src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Thu, 23 Aug 2012 10:21:12 +0200

author
brutisso
date
Thu, 23 Aug 2012 10:21:12 +0200
changeset 4015
bb3f6194fedb
parent 3998
7383557659bd
child 4016
c9814fadeb38
permissions
-rw-r--r--

7178363: G1: Remove the serial code for PrintGCDetails and make it a special case of the parallel code
Summary: Also reviewed by vitalyd@gmail.com. Introduced the WorkerDataArray class. Fixed some minor logging bugs.
Reviewed-by: johnc, mgerdin

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    35 #include "gc_implementation/g1/g1EvacFailure.hpp"
    36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    37 #include "gc_implementation/g1/g1Log.hpp"
    38 #include "gc_implementation/g1/g1MarkSweep.hpp"
    39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    41 #include "gc_implementation/g1/heapRegion.inline.hpp"
    42 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    43 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    44 #include "gc_implementation/g1/vm_operations_g1.hpp"
    45 #include "gc_implementation/shared/isGCActiveMark.hpp"
    46 #include "memory/gcLocker.inline.hpp"
    47 #include "memory/genOopClosures.inline.hpp"
    48 #include "memory/generationSpec.hpp"
    49 #include "memory/referenceProcessor.hpp"
    50 #include "oops/oop.inline.hpp"
    51 #include "oops/oop.pcgc.inline.hpp"
    52 #include "runtime/aprofiler.hpp"
    53 #include "runtime/vmThread.hpp"
    55 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    57 // turn it on so that the contents of the young list (scan-only /
    58 // to-be-collected) are printed at "strategic" points before / during
    59 // / after the collection --- this is useful for debugging
    60 #define YOUNG_LIST_VERBOSE 0
    61 // CURRENT STATUS
    62 // This file is under construction.  Search for "FIXME".
    64 // INVARIANTS/NOTES
    65 //
    66 // All allocation activity covered by the G1CollectedHeap interface is
    67 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    68 // and allocate_new_tlab, which are the "entry" points to the
    69 // allocation code from the rest of the JVM.  (Note that this does not
    70 // apply to TLAB allocation, which is not part of this interface: it
    71 // is done by clients of this interface.)
    73 // Notes on implementation of parallelism in different tasks.
    74 //
    75 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    76 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    77 // It does use run_task() which sets _n_workers in the task.
    78 // G1ParTask executes g1_process_strong_roots() ->
    79 // SharedHeap::process_strong_roots() which calls eventuall to
    80 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    81 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
    82 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    83 //
    85 // Local to this file.
    87 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    88   SuspendibleThreadSet* _sts;
    89   G1RemSet* _g1rs;
    90   ConcurrentG1Refine* _cg1r;
    91   bool _concurrent;
    92 public:
    93   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    94                               G1RemSet* g1rs,
    95                               ConcurrentG1Refine* cg1r) :
    96     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    97   {}
    98   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    99     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
   100     // This path is executed by the concurrent refine or mutator threads,
   101     // concurrently, and so we do not care if card_ptr contains references
   102     // that point into the collection set.
   103     assert(!oops_into_cset, "should be");
   105     if (_concurrent && _sts->should_yield()) {
   106       // Caller will actually yield.
   107       return false;
   108     }
   109     // Otherwise, we finished successfully; return true.
   110     return true;
   111   }
   112   void set_concurrent(bool b) { _concurrent = b; }
   113 };
   116 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   117   int _calls;
   118   G1CollectedHeap* _g1h;
   119   CardTableModRefBS* _ctbs;
   120   int _histo[256];
   121 public:
   122   ClearLoggedCardTableEntryClosure() :
   123     _calls(0)
   124   {
   125     _g1h = G1CollectedHeap::heap();
   126     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   127     for (int i = 0; i < 256; i++) _histo[i] = 0;
   128   }
   129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   131       _calls++;
   132       unsigned char* ujb = (unsigned char*)card_ptr;
   133       int ind = (int)(*ujb);
   134       _histo[ind]++;
   135       *card_ptr = -1;
   136     }
   137     return true;
   138   }
   139   int calls() { return _calls; }
   140   void print_histo() {
   141     gclog_or_tty->print_cr("Card table value histogram:");
   142     for (int i = 0; i < 256; i++) {
   143       if (_histo[i] != 0) {
   144         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   145       }
   146     }
   147   }
   148 };
   150 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   151   int _calls;
   152   G1CollectedHeap* _g1h;
   153   CardTableModRefBS* _ctbs;
   154 public:
   155   RedirtyLoggedCardTableEntryClosure() :
   156     _calls(0)
   157   {
   158     _g1h = G1CollectedHeap::heap();
   159     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   160   }
   161   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   162     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   163       _calls++;
   164       *card_ptr = 0;
   165     }
   166     return true;
   167   }
   168   int calls() { return _calls; }
   169 };
   171 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   172 public:
   173   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   174     *card_ptr = CardTableModRefBS::dirty_card_val();
   175     return true;
   176   }
   177 };
   179 YoungList::YoungList(G1CollectedHeap* g1h) :
   180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   182   guarantee(check_list_empty(false), "just making sure...");
   183 }
   185 void YoungList::push_region(HeapRegion *hr) {
   186   assert(!hr->is_young(), "should not already be young");
   187   assert(hr->get_next_young_region() == NULL, "cause it should!");
   189   hr->set_next_young_region(_head);
   190   _head = hr;
   192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   193   ++_length;
   194 }
   196 void YoungList::add_survivor_region(HeapRegion* hr) {
   197   assert(hr->is_survivor(), "should be flagged as survivor region");
   198   assert(hr->get_next_young_region() == NULL, "cause it should!");
   200   hr->set_next_young_region(_survivor_head);
   201   if (_survivor_head == NULL) {
   202     _survivor_tail = hr;
   203   }
   204   _survivor_head = hr;
   205   ++_survivor_length;
   206 }
   208 void YoungList::empty_list(HeapRegion* list) {
   209   while (list != NULL) {
   210     HeapRegion* next = list->get_next_young_region();
   211     list->set_next_young_region(NULL);
   212     list->uninstall_surv_rate_group();
   213     list->set_not_young();
   214     list = next;
   215   }
   216 }
   218 void YoungList::empty_list() {
   219   assert(check_list_well_formed(), "young list should be well formed");
   221   empty_list(_head);
   222   _head = NULL;
   223   _length = 0;
   225   empty_list(_survivor_head);
   226   _survivor_head = NULL;
   227   _survivor_tail = NULL;
   228   _survivor_length = 0;
   230   _last_sampled_rs_lengths = 0;
   232   assert(check_list_empty(false), "just making sure...");
   233 }
   235 bool YoungList::check_list_well_formed() {
   236   bool ret = true;
   238   uint length = 0;
   239   HeapRegion* curr = _head;
   240   HeapRegion* last = NULL;
   241   while (curr != NULL) {
   242     if (!curr->is_young()) {
   243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   244                              "incorrectly tagged (y: %d, surv: %d)",
   245                              curr->bottom(), curr->end(),
   246                              curr->is_young(), curr->is_survivor());
   247       ret = false;
   248     }
   249     ++length;
   250     last = curr;
   251     curr = curr->get_next_young_region();
   252   }
   253   ret = ret && (length == _length);
   255   if (!ret) {
   256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   258                            length, _length);
   259   }
   261   return ret;
   262 }
   264 bool YoungList::check_list_empty(bool check_sample) {
   265   bool ret = true;
   267   if (_length != 0) {
   268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   269                   _length);
   270     ret = false;
   271   }
   272   if (check_sample && _last_sampled_rs_lengths != 0) {
   273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   274     ret = false;
   275   }
   276   if (_head != NULL) {
   277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   278     ret = false;
   279   }
   280   if (!ret) {
   281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   282   }
   284   return ret;
   285 }
   287 void
   288 YoungList::rs_length_sampling_init() {
   289   _sampled_rs_lengths = 0;
   290   _curr               = _head;
   291 }
   293 bool
   294 YoungList::rs_length_sampling_more() {
   295   return _curr != NULL;
   296 }
   298 void
   299 YoungList::rs_length_sampling_next() {
   300   assert( _curr != NULL, "invariant" );
   301   size_t rs_length = _curr->rem_set()->occupied();
   303   _sampled_rs_lengths += rs_length;
   305   // The current region may not yet have been added to the
   306   // incremental collection set (it gets added when it is
   307   // retired as the current allocation region).
   308   if (_curr->in_collection_set()) {
   309     // Update the collection set policy information for this region
   310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   311   }
   313   _curr = _curr->get_next_young_region();
   314   if (_curr == NULL) {
   315     _last_sampled_rs_lengths = _sampled_rs_lengths;
   316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   317   }
   318 }
   320 void
   321 YoungList::reset_auxilary_lists() {
   322   guarantee( is_empty(), "young list should be empty" );
   323   assert(check_list_well_formed(), "young list should be well formed");
   325   // Add survivor regions to SurvRateGroup.
   326   _g1h->g1_policy()->note_start_adding_survivor_regions();
   327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   329   int young_index_in_cset = 0;
   330   for (HeapRegion* curr = _survivor_head;
   331        curr != NULL;
   332        curr = curr->get_next_young_region()) {
   333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   335     // The region is a non-empty survivor so let's add it to
   336     // the incremental collection set for the next evacuation
   337     // pause.
   338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   339     young_index_in_cset += 1;
   340   }
   341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   344   _head   = _survivor_head;
   345   _length = _survivor_length;
   346   if (_survivor_head != NULL) {
   347     assert(_survivor_tail != NULL, "cause it shouldn't be");
   348     assert(_survivor_length > 0, "invariant");
   349     _survivor_tail->set_next_young_region(NULL);
   350   }
   352   // Don't clear the survivor list handles until the start of
   353   // the next evacuation pause - we need it in order to re-tag
   354   // the survivor regions from this evacuation pause as 'young'
   355   // at the start of the next.
   357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   359   assert(check_list_well_formed(), "young list should be well formed");
   360 }
   362 void YoungList::print() {
   363   HeapRegion* lists[] = {_head,   _survivor_head};
   364   const char* names[] = {"YOUNG", "SURVIVOR"};
   366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   368     HeapRegion *curr = lists[list];
   369     if (curr == NULL)
   370       gclog_or_tty->print_cr("  empty");
   371     while (curr != NULL) {
   372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   373                              HR_FORMAT_PARAMS(curr),
   374                              curr->prev_top_at_mark_start(),
   375                              curr->next_top_at_mark_start(),
   376                              curr->age_in_surv_rate_group_cond());
   377       curr = curr->get_next_young_region();
   378     }
   379   }
   381   gclog_or_tty->print_cr("");
   382 }
   384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   385 {
   386   // Claim the right to put the region on the dirty cards region list
   387   // by installing a self pointer.
   388   HeapRegion* next = hr->get_next_dirty_cards_region();
   389   if (next == NULL) {
   390     HeapRegion* res = (HeapRegion*)
   391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   392                           NULL);
   393     if (res == NULL) {
   394       HeapRegion* head;
   395       do {
   396         // Put the region to the dirty cards region list.
   397         head = _dirty_cards_region_list;
   398         next = (HeapRegion*)
   399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   400         if (next == head) {
   401           assert(hr->get_next_dirty_cards_region() == hr,
   402                  "hr->get_next_dirty_cards_region() != hr");
   403           if (next == NULL) {
   404             // The last region in the list points to itself.
   405             hr->set_next_dirty_cards_region(hr);
   406           } else {
   407             hr->set_next_dirty_cards_region(next);
   408           }
   409         }
   410       } while (next != head);
   411     }
   412   }
   413 }
   415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   416 {
   417   HeapRegion* head;
   418   HeapRegion* hr;
   419   do {
   420     head = _dirty_cards_region_list;
   421     if (head == NULL) {
   422       return NULL;
   423     }
   424     HeapRegion* new_head = head->get_next_dirty_cards_region();
   425     if (head == new_head) {
   426       // The last region.
   427       new_head = NULL;
   428     }
   429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   430                                           head);
   431   } while (hr != head);
   432   assert(hr != NULL, "invariant");
   433   hr->set_next_dirty_cards_region(NULL);
   434   return hr;
   435 }
   437 void G1CollectedHeap::stop_conc_gc_threads() {
   438   _cg1r->stop();
   439   _cmThread->stop();
   440 }
   442 #ifdef ASSERT
   443 // A region is added to the collection set as it is retired
   444 // so an address p can point to a region which will be in the
   445 // collection set but has not yet been retired.  This method
   446 // therefore is only accurate during a GC pause after all
   447 // regions have been retired.  It is used for debugging
   448 // to check if an nmethod has references to objects that can
   449 // be move during a partial collection.  Though it can be
   450 // inaccurate, it is sufficient for G1 because the conservative
   451 // implementation of is_scavengable() for G1 will indicate that
   452 // all nmethods must be scanned during a partial collection.
   453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   454   HeapRegion* hr = heap_region_containing(p);
   455   return hr != NULL && hr->in_collection_set();
   456 }
   457 #endif
   459 // Returns true if the reference points to an object that
   460 // can move in an incremental collecction.
   461 bool G1CollectedHeap::is_scavengable(const void* p) {
   462   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   463   G1CollectorPolicy* g1p = g1h->g1_policy();
   464   HeapRegion* hr = heap_region_containing(p);
   465   if (hr == NULL) {
   466      // perm gen (or null)
   467      return false;
   468   } else {
   469     return !hr->isHumongous();
   470   }
   471 }
   473 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   474   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   475   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   477   // Count the dirty cards at the start.
   478   CountNonCleanMemRegionClosure count1(this);
   479   ct_bs->mod_card_iterate(&count1);
   480   int orig_count = count1.n();
   482   // First clear the logged cards.
   483   ClearLoggedCardTableEntryClosure clear;
   484   dcqs.set_closure(&clear);
   485   dcqs.apply_closure_to_all_completed_buffers();
   486   dcqs.iterate_closure_all_threads(false);
   487   clear.print_histo();
   489   // Now ensure that there's no dirty cards.
   490   CountNonCleanMemRegionClosure count2(this);
   491   ct_bs->mod_card_iterate(&count2);
   492   if (count2.n() != 0) {
   493     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   494                            count2.n(), orig_count);
   495   }
   496   guarantee(count2.n() == 0, "Card table should be clean.");
   498   RedirtyLoggedCardTableEntryClosure redirty;
   499   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   500   dcqs.apply_closure_to_all_completed_buffers();
   501   dcqs.iterate_closure_all_threads(false);
   502   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   503                          clear.calls(), orig_count);
   504   guarantee(redirty.calls() == clear.calls(),
   505             "Or else mechanism is broken.");
   507   CountNonCleanMemRegionClosure count3(this);
   508   ct_bs->mod_card_iterate(&count3);
   509   if (count3.n() != orig_count) {
   510     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   511                            orig_count, count3.n());
   512     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   513   }
   515   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   516 }
   518 // Private class members.
   520 G1CollectedHeap* G1CollectedHeap::_g1h;
   522 // Private methods.
   524 HeapRegion*
   525 G1CollectedHeap::new_region_try_secondary_free_list() {
   526   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   527   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   528     if (!_secondary_free_list.is_empty()) {
   529       if (G1ConcRegionFreeingVerbose) {
   530         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   531                                "secondary_free_list has %u entries",
   532                                _secondary_free_list.length());
   533       }
   534       // It looks as if there are free regions available on the
   535       // secondary_free_list. Let's move them to the free_list and try
   536       // again to allocate from it.
   537       append_secondary_free_list();
   539       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   540              "empty we should have moved at least one entry to the free_list");
   541       HeapRegion* res = _free_list.remove_head();
   542       if (G1ConcRegionFreeingVerbose) {
   543         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   544                                "allocated "HR_FORMAT" from secondary_free_list",
   545                                HR_FORMAT_PARAMS(res));
   546       }
   547       return res;
   548     }
   550     // Wait here until we get notifed either when (a) there are no
   551     // more free regions coming or (b) some regions have been moved on
   552     // the secondary_free_list.
   553     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   554   }
   556   if (G1ConcRegionFreeingVerbose) {
   557     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   558                            "could not allocate from secondary_free_list");
   559   }
   560   return NULL;
   561 }
   563 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   564   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   565          "the only time we use this to allocate a humongous region is "
   566          "when we are allocating a single humongous region");
   568   HeapRegion* res;
   569   if (G1StressConcRegionFreeing) {
   570     if (!_secondary_free_list.is_empty()) {
   571       if (G1ConcRegionFreeingVerbose) {
   572         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   573                                "forced to look at the secondary_free_list");
   574       }
   575       res = new_region_try_secondary_free_list();
   576       if (res != NULL) {
   577         return res;
   578       }
   579     }
   580   }
   581   res = _free_list.remove_head_or_null();
   582   if (res == NULL) {
   583     if (G1ConcRegionFreeingVerbose) {
   584       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   585                              "res == NULL, trying the secondary_free_list");
   586     }
   587     res = new_region_try_secondary_free_list();
   588   }
   589   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   590     // Currently, only attempts to allocate GC alloc regions set
   591     // do_expand to true. So, we should only reach here during a
   592     // safepoint. If this assumption changes we might have to
   593     // reconsider the use of _expand_heap_after_alloc_failure.
   594     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   596     ergo_verbose1(ErgoHeapSizing,
   597                   "attempt heap expansion",
   598                   ergo_format_reason("region allocation request failed")
   599                   ergo_format_byte("allocation request"),
   600                   word_size * HeapWordSize);
   601     if (expand(word_size * HeapWordSize)) {
   602       // Given that expand() succeeded in expanding the heap, and we
   603       // always expand the heap by an amount aligned to the heap
   604       // region size, the free list should in theory not be empty. So
   605       // it would probably be OK to use remove_head(). But the extra
   606       // check for NULL is unlikely to be a performance issue here (we
   607       // just expanded the heap!) so let's just be conservative and
   608       // use remove_head_or_null().
   609       res = _free_list.remove_head_or_null();
   610     } else {
   611       _expand_heap_after_alloc_failure = false;
   612     }
   613   }
   614   return res;
   615 }
   617 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
   618                                                         size_t word_size) {
   619   assert(isHumongous(word_size), "word_size should be humongous");
   620   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   622   uint first = G1_NULL_HRS_INDEX;
   623   if (num_regions == 1) {
   624     // Only one region to allocate, no need to go through the slower
   625     // path. The caller will attempt the expasion if this fails, so
   626     // let's not try to expand here too.
   627     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   628     if (hr != NULL) {
   629       first = hr->hrs_index();
   630     } else {
   631       first = G1_NULL_HRS_INDEX;
   632     }
   633   } else {
   634     // We can't allocate humongous regions while cleanupComplete() is
   635     // running, since some of the regions we find to be empty might not
   636     // yet be added to the free list and it is not straightforward to
   637     // know which list they are on so that we can remove them. Note
   638     // that we only need to do this if we need to allocate more than
   639     // one region to satisfy the current humongous allocation
   640     // request. If we are only allocating one region we use the common
   641     // region allocation code (see above).
   642     wait_while_free_regions_coming();
   643     append_secondary_free_list_if_not_empty_with_lock();
   645     if (free_regions() >= num_regions) {
   646       first = _hrs.find_contiguous(num_regions);
   647       if (first != G1_NULL_HRS_INDEX) {
   648         for (uint i = first; i < first + num_regions; ++i) {
   649           HeapRegion* hr = region_at(i);
   650           assert(hr->is_empty(), "sanity");
   651           assert(is_on_master_free_list(hr), "sanity");
   652           hr->set_pending_removal(true);
   653         }
   654         _free_list.remove_all_pending(num_regions);
   655       }
   656     }
   657   }
   658   return first;
   659 }
   661 HeapWord*
   662 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   663                                                            uint num_regions,
   664                                                            size_t word_size) {
   665   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   666   assert(isHumongous(word_size), "word_size should be humongous");
   667   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   669   // Index of last region in the series + 1.
   670   uint last = first + num_regions;
   672   // We need to initialize the region(s) we just discovered. This is
   673   // a bit tricky given that it can happen concurrently with
   674   // refinement threads refining cards on these regions and
   675   // potentially wanting to refine the BOT as they are scanning
   676   // those cards (this can happen shortly after a cleanup; see CR
   677   // 6991377). So we have to set up the region(s) carefully and in
   678   // a specific order.
   680   // The word size sum of all the regions we will allocate.
   681   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   682   assert(word_size <= word_size_sum, "sanity");
   684   // This will be the "starts humongous" region.
   685   HeapRegion* first_hr = region_at(first);
   686   // The header of the new object will be placed at the bottom of
   687   // the first region.
   688   HeapWord* new_obj = first_hr->bottom();
   689   // This will be the new end of the first region in the series that
   690   // should also match the end of the last region in the seriers.
   691   HeapWord* new_end = new_obj + word_size_sum;
   692   // This will be the new top of the first region that will reflect
   693   // this allocation.
   694   HeapWord* new_top = new_obj + word_size;
   696   // First, we need to zero the header of the space that we will be
   697   // allocating. When we update top further down, some refinement
   698   // threads might try to scan the region. By zeroing the header we
   699   // ensure that any thread that will try to scan the region will
   700   // come across the zero klass word and bail out.
   701   //
   702   // NOTE: It would not have been correct to have used
   703   // CollectedHeap::fill_with_object() and make the space look like
   704   // an int array. The thread that is doing the allocation will
   705   // later update the object header to a potentially different array
   706   // type and, for a very short period of time, the klass and length
   707   // fields will be inconsistent. This could cause a refinement
   708   // thread to calculate the object size incorrectly.
   709   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   711   // We will set up the first region as "starts humongous". This
   712   // will also update the BOT covering all the regions to reflect
   713   // that there is a single object that starts at the bottom of the
   714   // first region.
   715   first_hr->set_startsHumongous(new_top, new_end);
   717   // Then, if there are any, we will set up the "continues
   718   // humongous" regions.
   719   HeapRegion* hr = NULL;
   720   for (uint i = first + 1; i < last; ++i) {
   721     hr = region_at(i);
   722     hr->set_continuesHumongous(first_hr);
   723   }
   724   // If we have "continues humongous" regions (hr != NULL), then the
   725   // end of the last one should match new_end.
   726   assert(hr == NULL || hr->end() == new_end, "sanity");
   728   // Up to this point no concurrent thread would have been able to
   729   // do any scanning on any region in this series. All the top
   730   // fields still point to bottom, so the intersection between
   731   // [bottom,top] and [card_start,card_end] will be empty. Before we
   732   // update the top fields, we'll do a storestore to make sure that
   733   // no thread sees the update to top before the zeroing of the
   734   // object header and the BOT initialization.
   735   OrderAccess::storestore();
   737   // Now that the BOT and the object header have been initialized,
   738   // we can update top of the "starts humongous" region.
   739   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   740          "new_top should be in this region");
   741   first_hr->set_top(new_top);
   742   if (_hr_printer.is_active()) {
   743     HeapWord* bottom = first_hr->bottom();
   744     HeapWord* end = first_hr->orig_end();
   745     if ((first + 1) == last) {
   746       // the series has a single humongous region
   747       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   748     } else {
   749       // the series has more than one humongous regions
   750       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   751     }
   752   }
   754   // Now, we will update the top fields of the "continues humongous"
   755   // regions. The reason we need to do this is that, otherwise,
   756   // these regions would look empty and this will confuse parts of
   757   // G1. For example, the code that looks for a consecutive number
   758   // of empty regions will consider them empty and try to
   759   // re-allocate them. We can extend is_empty() to also include
   760   // !continuesHumongous(), but it is easier to just update the top
   761   // fields here. The way we set top for all regions (i.e., top ==
   762   // end for all regions but the last one, top == new_top for the
   763   // last one) is actually used when we will free up the humongous
   764   // region in free_humongous_region().
   765   hr = NULL;
   766   for (uint i = first + 1; i < last; ++i) {
   767     hr = region_at(i);
   768     if ((i + 1) == last) {
   769       // last continues humongous region
   770       assert(hr->bottom() < new_top && new_top <= hr->end(),
   771              "new_top should fall on this region");
   772       hr->set_top(new_top);
   773       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   774     } else {
   775       // not last one
   776       assert(new_top > hr->end(), "new_top should be above this region");
   777       hr->set_top(hr->end());
   778       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   779     }
   780   }
   781   // If we have continues humongous regions (hr != NULL), then the
   782   // end of the last one should match new_end and its top should
   783   // match new_top.
   784   assert(hr == NULL ||
   785          (hr->end() == new_end && hr->top() == new_top), "sanity");
   787   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   788   _summary_bytes_used += first_hr->used();
   789   _humongous_set.add(first_hr);
   791   return new_obj;
   792 }
   794 // If could fit into free regions w/o expansion, try.
   795 // Otherwise, if can expand, do so.
   796 // Otherwise, if using ex regions might help, try with ex given back.
   797 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   798   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   800   verify_region_sets_optional();
   802   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
   803   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
   804   uint x_num = expansion_regions();
   805   uint fs = _hrs.free_suffix();
   806   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
   807   if (first == G1_NULL_HRS_INDEX) {
   808     // The only thing we can do now is attempt expansion.
