src/os/linux/vm/os_linux.cpp

Thu, 05 Sep 2013 14:15:54 +0200

author
tschatzl
date
Thu, 05 Sep 2013 14:15:54 +0200
changeset 5650
bb57d48691f5
parent 5612
d8e99408faad
parent 5645
0d59407e7e09
child 5679
2e6938dd68f2
child 5701
40136aa2cdb1
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/osThread.hpp"
    53 #include "runtime/perfMemory.hpp"
    54 #include "runtime/sharedRuntime.hpp"
    55 #include "runtime/statSampler.hpp"
    56 #include "runtime/stubRoutines.hpp"
    57 #include "runtime/thread.inline.hpp"
    58 #include "runtime/threadCritical.hpp"
    59 #include "runtime/timer.hpp"
    60 #include "services/attachListener.hpp"
    61 #include "services/memTracker.hpp"
    62 #include "services/runtimeService.hpp"
    63 #include "utilities/decoder.hpp"
    64 #include "utilities/defaultStream.hpp"
    65 #include "utilities/events.hpp"
    66 #include "utilities/elfFile.hpp"
    67 #include "utilities/growableArray.hpp"
    68 #include "utilities/vmError.hpp"
    70 // put OS-includes here
    71 # include <sys/types.h>
    72 # include <sys/mman.h>
    73 # include <sys/stat.h>
    74 # include <sys/select.h>
    75 # include <pthread.h>
    76 # include <signal.h>
    77 # include <errno.h>
    78 # include <dlfcn.h>
    79 # include <stdio.h>
    80 # include <unistd.h>
    81 # include <sys/resource.h>
    82 # include <pthread.h>
    83 # include <sys/stat.h>
    84 # include <sys/time.h>
    85 # include <sys/times.h>
    86 # include <sys/utsname.h>
    87 # include <sys/socket.h>
    88 # include <sys/wait.h>
    89 # include <pwd.h>
    90 # include <poll.h>
    91 # include <semaphore.h>
    92 # include <fcntl.h>
    93 # include <string.h>
    94 # include <syscall.h>
    95 # include <sys/sysinfo.h>
    96 # include <gnu/libc-version.h>
    97 # include <sys/ipc.h>
    98 # include <sys/shm.h>
    99 # include <link.h>
   100 # include <stdint.h>
   101 # include <inttypes.h>
   102 # include <sys/ioctl.h>
   104 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   105 // getrusage() is prepared to handle the associated failure.
   106 #ifndef RUSAGE_THREAD
   107 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   108 #endif
   110 #define MAX_PATH    (2 * K)
   112 // for timer info max values which include all bits
   113 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   115 #define LARGEPAGES_BIT (1 << 6)
   116 ////////////////////////////////////////////////////////////////////////////////
   117 // global variables
   118 julong os::Linux::_physical_memory = 0;
   120 address   os::Linux::_initial_thread_stack_bottom = NULL;
   121 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   123 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   124 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   125 Mutex* os::Linux::_createThread_lock = NULL;
   126 pthread_t os::Linux::_main_thread;
   127 int os::Linux::_page_size = -1;
   128 const int os::Linux::_vm_default_page_size = (8 * K);
   129 bool os::Linux::_is_floating_stack = false;
   130 bool os::Linux::_is_NPTL = false;
   131 bool os::Linux::_supports_fast_thread_cpu_time = false;
   132 const char * os::Linux::_glibc_version = NULL;
   133 const char * os::Linux::_libpthread_version = NULL;
   135 static jlong initial_time_count=0;
   137 static int clock_tics_per_sec = 100;
   139 // For diagnostics to print a message once. see run_periodic_checks
   140 static sigset_t check_signal_done;
   141 static bool check_signals = true;;
   143 static pid_t _initial_pid = 0;
   145 /* Signal number used to suspend/resume a thread */
   147 /* do not use any signal number less than SIGSEGV, see 4355769 */
   148 static int SR_signum = SIGUSR2;
   149 sigset_t SR_sigset;
   151 /* Used to protect dlsym() calls */
   152 static pthread_mutex_t dl_mutex;
   154 // Declarations
   155 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   157 #ifdef JAVASE_EMBEDDED
   158 class MemNotifyThread: public Thread {
   159   friend class VMStructs;
   160  public:
   161   virtual void run();
   163  private:
   164   static MemNotifyThread* _memnotify_thread;
   165   int _fd;
   167  public:
   169   // Constructor
   170   MemNotifyThread(int fd);
   172   // Tester
   173   bool is_memnotify_thread() const { return true; }
   175   // Printing
   176   char* name() const { return (char*)"Linux MemNotify Thread"; }
   178   // Returns the single instance of the MemNotifyThread
   179   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
   181   // Create and start the single instance of MemNotifyThread
   182   static void start();
   183 };
   184 #endif // JAVASE_EMBEDDED
   186 // utility functions
   188 static int SR_initialize();
   190 julong os::available_memory() {
   191   return Linux::available_memory();
   192 }
   194 julong os::Linux::available_memory() {
   195   // values in struct sysinfo are "unsigned long"
   196   struct sysinfo si;
   197   sysinfo(&si);
   199   return (julong)si.freeram * si.mem_unit;
   200 }
   202 julong os::physical_memory() {
   203   return Linux::physical_memory();
   204 }
   206 ////////////////////////////////////////////////////////////////////////////////
   207 // environment support
   209 bool os::getenv(const char* name, char* buf, int len) {
   210   const char* val = ::getenv(name);
   211   if (val != NULL && strlen(val) < (size_t)len) {
   212     strcpy(buf, val);
   213     return true;
   214   }
   215   if (len > 0) buf[0] = 0;  // return a null string
   216   return false;
   217 }
   220 // Return true if user is running as root.
   222 bool os::have_special_privileges() {
   223   static bool init = false;
   224   static bool privileges = false;
   225   if (!init) {
   226     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   227     init = true;
   228   }
   229   return privileges;
   230 }
   233 #ifndef SYS_gettid
   234 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   235 #ifdef __ia64__
   236 #define SYS_gettid 1105
   237 #elif __i386__
   238 #define SYS_gettid 224
   239 #elif __amd64__
   240 #define SYS_gettid 186
   241 #elif __sparc__
   242 #define SYS_gettid 143
   243 #else
   244 #error define gettid for the arch
   245 #endif
   246 #endif
   248 // Cpu architecture string
   249 #if   defined(ZERO)
   250 static char cpu_arch[] = ZERO_LIBARCH;
   251 #elif defined(IA64)
   252 static char cpu_arch[] = "ia64";
   253 #elif defined(IA32)
   254 static char cpu_arch[] = "i386";
   255 #elif defined(AMD64)
   256 static char cpu_arch[] = "amd64";
   257 #elif defined(ARM)
   258 static char cpu_arch[] = "arm";
   259 #elif defined(PPC)
   260 static char cpu_arch[] = "ppc";
   261 #elif defined(SPARC)
   262 #  ifdef _LP64
   263 static char cpu_arch[] = "sparcv9";
   264 #  else
   265 static char cpu_arch[] = "sparc";
   266 #  endif
   267 #else
   268 #error Add appropriate cpu_arch setting
   269 #endif
   272 // pid_t gettid()
   273 //
   274 // Returns the kernel thread id of the currently running thread. Kernel
   275 // thread id is used to access /proc.
   276 //
   277 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   278 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   279 //
   280 pid_t os::Linux::gettid() {
   281   int rslt = syscall(SYS_gettid);
   282   if (rslt == -1) {
   283      // old kernel, no NPTL support
   284      return getpid();
   285   } else {
   286      return (pid_t)rslt;
   287   }
   288 }
   290 // Most versions of linux have a bug where the number of processors are
   291 // determined by looking at the /proc file system.  In a chroot environment,
   292 // the system call returns 1.  This causes the VM to act as if it is
   293 // a single processor and elide locking (see is_MP() call).
   294 static bool unsafe_chroot_detected = false;
   295 static const char *unstable_chroot_error = "/proc file system not found.\n"
   296                      "Java may be unstable running multithreaded in a chroot "
   297                      "environment on Linux when /proc filesystem is not mounted.";
   299 void os::Linux::initialize_system_info() {
   300   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   301   if (processor_count() == 1) {
   302     pid_t pid = os::Linux::gettid();
   303     char fname[32];
   304     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   305     FILE *fp = fopen(fname, "r");
   306     if (fp == NULL) {
   307       unsafe_chroot_detected = true;
   308     } else {
   309       fclose(fp);
   310     }
   311   }
   312   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   313   assert(processor_count() > 0, "linux error");
   314 }
   316 void os::init_system_properties_values() {
   317 //  char arch[12];
   318 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   320   // The next steps are taken in the product version:
   321   //
   322   // Obtain the JAVA_HOME value from the location of libjvm.so.
   323   // This library should be located at:
   324   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   325   //
   326   // If "/jre/lib/" appears at the right place in the path, then we
   327   // assume libjvm.so is installed in a JDK and we use this path.
   328   //
   329   // Otherwise exit with message: "Could not create the Java virtual machine."
   330   //
   331   // The following extra steps are taken in the debugging version:
   332   //
   333   // If "/jre/lib/" does NOT appear at the right place in the path
   334   // instead of exit check for $JAVA_HOME environment variable.
   335   //
   336   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   337   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   338   // it looks like libjvm.so is installed there
   339   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   340   //
   341   // Otherwise exit.
   342   //
   343   // Important note: if the location of libjvm.so changes this
   344   // code needs to be changed accordingly.
   346   // The next few definitions allow the code to be verbatim:
   347 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
   348 #define getenv(n) ::getenv(n)
   350 /*
   351  * See ld(1):
   352  *      The linker uses the following search paths to locate required
   353  *      shared libraries:
   354  *        1: ...
   355  *        ...
   356  *        7: The default directories, normally /lib and /usr/lib.
   357  */
   358 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   359 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   360 #else
   361 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   362 #endif
   364 #define EXTENSIONS_DIR  "/lib/ext"
   365 #define ENDORSED_DIR    "/lib/endorsed"
   366 #define REG_DIR         "/usr/java/packages"
   368   {
   369     /* sysclasspath, java_home, dll_dir */
   370     {
   371         char *home_path;
   372         char *dll_path;
   373         char *pslash;
   374         char buf[MAXPATHLEN];
   375         os::jvm_path(buf, sizeof(buf));
   377         // Found the full path to libjvm.so.
   378         // Now cut the path to <java_home>/jre if we can.
   379         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   380         pslash = strrchr(buf, '/');
   381         if (pslash != NULL)
   382             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   383         dll_path = malloc(strlen(buf) + 1);
   384         if (dll_path == NULL)
   385             return;
   386         strcpy(dll_path, buf);
   387         Arguments::set_dll_dir(dll_path);
   389         if (pslash != NULL) {
   390             pslash = strrchr(buf, '/');
   391             if (pslash != NULL) {
   392                 *pslash = '\0';       /* get rid of /<arch> */
   393                 pslash = strrchr(buf, '/');
   394                 if (pslash != NULL)
   395                     *pslash = '\0';   /* get rid of /lib */
   396             }
   397         }
   399         home_path = malloc(strlen(buf) + 1);
   400         if (home_path == NULL)
   401             return;
   402         strcpy(home_path, buf);
   403         Arguments::set_java_home(home_path);
   405         if (!set_boot_path('/', ':'))
   406             return;
   407     }
   409     /*
   410      * Where to look for native libraries
   411      *
   412      * Note: Due to a legacy implementation, most of the library path
   413      * is set in the launcher.  This was to accomodate linking restrictions
   414      * on legacy Linux implementations (which are no longer supported).
   415      * Eventually, all the library path setting will be done here.
   416      *
   417      * However, to prevent the proliferation of improperly built native
   418      * libraries, the new path component /usr/java/packages is added here.
   419      * Eventually, all the library path setting will be done here.
   420      */
   421     {
   422         char *ld_library_path;
   424         /*
   425          * Construct the invariant part of ld_library_path. Note that the
   426          * space for the colon and the trailing null are provided by the
   427          * nulls included by the sizeof operator (so actually we allocate
   428          * a byte more than necessary).
   429          */
   430         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   431             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   432         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   434         /*
   435          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   436          * should always exist (until the legacy problem cited above is
   437          * addressed).
   438          */
   439         char *v = getenv("LD_LIBRARY_PATH");
   440         if (v != NULL) {
   441             char *t = ld_library_path;
   442             /* That's +1 for the colon and +1 for the trailing '\0' */
   443             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   444             sprintf(ld_library_path, "%s:%s", v, t);
   445         }
   446         Arguments::set_library_path(ld_library_path);
   447     }
   449     /*
   450      * Extensions directories.
   451      *
   452      * Note that the space for the colon and the trailing null are provided
   453      * by the nulls included by the sizeof operator (so actually one byte more
   454      * than necessary is allocated).
   455      */
   456     {
   457         char *buf = malloc(strlen(Arguments::get_java_home()) +
   458             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   459         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   460             Arguments::get_java_home());
   461         Arguments::set_ext_dirs(buf);
   462     }
   464     /* Endorsed standards default directory. */
   465     {
   466         char * buf;
   467         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   468         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   469         Arguments::set_endorsed_dirs(buf);
   470     }
   471   }
   473 #undef malloc
   474 #undef getenv
   475 #undef EXTENSIONS_DIR
   476 #undef ENDORSED_DIR
   478   // Done
   479   return;
   480 }
   482 ////////////////////////////////////////////////////////////////////////////////
   483 // breakpoint support
   485 void os::breakpoint() {
   486   BREAKPOINT;
   487 }
   489 extern "C" void breakpoint() {
   490   // use debugger to set breakpoint here
   491 }
   493 ////////////////////////////////////////////////////////////////////////////////
   494 // signal support
   496 debug_only(static bool signal_sets_initialized = false);
   497 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   499 bool os::Linux::is_sig_ignored(int sig) {
   500       struct sigaction oact;
   501       sigaction(sig, (struct sigaction*)NULL, &oact);
   502       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   503                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   504       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   505            return true;
   506       else
   507            return false;
   508 }
   510 void os::Linux::signal_sets_init() {
   511   // Should also have an assertion stating we are still single-threaded.
   512   assert(!signal_sets_initialized, "Already initialized");
   513   // Fill in signals that are necessarily unblocked for all threads in
   514   // the VM. Currently, we unblock the following signals:
   515   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   516   //                         by -Xrs (=ReduceSignalUsage));
   517   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   518   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   519   // the dispositions or masks wrt these signals.
   520   // Programs embedding the VM that want to use the above signals for their
   521   // own purposes must, at this time, use the "-Xrs" option to prevent
   522   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   523   // (See bug 4345157, and other related bugs).
   524   // In reality, though, unblocking these signals is really a nop, since
   525   // these signals are not blocked by default.
   526   sigemptyset(&unblocked_sigs);
   527   sigemptyset(&allowdebug_blocked_sigs);
   528   sigaddset(&unblocked_sigs, SIGILL);
   529   sigaddset(&unblocked_sigs, SIGSEGV);
   530   sigaddset(&unblocked_sigs, SIGBUS);
   531   sigaddset(&unblocked_sigs, SIGFPE);
   532   sigaddset(&unblocked_sigs, SR_signum);
   534   if (!ReduceSignalUsage) {
   535    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   536       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   537       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   538    }
   539    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   540       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   541       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   542    }
   543    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   544       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   545       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   546    }
   547   }
   548   // Fill in signals that are blocked by all but the VM thread.
   549   sigemptyset(&vm_sigs);
   550   if (!ReduceSignalUsage)
   551     sigaddset(&vm_sigs, BREAK_SIGNAL);
   552   debug_only(signal_sets_initialized = true);
   554 }
   556 // These are signals that are unblocked while a thread is running Java.
   557 // (For some reason, they get blocked by default.)
   558 sigset_t* os::Linux::unblocked_signals() {
   559   assert(signal_sets_initialized, "Not initialized");
   560   return &unblocked_sigs;
   561 }
   563 // These are the signals that are blocked while a (non-VM) thread is
   564 // running Java. Only the VM thread handles these signals.
   565 sigset_t* os::Linux::vm_signals() {
   566   assert(signal_sets_initialized, "Not initialized");
   567   return &vm_sigs;
   568 }
   570 // These are signals that are blocked during cond_wait to allow debugger in
   571 sigset_t* os::Linux::allowdebug_blocked_signals() {
   572   assert(signal_sets_initialized, "Not initialized");
   573   return &allowdebug_blocked_sigs;
   574 }
   576 void os::Linux::hotspot_sigmask(Thread* thread) {
   578   //Save caller's signal mask before setting VM signal mask
   579   sigset_t caller_sigmask;
   580   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   582   OSThread* osthread = thread->osthread();
   583   osthread->set_caller_sigmask(caller_sigmask);
   585   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   587   if (!ReduceSignalUsage) {
   588     if (thread->is_VM_thread()) {
   589       // Only the VM thread handles BREAK_SIGNAL ...
   590       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   591     } else {
   592       // ... all other threads block BREAK_SIGNAL
   593       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   594     }
   595   }
   596 }
   598 //////////////////////////////////////////////////////////////////////////////
   599 // detecting pthread library
   601 void os::Linux::libpthread_init() {
   602   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   603   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   604   // generic name for earlier versions.
   605   // Define macros here so we can build HotSpot on old systems.
   606 # ifndef _CS_GNU_LIBC_VERSION
   607 # define _CS_GNU_LIBC_VERSION 2
   608 # endif
   609 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   610 # define _CS_GNU_LIBPTHREAD_VERSION 3
   611 # endif
   613   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   614   if (n > 0) {
   615      char *str = (char *)malloc(n, mtInternal);
   616      confstr(_CS_GNU_LIBC_VERSION, str, n);
   617      os::Linux::set_glibc_version(str);
   618   } else {
   619      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   620      static char _gnu_libc_version[32];
   621      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   622               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   623      os::Linux::set_glibc_version(_gnu_libc_version);
   624   }
   626   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   627   if (n > 0) {
   628      char *str = (char *)malloc(n, mtInternal);
   629      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   630      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   631      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   632      // is the case. LinuxThreads has a hard limit on max number of threads.
   633      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   634      // On the other hand, NPTL does not have such a limit, sysconf()
   635      // will return -1 and errno is not changed. Check if it is really NPTL.
   636      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   637          strstr(str, "NPTL") &&
   638          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   639        free(str);
   640        os::Linux::set_libpthread_version("linuxthreads");
   641      } else {
   642        os::Linux::set_libpthread_version(str);
   643      }
   644   } else {
   645     // glibc before 2.3.2 only has LinuxThreads.
   646     os::Linux::set_libpthread_version("linuxthreads");
   647   }
   649   if (strstr(libpthread_version(), "NPTL")) {
   650      os::Linux::set_is_NPTL();
   651   } else {
   652      os::Linux::set_is_LinuxThreads();
   653   }
   655   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   656   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   657   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   658      os::Linux::set_is_floating_stack();
   659   }
   660 }
   662 /////////////////////////////////////////////////////////////////////////////
   663 // thread stack
   665 // Force Linux kernel to expand current thread stack. If "bottom" is close
   666 // to the stack guard, caller should block all signals.
   667 //
   668 // MAP_GROWSDOWN:
   669 //   A special mmap() flag that is used to implement thread stacks. It tells
   670 //   kernel that the memory region should extend downwards when needed. This
   671 //   allows early versions of LinuxThreads to only mmap the first few pages
   672 //   when creating a new thread. Linux kernel will automatically expand thread
   673 //   stack as needed (on page faults).
   674 //
   675 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   676 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   677 //   region, it's hard to tell if the fault is due to a legitimate stack
   678 //   access or because of reading/writing non-exist memory (e.g. buffer
   679 //   overrun). As a rule, if the fault happens below current stack pointer,
   680 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   681 //   application (see Linux kernel fault.c).
   682 //
   683 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   684 //   stack overflow detection.
   685 //
   686 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   687 //   not use this flag. However, the stack of initial thread is not created
   688 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   689 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   690 //   and then attach the thread to JVM.
   691 //
   692 // To get around the problem and allow stack banging on Linux, we need to
   693 // manually expand thread stack after receiving the SIGSEGV.
   694 //
   695 // There are two ways to expand thread stack to address "bottom", we used
   696 // both of them in JVM before 1.5:
   697 //   1. adjust stack pointer first so that it is below "bottom", and then
   698 //      touch "bottom"
   699 //   2. mmap() the page in question
   700 //
   701 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   702 // if current sp is already near the lower end of page 101, and we need to
   703 // call mmap() to map page 100, it is possible that part of the mmap() frame
   704 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   705 // That will destroy the mmap() frame and cause VM to crash.
   706 //
   707 // The following code works by adjusting sp first, then accessing the "bottom"
   708 // page to force a page fault. Linux kernel will then automatically expand the
   709 // stack mapping.
   710 //
   711 // _expand_stack_to() assumes its frame size is less than page size, which
   712 // should always be true if the function is not inlined.
   714 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   715 #define NOINLINE
   716 #else
   717 #define NOINLINE __attribute__ ((noinline))
   718 #endif
   720 static void _expand_stack_to(address bottom) NOINLINE;
   722 static void _expand_stack_to(address bottom) {
   723   address sp;
   724   size_t size;
   725   volatile char *p;
   727   // Adjust bottom to point to the largest address within the same page, it
   728   // gives us a one-page buffer if alloca() allocates slightly more memory.
   729   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   730   bottom += os::Linux::page_size() - 1;
   732   // sp might be slightly above current stack pointer; if that's the case, we
   733   // will alloca() a little more space than necessary, which is OK. Don't use
   734   // os::current_stack_pointer(), as its result can be slightly below current
   735   // stack pointer, causing us to not alloca enough to reach "bottom".
