src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Mon, 04 Apr 2011 16:00:34 -0700

author
iveresov
date
Mon, 04 Apr 2011 16:00:34 -0700
changeset 2731
bb22629531fa
parent 2728
13bc79b5c9c8
child 3037
3d42f82cd811
permissions
-rw-r--r--

7033732: C1: When calling c2 arraycopy stubs offsets and length must have clear upper 32bits
Summary: With 7033154 we started calling c2 arraycopy stubs from c1. On sparcv9 we must clear the upper 32bits for offset (src_pos, dst_pos) and length parameters when calling them.
Reviewed-by: never, kvn

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_LIRAssembler.hpp"
    28 #include "c1/c1_MacroAssembler.hpp"
    29 #include "c1/c1_Runtime1.hpp"
    30 #include "c1/c1_ValueStack.hpp"
    31 #include "ci/ciArrayKlass.hpp"
    32 #include "ci/ciInstance.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "memory/barrierSet.hpp"
    35 #include "memory/cardTableModRefBS.hpp"
    36 #include "nativeInst_sparc.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    40 #define __ _masm->
    43 //------------------------------------------------------------
    46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    47   if (opr->is_constant()) {
    48     LIR_Const* constant = opr->as_constant_ptr();
    49     switch (constant->type()) {
    50       case T_INT: {
    51         jint value = constant->as_jint();
    52         return Assembler::is_simm13(value);
    53       }
    55       default:
    56         return false;
    57     }
    58   }
    59   return false;
    60 }
    63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    64   switch (op->code()) {
    65     case lir_null_check:
    66     return true;
    69     case lir_add:
    70     case lir_ushr:
    71     case lir_shr:
    72     case lir_shl:
    73       // integer shifts and adds are always one instruction
    74       return op->result_opr()->is_single_cpu();
    77     case lir_move: {
    78       LIR_Op1* op1 = op->as_Op1();
    79       LIR_Opr src = op1->in_opr();
    80       LIR_Opr dst = op1->result_opr();
    82       if (src == dst) {
    83         NEEDS_CLEANUP;
    84         // this works around a problem where moves with the same src and dst
    85         // end up in the delay slot and then the assembler swallows the mov
    86         // since it has no effect and then it complains because the delay slot
    87         // is empty.  returning false stops the optimizer from putting this in
    88         // the delay slot
    89         return false;
    90       }
    92       // don't put moves involving oops into the delay slot since the VerifyOops code
    93       // will make it much larger than a single instruction.
    94       if (VerifyOops) {
    95         return false;
    96       }
    98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
   100         return false;
   101       }
   103       if (UseCompressedOops) {
   104         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
   105         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
   106       }
   108       if (dst->is_register()) {
   109         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
   110           return !PatchALot;
   111         } else if (src->is_single_stack()) {
   112           return true;
   113         }
   114       }
   116       if (src->is_register()) {
   117         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   118           return !PatchALot;
   119         } else if (dst->is_single_stack()) {
   120           return true;
   121         }
   122       }
   124       if (dst->is_register() &&
   125           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   126            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   127         return true;
   128       }
   130       return false;
   131     }
   133     default:
   134       return false;
   135   }
   136   ShouldNotReachHere();
   137 }
   140 LIR_Opr LIR_Assembler::receiverOpr() {
   141   return FrameMap::O0_oop_opr;
   142 }
   145 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   146   return FrameMap::I0_oop_opr;
   147 }
   150 LIR_Opr LIR_Assembler::osrBufferPointer() {
   151   return FrameMap::I0_opr;
   152 }
   155 int LIR_Assembler::initial_frame_size_in_bytes() {
   156   return in_bytes(frame_map()->framesize_in_bytes());
   157 }
   160 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   161 // we fetch the class of the receiver (O0) and compare it with the cached class.
   162 // If they do not match we jump to slow case.
   163 int LIR_Assembler::check_icache() {
   164   int offset = __ offset();
   165   __ inline_cache_check(O0, G5_inline_cache_reg);
   166   return offset;
   167 }
   170 void LIR_Assembler::osr_entry() {
   171   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   172   //
   173   //   1. Create a new compiled activation.
   174   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   175   //      at the osr_bci; it is not initialized.
   176   //   3. Jump to the continuation address in compiled code to resume execution.