   809     if (fs + x_num >= num_regions) {
   810       // If the number of regions we're trying to allocate for this
   811       // object is at most the number of regions in the free suffix,
   812       // then the call to humongous_obj_allocate_find_first() above
   813       // should have succeeded and we wouldn't be here.
   814       //
   815       // We should only be trying to expand when the free suffix is
   816       // not sufficient for the object _and_ we have some expansion
   817       // room available.
   818       assert(num_regions > fs, "earlier allocation should have succeeded");
   820       ergo_verbose1(ErgoHeapSizing,
   821                     "attempt heap expansion",
   822                     ergo_format_reason("humongous allocation request failed")
   823                     ergo_format_byte("allocation request"),
   824                     word_size * HeapWordSize);
   825       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   826         // Even though the heap was expanded, it might not have
   827         // reached the desired size. So, we cannot assume that the
   828         // allocation will succeed.
   829         first = humongous_obj_allocate_find_first(num_regions, word_size);
   830       }
   831     }
   832   }
   834   HeapWord* result = NULL;
   835   if (first != G1_NULL_HRS_INDEX) {
   836     result =
   837       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   838     assert(result != NULL, "it should always return a valid result");
   840     // A successful humongous object allocation changes the used space
   841     // information of the old generation so we need to recalculate the
   842     // sizes and update the jstat counters here.
   843     g1mm()->update_sizes();
   844   }
   846   verify_region_sets_optional();
   848   return result;
   849 }
   851 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   852   assert_heap_not_locked_and_not_at_safepoint();
   853   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   855   unsigned int dummy_gc_count_before;
   856   return attempt_allocation(word_size, &dummy_gc_count_before);
   857 }
   859 HeapWord*
   860 G1CollectedHeap::mem_allocate(size_t word_size,
   861                               bool*  gc_overhead_limit_was_exceeded) {
   862   assert_heap_not_locked_and_not_at_safepoint();
   864   // Loop until the allocation is satisified, or unsatisfied after GC.
   865   for (int try_count = 1; /* we'll return */; try_count += 1) {
   866     unsigned int gc_count_before;
   868     HeapWord* result = NULL;
   869     if (!isHumongous(word_size)) {
   870       result = attempt_allocation(word_size, &gc_count_before);
   871     } else {
   872       result = attempt_allocation_humongous(word_size, &gc_count_before);
   873     }
   874     if (result != NULL) {
   875       return result;
   876     }
   878     // Create the garbage collection operation...
   879     VM_G1CollectForAllocation op(gc_count_before, word_size);
   880     // ...and get the VM thread to execute it.
   881     VMThread::execute(&op);
   883     if (op.prologue_succeeded() && op.pause_succeeded()) {
   884       // If the operation was successful we'll return the result even
   885       // if it is NULL. If the allocation attempt failed immediately
   886       // after a Full GC, it's unlikely we'll be able to allocate now.
   887       HeapWord* result = op.result();
   888       if (result != NULL && !isHumongous(word_size)) {
   889         // Allocations that take place on VM operations do not do any
   890         // card dirtying and we have to do it here. We only have to do
   891         // this for non-humongous allocations, though.
   892         dirty_young_block(result, word_size);
   893       }
   894       return result;
   895     } else {
   896       assert(op.result() == NULL,
   897              "the result should be NULL if the VM op did not succeed");
   898     }
   900     // Give a warning if we seem to be looping forever.
   901     if ((QueuedAllocationWarningCount > 0) &&
   902         (try_count % QueuedAllocationWarningCount == 0)) {
   903       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   904     }
   905   }
   907   ShouldNotReachHere();
   908   return NULL;
   909 }
   911 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   912                                            unsigned int *gc_count_before_ret) {
   913   // Make sure you read the note in attempt_allocation_humongous().
   915   assert_heap_not_locked_and_not_at_safepoint();
   916   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   917          "be called for humongous allocation requests");
   919   // We should only get here after the first-level allocation attempt
   920   // (attempt_allocation()) failed to allocate.
   922   // We will loop until a) we manage to successfully perform the
   923   // allocation or b) we successfully schedule a collection which
   924   // fails to perform the allocation. b) is the only case when we'll
   925   // return NULL.
   926   HeapWord* result = NULL;
   927   for (int try_count = 1; /* we'll return */; try_count += 1) {
   928     bool should_try_gc;
   929     unsigned int gc_count_before;
   931     {
   932       MutexLockerEx x(Heap_lock);
   934       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   935                                                       false /* bot_updates */);
   936       if (result != NULL) {
   937         return result;
   938       }
   940       // If we reach here, attempt_allocation_locked() above failed to
   941       // allocate a new region. So the mutator alloc region should be NULL.
   942       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   944       if (GC_locker::is_active_and_needs_gc()) {
   945         if (g1_policy()->can_expand_young_list()) {
   946           // No need for an ergo verbose message here,
   947           // can_expand_young_list() does this when it returns true.
   948           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   949                                                       false /* bot_updates */);
   950           if (result != NULL) {
   951             return result;
   952           }
   953         }
   954         should_try_gc = false;
   955       } else {
   956         // The GCLocker may not be active but the GCLocker initiated
   957         // GC may not yet have been performed (GCLocker::needs_gc()
   958         // returns true). In this case we do not try this GC and
   959         // wait until the GCLocker initiated GC is performed, and
   960         // then retry the allocation.
   961         if (GC_locker::needs_gc()) {
   962           should_try_gc = false;
   963         } else {
   964           // Read the GC count while still holding the Heap_lock.
   965           gc_count_before = total_collections();
   966           should_try_gc = true;
   967         }
   968       }
   969     }
   971     if (should_try_gc) {
   972       bool succeeded;
   973       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   974       if (result != NULL) {
   975         assert(succeeded, "only way to get back a non-NULL result");
   976         return result;
   977       }
   979       if (succeeded) {
   980         // If we get here we successfully scheduled a collection which
   981         // failed to allocate. No point in trying to allocate
   982         // further. We'll just return NULL.
   983         MutexLockerEx x(Heap_lock);
   984         *gc_count_before_ret = total_collections();
   985         return NULL;
   986       }
   987     } else {
   988       // The GCLocker is either active or the GCLocker initiated
   989       // GC has not yet been performed. Stall until it is and
   990       // then retry the allocation.
   991       GC_locker::stall_until_clear();
   992     }
   994     // We can reach here if we were unsuccessul in scheduling a
   995     // collection (because another thread beat us to it) or if we were
   996     // stalled due to the GC locker. In either can we should retry the
   997     // allocation attempt in case another thread successfully
   998     // performed a collection and reclaimed enough space. We do the
   999     // first attempt (without holding the Heap_lock) here and the
  1000     // follow-on attempt will be at the start of the next loop
  1001     // iteration (after taking the Heap_lock).
  1002     result = _mutator_alloc_region.attempt_allocation(word_size,
  1003                                                       false /* bot_updates */);
  1004     if (result != NULL) {
  1005       return result;
  1008     // Give a warning if we seem to be looping forever.
  1009     if ((QueuedAllocationWarningCount > 0) &&
  1010         (try_count % QueuedAllocationWarningCount == 0)) {
  1011       warning("G1CollectedHeap::attempt_allocation_slow() "
  1012               "retries %d times", try_count);
  1016   ShouldNotReachHere();
  1017   return NULL;
  1020 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1021                                           unsigned int * gc_count_before_ret) {
  1022   // The structure of this method has a lot of similarities to
  1023   // attempt_allocation_slow(). The reason these two were not merged
  1024   // into a single one is that such a method would require several "if
  1025   // allocation is not humongous do this, otherwise do that"
  1026   // conditional paths which would obscure its flow. In fact, an early
  1027   // version of this code did use a unified method which was harder to
  1028   // follow and, as a result, it had subtle bugs that were hard to
  1029   // track down. So keeping these two methods separate allows each to
  1030   // be more readable. It will be good to keep these two in sync as
  1031   // much as possible.
  1033   assert_heap_not_locked_and_not_at_safepoint();
  1034   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1035          "should only be called for humongous allocations");
  1037   // Humongous objects can exhaust the heap quickly, so we should check if we
  1038   // need to start a marking cycle at each humongous object allocation. We do
  1039   // the check before we do the actual allocation. The reason for doing it
  1040   // before the allocation is that we avoid having to keep track of the newly
  1041   // allocated memory while we do a GC.
  1042   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1043                                            word_size)) {
  1044     collect(GCCause::_g1_humongous_allocation);
  1047   // We will loop until a) we manage to successfully perform the
  1048   // allocation or b) we successfully schedule a collection which
  1049   // fails to perform the allocation. b) is the only case when we'll
  1050   // return NULL.
  1051   HeapWord* result = NULL;
  1052   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1053     bool should_try_gc;
  1054     unsigned int gc_count_before;
  1057       MutexLockerEx x(Heap_lock);
  1059       // Given that humongous objects are not allocated in young
  1060       // regions, we'll first try to do the allocation without doing a
  1061       // collection hoping that there's enough space in the heap.
  1062       result = humongous_obj_allocate(word_size);
  1063       if (result != NULL) {
  1064         return result;
  1067       if (GC_locker::is_active_and_needs_gc()) {
  1068         should_try_gc = false;
  1069       } else {
  1070          // The GCLocker may not be active but the GCLocker initiated
  1071         // GC may not yet have been performed (GCLocker::needs_gc()
  1072         // returns true). In this case we do not try this GC and
  1073         // wait until the GCLocker initiated GC is performed, and
  1074         // then retry the allocation.
  1075         if (GC_locker::needs_gc()) {
  1076           should_try_gc = false;
  1077         } else {
  1078           // Read the GC count while still holding the Heap_lock.
  1079           gc_count_before = total_collections();
  1080           should_try_gc = true;
  1085     if (should_try_gc) {
  1086       // If we failed to allocate the humongous object, we should try to
  1087       // do a collection pause (if we're allowed) in case it reclaims
  1088       // enough space for the allocation to succeed after the pause.
  1090       bool succeeded;
  1091       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1092       if (result != NULL) {
  1093         assert(succeeded, "only way to get back a non-NULL result");
  1094         return result;
  1097       if (succeeded) {
  1098         // If we get here we successfully scheduled a collection which
  1099         // failed to allocate. No point in trying to allocate
  1100         // further. We'll just return NULL.
  1101         MutexLockerEx x(Heap_lock);
  1102         *gc_count_before_ret = total_collections();
  1103         return NULL;
  1105     } else {
  1106       // The GCLocker is either active or the GCLocker initiated
  1107       // GC has not yet been performed. Stall until it is and
  1108       // then retry the allocation.
  1109       GC_locker::stall_until_clear();
  1112     // We can reach here if we were unsuccessul in scheduling a
  1113     // collection (because another thread beat us to it) or if we were
  1114     // stalled due to the GC locker. In either can we should retry the
  1115     // allocation attempt in case another thread successfully
  1116     // performed a collection and reclaimed enough space.  Give a
  1117     // warning if we seem to be looping forever.
  1119     if ((QueuedAllocationWarningCount > 0) &&
  1120         (try_count % QueuedAllocationWarningCount == 0)) {
  1121       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1122               "retries %d times", try_count);
  1126   ShouldNotReachHere();
  1127   return NULL;
  1130 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1131                                        bool expect_null_mutator_alloc_region) {
  1132   assert_at_safepoint(true /* should_be_vm_thread */);
  1133   assert(_mutator_alloc_region.get() == NULL ||
  1134                                              !expect_null_mutator_alloc_region,
  1135          "the current alloc region was unexpectedly found to be non-NULL");
  1137   if (!isHumongous(word_size)) {
  1138     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1139                                                       false /* bot_updates */);
  1140   } else {
  1141     HeapWord* result = humongous_obj_allocate(word_size);
  1142     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1143       g1_policy()->set_initiate_conc_mark_if_possible();
  1145     return result;
  1148   ShouldNotReachHere();
  1151 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1152   G1CollectedHeap* _g1h;
  1153   ModRefBarrierSet* _mr_bs;
  1154 public:
  1155   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1156     _g1h(g1h), _mr_bs(mr_bs) { }
  1157   bool doHeapRegion(HeapRegion* r) {
  1158     if (r->continuesHumongous()) {
  1159       return false;
  1161     _g1h->reset_gc_time_stamps(r);
  1162     HeapRegionRemSet* hrrs = r->rem_set();
  1163     if (hrrs != NULL) hrrs->clear();
  1164     // You might think here that we could clear just the cards
  1165     // corresponding to the used region.  But no: if we leave a dirty card
  1166     // in a region we might allocate into, then it would prevent that card
  1167     // from being enqueued, and cause it to be missed.
  1168     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1169     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1170     return false;
  1172 };
  1174 void G1CollectedHeap::clear_rsets_post_compaction() {
  1175   PostMCRemSetClearClosure rs_clear(this, mr_bs());
  1176   heap_region_iterate(&rs_clear);
  1179 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1180   G1CollectedHeap*   _g1h;
  1181   UpdateRSOopClosure _cl;
  1182   int                _worker_i;
  1183 public:
  1184   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1185     _cl(g1->g1_rem_set(), worker_i),
  1186     _worker_i(worker_i),
  1187     _g1h(g1)
  1188   { }
  1190   bool doHeapRegion(HeapRegion* r) {
  1191     if (!r->continuesHumongous()) {
  1192       _cl.set_from(r);
  1193       r->oop_iterate(&_cl);
  1195     return false;
  1197 };
  1199 class ParRebuildRSTask: public AbstractGangTask {
  1200   G1CollectedHeap* _g1;
  1201 public:
  1202   ParRebuildRSTask(G1CollectedHeap* g1)
  1203     : AbstractGangTask("ParRebuildRSTask"),
  1204       _g1(g1)
  1205   { }
  1207   void work(uint worker_id) {
  1208     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1209     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1210                                           _g1->workers()->active_workers(),
  1211                                          HeapRegion::RebuildRSClaimValue);
  1213 };
  1215 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1216 private:
  1217   G1HRPrinter* _hr_printer;
  1218 public:
  1219   bool doHeapRegion(HeapRegion* hr) {
  1220     assert(!hr->is_young(), "not expecting to find young regions");
  1221     // We only generate output for non-empty regions.
  1222     if (!hr->is_empty()) {
  1223       if (!hr->isHumongous()) {
  1224         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1225       } else if (hr->startsHumongous()) {
  1226         if (hr->region_num() == 1) {
  1227           // single humongous region
  1228           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1229         } else {
  1230           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1232       } else {
  1233         assert(hr->continuesHumongous(), "only way to get here");
  1234         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1237     return false;
  1240   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1241     : _hr_printer(hr_printer) { }
  1242 };
  1244 void G1CollectedHeap::print_hrs_post_compaction() {
  1245   PostCompactionPrinterClosure cl(hr_printer());
  1246   heap_region_iterate(&cl);
  1249 double G1CollectedHeap::verify(bool guard, const char* msg) {
  1250   double verify_time_ms = 0.0;
  1252   if (guard && total_collections() >= VerifyGCStartAt) {
  1253     double verify_start = os::elapsedTime();
  1254     HandleMark hm;  // Discard invalid handles created during verification
  1255     gclog_or_tty->print(msg);
  1256     prepare_for_verify();
  1257     Universe::verify(false /* silent */, VerifyOption_G1UsePrevMarking);
  1258     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  1261   return verify_time_ms;
  1264 void G1CollectedHeap::verify_before_gc() {
  1265   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  1266   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  1269 void G1CollectedHeap::verify_after_gc() {
  1270   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  1271   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  1274 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1275                                     bool clear_all_soft_refs,
  1276                                     size_t word_size) {
  1277   assert_at_safepoint(true /* should_be_vm_thread */);
  1279   if (GC_locker::check_active_before_gc()) {
  1280     return false;
  1283   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1284   ResourceMark rm;
  1286   print_heap_before_gc();
  1288   HRSPhaseSetter x(HRSPhaseFullGC);
  1289   verify_region_sets_optional();
  1291   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1292                            collector_policy()->should_clear_all_soft_refs();
  1294   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1297     IsGCActiveMark x;
  1299     // Timing
  1300     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1301     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1302     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1304     TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
  1305     TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1306     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1308     double start = os::elapsedTime();
  1309     g1_policy()->record_full_collection_start();
  1311     // Note: When we have a more flexible GC logging framework that
  1312     // allows us to add optional attributes to a GC log record we
  1313     // could consider timing and reporting how long we wait in the
  1314     // following two methods.
  1315     wait_while_free_regions_coming();
  1316     // If we start the compaction before the CM threads finish
  1317     // scanning the root regions we might trip them over as we'll
  1318     // be moving objects / updating references. So let's wait until
  1319     // they are done. By telling them to abort, they should complete
  1320     // early.
  1321     _cm->root_regions()->abort();
  1322     _cm->root_regions()->wait_until_scan_finished();
  1323     append_secondary_free_list_if_not_empty_with_lock();
  1325     gc_prologue(true);
  1326     increment_total_collections(true /* full gc */);
  1327     increment_old_marking_cycles_started();
  1329     size_t g1h_prev_used = used();
  1330     assert(used() == recalculate_used(), "Should be equal");
  1332     verify_before_gc();
  1334     pre_full_gc_dump();
  1336     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1338     // Disable discovery and empty the discovered lists
  1339     // for the CM ref processor.
  1340     ref_processor_cm()->disable_discovery();
  1341     ref_processor_cm()->abandon_partial_discovery();
  1342     ref_processor_cm()->verify_no_references_recorded();
  1344     // Abandon current iterations of concurrent marking and concurrent
  1345     // refinement, if any are in progress. We have to do this before
  1346     // wait_until_scan_finished() below.
  1347     concurrent_mark()->abort();
  1349     // Make sure we'll choose a new allocation region afterwards.
  1350     release_mutator_alloc_region();
  1351     abandon_gc_alloc_regions();
  1352     g1_rem_set()->cleanupHRRS();
  1354     // We should call this after we retire any currently active alloc
  1355     // regions so that all the ALLOC / RETIRE events are generated
  1356     // before the start GC event.
  1357     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1359     // We may have added regions to the current incremental collection
  1360     // set between the last GC or pause and now. We need to clear the
  1361     // incremental collection set and then start rebuilding it afresh
  1362     // after this full GC.
  1363     abandon_collection_set(g1_policy()->inc_cset_head());
  1364     g1_policy()->clear_incremental_cset();
  1365     g1_policy()->stop_incremental_cset_building();
  1367     tear_down_region_sets(false /* free_list_only */);
  1368     g1_policy()->set_gcs_are_young(true);
  1370     // See the comments in g1CollectedHeap.hpp and
  1371     // G1CollectedHeap::ref_processing_init() about
  1372     // how reference processing currently works in G1.
  1374     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1375     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1377     // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1378     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1380     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1381     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1383     // Do collection work
  1385       HandleMark hm;  // Discard invalid handles created during gc
  1386       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1389     assert(free_regions() == 0, "we should not have added any free regions");
  1390     rebuild_region_sets(false /* free_list_only */);
  1392     // Enqueue any discovered reference objects that have
  1393     // not been removed from the discovered lists.
  1394     ref_processor_stw()->enqueue_discovered_references();
  1396     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1398     MemoryService::track_memory_usage();
  1400     verify_after_gc();
  1402     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1403     ref_processor_stw()->verify_no_references_recorded();
  1405     // Note: since we've just done a full GC, concurrent
  1406     // marking is no longer active. Therefore we need not
  1407     // re-enable reference discovery for the CM ref processor.
  1408     // That will be done at the start of the next marking cycle.
  1409     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1410     ref_processor_cm()->verify_no_references_recorded();
  1412     reset_gc_time_stamp();
  1413     // Since everything potentially moved, we will clear all remembered
  1414     // sets, and clear all cards.  Later we will rebuild remebered
  1415     // sets. We will also reset the GC time stamps of the regions.
  1416     clear_rsets_post_compaction();
  1417     check_gc_time_stamps();
  1419     // Resize the heap if necessary.
  1420     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1422     if (_hr_printer.is_active()) {
  1423       // We should do this after we potentially resize the heap so
  1424       // that all the COMMIT / UNCOMMIT events are generated before
  1425       // the end GC event.
  1427       print_hrs_post_compaction();
  1428       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1431     if (_cg1r->use_cache()) {
  1432       _cg1r->clear_and_record_card_counts();
  1433       _cg1r->clear_hot_cache();
  1436     // Rebuild remembered sets of all regions.
  1437     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1438       uint n_workers =
  1439         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1440                                        workers()->active_workers(),
  1441                                        Threads::number_of_non_daemon_threads());
  1442       assert(UseDynamicNumberOfGCThreads ||
  1443              n_workers == workers()->total_workers(),
  1444              "If not dynamic should be using all the  workers");
  1445       workers()->set_active_workers(n_workers);
  1446       // Set parallel threads in the heap (_n_par_threads) only
  1447       // before a parallel phase and always reset it to 0 after
  1448       // the phase so that the number of parallel threads does
  1449       // no get carried forward to a serial phase where there
  1450       // may be code that is "possibly_parallel".
  1451       set_par_threads(n_workers);
  1453       ParRebuildRSTask rebuild_rs_task(this);
  1454       assert(check_heap_region_claim_values(
  1455              HeapRegion::InitialClaimValue), "sanity check");
  1456       assert(UseDynamicNumberOfGCThreads ||
  1457              workers()->active_workers() == workers()->total_workers(),
  1458         "Unless dynamic should use total workers");
  1459       // Use the most recent number of  active workers
  1460       assert(workers()->active_workers() > 0,
  1461         "Active workers not properly set");
  1462       set_par_threads(workers()->active_workers());
  1463       workers()->run_task(&rebuild_rs_task);
  1464       set_par_threads(0);
  1465       assert(check_heap_region_claim_values(
  1466              HeapRegion::RebuildRSClaimValue), "sanity check");
  1467       reset_heap_region_claim_values();
  1468     } else {
  1469       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1470       heap_region_iterate(&rebuild_rs);
  1473     if (G1Log::fine()) {
  1474       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1477     if (true) { // FIXME
  1478       // Ask the permanent generation to adjust size for full collections
  1479       perm()->compute_new_size();
  1482     // Start a new incremental collection set for the next pause
  1483     assert(g1_policy()->collection_set() == NULL, "must be");
  1484     g1_policy()->start_incremental_cset_building();
  1486     // Clear the _cset_fast_test bitmap in anticipation of adding
  1487     // regions to the incremental collection set for the next
  1488     // evacuation pause.
  1489     clear_cset_fast_test();
  1491     init_mutator_alloc_region();
  1493     double end = os::elapsedTime();
  1494     g1_policy()->record_full_collection_end();
  1496 #ifdef TRACESPINNING
  1497     ParallelTaskTerminator::print_termination_counts();
  1498 #endif
  1500     gc_epilogue(true);
  1502     // Discard all rset updates
  1503     JavaThread::dirty_card_queue_set().abandon_logs();
  1504     assert(!G1DeferredRSUpdate
  1505            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1507     _young_list->reset_sampled_info();
  1508     // At this point there should be no regions in the
  1509     // entire heap tagged as young.
  1510     assert( check_young_list_empty(true /* check_heap */),
  1511       "young list should be empty at this point");
  1513     // Update the number of full collections that have been completed.
  1514     increment_old_marking_cycles_completed(false /* concurrent */);
  1516     _hrs.verify_optional();
  1517     verify_region_sets_optional();
  1519     print_heap_after_gc();
  1521     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1522     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1523     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1524     // before any GC notifications are raised.
  1525     g1mm()->update_sizes();
  1528   post_full_gc_dump();
  1530   return true;
  1533 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1534   // do_collection() will return whether it succeeded in performing
  1535   // the GC. Currently, there is no facility on the
  1536   // do_full_collection() API to notify the caller than the collection
  1537   // did not succeed (e.g., because it was locked out by the GC
  1538   // locker). So, right now, we'll ignore the return value.
  1539   bool dummy = do_collection(true,                /* explicit_gc */
  1540                              clear_all_soft_refs,
  1541                              0                    /* word_size */);
  1544 // This code is mostly copied from TenuredGeneration.
  1545 void
  1546 G1CollectedHeap::
  1547 resize_if_necessary_after_full_collection(size_t word_size) {
  1548   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1550   // Include the current allocation, if any, and bytes that will be
  1551   // pre-allocated to support collections, as "used".
  1552   const size_t used_after_gc = used();
  1553   const size_t capacity_after_gc = capacity();
  1554   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1556   // This is enforced in arguments.cpp.
  1557   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1558          "otherwise the code below doesn't make sense");
  1560   // We don't have floating point command-line arguments
  1561   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1562   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1563   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1564   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1566   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1567   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1569   // We have to be careful here as these two calculations can overflow
  1570   // 32-bit size_t's.
  1571   double used_after_gc_d = (double) used_after_gc;
  1572   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1573   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1575   // Let's make sure that they are both under the max heap size, which
  1576   // by default will make them fit into a size_t.
  1577   double desired_capacity_upper_bound = (double) max_heap_size;
  1578   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1579                                     desired_capacity_upper_bound);
  1580   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1581                                     desired_capacity_upper_bound);
  1583   // We can now safely turn them into size_t's.
  1584   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1585   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1587   // This assert only makes sense here, before we adjust them
  1588   // with respect to the min and max heap size.