   736   sp = (address)&sp;
   738   if (sp > bottom) {
   739     size = sp - bottom;
   740     p = (volatile char *)alloca(size);
   741     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   742     p[0] = '\0';
   743   }
   744 }
   746 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   747   assert(t!=NULL, "just checking");
   748   assert(t->osthread()->expanding_stack(), "expand should be set");
   749   assert(t->stack_base() != NULL, "stack_base was not initialized");
   751   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   752     sigset_t mask_all, old_sigset;
   753     sigfillset(&mask_all);
   754     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   755     _expand_stack_to(addr);
   756     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   757     return true;
   758   }
   759   return false;
   760 }
   762 //////////////////////////////////////////////////////////////////////////////
   763 // create new thread
   765 static address highest_vm_reserved_address();
   767 // check if it's safe to start a new thread
   768 static bool _thread_safety_check(Thread* thread) {
   769   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   770     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   771     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   772     //   allocated (MAP_FIXED) from high address space. Every thread stack
   773     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   774     //   it to other values if they rebuild LinuxThreads).
   775     //
   776     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   777     // the memory region has already been mmap'ed. That means if we have too
   778     // many threads and/or very large heap, eventually thread stack will
   779     // collide with heap.
   780     //
   781     // Here we try to prevent heap/stack collision by comparing current
   782     // stack bottom with the highest address that has been mmap'ed by JVM
   783     // plus a safety margin for memory maps created by native code.
   784     //
   785     // This feature can be disabled by setting ThreadSafetyMargin to 0
   786     //
   787     if (ThreadSafetyMargin > 0) {
   788       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   790       // not safe if our stack extends below the safety margin
   791       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   792     } else {
   793       return true;
   794     }
   795   } else {
   796     // Floating stack LinuxThreads or NPTL:
   797     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   798     //   there's not enough space left, pthread_create() will fail. If we come
   799     //   here, that means enough space has been reserved for stack.
   800     return true;
   801   }
   802 }
   804 // Thread start routine for all newly created threads
   805 static void *java_start(Thread *thread) {
   806   // Try to randomize the cache line index of hot stack frames.
   807   // This helps when threads of the same stack traces evict each other's
   808   // cache lines. The threads can be either from the same JVM instance, or
   809   // from different JVM instances. The benefit is especially true for
   810   // processors with hyperthreading technology.
   811   static int counter = 0;
   812   int pid = os::current_process_id();
   813   alloca(((pid ^ counter++) & 7) * 128);
   815   ThreadLocalStorage::set_thread(thread);
   817   OSThread* osthread = thread->osthread();
   818   Monitor* sync = osthread->startThread_lock();
   820   // non floating stack LinuxThreads needs extra check, see above
   821   if (!_thread_safety_check(thread)) {
   822     // notify parent thread
   823     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   824     osthread->set_state(ZOMBIE);
   825     sync->notify_all();
   826     return NULL;
   827   }
   829   // thread_id is kernel thread id (similar to Solaris LWP id)
   830   osthread->set_thread_id(os::Linux::gettid());
   832   if (UseNUMA) {
   833     int lgrp_id = os::numa_get_group_id();
   834     if (lgrp_id != -1) {
   835       thread->set_lgrp_id(lgrp_id);
   836     }
   837   }
   838   // initialize signal mask for this thread
   839   os::Linux::hotspot_sigmask(thread);
   841   // initialize floating point control register
   842   os::Linux::init_thread_fpu_state();
   844   // handshaking with parent thread
   845   {
   846     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   848     // notify parent thread
   849     osthread->set_state(INITIALIZED);
   850     sync->notify_all();
   852     // wait until os::start_thread()
   853     while (osthread->get_state() == INITIALIZED) {
   854       sync->wait(Mutex::_no_safepoint_check_flag);
   855     }
   856   }
   858   // call one more level start routine
   859   thread->run();
   861   return 0;
   862 }
   864 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   865   assert(thread->osthread() == NULL, "caller responsible");
   867   // Allocate the OSThread object
   868   OSThread* osthread = new OSThread(NULL, NULL);
   869   if (osthread == NULL) {
   870     return false;
   871   }
   873   // set the correct thread state
   874   osthread->set_thread_type(thr_type);
   876   // Initial state is ALLOCATED but not INITIALIZED
   877   osthread->set_state(ALLOCATED);
   879   thread->set_osthread(osthread);
   881   // init thread attributes
   882   pthread_attr_t attr;
   883   pthread_attr_init(&attr);
   884   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   886   // stack size
   887   if (os::Linux::supports_variable_stack_size()) {
   888     // calculate stack size if it's not specified by caller
   889     if (stack_size == 0) {
   890       stack_size = os::Linux::default_stack_size(thr_type);
   892       switch (thr_type) {
   893       case os::java_thread:
   894         // Java threads use ThreadStackSize which default value can be
   895         // changed with the flag -Xss
   896         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   897         stack_size = JavaThread::stack_size_at_create();
   898         break;
   899       case os::compiler_thread:
   900         if (CompilerThreadStackSize > 0) {
   901           stack_size = (size_t)(CompilerThreadStackSize * K);
   902           break;
   903         } // else fall through:
   904           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   905       case os::vm_thread:
   906       case os::pgc_thread:
   907       case os::cgc_thread:
   908       case os::watcher_thread:
   909         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   910         break;
   911       }
   912     }
   914     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   915     pthread_attr_setstacksize(&attr, stack_size);
   916   } else {
   917     // let pthread_create() pick the default value.
   918   }
   920   // glibc guard page
   921   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   923   ThreadState state;
   925   {
   926     // Serialize thread creation if we are running with fixed stack LinuxThreads
   927     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   928     if (lock) {
   929       os::Linux::createThread_lock()->lock_without_safepoint_check();
   930     }
   932     pthread_t tid;
   933     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   935     pthread_attr_destroy(&attr);
   937     if (ret != 0) {
   938       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   939         perror("pthread_create()");
   940       }
   941       // Need to clean up stuff we've allocated so far
   942       thread->set_osthread(NULL);
   943       delete osthread;
   944       if (lock) os::Linux::createThread_lock()->unlock();
   945       return false;
   946     }
   948     // Store pthread info into the OSThread
   949     osthread->set_pthread_id(tid);
   951     // Wait until child thread is either initialized or aborted
   952     {
   953       Monitor* sync_with_child = osthread->startThread_lock();
   954       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   955       while ((state = osthread->get_state()) == ALLOCATED) {
   956         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   957       }
   958     }
   960     if (lock) {
   961       os::Linux::createThread_lock()->unlock();
   962     }
   963   }
   965   // Aborted due to thread limit being reached
   966   if (state == ZOMBIE) {
   967       thread->set_osthread(NULL);
   968       delete osthread;
   969       return false;
   970   }
   972   // The thread is returned suspended (in state INITIALIZED),
   973   // and is started higher up in the call chain
   974   assert(state == INITIALIZED, "race condition");
   975   return true;
   976 }
   978 /////////////////////////////////////////////////////////////////////////////
   979 // attach existing thread
   981 // bootstrap the main thread
   982 bool os::create_main_thread(JavaThread* thread) {
   983   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   984   return create_attached_thread(thread);
   985 }
   987 bool os::create_attached_thread(JavaThread* thread) {
   988 #ifdef ASSERT
   989     thread->verify_not_published();
   990 #endif
   992   // Allocate the OSThread object
   993   OSThread* osthread = new OSThread(NULL, NULL);
   995   if (osthread == NULL) {
   996     return false;
   997   }
   999   // Store pthread info into the OSThread
  1000   osthread->set_thread_id(os::Linux::gettid());
  1001   osthread->set_pthread_id(::pthread_self());
  1003   // initialize floating point control register
  1004   os::Linux::init_thread_fpu_state();
  1006   // Initial thread state is RUNNABLE
  1007   osthread->set_state(RUNNABLE);
  1009   thread->set_osthread(osthread);
  1011   if (UseNUMA) {
  1012     int lgrp_id = os::numa_get_group_id();
  1013     if (lgrp_id != -1) {
  1014       thread->set_lgrp_id(lgrp_id);
  1018   if (os::Linux::is_initial_thread()) {
  1019     // If current thread is initial thread, its stack is mapped on demand,
  1020     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1021     // the entire stack region to avoid SEGV in stack banging.
  1022     // It is also useful to get around the heap-stack-gap problem on SuSE
  1023     // kernel (see 4821821 for details). We first expand stack to the top
  1024     // of yellow zone, then enable stack yellow zone (order is significant,
  1025     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1026     // is no gap between the last two virtual memory regions.
  1028     JavaThread *jt = (JavaThread *)thread;
  1029     address addr = jt->stack_yellow_zone_base();
  1030     assert(addr != NULL, "initialization problem?");
  1031     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1033     osthread->set_expanding_stack();
  1034     os::Linux::manually_expand_stack(jt, addr);
  1035     osthread->clear_expanding_stack();
  1038   // initialize signal mask for this thread
  1039   // and save the caller's signal mask
  1040   os::Linux::hotspot_sigmask(thread);
  1042   return true;
  1045 void os::pd_start_thread(Thread* thread) {
  1046   OSThread * osthread = thread->osthread();
  1047   assert(osthread->get_state() != INITIALIZED, "just checking");
  1048   Monitor* sync_with_child = osthread->startThread_lock();
  1049   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1050   sync_with_child->notify();
  1053 // Free Linux resources related to the OSThread
  1054 void os::free_thread(OSThread* osthread) {
  1055   assert(osthread != NULL, "osthread not set");
  1057   if (Thread::current()->osthread() == osthread) {
  1058     // Restore caller's signal mask
  1059     sigset_t sigmask = osthread->caller_sigmask();
  1060     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1063   delete osthread;
  1066 //////////////////////////////////////////////////////////////////////////////
  1067 // thread local storage
  1069 int os::allocate_thread_local_storage() {
  1070   pthread_key_t key;
  1071   int rslt = pthread_key_create(&key, NULL);
  1072   assert(rslt == 0, "cannot allocate thread local storage");
  1073   return (int)key;
  1076 // Note: This is currently not used by VM, as we don't destroy TLS key
  1077 // on VM exit.
  1078 void os::free_thread_local_storage(int index) {
  1079   int rslt = pthread_key_delete((pthread_key_t)index);
  1080   assert(rslt == 0, "invalid index");
  1083 void os::thread_local_storage_at_put(int index, void* value) {
  1084   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1085   assert(rslt == 0, "pthread_setspecific failed");
  1088 extern "C" Thread* get_thread() {
  1089   return ThreadLocalStorage::thread();
  1092 //////////////////////////////////////////////////////////////////////////////
  1093 // initial thread
  1095 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1096 bool os::Linux::is_initial_thread(void) {
  1097   char dummy;
  1098   // If called before init complete, thread stack bottom will be null.
  1099   // Can be called if fatal error occurs before initialization.
  1100   if (initial_thread_stack_bottom() == NULL) return false;
  1101   assert(initial_thread_stack_bottom() != NULL &&
  1102          initial_thread_stack_size()   != 0,
  1103          "os::init did not locate initial thread's stack region");
  1104   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1105       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1106        return true;
  1107   else return false;
  1110 // Find the virtual memory area that contains addr
  1111 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1112   FILE *fp = fopen("/proc/self/maps", "r");
  1113   if (fp) {
  1114     address low, high;
  1115     while (!feof(fp)) {
  1116       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1117         if (low <= addr && addr < high) {
  1118            if (vma_low)  *vma_low  = low;
  1119            if (vma_high) *vma_high = high;
  1120            fclose (fp);
  1121            return true;
  1124       for (;;) {
  1125         int ch = fgetc(fp);
  1126         if (ch == EOF || ch == (int)'\n') break;
  1129     fclose(fp);
  1131   return false;
  1134 // Locate initial thread stack. This special handling of initial thread stack
  1135 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1136 // bogus value for initial thread.
  1137 void os::Linux::capture_initial_stack(size_t max_size) {
  1138   // stack size is the easy part, get it from RLIMIT_STACK
  1139   size_t stack_size;
  1140   struct rlimit rlim;
  1141   getrlimit(RLIMIT_STACK, &rlim);
  1142   stack_size = rlim.rlim_cur;
  1144   // 6308388: a bug in ld.so will relocate its own .data section to the
  1145   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1146   //   so we won't install guard page on ld.so's data section.
  1147   stack_size -= 2 * page_size();
  1149   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1150   //   7.1, in both cases we will get 2G in return value.
  1151   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1152   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1153   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1154   //   in case other parts in glibc still assumes 2M max stack size.
  1155   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1156   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1157   if (stack_size > 2 * K * K IA64_ONLY(*2))
  1158       stack_size = 2 * K * K IA64_ONLY(*2);
  1159   // Try to figure out where the stack base (top) is. This is harder.
  1160   //
  1161   // When an application is started, glibc saves the initial stack pointer in
  1162   // a global variable "__libc_stack_end", which is then used by system
  1163   // libraries. __libc_stack_end should be pretty close to stack top. The
  1164   // variable is available since the very early days. However, because it is
  1165   // a private interface, it could disappear in the future.
  1166   //
  1167   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1168   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1169   // stack top. Note that /proc may not exist if VM is running as a chroot
  1170   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1171   // /proc/<pid>/stat could change in the future (though unlikely).
  1172   //
  1173   // We try __libc_stack_end first. If that doesn't work, look for
  1174   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1175   // as a hint, which should work well in most cases.
  1177   uintptr_t stack_start;
  1179   // try __libc_stack_end first
  1180   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1181   if (p && *p) {
  1182     stack_start = *p;
  1183   } else {
  1184     // see if we can get the start_stack field from /proc/self/stat
  1185     FILE *fp;
  1186     int pid;
  1187     char state;
  1188     int ppid;
  1189     int pgrp;
  1190     int session;
  1191     int nr;
  1192     int tpgrp;
  1193     unsigned long flags;
  1194     unsigned long minflt;
  1195     unsigned long cminflt;
  1196     unsigned long majflt;
  1197     unsigned long cmajflt;
  1198     unsigned long utime;
  1199     unsigned long stime;
  1200     long cutime;
  1201     long cstime;
  1202     long prio;
  1203     long nice;
  1204     long junk;
  1205     long it_real;
  1206     uintptr_t start;
  1207     uintptr_t vsize;
  1208     intptr_t rss;
  1209     uintptr_t rsslim;
  1210     uintptr_t scodes;
  1211     uintptr_t ecode;
  1212     int i;
  1214     // Figure what the primordial thread stack base is. Code is inspired
  1215     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1216     // followed by command name surrounded by parentheses, state, etc.
  1217     char stat[2048];
  1218     int statlen;
  1220     fp = fopen("/proc/self/stat", "r");
  1221     if (fp) {
  1222       statlen = fread(stat, 1, 2047, fp);
  1223       stat[statlen] = '\0';
  1224       fclose(fp);
  1226       // Skip pid and the command string. Note that we could be dealing with
  1227       // weird command names, e.g. user could decide to rename java launcher
  1228       // to "java 1.4.2 :)", then the stat file would look like
  1229       //                1234 (java 1.4.2 :)) R ... ...
  1230       // We don't really need to know the command string, just find the last
  1231       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1232       char * s = strrchr(stat, ')');
  1234       i = 0;
  1235       if (s) {
  1236         // Skip blank chars
  1237         do s++; while (isspace(*s));
  1239 #define _UFM UINTX_FORMAT
  1240 #define _DFM INTX_FORMAT
  1242         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1243         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1244         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1245              &state,          /* 3  %c  */
  1246              &ppid,           /* 4  %d  */
  1247              &pgrp,           /* 5  %d  */
  1248              &session,        /* 6  %d  */
  1249              &nr,             /* 7  %d  */
  1250              &tpgrp,          /* 8  %d  */
  1251              &flags,          /* 9  %lu  */
  1252              &minflt,         /* 10 %lu  */
  1253              &cminflt,        /* 11 %lu  */
  1254              &majflt,         /* 12 %lu  */
  1255              &cmajflt,        /* 13 %lu  */
  1256              &utime,          /* 14 %lu  */
  1257              &stime,          /* 15 %lu  */
  1258              &cutime,         /* 16 %ld  */
  1259              &cstime,         /* 17 %ld  */
  1260              &prio,           /* 18 %ld  */
  1261              &nice,           /* 19 %ld  */
  1262              &junk,           /* 20 %ld  */
  1263              &it_real,        /* 21 %ld  */
  1264              &start,          /* 22 UINTX_FORMAT */
  1265              &vsize,          /* 23 UINTX_FORMAT */
  1266              &rss,            /* 24 INTX_FORMAT  */
  1267              &rsslim,         /* 25 UINTX_FORMAT */
  1268              &scodes,         /* 26 UINTX_FORMAT */
  1269              &ecode,          /* 27 UINTX_FORMAT */
  1270              &stack_start);   /* 28 UINTX_FORMAT */
  1273 #undef _UFM
  1274 #undef _DFM
  1276       if (i != 28 - 2) {
  1277          assert(false, "Bad conversion from /proc/self/stat");
  1278          // product mode - assume we are the initial thread, good luck in the
  1279          // embedded case.
  1280          warning("Can't detect initial thread stack location - bad conversion");
  1281          stack_start = (uintptr_t) &rlim;
  1283     } else {
  1284       // For some reason we can't open /proc/self/stat (for example, running on
  1285       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1286       // most cases, so don't abort:
  1287       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1288       stack_start = (uintptr_t) &rlim;
  1292   // Now we have a pointer (stack_start) very close to the stack top, the
  1293   // next thing to do is to figure out the exact location of stack top. We
  1294   // can find out the virtual memory area that contains stack_start by
  1295   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1296   // and its upper limit is the real stack top. (again, this would fail if
  1297   // running inside chroot, because /proc may not exist.)
  1299   uintptr_t stack_top;
  1300   address low, high;
  1301   if (find_vma((address)stack_start, &low, &high)) {
  1302     // success, "high" is the true stack top. (ignore "low", because initial
  1303     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1304     stack_top = (uintptr_t)high;
  1305   } else {
  1306     // failed, likely because /proc/self/maps does not exist
  1307     warning("Can't detect initial thread stack location - find_vma failed");
  1308     // best effort: stack_start is normally within a few pages below the real
  1309     // stack top, use it as stack top, and reduce stack size so we won't put
  1310     // guard page outside stack.
  1311     stack_top = stack_start;
  1312     stack_size -= 16 * page_size();
  1315   // stack_top could be partially down the page so align it
  1316   stack_top = align_size_up(stack_top, page_size());
  1318   if (max_size && stack_size > max_size) {
  1319      _initial_thread_stack_size = max_size;
  1320   } else {
  1321      _initial_thread_stack_size = stack_size;
  1324   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1325   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1328 ////////////////////////////////////////////////////////////////////////////////
  1329 // time support
  1331 // Time since start-up in seconds to a fine granularity.
  1332 // Used by VMSelfDestructTimer and the MemProfiler.
  1333 double os::elapsedTime() {
  1335   return (double)(os::elapsed_counter()) * 0.000001;
  1338 jlong os::elapsed_counter() {
  1339   timeval time;
  1340   int status = gettimeofday(&time, NULL);
  1341   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
  1344 jlong os::elapsed_frequency() {
  1345   return (1000 * 1000);
  1348 bool os::supports_vtime() { return true; }
  1349 bool os::enable_vtime()   { return false; }
  1350 bool os::vtime_enabled()  { return false; }
  1352 double os::elapsedVTime() {
  1353   struct rusage usage;
  1354   int retval = getrusage(RUSAGE_THREAD, &usage);
  1355   if (retval == 0) {
  1356     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1357   } else {
  1358     // better than nothing, but not much
  1359     return elapsedTime();
  1363 jlong os::javaTimeMillis() {
  1364   timeval time;
  1365   int status = gettimeofday(&time, NULL);
  1366   assert(status != -1, "linux error");
  1367   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1370 #ifndef CLOCK_MONOTONIC
  1371 #define CLOCK_MONOTONIC (1)
  1372 #endif
  1374 void os::Linux::clock_init() {
  1375   // we do dlopen's in this particular order due to bug in linux
  1376   // dynamical loader (see 6348968) leading to crash on exit
  1377   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1378   if (handle == NULL) {
  1379     handle = dlopen("librt.so", RTLD_LAZY);
  1382   if (handle) {
  1383     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1384            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1385     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1386            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1387     if (clock_getres_func && clock_gettime_func) {
  1388       // See if monotonic clock is supported by the kernel. Note that some
  1389       // early implementations simply return kernel jiffies (updated every
  1390       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1391       // for nano time (though the monotonic property is still nice to have).
  1392       // It's fixed in newer kernels, however clock_getres() still returns
  1393       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1394       // resolution for now. Hopefully as people move to new kernels, this
  1395       // won't be a problem.
  1396       struct timespec res;
  1397       struct timespec tp;
  1398       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1399           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1400         // yes, monotonic clock is supported
  1401         _clock_gettime = clock_gettime_func;
  1402       } else {
  1403         // close librt if there is no monotonic clock
  1404         dlclose(handle);
  1410 #ifndef SYS_clock_getres
  1412 #if defined(IA32) || defined(AMD64)
  1413 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1414 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1415 #else
  1416 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1417 #define sys_clock_getres(x,y)  -1
  1418 #endif
  1420 #else
  1421 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1422 #endif
  1424 void os::Linux::fast_thread_clock_init() {
  1425   if (!UseLinuxPosixThreadCPUClocks) {
  1426     return;
  1428   clockid_t clockid;
  1429   struct timespec tp;
  1430   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1431       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1433   // Switch to using fast clocks for thread cpu time if
  1434   // the sys_clock_getres() returns 0 error code.