   178   // OSR entry point
   179   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   180   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   181   ValueStack* entry_state = osr_entry->end()->state();
   182   int number_of_locks = entry_state->locks_size();
   184   // Create a frame for the compiled activation.
   185   __ build_frame(initial_frame_size_in_bytes());
   187   // OSR buffer is
   188   //
   189   // locals[nlocals-1..0]
   190   // monitors[number_of_locks-1..0]
   191   //
   192   // locals is a direct copy of the interpreter frame so in the osr buffer
   193   // so first slot in the local array is the last local from the interpreter
   194   // and last slot is local[0] (receiver) from the interpreter
   195   //
   196   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   197   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   198   // in the interpreter frame (the method lock if a sync method)
   200   // Initialize monitors in the compiled activation.
   201   //   I0: pointer to osr buffer
   202   //
   203   // All other registers are dead at this point and the locals will be
   204   // copied into place by code emitted in the IR.
   206   Register OSR_buf = osrBufferPointer()->as_register();
   207   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   208     int monitor_offset = BytesPerWord * method()->max_locals() +
   209       (2 * BytesPerWord) * (number_of_locks - 1);
   210     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   211     // the OSR buffer using 2 word entries: first the lock and then
   212     // the oop.
   213     for (int i = 0; i < number_of_locks; i++) {
   214       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   215 #ifdef ASSERT
   216       // verify the interpreter's monitor has a non-null object
   217       {
   218         Label L;
   219         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   220         __ cmp(G0, O7);
   221         __ br(Assembler::notEqual, false, Assembler::pt, L);
   222         __ delayed()->nop();
   223         __ stop("locked object is NULL");
   224         __ bind(L);
   225       }
   226 #endif // ASSERT
   227       // Copy the lock field into the compiled activation.
   228       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   229       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   230       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   231       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   232     }
   233   }
   234 }
   237 // Optimized Library calls
   238 // This is the fast version of java.lang.String.compare; it has not
   239 // OSR-entry and therefore, we generate a slow version for OSR's
   240 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   241   Register str0 = left->as_register();
   242   Register str1 = right->as_register();
   244   Label Ldone;
   246   Register result = dst->as_register();
   247   {
   248     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
   249     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
   250     // Also, get string0.count-string1.count in o7 and get the condition code set
   251     // Note: some instructions have been hoisted for better instruction scheduling
   253     Register tmp0 = L0;
   254     Register tmp1 = L1;
   255     Register tmp2 = L2;
   257     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   258     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   259     int  count_offset = java_lang_String:: count_offset_in_bytes();
   261     __ load_heap_oop(str0, value_offset, tmp0);
   262     __ ld(str0, offset_offset, tmp2);
   263     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   264     __ ld(str0, count_offset, str0);
   265     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   267     // str1 may be null
   268     add_debug_info_for_null_check_here(info);
   270     __ load_heap_oop(str1, value_offset, tmp1);
   271     __ add(tmp0, tmp2, tmp0);
   273     __ ld(str1, offset_offset, tmp2);
   274     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   275     __ ld(str1, count_offset, str1);
   276     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   277     __ subcc(str0, str1, O7);
   278     __ add(tmp1, tmp2, tmp1);
   279   }
   281   {
   282     // Compute the minimum of the string lengths, scale it and store it in limit
   283     Register count0 = I0;
   284     Register count1 = I1;
   285     Register limit  = L3;
   287     Label Lskip;
   288     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   289     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   290     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   291     __ bind(Lskip);
   293     // If either string is empty (or both of them) the result is the difference in lengths
   294     __ cmp(limit, 0);
   295     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   296     __ delayed()->mov(O7, result);  // result is difference in lengths
   297   }
   299   {
   300     // Neither string is empty
   301     Label Lloop;
   303     Register base0 = L0;
   304     Register base1 = L1;
   305     Register chr0  = I0;
   306     Register chr1  = I1;
   307     Register limit = L3;
   309     // Shift base0 and base1 to the end of the arrays, negate limit
   310     __ add(base0, limit, base0);
   311     __ add(base1, limit, base1);
   312     __ neg(limit);  // limit = -min{string0.count, strin1.count}
   314     __ lduh(base0, limit, chr0);
   315     __ bind(Lloop);
   316     __ lduh(base1, limit, chr1);
   317     __ subcc(chr0, chr1, chr0);
   318     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   319     assert(chr0 == result, "result must be pre-placed");
   320     __ delayed()->inccc(limit, sizeof(jchar));
   321     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   322     __ delayed()->lduh(base0, limit, chr0);
   323   }
   325   // If strings are equal up to min length, return the length difference.