  1589   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1590          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1591                  "maximum_desired_capacity = "SIZE_FORMAT,
  1592                  minimum_desired_capacity, maximum_desired_capacity));
  1594   // Should not be greater than the heap max size. No need to adjust
  1595   // it with respect to the heap min size as it's a lower bound (i.e.,
  1596   // we'll try to make the capacity larger than it, not smaller).
  1597   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1598   // Should not be less than the heap min size. No need to adjust it
  1599   // with respect to the heap max size as it's an upper bound (i.e.,
  1600   // we'll try to make the capacity smaller than it, not greater).
  1601   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1603   if (capacity_after_gc < minimum_desired_capacity) {
  1604     // Don't expand unless it's significant
  1605     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1606     ergo_verbose4(ErgoHeapSizing,
  1607                   "attempt heap expansion",
  1608                   ergo_format_reason("capacity lower than "
  1609                                      "min desired capacity after Full GC")
  1610                   ergo_format_byte("capacity")
  1611                   ergo_format_byte("occupancy")
  1612                   ergo_format_byte_perc("min desired capacity"),
  1613                   capacity_after_gc, used_after_gc,
  1614                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1615     expand(expand_bytes);
  1617     // No expansion, now see if we want to shrink
  1618   } else if (capacity_after_gc > maximum_desired_capacity) {
  1619     // Capacity too large, compute shrinking size
  1620     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1621     ergo_verbose4(ErgoHeapSizing,
  1622                   "attempt heap shrinking",
  1623                   ergo_format_reason("capacity higher than "
  1624                                      "max desired capacity after Full GC")
  1625                   ergo_format_byte("capacity")
  1626                   ergo_format_byte("occupancy")
  1627                   ergo_format_byte_perc("max desired capacity"),
  1628                   capacity_after_gc, used_after_gc,
  1629                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1630     shrink(shrink_bytes);
  1635 HeapWord*
  1636 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1637                                            bool* succeeded) {
  1638   assert_at_safepoint(true /* should_be_vm_thread */);
  1640   *succeeded = true;
  1641   // Let's attempt the allocation first.
  1642   HeapWord* result =
  1643     attempt_allocation_at_safepoint(word_size,
  1644                                  false /* expect_null_mutator_alloc_region */);
  1645   if (result != NULL) {
  1646     assert(*succeeded, "sanity");
  1647     return result;
  1650   // In a G1 heap, we're supposed to keep allocation from failing by
  1651   // incremental pauses.  Therefore, at least for now, we'll favor
  1652   // expansion over collection.  (This might change in the future if we can
  1653   // do something smarter than full collection to satisfy a failed alloc.)
  1654   result = expand_and_allocate(word_size);
  1655   if (result != NULL) {
  1656     assert(*succeeded, "sanity");
  1657     return result;
  1660   // Expansion didn't work, we'll try to do a Full GC.
  1661   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1662                                     false, /* clear_all_soft_refs */
  1663                                     word_size);
  1664   if (!gc_succeeded) {
  1665     *succeeded = false;
  1666     return NULL;
  1669   // Retry the allocation
  1670   result = attempt_allocation_at_safepoint(word_size,
  1671                                   true /* expect_null_mutator_alloc_region */);
  1672   if (result != NULL) {
  1673     assert(*succeeded, "sanity");
  1674     return result;
  1677   // Then, try a Full GC that will collect all soft references.
  1678   gc_succeeded = do_collection(false, /* explicit_gc */
  1679                                true,  /* clear_all_soft_refs */
  1680                                word_size);
  1681   if (!gc_succeeded) {
  1682     *succeeded = false;
  1683     return NULL;
  1686   // Retry the allocation once more
  1687   result = attempt_allocation_at_safepoint(word_size,
  1688                                   true /* expect_null_mutator_alloc_region */);
  1689   if (result != NULL) {
  1690     assert(*succeeded, "sanity");
  1691     return result;
  1694   assert(!collector_policy()->should_clear_all_soft_refs(),
  1695          "Flag should have been handled and cleared prior to this point");
  1697   // What else?  We might try synchronous finalization later.  If the total
  1698   // space available is large enough for the allocation, then a more
  1699   // complete compaction phase than we've tried so far might be
  1700   // appropriate.
  1701   assert(*succeeded, "sanity");
  1702   return NULL;
  1705 // Attempting to expand the heap sufficiently
  1706 // to support an allocation of the given "word_size".  If
  1707 // successful, perform the allocation and return the address of the
  1708 // allocated block, or else "NULL".
  1710 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1711   assert_at_safepoint(true /* should_be_vm_thread */);
  1713   verify_region_sets_optional();
  1715   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1716   ergo_verbose1(ErgoHeapSizing,
  1717                 "attempt heap expansion",
  1718                 ergo_format_reason("allocation request failed")
  1719                 ergo_format_byte("allocation request"),
  1720                 word_size * HeapWordSize);
  1721   if (expand(expand_bytes)) {
  1722     _hrs.verify_optional();
  1723     verify_region_sets_optional();
  1724     return attempt_allocation_at_safepoint(word_size,
  1725                                  false /* expect_null_mutator_alloc_region */);
  1727   return NULL;
  1730 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1731                                              HeapWord* new_end) {
  1732   assert(old_end != new_end, "don't call this otherwise");
  1733   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1735   // Update the committed mem region.
  1736   _g1_committed.set_end(new_end);
  1737   // Tell the card table about the update.
  1738   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1739   // Tell the BOT about the update.
  1740   _bot_shared->resize(_g1_committed.word_size());
  1743 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1744   size_t old_mem_size = _g1_storage.committed_size();
  1745   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1746   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1747                                        HeapRegion::GrainBytes);
  1748   ergo_verbose2(ErgoHeapSizing,
  1749                 "expand the heap",
  1750                 ergo_format_byte("requested expansion amount")
  1751                 ergo_format_byte("attempted expansion amount"),
  1752                 expand_bytes, aligned_expand_bytes);
  1754   // First commit the memory.
  1755   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1756   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1757   if (successful) {
  1758     // Then propagate this update to the necessary data structures.
  1759     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1760     update_committed_space(old_end, new_end);
  1762     FreeRegionList expansion_list("Local Expansion List");
  1763     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1764     assert(mr.start() == old_end, "post-condition");
  1765     // mr might be a smaller region than what was requested if
  1766     // expand_by() was unable to allocate the HeapRegion instances
  1767     assert(mr.end() <= new_end, "post-condition");
  1769     size_t actual_expand_bytes = mr.byte_size();
  1770     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1771     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1772            "post-condition");
  1773     if (actual_expand_bytes < aligned_expand_bytes) {
  1774       // We could not expand _hrs to the desired size. In this case we
  1775       // need to shrink the committed space accordingly.
  1776       assert(mr.end() < new_end, "invariant");
  1778       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1779       // First uncommit the memory.
  1780       _g1_storage.shrink_by(diff_bytes);
  1781       // Then propagate this update to the necessary data structures.
  1782       update_committed_space(new_end, mr.end());
  1784     _free_list.add_as_tail(&expansion_list);
  1786     if (_hr_printer.is_active()) {
  1787       HeapWord* curr = mr.start();
  1788       while (curr < mr.end()) {
  1789         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1790         _hr_printer.commit(curr, curr_end);
  1791         curr = curr_end;
  1793       assert(curr == mr.end(), "post-condition");
  1795     g1_policy()->record_new_heap_size(n_regions());
  1796   } else {
  1797     ergo_verbose0(ErgoHeapSizing,
  1798                   "did not expand the heap",
  1799                   ergo_format_reason("heap expansion operation failed"));
  1800     // The expansion of the virtual storage space was unsuccessful.
  1801     // Let's see if it was because we ran out of swap.
  1802     if (G1ExitOnExpansionFailure &&
  1803         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1804       // We had head room...
  1805       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1808   return successful;
  1811 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1812   size_t old_mem_size = _g1_storage.committed_size();
  1813   size_t aligned_shrink_bytes =
  1814     ReservedSpace::page_align_size_down(shrink_bytes);
  1815   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1816                                          HeapRegion::GrainBytes);
  1817   uint num_regions_deleted = 0;
  1818   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  1819   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1820   assert(mr.end() == old_end, "post-condition");
  1822   ergo_verbose3(ErgoHeapSizing,
  1823                 "shrink the heap",
  1824                 ergo_format_byte("requested shrinking amount")
  1825                 ergo_format_byte("aligned shrinking amount")
  1826                 ergo_format_byte("attempted shrinking amount"),
  1827                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
  1828   if (mr.byte_size() > 0) {
  1829     if (_hr_printer.is_active()) {
  1830       HeapWord* curr = mr.end();
  1831       while (curr > mr.start()) {
  1832         HeapWord* curr_end = curr;
  1833         curr -= HeapRegion::GrainWords;
  1834         _hr_printer.uncommit(curr, curr_end);
  1836       assert(curr == mr.start(), "post-condition");
  1839     _g1_storage.shrink_by(mr.byte_size());
  1840     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1841     assert(mr.start() == new_end, "post-condition");
  1843     _expansion_regions += num_regions_deleted;
  1844     update_committed_space(old_end, new_end);
  1845     HeapRegionRemSet::shrink_heap(n_regions());
  1846     g1_policy()->record_new_heap_size(n_regions());
  1847   } else {
  1848     ergo_verbose0(ErgoHeapSizing,
  1849                   "did not shrink the heap",
  1850                   ergo_format_reason("heap shrinking operation failed"));
  1854 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1855   verify_region_sets_optional();
  1857   // We should only reach here at the end of a Full GC which means we
  1858   // should not not be holding to any GC alloc regions. The method
  1859   // below will make sure of that and do any remaining clean up.
  1860   abandon_gc_alloc_regions();
  1862   // Instead of tearing down / rebuilding the free lists here, we
  1863   // could instead use the remove_all_pending() method on free_list to
  1864   // remove only the ones that we need to remove.
  1865   tear_down_region_sets(true /* free_list_only */);
  1866   shrink_helper(shrink_bytes);
  1867   rebuild_region_sets(true /* free_list_only */);
  1869   _hrs.verify_optional();
  1870   verify_region_sets_optional();
  1873 // Public methods.
  1875 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1876 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1877 #endif // _MSC_VER
  1880 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1881   SharedHeap(policy_),
  1882   _g1_policy(policy_),
  1883   _dirty_card_queue_set(false),
  1884   _into_cset_dirty_card_queue_set(false),
  1885   _is_alive_closure_cm(this),
  1886   _is_alive_closure_stw(this),
  1887   _ref_processor_cm(NULL),
  1888   _ref_processor_stw(NULL),
  1889   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1890   _bot_shared(NULL),
  1891   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1892   _evac_failure_scan_stack(NULL) ,
  1893   _mark_in_progress(false),
  1894   _cg1r(NULL), _summary_bytes_used(0),
  1895   _g1mm(NULL),
  1896   _refine_cte_cl(NULL),
  1897   _full_collection(false),
  1898   _free_list("Master Free List"),
  1899   _secondary_free_list("Secondary Free List"),
  1900   _old_set("Old Set"),
  1901   _humongous_set("Master Humongous Set"),
  1902   _free_regions_coming(false),
  1903   _young_list(new YoungList(this)),
  1904   _gc_time_stamp(0),
  1905   _retained_old_gc_alloc_region(NULL),
  1906   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1907   _old_plab_stats(OldPLABSize, PLABWeight),
  1908   _expand_heap_after_alloc_failure(true),
  1909   _surviving_young_words(NULL),
  1910   _old_marking_cycles_started(0),
  1911   _old_marking_cycles_completed(0),
  1912   _in_cset_fast_test(NULL),
  1913   _in_cset_fast_test_base(NULL),
  1914   _dirty_cards_region_list(NULL),
  1915   _worker_cset_start_region(NULL),
  1916   _worker_cset_start_region_time_stamp(NULL) {
  1917   _g1h = this; // To catch bugs.
  1918   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1919     vm_exit_during_initialization("Failed necessary allocation.");
  1922   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1924   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1925   _task_queues = new RefToScanQueueSet(n_queues);
  1927   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1928   assert(n_rem_sets > 0, "Invariant.");
  1930   HeapRegionRemSetIterator** iter_arr =
  1931     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
  1932   for (int i = 0; i < n_queues; i++) {
  1933     iter_arr[i] = new HeapRegionRemSetIterator();
  1935   _rem_set_iterator = iter_arr;
  1937   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1938   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1940   for (int i = 0; i < n_queues; i++) {
  1941     RefToScanQueue* q = new RefToScanQueue();
  1942     q->initialize();
  1943     _task_queues->register_queue(i, q);
  1946   clear_cset_start_regions();
  1948   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1949 #ifdef SPARC
  1950   // Issue a stern warning, but allow use for experimentation and debugging.
  1951   if (VM_Version::is_sun4v() && UseMemSetInBOT) {
  1952     assert(!FLAG_IS_DEFAULT(UseMemSetInBOT), "Error");
  1953     warning("Experimental flag -XX:+UseMemSetInBOT is known to cause instability"
  1954             " on sun4v; please understand that you are using at your own risk!");
  1956 #endif
  1959 jint G1CollectedHeap::initialize() {
  1960   CollectedHeap::pre_initialize();
  1961   os::enable_vtime();
  1963   G1Log::init();
  1965   // Necessary to satisfy locking discipline assertions.
  1967   MutexLocker x(Heap_lock);
  1969   // We have to initialize the printer before committing the heap, as
  1970   // it will be used then.
  1971   _hr_printer.set_active(G1PrintHeapRegions);
  1973   // While there are no constraints in the GC code that HeapWordSize
  1974   // be any particular value, there are multiple other areas in the
  1975   // system which believe this to be true (e.g. oop->object_size in some
  1976   // cases incorrectly returns the size in wordSize units rather than
  1977   // HeapWordSize).
  1978   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1980   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1981   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1983   // Ensure that the sizes are properly aligned.
  1984   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1985   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1987   _cg1r = new ConcurrentG1Refine();
  1989   // Reserve the maximum.
  1990   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1991   // Includes the perm-gen.
  1993   // When compressed oops are enabled, the preferred heap base
  1994   // is calculated by subtracting the requested size from the
  1995   // 32Gb boundary and using the result as the base address for
  1996   // heap reservation. If the requested size is not aligned to
  1997   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1998   // into the ReservedHeapSpace constructor) then the actual
  1999   // base of the reserved heap may end up differing from the
  2000   // address that was requested (i.e. the preferred heap base).
  2001   // If this happens then we could end up using a non-optimal
  2002   // compressed oops mode.
  2004   // Since max_byte_size is aligned to the size of a heap region (checked
  2005   // above), we also need to align the perm gen size as it might not be.
  2006   const size_t total_reserved = max_byte_size +
  2007                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  2008   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
  2010   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  2012   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
  2013                             UseLargePages, addr);
  2015   if (UseCompressedOops) {
  2016     if (addr != NULL && !heap_rs.is_reserved()) {
  2017       // Failed to reserve at specified address - the requested memory
  2018       // region is taken already, for example, by 'java' launcher.
  2019       // Try again to reserver heap higher.
  2020       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  2022       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  2023                                  UseLargePages, addr);
  2025       if (addr != NULL && !heap_rs0.is_reserved()) {
  2026         // Failed to reserve at specified address again - give up.
  2027         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  2028         assert(addr == NULL, "");
  2030         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  2031                                    UseLargePages, addr);
  2032         heap_rs = heap_rs1;
  2033       } else {
  2034         heap_rs = heap_rs0;
  2039   if (!heap_rs.is_reserved()) {
  2040     vm_exit_during_initialization("Could not reserve enough space for object heap");
  2041     return JNI_ENOMEM;
  2044   // It is important to do this in a way such that concurrent readers can't
  2045   // temporarily think somethings in the heap.  (I've actually seen this
  2046   // happen in asserts: DLD.)
  2047   _reserved.set_word_size(0);
  2048   _reserved.set_start((HeapWord*)heap_rs.base());
  2049   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2051   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  2053   // Create the gen rem set (and barrier set) for the entire reserved region.
  2054   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2055   set_barrier_set(rem_set()->bs());
  2056   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  2057     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  2058   } else {
  2059     vm_exit_during_initialization("G1 requires a mod ref bs.");
  2060     return JNI_ENOMEM;
  2063   // Also create a G1 rem set.
  2064   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  2065     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  2066   } else {
  2067     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  2068     return JNI_ENOMEM;
  2071   // Carve out the G1 part of the heap.
  2073   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2074   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2075                            g1_rs.size()/HeapWordSize);
  2076   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  2078   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  2080   _g1_storage.initialize(g1_rs, 0);
  2081   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2082   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2083                   (HeapWord*) _g1_reserved.end(),
  2084                   _expansion_regions);
  2086   // 6843694 - ensure that the maximum region index can fit
  2087   // in the remembered set structures.
  2088   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2089   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2091   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2092   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2093   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2094             "too many cards per region");
  2096   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  2098   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2099                                              heap_word_size(init_byte_size));
  2101   _g1h = this;
  2103    _in_cset_fast_test_length = max_regions();
  2104    _in_cset_fast_test_base =
  2105                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
  2107    // We're biasing _in_cset_fast_test to avoid subtracting the
  2108    // beginning of the heap every time we want to index; basically
  2109    // it's the same with what we do with the card table.
  2110    _in_cset_fast_test = _in_cset_fast_test_base -
  2111                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2113    // Clear the _cset_fast_test bitmap in anticipation of adding
  2114    // regions to the incremental collection set for the first
  2115    // evacuation pause.
  2116    clear_cset_fast_test();
  2118   // Create the ConcurrentMark data structure and thread.
  2119   // (Must do this late, so that "max_regions" is defined.)
  2120   _cm       = new ConcurrentMark(heap_rs, max_regions());
  2121   _cmThread = _cm->cmThread();
  2123   // Initialize the from_card cache structure of HeapRegionRemSet.
  2124   HeapRegionRemSet::init_heap(max_regions());
  2126   // Now expand into the initial heap size.
  2127   if (!expand(init_byte_size)) {
  2128     vm_exit_during_initialization("Failed to allocate initial heap.");
  2129     return JNI_ENOMEM;
  2132   // Perform any initialization actions delegated to the policy.
  2133   g1_policy()->init();
  2135   _refine_cte_cl =
  2136     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2137                                     g1_rem_set(),
  2138                                     concurrent_g1_refine());
  2139   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2141   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2142                                                SATB_Q_FL_lock,
  2143                                                G1SATBProcessCompletedThreshold,
  2144                                                Shared_SATB_Q_lock);
  2146   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2147                                                 DirtyCardQ_FL_lock,
  2148                                                 concurrent_g1_refine()->yellow_zone(),
  2149                                                 concurrent_g1_refine()->red_zone(),
  2150                                                 Shared_DirtyCardQ_lock);
  2152   if (G1DeferredRSUpdate) {
  2153     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2154                                       DirtyCardQ_FL_lock,
  2155                                       -1, // never trigger processing
  2156                                       -1, // no limit on length
  2157                                       Shared_DirtyCardQ_lock,
  2158                                       &JavaThread::dirty_card_queue_set());
  2161   // Initialize the card queue set used to hold cards containing
  2162   // references into the collection set.
  2163   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2164                                              DirtyCardQ_FL_lock,
  2165                                              -1, // never trigger processing
  2166                                              -1, // no limit on length
  2167                                              Shared_DirtyCardQ_lock,
  2168                                              &JavaThread::dirty_card_queue_set());
  2170   // In case we're keeping closure specialization stats, initialize those
  2171   // counts and that mechanism.
  2172   SpecializationStats::clear();
  2174   // Do later initialization work for concurrent refinement.
  2175   _cg1r->init();
  2177   // Here we allocate the dummy full region that is required by the
  2178   // G1AllocRegion class. If we don't pass an address in the reserved
  2179   // space here, lots of asserts fire.
  2181   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2182                                              _g1_reserved.start());
  2183   // We'll re-use the same region whether the alloc region will
  2184   // require BOT updates or not and, if it doesn't, then a non-young
  2185   // region will complain that it cannot support allocations without
  2186   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2187   dummy_region->set_young();
  2188   // Make sure it's full.
  2189   dummy_region->set_top(dummy_region->end());
  2190   G1AllocRegion::setup(this, dummy_region);
  2192   init_mutator_alloc_region();
  2194   // Do create of the monitoring and management support so that
  2195   // values in the heap have been properly initialized.
  2196   _g1mm = new G1MonitoringSupport(this);
  2198   return JNI_OK;
  2201 void G1CollectedHeap::ref_processing_init() {
  2202   // Reference processing in G1 currently works as follows:
  2203   //
  2204   // * There are two reference processor instances. One is
  2205   //   used to record and process discovered references
  2206   //   during concurrent marking; the other is used to
  2207   //   record and process references during STW pauses
  2208   //   (both full and incremental).
  2209   // * Both ref processors need to 'span' the entire heap as
  2210   //   the regions in the collection set may be dotted around.
  2211   //
  2212   // * For the concurrent marking ref processor:
  2213   //   * Reference discovery is enabled at initial marking.
  2214   //   * Reference discovery is disabled and the discovered
  2215   //     references processed etc during remarking.
  2216   //   * Reference discovery is MT (see below).
  2217   //   * Reference discovery requires a barrier (see below).
  2218   //   * Reference processing may or may not be MT
  2219   //     (depending on the value of ParallelRefProcEnabled
  2220   //     and ParallelGCThreads).
  2221   //   * A full GC disables reference discovery by the CM
  2222   //     ref processor and abandons any entries on it's
  2223   //     discovered lists.
  2224   //
  2225   // * For the STW processor:
  2226   //   * Non MT discovery is enabled at the start of a full GC.
  2227   //   * Processing and enqueueing during a full GC is non-MT.
  2228   //   * During a full GC, references are processed after marking.
  2229   //
  2230   //   * Discovery (may or may not be MT) is enabled at the start
  2231   //     of an incremental evacuation pause.
  2232   //   * References are processed near the end of a STW evacuation pause.
  2233   //   * For both types of GC:
  2234   //     * Discovery is atomic - i.e. not concurrent.
  2235   //     * Reference discovery will not need a barrier.
  2237   SharedHeap::ref_processing_init();
  2238   MemRegion mr = reserved_region();
  2240   // Concurrent Mark ref processor
  2241   _ref_processor_cm =
  2242     new ReferenceProcessor(mr,    // span
  2243                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2244                                 // mt processing
  2245                            (int) ParallelGCThreads,
  2246                                 // degree of mt processing
  2247                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2248                                 // mt discovery
  2249                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2250                                 // degree of mt discovery
  2251                            false,
  2252                                 // Reference discovery is not atomic
  2253                            &_is_alive_closure_cm,
  2254                                 // is alive closure
  2255                                 // (for efficiency/performance)
  2256                            true);
  2257                                 // Setting next fields of discovered
  2258                                 // lists requires a barrier.
  2260   // STW ref processor
  2261   _ref_processor_stw =
  2262     new ReferenceProcessor(mr,    // span
  2263                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2264                                 // mt processing
  2265                            MAX2((int)ParallelGCThreads, 1),
  2266                                 // degree of mt processing
  2267                            (ParallelGCThreads > 1),
  2268                                 // mt discovery
  2269                            MAX2((int)ParallelGCThreads, 1),
  2270                                 // degree of mt discovery
  2271                            true,
  2272                                 // Reference discovery is atomic
  2273                            &_is_alive_closure_stw,
  2274                                 // is alive closure
  2275                                 // (for efficiency/performance)
  2276                            false);
  2277                                 // Setting next fields of discovered
  2278                                 // lists requires a barrier.
  2281 size_t G1CollectedHeap::capacity() const {
  2282   return _g1_committed.byte_size();
  2285 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2286   assert(!hr->continuesHumongous(), "pre-condition");
  2287   hr->reset_gc_time_stamp();
  2288   if (hr->startsHumongous()) {
  2289     uint first_index = hr->hrs_index() + 1;
  2290     uint last_index = hr->last_hc_index();
  2291     for (uint i = first_index; i < last_index; i += 1) {
  2292       HeapRegion* chr = region_at(i);
  2293       assert(chr->continuesHumongous(), "sanity");
  2294       chr->reset_gc_time_stamp();
  2299 #ifndef PRODUCT
  2300 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2301 private:
  2302   unsigned _gc_time_stamp;
  2303   bool _failures;
  2305 public:
  2306   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2307     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2309   virtual bool doHeapRegion(HeapRegion* hr) {
  2310     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2311     if (_gc_time_stamp != region_gc_time_stamp) {
  2312       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2313                              "expected %d", HR_FORMAT_PARAMS(hr),
  2314                              region_gc_time_stamp, _gc_time_stamp);
  2315       _failures = true;
  2317     return false;
  2320   bool failures() { return _failures; }
  2321 };
  2323 void G1CollectedHeap::check_gc_time_stamps() {
  2324   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2325   heap_region_iterate(&cl);
  2326   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2328 #endif // PRODUCT
  2330 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2331                                                  DirtyCardQueue* into_cset_dcq,
  2332                                                  bool concurrent,
  2333                                                  int worker_i) {
  2334   // Clean cards in the hot card cache
  2335   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2337   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2338   int n_completed_buffers = 0;
  2339   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2340     n_completed_buffers++;
  2342   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
  2343   dcqs.clear_n_completed_buffers();
  2344   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2348 // Computes the sum of the storage used by the various regions.