  1435   // Note, that some kernels may support the current thread
  1436   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1437   // returned by the pthread_getcpuclockid().
  1438   // If the fast Posix clocks are supported then the sys_clock_getres()
  1439   // must return at least tp.tv_sec == 0 which means a resolution
  1440   // better than 1 sec. This is extra check for reliability.
  1442   if(pthread_getcpuclockid_func &&
  1443      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1444      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1446     _supports_fast_thread_cpu_time = true;
  1447     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1451 jlong os::javaTimeNanos() {
  1452   if (Linux::supports_monotonic_clock()) {
  1453     struct timespec tp;
  1454     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1455     assert(status == 0, "gettime error");
  1456     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1457     return result;
  1458   } else {
  1459     timeval time;
  1460     int status = gettimeofday(&time, NULL);
  1461     assert(status != -1, "linux error");
  1462     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1463     return 1000 * usecs;
  1467 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1468   if (Linux::supports_monotonic_clock()) {
  1469     info_ptr->max_value = ALL_64_BITS;
  1471     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1472     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1473     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1474   } else {
  1475     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1476     info_ptr->max_value = ALL_64_BITS;
  1478     // gettimeofday is a real time clock so it skips
  1479     info_ptr->may_skip_backward = true;
  1480     info_ptr->may_skip_forward = true;
  1483   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1486 // Return the real, user, and system times in seconds from an
  1487 // arbitrary fixed point in the past.
  1488 bool os::getTimesSecs(double* process_real_time,
  1489                       double* process_user_time,
  1490                       double* process_system_time) {
  1491   struct tms ticks;
  1492   clock_t real_ticks = times(&ticks);
  1494   if (real_ticks == (clock_t) (-1)) {
  1495     return false;
  1496   } else {
  1497     double ticks_per_second = (double) clock_tics_per_sec;
  1498     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1499     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1500     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1502     return true;
  1507 char * os::local_time_string(char *buf, size_t buflen) {
  1508   struct tm t;
  1509   time_t long_time;
  1510   time(&long_time);
  1511   localtime_r(&long_time, &t);
  1512   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1513                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1514                t.tm_hour, t.tm_min, t.tm_sec);
  1515   return buf;
  1518 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1519   return localtime_r(clock, res);
  1522 ////////////////////////////////////////////////////////////////////////////////
  1523 // runtime exit support
  1525 // Note: os::shutdown() might be called very early during initialization, or
  1526 // called from signal handler. Before adding something to os::shutdown(), make
  1527 // sure it is async-safe and can handle partially initialized VM.
  1528 void os::shutdown() {
  1530   // allow PerfMemory to attempt cleanup of any persistent resources
  1531   perfMemory_exit();
  1533   // needs to remove object in file system
  1534   AttachListener::abort();
  1536   // flush buffered output, finish log files
  1537   ostream_abort();
  1539   // Check for abort hook
  1540   abort_hook_t abort_hook = Arguments::abort_hook();
  1541   if (abort_hook != NULL) {
  1542     abort_hook();
  1547 // Note: os::abort() might be called very early during initialization, or
  1548 // called from signal handler. Before adding something to os::abort(), make
  1549 // sure it is async-safe and can handle partially initialized VM.
  1550 void os::abort(bool dump_core) {
  1551   os::shutdown();
  1552   if (dump_core) {
  1553 #ifndef PRODUCT
  1554     fdStream out(defaultStream::output_fd());
  1555     out.print_raw("Current thread is ");
  1556     char buf[16];
  1557     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1558     out.print_raw_cr(buf);
  1559     out.print_raw_cr("Dumping core ...");
  1560 #endif
  1561     ::abort(); // dump core
  1564   ::exit(1);
  1567 // Die immediately, no exit hook, no abort hook, no cleanup.
  1568 void os::die() {
  1569   // _exit() on LinuxThreads only kills current thread
  1570   ::abort();
  1573 // unused on linux for now.
  1574 void os::set_error_file(const char *logfile) {}
  1577 // This method is a copy of JDK's sysGetLastErrorString
  1578 // from src/solaris/hpi/src/system_md.c
  1580 size_t os::lasterror(char *buf, size_t len) {
  1582   if (errno == 0)  return 0;
  1584   const char *s = ::strerror(errno);
  1585   size_t n = ::strlen(s);
  1586   if (n >= len) {
  1587     n = len - 1;
  1589   ::strncpy(buf, s, n);
  1590   buf[n] = '\0';
  1591   return n;
  1594 intx os::current_thread_id() { return (intx)pthread_self(); }
  1595 int os::current_process_id() {
  1597   // Under the old linux thread library, linux gives each thread
  1598   // its own process id. Because of this each thread will return
  1599   // a different pid if this method were to return the result
  1600   // of getpid(2). Linux provides no api that returns the pid
  1601   // of the launcher thread for the vm. This implementation
  1602   // returns a unique pid, the pid of the launcher thread
  1603   // that starts the vm 'process'.
  1605   // Under the NPTL, getpid() returns the same pid as the
  1606   // launcher thread rather than a unique pid per thread.
  1607   // Use gettid() if you want the old pre NPTL behaviour.
  1609   // if you are looking for the result of a call to getpid() that
  1610   // returns a unique pid for the calling thread, then look at the
  1611   // OSThread::thread_id() method in osThread_linux.hpp file
  1613   return (int)(_initial_pid ? _initial_pid : getpid());
  1616 // DLL functions
  1618 const char* os::dll_file_extension() { return ".so"; }
  1620 // This must be hard coded because it's the system's temporary
  1621 // directory not the java application's temp directory, ala java.io.tmpdir.
  1622 const char* os::get_temp_directory() { return "/tmp"; }
  1624 static bool file_exists(const char* filename) {
  1625   struct stat statbuf;
  1626   if (filename == NULL || strlen(filename) == 0) {
  1627     return false;
  1629   return os::stat(filename, &statbuf) == 0;
  1632 bool os::dll_build_name(char* buffer, size_t buflen,
  1633                         const char* pname, const char* fname) {
  1634   bool retval = false;
  1635   // Copied from libhpi
  1636   const size_t pnamelen = pname ? strlen(pname) : 0;
  1638   // Return error on buffer overflow.
  1639   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1640     return retval;
  1643   if (pnamelen == 0) {
  1644     snprintf(buffer, buflen, "lib%s.so", fname);
  1645     retval = true;
  1646   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1647     int n;
  1648     char** pelements = split_path(pname, &n);
  1649     if (pelements == NULL) {
  1650       return false;
  1652     for (int i = 0 ; i < n ; i++) {
  1653       // Really shouldn't be NULL, but check can't hurt
  1654       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1655         continue; // skip the empty path values
  1657       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1658       if (file_exists(buffer)) {
  1659         retval = true;
  1660         break;
  1663     // release the storage
  1664     for (int i = 0 ; i < n ; i++) {
  1665       if (pelements[i] != NULL) {
  1666         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1669     if (pelements != NULL) {
  1670       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1672   } else {
  1673     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1674     retval = true;
  1676   return retval;
  1679 // check if addr is inside libjvm.so
  1680 bool os::address_is_in_vm(address addr) {
  1681   static address libjvm_base_addr;
  1682   Dl_info dlinfo;
  1684   if (libjvm_base_addr == NULL) {
  1685     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1686       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1688     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1691   if (dladdr((void *)addr, &dlinfo) != 0) {
  1692     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1695   return false;
  1698 bool os::dll_address_to_function_name(address addr, char *buf,
  1699                                       int buflen, int *offset) {
  1700   // buf is not optional, but offset is optional
  1701   assert(buf != NULL, "sanity check");
  1703   Dl_info dlinfo;
  1705   if (dladdr((void*)addr, &dlinfo) != 0) {
  1706     // see if we have a matching symbol
  1707     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1708       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1709         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1711       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1712       return true;
  1714     // no matching symbol so try for just file info
  1715     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1716       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1717                           buf, buflen, offset, dlinfo.dli_fname)) {
  1718         return true;
  1723   buf[0] = '\0';
  1724   if (offset != NULL) *offset = -1;
  1725   return false;
  1728 struct _address_to_library_name {
  1729   address addr;          // input : memory address
  1730   size_t  buflen;        //         size of fname
  1731   char*   fname;         // output: library name
  1732   address base;          //         library base addr
  1733 };
  1735 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1736                                             size_t size, void *data) {
  1737   int i;
  1738   bool found = false;
  1739   address libbase = NULL;
  1740   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1742   // iterate through all loadable segments
  1743   for (i = 0; i < info->dlpi_phnum; i++) {
  1744     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1745     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1746       // base address of a library is the lowest address of its loaded
  1747       // segments.
  1748       if (libbase == NULL || libbase > segbase) {
  1749         libbase = segbase;
  1751       // see if 'addr' is within current segment
  1752       if (segbase <= d->addr &&
  1753           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1754         found = true;
  1759   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1760   // so dll_address_to_library_name() can fall through to use dladdr() which
  1761   // can figure out executable name from argv[0].
  1762   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1763     d->base = libbase;
  1764     if (d->fname) {
  1765       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1767     return 1;
  1769   return 0;
  1772 bool os::dll_address_to_library_name(address addr, char* buf,
  1773                                      int buflen, int* offset) {
  1774   // buf is not optional, but offset is optional
  1775   assert(buf != NULL, "sanity check");
  1777   Dl_info dlinfo;
  1778   struct _address_to_library_name data;
  1780   // There is a bug in old glibc dladdr() implementation that it could resolve
  1781   // to wrong library name if the .so file has a base address != NULL. Here
  1782   // we iterate through the program headers of all loaded libraries to find
  1783   // out which library 'addr' really belongs to. This workaround can be
  1784   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1785   data.addr = addr;
  1786   data.fname = buf;
  1787   data.buflen = buflen;
  1788   data.base = NULL;
  1789   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1791   if (rslt) {
  1792      // buf already contains library name
  1793      if (offset) *offset = addr - data.base;
  1794      return true;
  1796   if (dladdr((void*)addr, &dlinfo) != 0) {
  1797     if (dlinfo.dli_fname != NULL) {
  1798       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1800     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1801       *offset = addr - (address)dlinfo.dli_fbase;
  1803     return true;
  1806   buf[0] = '\0';
  1807   if (offset) *offset = -1;
  1808   return false;
  1811   // Loads .dll/.so and
  1812   // in case of error it checks if .dll/.so was built for the
  1813   // same architecture as Hotspot is running on
  1816 // Remember the stack's state. The Linux dynamic linker will change
  1817 // the stack to 'executable' at most once, so we must safepoint only once.
  1818 bool os::Linux::_stack_is_executable = false;
  1820 // VM operation that loads a library.  This is necessary if stack protection
  1821 // of the Java stacks can be lost during loading the library.  If we
  1822 // do not stop the Java threads, they can stack overflow before the stacks
  1823 // are protected again.
  1824 class VM_LinuxDllLoad: public VM_Operation {
  1825  private:
  1826   const char *_filename;
  1827   char *_ebuf;
  1828   int _ebuflen;
  1829   void *_lib;
  1830  public:
  1831   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1832     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1833   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1834   void doit() {
  1835     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1836     os::Linux::_stack_is_executable = true;
  1838   void* loaded_library() { return _lib; }
  1839 };
  1841 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1843   void * result = NULL;
  1844   bool load_attempted = false;
  1846   // Check whether the library to load might change execution rights
  1847   // of the stack. If they are changed, the protection of the stack
  1848   // guard pages will be lost. We need a safepoint to fix this.
  1849   //
  1850   // See Linux man page execstack(8) for more info.
  1851   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1852     ElfFile ef(filename);
  1853     if (!ef.specifies_noexecstack()) {
  1854       if (!is_init_completed()) {
  1855         os::Linux::_stack_is_executable = true;
  1856         // This is OK - No Java threads have been created yet, and hence no
  1857         // stack guard pages to fix.
  1858         //
  1859         // This should happen only when you are building JDK7 using a very
  1860         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1861         //
  1862         // Dynamic loader will make all stacks executable after
  1863         // this function returns, and will not do that again.
  1864         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1865       } else {
  1866         warning("You have loaded library %s which might have disabled stack guard. "
  1867                 "The VM will try to fix the stack guard now.\n"
  1868                 "It's highly recommended that you fix the library with "
  1869                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1870                 filename);
  1872         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1873         JavaThread *jt = JavaThread::current();
  1874         if (jt->thread_state() != _thread_in_native) {
  1875           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1876           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1877           warning("Unable to fix stack guard. Giving up.");
  1878         } else {
  1879           if (!LoadExecStackDllInVMThread) {
  1880             // This is for the case where the DLL has an static
  1881             // constructor function that executes JNI code. We cannot
  1882             // load such DLLs in the VMThread.
  1883             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1886           ThreadInVMfromNative tiv(jt);
  1887           debug_only(VMNativeEntryWrapper vew;)
  1889           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1890           VMThread::execute(&op);
  1891           if (LoadExecStackDllInVMThread) {
  1892             result = op.loaded_library();
  1894           load_attempted = true;
  1900   if (!load_attempted) {
  1901     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1904   if (result != NULL) {
  1905     // Successful loading
  1906     return result;
  1909   Elf32_Ehdr elf_head;
  1910   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1911   char* diag_msg_buf=ebuf+strlen(ebuf);
  1913   if (diag_msg_max_length==0) {
  1914     // No more space in ebuf for additional diagnostics message
  1915     return NULL;
  1919   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1921   if (file_descriptor < 0) {
  1922     // Can't open library, report dlerror() message
  1923     return NULL;
  1926   bool failed_to_read_elf_head=
  1927     (sizeof(elf_head)!=
  1928         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1930   ::close(file_descriptor);
  1931   if (failed_to_read_elf_head) {
  1932     // file i/o error - report dlerror() msg
  1933     return NULL;
  1936   typedef struct {
  1937     Elf32_Half  code;         // Actual value as defined in elf.h
  1938     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1939     char        elf_class;    // 32 or 64 bit
  1940     char        endianess;    // MSB or LSB
  1941     char*       name;         // String representation
  1942   } arch_t;
  1944   #ifndef EM_486
  1945   #define EM_486          6               /* Intel 80486 */
  1946   #endif
  1948   static const arch_t arch_array[]={
  1949     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1950     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1951     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1952     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1953     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1954     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1955     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1956     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1957     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1958     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1959     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1960     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1961     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1962     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1963     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1964     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1965   };
  1967   #if  (defined IA32)
  1968     static  Elf32_Half running_arch_code=EM_386;
  1969   #elif   (defined AMD64)
  1970     static  Elf32_Half running_arch_code=EM_X86_64;
  1971   #elif  (defined IA64)
  1972     static  Elf32_Half running_arch_code=EM_IA_64;
  1973   #elif  (defined __sparc) && (defined _LP64)
  1974     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1975   #elif  (defined __sparc) && (!defined _LP64)
  1976     static  Elf32_Half running_arch_code=EM_SPARC;
  1977   #elif  (defined __powerpc64__)
  1978     static  Elf32_Half running_arch_code=EM_PPC64;
  1979   #elif  (defined __powerpc__)
  1980     static  Elf32_Half running_arch_code=EM_PPC;
  1981   #elif  (defined ARM)
  1982     static  Elf32_Half running_arch_code=EM_ARM;
  1983   #elif  (defined S390)
  1984     static  Elf32_Half running_arch_code=EM_S390;
  1985   #elif  (defined ALPHA)
  1986     static  Elf32_Half running_arch_code=EM_ALPHA;
  1987   #elif  (defined MIPSEL)
  1988     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1989   #elif  (defined PARISC)
  1990     static  Elf32_Half running_arch_code=EM_PARISC;
  1991   #elif  (defined MIPS)
  1992     static  Elf32_Half running_arch_code=EM_MIPS;
  1993   #elif  (defined M68K)
  1994     static  Elf32_Half running_arch_code=EM_68K;
  1995   #else
  1996     #error Method os::dll_load requires that one of following is defined:\
  1997          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1998   #endif
  2000   // Identify compatability class for VM's architecture and library's architecture
  2001   // Obtain string descriptions for architectures
  2003   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2004   int running_arch_index=-1;
  2006   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2007     if (running_arch_code == arch_array[i].code) {
  2008       running_arch_index    = i;
  2010     if (lib_arch.code == arch_array[i].code) {
  2011       lib_arch.compat_class = arch_array[i].compat_class;
  2012       lib_arch.name         = arch_array[i].name;
  2016   assert(running_arch_index != -1,
  2017     "Didn't find running architecture code (running_arch_code) in arch_array");
  2018   if (running_arch_index == -1) {
  2019     // Even though running architecture detection failed
  2020     // we may still continue with reporting dlerror() message
  2021     return NULL;
  2024   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2025     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2026     return NULL;
  2029 #ifndef S390
  2030   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2031     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2032     return NULL;
  2034 #endif // !S390
  2036   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2037     if ( lib_arch.name!=NULL ) {
  2038       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2039         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2040         lib_arch.name, arch_array[running_arch_index].name);
  2041     } else {
  2042       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2043       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2044         lib_arch.code,
  2045         arch_array[running_arch_index].name);
  2049   return NULL;
  2052 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2053   void * result = ::dlopen(filename, RTLD_LAZY);
  2054   if (result == NULL) {
  2055     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2056     ebuf[ebuflen-1] = '\0';
  2058   return result;
  2061 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2062   void * result = NULL;
  2063   if (LoadExecStackDllInVMThread) {
  2064     result = dlopen_helper(filename, ebuf, ebuflen);
  2067   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2068   // library that requires an executable stack, or which does not have this
  2069   // stack attribute set, dlopen changes the stack attribute to executable. The
  2070   // read protection of the guard pages gets lost.
  2071   //
  2072   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2073   // may have been queued at the same time.
  2075   if (!_stack_is_executable) {
  2076     JavaThread *jt = Threads::first();
  2078     while (jt) {
  2079       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2080           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2081         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2082                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2083           warning("Attempt to reguard stack yellow zone failed.");
  2086       jt = jt->next();
  2090   return result;
  2093 /*
  2094  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2095  * chances are you might want to run the generated bits against glibc-2.0
  2096  * libdl.so, so always use locking for any version of glibc.
  2097  */
  2098 void* os::dll_lookup(void* handle, const char* name) {
  2099   pthread_mutex_lock(&dl_mutex);
  2100   void* res = dlsym(handle, name);
  2101   pthread_mutex_unlock(&dl_mutex);
  2102   return res;
  2106 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2107   int fd = ::open(filename, O_RDONLY);
  2108   if (fd == -1) {
  2109      return false;
  2112   char buf[32];
  2113   int bytes;
  2114   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2115     st->print_raw(buf, bytes);
  2118   ::close(fd);
  2120   return true;
  2123 void os::print_dll_info(outputStream *st) {
  2124    st->print_cr("Dynamic libraries:");
  2126    char fname[32];
  2127    pid_t pid = os::Linux::gettid();
  2129    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2131    if (!_print_ascii_file(fname, st)) {
  2132      st->print("Can not get library information for pid = %d\n", pid);
  2136 void os::print_os_info_brief(outputStream* st) {
  2137   os::Linux::print_distro_info(st);
  2139   os::Posix::print_uname_info(st);
  2141   os::Linux::print_libversion_info(st);
  2145 void os::print_os_info(outputStream* st) {
  2146   st->print("OS:");
  2148   os::Linux::print_distro_info(st);
  2150   os::Posix::print_uname_info(st);
  2152   // Print warning if unsafe chroot environment detected
  2153   if (unsafe_chroot_detected) {
  2154     st->print("WARNING!! ");
  2155     st->print_cr(unstable_chroot_error);
  2158   os::Linux::print_libversion_info(st);
  2160   os::Posix::print_rlimit_info(st);
  2162   os::Posix::print_load_average(st);
  2164   os::Linux::print_full_memory_info(st);
  2167 // Try to identify popular distros.
  2168 // Most Linux distributions have /etc/XXX-release file, which contains
  2169 // the OS version string. Some have more than one /etc/XXX-release file
  2170 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
  2171 // so the order is important.
  2172 void os::Linux::print_distro_info(outputStream* st) {
  2173   if (!_print_ascii_file("/etc/mandrake-release", st) &&
  2174       !_print_ascii_file("/etc/sun-release", st) &&
  2175       !_print_ascii_file("/etc/redhat-release", st) &&
  2176       !_print_ascii_file("/etc/SuSE-release", st) &&
  2177       !_print_ascii_file("/etc/turbolinux-release", st) &&
  2178       !_print_ascii_file("/etc/gentoo-release", st) &&
  2179       !_print_ascii_file("/etc/debian_version", st) &&
  2180       !_print_ascii_file("/etc/ltib-release", st) &&
  2181       !_print_ascii_file("/etc/angstrom-version", st)) {
  2182       st->print("Linux");
  2184   st->cr();
  2187 void os::Linux::print_libversion_info(outputStream* st) {
  2188   // libc, pthread
  2189   st->print("libc:");
  2190   st->print(os::Linux::glibc_version()); st->print(" ");
  2191   st->print(os::Linux::libpthread_version()); st->print(" ");
  2192   if (os::Linux::is_LinuxThreads()) {
  2193      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2195   st->cr();
  2198 void os::Linux::print_full_memory_info(outputStream* st) {
  2199    st->print("\n/proc/meminfo:\n");
  2200    _print_ascii_file("/proc/meminfo", st);
  2201    st->cr();
  2204 void os::print_memory_info(outputStream* st) {
  2206   st->print("Memory:");
  2207   st->print(" %dk page", os::vm_page_size()>>10);
  2209   // values in struct sysinfo are "unsigned long"
  2210   struct sysinfo si;
  2211   sysinfo(&si);
  2213   st->print(", physical " UINT64_FORMAT "k",
  2214             os::physical_memory() >> 10);
  2215   st->print("(" UINT64_FORMAT "k free)",
  2216             os::available_memory() >> 10);
  2217   st->print(", swap " UINT64_FORMAT "k",
  2218             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2219   st->print("(" UINT64_FORMAT "k free)",
  2220             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2221   st->cr();
  2224 void os::pd_print_cpu_info(outputStream* st) {
  2225   st->print("\n/proc/cpuinfo:\n");
  2226   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2227     st->print("  <Not Available>");
  2229   st->cr();
  2232 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  2233 // but they're the same for all the linux arch that we support
  2234 // and they're the same for solaris but there's no common place to put this.