   326   __ mov(O7, result);
   328   // Otherwise, return the difference between the first mismatched chars.
   329   __ bind(Ldone);
   330 }
   333 // --------------------------------------------------------------------------------------------
   335 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   336   if (!GenerateSynchronizationCode) return;
   338   Register obj_reg = obj_opr->as_register();
   339   Register lock_reg = lock_opr->as_register();
   341   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   342   Register reg = mon_addr.base();
   343   int offset = mon_addr.disp();
   344   // compute pointer to BasicLock
   345   if (mon_addr.is_simm13()) {
   346     __ add(reg, offset, lock_reg);
   347   }
   348   else {
   349     __ set(offset, lock_reg);
   350     __ add(reg, lock_reg, lock_reg);
   351   }
   352   // unlock object
   353   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   354   // _slow_case_stubs->append(slow_case);
   355   // temporary fix: must be created after exceptionhandler, therefore as call stub
   356   _slow_case_stubs->append(slow_case);
   357   if (UseFastLocking) {
   358     // try inlined fast unlocking first, revert to slow locking if it fails
   359     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   360     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   361     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   362   } else {
   363     // always do slow unlocking
   364     // note: the slow unlocking code could be inlined here, however if we use
   365     //       slow unlocking, speed doesn't matter anyway and this solution is
   366     //       simpler and requires less duplicated code - additionally, the
   367     //       slow unlocking code is the same in either case which simplifies
   368     //       debugging
   369     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   370     __ delayed()->nop();
   371   }
   372   // done
   373   __ bind(*slow_case->continuation());
   374 }
   377 int LIR_Assembler::emit_exception_handler() {
   378   // if the last instruction is a call (typically to do a throw which
   379   // is coming at the end after block reordering) the return address
   380   // must still point into the code area in order to avoid assertion
   381   // failures when searching for the corresponding bci => add a nop
   382   // (was bug 5/14/1999 - gri)
   383   __ nop();
   385   // generate code for exception handler
   386   ciMethod* method = compilation()->method();
   388   address handler_base = __ start_a_stub(exception_handler_size);
   390   if (handler_base == NULL) {
   391     // not enough space left for the handler
   392     bailout("exception handler overflow");
   393     return -1;
   394   }
   396   int offset = code_offset();
   398   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
   399   __ delayed()->nop();
   400   __ should_not_reach_here();
   401   assert(code_offset() - offset <= exception_handler_size, "overflow");
   402   __ end_a_stub();
   404   return offset;
   405 }
   408 // Emit the code to remove the frame from the stack in the exception
   409 // unwind path.
   410 int LIR_Assembler::emit_unwind_handler() {
   411 #ifndef PRODUCT
   412   if (CommentedAssembly) {
   413     _masm->block_comment("Unwind handler");
   414   }
   415 #endif
   417   int offset = code_offset();
   419   // Fetch the exception from TLS and clear out exception related thread state
   420   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
   421   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
   422   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
   424   __ bind(_unwind_handler_entry);
   425   __ verify_not_null_oop(O0);
   426   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   427     __ mov(O0, I0);  // Preserve the exception
   428   }
   430   // Preform needed unlocking
   431   MonitorExitStub* stub = NULL;
   432   if (method()->is_synchronized()) {
   433     monitor_address(0, FrameMap::I1_opr);
   434     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
   435     __ unlock_object(I3, I2, I1, *stub->entry());
   436     __ bind(*stub->continuation());
   437   }
   439   if (compilation()->env()->dtrace_method_probes()) {
   440     __ mov(G2_thread, O0);
   441     jobject2reg(method()->constant_encoding(), O1);
   442     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
   443     __ delayed()->nop();
   444   }
   446   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   447     __ mov(I0, O0);  // Restore the exception
   448   }
   450   // dispatch to the unwind logic
   451   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   452   __ delayed()->nop();
   454   // Emit the slow path assembly
   455   if (stub != NULL) {
   456     stub->emit_code(this);
   457   }
   459   return offset;
   460 }
   463 int LIR_Assembler::emit_deopt_handler() {
   464   // if the last instruction is a call (typically to do a throw which
   465   // is coming at the end after block reordering) the return address
   466   // must still point into the code area in order to avoid assertion
   467   // failures when searching for the corresponding bci => add a nop
   468   // (was bug 5/14/1999 - gri)
   469   __ nop();
   471   // generate code for deopt handler
   472   ciMethod* method = compilation()->method();
   473   address handler_base = __ start_a_stub(deopt_handler_size);
   474   if (handler_base == NULL) {
   475     // not enough space left for the handler
   476     bailout("deopt handler overflow");
   477     return -1;
   478   }
   480   int offset = code_offset();
   481   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   482   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   483   __ delayed()->nop();
   484   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   485   debug_only(__ stop("should have gone to the caller");)
   486   __ end_a_stub();
   488   return offset;
   489 }
   492 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   493   if (o == NULL) {
   494     __ set(NULL_WORD, reg);
   495   } else {