  2350 size_t G1CollectedHeap::used() const {
  2351   assert(Heap_lock->owner() != NULL,
  2352          "Should be owned on this thread's behalf.");
  2353   size_t result = _summary_bytes_used;
  2354   // Read only once in case it is set to NULL concurrently
  2355   HeapRegion* hr = _mutator_alloc_region.get();
  2356   if (hr != NULL)
  2357     result += hr->used();
  2358   return result;
  2361 size_t G1CollectedHeap::used_unlocked() const {
  2362   size_t result = _summary_bytes_used;
  2363   return result;
  2366 class SumUsedClosure: public HeapRegionClosure {
  2367   size_t _used;
  2368 public:
  2369   SumUsedClosure() : _used(0) {}
  2370   bool doHeapRegion(HeapRegion* r) {
  2371     if (!r->continuesHumongous()) {
  2372       _used += r->used();
  2374     return false;
  2376   size_t result() { return _used; }
  2377 };
  2379 size_t G1CollectedHeap::recalculate_used() const {
  2380   SumUsedClosure blk;
  2381   heap_region_iterate(&blk);
  2382   return blk.result();
  2385 size_t G1CollectedHeap::unsafe_max_alloc() {
  2386   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2387   // otherwise, is there space in the current allocation region?
  2389   // We need to store the current allocation region in a local variable
  2390   // here. The problem is that this method doesn't take any locks and
  2391   // there may be other threads which overwrite the current allocation
  2392   // region field. attempt_allocation(), for example, sets it to NULL
  2393   // and this can happen *after* the NULL check here but before the call
  2394   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2395   // to be a problem in the optimized build, since the two loads of the
  2396   // current allocation region field are optimized away.
  2397   HeapRegion* hr = _mutator_alloc_region.get();
  2398   if (hr == NULL) {
  2399     return 0;
  2401   return hr->free();
  2404 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2405   switch (cause) {
  2406     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2407     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2408     case GCCause::_g1_humongous_allocation: return true;
  2409     default:                                return false;
  2413 #ifndef PRODUCT
  2414 void G1CollectedHeap::allocate_dummy_regions() {
  2415   // Let's fill up most of the region
  2416   size_t word_size = HeapRegion::GrainWords - 1024;
  2417   // And as a result the region we'll allocate will be humongous.
  2418   guarantee(isHumongous(word_size), "sanity");
  2420   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2421     // Let's use the existing mechanism for the allocation
  2422     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2423     if (dummy_obj != NULL) {
  2424       MemRegion mr(dummy_obj, word_size);
  2425       CollectedHeap::fill_with_object(mr);
  2426     } else {
  2427       // If we can't allocate once, we probably cannot allocate
  2428       // again. Let's get out of the loop.
  2429       break;
  2433 #endif // !PRODUCT
  2435 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2436   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2437     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2438     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2439     _old_marking_cycles_started, _old_marking_cycles_completed));
  2441   _old_marking_cycles_started++;
  2444 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2445   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2447   // We assume that if concurrent == true, then the caller is a
  2448   // concurrent thread that was joined the Suspendible Thread
  2449   // Set. If there's ever a cheap way to check this, we should add an
  2450   // assert here.
  2452   // Given that this method is called at the end of a Full GC or of a
  2453   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2454   // interrupt a concurrent cycle), the number of full collections
  2455   // completed should be either one (in the case where there was no
  2456   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2457   // behind the number of full collections started.
  2459   // This is the case for the inner caller, i.e. a Full GC.
  2460   assert(concurrent ||
  2461          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2462          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2463          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2464                  "is inconsistent with _old_marking_cycles_completed = %u",
  2465                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2467   // This is the case for the outer caller, i.e. the concurrent cycle.
  2468   assert(!concurrent ||
  2469          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2470          err_msg("for outer caller (concurrent cycle): "
  2471                  "_old_marking_cycles_started = %u "
  2472                  "is inconsistent with _old_marking_cycles_completed = %u",
  2473                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2475   _old_marking_cycles_completed += 1;
  2477   // We need to clear the "in_progress" flag in the CM thread before
  2478   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2479   // is set) so that if a waiter requests another System.gc() it doesn't
  2480   // incorrectly see that a marking cyle is still in progress.
  2481   if (concurrent) {
  2482     _cmThread->clear_in_progress();
  2485   // This notify_all() will ensure that a thread that called
  2486   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2487   // and it's waiting for a full GC to finish will be woken up. It is
  2488   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2489   FullGCCount_lock->notify_all();
  2492 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  2493   assert_at_safepoint(true /* should_be_vm_thread */);
  2494   GCCauseSetter gcs(this, cause);
  2495   switch (cause) {
  2496     case GCCause::_heap_inspection:
  2497     case GCCause::_heap_dump: {
  2498       HandleMark hm;
  2499       do_full_collection(false);         // don't clear all soft refs
  2500       break;
  2502     default: // XXX FIX ME
  2503       ShouldNotReachHere(); // Unexpected use of this function
  2507 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2508   assert_heap_not_locked();
  2510   unsigned int gc_count_before;
  2511   unsigned int old_marking_count_before;
  2512   bool retry_gc;
  2514   do {
  2515     retry_gc = false;
  2518       MutexLocker ml(Heap_lock);
  2520       // Read the GC count while holding the Heap_lock
  2521       gc_count_before = total_collections();
  2522       old_marking_count_before = _old_marking_cycles_started;
  2525     if (should_do_concurrent_full_gc(cause)) {
  2526       // Schedule an initial-mark evacuation pause that will start a
  2527       // concurrent cycle. We're setting word_size to 0 which means that
  2528       // we are not requesting a post-GC allocation.
  2529       VM_G1IncCollectionPause op(gc_count_before,
  2530                                  0,     /* word_size */
  2531                                  true,  /* should_initiate_conc_mark */
  2532                                  g1_policy()->max_pause_time_ms(),
  2533                                  cause);
  2535       VMThread::execute(&op);
  2536       if (!op.pause_succeeded()) {
  2537         if (old_marking_count_before == _old_marking_cycles_started) {
  2538           retry_gc = op.should_retry_gc();
  2539         } else {
  2540           // A Full GC happened while we were trying to schedule the
  2541           // initial-mark GC. No point in starting a new cycle given
  2542           // that the whole heap was collected anyway.
  2545         if (retry_gc) {
  2546           if (GC_locker::is_active_and_needs_gc()) {
  2547             GC_locker::stall_until_clear();
  2551     } else {
  2552       if (cause == GCCause::_gc_locker
  2553           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2555         // Schedule a standard evacuation pause. We're setting word_size
  2556         // to 0 which means that we are not requesting a post-GC allocation.
  2557         VM_G1IncCollectionPause op(gc_count_before,
  2558                                    0,     /* word_size */
  2559                                    false, /* should_initiate_conc_mark */
  2560                                    g1_policy()->max_pause_time_ms(),
  2561                                    cause);
  2562         VMThread::execute(&op);
  2563       } else {
  2564         // Schedule a Full GC.
  2565         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
  2566         VMThread::execute(&op);
  2569   } while (retry_gc);
  2572 bool G1CollectedHeap::is_in(const void* p) const {
  2573   if (_g1_committed.contains(p)) {
  2574     // Given that we know that p is in the committed space,
  2575     // heap_region_containing_raw() should successfully
  2576     // return the containing region.
  2577     HeapRegion* hr = heap_region_containing_raw(p);
  2578     return hr->is_in(p);
  2579   } else {
  2580     return _perm_gen->as_gen()->is_in(p);
  2584 // Iteration functions.
  2586 // Iterates an OopClosure over all ref-containing fields of objects
  2587 // within a HeapRegion.
  2589 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2590   MemRegion _mr;
  2591   OopClosure* _cl;
  2592 public:
  2593   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  2594     : _mr(mr), _cl(cl) {}
  2595   bool doHeapRegion(HeapRegion* r) {
  2596     if (!r->continuesHumongous()) {
  2597       r->oop_iterate(_cl);
  2599     return false;
  2601 };
  2603 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  2604   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2605   heap_region_iterate(&blk);
  2606   if (do_perm) {
  2607     perm_gen()->oop_iterate(cl);
  2611 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  2612   IterateOopClosureRegionClosure blk(mr, cl);
  2613   heap_region_iterate(&blk);
  2614   if (do_perm) {
  2615     perm_gen()->oop_iterate(cl);
  2619 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2621 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2622   ObjectClosure* _cl;
  2623 public:
  2624   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2625   bool doHeapRegion(HeapRegion* r) {
  2626     if (! r->continuesHumongous()) {
  2627       r->object_iterate(_cl);
  2629     return false;
  2631 };
  2633 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  2634   IterateObjectClosureRegionClosure blk(cl);
  2635   heap_region_iterate(&blk);
  2636   if (do_perm) {
  2637     perm_gen()->object_iterate(cl);
  2641 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2642   // FIXME: is this right?
  2643   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2646 // Calls a SpaceClosure on a HeapRegion.
  2648 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2649   SpaceClosure* _cl;
  2650 public:
  2651   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2652   bool doHeapRegion(HeapRegion* r) {
  2653     _cl->do_space(r);
  2654     return false;
  2656 };
  2658 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2659   SpaceClosureRegionClosure blk(cl);
  2660   heap_region_iterate(&blk);
  2663 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2664   _hrs.iterate(cl);
  2667 void
  2668 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2669                                                  uint worker_id,
  2670                                                  uint no_of_par_workers,
  2671                                                  jint claim_value) {
  2672   const uint regions = n_regions();
  2673   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2674                              no_of_par_workers :
  2675                              1);
  2676   assert(UseDynamicNumberOfGCThreads ||
  2677          no_of_par_workers == workers()->total_workers(),
  2678          "Non dynamic should use fixed number of workers");
  2679   // try to spread out the starting points of the workers
  2680   const HeapRegion* start_hr =
  2681                         start_region_for_worker(worker_id, no_of_par_workers);
  2682   const uint start_index = start_hr->hrs_index();
  2684   // each worker will actually look at all regions
  2685   for (uint count = 0; count < regions; ++count) {
  2686     const uint index = (start_index + count) % regions;
  2687     assert(0 <= index && index < regions, "sanity");
  2688     HeapRegion* r = region_at(index);
  2689     // we'll ignore "continues humongous" regions (we'll process them
  2690     // when we come across their corresponding "start humongous"
  2691     // region) and regions already claimed
  2692     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2693       continue;
  2695     // OK, try to claim it
  2696     if (r->claimHeapRegion(claim_value)) {
  2697       // success!
  2698       assert(!r->continuesHumongous(), "sanity");
  2699       if (r->startsHumongous()) {
  2700         // If the region is "starts humongous" we'll iterate over its
  2701         // "continues humongous" first; in fact we'll do them
  2702         // first. The order is important. In on case, calling the
  2703         // closure on the "starts humongous" region might de-allocate
  2704         // and clear all its "continues humongous" regions and, as a
  2705         // result, we might end up processing them twice. So, we'll do
  2706         // them first (notice: most closures will ignore them anyway) and
  2707         // then we'll do the "starts humongous" region.
  2708         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
  2709           HeapRegion* chr = region_at(ch_index);
  2711           // if the region has already been claimed or it's not
  2712           // "continues humongous" we're done
  2713           if (chr->claim_value() == claim_value ||
  2714               !chr->continuesHumongous()) {
  2715             break;
  2718           // Noone should have claimed it directly. We can given
  2719           // that we claimed its "starts humongous" region.
  2720           assert(chr->claim_value() != claim_value, "sanity");
  2721           assert(chr->humongous_start_region() == r, "sanity");
  2723           if (chr->claimHeapRegion(claim_value)) {
  2724             // we should always be able to claim it; noone else should
  2725             // be trying to claim this region
  2727             bool res2 = cl->doHeapRegion(chr);
  2728             assert(!res2, "Should not abort");
  2730             // Right now, this holds (i.e., no closure that actually
  2731             // does something with "continues humongous" regions
  2732             // clears them). We might have to weaken it in the future,
  2733             // but let's leave these two asserts here for extra safety.
  2734             assert(chr->continuesHumongous(), "should still be the case");
  2735             assert(chr->humongous_start_region() == r, "sanity");
  2736           } else {
  2737             guarantee(false, "we should not reach here");
  2742       assert(!r->continuesHumongous(), "sanity");
  2743       bool res = cl->doHeapRegion(r);
  2744       assert(!res, "Should not abort");
  2749 class ResetClaimValuesClosure: public HeapRegionClosure {
  2750 public:
  2751   bool doHeapRegion(HeapRegion* r) {
  2752     r->set_claim_value(HeapRegion::InitialClaimValue);
  2753     return false;
  2755 };
  2757 void G1CollectedHeap::reset_heap_region_claim_values() {
  2758   ResetClaimValuesClosure blk;
  2759   heap_region_iterate(&blk);
  2762 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2763   ResetClaimValuesClosure blk;
  2764   collection_set_iterate(&blk);
  2767 #ifdef ASSERT
  2768 // This checks whether all regions in the heap have the correct claim
  2769 // value. I also piggy-backed on this a check to ensure that the
  2770 // humongous_start_region() information on "continues humongous"
  2771 // regions is correct.
  2773 class CheckClaimValuesClosure : public HeapRegionClosure {
  2774 private:
  2775   jint _claim_value;
  2776   uint _failures;
  2777   HeapRegion* _sh_region;
  2779 public:
  2780   CheckClaimValuesClosure(jint claim_value) :
  2781     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2782   bool doHeapRegion(HeapRegion* r) {
  2783     if (r->claim_value() != _claim_value) {
  2784       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2785                              "claim value = %d, should be %d",
  2786                              HR_FORMAT_PARAMS(r),
  2787                              r->claim_value(), _claim_value);
  2788       ++_failures;
  2790     if (!r->isHumongous()) {
  2791       _sh_region = NULL;
  2792     } else if (r->startsHumongous()) {
  2793       _sh_region = r;
  2794     } else if (r->continuesHumongous()) {
  2795       if (r->humongous_start_region() != _sh_region) {
  2796         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2797                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2798                                HR_FORMAT_PARAMS(r),
  2799                                r->humongous_start_region(),
  2800                                _sh_region);
  2801         ++_failures;
  2804     return false;
  2806   uint failures() { return _failures; }
  2807 };
  2809 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2810   CheckClaimValuesClosure cl(claim_value);
  2811   heap_region_iterate(&cl);
  2812   return cl.failures() == 0;
  2815 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2816 private:
  2817   jint _claim_value;
  2818   uint _failures;
  2820 public:
  2821   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2822     _claim_value(claim_value), _failures(0) { }
  2824   uint failures() { return _failures; }
  2826   bool doHeapRegion(HeapRegion* hr) {
  2827     assert(hr->in_collection_set(), "how?");
  2828     assert(!hr->isHumongous(), "H-region in CSet");
  2829     if (hr->claim_value() != _claim_value) {
  2830       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2831                              "claim value = %d, should be %d",
  2832                              HR_FORMAT_PARAMS(hr),
  2833                              hr->claim_value(), _claim_value);
  2834       _failures += 1;
  2836     return false;
  2838 };
  2840 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2841   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2842   collection_set_iterate(&cl);
  2843   return cl.failures() == 0;
  2845 #endif // ASSERT
  2847 // Clear the cached CSet starting regions and (more importantly)
  2848 // the time stamps. Called when we reset the GC time stamp.
  2849 void G1CollectedHeap::clear_cset_start_regions() {
  2850   assert(_worker_cset_start_region != NULL, "sanity");
  2851   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2853   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2854   for (int i = 0; i < n_queues; i++) {
  2855     _worker_cset_start_region[i] = NULL;
  2856     _worker_cset_start_region_time_stamp[i] = 0;
  2860 // Given the id of a worker, obtain or calculate a suitable
  2861 // starting region for iterating over the current collection set.
  2862 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
  2863   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2865   HeapRegion* result = NULL;
  2866   unsigned gc_time_stamp = get_gc_time_stamp();
  2868   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2869     // Cached starting region for current worker was set
  2870     // during the current pause - so it's valid.
  2871     // Note: the cached starting heap region may be NULL
  2872     // (when the collection set is empty).
  2873     result = _worker_cset_start_region[worker_i];
  2874     assert(result == NULL || result->in_collection_set(), "sanity");
  2875     return result;
  2878   // The cached entry was not valid so let's calculate
  2879   // a suitable starting heap region for this worker.
  2881   // We want the parallel threads to start their collection
  2882   // set iteration at different collection set regions to
  2883   // avoid contention.
  2884   // If we have:
  2885   //          n collection set regions
  2886   //          p threads
  2887   // Then thread t will start at region floor ((t * n) / p)
  2889   result = g1_policy()->collection_set();
  2890   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2891     uint cs_size = g1_policy()->cset_region_length();
  2892     uint active_workers = workers()->active_workers();
  2893     assert(UseDynamicNumberOfGCThreads ||
  2894              active_workers == workers()->total_workers(),
  2895              "Unless dynamic should use total workers");
  2897     uint end_ind   = (cs_size * worker_i) / active_workers;
  2898     uint start_ind = 0;
  2900     if (worker_i > 0 &&
  2901         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2902       // Previous workers starting region is valid
  2903       // so let's iterate from there
  2904       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2905       result = _worker_cset_start_region[worker_i - 1];
  2908     for (uint i = start_ind; i < end_ind; i++) {
  2909       result = result->next_in_collection_set();
  2913   // Note: the calculated starting heap region may be NULL
  2914   // (when the collection set is empty).
  2915   assert(result == NULL || result->in_collection_set(), "sanity");
  2916   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2917          "should be updated only once per pause");
  2918   _worker_cset_start_region[worker_i] = result;
  2919   OrderAccess::storestore();
  2920   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2921   return result;
  2924 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
  2925                                                      uint no_of_par_workers) {
  2926   uint worker_num =
  2927            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  2928   assert(UseDynamicNumberOfGCThreads ||
  2929          no_of_par_workers == workers()->total_workers(),
  2930          "Non dynamic should use fixed number of workers");
  2931   const uint start_index = n_regions() * worker_i / worker_num;
  2932   return region_at(start_index);
  2935 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2936   HeapRegion* r = g1_policy()->collection_set();
  2937   while (r != NULL) {
  2938     HeapRegion* next = r->next_in_collection_set();
  2939     if (cl->doHeapRegion(r)) {
  2940       cl->incomplete();
  2941       return;
  2943     r = next;
  2947 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2948                                                   HeapRegionClosure *cl) {
  2949   if (r == NULL) {
  2950     // The CSet is empty so there's nothing to do.
  2951     return;
  2954   assert(r->in_collection_set(),
  2955          "Start region must be a member of the collection set.");
  2956   HeapRegion* cur = r;
  2957   while (cur != NULL) {
  2958     HeapRegion* next = cur->next_in_collection_set();
  2959     if (cl->doHeapRegion(cur) && false) {
  2960       cl->incomplete();
  2961       return;
  2963     cur = next;
  2965   cur = g1_policy()->collection_set();
  2966   while (cur != r) {
  2967     HeapRegion* next = cur->next_in_collection_set();
  2968     if (cl->doHeapRegion(cur) && false) {
  2969       cl->incomplete();
  2970       return;
  2972     cur = next;
  2976 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2977   return n_regions() > 0 ? region_at(0) : NULL;
  2981 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2982   Space* res = heap_region_containing(addr);
  2983   if (res == NULL)
  2984     res = perm_gen()->space_containing(addr);
  2985   return res;
  2988 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2989   Space* sp = space_containing(addr);
  2990   if (sp != NULL) {
  2991     return sp->block_start(addr);
  2993   return NULL;
  2996 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2997   Space* sp = space_containing(addr);
  2998   assert(sp != NULL, "block_size of address outside of heap");
  2999   return sp->block_size(addr);
  3002 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  3003   Space* sp = space_containing(addr);
  3004   return sp->block_is_obj(addr);
  3007 bool G1CollectedHeap::supports_tlab_allocation() const {
  3008   return true;
  3011 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  3012   return HeapRegion::GrainBytes;
  3015 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  3016   // Return the remaining space in the cur alloc region, but not less than
  3017   // the min TLAB size.
  3019   // Also, this value can be at most the humongous object threshold,
  3020   // since we can't allow tlabs to grow big enough to accomodate
  3021   // humongous objects.
  3023   HeapRegion* hr = _mutator_alloc_region.get();
  3024   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  3025   if (hr == NULL) {
  3026     return max_tlab_size;
  3027   } else {
  3028     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  3032 size_t G1CollectedHeap::max_capacity() const {
  3033   return _g1_reserved.byte_size();
  3036 jlong G1CollectedHeap::millis_since_last_gc() {
  3037   // assert(false, "NYI");
  3038   return 0;
  3041 void G1CollectedHeap::prepare_for_verify() {
  3042   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3043     ensure_parsability(false);
  3045   g1_rem_set()->prepare_for_verify();
  3048 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  3049                                               VerifyOption vo) {
  3050   switch (vo) {
  3051   case VerifyOption_G1UsePrevMarking:
  3052     return hr->obj_allocated_since_prev_marking(obj);
  3053   case VerifyOption_G1UseNextMarking:
  3054     return hr->obj_allocated_since_next_marking(obj);
  3055   case VerifyOption_G1UseMarkWord:
  3056     return false;
  3057   default:
  3058     ShouldNotReachHere();
  3060   return false; // keep some compilers happy
  3063 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  3064   switch (vo) {
  3065   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  3066   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  3067   case VerifyOption_G1UseMarkWord:    return NULL;
  3068   default:                            ShouldNotReachHere();
  3070   return NULL; // keep some compilers happy
  3073 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  3074   switch (vo) {
  3075   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  3076   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  3077   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  3078   default:                            ShouldNotReachHere();
  3080   return false; // keep some compilers happy
  3083 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  3084   switch (vo) {
  3085   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  3086   case VerifyOption_G1UseNextMarking: return "NTAMS";
  3087   case VerifyOption_G1UseMarkWord:    return "NONE";
  3088   default:                            ShouldNotReachHere();
  3090   return NULL; // keep some compilers happy
  3093 class VerifyLivenessOopClosure: public OopClosure {
  3094   G1CollectedHeap* _g1h;
  3095   VerifyOption _vo;
  3096 public:
  3097   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3098     _g1h(g1h), _vo(vo)
  3099   { }
  3100   void do_oop(narrowOop *p) { do_oop_work(p); }
  3101   void do_oop(      oop *p) { do_oop_work(p); }
  3103   template <class T> void do_oop_work(T *p) {
  3104     oop obj = oopDesc::load_decode_heap_oop(p);
  3105     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3106               "Dead object referenced by a not dead object");
  3108 };
  3110 class VerifyObjsInRegionClosure: public ObjectClosure {
  3111 private:
  3112   G1CollectedHeap* _g1h;
  3113   size_t _live_bytes;
  3114   HeapRegion *_hr;
  3115   VerifyOption _vo;
  3116 public:
  3117   // _vo == UsePrevMarking -> use "prev" marking information,
  3118   // _vo == UseNextMarking -> use "next" marking information,
  3119   // _vo == UseMarkWord    -> use mark word from object header.
  3120   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3121     : _live_bytes(0), _hr(hr), _vo(vo) {
  3122     _g1h = G1CollectedHeap::heap();
  3124   void do_object(oop o) {
  3125     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3126     assert(o != NULL, "Huh?");
  3127     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3128       // If the object is alive according to the mark word,
  3129       // then verify that the marking information agrees.
  3130       // Note we can't verify the contra-positive of the
  3131       // above: if the object is dead (according to the mark
  3132       // word), it may not be marked, or may have been marked
  3133       // but has since became dead, or may have been allocated
  3134       // since the last marking.
  3135       if (_vo == VerifyOption_G1UseMarkWord) {
  3136         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3139       o->oop_iterate(&isLive);
  3140       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3141         size_t obj_size = o->size();    // Make sure we don't overflow
  3142         _live_bytes += (obj_size * HeapWordSize);
  3146   size_t live_bytes() { return _live_bytes; }
  3147 };
  3149 class PrintObjsInRegionClosure : public ObjectClosure {
  3150   HeapRegion *_hr;
  3151   G1CollectedHeap *_g1;
  3152 public:
  3153   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3154     _g1 = G1CollectedHeap::heap();
  3155   };
  3157   void do_object(oop o) {
  3158     if (o != NULL) {
  3159       HeapWord *start = (HeapWord *) o;
  3160       size_t word_sz = o->size();
  3161       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3162                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3163                           (void*) o, word_sz,
  3164                           _g1->isMarkedPrev(o),
  3165                           _g1->isMarkedNext(o),
  3166                           _hr->obj_allocated_since_prev_marking(o));
  3167       HeapWord *end = start + word_sz;
  3168       HeapWord *cur;
  3169       int *val;
  3170       for (cur = start; cur < end; cur++) {
  3171         val = (int *) cur;
  3172         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3176 };
  3178 class VerifyRegionClosure: public HeapRegionClosure {
  3179 private:
  3180   bool             _par;
  3181   VerifyOption     _vo;
  3182   bool             _failures;
  3183 public:
  3184   // _vo == UsePrevMarking -> use "prev" marking information,
  3185   // _vo == UseNextMarking -> use "next" marking information,
  3186   // _vo == UseMarkWord    -> use mark word from object header.