  2235 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2236                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2237                           "ILL_COPROC", "ILL_BADSTK" };
  2239 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2240                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2241                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2243 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2245 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2247 void os::print_siginfo(outputStream* st, void* siginfo) {
  2248   st->print("siginfo:");
  2250   const int buflen = 100;
  2251   char buf[buflen];
  2252   siginfo_t *si = (siginfo_t*)siginfo;
  2253   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2254   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2255     st->print("si_errno=%s", buf);
  2256   } else {
  2257     st->print("si_errno=%d", si->si_errno);
  2259   const int c = si->si_code;
  2260   assert(c > 0, "unexpected si_code");
  2261   switch (si->si_signo) {
  2262   case SIGILL:
  2263     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2264     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2265     break;
  2266   case SIGFPE:
  2267     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2268     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2269     break;
  2270   case SIGSEGV:
  2271     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2272     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2273     break;
  2274   case SIGBUS:
  2275     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2276     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2277     break;
  2278   default:
  2279     st->print(", si_code=%d", si->si_code);
  2280     // no si_addr
  2283   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2284       UseSharedSpaces) {
  2285     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2286     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2287       st->print("\n\nError accessing class data sharing archive."   \
  2288                 " Mapped file inaccessible during execution, "      \
  2289                 " possible disk/network problem.");
  2292   st->cr();
  2296 static void print_signal_handler(outputStream* st, int sig,
  2297                                  char* buf, size_t buflen);
  2299 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2300   st->print_cr("Signal Handlers:");
  2301   print_signal_handler(st, SIGSEGV, buf, buflen);
  2302   print_signal_handler(st, SIGBUS , buf, buflen);
  2303   print_signal_handler(st, SIGFPE , buf, buflen);
  2304   print_signal_handler(st, SIGPIPE, buf, buflen);
  2305   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2306   print_signal_handler(st, SIGILL , buf, buflen);
  2307   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2308   print_signal_handler(st, SR_signum, buf, buflen);
  2309   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2310   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2311   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2312   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2315 static char saved_jvm_path[MAXPATHLEN] = {0};
  2317 // Find the full path to the current module, libjvm.so
  2318 void os::jvm_path(char *buf, jint buflen) {
  2319   // Error checking.
  2320   if (buflen < MAXPATHLEN) {
  2321     assert(false, "must use a large-enough buffer");
  2322     buf[0] = '\0';
  2323     return;
  2325   // Lazy resolve the path to current module.
  2326   if (saved_jvm_path[0] != 0) {
  2327     strcpy(buf, saved_jvm_path);
  2328     return;
  2331   char dli_fname[MAXPATHLEN];
  2332   bool ret = dll_address_to_library_name(
  2333                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2334                 dli_fname, sizeof(dli_fname), NULL);
  2335   assert(ret, "cannot locate libjvm");
  2336   char *rp = NULL;
  2337   if (ret && dli_fname[0] != '\0') {
  2338     rp = realpath(dli_fname, buf);
  2340   if (rp == NULL)
  2341     return;
  2343   if (Arguments::created_by_gamma_launcher()) {
  2344     // Support for the gamma launcher.  Typical value for buf is
  2345     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2346     // the right place in the string, then assume we are installed in a JDK and
  2347     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2348     // up the path so it looks like libjvm.so is installed there (append a
  2349     // fake suffix hotspot/libjvm.so).
  2350     const char *p = buf + strlen(buf) - 1;
  2351     for (int count = 0; p > buf && count < 5; ++count) {
  2352       for (--p; p > buf && *p != '/'; --p)
  2353         /* empty */ ;
  2356     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2357       // Look for JAVA_HOME in the environment.
  2358       char* java_home_var = ::getenv("JAVA_HOME");
  2359       if (java_home_var != NULL && java_home_var[0] != 0) {
  2360         char* jrelib_p;
  2361         int len;
  2363         // Check the current module name "libjvm.so".
  2364         p = strrchr(buf, '/');
  2365         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2367         rp = realpath(java_home_var, buf);
  2368         if (rp == NULL)
  2369           return;
  2371         // determine if this is a legacy image or modules image
  2372         // modules image doesn't have "jre" subdirectory
  2373         len = strlen(buf);
  2374         jrelib_p = buf + len;
  2375         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2376         if (0 != access(buf, F_OK)) {
  2377           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2380         if (0 == access(buf, F_OK)) {
  2381           // Use current module name "libjvm.so"
  2382           len = strlen(buf);
  2383           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2384         } else {
  2385           // Go back to path of .so
  2386           rp = realpath(dli_fname, buf);
  2387           if (rp == NULL)
  2388             return;
  2394   strcpy(saved_jvm_path, buf);
  2397 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2398   // no prefix required, not even "_"
  2401 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2402   // no suffix required
  2405 ////////////////////////////////////////////////////////////////////////////////
  2406 // sun.misc.Signal support
  2408 static volatile jint sigint_count = 0;
  2410 static void
  2411 UserHandler(int sig, void *siginfo, void *context) {
  2412   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2413   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2414   // don't want to flood the manager thread with sem_post requests.
  2415   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2416       return;
  2418   // Ctrl-C is pressed during error reporting, likely because the error
  2419   // handler fails to abort. Let VM die immediately.
  2420   if (sig == SIGINT && is_error_reported()) {
  2421      os::die();
  2424   os::signal_notify(sig);
  2427 void* os::user_handler() {
  2428   return CAST_FROM_FN_PTR(void*, UserHandler);
  2431 class Semaphore : public StackObj {
  2432   public:
  2433     Semaphore();
  2434     ~Semaphore();
  2435     void signal();
  2436     void wait();
  2437     bool trywait();
  2438     bool timedwait(unsigned int sec, int nsec);
  2439   private:
  2440     sem_t _semaphore;
  2441 };
  2444 Semaphore::Semaphore() {
  2445   sem_init(&_semaphore, 0, 0);
  2448 Semaphore::~Semaphore() {
  2449   sem_destroy(&_semaphore);
  2452 void Semaphore::signal() {
  2453   sem_post(&_semaphore);
  2456 void Semaphore::wait() {
  2457   sem_wait(&_semaphore);
  2460 bool Semaphore::trywait() {
  2461   return sem_trywait(&_semaphore) == 0;
  2464 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2465   struct timespec ts;
  2466   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
  2468   while (1) {
  2469     int result = sem_timedwait(&_semaphore, &ts);
  2470     if (result == 0) {
  2471       return true;
  2472     } else if (errno == EINTR) {
  2473       continue;
  2474     } else if (errno == ETIMEDOUT) {
  2475       return false;
  2476     } else {
  2477       return false;
  2482 extern "C" {
  2483   typedef void (*sa_handler_t)(int);
  2484   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2487 void* os::signal(int signal_number, void* handler) {
  2488   struct sigaction sigAct, oldSigAct;
  2490   sigfillset(&(sigAct.sa_mask));
  2491   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2492   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2494   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2495     // -1 means registration failed
  2496     return (void *)-1;
  2499   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2502 void os::signal_raise(int signal_number) {
  2503   ::raise(signal_number);
  2506 /*
  2507  * The following code is moved from os.cpp for making this
  2508  * code platform specific, which it is by its very nature.
  2509  */
  2511 // Will be modified when max signal is changed to be dynamic
  2512 int os::sigexitnum_pd() {
  2513   return NSIG;
  2516 // a counter for each possible signal value
  2517 static volatile jint pending_signals[NSIG+1] = { 0 };
  2519 // Linux(POSIX) specific hand shaking semaphore.
  2520 static sem_t sig_sem;
  2521 static Semaphore sr_semaphore;
  2523 void os::signal_init_pd() {
  2524   // Initialize signal structures
  2525   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2527   // Initialize signal semaphore
  2528   ::sem_init(&sig_sem, 0, 0);
  2531 void os::signal_notify(int sig) {
  2532   Atomic::inc(&pending_signals[sig]);
  2533   ::sem_post(&sig_sem);
  2536 static int check_pending_signals(bool wait) {
  2537   Atomic::store(0, &sigint_count);
  2538   for (;;) {
  2539     for (int i = 0; i < NSIG + 1; i++) {
  2540       jint n = pending_signals[i];
  2541       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2542         return i;
  2545     if (!wait) {
  2546       return -1;
  2548     JavaThread *thread = JavaThread::current();
  2549     ThreadBlockInVM tbivm(thread);
  2551     bool threadIsSuspended;
  2552     do {
  2553       thread->set_suspend_equivalent();
  2554       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2555       ::sem_wait(&sig_sem);
  2557       // were we externally suspended while we were waiting?
  2558       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2559       if (threadIsSuspended) {
  2560         //
  2561         // The semaphore has been incremented, but while we were waiting
  2562         // another thread suspended us. We don't want to continue running
  2563         // while suspended because that would surprise the thread that
  2564         // suspended us.
  2565         //
  2566         ::sem_post(&sig_sem);
  2568         thread->java_suspend_self();
  2570     } while (threadIsSuspended);
  2574 int os::signal_lookup() {
  2575   return check_pending_signals(false);
  2578 int os::signal_wait() {
  2579   return check_pending_signals(true);
  2582 ////////////////////////////////////////////////////////////////////////////////
  2583 // Virtual Memory
  2585 int os::vm_page_size() {
  2586   // Seems redundant as all get out
  2587   assert(os::Linux::page_size() != -1, "must call os::init");
  2588   return os::Linux::page_size();
  2591 // Solaris allocates memory by pages.
  2592 int os::vm_allocation_granularity() {
  2593   assert(os::Linux::page_size() != -1, "must call os::init");
  2594   return os::Linux::page_size();
  2597 // Rationale behind this function:
  2598 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2599 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2600 //  samples for JITted code. Here we create private executable mapping over the code cache
  2601 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2602 //  info for the reporting script by storing timestamp and location of symbol
  2603 void linux_wrap_code(char* base, size_t size) {
  2604   static volatile jint cnt = 0;
  2606   if (!UseOprofile) {
  2607     return;
  2610   char buf[PATH_MAX+1];
  2611   int num = Atomic::add(1, &cnt);
  2613   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2614            os::get_temp_directory(), os::current_process_id(), num);
  2615   unlink(buf);
  2617   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2619   if (fd != -1) {
  2620     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2621     if (rv != (off_t)-1) {
  2622       if (::write(fd, "", 1) == 1) {
  2623         mmap(base, size,
  2624              PROT_READ|PROT_WRITE|PROT_EXEC,
  2625              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2628     ::close(fd);
  2629     unlink(buf);
  2633 static bool recoverable_mmap_error(int err) {
  2634   // See if the error is one we can let the caller handle. This
  2635   // list of errno values comes from JBS-6843484. I can't find a
  2636   // Linux man page that documents this specific set of errno
  2637   // values so while this list currently matches Solaris, it may
  2638   // change as we gain experience with this failure mode.
  2639   switch (err) {
  2640   case EBADF:
  2641   case EINVAL:
  2642   case ENOTSUP:
  2643     // let the caller deal with these errors
  2644     return true;
  2646   default:
  2647     // Any remaining errors on this OS can cause our reserved mapping
  2648     // to be lost. That can cause confusion where different data
  2649     // structures think they have the same memory mapped. The worst
  2650     // scenario is if both the VM and a library think they have the
  2651     // same memory mapped.
  2652     return false;
  2656 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2657                                     int err) {
  2658   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2659           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2660           strerror(err), err);
  2663 static void warn_fail_commit_memory(char* addr, size_t size,
  2664                                     size_t alignment_hint, bool exec,
  2665                                     int err) {
  2666   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2667           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2668           alignment_hint, exec, strerror(err), err);
  2671 // NOTE: Linux kernel does not really reserve the pages for us.
  2672 //       All it does is to check if there are enough free pages
  2673 //       left at the time of mmap(). This could be a potential
  2674 //       problem.
  2675 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2676   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2677   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2678                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2679   if (res != (uintptr_t) MAP_FAILED) {
  2680     if (UseNUMAInterleaving) {
  2681       numa_make_global(addr, size);
  2683     return 0;
  2686   int err = errno;  // save errno from mmap() call above
  2688   if (!recoverable_mmap_error(err)) {
  2689     warn_fail_commit_memory(addr, size, exec, err);
  2690     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2693   return err;
  2696 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2697   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2700 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2701                                   const char* mesg) {
  2702   assert(mesg != NULL, "mesg must be specified");
  2703   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2704   if (err != 0) {
  2705     // the caller wants all commit errors to exit with the specified mesg:
  2706     warn_fail_commit_memory(addr, size, exec, err);
  2707     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2711 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2712 #ifndef MAP_HUGETLB
  2713 #define MAP_HUGETLB 0x40000
  2714 #endif
  2716 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2717 #ifndef MADV_HUGEPAGE
  2718 #define MADV_HUGEPAGE 14
  2719 #endif
  2721 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2722                                   size_t alignment_hint, bool exec) {
  2723   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2724   if (err == 0) {
  2725     realign_memory(addr, size, alignment_hint);
  2727   return err;
  2730 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2731                           bool exec) {
  2732   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2735 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2736                                   size_t alignment_hint, bool exec,
  2737                                   const char* mesg) {
  2738   assert(mesg != NULL, "mesg must be specified");
  2739   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2740   if (err != 0) {
  2741     // the caller wants all commit errors to exit with the specified mesg:
  2742     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2743     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2747 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2748   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2749     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2750     // be supported or the memory may already be backed by huge pages.
  2751     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2755 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2756   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2757   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2758   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2759   // small pages on top of the SHM segment. This method always works for small pages, so we
  2760   // allow that in any case.
  2761   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2762     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2766 void os::numa_make_global(char *addr, size_t bytes) {
  2767   Linux::numa_interleave_memory(addr, bytes);
  2770 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2771 // bind policy to MPOL_PREFERRED for the current thread.
  2772 #define USE_MPOL_PREFERRED 0
  2774 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2775   // To make NUMA and large pages more robust when both enabled, we need to ease
  2776   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2777   // default policy and it will force memory to be allocated on the specified
  2778   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2779   // the specified node, but will not force it. Using this policy will prevent
  2780   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2781   // free large pages.
  2782   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2783   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2786 bool os::numa_topology_changed()   { return false; }
  2788 size_t os::numa_get_groups_num() {
  2789   int max_node = Linux::numa_max_node();
  2790   return max_node > 0 ? max_node + 1 : 1;
  2793 int os::numa_get_group_id() {
  2794   int cpu_id = Linux::sched_getcpu();
  2795   if (cpu_id != -1) {
  2796     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2797     if (lgrp_id != -1) {
  2798       return lgrp_id;
  2801   return 0;
  2804 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2805   for (size_t i = 0; i < size; i++) {
  2806     ids[i] = i;
  2808   return size;
  2811 bool os::get_page_info(char *start, page_info* info) {
  2812   return false;
  2815 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2816   return end;
  2820 int os::Linux::sched_getcpu_syscall(void) {
  2821   unsigned int cpu;
  2822   int retval = -1;
  2824 #if defined(IA32)
  2825 # ifndef SYS_getcpu
  2826 # define SYS_getcpu 318
  2827 # endif
  2828   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2829 #elif defined(AMD64)
  2830 // Unfortunately we have to bring all these macros here from vsyscall.h
  2831 // to be able to compile on old linuxes.
  2832 # define __NR_vgetcpu 2
  2833 # define VSYSCALL_START (-10UL << 20)
  2834 # define VSYSCALL_SIZE 1024
  2835 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2836   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2837   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2838   retval = vgetcpu(&cpu, NULL, NULL);
  2839 #endif
  2841   return (retval == -1) ? retval : cpu;
  2844 // Something to do with the numa-aware allocator needs these symbols
  2845 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2846 extern "C" JNIEXPORT void numa_error(char *where) { }
  2847 extern "C" JNIEXPORT int fork1() { return fork(); }
  2850 // If we are running with libnuma version > 2, then we should
  2851 // be trying to use symbols with versions 1.1
  2852 // If we are running with earlier version, which did not have symbol versions,
  2853 // we should use the base version.
  2854 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2855   void *f = dlvsym(handle, name, "libnuma_1.1");
  2856   if (f == NULL) {
  2857     f = dlsym(handle, name);
  2859   return f;
  2862 bool os::Linux::libnuma_init() {
  2863   // sched_getcpu() should be in libc.
  2864   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2865                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2867   // If it's not, try a direct syscall.
  2868   if (sched_getcpu() == -1)
  2869     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2871   if (sched_getcpu() != -1) { // Does it work?
  2872     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2873     if (handle != NULL) {
  2874       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2875                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2876       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2877                                        libnuma_dlsym(handle, "numa_max_node")));
  2878       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2879                                         libnuma_dlsym(handle, "numa_available")));
  2880       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2881                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2882       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2883                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2884       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2885                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
  2888       if (numa_available() != -1) {
  2889         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2890         // Create a cpu -> node mapping
  2891         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2892         rebuild_cpu_to_node_map();
  2893         return true;
  2897   return false;
  2900 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2901 // The table is later used in get_node_by_cpu().
  2902 void os::Linux::rebuild_cpu_to_node_map() {
  2903   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2904                               // in libnuma (possible values are starting from 16,
  2905                               // and continuing up with every other power of 2, but less
  2906                               // than the maximum number of CPUs supported by kernel), and
  2907                               // is a subject to change (in libnuma version 2 the requirements
  2908                               // are more reasonable) we'll just hardcode the number they use
  2909                               // in the library.
  2910   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2912   size_t cpu_num = os::active_processor_count();
  2913   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2914   size_t cpu_map_valid_size =
  2915     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2917   cpu_to_node()->clear();
  2918   cpu_to_node()->at_grow(cpu_num - 1);
  2919   size_t node_num = numa_get_groups_num();
  2921   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2922   for (size_t i = 0; i < node_num; i++) {
  2923     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2924       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2925         if (cpu_map[j] != 0) {
  2926           for (size_t k = 0; k < BitsPerCLong; k++) {
  2927             if (cpu_map[j] & (1UL << k)) {
  2928               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2935   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2938 int os::Linux::get_node_by_cpu(int cpu_id) {
  2939   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2940     return cpu_to_node()->at(cpu_id);
  2942   return -1;
  2945 GrowableArray<int>* os::Linux::_cpu_to_node;
  2946 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2947 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2948 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2949 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2950 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2951 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2952 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  2953 unsigned long* os::Linux::_numa_all_nodes;
  2955 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2956   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2957                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2958   return res  != (uintptr_t) MAP_FAILED;
  2961 static
  2962 address get_stack_commited_bottom(address bottom, size_t size) {
  2963   address nbot = bottom;
  2964   address ntop = bottom + size;
  2966   size_t page_sz = os::vm_page_size();
  2967   unsigned pages = size / page_sz;
  2969   unsigned char vec[1];
  2970   unsigned imin = 1, imax = pages + 1, imid;
  2971   int mincore_return_value;
  2973   while (imin < imax) {
  2974     imid = (imax + imin) / 2;
  2975     nbot = ntop - (imid * page_sz);
  2977     // Use a trick with mincore to check whether the page is mapped or not.
  2978     // mincore sets vec to 1 if page resides in memory and to 0 if page
  2979     // is swapped output but if page we are asking for is unmapped
  2980     // it returns -1,ENOMEM
  2981     mincore_return_value = mincore(nbot, page_sz, vec);
  2983     if (mincore_return_value == -1) {
  2984       // Page is not mapped go up
  2985       // to find first mapped page
  2986       if (errno != EAGAIN) {
  2987         assert(errno == ENOMEM, "Unexpected mincore errno");
  2988         imax = imid;
  2990     } else {
  2991       // Page is mapped go down
  2992       // to find first not mapped page
  2993       imin = imid + 1;
  2997   nbot = nbot + page_sz;
  2999   // Adjust stack bottom one page up if last checked page is not mapped
  3000   if (mincore_return_value == -1) {
  3001     nbot = nbot + page_sz;
  3004   return nbot;
  3008 // Linux uses a growable mapping for the stack, and if the mapping for
  3009 // the stack guard pages is not removed when we detach a thread the
  3010 // stack cannot grow beyond the pages where the stack guard was
  3011 // mapped.  If at some point later in the process the stack expands to
  3012 // that point, the Linux kernel cannot expand the stack any further
  3013 // because the guard pages are in the way, and a segfault occurs.
  3014 //
  3015 // However, it's essential not to split the stack region by unmapping
  3016 // a region (leaving a hole) that's already part of the stack mapping,
  3017 // so if the stack mapping has already grown beyond the guard pages at
  3018 // the time we create them, we have to truncate the stack mapping.
  3019 // So, we need to know the extent of the stack mapping when
  3020 // create_stack_guard_pages() is called.
  3022 // We only need this for stacks that are growable: at the time of
  3023 // writing thread stacks don't use growable mappings (i.e. those
  3024 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  3025 // only applies to the main thread.