   496     int oop_index = __ oop_recorder()->find_index(o);
   497     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   498     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   499   }
   500 }
   503 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   504   // Allocate a new index in oop table to hold the oop once it's been patched
   505   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
   506   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
   508   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   509   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   510   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   511   // NULL will be dynamically patched later and the patched value may be large.  We must
   512   // therefore generate the sethi/add as a placeholders
   513   __ patchable_set(addrlit, reg);
   515   patching_epilog(patch, lir_patch_normal, reg, info);
   516 }
   519 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   520   Register Rdividend = op->in_opr1()->as_register();
   521   Register Rdivisor  = noreg;
   522   Register Rscratch  = op->in_opr3()->as_register();
   523   Register Rresult   = op->result_opr()->as_register();
   524   int divisor = -1;
   526   if (op->in_opr2()->is_register()) {
   527     Rdivisor = op->in_opr2()->as_register();
   528   } else {
   529     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   530     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   531   }
   533   assert(Rdividend != Rscratch, "");
   534   assert(Rdivisor  != Rscratch, "");
   535   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   537   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   538     // convert division by a power of two into some shifts and logical operations
   539     if (op->code() == lir_idiv) {
   540       if (divisor == 2) {
   541         __ srl(Rdividend, 31, Rscratch);
   542       } else {
   543         __ sra(Rdividend, 31, Rscratch);
   544         __ and3(Rscratch, divisor - 1, Rscratch);
   545       }
   546       __ add(Rdividend, Rscratch, Rscratch);
   547       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   548       return;
   549     } else {
   550       if (divisor == 2) {
   551         __ srl(Rdividend, 31, Rscratch);
   552       } else {
   553         __ sra(Rdividend, 31, Rscratch);
   554         __ and3(Rscratch, divisor - 1,Rscratch);
   555       }
   556       __ add(Rdividend, Rscratch, Rscratch);
   557       __ andn(Rscratch, divisor - 1,Rscratch);
   558       __ sub(Rdividend, Rscratch, Rresult);
   559       return;
   560     }
   561   }
   563   __ sra(Rdividend, 31, Rscratch);
   564   __ wry(Rscratch);
   565   if (!VM_Version::v9_instructions_work()) {
   566     // v9 doesn't require these nops
   567     __ nop();
   568     __ nop();
   569     __ nop();
   570     __ nop();
   571   }
   573   add_debug_info_for_div0_here(op->info());
   575   if (Rdivisor != noreg) {
   576     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   577   } else {
   578     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   579     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   580   }
   582   Label skip;
   583   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   584   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   585   __ bind(skip);
   587   if (op->code() == lir_irem) {
   588     if (Rdivisor != noreg) {
   589       __ smul(Rscratch, Rdivisor, Rscratch);
   590     } else {
   591       __ smul(Rscratch, divisor, Rscratch);
   592     }
   593     __ sub(Rdividend, Rscratch, Rresult);
   594   }
   595 }
   598 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   599 #ifdef ASSERT
   600   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   601   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   602   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   603 #endif
   604   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   606   if (op->cond() == lir_cond_always) {
   607     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   608   } else if (op->code() == lir_cond_float_branch) {
   609     assert(op->ublock() != NULL, "must have unordered successor");
   610     bool is_unordered = (op->ublock() == op->block());
   611     Assembler::Condition acond;
   612     switch (op->cond()) {
   613       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   614       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   615       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   616       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   617       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   618       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   619       default :                         ShouldNotReachHere();
   620     };
   622     if (!VM_Version::v9_instructions_work()) {
   623       __ nop();
   624     }
   625     __ fb( acond, false, Assembler::pn, *(op->label()));
   626   } else {
   627     assert (op->code() == lir_branch, "just checking");
   629     Assembler::Condition acond;
   630     switch (op->cond()) {
   631       case lir_cond_equal:        acond = Assembler::equal;                break;
   632       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   633       case lir_cond_less:         acond = Assembler::less;                 break;
   634       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   635       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   636       case lir_cond_greater:      acond = Assembler::greater;              break;
   637       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   638       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   639       default:                         ShouldNotReachHere();
   640     };
   642     // sparc has different condition codes for testing 32-bit
   643     // vs. 64-bit values.  We could always test xcc is we could
   644     // guarantee that 32-bit loads always sign extended but that isn't
   645     // true and since sign extension isn't free, it would impose a
   646     // slight cost.