  3187   VerifyRegionClosure(bool par, VerifyOption vo)
  3188     : _par(par),
  3189       _vo(vo),
  3190       _failures(false) {}
  3192   bool failures() {
  3193     return _failures;
  3196   bool doHeapRegion(HeapRegion* r) {
  3197     if (!r->continuesHumongous()) {
  3198       bool failures = false;
  3199       r->verify(_vo, &failures);
  3200       if (failures) {
  3201         _failures = true;
  3202       } else {
  3203         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3204         r->object_iterate(&not_dead_yet_cl);
  3205         if (_vo != VerifyOption_G1UseNextMarking) {
  3206           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3207             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3208                                    "max_live_bytes "SIZE_FORMAT" "
  3209                                    "< calculated "SIZE_FORMAT,
  3210                                    r->bottom(), r->end(),
  3211                                    r->max_live_bytes(),
  3212                                  not_dead_yet_cl.live_bytes());
  3213             _failures = true;
  3215         } else {
  3216           // When vo == UseNextMarking we cannot currently do a sanity
  3217           // check on the live bytes as the calculation has not been
  3218           // finalized yet.
  3222     return false; // stop the region iteration if we hit a failure
  3224 };
  3226 class VerifyRootsClosure: public OopsInGenClosure {
  3227 private:
  3228   G1CollectedHeap* _g1h;
  3229   VerifyOption     _vo;
  3230   bool             _failures;
  3231 public:
  3232   // _vo == UsePrevMarking -> use "prev" marking information,
  3233   // _vo == UseNextMarking -> use "next" marking information,
  3234   // _vo == UseMarkWord    -> use mark word from object header.
  3235   VerifyRootsClosure(VerifyOption vo) :
  3236     _g1h(G1CollectedHeap::heap()),
  3237     _vo(vo),
  3238     _failures(false) { }
  3240   bool failures() { return _failures; }
  3242   template <class T> void do_oop_nv(T* p) {
  3243     T heap_oop = oopDesc::load_heap_oop(p);
  3244     if (!oopDesc::is_null(heap_oop)) {
  3245       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3246       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3247         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3248                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3249         if (_vo == VerifyOption_G1UseMarkWord) {
  3250           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3252         obj->print_on(gclog_or_tty);
  3253         _failures = true;
  3258   void do_oop(oop* p)       { do_oop_nv(p); }
  3259   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3260 };
  3262 // This is the task used for parallel heap verification.
  3264 class G1ParVerifyTask: public AbstractGangTask {
  3265 private:
  3266   G1CollectedHeap* _g1h;
  3267   VerifyOption     _vo;
  3268   bool             _failures;
  3270 public:
  3271   // _vo == UsePrevMarking -> use "prev" marking information,
  3272   // _vo == UseNextMarking -> use "next" marking information,
  3273   // _vo == UseMarkWord    -> use mark word from object header.
  3274   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3275     AbstractGangTask("Parallel verify task"),
  3276     _g1h(g1h),
  3277     _vo(vo),
  3278     _failures(false) { }
  3280   bool failures() {
  3281     return _failures;
  3284   void work(uint worker_id) {
  3285     HandleMark hm;
  3286     VerifyRegionClosure blk(true, _vo);
  3287     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3288                                           _g1h->workers()->active_workers(),
  3289                                           HeapRegion::ParVerifyClaimValue);
  3290     if (blk.failures()) {
  3291       _failures = true;
  3294 };
  3296 void G1CollectedHeap::verify(bool silent) {
  3297   verify(silent, VerifyOption_G1UsePrevMarking);
  3300 void G1CollectedHeap::verify(bool silent,
  3301                              VerifyOption vo) {
  3302   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3303     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
  3304     VerifyRootsClosure rootsCl(vo);
  3306     assert(Thread::current()->is_VM_thread(),
  3307       "Expected to be executed serially by the VM thread at this point");
  3309     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  3311     // We apply the relevant closures to all the oops in the
  3312     // system dictionary, the string table and the code cache.
  3313     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
  3315     process_strong_roots(true,      // activate StrongRootsScope
  3316                          true,      // we set "collecting perm gen" to true,
  3317                                     // so we don't reset the dirty cards in the perm gen.
  3318                          ScanningOption(so),  // roots scanning options
  3319                          &rootsCl,
  3320                          &blobsCl,
  3321                          &rootsCl);
  3323     // If we're verifying after the marking phase of a Full GC then we can't
  3324     // treat the perm gen as roots into the G1 heap. Some of the objects in
  3325     // the perm gen may be dead and hence not marked. If one of these dead
  3326     // objects is considered to be a root then we may end up with a false
  3327     // "Root location <x> points to dead ob <y>" failure.
  3328     if (vo != VerifyOption_G1UseMarkWord) {
  3329       // Since we used "collecting_perm_gen" == true above, we will not have
  3330       // checked the refs from perm into the G1-collected heap. We check those
  3331       // references explicitly below. Whether the relevant cards are dirty
  3332       // is checked further below in the rem set verification.
  3333       if (!silent) { gclog_or_tty->print("Permgen roots "); }
  3334       perm_gen()->oop_iterate(&rootsCl);
  3336     bool failures = rootsCl.failures();
  3338     if (vo != VerifyOption_G1UseMarkWord) {
  3339       // If we're verifying during a full GC then the region sets
  3340       // will have been torn down at the start of the GC. Therefore
  3341       // verifying the region sets will fail. So we only verify
  3342       // the region sets when not in a full GC.
  3343       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3344       verify_region_sets();
  3347     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3348     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3349       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3350              "sanity check");
  3352       G1ParVerifyTask task(this, vo);
  3353       assert(UseDynamicNumberOfGCThreads ||
  3354         workers()->active_workers() == workers()->total_workers(),
  3355         "If not dynamic should be using all the workers");
  3356       int n_workers = workers()->active_workers();
  3357       set_par_threads(n_workers);
  3358       workers()->run_task(&task);
  3359       set_par_threads(0);
  3360       if (task.failures()) {
  3361         failures = true;
  3364       // Checks that the expected amount of parallel work was done.
  3365       // The implication is that n_workers is > 0.
  3366       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3367              "sanity check");
  3369       reset_heap_region_claim_values();
  3371       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3372              "sanity check");
  3373     } else {
  3374       VerifyRegionClosure blk(false, vo);
  3375       heap_region_iterate(&blk);
  3376       if (blk.failures()) {
  3377         failures = true;
  3380     if (!silent) gclog_or_tty->print("RemSet ");
  3381     rem_set()->verify();
  3383     if (failures) {
  3384       gclog_or_tty->print_cr("Heap:");
  3385       // It helps to have the per-region information in the output to
  3386       // help us track down what went wrong. This is why we call
  3387       // print_extended_on() instead of print_on().
  3388       print_extended_on(gclog_or_tty);
  3389       gclog_or_tty->print_cr("");
  3390 #ifndef PRODUCT
  3391       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3392         concurrent_mark()->print_reachable("at-verification-failure",
  3393                                            vo, false /* all */);
  3395 #endif
  3396       gclog_or_tty->flush();
  3398     guarantee(!failures, "there should not have been any failures");
  3399   } else {
  3400     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  3404 class PrintRegionClosure: public HeapRegionClosure {
  3405   outputStream* _st;
  3406 public:
  3407   PrintRegionClosure(outputStream* st) : _st(st) {}
  3408   bool doHeapRegion(HeapRegion* r) {
  3409     r->print_on(_st);
  3410     return false;
  3412 };
  3414 void G1CollectedHeap::print_on(outputStream* st) const {
  3415   st->print(" %-20s", "garbage-first heap");
  3416   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3417             capacity()/K, used_unlocked()/K);
  3418   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3419             _g1_storage.low_boundary(),
  3420             _g1_storage.high(),
  3421             _g1_storage.high_boundary());
  3422   st->cr();
  3423   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3424   uint young_regions = _young_list->length();
  3425   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3426             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3427   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3428   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3429             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3430   st->cr();
  3431   perm()->as_gen()->print_on(st);
  3434 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3435   print_on(st);
  3437   // Print the per-region information.
  3438   st->cr();
  3439   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3440                "HS=humongous(starts), HC=humongous(continues), "
  3441                "CS=collection set, F=free, TS=gc time stamp, "
  3442                "PTAMS=previous top-at-mark-start, "
  3443                "NTAMS=next top-at-mark-start)");
  3444   PrintRegionClosure blk(st);
  3445   heap_region_iterate(&blk);
  3448 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3449   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3450     workers()->print_worker_threads_on(st);
  3452   _cmThread->print_on(st);
  3453   st->cr();
  3454   _cm->print_worker_threads_on(st);
  3455   _cg1r->print_worker_threads_on(st);
  3456   st->cr();
  3459 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3460   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3461     workers()->threads_do(tc);
  3463   tc->do_thread(_cmThread);
  3464   _cg1r->threads_do(tc);
  3467 void G1CollectedHeap::print_tracing_info() const {
  3468   // We'll overload this to mean "trace GC pause statistics."
  3469   if (TraceGen0Time || TraceGen1Time) {
  3470     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3471     // to that.
  3472     g1_policy()->print_tracing_info();
  3474   if (G1SummarizeRSetStats) {
  3475     g1_rem_set()->print_summary_info();
  3477   if (G1SummarizeConcMark) {
  3478     concurrent_mark()->print_summary_info();
  3480   g1_policy()->print_yg_surv_rate_info();
  3481   SpecializationStats::print();
  3484 #ifndef PRODUCT
  3485 // Helpful for debugging RSet issues.
  3487 class PrintRSetsClosure : public HeapRegionClosure {
  3488 private:
  3489   const char* _msg;
  3490   size_t _occupied_sum;
  3492 public:
  3493   bool doHeapRegion(HeapRegion* r) {
  3494     HeapRegionRemSet* hrrs = r->rem_set();
  3495     size_t occupied = hrrs->occupied();
  3496     _occupied_sum += occupied;
  3498     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3499                            HR_FORMAT_PARAMS(r));
  3500     if (occupied == 0) {
  3501       gclog_or_tty->print_cr("  RSet is empty");
  3502     } else {
  3503       hrrs->print();
  3505     gclog_or_tty->print_cr("----------");
  3506     return false;
  3509   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3510     gclog_or_tty->cr();
  3511     gclog_or_tty->print_cr("========================================");
  3512     gclog_or_tty->print_cr(msg);
  3513     gclog_or_tty->cr();
  3516   ~PrintRSetsClosure() {
  3517     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3518     gclog_or_tty->print_cr("========================================");
  3519     gclog_or_tty->cr();
  3521 };
  3523 void G1CollectedHeap::print_cset_rsets() {
  3524   PrintRSetsClosure cl("Printing CSet RSets");
  3525   collection_set_iterate(&cl);
  3528 void G1CollectedHeap::print_all_rsets() {
  3529   PrintRSetsClosure cl("Printing All RSets");;
  3530   heap_region_iterate(&cl);
  3532 #endif // PRODUCT
  3534 G1CollectedHeap* G1CollectedHeap::heap() {
  3535   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3536          "not a garbage-first heap");
  3537   return _g1h;
  3540 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3541   // always_do_update_barrier = false;
  3542   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3543   // Call allocation profiler
  3544   AllocationProfiler::iterate_since_last_gc();
  3545   // Fill TLAB's and such
  3546   ensure_parsability(true);
  3549 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3550   // FIXME: what is this about?
  3551   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3552   // is set.
  3553   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3554                         "derived pointer present"));
  3555   // always_do_update_barrier = true;
  3557   // We have just completed a GC. Update the soft reference
  3558   // policy with the new heap occupancy
  3559   Universe::update_heap_info_at_gc();
  3562 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3563                                                unsigned int gc_count_before,
  3564                                                bool* succeeded) {
  3565   assert_heap_not_locked_and_not_at_safepoint();
  3566   g1_policy()->record_stop_world_start();
  3567   VM_G1IncCollectionPause op(gc_count_before,
  3568                              word_size,
  3569                              false, /* should_initiate_conc_mark */
  3570                              g1_policy()->max_pause_time_ms(),
  3571                              GCCause::_g1_inc_collection_pause);
  3572   VMThread::execute(&op);
  3574   HeapWord* result = op.result();
  3575   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3576   assert(result == NULL || ret_succeeded,
  3577          "the result should be NULL if the VM did not succeed");
  3578   *succeeded = ret_succeeded;
  3580   assert_heap_not_locked();
  3581   return result;
  3584 void
  3585 G1CollectedHeap::doConcurrentMark() {
  3586   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3587   if (!_cmThread->in_progress()) {
  3588     _cmThread->set_started();
  3589     CGC_lock->notify();
  3593 size_t G1CollectedHeap::pending_card_num() {
  3594   size_t extra_cards = 0;
  3595   JavaThread *curr = Threads::first();
  3596   while (curr != NULL) {
  3597     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3598     extra_cards += dcq.size();
  3599     curr = curr->next();
  3601   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3602   size_t buffer_size = dcqs.buffer_size();
  3603   size_t buffer_num = dcqs.completed_buffers_num();
  3605   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3606   // in bytes - not the number of 'entries'. We need to convert
  3607   // into a number of cards.
  3608   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3611 size_t G1CollectedHeap::cards_scanned() {
  3612   return g1_rem_set()->cardsScanned();
  3615 void
  3616 G1CollectedHeap::setup_surviving_young_words() {
  3617   assert(_surviving_young_words == NULL, "pre-condition");
  3618   uint array_length = g1_policy()->young_cset_region_length();
  3619   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3620   if (_surviving_young_words == NULL) {
  3621     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3622                           "Not enough space for young surv words summary.");
  3624   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3625 #ifdef ASSERT
  3626   for (uint i = 0;  i < array_length; ++i) {
  3627     assert( _surviving_young_words[i] == 0, "memset above" );
  3629 #endif // !ASSERT
  3632 void
  3633 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3634   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3635   uint array_length = g1_policy()->young_cset_region_length();
  3636   for (uint i = 0; i < array_length; ++i) {
  3637     _surviving_young_words[i] += surv_young_words[i];
  3641 void
  3642 G1CollectedHeap::cleanup_surviving_young_words() {
  3643   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3644   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3645   _surviving_young_words = NULL;
  3648 #ifdef ASSERT
  3649 class VerifyCSetClosure: public HeapRegionClosure {
  3650 public:
  3651   bool doHeapRegion(HeapRegion* hr) {
  3652     // Here we check that the CSet region's RSet is ready for parallel
  3653     // iteration. The fields that we'll verify are only manipulated
  3654     // when the region is part of a CSet and is collected. Afterwards,
  3655     // we reset these fields when we clear the region's RSet (when the
  3656     // region is freed) so they are ready when the region is
  3657     // re-allocated. The only exception to this is if there's an
  3658     // evacuation failure and instead of freeing the region we leave
  3659     // it in the heap. In that case, we reset these fields during
  3660     // evacuation failure handling.
  3661     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3663     // Here's a good place to add any other checks we'd like to
  3664     // perform on CSet regions.
  3665     return false;
  3667 };
  3668 #endif // ASSERT
  3670 #if TASKQUEUE_STATS
  3671 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3672   st->print_raw_cr("GC Task Stats");
  3673   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3674   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3677 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3678   print_taskqueue_stats_hdr(st);
  3680   TaskQueueStats totals;
  3681   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3682   for (int i = 0; i < n; ++i) {
  3683     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3684     totals += task_queue(i)->stats;
  3686   st->print_raw("tot "); totals.print(st); st->cr();
  3688   DEBUG_ONLY(totals.verify());
  3691 void G1CollectedHeap::reset_taskqueue_stats() {
  3692   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3693   for (int i = 0; i < n; ++i) {
  3694     task_queue(i)->stats.reset();
  3697 #endif // TASKQUEUE_STATS
  3699 bool
  3700 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3701   assert_at_safepoint(true /* should_be_vm_thread */);
  3702   guarantee(!is_gc_active(), "collection is not reentrant");
  3704   if (GC_locker::check_active_before_gc()) {
  3705     return false;
  3708   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3709   ResourceMark rm;
  3711   print_heap_before_gc();
  3713   HRSPhaseSetter x(HRSPhaseEvacuation);
  3714   verify_region_sets_optional();
  3715   verify_dirty_young_regions();
  3717   // This call will decide whether this pause is an initial-mark
  3718   // pause. If it is, during_initial_mark_pause() will return true
  3719   // for the duration of this pause.
  3720   g1_policy()->decide_on_conc_mark_initiation();
  3722   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3723   assert(!g1_policy()->during_initial_mark_pause() ||
  3724           g1_policy()->gcs_are_young(), "sanity");
  3726   // We also do not allow mixed GCs during marking.
  3727   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3729   // Record whether this pause is an initial mark. When the current
  3730   // thread has completed its logging output and it's safe to signal
  3731   // the CM thread, the flag's value in the policy has been reset.
  3732   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3734   // Inner scope for scope based logging, timers, and stats collection
  3736     if (g1_policy()->during_initial_mark_pause()) {
  3737       // We are about to start a marking cycle, so we increment the
  3738       // full collection counter.
  3739       increment_old_marking_cycles_started();
  3741     // if the log level is "finer" is on, we'll print long statistics information
  3742     // in the collector policy code, so let's not print this as the output
  3743     // is messy if we do.
  3744     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  3745     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3747     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3748                                 workers()->active_workers() : 1);
  3749     double pause_start_sec = os::elapsedTime();
  3750     g1_policy()->phase_times()->note_gc_start(active_workers);
  3751     bool initial_mark_gc = g1_policy()->during_initial_mark_pause();
  3753     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3754     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3756     // If the secondary_free_list is not empty, append it to the
  3757     // free_list. No need to wait for the cleanup operation to finish;
  3758     // the region allocation code will check the secondary_free_list
  3759     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3760     // set, skip this step so that the region allocation code has to
  3761     // get entries from the secondary_free_list.
  3762     if (!G1StressConcRegionFreeing) {
  3763       append_secondary_free_list_if_not_empty_with_lock();
  3766     assert(check_young_list_well_formed(),
  3767       "young list should be well formed");
  3769     // Don't dynamically change the number of GC threads this early.  A value of
  3770     // 0 is used to indicate serial work.  When parallel work is done,
  3771     // it will be set.
  3773     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3774       IsGCActiveMark x;
  3776       gc_prologue(false);
  3777       increment_total_collections(false /* full gc */);
  3778       increment_gc_time_stamp();
  3780       verify_before_gc();
  3782       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3784       // Please see comment in g1CollectedHeap.hpp and
  3785       // G1CollectedHeap::ref_processing_init() to see how
  3786       // reference processing currently works in G1.
  3788       // Enable discovery in the STW reference processor
  3789       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3790                                             true /*verify_no_refs*/);
  3793         // We want to temporarily turn off discovery by the
  3794         // CM ref processor, if necessary, and turn it back on
  3795         // on again later if we do. Using a scoped
  3796         // NoRefDiscovery object will do this.
  3797         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3799         // Forget the current alloc region (we might even choose it to be part
  3800         // of the collection set!).
  3801         release_mutator_alloc_region();
  3803         // We should call this after we retire the mutator alloc
  3804         // region(s) so that all the ALLOC / RETIRE events are generated
  3805         // before the start GC event.
  3806         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3808         // This timing is only used by the ergonomics to handle our pause target.
  3809         // It is unclear why this should not include the full pause. We will
  3810         // investigate this in CR 7178365.
  3811         //
  3812         // Preserving the old comment here if that helps the investigation:
  3813         //
  3814         // The elapsed time induced by the start time below deliberately elides
  3815         // the possible verification above.
  3816         double sample_start_time_sec = os::elapsedTime();
  3817         size_t start_used_bytes = used();
  3819 #if YOUNG_LIST_VERBOSE
  3820         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3821         _young_list->print();
  3822         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3823 #endif // YOUNG_LIST_VERBOSE
  3825         g1_policy()->record_collection_pause_start(sample_start_time_sec,
  3826                                                    start_used_bytes);
  3828         double scan_wait_start = os::elapsedTime();
  3829         // We have to wait until the CM threads finish scanning the
  3830         // root regions as it's the only way to ensure that all the
  3831         // objects on them have been correctly scanned before we start
  3832         // moving them during the GC.
  3833         bool waited = _cm->root_regions()->wait_until_scan_finished();
  3834         double wait_time_ms = 0.0;
  3835         if (waited) {
  3836           double scan_wait_end = os::elapsedTime();
  3837           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  3839         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  3841 #if YOUNG_LIST_VERBOSE
  3842         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3843         _young_list->print();
  3844 #endif // YOUNG_LIST_VERBOSE
  3846         if (g1_policy()->during_initial_mark_pause()) {
  3847           concurrent_mark()->checkpointRootsInitialPre();
  3849         perm_gen()->save_marks();
  3851 #if YOUNG_LIST_VERBOSE
  3852         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3853         _young_list->print();
  3854         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3855 #endif // YOUNG_LIST_VERBOSE
  3857         g1_policy()->finalize_cset(target_pause_time_ms);
  3859         _cm->note_start_of_gc();
  3860         // We should not verify the per-thread SATB buffers given that
  3861         // we have not filtered them yet (we'll do so during the
  3862         // GC). We also call this after finalize_cset() to
  3863         // ensure that the CSet has been finalized.
  3864         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3865                                  true  /* verify_enqueued_buffers */,
  3866                                  false /* verify_thread_buffers */,
  3867                                  true  /* verify_fingers */);
  3869         if (_hr_printer.is_active()) {
  3870           HeapRegion* hr = g1_policy()->collection_set();
  3871           while (hr != NULL) {
  3872             G1HRPrinter::RegionType type;
  3873             if (!hr->is_young()) {
  3874               type = G1HRPrinter::Old;
  3875             } else if (hr->is_survivor()) {
  3876               type = G1HRPrinter::Survivor;
  3877             } else {
  3878               type = G1HRPrinter::Eden;
  3880             _hr_printer.cset(hr);
  3881             hr = hr->next_in_collection_set();
  3885 #ifdef ASSERT
  3886         VerifyCSetClosure cl;
  3887         collection_set_iterate(&cl);
  3888 #endif // ASSERT
  3890         setup_surviving_young_words();
  3892         // Initialize the GC alloc regions.
  3893         init_gc_alloc_regions();
  3895         // Actually do the work...
  3896         evacuate_collection_set();
  3898         // We do this to mainly verify the per-thread SATB buffers
  3899         // (which have been filtered by now) since we didn't verify
  3900         // them earlier. No point in re-checking the stacks / enqueued
  3901         // buffers given that the CSet has not changed since last time
  3902         // we checked.
  3903         _cm->verify_no_cset_oops(false /* verify_stacks */,
  3904                                  false /* verify_enqueued_buffers */,
  3905                                  true  /* verify_thread_buffers */,
  3906                                  true  /* verify_fingers */);
  3908         free_collection_set(g1_policy()->collection_set());
  3909         g1_policy()->clear_collection_set();
  3911         cleanup_surviving_young_words();
  3913         // Start a new incremental collection set for the next pause.
  3914         g1_policy()->start_incremental_cset_building();
  3916         // Clear the _cset_fast_test bitmap in anticipation of adding
  3917         // regions to the incremental collection set for the next
  3918         // evacuation pause.
  3919         clear_cset_fast_test();
  3921         _young_list->reset_sampled_info();
  3923         // Don't check the whole heap at this point as the
  3924         // GC alloc regions from this pause have been tagged
  3925         // as survivors and moved on to the survivor list.
  3926         // Survivor regions will fail the !is_young() check.
  3927         assert(check_young_list_empty(false /* check_heap */),
  3928           "young list should be empty");
  3930 #if YOUNG_LIST_VERBOSE
  3931         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3932         _young_list->print();
  3933 #endif // YOUNG_LIST_VERBOSE
  3935         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3936                                             _young_list->first_survivor_region(),
  3937                                             _young_list->last_survivor_region());
  3939         _young_list->reset_auxilary_lists();
  3941         if (evacuation_failed()) {
  3942           _summary_bytes_used = recalculate_used();
  3943         } else {
  3944           // The "used" of the the collection set have already been subtracted
  3945           // when they were freed.  Add in the bytes evacuated.
  3946           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  3949         if (g1_policy()->during_initial_mark_pause()) {
  3950           // We have to do this before we notify the CM threads that
  3951           // they can start working to make sure that all the
  3952           // appropriate initialization is done on the CM object.
  3953           concurrent_mark()->checkpointRootsInitialPost();
  3954           set_marking_started();
  3955           // Note that we don't actually trigger the CM thread at
  3956           // this point. We do that later when we're sure that
  3957           // the current thread has completed its logging output.