  3027 // If the (growable) stack mapping already extends beyond the point
  3028 // where we're going to put our guard pages, truncate the mapping at
  3029 // that point by munmap()ping it.  This ensures that when we later
  3030 // munmap() the guard pages we don't leave a hole in the stack
  3031 // mapping. This only affects the main/initial thread
  3033 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3035   if (os::Linux::is_initial_thread()) {
  3036     // As we manually grow stack up to bottom inside create_attached_thread(),
  3037     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  3038     // we don't need to do anything special.
  3039     // Check it first, before calling heavy function.
  3040     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  3041     unsigned char vec[1];
  3043     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  3044       // Fallback to slow path on all errors, including EAGAIN
  3045       stack_extent = (uintptr_t) get_stack_commited_bottom(
  3046                                     os::Linux::initial_thread_stack_bottom(),
  3047                                     (size_t)addr - stack_extent);
  3050     if (stack_extent < (uintptr_t)addr) {
  3051       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  3055   return os::commit_memory(addr, size, !ExecMem);
  3058 // If this is a growable mapping, remove the guard pages entirely by
  3059 // munmap()ping them.  If not, just call uncommit_memory(). This only
  3060 // affects the main/initial thread, but guard against future OS changes
  3061 // It's safe to always unmap guard pages for initial thread because we
  3062 // always place it right after end of the mapped region
  3064 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3065   uintptr_t stack_extent, stack_base;
  3067   if (os::Linux::is_initial_thread()) {
  3068     return ::munmap(addr, size) == 0;
  3071   return os::uncommit_memory(addr, size);
  3074 static address _highest_vm_reserved_address = NULL;
  3076 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3077 // at 'requested_addr'. If there are existing memory mappings at the same
  3078 // location, however, they will be overwritten. If 'fixed' is false,
  3079 // 'requested_addr' is only treated as a hint, the return value may or
  3080 // may not start from the requested address. Unlike Linux mmap(), this
  3081 // function returns NULL to indicate failure.
  3082 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3083   char * addr;
  3084   int flags;
  3086   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3087   if (fixed) {
  3088     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3089     flags |= MAP_FIXED;
  3092   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3093   // touch an uncommitted page. Otherwise, the read/write might
  3094   // succeed if we have enough swap space to back the physical page.
  3095   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3096                        flags, -1, 0);
  3098   if (addr != MAP_FAILED) {
  3099     // anon_mmap() should only get called during VM initialization,
  3100     // don't need lock (actually we can skip locking even it can be called
  3101     // from multiple threads, because _highest_vm_reserved_address is just a
  3102     // hint about the upper limit of non-stack memory regions.)
  3103     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3104       _highest_vm_reserved_address = (address)addr + bytes;
  3108   return addr == MAP_FAILED ? NULL : addr;
  3111 // Don't update _highest_vm_reserved_address, because there might be memory
  3112 // regions above addr + size. If so, releasing a memory region only creates
  3113 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3114 //
  3115 static int anon_munmap(char * addr, size_t size) {
  3116   return ::munmap(addr, size) == 0;
  3119 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3120                          size_t alignment_hint) {
  3121   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3124 bool os::pd_release_memory(char* addr, size_t size) {
  3125   return anon_munmap(addr, size);
  3128 static address highest_vm_reserved_address() {
  3129   return _highest_vm_reserved_address;
  3132 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3133   // Linux wants the mprotect address argument to be page aligned.
  3134   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3136   // According to SUSv3, mprotect() should only be used with mappings
  3137   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3138   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3139   // protection of malloc'ed or statically allocated memory). Check the
  3140   // caller if you hit this assert.
  3141   assert(addr == bottom, "sanity check");
  3143   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3144   return ::mprotect(bottom, size, prot) == 0;
  3147 // Set protections specified
  3148 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3149                         bool is_committed) {
  3150   unsigned int p = 0;
  3151   switch (prot) {
  3152   case MEM_PROT_NONE: p = PROT_NONE; break;
  3153   case MEM_PROT_READ: p = PROT_READ; break;
  3154   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3155   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3156   default:
  3157     ShouldNotReachHere();
  3159   // is_committed is unused.
  3160   return linux_mprotect(addr, bytes, p);
  3163 bool os::guard_memory(char* addr, size_t size) {
  3164   return linux_mprotect(addr, size, PROT_NONE);
  3167 bool os::unguard_memory(char* addr, size_t size) {
  3168   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3171 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3172   bool result = false;
  3173   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3174                  MAP_ANONYMOUS|MAP_PRIVATE,
  3175                  -1, 0);
  3176   if (p != MAP_FAILED) {
  3177     void *aligned_p = align_ptr_up(p, page_size);
  3179     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3181     munmap(p, page_size * 2);
  3184   if (warn && !result) {
  3185     warning("TransparentHugePages is not supported by the operating system.");
  3188   return result;
  3191 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3192   bool result = false;
  3193   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3194                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3195                  -1, 0);
  3197   if (p != MAP_FAILED) {
  3198     // We don't know if this really is a huge page or not.
  3199     FILE *fp = fopen("/proc/self/maps", "r");
  3200     if (fp) {
  3201       while (!feof(fp)) {
  3202         char chars[257];
  3203         long x = 0;
  3204         if (fgets(chars, sizeof(chars), fp)) {
  3205           if (sscanf(chars, "%lx-%*x", &x) == 1
  3206               && x == (long)p) {
  3207             if (strstr (chars, "hugepage")) {
  3208               result = true;
  3209               break;
  3214       fclose(fp);
  3216     munmap(p, page_size);
  3219   if (warn && !result) {
  3220     warning("HugeTLBFS is not supported by the operating system.");
  3223   return result;
  3226 /*
  3227 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3229 * From the coredump_filter documentation:
  3231 * - (bit 0) anonymous private memory
  3232 * - (bit 1) anonymous shared memory
  3233 * - (bit 2) file-backed private memory
  3234 * - (bit 3) file-backed shared memory
  3235 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3236 *           effective only if the bit 2 is cleared)
  3237 * - (bit 5) hugetlb private memory
  3238 * - (bit 6) hugetlb shared memory
  3239 */
  3240 static void set_coredump_filter(void) {
  3241   FILE *f;
  3242   long cdm;
  3244   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3245     return;
  3248   if (fscanf(f, "%lx", &cdm) != 1) {
  3249     fclose(f);
  3250     return;
  3253   rewind(f);
  3255   if ((cdm & LARGEPAGES_BIT) == 0) {
  3256     cdm |= LARGEPAGES_BIT;
  3257     fprintf(f, "%#lx", cdm);
  3260   fclose(f);
  3263 // Large page support
  3265 static size_t _large_page_size = 0;
  3267 size_t os::Linux::find_large_page_size() {
  3268   size_t large_page_size = 0;
  3270   // large_page_size on Linux is used to round up heap size. x86 uses either
  3271   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3272   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3273   // page as large as 256M.
  3274   //
  3275   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3276   // for a line with the following format:
  3277   //    Hugepagesize:     2048 kB
  3278   //
  3279   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3280   // format has been changed), we'll use the largest page size supported by
  3281   // the processor.
  3283 #ifndef ZERO
  3284   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3285                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3286 #endif // ZERO
  3288   FILE *fp = fopen("/proc/meminfo", "r");
  3289   if (fp) {
  3290     while (!feof(fp)) {
  3291       int x = 0;
  3292       char buf[16];
  3293       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3294         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3295           large_page_size = x * K;
  3296           break;
  3298       } else {
  3299         // skip to next line
  3300         for (;;) {
  3301           int ch = fgetc(fp);
  3302           if (ch == EOF || ch == (int)'\n') break;
  3306     fclose(fp);
  3309   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3310     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3311         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3312         proper_unit_for_byte_size(large_page_size));
  3315   return large_page_size;
  3318 size_t os::Linux::setup_large_page_size() {
  3319   _large_page_size = Linux::find_large_page_size();
  3320   const size_t default_page_size = (size_t)Linux::page_size();
  3321   if (_large_page_size > default_page_size) {
  3322     _page_sizes[0] = _large_page_size;
  3323     _page_sizes[1] = default_page_size;
  3324     _page_sizes[2] = 0;
  3327   return _large_page_size;
  3330 bool os::Linux::setup_large_page_type(size_t page_size) {
  3331   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3332       FLAG_IS_DEFAULT(UseSHM) &&
  3333       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3334     // If UseLargePages is specified on the command line try all methods,
  3335     // if it's default, then try only UseTransparentHugePages.
  3336     if (FLAG_IS_DEFAULT(UseLargePages)) {
  3337       UseTransparentHugePages = true;
  3338     } else {
  3339       UseHugeTLBFS = UseTransparentHugePages = UseSHM = true;
  3343   if (UseTransparentHugePages) {
  3344     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3345     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3346       UseHugeTLBFS = false;
  3347       UseSHM = false;
  3348       return true;
  3350     UseTransparentHugePages = false;
  3353   if (UseHugeTLBFS) {
  3354     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3355     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3356       UseSHM = false;
  3357       return true;
  3359     UseHugeTLBFS = false;
  3362   return UseSHM;
  3365 void os::large_page_init() {
  3366   if (!UseLargePages) {
  3367     UseHugeTLBFS = false;
  3368     UseTransparentHugePages = false;
  3369     UseSHM = false;
  3370     return;
  3373   size_t large_page_size = Linux::setup_large_page_size();
  3374   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3376   set_coredump_filter();
  3379 #ifndef SHM_HUGETLB
  3380 #define SHM_HUGETLB 04000
  3381 #endif
  3383 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3384   // "exec" is passed in but not used.  Creating the shared image for
  3385   // the code cache doesn't have an SHM_X executable permission to check.
  3386   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3387   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3389   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
  3390     return NULL; // Fallback to small pages.
  3393   key_t key = IPC_PRIVATE;
  3394   char *addr;
  3396   bool warn_on_failure = UseLargePages &&
  3397                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3398                          !FLAG_IS_DEFAULT(UseSHM) ||
  3399                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3400                         );
  3401   char msg[128];
  3403   // Create a large shared memory region to attach to based on size.
  3404   // Currently, size is the total size of the heap
  3405   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3406   if (shmid == -1) {
  3407      // Possible reasons for shmget failure:
  3408      // 1. shmmax is too small for Java heap.
  3409      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3410      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3411      // 2. not enough large page memory.
  3412      //    > check available large pages: cat /proc/meminfo
  3413      //    > increase amount of large pages:
  3414      //          echo new_value > /proc/sys/vm/nr_hugepages
  3415      //      Note 1: different Linux may use different name for this property,
  3416      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3417      //      Note 2: it's possible there's enough physical memory available but
  3418      //            they are so fragmented after a long run that they can't
  3419      //            coalesce into large pages. Try to reserve large pages when
  3420      //            the system is still "fresh".
  3421      if (warn_on_failure) {
  3422        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3423        warning(msg);
  3425      return NULL;
  3428   // attach to the region
  3429   addr = (char*)shmat(shmid, req_addr, 0);
  3430   int err = errno;
  3432   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3433   // will be deleted when it's detached by shmdt() or when the process
  3434   // terminates. If shmat() is not successful this will remove the shared
  3435   // segment immediately.
  3436   shmctl(shmid, IPC_RMID, NULL);
  3438   if ((intptr_t)addr == -1) {
  3439      if (warn_on_failure) {
  3440        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3441        warning(msg);
  3443      return NULL;
  3446   return addr;
  3449 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3450   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3452   bool warn_on_failure = UseLargePages &&
  3453       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3454        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3455        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3457   if (warn_on_failure) {
  3458     char msg[128];
  3459     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3460         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3461     warning(msg);
  3465 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3466   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3467   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3468   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3470   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3471   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3472                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3473                              -1, 0);
  3475   if (addr == MAP_FAILED) {
  3476     warn_on_large_pages_failure(req_addr, bytes, errno);
  3477     return NULL;
  3480   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3482   return addr;
  3485 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3486   size_t large_page_size = os::large_page_size();
  3488   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3490   // Allocate small pages.
  3492   char* start;
  3493   if (req_addr != NULL) {
  3494     assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3495     assert(is_size_aligned(bytes, alignment), "Must be");
  3496     start = os::reserve_memory(bytes, req_addr);
  3497     assert(start == NULL || start == req_addr, "Must be");
  3498   } else {
  3499     start = os::reserve_memory_aligned(bytes, alignment);
  3502   if (start == NULL) {
  3503     return NULL;
  3506   assert(is_ptr_aligned(start, alignment), "Must be");
  3508   // os::reserve_memory_special will record this memory area.
  3509   // Need to release it here to prevent overlapping reservations.
  3510   MemTracker::record_virtual_memory_release((address)start, bytes);
  3512   char* end = start + bytes;
  3514   // Find the regions of the allocated chunk that can be promoted to large pages.
  3515   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3516   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3518   size_t lp_bytes = lp_end - lp_start;
  3520   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3522   if (lp_bytes == 0) {
  3523     // The mapped region doesn't even span the start and the end of a large page.
  3524     // Fall back to allocate a non-special area.
  3525     ::munmap(start, end - start);
  3526     return NULL;
  3529   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3532   void* result;
  3534   if (start != lp_start) {
  3535     result = ::mmap(start, lp_start - start, prot,
  3536                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3537                     -1, 0);
  3538     if (result == MAP_FAILED) {
  3539       ::munmap(lp_start, end - lp_start);
  3540       return NULL;
  3544   result = ::mmap(lp_start, lp_bytes, prot,
  3545                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3546                   -1, 0);
  3547   if (result == MAP_FAILED) {
  3548     warn_on_large_pages_failure(req_addr, bytes, errno);
  3549     // If the mmap above fails, the large pages region will be unmapped and we
  3550     // have regions before and after with small pages. Release these regions.
  3551     //
  3552     // |  mapped  |  unmapped  |  mapped  |
  3553     // ^          ^            ^          ^
  3554     // start      lp_start     lp_end     end
  3555     //
  3556     ::munmap(start, lp_start - start);
  3557     ::munmap(lp_end, end - lp_end);
  3558     return NULL;
  3561   if (lp_end != end) {
  3562       result = ::mmap(lp_end, end - lp_end, prot,
  3563                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3564                       -1, 0);
  3565     if (result == MAP_FAILED) {
  3566       ::munmap(start, lp_end - start);
  3567       return NULL;
  3571   return start;
  3574 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3575   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3576   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3577   assert(is_power_of_2(alignment), "Must be");
  3578   assert(is_power_of_2(os::large_page_size()), "Must be");
  3579   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3581   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3582     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3583   } else {
  3584     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3588 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3589   assert(UseLargePages, "only for large pages");
  3591   char* addr;
  3592   if (UseSHM) {
  3593     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3594   } else {
  3595     assert(UseHugeTLBFS, "must be");
  3596     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3599   if (addr != NULL) {
  3600     if (UseNUMAInterleaving) {
  3601       numa_make_global(addr, bytes);
  3604     // The memory is committed
  3605     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
  3608   return addr;
  3611 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3612   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3613   return shmdt(base) == 0;
  3616 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3617   return pd_release_memory(base, bytes);
  3620 bool os::release_memory_special(char* base, size_t bytes) {
  3621   assert(UseLargePages, "only for large pages");
  3623   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3625   bool res;
  3626   if (UseSHM) {
  3627     res = os::Linux::release_memory_special_shm(base, bytes);
  3628   } else {
  3629     assert(UseHugeTLBFS, "must be");
  3630     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3633   if (res) {
  3634     tkr.record((address)base, bytes);
  3635   } else {
  3636     tkr.discard();
  3639   return res;
  3642 size_t os::large_page_size() {
  3643   return _large_page_size;
  3646 // With SysV SHM the entire memory region must be allocated as shared
  3647 // memory.
  3648 // HugeTLBFS allows application to commit large page memory on demand.
  3649 // However, when committing memory with HugeTLBFS fails, the region
  3650 // that was supposed to be committed will lose the old reservation
  3651 // and allow other threads to steal that memory region. Because of this
  3652 // behavior we can't commit HugeTLBFS memory.
  3653 bool os::can_commit_large_page_memory() {
  3654   return UseTransparentHugePages;
  3657 bool os::can_execute_large_page_memory() {
  3658   return UseTransparentHugePages || UseHugeTLBFS;
  3661 // Reserve memory at an arbitrary address, only if that area is
  3662 // available (and not reserved for something else).
  3664 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3665   const int max_tries = 10;
  3666   char* base[max_tries];
  3667   size_t size[max_tries];
  3668   const size_t gap = 0x000000;
  3670   // Assert only that the size is a multiple of the page size, since
  3671   // that's all that mmap requires, and since that's all we really know
  3672   // about at this low abstraction level.  If we need higher alignment,
  3673   // we can either pass an alignment to this method or verify alignment
  3674   // in one of the methods further up the call chain.  See bug 5044738.
  3675   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3677   // Repeatedly allocate blocks until the block is allocated at the
  3678   // right spot. Give up after max_tries. Note that reserve_memory() will
  3679   // automatically update _highest_vm_reserved_address if the call is
  3680   // successful. The variable tracks the highest memory address every reserved
  3681   // by JVM. It is used to detect heap-stack collision if running with
  3682   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3683   // space than needed, it could confuse the collision detecting code. To
  3684   // solve the problem, save current _highest_vm_reserved_address and
  3685   // calculate the correct value before return.
  3686   address old_highest = _highest_vm_reserved_address;
  3688   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3689   // if kernel honors the hint then we can return immediately.
  3690   char * addr = anon_mmap(requested_addr, bytes, false);
  3691   if (addr == requested_addr) {
  3692      return requested_addr;
  3695   if (addr != NULL) {
  3696      // mmap() is successful but it fails to reserve at the requested address
  3697      anon_munmap(addr, bytes);
  3700   int i;
  3701   for (i = 0; i < max_tries; ++i) {
  3702     base[i] = reserve_memory(bytes);
  3704     if (base[i] != NULL) {
  3705       // Is this the block we wanted?
  3706       if (base[i] == requested_addr) {
  3707         size[i] = bytes;
  3708         break;
  3711       // Does this overlap the block we wanted? Give back the overlapped
  3712       // parts and try again.
  3714       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3715       if (top_overlap >= 0 && top_overlap < bytes) {
  3716         unmap_memory(base[i], top_overlap);
  3717         base[i] += top_overlap;
  3718         size[i] = bytes - top_overlap;
  3719       } else {
  3720         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3721         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3722           unmap_memory(requested_addr, bottom_overlap);
  3723           size[i] = bytes - bottom_overlap;
  3724         } else {
  3725           size[i] = bytes;
  3731   // Give back the unused reserved pieces.
  3733   for (int j = 0; j < i; ++j) {
  3734     if (base[j] != NULL) {
  3735       unmap_memory(base[j], size[j]);
  3739   if (i < max_tries) {
  3740     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3741     return requested_addr;
  3742   } else {
  3743     _highest_vm_reserved_address = old_highest;
  3744     return NULL;
  3748 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3749   return ::read(fd, buf, nBytes);
  3752 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3753 // Solaris uses poll(), linux uses park().
  3754 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3755 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3756 // SIGSEGV, see 4355769.
  3758 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3759   assert(thread == Thread::current(),  "thread consistency check");
  3761   ParkEvent * const slp = thread->_SleepEvent ;
  3762   slp->reset() ;
  3763   OrderAccess::fence() ;
  3765   if (interruptible) {
  3766     jlong prevtime = javaTimeNanos();
  3768     for (;;) {
  3769       if (os::is_interrupted(thread, true)) {
  3770         return OS_INTRPT;
  3773       jlong newtime = javaTimeNanos();
  3775       if (newtime - prevtime < 0) {
  3776         // time moving backwards, should only happen if no monotonic clock
  3777         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3778         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3779       } else {
  3780         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3783       if(millis <= 0) {
  3784         return OS_OK;
  3787       prevtime = newtime;
  3790         assert(thread->is_Java_thread(), "sanity check");
  3791         JavaThread *jt = (JavaThread *) thread;
  3792         ThreadBlockInVM tbivm(jt);
  3793         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3795         jt->set_suspend_equivalent();
  3796         // cleared by handle_special_suspend_equivalent_condition() or
  3797         // java_suspend_self() via check_and_wait_while_suspended()
  3799         slp->park(millis);
  3801         // were we externally suspended while we were waiting?
  3802         jt->check_and_wait_while_suspended();
  3805   } else {
  3806     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3807     jlong prevtime = javaTimeNanos();
  3809     for (;;) {
  3810       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3811       // the 1st iteration ...
  3812       jlong newtime = javaTimeNanos();
  3814       if (newtime - prevtime < 0) {
  3815         // time moving backwards, should only happen if no monotonic clock
  3816         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3817         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3818       } else {
  3819         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3822       if(millis <= 0) break ;
  3824       prevtime = newtime;
  3825       slp->park(millis);
  3827     return OS_OK ;
  3831 int os::naked_sleep() {
  3832   // %% make the sleep time an integer flag. for now use 1 millisec.
  3833   return os::sleep(Thread::current(), 1, false);
  3836 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3837 void os::infinite_sleep() {
  3838   while (true) {    // sleep forever ...
  3839     ::sleep(100);   // ... 100 seconds at a time
  3843 // Used to convert frequent JVM_Yield() to nops
  3844 bool os::dont_yield() {
  3845   return DontYieldALot;
  3848 void os::yield() {
  3849   sched_yield();
  3852 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3854 void os::yield_all(int attempts) {
  3855   // Yields to all threads, including threads with lower priorities
  3856   // Threads on Linux are all with same priority. The Solaris style
  3857   // os::yield_all() with nanosleep(1ms) is not necessary.
  3858   sched_yield();
  3861 // Called from the tight loops to possibly influence time-sharing heuristics
  3862 void os::loop_breaker(int attempts) {
  3863   os::yield_all(attempts);
  3866 ////////////////////////////////////////////////////////////////////////////////
  3867 // thread priority support
  3869 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3870 // only supports dynamic priority, static priority must be zero. For real-time
  3871 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3872 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3873 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3874 // of 5 runs - Sep 2005).