   647 #ifdef _LP64
   648     if  (op->type() == T_INT) {
   649       __ br(acond, false, Assembler::pn, *(op->label()));
   650     } else
   651 #endif
   652       __ brx(acond, false, Assembler::pn, *(op->label()));
   653   }
   654   // The peephole pass fills the delay slot
   655 }
   658 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   659   Bytecodes::Code code = op->bytecode();
   660   LIR_Opr dst = op->result_opr();
   662   switch(code) {
   663     case Bytecodes::_i2l: {
   664       Register rlo  = dst->as_register_lo();
   665       Register rhi  = dst->as_register_hi();
   666       Register rval = op->in_opr()->as_register();
   667 #ifdef _LP64
   668       __ sra(rval, 0, rlo);
   669 #else
   670       __ mov(rval, rlo);
   671       __ sra(rval, BitsPerInt-1, rhi);
   672 #endif
   673       break;
   674     }
   675     case Bytecodes::_i2d:
   676     case Bytecodes::_i2f: {
   677       bool is_double = (code == Bytecodes::_i2d);
   678       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   679       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   680       FloatRegister rsrc = op->in_opr()->as_float_reg();
   681       if (rsrc != rdst) {
   682         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   683       }
   684       __ fitof(w, rdst, rdst);
   685       break;
   686     }
   687     case Bytecodes::_f2i:{
   688       FloatRegister rsrc = op->in_opr()->as_float_reg();
   689       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   690       Label L;
   691       // result must be 0 if value is NaN; test by comparing value to itself
   692       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   693       if (!VM_Version::v9_instructions_work()) {
   694         __ nop();
   695       }
   696       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   697       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   698       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   699       // move integer result from float register to int register
   700       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   701       __ bind (L);
   702       break;
   703     }
   704     case Bytecodes::_l2i: {
   705       Register rlo  = op->in_opr()->as_register_lo();
   706       Register rhi  = op->in_opr()->as_register_hi();
   707       Register rdst = dst->as_register();
   708 #ifdef _LP64
   709       __ sra(rlo, 0, rdst);
   710 #else
   711       __ mov(rlo, rdst);
   712 #endif
   713       break;
   714     }
   715     case Bytecodes::_d2f:
   716     case Bytecodes::_f2d: {
   717       bool is_double = (code == Bytecodes::_f2d);
   718       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   719       LIR_Opr val = op->in_opr();
   720       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   721       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   722       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   723       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   724       __ ftof(vw, dw, rval, rdst);
   725       break;
   726     }
   727     case Bytecodes::_i2s:
   728     case Bytecodes::_i2b: {
   729       Register rval = op->in_opr()->as_register();
   730       Register rdst = dst->as_register();
   731       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   732       __ sll (rval, shift, rdst);
   733       __ sra (rdst, shift, rdst);
   734       break;
   735     }
   736     case Bytecodes::_i2c: {
   737       Register rval = op->in_opr()->as_register();
   738       Register rdst = dst->as_register();
   739       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   740       __ sll (rval, shift, rdst);
   741       __ srl (rdst, shift, rdst);
   742       break;
   743     }
   745     default: ShouldNotReachHere();
   746   }
   747 }
   750 void LIR_Assembler::align_call(LIR_Code) {
   751   // do nothing since all instructions are word aligned on sparc
   752 }
   755 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   756   __ call(op->addr(), rtype);
   757   // The peephole pass fills the delay slot, add_call_info is done in
   758   // LIR_Assembler::emit_delay.
