
  1430   jlong _time;   // in ms
  1431   jlong _now;    // in ms
  1433  public:
  1434   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
  1436   jlong time() { return _time; }
  1438   void do_generation(Generation* gen) {
  1439     _time = MIN2(_time, gen->time_of_last_gc(_now));
  1441 };
  1443 jlong GenCollectedHeap::millis_since_last_gc() {
  1444   jlong now = os::javaTimeMillis();
  1445   GenTimeOfLastGCClosure tolgc_cl(now);
  1446   // iterate over generations getting the oldest
  1447   // time that a generation was collected
  1448   generation_iterate(&tolgc_cl, false);
  1449   tolgc_cl.do_generation(perm_gen());
  1450   // XXX Despite the assert above, since javaTimeMillis()
  1451   // doesnot guarantee monotonically increasing return
  1452   // values (note, i didn't say "strictly monotonic"),
  1453   // we need to guard against getting back a time
  1454   // later than now. This should be fixed by basing
  1455   // on someting like gethrtime() which guarantees
  1456   // monotonicity. Note that cond_wait() is susceptible
  1457   // to a similar problem, because its interface is
  1458   // based on absolute time in the form of the
  1459   // system time's notion of UCT. See also 4506635
  1460   // for yet another problem of similar nature. XXX
  1461   jlong retVal = now - tolgc_cl.time();
  1462   if (retVal < 0) {
  1463     NOT_PRODUCT(warning("time warp: %d", retVal);)
  1464     return 0;
  1466   return retVal;

mercurial