  3875 //
  3876 // The following code actually changes the niceness of kernel-thread/LWP. It
  3877 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3878 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3879 // threads. It has always been the case, but could change in the future. For
  3880 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3881 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3883 int os::java_to_os_priority[CriticalPriority + 1] = {
  3884   19,              // 0 Entry should never be used
  3886    4,              // 1 MinPriority
  3887    3,              // 2
  3888    2,              // 3
  3890    1,              // 4
  3891    0,              // 5 NormPriority
  3892   -1,              // 6
  3894   -2,              // 7
  3895   -3,              // 8
  3896   -4,              // 9 NearMaxPriority
  3898   -5,              // 10 MaxPriority
  3900   -5               // 11 CriticalPriority
  3901 };
  3903 static int prio_init() {
  3904   if (ThreadPriorityPolicy == 1) {
  3905     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3906     // if effective uid is not root. Perhaps, a more elegant way of doing
  3907     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3908     if (geteuid() != 0) {
  3909       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3910         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3912       ThreadPriorityPolicy = 0;
  3915   if (UseCriticalJavaThreadPriority) {
  3916     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  3918   return 0;
  3921 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3922   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3924   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3925   return (ret == 0) ? OS_OK : OS_ERR;
  3928 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3929   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3930     *priority_ptr = java_to_os_priority[NormPriority];
  3931     return OS_OK;
  3934   errno = 0;
  3935   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3936   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3939 // Hint to the underlying OS that a task switch would not be good.
  3940 // Void return because it's a hint and can fail.
  3941 void os::hint_no_preempt() {}
  3943 ////////////////////////////////////////////////////////////////////////////////
  3944 // suspend/resume support
  3946 //  the low-level signal-based suspend/resume support is a remnant from the
  3947 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3948 //  within hotspot. Now there is a single use-case for this:
  3949 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3950 //      that runs in the watcher thread.
  3951 //  The remaining code is greatly simplified from the more general suspension
  3952 //  code that used to be used.
  3953 //
  3954 //  The protocol is quite simple:
  3955 //  - suspend:
  3956 //      - sends a signal to the target thread
  3957 //      - polls the suspend state of the osthread using a yield loop
  3958 //      - target thread signal handler (SR_handler) sets suspend state
  3959 //        and blocks in sigsuspend until continued
  3960 //  - resume:
  3961 //      - sets target osthread state to continue
  3962 //      - sends signal to end the sigsuspend loop in the SR_handler
  3963 //
  3964 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3965 //
  3967 static void resume_clear_context(OSThread *osthread) {
  3968   osthread->set_ucontext(NULL);
  3969   osthread->set_siginfo(NULL);
  3972 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3973   osthread->set_ucontext(context);
  3974   osthread->set_siginfo(siginfo);
  3977 //
  3978 // Handler function invoked when a thread's execution is suspended or
  3979 // resumed. We have to be careful that only async-safe functions are
  3980 // called here (Note: most pthread functions are not async safe and
  3981 // should be avoided.)
  3982 //
  3983 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3984 // interface point of view, but sigwait() prevents the signal hander
  3985 // from being run. libpthread would get very confused by not having
  3986 // its signal handlers run and prevents sigwait()'s use with the
  3987 // mutex granting granting signal.
  3988 //
  3989 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  3990 //
  3991 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3992   // Save and restore errno to avoid confusing native code with EINTR
  3993   // after sigsuspend.
  3994   int old_errno = errno;
  3996   Thread* thread = Thread::current();
  3997   OSThread* osthread = thread->osthread();
  3998   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4000   os::SuspendResume::State current = osthread->sr.state();
  4001   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4002     suspend_save_context(osthread, siginfo, context);
  4004     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4005     os::SuspendResume::State state = osthread->sr.suspended();
  4006     if (state == os::SuspendResume::SR_SUSPENDED) {
  4007       sigset_t suspend_set;  // signals for sigsuspend()
  4009       // get current set of blocked signals and unblock resume signal
  4010       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4011       sigdelset(&suspend_set, SR_signum);
  4013       sr_semaphore.signal();
  4014       // wait here until we are resumed
  4015       while (1) {
  4016         sigsuspend(&suspend_set);
  4018         os::SuspendResume::State result = osthread->sr.running();
  4019         if (result == os::SuspendResume::SR_RUNNING) {
  4020           sr_semaphore.signal();
  4021           break;
  4025     } else if (state == os::SuspendResume::SR_RUNNING) {
  4026       // request was cancelled, continue
  4027     } else {
  4028       ShouldNotReachHere();
  4031     resume_clear_context(osthread);
  4032   } else if (current == os::SuspendResume::SR_RUNNING) {
  4033     // request was cancelled, continue
  4034   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4035     // ignore
  4036   } else {
  4037     // ignore
  4040   errno = old_errno;
  4044 static int SR_initialize() {
  4045   struct sigaction act;
  4046   char *s;
  4047   /* Get signal number to use for suspend/resume */
  4048   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4049     int sig = ::strtol(s, 0, 10);
  4050     if (sig > 0 || sig < _NSIG) {
  4051         SR_signum = sig;
  4055   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4056         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4058   sigemptyset(&SR_sigset);
  4059   sigaddset(&SR_sigset, SR_signum);
  4061   /* Set up signal handler for suspend/resume */
  4062   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4063   act.sa_handler = (void (*)(int)) SR_handler;
  4065   // SR_signum is blocked by default.
  4066   // 4528190 - We also need to block pthread restart signal (32 on all
  4067   // supported Linux platforms). Note that LinuxThreads need to block
  4068   // this signal for all threads to work properly. So we don't have
  4069   // to use hard-coded signal number when setting up the mask.
  4070   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4072   if (sigaction(SR_signum, &act, 0) == -1) {
  4073     return -1;
  4076   // Save signal flag
  4077   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4078   return 0;
  4081 static int sr_notify(OSThread* osthread) {
  4082   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4083   assert_status(status == 0, status, "pthread_kill");
  4084   return status;
  4087 // "Randomly" selected value for how long we want to spin
  4088 // before bailing out on suspending a thread, also how often
  4089 // we send a signal to a thread we want to resume
  4090 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4091 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4093 // returns true on success and false on error - really an error is fatal
  4094 // but this seems the normal response to library errors
  4095 static bool do_suspend(OSThread* osthread) {
  4096   assert(osthread->sr.is_running(), "thread should be running");
  4097   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4099   // mark as suspended and send signal
  4100   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4101     // failed to switch, state wasn't running?
  4102     ShouldNotReachHere();
  4103     return false;
  4106   if (sr_notify(osthread) != 0) {
  4107     ShouldNotReachHere();
  4110   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4111   while (true) {
  4112     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4113       break;
  4114     } else {
  4115       // timeout
  4116       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4117       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4118         return false;
  4119       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4120         // make sure that we consume the signal on the semaphore as well
  4121         sr_semaphore.wait();
  4122         break;
  4123       } else {
  4124         ShouldNotReachHere();
  4125         return false;
  4130   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4131   return true;
  4134 static void do_resume(OSThread* osthread) {
  4135   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4136   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4138   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4139     // failed to switch to WAKEUP_REQUEST
  4140     ShouldNotReachHere();
  4141     return;
  4144   while (true) {
  4145     if (sr_notify(osthread) == 0) {
  4146       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4147         if (osthread->sr.is_running()) {
  4148           return;
  4151     } else {
  4152       ShouldNotReachHere();
  4156   guarantee(osthread->sr.is_running(), "Must be running!");
  4159 ////////////////////////////////////////////////////////////////////////////////
  4160 // interrupt support
  4162 void os::interrupt(Thread* thread) {
  4163   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4164     "possibility of dangling Thread pointer");
  4166   OSThread* osthread = thread->osthread();
  4168   if (!osthread->interrupted()) {
  4169     osthread->set_interrupted(true);
  4170     // More than one thread can get here with the same value of osthread,
  4171     // resulting in multiple notifications.  We do, however, want the store
  4172     // to interrupted() to be visible to other threads before we execute unpark().
  4173     OrderAccess::fence();
  4174     ParkEvent * const slp = thread->_SleepEvent ;
  4175     if (slp != NULL) slp->unpark() ;
  4178   // For JSR166. Unpark even if interrupt status already was set
  4179   if (thread->is_Java_thread())
  4180     ((JavaThread*)thread)->parker()->unpark();
  4182   ParkEvent * ev = thread->_ParkEvent ;
  4183   if (ev != NULL) ev->unpark() ;
  4187 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4188   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4189     "possibility of dangling Thread pointer");
  4191   OSThread* osthread = thread->osthread();
  4193   bool interrupted = osthread->interrupted();
  4195   if (interrupted && clear_interrupted) {
  4196     osthread->set_interrupted(false);
  4197     // consider thread->_SleepEvent->reset() ... optional optimization
  4200   return interrupted;
  4203 ///////////////////////////////////////////////////////////////////////////////////
  4204 // signal handling (except suspend/resume)
  4206 // This routine may be used by user applications as a "hook" to catch signals.
  4207 // The user-defined signal handler must pass unrecognized signals to this
  4208 // routine, and if it returns true (non-zero), then the signal handler must
  4209 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4210 // routine will never retun false (zero), but instead will execute a VM panic
  4211 // routine kill the process.
  4212 //
  4213 // If this routine returns false, it is OK to call it again.  This allows
  4214 // the user-defined signal handler to perform checks either before or after
  4215 // the VM performs its own checks.  Naturally, the user code would be making
  4216 // a serious error if it tried to handle an exception (such as a null check
  4217 // or breakpoint) that the VM was generating for its own correct operation.
  4218 //
  4219 // This routine may recognize any of the following kinds of signals:
  4220 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4221 // It should be consulted by handlers for any of those signals.
  4222 //
  4223 // The caller of this routine must pass in the three arguments supplied
  4224 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4225 // field of the structure passed to sigaction().  This routine assumes that
  4226 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4227 //
  4228 // Note that the VM will print warnings if it detects conflicting signal
  4229 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4230 //
  4231 extern "C" JNIEXPORT int
  4232 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4233                         void* ucontext, int abort_if_unrecognized);
  4235 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4236   assert(info != NULL && uc != NULL, "it must be old kernel");
  4237   int orig_errno = errno;  // Preserve errno value over signal handler.
  4238   JVM_handle_linux_signal(sig, info, uc, true);
  4239   errno = orig_errno;
  4243 // This boolean allows users to forward their own non-matching signals
  4244 // to JVM_handle_linux_signal, harmlessly.
  4245 bool os::Linux::signal_handlers_are_installed = false;
  4247 // For signal-chaining
  4248 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4249 unsigned int os::Linux::sigs = 0;
  4250 bool os::Linux::libjsig_is_loaded = false;
  4251 typedef struct sigaction *(*get_signal_t)(int);
  4252 get_signal_t os::Linux::get_signal_action = NULL;
  4254 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4255   struct sigaction *actp = NULL;
  4257   if (libjsig_is_loaded) {
  4258     // Retrieve the old signal handler from libjsig
  4259     actp = (*get_signal_action)(sig);
  4261   if (actp == NULL) {
  4262     // Retrieve the preinstalled signal handler from jvm
  4263     actp = get_preinstalled_handler(sig);
  4266   return actp;
  4269 static bool call_chained_handler(struct sigaction *actp, int sig,
  4270                                  siginfo_t *siginfo, void *context) {
  4271   // Call the old signal handler
  4272   if (actp->sa_handler == SIG_DFL) {
  4273     // It's more reasonable to let jvm treat it as an unexpected exception
  4274     // instead of taking the default action.
  4275     return false;
  4276   } else if (actp->sa_handler != SIG_IGN) {
  4277     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4278       // automaticlly block the signal
  4279       sigaddset(&(actp->sa_mask), sig);
  4282     sa_handler_t hand;
  4283     sa_sigaction_t sa;
  4284     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4285     // retrieve the chained handler
  4286     if (siginfo_flag_set) {
  4287       sa = actp->sa_sigaction;
  4288     } else {
  4289       hand = actp->sa_handler;
  4292     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4293       actp->sa_handler = SIG_DFL;
  4296     // try to honor the signal mask
  4297     sigset_t oset;
  4298     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4300     // call into the chained handler
  4301     if (siginfo_flag_set) {
  4302       (*sa)(sig, siginfo, context);
  4303     } else {
  4304       (*hand)(sig);
  4307     // restore the signal mask
  4308     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4310   // Tell jvm's signal handler the signal is taken care of.
  4311   return true;
  4314 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4315   bool chained = false;
  4316   // signal-chaining
  4317   if (UseSignalChaining) {
  4318     struct sigaction *actp = get_chained_signal_action(sig);
  4319     if (actp != NULL) {
  4320       chained = call_chained_handler(actp, sig, siginfo, context);
  4323   return chained;
  4326 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4327   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4328     return &sigact[sig];
  4330   return NULL;
  4333 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4334   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4335   sigact[sig] = oldAct;
  4336   sigs |= (unsigned int)1 << sig;
  4339 // for diagnostic
  4340 int os::Linux::sigflags[MAXSIGNUM];
  4342 int os::Linux::get_our_sigflags(int sig) {
  4343   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4344   return sigflags[sig];
  4347 void os::Linux::set_our_sigflags(int sig, int flags) {
  4348   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4349   sigflags[sig] = flags;
  4352 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4353   // Check for overwrite.
  4354   struct sigaction oldAct;
  4355   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4357   void* oldhand = oldAct.sa_sigaction
  4358                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4359                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4360   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4361       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4362       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4363     if (AllowUserSignalHandlers || !set_installed) {
  4364       // Do not overwrite; user takes responsibility to forward to us.
  4365       return;
  4366     } else if (UseSignalChaining) {
  4367       // save the old handler in jvm
  4368       save_preinstalled_handler(sig, oldAct);
  4369       // libjsig also interposes the sigaction() call below and saves the
  4370       // old sigaction on it own.
  4371     } else {
  4372       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4373                     "%#lx for signal %d.", (long)oldhand, sig));
  4377   struct sigaction sigAct;
  4378   sigfillset(&(sigAct.sa_mask));
  4379   sigAct.sa_handler = SIG_DFL;
  4380   if (!set_installed) {
  4381     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4382   } else {
  4383     sigAct.sa_sigaction = signalHandler;
  4384     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4386   // Save flags, which are set by ours
  4387   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4388   sigflags[sig] = sigAct.sa_flags;
  4390   int ret = sigaction(sig, &sigAct, &oldAct);
  4391   assert(ret == 0, "check");
  4393   void* oldhand2  = oldAct.sa_sigaction
  4394                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4395                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4396   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4399 // install signal handlers for signals that HotSpot needs to
  4400 // handle in order to support Java-level exception handling.
  4402 void os::Linux::install_signal_handlers() {
  4403   if (!signal_handlers_are_installed) {
  4404     signal_handlers_are_installed = true;
  4406     // signal-chaining
  4407     typedef void (*signal_setting_t)();
  4408     signal_setting_t begin_signal_setting = NULL;
  4409     signal_setting_t end_signal_setting = NULL;
  4410     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4411                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4412     if (begin_signal_setting != NULL) {
  4413       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4414                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4415       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4416                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4417       libjsig_is_loaded = true;
  4418       assert(UseSignalChaining, "should enable signal-chaining");
  4420     if (libjsig_is_loaded) {
  4421       // Tell libjsig jvm is setting signal handlers
  4422       (*begin_signal_setting)();
  4425     set_signal_handler(SIGSEGV, true);
  4426     set_signal_handler(SIGPIPE, true);
  4427     set_signal_handler(SIGBUS, true);
  4428     set_signal_handler(SIGILL, true);
  4429     set_signal_handler(SIGFPE, true);
  4430     set_signal_handler(SIGXFSZ, true);
  4432     if (libjsig_is_loaded) {
  4433       // Tell libjsig jvm finishes setting signal handlers
  4434       (*end_signal_setting)();
  4437     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4438     // and if UserSignalHandler is installed all bets are off.
  4439     // Log that signal checking is off only if -verbose:jni is specified.
  4440     if (CheckJNICalls) {
  4441       if (libjsig_is_loaded) {
  4442         if (PrintJNIResolving) {
  4443           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4445         check_signals = false;
  4447       if (AllowUserSignalHandlers) {
  4448         if (PrintJNIResolving) {
  4449           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4451         check_signals = false;
  4457 // This is the fastest way to get thread cpu time on Linux.
  4458 // Returns cpu time (user+sys) for any thread, not only for current.
  4459 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4460 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4461 // For reference, please, see IEEE Std 1003.1-2004:
  4462 //   http://www.unix.org/single_unix_specification
  4464 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4465   struct timespec tp;
  4466   int rc = os::Linux::clock_gettime(clockid, &tp);
  4467   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4469   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4472 /////
  4473 // glibc on Linux platform uses non-documented flag
  4474 // to indicate, that some special sort of signal
  4475 // trampoline is used.
  4476 // We will never set this flag, and we should
  4477 // ignore this flag in our diagnostic
  4478 #ifdef SIGNIFICANT_SIGNAL_MASK
  4479 #undef SIGNIFICANT_SIGNAL_MASK
  4480 #endif
  4481 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4483 static const char* get_signal_handler_name(address handler,
  4484                                            char* buf, int buflen) {
  4485   int offset;
  4486   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4487   if (found) {
  4488     // skip directory names
  4489     const char *p1, *p2;
  4490     p1 = buf;
  4491     size_t len = strlen(os::file_separator());
  4492     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4493     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4494   } else {
  4495     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4497   return buf;
  4500 static void print_signal_handler(outputStream* st, int sig,
  4501                                  char* buf, size_t buflen) {
  4502   struct sigaction sa;
  4504   sigaction(sig, NULL, &sa);
  4506   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4507   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4509   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4511   address handler = (sa.sa_flags & SA_SIGINFO)
  4512     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4513     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4515   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4516     st->print("SIG_DFL");
  4517   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4518     st->print("SIG_IGN");
  4519   } else {
  4520     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4523   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  4525   address rh = VMError::get_resetted_sighandler(sig);
  4526   // May be, handler was resetted by VMError?
  4527   if(rh != NULL) {
  4528     handler = rh;
  4529     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4532   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  4534   // Check: is it our handler?
  4535   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4536      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4537     // It is our signal handler
  4538     // check for flags, reset system-used one!
  4539     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4540       st->print(
  4541                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4542                 os::Linux::get_our_sigflags(sig));
  4545   st->cr();
  4549 #define DO_SIGNAL_CHECK(sig) \
  4550   if (!sigismember(&check_signal_done, sig)) \
  4551     os::Linux::check_signal_handler(sig)
  4553 // This method is a periodic task to check for misbehaving JNI applications
  4554 // under CheckJNI, we can add any periodic checks here
  4556 void os::run_periodic_checks() {
  4558   if (check_signals == false) return;
  4560   // SEGV and BUS if overridden could potentially prevent
  4561   // generation of hs*.log in the event of a crash, debugging
  4562   // such a case can be very challenging, so we absolutely
  4563   // check the following for a good measure:
  4564   DO_SIGNAL_CHECK(SIGSEGV);
  4565   DO_SIGNAL_CHECK(SIGILL);
  4566   DO_SIGNAL_CHECK(SIGFPE);
  4567   DO_SIGNAL_CHECK(SIGBUS);
  4568   DO_SIGNAL_CHECK(SIGPIPE);
  4569   DO_SIGNAL_CHECK(SIGXFSZ);
  4572   // ReduceSignalUsage allows the user to override these handlers
  4573   // see comments at the very top and jvm_solaris.h
  4574   if (!ReduceSignalUsage) {
  4575     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4576     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4577     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4578     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4581   DO_SIGNAL_CHECK(SR_signum);
  4582   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4585 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4587 static os_sigaction_t os_sigaction = NULL;
  4589 void os::Linux::check_signal_handler(int sig) {
  4590   char buf[O_BUFLEN];
  4591   address jvmHandler = NULL;
  4594   struct sigaction act;
  4595   if (os_sigaction == NULL) {
  4596     // only trust the default sigaction, in case it has been interposed
  4597     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4598     if (os_sigaction == NULL) return;
  4601   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4604   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4606   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4607     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4608     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4611   switch(sig) {
  4612   case SIGSEGV:
  4613   case SIGBUS:
  4614   case SIGFPE:
  4615   case SIGPIPE:
  4616   case SIGILL:
  4617   case SIGXFSZ:
  4618     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4619     break;
  4621   case SHUTDOWN1_SIGNAL:
  4622   case SHUTDOWN2_SIGNAL:
  4623   case SHUTDOWN3_SIGNAL:
  4624   case BREAK_SIGNAL:
  4625     jvmHandler = (address)user_handler();
  4626     break;
  4628   case INTERRUPT_SIGNAL:
  4629     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4630     break;
  4632   default:
  4633     if (sig == SR_signum) {
  4634       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4635     } else {
  4636       return;
  4638     break;
  4641   if (thisHandler != jvmHandler) {
  4642     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4643     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4644     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4645     // No need to check this sig any longer
  4646     sigaddset(&check_signal_done, sig);
  4647   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4648     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4649     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4650     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4651     // No need to check this sig any longer
  4652     sigaddset(&check_signal_done, sig);
  4655   // Dump all the signal
  4656   if (sigismember(&check_signal_done, sig)) {
  4657     print_signal_handlers(tty, buf, O_BUFLEN);
  4661 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4663 extern bool signal_name(int signo, char* buf, size_t len);
  4665 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4666   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4667     // signal
  4668     if (!signal_name(exception_code, buf, size)) {
  4669       jio_snprintf(buf, size, "SIG%d", exception_code);
  4671     return buf;
  4672   } else {
  4673     return NULL;
  4677 // this is called _before_ the most of global arguments have been parsed
  4678 void os::init(void) {
  4679   char dummy;   /* used to get a guess on initial stack address */
  4680 //  first_hrtime = gethrtime();
  4682   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4683   // is different than the pid of the java launcher thread.