   759 }
   762 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   763   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
   764   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
   765   __ relocate(rspec);
   766   __ call(op->addr(), relocInfo::none);
   767   // The peephole pass fills the delay slot, add_call_info is done in
   768   // LIR_Assembler::emit_delay.
   769 }
   772 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   773   add_debug_info_for_null_check_here(op->info());
   774   __ load_klass(O0, G3_scratch);
   775   if (__ is_simm13(op->vtable_offset())) {
   776     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   777   } else {
   778     // This will generate 2 instructions
   779     __ set(op->vtable_offset(), G5_method);
   780     // ld_ptr, set_hi, set
   781     __ ld_ptr(G3_scratch, G5_method, G5_method);
   782   }
   783   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
   784   __ callr(G3_scratch, G0);
   785   // the peephole pass fills the delay slot
   786 }
   788 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
   789   int store_offset;
   790   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   791     assert(!unaligned, "can't handle this");
   792     // for offsets larger than a simm13 we setup the offset in O7
   793     __ set(offset, O7);
   794     store_offset = store(from_reg, base, O7, type, wide);
   795   } else {
   796     if (type == T_ARRAY || type == T_OBJECT) {
   797       __ verify_oop(from_reg->as_register());
   798     }
   799     store_offset = code_offset();
   800     switch (type) {
   801       case T_BOOLEAN: // fall through
   802       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   803       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   804       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   805       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   806       case T_LONG  :
   807 #ifdef _LP64
   808         if (unaligned || PatchALot) {
   809           __ srax(from_reg->as_register_lo(), 32, O7);
   810           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   811           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   812         } else {
   813           __ stx(from_reg->as_register_lo(), base, offset);
   814         }
   815 #else
   816         assert(Assembler::is_simm13(offset + 4), "must be");
   817         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   818         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   819 #endif
   820         break;
   821       case T_ADDRESS:
   822         __ st_ptr(from_reg->as_register(), base, offset);
   823         break;
   824       case T_ARRAY : // fall through
   825       case T_OBJECT:
   826         {
   827           if (UseCompressedOops && !wide) {
   828             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   829             store_offset = code_offset();
   830             __ stw(G3_scratch, base, offset);
   831           } else {
   832             __ st_ptr(from_reg->as_register(), base, offset);
   833           }
   834           break;
   835         }
   837       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   838       case T_DOUBLE:
   839         {
   840           FloatRegister reg = from_reg->as_double_reg();
   841           // split unaligned stores
   842           if (unaligned || PatchALot) {
   843             assert(Assembler::is_simm13(offset + 4), "must be");
   844             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   845             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   846           } else {
   847             __ stf(FloatRegisterImpl::D, reg, base, offset);
   848           }
   849           break;
   850         }
   851       default      : ShouldNotReachHere();
   852     }
   853   }
   854   return store_offset;
   855 }
   858 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
   859   if (type == T_ARRAY || type == T_OBJECT) {
   860     __ verify_oop(from_reg->as_register());
   861   }
   862   int store_offset = code_offset();
   863   switch (type) {
   864     case T_BOOLEAN: // fall through
   865     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   866     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   867     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   868     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   869     case T_LONG  :
   870 #ifdef _LP64
   871       __ stx(from_reg->as_register_lo(), base, disp);
   872 #else
   873       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   874       __ std(from_reg->as_register_hi(), base, disp);
   875 #endif
   876       break;
   877     case T_ADDRESS:
   878       __ st_ptr(from_reg->as_register(), base, disp);
   879       break;
   880     case T_ARRAY : // fall through
   881     case T_OBJECT:
   882       {
   883         if (UseCompressedOops && !wide) {
   884           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   885           store_offset = code_offset();
   886           __ stw(G3_scratch, base, disp);
   887         } else {
   888           __ st_ptr(from_reg->as_register(), base, disp);
   889         }
   890         break;
   891       }