  3960         allocate_dummy_regions();
  3962 #if YOUNG_LIST_VERBOSE
  3963         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3964         _young_list->print();
  3965         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3966 #endif // YOUNG_LIST_VERBOSE
  3968         init_mutator_alloc_region();
  3971           size_t expand_bytes = g1_policy()->expansion_amount();
  3972           if (expand_bytes > 0) {
  3973             size_t bytes_before = capacity();
  3974             // No need for an ergo verbose message here,
  3975             // expansion_amount() does this when it returns a value > 0.
  3976             if (!expand(expand_bytes)) {
  3977               // We failed to expand the heap so let's verify that
  3978               // committed/uncommitted amount match the backing store
  3979               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3980               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3985         // We redo the verificaiton but now wrt to the new CSet which
  3986         // has just got initialized after the previous CSet was freed.
  3987         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3988                                  true  /* verify_enqueued_buffers */,
  3989                                  true  /* verify_thread_buffers */,
  3990                                  true  /* verify_fingers */);
  3991         _cm->note_end_of_gc();
  3993         // This timing is only used by the ergonomics to handle our pause target.
  3994         // It is unclear why this should not include the full pause. We will
  3995         // investigate this in CR 7178365.
  3996         double sample_end_time_sec = os::elapsedTime();
  3997         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  3998         g1_policy()->record_collection_pause_end(pause_time_ms);
  4000         MemoryService::track_memory_usage();
  4002         // In prepare_for_verify() below we'll need to scan the deferred
  4003         // update buffers to bring the RSets up-to-date if
  4004         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4005         // the update buffers we'll probably need to scan cards on the
  4006         // regions we just allocated to (i.e., the GC alloc
  4007         // regions). However, during the last GC we called
  4008         // set_saved_mark() on all the GC alloc regions, so card
  4009         // scanning might skip the [saved_mark_word()...top()] area of
  4010         // those regions (i.e., the area we allocated objects into
  4011         // during the last GC). But it shouldn't. Given that
  4012         // saved_mark_word() is conditional on whether the GC time stamp
  4013         // on the region is current or not, by incrementing the GC time
  4014         // stamp here we invalidate all the GC time stamps on all the
  4015         // regions and saved_mark_word() will simply return top() for
  4016         // all the regions. This is a nicer way of ensuring this rather
  4017         // than iterating over the regions and fixing them. In fact, the
  4018         // GC time stamp increment here also ensures that
  4019         // saved_mark_word() will return top() between pauses, i.e.,
  4020         // during concurrent refinement. So we don't need the
  4021         // is_gc_active() check to decided which top to use when
  4022         // scanning cards (see CR 7039627).
  4023         increment_gc_time_stamp();
  4025         verify_after_gc();
  4027         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4028         ref_processor_stw()->verify_no_references_recorded();
  4030         // CM reference discovery will be re-enabled if necessary.
  4033       // We should do this after we potentially expand the heap so
  4034       // that all the COMMIT events are generated before the end GC
  4035       // event, and after we retire the GC alloc regions so that all
  4036       // RETIRE events are generated before the end GC event.
  4037       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4039       if (mark_in_progress()) {
  4040         concurrent_mark()->update_g1_committed();
  4043 #ifdef TRACESPINNING
  4044       ParallelTaskTerminator::print_termination_counts();
  4045 #endif
  4047       gc_epilogue(false);
  4049       if (G1Log::fine()) {
  4050         if (PrintGCTimeStamps) {
  4051           gclog_or_tty->stamp();
  4052           gclog_or_tty->print(": ");
  4055         GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  4056           .append(g1_policy()->gcs_are_young() ? " (young)" : " (mixed)")
  4057           .append(initial_mark_gc ? " (initial-mark)" : "");
  4059         double pause_time_sec = os::elapsedTime() - pause_start_sec;
  4061         if (G1Log::finer()) {
  4062           if (evacuation_failed()) {
  4063             gc_cause_str.append(" (to-space exhausted)");
  4065           gclog_or_tty->print_cr("[%s, %3.7f secs]", (const char*)gc_cause_str, pause_time_sec);
  4066           g1_policy()->phase_times()->note_gc_end();
  4067           g1_policy()->phase_times()->print(pause_time_sec);
  4068           g1_policy()->print_detailed_heap_transition();
  4069         } else {
  4070           if (evacuation_failed()) {
  4071             gc_cause_str.append("--");
  4073           gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  4074       g1_policy()->print_heap_transition();
  4075           gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  4080     // It is not yet to safe to tell the concurrent mark to
  4081     // start as we have some optional output below. We don't want the
  4082     // output from the concurrent mark thread interfering with this
  4083     // logging output either.
  4085     _hrs.verify_optional();
  4086     verify_region_sets_optional();
  4088     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4089     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4091     print_heap_after_gc();
  4093     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4094     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4095     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4096     // before any GC notifications are raised.
  4097     g1mm()->update_sizes();
  4100   if (G1SummarizeRSetStats &&
  4101       (G1SummarizeRSetStatsPeriod > 0) &&
  4102       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  4103     g1_rem_set()->print_summary_info();
  4106   // It should now be safe to tell the concurrent mark thread to start
  4107   // without its logging output interfering with the logging output
  4108   // that came from the pause.
  4110   if (should_start_conc_mark) {
  4111     // CAUTION: after the doConcurrentMark() call below,
  4112     // the concurrent marking thread(s) could be running
  4113     // concurrently with us. Make sure that anything after
  4114     // this point does not assume that we are the only GC thread
  4115     // running. Note: of course, the actual marking work will
  4116     // not start until the safepoint itself is released in
  4117     // ConcurrentGCThread::safepoint_desynchronize().
  4118     doConcurrentMark();
  4121   return true;
  4124 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  4126   size_t gclab_word_size;
  4127   switch (purpose) {
  4128     case GCAllocForSurvived:
  4129       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
  4130       break;
  4131     case GCAllocForTenured:
  4132       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4133       break;
  4134     default:
  4135       assert(false, "unknown GCAllocPurpose");
  4136       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4137       break;
  4140   // Prevent humongous PLAB sizes for two reasons:
  4141   // * PLABs are allocated using a similar paths as oops, but should
  4142   //   never be in a humongous region
  4143   // * Allowing humongous PLABs needlessly churns the region free lists
  4144   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
  4147 void G1CollectedHeap::init_mutator_alloc_region() {
  4148   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  4149   _mutator_alloc_region.init();
  4152 void G1CollectedHeap::release_mutator_alloc_region() {
  4153   _mutator_alloc_region.release();
  4154   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  4157 void G1CollectedHeap::init_gc_alloc_regions() {
  4158   assert_at_safepoint(true /* should_be_vm_thread */);
  4160   _survivor_gc_alloc_region.init();
  4161   _old_gc_alloc_region.init();
  4162   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4163   _retained_old_gc_alloc_region = NULL;
  4165   // We will discard the current GC alloc region if:
  4166   // a) it's in the collection set (it can happen!),
  4167   // b) it's already full (no point in using it),
  4168   // c) it's empty (this means that it was emptied during
  4169   // a cleanup and it should be on the free list now), or
  4170   // d) it's humongous (this means that it was emptied
  4171   // during a cleanup and was added to the free list, but
  4172   // has been subseqently used to allocate a humongous
  4173   // object that may be less than the region size).
  4174   if (retained_region != NULL &&
  4175       !retained_region->in_collection_set() &&
  4176       !(retained_region->top() == retained_region->end()) &&
  4177       !retained_region->is_empty() &&
  4178       !retained_region->isHumongous()) {
  4179     retained_region->set_saved_mark();
  4180     // The retained region was added to the old region set when it was
  4181     // retired. We have to remove it now, since we don't allow regions
  4182     // we allocate to in the region sets. We'll re-add it later, when
  4183     // it's retired again.
  4184     _old_set.remove(retained_region);
  4185     bool during_im = g1_policy()->during_initial_mark_pause();
  4186     retained_region->note_start_of_copying(during_im);
  4187     _old_gc_alloc_region.set(retained_region);
  4188     _hr_printer.reuse(retained_region);
  4192 void G1CollectedHeap::release_gc_alloc_regions() {
  4193   _survivor_gc_alloc_region.release();
  4194   // If we have an old GC alloc region to release, we'll save it in
  4195   // _retained_old_gc_alloc_region. If we don't
  4196   // _retained_old_gc_alloc_region will become NULL. This is what we
  4197   // want either way so no reason to check explicitly for either
  4198   // condition.
  4199   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4201   if (ResizePLAB) {
  4202     _survivor_plab_stats.adjust_desired_plab_sz();
  4203     _old_plab_stats.adjust_desired_plab_sz();
  4207 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4208   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4209   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4210   _retained_old_gc_alloc_region = NULL;
  4213 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4214   _drain_in_progress = false;
  4215   set_evac_failure_closure(cl);
  4216   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4219 void G1CollectedHeap::finalize_for_evac_failure() {
  4220   assert(_evac_failure_scan_stack != NULL &&
  4221          _evac_failure_scan_stack->length() == 0,
  4222          "Postcondition");
  4223   assert(!_drain_in_progress, "Postcondition");
  4224   delete _evac_failure_scan_stack;
  4225   _evac_failure_scan_stack = NULL;
  4228 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4229   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4231   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4233   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4234     set_par_threads();
  4235     workers()->run_task(&rsfp_task);
  4236     set_par_threads(0);
  4237   } else {
  4238     rsfp_task.work(0);
  4241   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4243   // Reset the claim values in the regions in the collection set.
  4244   reset_cset_heap_region_claim_values();
  4246   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4248   // Now restore saved marks, if any.
  4249   if (_objs_with_preserved_marks != NULL) {
  4250     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  4251     guarantee(_objs_with_preserved_marks->length() ==
  4252               _preserved_marks_of_objs->length(), "Both or none.");
  4253     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  4254       oop obj   = _objs_with_preserved_marks->at(i);
  4255       markOop m = _preserved_marks_of_objs->at(i);
  4256       obj->set_mark(m);
  4259     // Delete the preserved marks growable arrays (allocated on the C heap).
  4260     delete _objs_with_preserved_marks;
  4261     delete _preserved_marks_of_objs;
  4262     _objs_with_preserved_marks = NULL;
  4263     _preserved_marks_of_objs = NULL;
  4267 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4268   _evac_failure_scan_stack->push(obj);
  4271 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4272   assert(_evac_failure_scan_stack != NULL, "precondition");
  4274   while (_evac_failure_scan_stack->length() > 0) {
  4275      oop obj = _evac_failure_scan_stack->pop();
  4276      _evac_failure_closure->set_region(heap_region_containing(obj));
  4277      obj->oop_iterate_backwards(_evac_failure_closure);
  4281 oop
  4282 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  4283                                                oop old) {
  4284   assert(obj_in_cs(old),
  4285          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4286                  (HeapWord*) old));
  4287   markOop m = old->mark();
  4288   oop forward_ptr = old->forward_to_atomic(old);
  4289   if (forward_ptr == NULL) {
  4290     // Forward-to-self succeeded.
  4292     if (_evac_failure_closure != cl) {
  4293       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4294       assert(!_drain_in_progress,
  4295              "Should only be true while someone holds the lock.");
  4296       // Set the global evac-failure closure to the current thread's.
  4297       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4298       set_evac_failure_closure(cl);
  4299       // Now do the common part.
  4300       handle_evacuation_failure_common(old, m);
  4301       // Reset to NULL.
  4302       set_evac_failure_closure(NULL);
  4303     } else {
  4304       // The lock is already held, and this is recursive.
  4305       assert(_drain_in_progress, "This should only be the recursive case.");
  4306       handle_evacuation_failure_common(old, m);
  4308     return old;
  4309   } else {
  4310     // Forward-to-self failed. Either someone else managed to allocate
  4311     // space for this object (old != forward_ptr) or they beat us in
  4312     // self-forwarding it (old == forward_ptr).
  4313     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4314            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4315                    "should not be in the CSet",
  4316                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4317     return forward_ptr;
  4321 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4322   set_evacuation_failed(true);
  4324   preserve_mark_if_necessary(old, m);
  4326   HeapRegion* r = heap_region_containing(old);
  4327   if (!r->evacuation_failed()) {
  4328     r->set_evacuation_failed(true);
  4329     _hr_printer.evac_failure(r);
  4332   push_on_evac_failure_scan_stack(old);
  4334   if (!_drain_in_progress) {
  4335     // prevent recursion in copy_to_survivor_space()
  4336     _drain_in_progress = true;
  4337     drain_evac_failure_scan_stack();
  4338     _drain_in_progress = false;
  4342 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4343   assert(evacuation_failed(), "Oversaving!");
  4344   // We want to call the "for_promotion_failure" version only in the
  4345   // case of a promotion failure.
  4346   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4347     if (_objs_with_preserved_marks == NULL) {
  4348       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  4349       _objs_with_preserved_marks =
  4350         new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4351       _preserved_marks_of_objs =
  4352         new (ResourceObj::C_HEAP, mtGC) GrowableArray<markOop>(40, true);
  4354     _objs_with_preserved_marks->push(obj);
  4355     _preserved_marks_of_objs->push(m);
  4359 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4360                                                   size_t word_size) {
  4361   if (purpose == GCAllocForSurvived) {
  4362     HeapWord* result = survivor_attempt_allocation(word_size);
  4363     if (result != NULL) {
  4364       return result;
  4365     } else {
  4366       // Let's try to allocate in the old gen in case we can fit the
  4367       // object there.
  4368       return old_attempt_allocation(word_size);
  4370   } else {
  4371     assert(purpose ==  GCAllocForTenured, "sanity");
  4372     HeapWord* result = old_attempt_allocation(word_size);
  4373     if (result != NULL) {
  4374       return result;
  4375     } else {
  4376       // Let's try to allocate in the survivors in case we can fit the
  4377       // object there.
  4378       return survivor_attempt_allocation(word_size);
  4382   ShouldNotReachHere();
  4383   // Trying to keep some compilers happy.
  4384   return NULL;
  4387 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4388   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
  4390 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
  4391   : _g1h(g1h),
  4392     _refs(g1h->task_queue(queue_num)),
  4393     _dcq(&g1h->dirty_card_queue_set()),
  4394     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4395     _g1_rem(g1h->g1_rem_set()),
  4396     _hash_seed(17), _queue_num(queue_num),
  4397     _term_attempts(0),
  4398     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4399     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4400     _age_table(false),
  4401     _strong_roots_time(0), _term_time(0),
  4402     _alloc_buffer_waste(0), _undo_waste(0) {
  4403   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4404   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4405   // non-young regions (where the age is -1)
  4406   // We also add a few elements at the beginning and at the end in
  4407   // an attempt to eliminate cache contention
  4408   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  4409   uint array_length = PADDING_ELEM_NUM +
  4410                       real_length +
  4411                       PADDING_ELEM_NUM;
  4412   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  4413   if (_surviving_young_words_base == NULL)
  4414     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4415                           "Not enough space for young surv histo.");
  4416   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4417   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  4419   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4420   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4422   _start = os::elapsedTime();
  4425 void
  4426 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4428   st->print_raw_cr("GC Termination Stats");
  4429   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4430                    " ------waste (KiB)------");
  4431   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4432                    "  total   alloc    undo");
  4433   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4434                    " ------- ------- -------");
  4437 void
  4438 G1ParScanThreadState::print_termination_stats(int i,
  4439                                               outputStream* const st) const
  4441   const double elapsed_ms = elapsed_time() * 1000.0;
  4442   const double s_roots_ms = strong_roots_time() * 1000.0;
  4443   const double term_ms    = term_time() * 1000.0;
  4444   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4445                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4446                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4447                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4448                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4449                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4450                alloc_buffer_waste() * HeapWordSize / K,
  4451                undo_waste() * HeapWordSize / K);
  4454 #ifdef ASSERT
  4455 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4456   assert(ref != NULL, "invariant");
  4457   assert(UseCompressedOops, "sanity");
  4458   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4459   oop p = oopDesc::load_decode_heap_oop(ref);
  4460   assert(_g1h->is_in_g1_reserved(p),
  4461          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4462   return true;
  4465 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4466   assert(ref != NULL, "invariant");
  4467   if (has_partial_array_mask(ref)) {
  4468     // Must be in the collection set--it's already been copied.
  4469     oop p = clear_partial_array_mask(ref);
  4470     assert(_g1h->obj_in_cs(p),
  4471            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4472   } else {
  4473     oop p = oopDesc::load_decode_heap_oop(ref);
  4474     assert(_g1h->is_in_g1_reserved(p),
  4475            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4477   return true;
  4480 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4481   if (ref.is_narrow()) {
  4482     return verify_ref((narrowOop*) ref);
  4483   } else {
  4484     return verify_ref((oop*) ref);
  4487 #endif // ASSERT
  4489 void G1ParScanThreadState::trim_queue() {
  4490   assert(_evac_cl != NULL, "not set");
  4491   assert(_evac_failure_cl != NULL, "not set");
  4492   assert(_partial_scan_cl != NULL, "not set");
  4494   StarTask ref;
  4495   do {
  4496     // Drain the overflow stack first, so other threads can steal.
  4497     while (refs()->pop_overflow(ref)) {
  4498       deal_with_reference(ref);
  4501     while (refs()->pop_local(ref)) {
  4502       deal_with_reference(ref);
  4504   } while (!refs()->is_empty());
  4507 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
  4508                                      G1ParScanThreadState* par_scan_state) :
  4509   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4510   _par_scan_state(par_scan_state),
  4511   _worker_id(par_scan_state->queue_num()),
  4512   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  4513   _mark_in_progress(_g1->mark_in_progress()) { }
  4515 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4516 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
  4517 #ifdef ASSERT
  4518   HeapRegion* hr = _g1->heap_region_containing(obj);
  4519   assert(hr != NULL, "sanity");
  4520   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4521 #endif // ASSERT
  4523   // We know that the object is not moving so it's safe to read its size.
  4524   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4527 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4528 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4529   ::mark_forwarded_object(oop from_obj, oop to_obj) {
  4530 #ifdef ASSERT
  4531   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4532   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4533   assert(from_obj != to_obj, "should not be self-forwarded");
  4535   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4536   assert(from_hr != NULL, "sanity");
  4537   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4539   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4540   assert(to_hr != NULL, "sanity");
  4541   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4542 #endif // ASSERT
  4544   // The object might be in the process of being copied by another
  4545   // worker so we cannot trust that its to-space image is
  4546   // well-formed. So we have to read its size from its from-space
  4547   // image which we know should not be changing.
  4548   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4551 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4552 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4553   ::copy_to_survivor_space(oop old) {
  4554   size_t word_sz = old->size();
  4555   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4556   // +1 to make the -1 indexes valid...
  4557   int       young_index = from_region->young_index_in_cset()+1;
  4558   assert( (from_region->is_young() && young_index >  0) ||
  4559          (!from_region->is_young() && young_index == 0), "invariant" );
  4560   G1CollectorPolicy* g1p = _g1->g1_policy();
  4561   markOop m = old->mark();
  4562   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4563                                            : m->age();
  4564   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4565                                                              word_sz);
  4566   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4567   oop       obj     = oop(obj_ptr);
  4569   if (obj_ptr == NULL) {
  4570     // This will either forward-to-self, or detect that someone else has
  4571     // installed a forwarding pointer.
  4572     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4573     return _g1->handle_evacuation_failure_par(cl, old);
  4576   // We're going to allocate linearly, so might as well prefetch ahead.
  4577   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4579   oop forward_ptr = old->forward_to_atomic(obj);
  4580   if (forward_ptr == NULL) {
  4581     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4582     if (g1p->track_object_age(alloc_purpose)) {
  4583       // We could simply do obj->incr_age(). However, this causes a
  4584       // performance issue. obj->incr_age() will first check whether
  4585       // the object has a displaced mark by checking its mark word;
  4586       // getting the mark word from the new location of the object
  4587       // stalls. So, given that we already have the mark word and we
  4588       // are about to install it anyway, it's better to increase the
  4589       // age on the mark word, when the object does not have a
  4590       // displaced mark word. We're not expecting many objects to have
  4591       // a displaced marked word, so that case is not optimized
  4592       // further (it could be...) and we simply call obj->incr_age().
  4594       if (m->has_displaced_mark_helper()) {
  4595         // in this case, we have to install the mark word first,
  4596         // otherwise obj looks to be forwarded (the old mark word,
  4597         // which contains the forward pointer, was copied)
  4598         obj->set_mark(m);
  4599         obj->incr_age();
  4600       } else {
  4601         m = m->incr_age();
  4602         obj->set_mark(m);
  4604       _par_scan_state->age_table()->add(obj, word_sz);
  4605     } else {
  4606       obj->set_mark(m);
  4609     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4610     surv_young_words[young_index] += word_sz;
  4612     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4613       // We keep track of the next start index in the length field of
  4614       // the to-space object. The actual length can be found in the
  4615       // length field of the from-space object.
  4616       arrayOop(obj)->set_length(0);
  4617       oop* old_p = set_partial_array_mask(old);
  4618       _par_scan_state->push_on_queue(old_p);
  4619     } else {
  4620       // No point in using the slower heap_region_containing() method,
  4621       // given that we know obj is in the heap.
  4622       _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4623       obj->oop_iterate_backwards(&_scanner);
  4625   } else {
  4626     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4627     obj = forward_ptr;
  4629   return obj;
  4632 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4633 template <class T>
  4634 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4635 ::do_oop_work(T* p) {
  4636   oop obj = oopDesc::load_decode_heap_oop(p);
  4637   assert(barrier != G1BarrierRS || obj != NULL,
  4638          "Precondition: G1BarrierRS implies obj is non-NULL");
  4640   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4642   // here the null check is implicit in the cset_fast_test() test
  4643   if (_g1->in_cset_fast_test(obj)) {
  4644     oop forwardee;
  4645     if (obj->is_forwarded()) {
  4646       forwardee = obj->forwardee();
  4647     } else {
  4648       forwardee = copy_to_survivor_space(obj);
  4650     assert(forwardee != NULL, "forwardee should not be NULL");
  4651     oopDesc::encode_store_heap_oop(p, forwardee);
  4652     if (do_mark_object && forwardee != obj) {
  4653       // If the object is self-forwarded we don't need to explicitly
  4654       // mark it, the evacuation failure protocol will do so.
  4655       mark_forwarded_object(obj, forwardee);
  4658     // When scanning the RS, we only care about objs in CS.
  4659     if (barrier == G1BarrierRS) {
  4660       _par_scan_state->update_rs(_from, p, _worker_id);
  4662   } else {
  4663     // The object is not in collection set. If we're a root scanning
  4664     // closure during an initial mark pause (i.e. do_mark_object will
  4665     // be true) then attempt to mark the object.
  4666     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
  4667       mark_object(obj);
  4671   if (barrier == G1BarrierEvac && obj != NULL) {
  4672     _par_scan_state->update_rs(_from, p, _worker_id);
  4675   if (do_gen_barrier && obj != NULL) {
  4676     par_do_barrier(p);
  4680 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4681 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4683 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4684   assert(has_partial_array_mask(p), "invariant");
  4685   oop from_obj = clear_partial_array_mask(p);
  4687   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  4688   assert(from_obj->is_objArray(), "must be obj array");
  4689   objArrayOop from_obj_array = objArrayOop(from_obj);
  4690   // The from-space object contains the real length.
  4691   int length                 = from_obj_array->length();
  4693   assert(from_obj->is_forwarded(), "must be forwarded");
  4694   oop to_obj                 = from_obj->forwardee();
  4695   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  4696   objArrayOop to_obj_array   = objArrayOop(to_obj);
  4697   // We keep track of the next start index in the length field of the
  4698   // to-space object.
  4699   int next_index             = to_obj_array->length();
  4700   assert(0 <= next_index && next_index < length,
  4701          err_msg("invariant, next index: %d, length: %d", next_index, length));
  4703   int start                  = next_index;
  4704   int end                    = length;
  4705   int remainder              = end - start;
  4706   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
  4707   if (remainder > 2 * ParGCArrayScanChunk) {
  4708     end = start + ParGCArrayScanChunk;
  4709     to_obj_array->set_length(end);
  4710     // Push the remainder before we process the range in case another
  4711     // worker has run out of things to do and can steal it.
  4712     oop* from_obj_p = set_partial_array_mask(from_obj);
  4713     _par_scan_state->push_on_queue(from_obj_p);
  4714   } else {
  4715     assert(length == end, "sanity");
  4716     // We'll process the final range for this object. Restore the length
  4717     // so that the heap remains parsable in case of evacuation failure.
  4718     to_obj_array->set_length(end);
  4720   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  4721   // Process indexes [start,end). It will also process the header
  4722   // along with the first chunk (i.e., the chunk with start == 0).
  4723   // Note that at this point the length field of to_obj_array is not
  4724   // correct given that we are using it to keep track of the next
  4725   // start index. oop_iterate_range() (thankfully!) ignores the length
  4726   // field and only relies on the start / end parameters.  It does
  4727   // however return the size of the object which will be incorrect. So
  4728   // we have to ignore it even if we wanted to use it.