  4684   // So, on Linux, the launcher thread pid is passed to the VM
  4685   // via the sun.java.launcher.pid property.
  4686   // Use this property instead of getpid() if it was correctly passed.
  4687   // See bug 6351349.
  4688   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4690   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4692   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4694   init_random(1234567);
  4696   ThreadCritical::initialize();
  4698   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4699   if (Linux::page_size() == -1) {
  4700     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4701                   strerror(errno)));
  4703   init_page_sizes((size_t) Linux::page_size());
  4705   Linux::initialize_system_info();
  4707   // main_thread points to the aboriginal thread
  4708   Linux::_main_thread = pthread_self();
  4710   Linux::clock_init();
  4711   initial_time_count = os::elapsed_counter();
  4712   pthread_mutex_init(&dl_mutex, NULL);
  4714   // If the pagesize of the VM is greater than 8K determine the appropriate
  4715   // number of initial guard pages.  The user can change this with the
  4716   // command line arguments, if needed.
  4717   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  4718     StackYellowPages = 1;
  4719     StackRedPages = 1;
  4720     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  4724 // To install functions for atexit system call
  4725 extern "C" {
  4726   static void perfMemory_exit_helper() {
  4727     perfMemory_exit();
  4731 // this is called _after_ the global arguments have been parsed
  4732 jint os::init_2(void)
  4734   Linux::fast_thread_clock_init();
  4736   // Allocate a single page and mark it as readable for safepoint polling
  4737   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4738   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4740   os::set_polling_page( polling_page );
  4742 #ifndef PRODUCT
  4743   if(Verbose && PrintMiscellaneous)
  4744     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4745 #endif
  4747   if (!UseMembar) {
  4748     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4749     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  4750     os::set_memory_serialize_page( mem_serialize_page );
  4752 #ifndef PRODUCT
  4753     if(Verbose && PrintMiscellaneous)
  4754       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4755 #endif
  4758   os::large_page_init();
  4760   // initialize suspend/resume support - must do this before signal_sets_init()
  4761   if (SR_initialize() != 0) {
  4762     perror("SR_initialize failed");
  4763     return JNI_ERR;
  4766   Linux::signal_sets_init();
  4767   Linux::install_signal_handlers();
  4769   // Check minimum allowable stack size for thread creation and to initialize
  4770   // the java system classes, including StackOverflowError - depends on page
  4771   // size.  Add a page for compiler2 recursion in main thread.
  4772   // Add in 2*BytesPerWord times page size to account for VM stack during
  4773   // class initialization depending on 32 or 64 bit VM.
  4774   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4775             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  4776                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  4778   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4779   if (threadStackSizeInBytes != 0 &&
  4780       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4781         tty->print_cr("\nThe stack size specified is too small, "
  4782                       "Specify at least %dk",
  4783                       os::Linux::min_stack_allowed/ K);
  4784         return JNI_ERR;
  4787   // Make the stack size a multiple of the page size so that
  4788   // the yellow/red zones can be guarded.
  4789   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4790         vm_page_size()));
  4792   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4794   Linux::libpthread_init();
  4795   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4796      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4797           Linux::glibc_version(), Linux::libpthread_version(),
  4798           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4801   if (UseNUMA) {
  4802     if (!Linux::libnuma_init()) {
  4803       UseNUMA = false;
  4804     } else {
  4805       if ((Linux::numa_max_node() < 1)) {
  4806         // There's only one node(they start from 0), disable NUMA.
  4807         UseNUMA = false;
  4810     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  4811     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4812     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  4813     // disable adaptive resizing.
  4814     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  4815       if (FLAG_IS_DEFAULT(UseNUMA)) {
  4816         UseNUMA = false;
  4817       } else {
  4818         if (FLAG_IS_DEFAULT(UseLargePages) &&
  4819             FLAG_IS_DEFAULT(UseSHM) &&
  4820             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  4821           UseLargePages = false;
  4822         } else {
  4823           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  4824           UseAdaptiveSizePolicy = false;
  4825           UseAdaptiveNUMAChunkSizing = false;
  4829     if (!UseNUMA && ForceNUMA) {
  4830       UseNUMA = true;
  4834   if (MaxFDLimit) {
  4835     // set the number of file descriptors to max. print out error
  4836     // if getrlimit/setrlimit fails but continue regardless.
  4837     struct rlimit nbr_files;
  4838     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4839     if (status != 0) {
  4840       if (PrintMiscellaneous && (Verbose || WizardMode))
  4841         perror("os::init_2 getrlimit failed");
  4842     } else {
  4843       nbr_files.rlim_cur = nbr_files.rlim_max;
  4844       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4845       if (status != 0) {
  4846         if (PrintMiscellaneous && (Verbose || WizardMode))
  4847           perror("os::init_2 setrlimit failed");
  4852   // Initialize lock used to serialize thread creation (see os::create_thread)
  4853   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4855   // at-exit methods are called in the reverse order of their registration.
  4856   // atexit functions are called on return from main or as a result of a
  4857   // call to exit(3C). There can be only 32 of these functions registered
  4858   // and atexit() does not set errno.
  4860   if (PerfAllowAtExitRegistration) {
  4861     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4862     // atexit functions can be delayed until process exit time, which
  4863     // can be problematic for embedded VM situations. Embedded VMs should
  4864     // call DestroyJavaVM() to assure that VM resources are released.
  4866     // note: perfMemory_exit_helper atexit function may be removed in
  4867     // the future if the appropriate cleanup code can be added to the
  4868     // VM_Exit VMOperation's doit method.
  4869     if (atexit(perfMemory_exit_helper) != 0) {
  4870       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  4874   // initialize thread priority policy
  4875   prio_init();
  4877   return JNI_OK;
  4880 // this is called at the end of vm_initialization
  4881 void os::init_3(void)
  4883 #ifdef JAVASE_EMBEDDED
  4884   // Start the MemNotifyThread
  4885   if (LowMemoryProtection) {
  4886     MemNotifyThread::start();
  4888   return;
  4889 #endif
  4892 // Mark the polling page as unreadable
  4893 void os::make_polling_page_unreadable(void) {
  4894   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4895     fatal("Could not disable polling page");
  4896 };
  4898 // Mark the polling page as readable
  4899 void os::make_polling_page_readable(void) {
  4900   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4901     fatal("Could not enable polling page");
  4903 };
  4905 int os::active_processor_count() {
  4906   // Linux doesn't yet have a (official) notion of processor sets,
  4907   // so just return the number of online processors.
  4908   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4909   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4910   return online_cpus;
  4913 void os::set_native_thread_name(const char *name) {
  4914   // Not yet implemented.
  4915   return;
  4918 bool os::distribute_processes(uint length, uint* distribution) {
  4919   // Not yet implemented.
  4920   return false;
  4923 bool os::bind_to_processor(uint processor_id) {
  4924   // Not yet implemented.
  4925   return false;
  4928 ///
  4930 void os::SuspendedThreadTask::internal_do_task() {
  4931   if (do_suspend(_thread->osthread())) {
  4932     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  4933     do_task(context);
  4934     do_resume(_thread->osthread());
  4938 class PcFetcher : public os::SuspendedThreadTask {
  4939 public:
  4940   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  4941   ExtendedPC result();
  4942 protected:
  4943   void do_task(const os::SuspendedThreadTaskContext& context);
  4944 private:
  4945   ExtendedPC _epc;
  4946 };
  4948 ExtendedPC PcFetcher::result() {
  4949   guarantee(is_done(), "task is not done yet.");
  4950   return _epc;
  4953 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  4954   Thread* thread = context.thread();
  4955   OSThread* osthread = thread->osthread();
  4956   if (osthread->ucontext() != NULL) {
  4957     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  4958   } else {
  4959     // NULL context is unexpected, double-check this is the VMThread
  4960     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4964 // Suspends the target using the signal mechanism and then grabs the PC before
  4965 // resuming the target. Used by the flat-profiler only
  4966 ExtendedPC os::get_thread_pc(Thread* thread) {
  4967   // Make sure that it is called by the watcher for the VMThread
  4968   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  4969   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4971   PcFetcher fetcher(thread);
  4972   fetcher.run();
  4973   return fetcher.result();
  4976 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  4978    if (is_NPTL()) {
  4979       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  4980    } else {
  4981       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  4982       // word back to default 64bit precision if condvar is signaled. Java
  4983       // wants 53bit precision.  Save and restore current value.
  4984       int fpu = get_fpu_control_word();
  4985       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  4986       set_fpu_control_word(fpu);
  4987       return status;
  4991 ////////////////////////////////////////////////////////////////////////////////
  4992 // debug support
  4994 bool os::find(address addr, outputStream* st) {
  4995   Dl_info dlinfo;
  4996   memset(&dlinfo, 0, sizeof(dlinfo));
  4997   if (dladdr(addr, &dlinfo) != 0) {
  4998     st->print(PTR_FORMAT ": ", addr);
  4999     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5000       st->print("%s+%#x", dlinfo.dli_sname,
  5001                  addr - (intptr_t)dlinfo.dli_saddr);
  5002     } else if (dlinfo.dli_fbase != NULL) {
  5003       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5004     } else {
  5005       st->print("<absolute address>");
  5007     if (dlinfo.dli_fname != NULL) {
  5008       st->print(" in %s", dlinfo.dli_fname);
  5010     if (dlinfo.dli_fbase != NULL) {
  5011       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5013     st->cr();
  5015     if (Verbose) {
  5016       // decode some bytes around the PC
  5017       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5018       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5019       address       lowest = (address) dlinfo.dli_sname;
  5020       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5021       if (begin < lowest)  begin = lowest;
  5022       Dl_info dlinfo2;
  5023       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5024           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5025         end = (address) dlinfo2.dli_saddr;
  5026       Disassembler::decode(begin, end, st);
  5028     return true;
  5030   return false;
  5033 ////////////////////////////////////////////////////////////////////////////////
  5034 // misc
  5036 // This does not do anything on Linux. This is basically a hook for being
  5037 // able to use structured exception handling (thread-local exception filters)
  5038 // on, e.g., Win32.
  5039 void
  5040 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5041                          JavaCallArguments* args, Thread* thread) {
  5042   f(value, method, args, thread);
  5045 void os::print_statistics() {
  5048 int os::message_box(const char* title, const char* message) {
  5049   int i;
  5050   fdStream err(defaultStream::error_fd());
  5051   for (i = 0; i < 78; i++) err.print_raw("=");
  5052   err.cr();
  5053   err.print_raw_cr(title);
  5054   for (i = 0; i < 78; i++) err.print_raw("-");
  5055   err.cr();
  5056   err.print_raw_cr(message);
  5057   for (i = 0; i < 78; i++) err.print_raw("=");
  5058   err.cr();
  5060   char buf[16];
  5061   // Prevent process from exiting upon "read error" without consuming all CPU
  5062   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5064   return buf[0] == 'y' || buf[0] == 'Y';
  5067 int os::stat(const char *path, struct stat *sbuf) {
  5068   char pathbuf[MAX_PATH];
  5069   if (strlen(path) > MAX_PATH - 1) {
  5070     errno = ENAMETOOLONG;
  5071     return -1;
  5073   os::native_path(strcpy(pathbuf, path));
  5074   return ::stat(pathbuf, sbuf);
  5077 bool os::check_heap(bool force) {
  5078   return true;
  5081 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5082   return ::vsnprintf(buf, count, format, args);
  5085 // Is a (classpath) directory empty?
  5086 bool os::dir_is_empty(const char* path) {
  5087   DIR *dir = NULL;
  5088   struct dirent *ptr;
  5090   dir = opendir(path);
  5091   if (dir == NULL) return true;
  5093   /* Scan the directory */
  5094   bool result = true;
  5095   char buf[sizeof(struct dirent) + MAX_PATH];
  5096   while (result && (ptr = ::readdir(dir)) != NULL) {
  5097     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5098       result = false;
  5101   closedir(dir);
  5102   return result;
  5105 // This code originates from JDK's sysOpen and open64_w
  5106 // from src/solaris/hpi/src/system_md.c
  5108 #ifndef O_DELETE
  5109 #define O_DELETE 0x10000
  5110 #endif
  5112 // Open a file. Unlink the file immediately after open returns
  5113 // if the specified oflag has the O_DELETE flag set.
  5114 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5116 int os::open(const char *path, int oflag, int mode) {
  5118   if (strlen(path) > MAX_PATH - 1) {
  5119     errno = ENAMETOOLONG;
  5120     return -1;
  5122   int fd;
  5123   int o_delete = (oflag & O_DELETE);
  5124   oflag = oflag & ~O_DELETE;
  5126   fd = ::open64(path, oflag, mode);
  5127   if (fd == -1) return -1;
  5129   //If the open succeeded, the file might still be a directory
  5131     struct stat64 buf64;
  5132     int ret = ::fstat64(fd, &buf64);
  5133     int st_mode = buf64.st_mode;
  5135     if (ret != -1) {
  5136       if ((st_mode & S_IFMT) == S_IFDIR) {
  5137         errno = EISDIR;
  5138         ::close(fd);
  5139         return -1;
  5141     } else {
  5142       ::close(fd);
  5143       return -1;
  5147     /*
  5148      * All file descriptors that are opened in the JVM and not
  5149      * specifically destined for a subprocess should have the
  5150      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5151      * party native code might fork and exec without closing all
  5152      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5153      * UNIXProcess.c), and this in turn might:
  5155      * - cause end-of-file to fail to be detected on some file
  5156      *   descriptors, resulting in mysterious hangs, or
  5158      * - might cause an fopen in the subprocess to fail on a system
  5159      *   suffering from bug 1085341.
  5161      * (Yes, the default setting of the close-on-exec flag is a Unix
  5162      * design flaw)
  5164      * See:
  5165      * 1085341: 32-bit stdio routines should support file descriptors >255
  5166      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5167      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5168      */
  5169 #ifdef FD_CLOEXEC
  5171         int flags = ::fcntl(fd, F_GETFD);
  5172         if (flags != -1)
  5173             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5175 #endif
  5177   if (o_delete != 0) {
  5178     ::unlink(path);
  5180   return fd;
  5184 // create binary file, rewriting existing file if required
  5185 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5186   int oflags = O_WRONLY | O_CREAT;
  5187   if (!rewrite_existing) {
  5188     oflags |= O_EXCL;
  5190   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5193 // return current position of file pointer
  5194 jlong os::current_file_offset(int fd) {
  5195   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5198 // move file pointer to the specified offset
  5199 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5200   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5203 // This code originates from JDK's sysAvailable
  5204 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5206 int os::available(int fd, jlong *bytes) {
  5207   jlong cur, end;
  5208   int mode;
  5209   struct stat64 buf64;
  5211   if (::fstat64(fd, &buf64) >= 0) {
  5212     mode = buf64.st_mode;
  5213     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5214       /*
  5215       * XXX: is the following call interruptible? If so, this might
  5216       * need to go through the INTERRUPT_IO() wrapper as for other
  5217       * blocking, interruptible calls in this file.
  5218       */
  5219       int n;
  5220       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5221         *bytes = n;
  5222         return 1;
  5226   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5227     return 0;
  5228   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5229     return 0;
  5230   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5231     return 0;
  5233   *bytes = end - cur;
  5234   return 1;
  5237 int os::socket_available(int fd, jint *pbytes) {
  5238   // Linux doc says EINTR not returned, unlike Solaris
  5239   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5241   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5242   // is expected to return 0 on failure and 1 on success to the jdk.
  5243   return (ret < 0) ? 0 : 1;
  5246 // Map a block of memory.
  5247 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5248                      char *addr, size_t bytes, bool read_only,
  5249                      bool allow_exec) {
  5250   int prot;
  5251   int flags = MAP_PRIVATE;
  5253   if (read_only) {
  5254     prot = PROT_READ;
  5255   } else {
  5256     prot = PROT_READ | PROT_WRITE;
  5259   if (allow_exec) {
  5260     prot |= PROT_EXEC;
  5263   if (addr != NULL) {
  5264     flags |= MAP_FIXED;
  5267   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5268                                      fd, file_offset);
  5269   if (mapped_address == MAP_FAILED) {
  5270     return NULL;
  5272   return mapped_address;
  5276 // Remap a block of memory.
  5277 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5278                        char *addr, size_t bytes, bool read_only,
  5279                        bool allow_exec) {
  5280   // same as map_memory() on this OS
  5281   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5282                         allow_exec);
  5286 // Unmap a block of memory.
  5287 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5288   return munmap(addr, bytes) == 0;
  5291 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5293 static clockid_t thread_cpu_clockid(Thread* thread) {
  5294   pthread_t tid = thread->osthread()->pthread_id();
  5295   clockid_t clockid;
  5297   // Get thread clockid
  5298   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5299   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5300   return clockid;
  5303 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5304 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5305 // of a thread.
  5306 //
  5307 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5308 // the fast estimate available on the platform.
  5310 jlong os::current_thread_cpu_time() {
  5311   if (os::Linux::supports_fast_thread_cpu_time()) {
  5312     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5313   } else {
  5314     // return user + sys since the cost is the same
  5315     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5319 jlong os::thread_cpu_time(Thread* thread) {
  5320   // consistent with what current_thread_cpu_time() returns
  5321   if (os::Linux::supports_fast_thread_cpu_time()) {
  5322     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5323   } else {
  5324     return slow_thread_cpu_time(thread, true /* user + sys */);
  5328 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5329   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5330     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5331   } else {
  5332     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5336 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5337   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5338     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5339   } else {
  5340     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5344 //
  5345 //  -1 on error.
  5346 //
  5348 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5349   static bool proc_task_unchecked = true;
  5350   static const char *proc_stat_path = "/proc/%d/stat";
  5351   pid_t  tid = thread->osthread()->thread_id();
  5352   char *s;
  5353   char stat[2048];
  5354   int statlen;
  5355   char proc_name[64];
  5356   int count;
  5357   long sys_time, user_time;
  5358   char cdummy;
  5359   int idummy;
  5360   long ldummy;
  5361   FILE *fp;
  5363   // The /proc/<tid>/stat aggregates per-process usage on
  5364   // new Linux kernels 2.6+ where NPTL is supported.
  5365   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5366   // See bug 6328462.
  5367   // There possibly can be cases where there is no directory
  5368   // /proc/self/task, so we check its availability.
  5369   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5370     // This is executed only once
  5371     proc_task_unchecked = false;
  5372     fp = fopen("/proc/self/task", "r");
  5373     if (fp != NULL) {
  5374       proc_stat_path = "/proc/self/task/%d/stat";
  5375       fclose(fp);
  5379   sprintf(proc_name, proc_stat_path, tid);
  5380   fp = fopen(proc_name, "r");
  5381   if ( fp == NULL ) return -1;
  5382   statlen = fread(stat, 1, 2047, fp);
  5383   stat[statlen] = '\0';
  5384   fclose(fp);
  5386   // Skip pid and the command string. Note that we could be dealing with
  5387   // weird command names, e.g. user could decide to rename java launcher
  5388   // to "java 1.4.2 :)", then the stat file would look like
  5389   //                1234 (java 1.4.2 :)) R ... ...
  5390   // We don't really need to know the command string, just find the last
  5391   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5392   s = strrchr(stat, ')');
  5393   if (s == NULL ) return -1;
  5395   // Skip blank chars
  5396   do s++; while (isspace(*s));
  5398   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5399                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5400                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5401                  &user_time, &sys_time);
  5402   if ( count != 13 ) return -1;
  5403   if (user_sys_cpu_time) {
  5404     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5405   } else {
  5406     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5410 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5411   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5412   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5413   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5414   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5417 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5418   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5419   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5420   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5421   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5424 bool os::is_thread_cpu_time_supported() {
  5425   return true;
  5428 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5429 // Linux doesn't yet have a (official) notion of processor sets,
  5430 // so just return the system wide load average.
  5431 int os::loadavg(double loadavg[], int nelem) {
  5432   return ::getloadavg(loadavg, nelem);
  5435 void os::pause() {
  5436   char filename[MAX_PATH];
  5437   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5438     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5439   } else {
  5440     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5443   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5444   if (fd != -1) {
  5445     struct stat buf;
  5446     ::close(fd);
  5447     while (::stat(filename, &buf) == 0) {
  5448       (void)::poll(NULL, 0, 100);
  5450   } else {
  5451     jio_fprintf(stderr,
  5452       "Could not open pause file '%s', continuing immediately.\n", filename);
  5457 // Refer to the comments in os_solaris.cpp park-unpark.
  5458 //
  5459 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5460 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5461 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5462 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5463 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5464 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5465 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5466 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5467 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5468 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5469 // of libpthread avoids the problem, but isn't practical.
  5470 //
  5471 // Possible remedies:
  5472 //
  5473 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5474 //      This is palliative and probabilistic, however.  If the thread is preempted
  5475 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5476 //      than the minimum period may have passed, and the abstime may be stale (in the
  5477 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5478 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5479 //
  5480 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5481 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5482 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5483 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5484 //      thread.
  5485 //
  5486 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5487 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5488 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5489 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5490 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5491 //      timers in a graceful fashion.