   892     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   893     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   894     default      : ShouldNotReachHere();
   895   }
   896   return store_offset;
   897 }
   900 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
   901   int load_offset;
   902   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   903     assert(base != O7, "destroying register");
   904     assert(!unaligned, "can't handle this");
   905     // for offsets larger than a simm13 we setup the offset in O7
   906     __ set(offset, O7);
   907     load_offset = load(base, O7, to_reg, type, wide);
   908   } else {
   909     load_offset = code_offset();
   910     switch(type) {
   911       case T_BOOLEAN: // fall through
   912       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   913       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   914       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   915       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   916       case T_LONG  :
   917         if (!unaligned) {
   918 #ifdef _LP64
   919           __ ldx(base, offset, to_reg->as_register_lo());
   920 #else
   921           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   922                  "must be sequential");
   923           __ ldd(base, offset, to_reg->as_register_hi());
   924 #endif
   925         } else {
   926 #ifdef _LP64
   927           assert(base != to_reg->as_register_lo(), "can't handle this");
   928           assert(O7 != to_reg->as_register_lo(), "can't handle this");
   929           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
   930           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
   931           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
   932           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
   933 #else
   934           if (base == to_reg->as_register_lo()) {
   935             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   936             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   937           } else {
   938             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   939             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   940           }
   941 #endif
   942         }
   943         break;
   944       case T_ADDRESS:  __ ld_ptr(base, offset, to_reg->as_register()); break;
   945       case T_ARRAY : // fall through
   946       case T_OBJECT:
   947         {
   948           if (UseCompressedOops && !wide) {
   949             __ lduw(base, offset, to_reg->as_register());
   950             __ decode_heap_oop(to_reg->as_register());
   951           } else {
   952             __ ld_ptr(base, offset, to_reg->as_register());
   953           }
   954           break;
   955         }
   956       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
   957       case T_DOUBLE:
   958         {
   959           FloatRegister reg = to_reg->as_double_reg();
   960           // split unaligned loads
   961           if (unaligned || PatchALot) {
   962             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
   963             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
   964           } else {
   965             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
   966           }
   967           break;
   968         }
   969       default      : ShouldNotReachHere();
   970     }
   971     if (type == T_ARRAY || type == T_OBJECT) {
   972       __ verify_oop(to_reg->as_register());
   973     }
   974   }
   975   return load_offset;
   976 }
   979 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
   980   int load_offset = code_offset();
   981   switch(type) {
   982     case T_BOOLEAN: // fall through
   983     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
   984     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
   985     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
   986     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
   987     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
   988     case T_ARRAY : // fall through
   989     case T_OBJECT:
   990       {
   991           if (UseCompressedOops && !wide) {
   992             __ lduw(base, disp, to_reg->as_register());
   993             __ decode_heap_oop(to_reg->as_register());
   994           } else {
   995             __ ld_ptr(base, disp, to_reg->as_register());
   996           }
   997           break;
   998       }
   999     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1000     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1001     case T_LONG  :
  1002 #ifdef _LP64
  1003       __ ldx(base, disp, to_reg->as_register_lo());
  1004 #else
  1005       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1006              "must be sequential");
  1007       __ ldd(base, disp, to_reg->as_register_hi());
  1008 #endif
  1009       break;
  1010     default      : ShouldNotReachHere();
  1012   if (type == T_ARRAY || type == T_OBJECT) {
  1013     __ verify_oop(to_reg->as_register());
  1015   return load_offset;
  1018 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1019   LIR_Const* c = src->as_constant_ptr();
  1020   switch (c->type()) {
  1021     case T_INT:
  1022     case T_FLOAT: {
  1023       Register src_reg = O7;
  1024       int value = c->as_jint_bits();
  1025       if (value == 0) {