  4729   to_obj_array->oop_iterate_range(&_scanner, start, end);
  4732 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4733 protected:
  4734   G1CollectedHeap*              _g1h;
  4735   G1ParScanThreadState*         _par_scan_state;
  4736   RefToScanQueueSet*            _queues;
  4737   ParallelTaskTerminator*       _terminator;
  4739   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4740   RefToScanQueueSet*      queues()         { return _queues; }
  4741   ParallelTaskTerminator* terminator()     { return _terminator; }
  4743 public:
  4744   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4745                                 G1ParScanThreadState* par_scan_state,
  4746                                 RefToScanQueueSet* queues,
  4747                                 ParallelTaskTerminator* terminator)
  4748     : _g1h(g1h), _par_scan_state(par_scan_state),
  4749       _queues(queues), _terminator(terminator) {}
  4751   void do_void();
  4753 private:
  4754   inline bool offer_termination();
  4755 };
  4757 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4758   G1ParScanThreadState* const pss = par_scan_state();
  4759   pss->start_term_time();
  4760   const bool res = terminator()->offer_termination();
  4761   pss->end_term_time();
  4762   return res;
  4765 void G1ParEvacuateFollowersClosure::do_void() {
  4766   StarTask stolen_task;
  4767   G1ParScanThreadState* const pss = par_scan_state();
  4768   pss->trim_queue();
  4770   do {
  4771     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4772       assert(pss->verify_task(stolen_task), "sanity");
  4773       if (stolen_task.is_narrow()) {
  4774         pss->deal_with_reference((narrowOop*) stolen_task);
  4775       } else {
  4776         pss->deal_with_reference((oop*) stolen_task);
  4779       // We've just processed a reference and we might have made
  4780       // available new entries on the queues. So we have to make sure
  4781       // we drain the queues as necessary.
  4782       pss->trim_queue();
  4784   } while (!offer_termination());
  4786   pss->retire_alloc_buffers();
  4789 class G1ParTask : public AbstractGangTask {
  4790 protected:
  4791   G1CollectedHeap*       _g1h;
  4792   RefToScanQueueSet      *_queues;
  4793   ParallelTaskTerminator _terminator;
  4794   uint _n_workers;
  4796   Mutex _stats_lock;
  4797   Mutex* stats_lock() { return &_stats_lock; }
  4799   size_t getNCards() {
  4800     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4801       / G1BlockOffsetSharedArray::N_bytes;
  4804 public:
  4805   G1ParTask(G1CollectedHeap* g1h,
  4806             RefToScanQueueSet *task_queues)
  4807     : AbstractGangTask("G1 collection"),
  4808       _g1h(g1h),
  4809       _queues(task_queues),
  4810       _terminator(0, _queues),
  4811       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4812   {}
  4814   RefToScanQueueSet* queues() { return _queues; }
  4816   RefToScanQueue *work_queue(int i) {
  4817     return queues()->queue(i);
  4820   ParallelTaskTerminator* terminator() { return &_terminator; }
  4822   virtual void set_for_termination(int active_workers) {
  4823     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4824     // in the young space (_par_seq_tasks) in the G1 heap
  4825     // for SequentialSubTasksDone.
  4826     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4827     // both of which need setting by set_n_termination().
  4828     _g1h->SharedHeap::set_n_termination(active_workers);
  4829     _g1h->set_n_termination(active_workers);
  4830     terminator()->reset_for_reuse(active_workers);
  4831     _n_workers = active_workers;
  4834   void work(uint worker_id) {
  4835     if (worker_id >= _n_workers) return;  // no work needed this round
  4837     double start_time_ms = os::elapsedTime() * 1000.0;
  4838     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  4841       ResourceMark rm;
  4842       HandleMark   hm;
  4844       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4846       G1ParScanThreadState            pss(_g1h, worker_id);
  4847       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
  4848       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4849       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
  4851       pss.set_evac_closure(&scan_evac_cl);
  4852       pss.set_evac_failure_closure(&evac_failure_cl);
  4853       pss.set_partial_scan_closure(&partial_scan_cl);
  4855       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  4856       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
  4858       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  4859       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
  4861       OopClosure*                    scan_root_cl = &only_scan_root_cl;
  4862       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
  4864       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4865         // We also need to mark copied objects.
  4866         scan_root_cl = &scan_mark_root_cl;
  4867         scan_perm_cl = &scan_mark_perm_cl;
  4870       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4872       pss.start_strong_roots();
  4873       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4874                                     SharedHeap::SO_AllClasses,
  4875                                     scan_root_cl,
  4876                                     &push_heap_rs_cl,
  4877                                     scan_perm_cl,
  4878                                     worker_id);
  4879       pss.end_strong_roots();
  4882         double start = os::elapsedTime();
  4883         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4884         evac.do_void();
  4885         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4886         double term_ms = pss.term_time()*1000.0;
  4887         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4888         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  4890       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4891       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4893       if (ParallelGCVerbose) {
  4894         MutexLocker x(stats_lock());
  4895         pss.print_termination_stats(worker_id);
  4898       assert(pss.refs()->is_empty(), "should be empty");
  4900       // Close the inner scope so that the ResourceMark and HandleMark
  4901       // destructors are executed here and are included as part of the
  4902       // "GC Worker Time".
  4905     double end_time_ms = os::elapsedTime() * 1000.0;
  4906     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  4908 };
  4910 // *** Common G1 Evacuation Stuff
  4912 // Closures that support the filtering of CodeBlobs scanned during
  4913 // external root scanning.
  4915 // Closure applied to reference fields in code blobs (specifically nmethods)
  4916 // to determine whether an nmethod contains references that point into
  4917 // the collection set. Used as a predicate when walking code roots so
  4918 // that only nmethods that point into the collection set are added to the
  4919 // 'marked' list.
  4921 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
  4923   class G1PointsIntoCSOopClosure : public OopClosure {
  4924     G1CollectedHeap* _g1;
  4925     bool _points_into_cs;
  4926   public:
  4927     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
  4928       _g1(g1), _points_into_cs(false) { }
  4930     bool points_into_cs() const { return _points_into_cs; }
  4932     template <class T>
  4933     void do_oop_nv(T* p) {
  4934       if (!_points_into_cs) {
  4935         T heap_oop = oopDesc::load_heap_oop(p);
  4936         if (!oopDesc::is_null(heap_oop) &&
  4937             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
  4938           _points_into_cs = true;
  4943     virtual void do_oop(oop* p)        { do_oop_nv(p); }
  4944     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
  4945   };
  4947   G1CollectedHeap* _g1;
  4949 public:
  4950   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
  4951     CodeBlobToOopClosure(cl, true), _g1(g1) { }
  4953   virtual void do_code_blob(CodeBlob* cb) {
  4954     nmethod* nm = cb->as_nmethod_or_null();
  4955     if (nm != NULL && !(nm->test_oops_do_mark())) {
  4956       G1PointsIntoCSOopClosure predicate_cl(_g1);
  4957       nm->oops_do(&predicate_cl);
  4959       if (predicate_cl.points_into_cs()) {
  4960         // At least one of the reference fields or the oop relocations
  4961         // in the nmethod points into the collection set. We have to
  4962         // 'mark' this nmethod.
  4963         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
  4964         // or MarkingCodeBlobClosure::do_code_blob() change.
  4965         if (!nm->test_set_oops_do_mark()) {
  4966           do_newly_marked_nmethod(nm);
  4971 };
  4973 // This method is run in a GC worker.
  4975 void
  4976 G1CollectedHeap::
  4977 g1_process_strong_roots(bool collecting_perm_gen,
  4978                         ScanningOption so,
  4979                         OopClosure* scan_non_heap_roots,
  4980                         OopsInHeapRegionClosure* scan_rs,
  4981                         OopsInGenClosure* scan_perm,
  4982                         int worker_i) {
  4984   // First scan the strong roots, including the perm gen.
  4985   double ext_roots_start = os::elapsedTime();
  4986   double closure_app_time_sec = 0.0;
  4988   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4989   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4990   buf_scan_perm.set_generation(perm_gen());
  4992   // Walk the code cache w/o buffering, because StarTask cannot handle
  4993   // unaligned oop locations.
  4994   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
  4996   process_strong_roots(false, // no scoping; this is parallel code
  4997                        collecting_perm_gen, so,
  4998                        &buf_scan_non_heap_roots,
  4999                        &eager_scan_code_roots,
  5000                        &buf_scan_perm);
  5002   // Now the CM ref_processor roots.
  5003   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  5004     // We need to treat the discovered reference lists of the
  5005     // concurrent mark ref processor as roots and keep entries
  5006     // (which are added by the marking threads) on them live
  5007     // until they can be processed at the end of marking.
  5008     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  5011   // Finish up any enqueued closure apps (attributed as object copy time).
  5012   buf_scan_non_heap_roots.done();
  5013   buf_scan_perm.done();
  5015   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
  5016                                 buf_scan_non_heap_roots.closure_app_seconds();
  5017   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  5019   double ext_root_time_ms =
  5020     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  5022   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  5024   // During conc marking we have to filter the per-thread SATB buffers
  5025   // to make sure we remove any oops into the CSet (which will show up
  5026   // as implicitly live).
  5027   double satb_filtering_ms = 0.0;
  5028   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  5029     if (mark_in_progress()) {
  5030       double satb_filter_start = os::elapsedTime();
  5032       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  5034       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
  5037   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  5039   // Now scan the complement of the collection set.
  5040   if (scan_rs != NULL) {
  5041     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  5044   _process_strong_tasks->all_tasks_completed();
  5047 void
  5048 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  5049                                        OopClosure* non_root_closure) {
  5050   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  5051   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  5054 // Weak Reference Processing support
  5056 // An always "is_alive" closure that is used to preserve referents.
  5057 // If the object is non-null then it's alive.  Used in the preservation
  5058 // of referent objects that are pointed to by reference objects
  5059 // discovered by the CM ref processor.
  5060 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5061   G1CollectedHeap* _g1;
  5062 public:
  5063   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5064   void do_object(oop p) { assert(false, "Do not call."); }
  5065   bool do_object_b(oop p) {
  5066     if (p != NULL) {
  5067       return true;
  5069     return false;
  5071 };
  5073 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5074   // An object is reachable if it is outside the collection set,
  5075   // or is inside and copied.
  5076   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5079 // Non Copying Keep Alive closure
  5080 class G1KeepAliveClosure: public OopClosure {
  5081   G1CollectedHeap* _g1;
  5082 public:
  5083   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5084   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5085   void do_oop(      oop* p) {
  5086     oop obj = *p;
  5088     if (_g1->obj_in_cs(obj)) {
  5089       assert( obj->is_forwarded(), "invariant" );
  5090       *p = obj->forwardee();
  5093 };
  5095 // Copying Keep Alive closure - can be called from both
  5096 // serial and parallel code as long as different worker
  5097 // threads utilize different G1ParScanThreadState instances
  5098 // and different queues.
  5100 class G1CopyingKeepAliveClosure: public OopClosure {
  5101   G1CollectedHeap*         _g1h;
  5102   OopClosure*              _copy_non_heap_obj_cl;
  5103   OopsInHeapRegionClosure* _copy_perm_obj_cl;
  5104   G1ParScanThreadState*    _par_scan_state;
  5106 public:
  5107   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5108                             OopClosure* non_heap_obj_cl,
  5109                             OopsInHeapRegionClosure* perm_obj_cl,
  5110                             G1ParScanThreadState* pss):
  5111     _g1h(g1h),
  5112     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5113     _copy_perm_obj_cl(perm_obj_cl),
  5114     _par_scan_state(pss)
  5115   {}
  5117   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5118   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5120   template <class T> void do_oop_work(T* p) {
  5121     oop obj = oopDesc::load_decode_heap_oop(p);
  5123     if (_g1h->obj_in_cs(obj)) {
  5124       // If the referent object has been forwarded (either copied
  5125       // to a new location or to itself in the event of an
  5126       // evacuation failure) then we need to update the reference
  5127       // field and, if both reference and referent are in the G1
  5128       // heap, update the RSet for the referent.
  5129       //
  5130       // If the referent has not been forwarded then we have to keep
  5131       // it alive by policy. Therefore we have copy the referent.
  5132       //
  5133       // If the reference field is in the G1 heap then we can push
  5134       // on the PSS queue. When the queue is drained (after each
  5135       // phase of reference processing) the object and it's followers
  5136       // will be copied, the reference field set to point to the
  5137       // new location, and the RSet updated. Otherwise we need to
  5138       // use the the non-heap or perm closures directly to copy
  5139       // the refernt object and update the pointer, while avoiding
  5140       // updating the RSet.
  5142       if (_g1h->is_in_g1_reserved(p)) {
  5143         _par_scan_state->push_on_queue(p);
  5144       } else {
  5145         // The reference field is not in the G1 heap.
  5146         if (_g1h->perm_gen()->is_in(p)) {
  5147           _copy_perm_obj_cl->do_oop(p);
  5148         } else {
  5149           _copy_non_heap_obj_cl->do_oop(p);
  5154 };
  5156 // Serial drain queue closure. Called as the 'complete_gc'
  5157 // closure for each discovered list in some of the
  5158 // reference processing phases.
  5160 class G1STWDrainQueueClosure: public VoidClosure {
  5161 protected:
  5162   G1CollectedHeap* _g1h;
  5163   G1ParScanThreadState* _par_scan_state;
  5165   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5167 public:
  5168   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5169     _g1h(g1h),
  5170     _par_scan_state(pss)
  5171   { }
  5173   void do_void() {
  5174     G1ParScanThreadState* const pss = par_scan_state();
  5175     pss->trim_queue();
  5177 };
  5179 // Parallel Reference Processing closures
  5181 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5182 // processing during G1 evacuation pauses.
  5184 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5185 private:
  5186   G1CollectedHeap*   _g1h;
  5187   RefToScanQueueSet* _queues;
  5188   FlexibleWorkGang*  _workers;
  5189   int                _active_workers;
  5191 public:
  5192   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5193                         FlexibleWorkGang* workers,
  5194                         RefToScanQueueSet *task_queues,
  5195                         int n_workers) :
  5196     _g1h(g1h),
  5197     _queues(task_queues),
  5198     _workers(workers),
  5199     _active_workers(n_workers)
  5201     assert(n_workers > 0, "shouldn't call this otherwise");
  5204   // Executes the given task using concurrent marking worker threads.
  5205   virtual void execute(ProcessTask& task);
  5206   virtual void execute(EnqueueTask& task);
  5207 };
  5209 // Gang task for possibly parallel reference processing
  5211 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5212   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5213   ProcessTask&     _proc_task;
  5214   G1CollectedHeap* _g1h;
  5215   RefToScanQueueSet *_task_queues;
  5216   ParallelTaskTerminator* _terminator;
  5218 public:
  5219   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5220                      G1CollectedHeap* g1h,
  5221                      RefToScanQueueSet *task_queues,
  5222                      ParallelTaskTerminator* terminator) :
  5223     AbstractGangTask("Process reference objects in parallel"),
  5224     _proc_task(proc_task),
  5225     _g1h(g1h),
  5226     _task_queues(task_queues),
  5227     _terminator(terminator)
  5228   {}
  5230   virtual void work(uint worker_id) {
  5231     // The reference processing task executed by a single worker.
  5232     ResourceMark rm;
  5233     HandleMark   hm;
  5235     G1STWIsAliveClosure is_alive(_g1h);
  5237     G1ParScanThreadState pss(_g1h, worker_id);
  5239     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5240     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5241     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5243     pss.set_evac_closure(&scan_evac_cl);
  5244     pss.set_evac_failure_closure(&evac_failure_cl);
  5245     pss.set_partial_scan_closure(&partial_scan_cl);
  5247     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5248     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5250     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5251     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5253     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5254     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5256     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5257       // We also need to mark copied objects.
  5258       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5259       copy_perm_cl = &copy_mark_perm_cl;
  5262     // Keep alive closure.
  5263     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5265     // Complete GC closure
  5266     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5268     // Call the reference processing task's work routine.
  5269     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5271     // Note we cannot assert that the refs array is empty here as not all
  5272     // of the processing tasks (specifically phase2 - pp2_work) execute
  5273     // the complete_gc closure (which ordinarily would drain the queue) so
  5274     // the queue may not be empty.
  5276 };
  5278 // Driver routine for parallel reference processing.
  5279 // Creates an instance of the ref processing gang
  5280 // task and has the worker threads execute it.
  5281 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5282   assert(_workers != NULL, "Need parallel worker threads.");
  5284   ParallelTaskTerminator terminator(_active_workers, _queues);
  5285   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5287   _g1h->set_par_threads(_active_workers);
  5288   _workers->run_task(&proc_task_proxy);
  5289   _g1h->set_par_threads(0);
  5292 // Gang task for parallel reference enqueueing.
  5294 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5295   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5296   EnqueueTask& _enq_task;
  5298 public:
  5299   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5300     AbstractGangTask("Enqueue reference objects in parallel"),
  5301     _enq_task(enq_task)
  5302   { }
  5304   virtual void work(uint worker_id) {
  5305     _enq_task.work(worker_id);
  5307 };
  5309 // Driver routine for parallel reference enqueing.
  5310 // Creates an instance of the ref enqueueing gang
  5311 // task and has the worker threads execute it.
  5313 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5314   assert(_workers != NULL, "Need parallel worker threads.");
  5316   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5318   _g1h->set_par_threads(_active_workers);
  5319   _workers->run_task(&enq_task_proxy);
  5320   _g1h->set_par_threads(0);
  5323 // End of weak reference support closures
  5325 // Abstract task used to preserve (i.e. copy) any referent objects
  5326 // that are in the collection set and are pointed to by reference
  5327 // objects discovered by the CM ref processor.
  5329 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5330 protected:
  5331   G1CollectedHeap* _g1h;
  5332   RefToScanQueueSet      *_queues;
  5333   ParallelTaskTerminator _terminator;
  5334   uint _n_workers;
  5336 public:
  5337   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5338     AbstractGangTask("ParPreserveCMReferents"),
  5339     _g1h(g1h),
  5340     _queues(task_queues),
  5341     _terminator(workers, _queues),
  5342     _n_workers(workers)
  5343   { }
  5345   void work(uint worker_id) {
  5346     ResourceMark rm;
  5347     HandleMark   hm;
  5349     G1ParScanThreadState            pss(_g1h, worker_id);
  5350     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5351     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5352     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5354     pss.set_evac_closure(&scan_evac_cl);
  5355     pss.set_evac_failure_closure(&evac_failure_cl);
  5356     pss.set_partial_scan_closure(&partial_scan_cl);
  5358     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5361     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5362     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5364     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5365     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5367     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5368     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5370     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5371       // We also need to mark copied objects.
  5372       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5373       copy_perm_cl = &copy_mark_perm_cl;
  5376     // Is alive closure
  5377     G1AlwaysAliveClosure always_alive(_g1h);
  5379     // Copying keep alive closure. Applied to referent objects that need
  5380     // to be copied.
  5381     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5383     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5385     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5386     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5388     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5389     // So this must be true - but assert just in case someone decides to
  5390     // change the worker ids.
  5391     assert(0 <= worker_id && worker_id < limit, "sanity");
  5392     assert(!rp->discovery_is_atomic(), "check this code");
  5394     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5395     for (uint idx = worker_id; idx < limit; idx += stride) {
  5396       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5398       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5399       while (iter.has_next()) {
  5400         // Since discovery is not atomic for the CM ref processor, we
  5401         // can see some null referent objects.
  5402         iter.load_ptrs(DEBUG_ONLY(true));
  5403         oop ref = iter.obj();
  5405         // This will filter nulls.
  5406         if (iter.is_referent_alive()) {
  5407           iter.make_referent_alive();
  5409         iter.move_to_next();
  5413     // Drain the queue - which may cause stealing
  5414     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5415     drain_queue.do_void();
  5416     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5417     assert(pss.refs()->is_empty(), "should be");
  5419 };
  5421 // Weak Reference processing during an evacuation pause (part 1).
  5422 void G1CollectedHeap::process_discovered_references() {
  5423   double ref_proc_start = os::elapsedTime();
  5425   ReferenceProcessor* rp = _ref_processor_stw;
  5426   assert(rp->discovery_enabled(), "should have been enabled");
  5428   // Any reference objects, in the collection set, that were 'discovered'
  5429   // by the CM ref processor should have already been copied (either by
  5430   // applying the external root copy closure to the discovered lists, or
  5431   // by following an RSet entry).
  5432   //
  5433   // But some of the referents, that are in the collection set, that these
  5434   // reference objects point to may not have been copied: the STW ref
  5435   // processor would have seen that the reference object had already
  5436   // been 'discovered' and would have skipped discovering the reference,
  5437   // but would not have treated the reference object as a regular oop.
  5438   // As a reult the copy closure would not have been applied to the
  5439   // referent object.
  5440   //
  5441   // We need to explicitly copy these referent objects - the references
  5442   // will be processed at the end of remarking.
  5443   //
  5444   // We also need to do this copying before we process the reference
  5445   // objects discovered by the STW ref processor in case one of these
  5446   // referents points to another object which is also referenced by an
  5447   // object discovered by the STW ref processor.
  5449   uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5450                         workers()->active_workers() : 1);
  5452   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5453            active_workers == workers()->active_workers(),
  5454            "Need to reset active_workers");
  5456   set_par_threads(active_workers);
  5457   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
  5459   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5460     workers()->run_task(&keep_cm_referents);
  5461   } else {
  5462     keep_cm_referents.work(0);
  5465   set_par_threads(0);
  5467   // Closure to test whether a referent is alive.
  5468   G1STWIsAliveClosure is_alive(this);
  5470   // Even when parallel reference processing is enabled, the processing
  5471   // of JNI refs is serial and performed serially by the current thread
  5472   // rather than by a worker. The following PSS will be used for processing
  5473   // JNI refs.
  5475   // Use only a single queue for this PSS.
  5476   G1ParScanThreadState pss(this, 0);
  5478   // We do not embed a reference processor in the copying/scanning
  5479   // closures while we're actually processing the discovered
  5480   // reference objects.
  5481   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  5482   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5483   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
  5485   pss.set_evac_closure(&scan_evac_cl);
  5486   pss.set_evac_failure_closure(&evac_failure_cl);
  5487   pss.set_partial_scan_closure(&partial_scan_cl);
  5489   assert(pss.refs()->is_empty(), "pre-condition");
  5491   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5492   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
  5494   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5495   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
  5497   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5498   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5500   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5501     // We also need to mark copied objects.
  5502     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5503     copy_perm_cl = &copy_mark_perm_cl;
  5506   // Keep alive closure.
  5507   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
  5509   // Serial Complete GC closure
  5510   G1STWDrainQueueClosure drain_queue(this, &pss);
  5512   // Setup the soft refs policy...
  5513   rp->setup_policy(false);
  5515   if (!rp->processing_is_mt()) {
  5516     // Serial reference processing...
  5517     rp->process_discovered_references(&is_alive,
  5518                                       &keep_alive,
  5519                                       &drain_queue,
  5520                                       NULL);
  5521   } else {
  5522     // Parallel reference processing
  5523     assert(rp->num_q() == active_workers, "sanity");
  5524     assert(active_workers <= rp->max_num_q(), "sanity");
  5526     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5527     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  5530   // We have completed copying any necessary live referent objects
  5531   // (that were not copied during the actual pause) so we can
  5532   // retire any active alloc buffers
  5533   pss.retire_alloc_buffers();
  5534   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5536   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5537   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5540 // Weak Reference processing during an evacuation pause (part 2).
  5541 void G1CollectedHeap::enqueue_discovered_references() {
  5542   double ref_enq_start = os::elapsedTime();
  5544   ReferenceProcessor* rp = _ref_processor_stw;
  5545   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5547   // Now enqueue any remaining on the discovered lists on to
  5548   // the pending list.
  5549   if (!rp->processing_is_mt()) {
  5550     // Serial reference processing...
  5551     rp->enqueue_discovered_references();
  5552   } else {
  5553     // Parallel reference enqueuing
  5555     uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
  5556     assert(active_workers == workers()->active_workers(),
  5557            "Need to reset active_workers");
  5558     assert(rp->num_q() == active_workers, "sanity");
  5559     assert(active_workers <= rp->max_num_q(), "sanity");
  5561     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5562     rp->enqueue_discovered_references(&par_task_executor);
  5565   rp->verify_no_references_recorded();
  5566   assert(!rp->discovery_enabled(), "should have been disabled");
  5568   // FIXME
  5569   // CM's reference processing also cleans up the string and symbol tables.
  5570   // Should we do that here also? We could, but it is a serial operation
  5571   // and could signicantly increase the pause time.
  5573   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5574   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5577 void G1CollectedHeap::evacuate_collection_set() {
  5578   _expand_heap_after_alloc_failure = true;
  5579   set_evacuation_failed(false);
  5581   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5582   concurrent_g1_refine()->set_use_cache(false);
  5583   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  5585   uint n_workers;
  5586   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5587     n_workers =
  5588       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5589                                      workers()->active_workers(),
  5590                                      Threads::number_of_non_daemon_threads());
  5591     assert(UseDynamicNumberOfGCThreads ||
  5592            n_workers == workers()->total_workers(),
  5593            "If not dynamic should be using all the  workers");
  5594     workers()->set_active_workers(n_workers);
  5595     set_par_threads(n_workers);
  5596   } else {
  5597     assert(n_par_threads() == 0,
  5598            "Should be the original non-parallel value");
  5599     n_workers = 1;
  5602   G1ParTask g1_par_task(this, _task_queues);
  5604   init_for_evac_failure(NULL);
  5606   rem_set()->prepare_for_younger_refs_iterate(true);
  5608   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5609   double start_par_time_sec = os::elapsedTime();
  5610   double end_par_time_sec;
  5613     StrongRootsScope srs(this);
  5615     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5616       // The individual threads will set their evac-failure closures.