  5492 //
  5493 // 4.   When the abstime value is in the past it appears that control returns
  5494 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5495 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5496 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5497 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5498 //      It may be possible to avoid reinitialization by checking the return
  5499 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5500 //      condvar we must establish the invariant that cond_signal() is only called
  5501 //      within critical sections protected by the adjunct mutex.  This prevents
  5502 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5503 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5504 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5505 //
  5506 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5507 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5508 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5509 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5510 //
  5511 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5512 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5513 // and only enabling the work-around for vulnerable environments.
  5515 // utility to compute the abstime argument to timedwait:
  5516 // millis is the relative timeout time
  5517 // abstime will be the absolute timeout time
  5518 // TODO: replace compute_abstime() with unpackTime()
  5520 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5521   if (millis < 0)  millis = 0;
  5522   struct timeval now;
  5523   int status = gettimeofday(&now, NULL);
  5524   assert(status == 0, "gettimeofday");
  5525   jlong seconds = millis / 1000;
  5526   millis %= 1000;
  5527   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5528     seconds = 50000000;
  5530   abstime->tv_sec = now.tv_sec  + seconds;
  5531   long       usec = now.tv_usec + millis * 1000;
  5532   if (usec >= 1000000) {
  5533     abstime->tv_sec += 1;
  5534     usec -= 1000000;
  5536   abstime->tv_nsec = usec * 1000;
  5537   return abstime;
  5541 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5542 // Conceptually TryPark() should be equivalent to park(0).
  5544 int os::PlatformEvent::TryPark() {
  5545   for (;;) {
  5546     const int v = _Event ;
  5547     guarantee ((v == 0) || (v == 1), "invariant") ;
  5548     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5552 void os::PlatformEvent::park() {       // AKA "down()"
  5553   // Invariant: Only the thread associated with the Event/PlatformEvent
  5554   // may call park().
  5555   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5556   int v ;
  5557   for (;;) {
  5558       v = _Event ;
  5559       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5561   guarantee (v >= 0, "invariant") ;
  5562   if (v == 0) {
  5563      // Do this the hard way by blocking ...
  5564      int status = pthread_mutex_lock(_mutex);
  5565      assert_status(status == 0, status, "mutex_lock");
  5566      guarantee (_nParked == 0, "invariant") ;
  5567      ++ _nParked ;
  5568      while (_Event < 0) {
  5569         status = pthread_cond_wait(_cond, _mutex);
  5570         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5571         // Treat this the same as if the wait was interrupted
  5572         if (status == ETIME) { status = EINTR; }
  5573         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5575      -- _nParked ;
  5577     _Event = 0 ;
  5578      status = pthread_mutex_unlock(_mutex);
  5579      assert_status(status == 0, status, "mutex_unlock");
  5580     // Paranoia to ensure our locked and lock-free paths interact
  5581     // correctly with each other.
  5582     OrderAccess::fence();
  5584   guarantee (_Event >= 0, "invariant") ;
  5587 int os::PlatformEvent::park(jlong millis) {
  5588   guarantee (_nParked == 0, "invariant") ;
  5590   int v ;
  5591   for (;;) {
  5592       v = _Event ;
  5593       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5595   guarantee (v >= 0, "invariant") ;
  5596   if (v != 0) return OS_OK ;
  5598   // We do this the hard way, by blocking the thread.
  5599   // Consider enforcing a minimum timeout value.
  5600   struct timespec abst;
  5601   compute_abstime(&abst, millis);
  5603   int ret = OS_TIMEOUT;
  5604   int status = pthread_mutex_lock(_mutex);
  5605   assert_status(status == 0, status, "mutex_lock");
  5606   guarantee (_nParked == 0, "invariant") ;
  5607   ++_nParked ;
  5609   // Object.wait(timo) will return because of
  5610   // (a) notification
  5611   // (b) timeout
  5612   // (c) thread.interrupt
  5613   //
  5614   // Thread.interrupt and object.notify{All} both call Event::set.
  5615   // That is, we treat thread.interrupt as a special case of notification.
  5616   // The underlying Solaris implementation, cond_timedwait, admits
  5617   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5618   // JVM from making those visible to Java code.  As such, we must
  5619   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5620   //
  5621   // TODO: properly differentiate simultaneous notify+interrupt.
  5622   // In that case, we should propagate the notify to another waiter.
  5624   while (_Event < 0) {
  5625     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5626     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5627       pthread_cond_destroy (_cond);
  5628       pthread_cond_init (_cond, NULL) ;
  5630     assert_status(status == 0 || status == EINTR ||
  5631                   status == ETIME || status == ETIMEDOUT,
  5632                   status, "cond_timedwait");
  5633     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5634     if (status == ETIME || status == ETIMEDOUT) break ;
  5635     // We consume and ignore EINTR and spurious wakeups.
  5637   --_nParked ;
  5638   if (_Event >= 0) {
  5639      ret = OS_OK;
  5641   _Event = 0 ;
  5642   status = pthread_mutex_unlock(_mutex);
  5643   assert_status(status == 0, status, "mutex_unlock");
  5644   assert (_nParked == 0, "invariant") ;
  5645   // Paranoia to ensure our locked and lock-free paths interact
  5646   // correctly with each other.
  5647   OrderAccess::fence();
  5648   return ret;
  5651 void os::PlatformEvent::unpark() {
  5652   // Transitions for _Event:
  5653   //    0 :=> 1
  5654   //    1 :=> 1
  5655   //   -1 :=> either 0 or 1; must signal target thread
  5656   //          That is, we can safely transition _Event from -1 to either
  5657   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  5658   //          unpark() calls.
  5659   // See also: "Semaphores in Plan 9" by Mullender & Cox
  5660   //
  5661   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  5662   // that it will take two back-to-back park() calls for the owning
  5663   // thread to block. This has the benefit of forcing a spurious return
  5664   // from the first park() call after an unpark() call which will help
  5665   // shake out uses of park() and unpark() without condition variables.
  5667   if (Atomic::xchg(1, &_Event) >= 0) return;
  5669   // Wait for the thread associated with the event to vacate
  5670   int status = pthread_mutex_lock(_mutex);
  5671   assert_status(status == 0, status, "mutex_lock");
  5672   int AnyWaiters = _nParked;
  5673   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  5674   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5675     AnyWaiters = 0;
  5676     pthread_cond_signal(_cond);
  5678   status = pthread_mutex_unlock(_mutex);
  5679   assert_status(status == 0, status, "mutex_unlock");
  5680   if (AnyWaiters != 0) {
  5681     status = pthread_cond_signal(_cond);
  5682     assert_status(status == 0, status, "cond_signal");
  5685   // Note that we signal() _after dropping the lock for "immortal" Events.
  5686   // This is safe and avoids a common class of  futile wakeups.  In rare
  5687   // circumstances this can cause a thread to return prematurely from
  5688   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5689   // simply re-test the condition and re-park itself.
  5693 // JSR166
  5694 // -------------------------------------------------------
  5696 /*
  5697  * The solaris and linux implementations of park/unpark are fairly
  5698  * conservative for now, but can be improved. They currently use a
  5699  * mutex/condvar pair, plus a a count.
  5700  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5701  * sets count to 1 and signals condvar.  Only one thread ever waits
  5702  * on the condvar. Contention seen when trying to park implies that someone
  5703  * is unparking you, so don't wait. And spurious returns are fine, so there
  5704  * is no need to track notifications.
  5705  */
  5707 #define MAX_SECS 100000000
  5708 /*
  5709  * This code is common to linux and solaris and will be moved to a
  5710  * common place in dolphin.
  5712  * The passed in time value is either a relative time in nanoseconds
  5713  * or an absolute time in milliseconds. Either way it has to be unpacked
  5714  * into suitable seconds and nanoseconds components and stored in the
  5715  * given timespec structure.
  5716  * Given time is a 64-bit value and the time_t used in the timespec is only
  5717  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5718  * overflow if times way in the future are given. Further on Solaris versions
  5719  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5720  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5721  * As it will be 28 years before "now + 100000000" will overflow we can
  5722  * ignore overflow and just impose a hard-limit on seconds using the value
  5723  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5724  * years from "now".
  5725  */
  5727 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5728   assert (time > 0, "convertTime");
  5730   struct timeval now;
  5731   int status = gettimeofday(&now, NULL);
  5732   assert(status == 0, "gettimeofday");
  5734   time_t max_secs = now.tv_sec + MAX_SECS;
  5736   if (isAbsolute) {
  5737     jlong secs = time / 1000;
  5738     if (secs > max_secs) {
  5739       absTime->tv_sec = max_secs;
  5741     else {
  5742       absTime->tv_sec = secs;
  5744     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5746   else {
  5747     jlong secs = time / NANOSECS_PER_SEC;
  5748     if (secs >= MAX_SECS) {
  5749       absTime->tv_sec = max_secs;
  5750       absTime->tv_nsec = 0;
  5752     else {
  5753       absTime->tv_sec = now.tv_sec + secs;
  5754       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5755       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5756         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5757         ++absTime->tv_sec; // note: this must be <= max_secs
  5761   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5762   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5763   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5764   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5767 void Parker::park(bool isAbsolute, jlong time) {
  5768   // Ideally we'd do something useful while spinning, such
  5769   // as calling unpackTime().
  5771   // Optional fast-path check:
  5772   // Return immediately if a permit is available.
  5773   // We depend on Atomic::xchg() having full barrier semantics
  5774   // since we are doing a lock-free update to _counter.
  5775   if (Atomic::xchg(0, &_counter) > 0) return;
  5777   Thread* thread = Thread::current();
  5778   assert(thread->is_Java_thread(), "Must be JavaThread");
  5779   JavaThread *jt = (JavaThread *)thread;
  5781   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5782   // Check interrupt before trying to wait
  5783   if (Thread::is_interrupted(thread, false)) {
  5784     return;
  5787   // Next, demultiplex/decode time arguments
  5788   timespec absTime;
  5789   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5790     return;
  5792   if (time > 0) {
  5793     unpackTime(&absTime, isAbsolute, time);
  5797   // Enter safepoint region
  5798   // Beware of deadlocks such as 6317397.
  5799   // The per-thread Parker:: mutex is a classic leaf-lock.
  5800   // In particular a thread must never block on the Threads_lock while
  5801   // holding the Parker:: mutex.  If safepoints are pending both the
  5802   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5803   ThreadBlockInVM tbivm(jt);
  5805   // Don't wait if cannot get lock since interference arises from
  5806   // unblocking.  Also. check interrupt before trying wait
  5807   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5808     return;
  5811   int status ;
  5812   if (_counter > 0)  { // no wait needed
  5813     _counter = 0;
  5814     status = pthread_mutex_unlock(_mutex);
  5815     assert (status == 0, "invariant") ;
  5816     // Paranoia to ensure our locked and lock-free paths interact
  5817     // correctly with each other and Java-level accesses.
  5818     OrderAccess::fence();
  5819     return;
  5822 #ifdef ASSERT
  5823   // Don't catch signals while blocked; let the running threads have the signals.
  5824   // (This allows a debugger to break into the running thread.)
  5825   sigset_t oldsigs;
  5826   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5827   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5828 #endif
  5830   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5831   jt->set_suspend_equivalent();
  5832   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5834   if (time == 0) {
  5835     status = pthread_cond_wait (_cond, _mutex) ;
  5836   } else {
  5837     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  5838     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5839       pthread_cond_destroy (_cond) ;
  5840       pthread_cond_init    (_cond, NULL);
  5843   assert_status(status == 0 || status == EINTR ||
  5844                 status == ETIME || status == ETIMEDOUT,
  5845                 status, "cond_timedwait");
  5847 #ifdef ASSERT
  5848   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5849 #endif
  5851   _counter = 0 ;
  5852   status = pthread_mutex_unlock(_mutex) ;
  5853   assert_status(status == 0, status, "invariant") ;
  5854   // Paranoia to ensure our locked and lock-free paths interact
  5855   // correctly with each other and Java-level accesses.
  5856   OrderAccess::fence();
  5858   // If externally suspended while waiting, re-suspend
  5859   if (jt->handle_special_suspend_equivalent_condition()) {
  5860     jt->java_suspend_self();
  5864 void Parker::unpark() {
  5865   int s, status ;
  5866   status = pthread_mutex_lock(_mutex);
  5867   assert (status == 0, "invariant") ;
  5868   s = _counter;
  5869   _counter = 1;
  5870   if (s < 1) {
  5871      if (WorkAroundNPTLTimedWaitHang) {
  5872         status = pthread_cond_signal (_cond) ;
  5873         assert (status == 0, "invariant") ;
  5874         status = pthread_mutex_unlock(_mutex);
  5875         assert (status == 0, "invariant") ;
  5876      } else {
  5877         status = pthread_mutex_unlock(_mutex);
  5878         assert (status == 0, "invariant") ;
  5879         status = pthread_cond_signal (_cond) ;
  5880         assert (status == 0, "invariant") ;
  5882   } else {
  5883     pthread_mutex_unlock(_mutex);
  5884     assert (status == 0, "invariant") ;
  5889 extern char** environ;
  5891 #ifndef __NR_fork
  5892 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  5893 #endif
  5895 #ifndef __NR_execve
  5896 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  5897 #endif
  5899 // Run the specified command in a separate process. Return its exit value,
  5900 // or -1 on failure (e.g. can't fork a new process).
  5901 // Unlike system(), this function can be called from signal handler. It
  5902 // doesn't block SIGINT et al.
  5903 int os::fork_and_exec(char* cmd) {
  5904   const char * argv[4] = {"sh", "-c", cmd, NULL};
  5906   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  5907   // pthread_atfork handlers and reset pthread library. All we need is a
  5908   // separate process to execve. Make a direct syscall to fork process.
  5909   // On IA64 there's no fork syscall, we have to use fork() and hope for
  5910   // the best...
  5911   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  5912               IA64_ONLY(fork();)
  5914   if (pid < 0) {
  5915     // fork failed
  5916     return -1;
  5918   } else if (pid == 0) {
  5919     // child process
  5921     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  5922     // first to kill every thread on the thread list. Because this list is
  5923     // not reset by fork() (see notes above), execve() will instead kill
  5924     // every thread in the parent process. We know this is the only thread
  5925     // in the new process, so make a system call directly.
  5926     // IA64 should use normal execve() from glibc to match the glibc fork()
  5927     // above.
  5928     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  5929     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  5931     // execve failed
  5932     _exit(-1);
  5934   } else  {
  5935     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  5936     // care about the actual exit code, for now.
  5938     int status;
  5940     // Wait for the child process to exit.  This returns immediately if
  5941     // the child has already exited. */
  5942     while (waitpid(pid, &status, 0) < 0) {
  5943         switch (errno) {
  5944         case ECHILD: return 0;
  5945         case EINTR: break;
  5946         default: return -1;
  5950     if (WIFEXITED(status)) {
  5951        // The child exited normally; get its exit code.
  5952        return WEXITSTATUS(status);
  5953     } else if (WIFSIGNALED(status)) {
  5954        // The child exited because of a signal
  5955        // The best value to return is 0x80 + signal number,
  5956        // because that is what all Unix shells do, and because
  5957        // it allows callers to distinguish between process exit and
  5958        // process death by signal.
  5959        return 0x80 + WTERMSIG(status);
  5960     } else {
  5961        // Unknown exit code; pass it through
  5962        return status;
  5967 // is_headless_jre()
  5968 //
  5969 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  5970 // in order to report if we are running in a headless jre
  5971 //
  5972 // Since JDK8 xawt/libmawt.so was moved into the same directory
  5973 // as libawt.so, and renamed libawt_xawt.so
  5974 //
  5975 bool os::is_headless_jre() {
  5976     struct stat statbuf;
  5977     char buf[MAXPATHLEN];
  5978     char libmawtpath[MAXPATHLEN];
  5979     const char *xawtstr  = "/xawt/libmawt.so";
  5980     const char *new_xawtstr = "/libawt_xawt.so";
  5981     char *p;
  5983     // Get path to libjvm.so
  5984     os::jvm_path(buf, sizeof(buf));
  5986     // Get rid of libjvm.so
  5987     p = strrchr(buf, '/');
  5988     if (p == NULL) return false;
  5989     else *p = '\0';
  5991     // Get rid of client or server
  5992     p = strrchr(buf, '/');
  5993     if (p == NULL) return false;
  5994     else *p = '\0';
  5996     // check xawt/libmawt.so
  5997     strcpy(libmawtpath, buf);
  5998     strcat(libmawtpath, xawtstr);
  5999     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6001     // check libawt_xawt.so
  6002     strcpy(libmawtpath, buf);
  6003     strcat(libmawtpath, new_xawtstr);
  6004     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6006     return true;
  6009 // Get the default path to the core file
  6010 // Returns the length of the string
  6011 int os::get_core_path(char* buffer, size_t bufferSize) {
  6012   const char* p = get_current_directory(buffer, bufferSize);
  6014   if (p == NULL) {
  6015     assert(p != NULL, "failed to get current directory");
  6016     return 0;
  6019   return strlen(buffer);
  6022 #ifdef JAVASE_EMBEDDED
  6023 //
  6024 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
  6025 //
  6026 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
  6028 // ctor
  6029 //
  6030 MemNotifyThread::MemNotifyThread(int fd): Thread() {
  6031   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
  6032   _fd = fd;
  6034   if (os::create_thread(this, os::os_thread)) {
  6035     _memnotify_thread = this;
  6036     os::set_priority(this, NearMaxPriority);
  6037     os::start_thread(this);
  6041 // Where all the work gets done
  6042 //
  6043 void MemNotifyThread::run() {
  6044   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
  6046   // Set up the select arguments
  6047   fd_set rfds;
  6048   if (_fd != -1) {
  6049     FD_ZERO(&rfds);
  6050     FD_SET(_fd, &rfds);
  6053   // Now wait for the mem_notify device to wake up
  6054   while (1) {
  6055     // Wait for the mem_notify device to signal us..
  6056     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
  6057     if (rc == -1) {
  6058       perror("select!\n");
  6059       break;
  6060     } else if (rc) {
  6061       //ssize_t free_before = os::available_memory();
  6062       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
  6064       // The kernel is telling us there is not much memory left...
  6065       // try to do something about that
  6067       // If we are not already in a GC, try one.
  6068       if (!Universe::heap()->is_gc_active()) {
  6069         Universe::heap()->collect(GCCause::_allocation_failure);
  6071         //ssize_t free_after = os::available_memory();
  6072         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
  6073         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
  6075       // We might want to do something like the following if we find the GC's are not helping...
  6076       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
  6081 //
  6082 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
  6083 //
  6084 void MemNotifyThread::start() {
  6085   int    fd;
  6086   fd = open ("/dev/mem_notify", O_RDONLY, 0);
  6087   if (fd < 0) {
  6088       return;
  6091   if (memnotify_thread() == NULL) {
  6092     new MemNotifyThread(fd);
  6096 #endif // JAVASE_EMBEDDED
  6099 /////////////// Unit tests ///////////////
  6101 #ifndef PRODUCT
  6103 #define test_log(...) \
  6104   do {\
  6105     if (VerboseInternalVMTests) { \
  6106       tty->print_cr(__VA_ARGS__); \
  6107       tty->flush(); \
  6108     }\
  6109   } while (false)
  6111 class TestReserveMemorySpecial : AllStatic {
  6112  public:
  6113   static void small_page_write(void* addr, size_t size) {
  6114     size_t page_size = os::vm_page_size();
  6116     char* end = (char*)addr + size;
  6117     for (char* p = (char*)addr; p < end; p += page_size) {
  6118       *p = 1;
  6122   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6123     if (!UseHugeTLBFS) {
  6124       return;
  6127     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6129     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6131     if (addr != NULL) {
  6132       small_page_write(addr, size);
  6134       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6138   static void test_reserve_memory_special_huge_tlbfs_only() {
  6139     if (!UseHugeTLBFS) {
  6140       return;
  6143     size_t lp = os::large_page_size();
  6145     for (size_t size = lp; size <= lp * 10; size += lp) {
  6146       test_reserve_memory_special_huge_tlbfs_only(size);
  6150   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
  6151     if (!UseHugeTLBFS) {
  6152         return;
  6155     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
  6156         size, alignment);
  6158     assert(size >= os::large_page_size(), "Incorrect input to test");
  6160     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6162     if (addr != NULL) {
  6163       small_page_write(addr, size);
  6165       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6169   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
  6170     size_t lp = os::large_page_size();
  6171     size_t ag = os::vm_allocation_granularity();
  6173     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6174       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
  6178   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6179     size_t lp = os::large_page_size();
  6180     size_t ag = os::vm_allocation_granularity();
  6182     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
  6183     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
  6184     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
  6185     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
  6186     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
  6187     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
  6188     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
  6189     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
  6190     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
  6193   static void test_reserve_memory_special_huge_tlbfs() {
  6194     if (!UseHugeTLBFS) {
  6195       return;
  6198     test_reserve_memory_special_huge_tlbfs_only();
  6199     test_reserve_memory_special_huge_tlbfs_mixed();
  6202   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6203     if (!UseSHM) {
  6204       return;
  6207     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6209     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6211     if (addr != NULL) {
  6212       assert(is_ptr_aligned(addr, alignment), "Check");
  6213       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6215       small_page_write(addr, size);
  6217       os::Linux::release_memory_special_shm(addr, size);
  6221   static void test_reserve_memory_special_shm() {
  6222     size_t lp = os::large_page_size();
  6223     size_t ag = os::vm_allocation_granularity();
  6225     for (size_t size = ag; size < lp * 3; size += ag) {
  6226       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6227         test_reserve_memory_special_shm(size, alignment);
  6232   static void test() {
  6233     test_reserve_memory_special_huge_tlbfs();
  6234     test_reserve_memory_special_shm();
  6236 };
  6238 void TestReserveMemorySpecial_test() {
  6239   TestReserveMemorySpecial::test();
  6242 #endif

mercurial