  5617       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5618       // These tasks use ShareHeap::_process_strong_tasks
  5619       assert(UseDynamicNumberOfGCThreads ||
  5620              workers()->active_workers() == workers()->total_workers(),
  5621              "If not dynamic should be using all the  workers");
  5622       workers()->run_task(&g1_par_task);
  5623     } else {
  5624       g1_par_task.set_for_termination(n_workers);
  5625       g1_par_task.work(0);
  5627     end_par_time_sec = os::elapsedTime();
  5629     // Closing the inner scope will execute the destructor
  5630     // for the StrongRootsScope object. We record the current
  5631     // elapsed time before closing the scope so that time
  5632     // taken for the SRS destructor is NOT included in the
  5633     // reported parallel time.
  5636   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5637   g1_policy()->phase_times()->record_par_time(par_time_ms);
  5639   double code_root_fixup_time_ms =
  5640         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5641   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5643   set_par_threads(0);
  5645   // Process any discovered reference objects - we have
  5646   // to do this _before_ we retire the GC alloc regions
  5647   // as we may have to copy some 'reachable' referent
  5648   // objects (and their reachable sub-graphs) that were
  5649   // not copied during the pause.
  5650   process_discovered_references();
  5652   // Weak root processing.
  5653   // Note: when JSR 292 is enabled and code blobs can contain
  5654   // non-perm oops then we will need to process the code blobs
  5655   // here too.
  5657     G1STWIsAliveClosure is_alive(this);
  5658     G1KeepAliveClosure keep_alive(this);
  5659     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5662   release_gc_alloc_regions();
  5663   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5665   concurrent_g1_refine()->clear_hot_cache();
  5666   concurrent_g1_refine()->set_use_cache(true);
  5668   finalize_for_evac_failure();
  5670   if (evacuation_failed()) {
  5671     remove_self_forwarding_pointers();
  5674   // Enqueue any remaining references remaining on the STW
  5675   // reference processor's discovered lists. We need to do
  5676   // this after the card table is cleaned (and verified) as
  5677   // the act of enqueuing entries on to the pending list
  5678   // will log these updates (and dirty their associated
  5679   // cards). We need these updates logged to update any
  5680   // RSets.
  5681   enqueue_discovered_references();
  5683   if (G1DeferredRSUpdate) {
  5684     RedirtyLoggedCardTableEntryFastClosure redirty;
  5685     dirty_card_queue_set().set_closure(&redirty);
  5686     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  5688     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5689     dcq.merge_bufferlists(&dirty_card_queue_set());
  5690     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5692   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5695 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  5696                                      size_t* pre_used,
  5697                                      FreeRegionList* free_list,
  5698                                      OldRegionSet* old_proxy_set,
  5699                                      HumongousRegionSet* humongous_proxy_set,
  5700                                      HRRSCleanupTask* hrrs_cleanup_task,
  5701                                      bool par) {
  5702   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  5703     if (hr->isHumongous()) {
  5704       assert(hr->startsHumongous(), "we should only see starts humongous");
  5705       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  5706     } else {
  5707       _old_set.remove_with_proxy(hr, old_proxy_set);
  5708       free_region(hr, pre_used, free_list, par);
  5710   } else {
  5711     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  5715 void G1CollectedHeap::free_region(HeapRegion* hr,
  5716                                   size_t* pre_used,
  5717                                   FreeRegionList* free_list,
  5718                                   bool par) {
  5719   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5720   assert(!hr->is_empty(), "the region should not be empty");
  5721   assert(free_list != NULL, "pre-condition");
  5723   *pre_used += hr->used();
  5724   hr->hr_clear(par, true /* clear_space */);
  5725   free_list->add_as_head(hr);
  5728 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5729                                      size_t* pre_used,
  5730                                      FreeRegionList* free_list,
  5731                                      HumongousRegionSet* humongous_proxy_set,
  5732                                      bool par) {
  5733   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5734   assert(free_list != NULL, "pre-condition");
  5735   assert(humongous_proxy_set != NULL, "pre-condition");
  5737   size_t hr_used = hr->used();
  5738   size_t hr_capacity = hr->capacity();
  5739   size_t hr_pre_used = 0;
  5740   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  5741   // We need to read this before we make the region non-humongous,
  5742   // otherwise the information will be gone.
  5743   uint last_index = hr->last_hc_index();
  5744   hr->set_notHumongous();
  5745   free_region(hr, &hr_pre_used, free_list, par);
  5747   uint i = hr->hrs_index() + 1;
  5748   while (i < last_index) {
  5749     HeapRegion* curr_hr = region_at(i);
  5750     assert(curr_hr->continuesHumongous(), "invariant");
  5751     curr_hr->set_notHumongous();
  5752     free_region(curr_hr, &hr_pre_used, free_list, par);
  5753     i += 1;
  5755   assert(hr_pre_used == hr_used,
  5756          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  5757                  "should be the same", hr_pre_used, hr_used));
  5758   *pre_used += hr_pre_used;
  5761 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  5762                                        FreeRegionList* free_list,
  5763                                        OldRegionSet* old_proxy_set,
  5764                                        HumongousRegionSet* humongous_proxy_set,
  5765                                        bool par) {
  5766   if (pre_used > 0) {
  5767     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  5768     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  5769     assert(_summary_bytes_used >= pre_used,
  5770            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  5771                    "should be >= pre_used: "SIZE_FORMAT,
  5772                    _summary_bytes_used, pre_used));
  5773     _summary_bytes_used -= pre_used;
  5775   if (free_list != NULL && !free_list->is_empty()) {
  5776     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5777     _free_list.add_as_head(free_list);
  5779   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
  5780     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5781     _old_set.update_from_proxy(old_proxy_set);
  5783   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  5784     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5785     _humongous_set.update_from_proxy(humongous_proxy_set);
  5789 class G1ParCleanupCTTask : public AbstractGangTask {
  5790   CardTableModRefBS* _ct_bs;
  5791   G1CollectedHeap* _g1h;
  5792   HeapRegion* volatile _su_head;
  5793 public:
  5794   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  5795                      G1CollectedHeap* g1h) :
  5796     AbstractGangTask("G1 Par Cleanup CT Task"),
  5797     _ct_bs(ct_bs), _g1h(g1h) { }
  5799   void work(uint worker_id) {
  5800     HeapRegion* r;
  5801     while (r = _g1h->pop_dirty_cards_region()) {
  5802       clear_cards(r);
  5806   void clear_cards(HeapRegion* r) {
  5807     // Cards of the survivors should have already been dirtied.
  5808     if (!r->is_survivor()) {
  5809       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5812 };
  5814 #ifndef PRODUCT
  5815 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5816   G1CollectedHeap* _g1h;
  5817   CardTableModRefBS* _ct_bs;
  5818 public:
  5819   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  5820     : _g1h(g1h), _ct_bs(ct_bs) { }
  5821   virtual bool doHeapRegion(HeapRegion* r) {
  5822     if (r->is_survivor()) {
  5823       _g1h->verify_dirty_region(r);
  5824     } else {
  5825       _g1h->verify_not_dirty_region(r);
  5827     return false;
  5829 };
  5831 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  5832   // All of the region should be clean.
  5833   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  5834   MemRegion mr(hr->bottom(), hr->end());
  5835   ct_bs->verify_not_dirty_region(mr);
  5838 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  5839   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  5840   // dirty allocated blocks as they allocate them. The thread that
  5841   // retires each region and replaces it with a new one will do a
  5842   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  5843   // not dirty that area (one less thing to have to do while holding
  5844   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  5845   // is dirty.
  5846   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5847   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  5848   ct_bs->verify_dirty_region(mr);
  5851 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  5852   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5853   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  5854     verify_dirty_region(hr);
  5858 void G1CollectedHeap::verify_dirty_young_regions() {
  5859   verify_dirty_young_list(_young_list->first_region());
  5861 #endif
  5863 void G1CollectedHeap::cleanUpCardTable() {
  5864   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  5865   double start = os::elapsedTime();
  5868     // Iterate over the dirty cards region list.
  5869     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  5871     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5872       set_par_threads();
  5873       workers()->run_task(&cleanup_task);
  5874       set_par_threads(0);
  5875     } else {
  5876       while (_dirty_cards_region_list) {
  5877         HeapRegion* r = _dirty_cards_region_list;
  5878         cleanup_task.clear_cards(r);
  5879         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  5880         if (_dirty_cards_region_list == r) {
  5881           // The last region.
  5882           _dirty_cards_region_list = NULL;
  5884         r->set_next_dirty_cards_region(NULL);
  5887 #ifndef PRODUCT
  5888     if (G1VerifyCTCleanup || VerifyAfterGC) {
  5889       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  5890       heap_region_iterate(&cleanup_verifier);
  5892 #endif
  5895   double elapsed = os::elapsedTime() - start;
  5896   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  5899 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  5900   size_t pre_used = 0;
  5901   FreeRegionList local_free_list("Local List for CSet Freeing");
  5903   double young_time_ms     = 0.0;
  5904   double non_young_time_ms = 0.0;
  5906   // Since the collection set is a superset of the the young list,
  5907   // all we need to do to clear the young list is clear its
  5908   // head and length, and unlink any young regions in the code below
  5909   _young_list->clear();
  5911   G1CollectorPolicy* policy = g1_policy();
  5913   double start_sec = os::elapsedTime();
  5914   bool non_young = true;
  5916   HeapRegion* cur = cs_head;
  5917   int age_bound = -1;
  5918   size_t rs_lengths = 0;
  5920   while (cur != NULL) {
  5921     assert(!is_on_master_free_list(cur), "sanity");
  5922     if (non_young) {
  5923       if (cur->is_young()) {
  5924         double end_sec = os::elapsedTime();
  5925         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5926         non_young_time_ms += elapsed_ms;
  5928         start_sec = os::elapsedTime();
  5929         non_young = false;
  5931     } else {
  5932       if (!cur->is_young()) {
  5933         double end_sec = os::elapsedTime();
  5934         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5935         young_time_ms += elapsed_ms;
  5937         start_sec = os::elapsedTime();
  5938         non_young = true;
  5942     rs_lengths += cur->rem_set()->occupied();
  5944     HeapRegion* next = cur->next_in_collection_set();
  5945     assert(cur->in_collection_set(), "bad CS");
  5946     cur->set_next_in_collection_set(NULL);
  5947     cur->set_in_collection_set(false);
  5949     if (cur->is_young()) {
  5950       int index = cur->young_index_in_cset();
  5951       assert(index != -1, "invariant");
  5952       assert((uint) index < policy->young_cset_region_length(), "invariant");
  5953       size_t words_survived = _surviving_young_words[index];
  5954       cur->record_surv_words_in_group(words_survived);
  5956       // At this point the we have 'popped' cur from the collection set
  5957       // (linked via next_in_collection_set()) but it is still in the
  5958       // young list (linked via next_young_region()). Clear the
  5959       // _next_young_region field.
  5960       cur->set_next_young_region(NULL);
  5961     } else {
  5962       int index = cur->young_index_in_cset();
  5963       assert(index == -1, "invariant");
  5966     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5967             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5968             "invariant" );
  5970     if (!cur->evacuation_failed()) {
  5971       MemRegion used_mr = cur->used_region();
  5973       // And the region is empty.
  5974       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  5975       free_region(cur, &pre_used, &local_free_list, false /* par */);
  5976     } else {
  5977       cur->uninstall_surv_rate_group();
  5978       if (cur->is_young()) {
  5979         cur->set_young_index_in_cset(-1);
  5981       cur->set_not_young();
  5982       cur->set_evacuation_failed(false);
  5983       // The region is now considered to be old.
  5984       _old_set.add(cur);
  5986     cur = next;
  5989   policy->record_max_rs_lengths(rs_lengths);
  5990   policy->cset_regions_freed();
  5992   double end_sec = os::elapsedTime();
  5993   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5995   if (non_young) {
  5996     non_young_time_ms += elapsed_ms;
  5997   } else {
  5998     young_time_ms += elapsed_ms;
  6001   update_sets_after_freeing_regions(pre_used, &local_free_list,
  6002                                     NULL /* old_proxy_set */,
  6003                                     NULL /* humongous_proxy_set */,
  6004                                     false /* par */);
  6005   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6006   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6009 // This routine is similar to the above but does not record
  6010 // any policy statistics or update free lists; we are abandoning
  6011 // the current incremental collection set in preparation of a
  6012 // full collection. After the full GC we will start to build up
  6013 // the incremental collection set again.
  6014 // This is only called when we're doing a full collection
  6015 // and is immediately followed by the tearing down of the young list.
  6017 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6018   HeapRegion* cur = cs_head;
  6020   while (cur != NULL) {
  6021     HeapRegion* next = cur->next_in_collection_set();
  6022     assert(cur->in_collection_set(), "bad CS");
  6023     cur->set_next_in_collection_set(NULL);
  6024     cur->set_in_collection_set(false);
  6025     cur->set_young_index_in_cset(-1);
  6026     cur = next;
  6030 void G1CollectedHeap::set_free_regions_coming() {
  6031   if (G1ConcRegionFreeingVerbose) {
  6032     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6033                            "setting free regions coming");
  6036   assert(!free_regions_coming(), "pre-condition");
  6037   _free_regions_coming = true;
  6040 void G1CollectedHeap::reset_free_regions_coming() {
  6041   assert(free_regions_coming(), "pre-condition");
  6044     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6045     _free_regions_coming = false;
  6046     SecondaryFreeList_lock->notify_all();
  6049   if (G1ConcRegionFreeingVerbose) {
  6050     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6051                            "reset free regions coming");
  6055 void G1CollectedHeap::wait_while_free_regions_coming() {
  6056   // Most of the time we won't have to wait, so let's do a quick test
  6057   // first before we take the lock.
  6058   if (!free_regions_coming()) {
  6059     return;
  6062   if (G1ConcRegionFreeingVerbose) {
  6063     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6064                            "waiting for free regions");
  6068     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6069     while (free_regions_coming()) {
  6070       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6074   if (G1ConcRegionFreeingVerbose) {
  6075     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6076                            "done waiting for free regions");
  6080 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6081   assert(heap_lock_held_for_gc(),
  6082               "the heap lock should already be held by or for this thread");
  6083   _young_list->push_region(hr);
  6086 class NoYoungRegionsClosure: public HeapRegionClosure {
  6087 private:
  6088   bool _success;
  6089 public:
  6090   NoYoungRegionsClosure() : _success(true) { }
  6091   bool doHeapRegion(HeapRegion* r) {
  6092     if (r->is_young()) {
  6093       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6094                              r->bottom(), r->end());
  6095       _success = false;
  6097     return false;
  6099   bool success() { return _success; }
  6100 };
  6102 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6103   bool ret = _young_list->check_list_empty(check_sample);
  6105   if (check_heap) {
  6106     NoYoungRegionsClosure closure;
  6107     heap_region_iterate(&closure);
  6108     ret = ret && closure.success();
  6111   return ret;
  6114 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6115 private:
  6116   OldRegionSet *_old_set;
  6118 public:
  6119   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
  6121   bool doHeapRegion(HeapRegion* r) {
  6122     if (r->is_empty()) {
  6123       // We ignore empty regions, we'll empty the free list afterwards
  6124     } else if (r->is_young()) {
  6125       // We ignore young regions, we'll empty the young list afterwards
  6126     } else if (r->isHumongous()) {
  6127       // We ignore humongous regions, we're not tearing down the
  6128       // humongous region set
  6129     } else {
  6130       // The rest should be old
  6131       _old_set->remove(r);
  6133     return false;
  6136   ~TearDownRegionSetsClosure() {
  6137     assert(_old_set->is_empty(), "post-condition");
  6139 };
  6141 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6142   assert_at_safepoint(true /* should_be_vm_thread */);
  6144   if (!free_list_only) {
  6145     TearDownRegionSetsClosure cl(&_old_set);
  6146     heap_region_iterate(&cl);
  6148     // Need to do this after the heap iteration to be able to
  6149     // recognize the young regions and ignore them during the iteration.
  6150     _young_list->empty_list();
  6152   _free_list.remove_all();
  6155 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6156 private:
  6157   bool            _free_list_only;
  6158   OldRegionSet*   _old_set;
  6159   FreeRegionList* _free_list;
  6160   size_t          _total_used;
  6162 public:
  6163   RebuildRegionSetsClosure(bool free_list_only,
  6164                            OldRegionSet* old_set, FreeRegionList* free_list) :
  6165     _free_list_only(free_list_only),
  6166     _old_set(old_set), _free_list(free_list), _total_used(0) {
  6167     assert(_free_list->is_empty(), "pre-condition");
  6168     if (!free_list_only) {
  6169       assert(_old_set->is_empty(), "pre-condition");
  6173   bool doHeapRegion(HeapRegion* r) {
  6174     if (r->continuesHumongous()) {
  6175       return false;
  6178     if (r->is_empty()) {
  6179       // Add free regions to the free list
  6180       _free_list->add_as_tail(r);
  6181     } else if (!_free_list_only) {
  6182       assert(!r->is_young(), "we should not come across young regions");
  6184       if (r->isHumongous()) {
  6185         // We ignore humongous regions, we left the humongous set unchanged
  6186       } else {
  6187         // The rest should be old, add them to the old set
  6188         _old_set->add(r);
  6190       _total_used += r->used();
  6193     return false;
  6196   size_t total_used() {
  6197     return _total_used;
  6199 };
  6201 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6202   assert_at_safepoint(true /* should_be_vm_thread */);
  6204   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  6205   heap_region_iterate(&cl);
  6207   if (!free_list_only) {
  6208     _summary_bytes_used = cl.total_used();
  6210   assert(_summary_bytes_used == recalculate_used(),
  6211          err_msg("inconsistent _summary_bytes_used, "
  6212                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6213                  _summary_bytes_used, recalculate_used()));
  6216 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6217   _refine_cte_cl->set_concurrent(concurrent);
  6220 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6221   HeapRegion* hr = heap_region_containing(p);
  6222   if (hr == NULL) {
  6223     return is_in_permanent(p);
  6224   } else {
  6225     return hr->is_in(p);
  6229 // Methods for the mutator alloc region
  6231 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6232                                                       bool force) {
  6233   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6234   assert(!force || g1_policy()->can_expand_young_list(),
  6235          "if force is true we should be able to expand the young list");
  6236   bool young_list_full = g1_policy()->is_young_list_full();
  6237   if (force || !young_list_full) {
  6238     HeapRegion* new_alloc_region = new_region(word_size,
  6239                                               false /* do_expand */);
  6240     if (new_alloc_region != NULL) {
  6241       set_region_short_lived_locked(new_alloc_region);
  6242       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6243       return new_alloc_region;
  6246   return NULL;
  6249 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6250                                                   size_t allocated_bytes) {
  6251   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6252   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6254   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6255   _summary_bytes_used += allocated_bytes;
  6256   _hr_printer.retire(alloc_region);
  6257   // We update the eden sizes here, when the region is retired,
  6258   // instead of when it's allocated, since this is the point that its
  6259   // used space has been recored in _summary_bytes_used.
  6260   g1mm()->update_eden_size();
  6263 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6264                                                     bool force) {
  6265   return _g1h->new_mutator_alloc_region(word_size, force);
  6268 void G1CollectedHeap::set_par_threads() {
  6269   // Don't change the number of workers.  Use the value previously set
  6270   // in the workgroup.
  6271   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6272   uint n_workers = workers()->active_workers();
  6273   assert(UseDynamicNumberOfGCThreads ||
  6274            n_workers == workers()->total_workers(),
  6275       "Otherwise should be using the total number of workers");
  6276   if (n_workers == 0) {
  6277     assert(false, "Should have been set in prior evacuation pause.");
  6278     n_workers = ParallelGCThreads;
  6279     workers()->set_active_workers(n_workers);
  6281   set_par_threads(n_workers);
  6284 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6285                                        size_t allocated_bytes) {
  6286   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6289 // Methods for the GC alloc regions
  6291 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6292                                                  uint count,
  6293                                                  GCAllocPurpose ap) {
  6294   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6296   if (count < g1_policy()->max_regions(ap)) {
  6297     HeapRegion* new_alloc_region = new_region(word_size,
  6298                                               true /* do_expand */);
  6299     if (new_alloc_region != NULL) {
  6300       // We really only need to do this for old regions given that we
  6301       // should never scan survivors. But it doesn't hurt to do it
  6302       // for survivors too.
  6303       new_alloc_region->set_saved_mark();
  6304       if (ap == GCAllocForSurvived) {
  6305         new_alloc_region->set_survivor();
  6306         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6307       } else {
  6308         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6310       bool during_im = g1_policy()->during_initial_mark_pause();
  6311       new_alloc_region->note_start_of_copying(during_im);
  6312       return new_alloc_region;
  6313     } else {
  6314       g1_policy()->note_alloc_region_limit_reached(ap);
  6317   return NULL;
  6320 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6321                                              size_t allocated_bytes,
  6322                                              GCAllocPurpose ap) {
  6323   bool during_im = g1_policy()->during_initial_mark_pause();
  6324   alloc_region->note_end_of_copying(during_im);
  6325   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6326   if (ap == GCAllocForSurvived) {
  6327     young_list()->add_survivor_region(alloc_region);
  6328   } else {
  6329     _old_set.add(alloc_region);
  6331   _hr_printer.retire(alloc_region);
  6334 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6335                                                        bool force) {
  6336   assert(!force, "not supported for GC alloc regions");
  6337   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6340 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6341                                           size_t allocated_bytes) {
  6342   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6343                                GCAllocForSurvived);
  6346 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6347                                                   bool force) {
  6348   assert(!force, "not supported for GC alloc regions");
  6349   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6352 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6353                                      size_t allocated_bytes) {
  6354   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6355                                GCAllocForTenured);
  6357 // Heap region set verification
  6359 class VerifyRegionListsClosure : public HeapRegionClosure {
  6360 private:
  6361   FreeRegionList*     _free_list;
  6362   OldRegionSet*       _old_set;
  6363   HumongousRegionSet* _humongous_set;
  6364   uint                _region_count;
  6366 public:
  6367   VerifyRegionListsClosure(OldRegionSet* old_set,
  6368                            HumongousRegionSet* humongous_set,
  6369                            FreeRegionList* free_list) :
  6370     _old_set(old_set), _humongous_set(humongous_set),
  6371     _free_list(free_list), _region_count(0) { }
  6373   uint region_count() { return _region_count; }
  6375   bool doHeapRegion(HeapRegion* hr) {
  6376     _region_count += 1;
  6378     if (hr->continuesHumongous()) {
  6379       return false;
  6382     if (hr->is_young()) {
  6383       // TODO
  6384     } else if (hr->startsHumongous()) {
  6385       _humongous_set->verify_next_region(hr);
  6386     } else if (hr->is_empty()) {
  6387       _free_list->verify_next_region(hr);
  6388     } else {
  6389       _old_set->verify_next_region(hr);
  6391     return false;
  6393 };
  6395 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
  6396                                              HeapWord* bottom) {
  6397   HeapWord* end = bottom + HeapRegion::GrainWords;
  6398   MemRegion mr(bottom, end);
  6399   assert(_g1_reserved.contains(mr), "invariant");
  6400   // This might return NULL if the allocation fails
  6401   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
  6404 void G1CollectedHeap::verify_region_sets() {
  6405   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6407   // First, check the explicit lists.
  6408   _free_list.verify();
  6410     // Given that a concurrent operation might be adding regions to
  6411     // the secondary free list we have to take the lock before
  6412     // verifying it.
  6413     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6414     _secondary_free_list.verify();
  6416   _old_set.verify();
  6417   _humongous_set.verify();
  6419   // If a concurrent region freeing operation is in progress it will
  6420   // be difficult to correctly attributed any free regions we come
  6421   // across to the correct free list given that they might belong to
  6422   // one of several (free_list, secondary_free_list, any local lists,
  6423   // etc.). So, if that's the case we will skip the rest of the
  6424   // verification operation. Alternatively, waiting for the concurrent
  6425   // operation to complete will have a non-trivial effect on the GC's
  6426   // operation (no concurrent operation will last longer than the
  6427   // interval between two calls to verification) and it might hide
  6428   // any issues that we would like to catch during testing.
  6429   if (free_regions_coming()) {
  6430     return;
  6433   // Make sure we append the secondary_free_list on the free_list so
  6434   // that all free regions we will come across can be safely
  6435   // attributed to the free_list.
  6436   append_secondary_free_list_if_not_empty_with_lock();
  6438   // Finally, make sure that the region accounting in the lists is
  6439   // consistent with what we see in the heap.
  6440   _old_set.verify_start();
  6441   _humongous_set.verify_start();
  6442   _free_list.verify_start();
  6444   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6445   heap_region_iterate(&cl);
  6447   _old_set.verify_end();
  6448   _humongous_set.verify_end();
  6449   _free_list.verify_end();

mercurial