  1026         src_reg = G0;
  1027       } else {
  1028         __ set(value, O7);
  1030       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1031       __ stw(src_reg, addr.base(), addr.disp());
  1032       break;
  1034     case T_ADDRESS: {
  1035       Register src_reg = O7;
  1036       int value = c->as_jint_bits();
  1037       if (value == 0) {
  1038         src_reg = G0;
  1039       } else {
  1040         __ set(value, O7);
  1042       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1043       __ st_ptr(src_reg, addr.base(), addr.disp());
  1044       break;
  1046     case T_OBJECT: {
  1047       Register src_reg = O7;
  1048       jobject2reg(c->as_jobject(), src_reg);
  1049       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1050       __ st_ptr(src_reg, addr.base(), addr.disp());
  1051       break;
  1053     case T_LONG:
  1054     case T_DOUBLE: {
  1055       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1057       Register tmp = O7;
  1058       int value_lo = c->as_jint_lo_bits();
  1059       if (value_lo == 0) {
  1060         tmp = G0;
  1061       } else {
  1062         __ set(value_lo, O7);
  1064       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1065       int value_hi = c->as_jint_hi_bits();
  1066       if (value_hi == 0) {
  1067         tmp = G0;
  1068       } else {
  1069         __ set(value_hi, O7);
  1071       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1072       break;
  1074     default:
  1075       Unimplemented();
  1080 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
  1081   LIR_Const* c = src->as_constant_ptr();
  1082   LIR_Address* addr     = dest->as_address_ptr();
  1083   Register base = addr->base()->as_pointer_register();
  1084   int offset = -1;
  1086   switch (c->type()) {
  1087     case T_INT:
  1088     case T_FLOAT:
  1089     case T_ADDRESS: {
  1090       LIR_Opr tmp = FrameMap::O7_opr;
  1091       int value = c->as_jint_bits();
  1092       if (value == 0) {
  1093         tmp = FrameMap::G0_opr;
  1094       } else if (Assembler::is_simm13(value)) {
  1095         __ set(value, O7);
  1097       if (addr->index()->is_valid()) {
  1098         assert(addr->disp() == 0, "must be zero");
  1099         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1100       } else {
  1101         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1102         offset = store(tmp, base, addr->disp(), type, wide, false);
  1104       break;
  1106     case T_LONG:
  1107     case T_DOUBLE: {
  1108       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1109       assert(Assembler::is_simm13(addr->disp()) &&
  1110              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1112       LIR_Opr tmp = FrameMap::O7_opr;
  1113       int value_lo = c->as_jint_lo_bits();
  1114       if (value_lo == 0) {
  1115         tmp = FrameMap::G0_opr;
  1116       } else {
  1117         __ set(value_lo, O7);
  1119       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
  1120       int value_hi = c->as_jint_hi_bits();
  1121       if (value_hi == 0) {
  1122         tmp = FrameMap::G0_opr;
  1123       } else {
  1124         __ set(value_hi, O7);
  1126       offset = store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
  1127       break;
  1129     case T_OBJECT: {
  1130       jobject obj = c->as_jobject();
  1131       LIR_Opr tmp;
  1132       if (obj == NULL) {
  1133         tmp = FrameMap::G0_opr;
  1134       } else {
  1135         tmp = FrameMap::O7_opr;
  1136         jobject2reg(c->as_jobject(), O7);
  1138       // handle either reg+reg or reg+disp address
  1139       if (addr->index()->is_valid()) {
  1140         assert(addr->disp() == 0, "must be zero");
  1141         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1142       } else {
  1143         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1144         offset = store(tmp, base, addr->disp(), type, wide, false);
  1147       break;
  1149     default:
  1150       Unimplemented();
  1152   if (info != NULL) {
  1153     assert(offset != -1, "offset should've been set");
  1154     add_debug_info_for_null_check(offset, info);
  1159 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1160   LIR_Const* c = src->as_constant_ptr();
  1161   LIR_Opr to_reg = dest;
  1163   switch (c->type()) {
  1164     case T_INT:
  1165     case T_ADDRESS:
  1167         jint con = c->as_jint();
  1168         if (to_reg->is_single_cpu()) {
  1169           assert(patch_code == lir_patch_none, "no patching handled here");
  1170           __ set(con, to_reg->as_register());
  1171         } else {
  1172           ShouldNotReachHere();
  1173           assert(to_reg->is_single_fpu(), "wrong register kind");
  1175           __ set(con, O7);
  1176           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1177           __ st(O7, temp_slot);
  1178           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1181       break;
  1183     case T_LONG:
  1185         jlong con = c->as_jlong();
  1187         if (to_reg->is_double_cpu()) {
  1188 #ifdef _LP64
  1189           __ set(con,  to_reg->as_register_lo());
  1190 #else
  1191           __ set(low(con),  to_reg->as_register_lo());
  1192           __ set(high(con), to_reg->as_register_hi());
  1193 #endif
  1194 #ifdef _LP64
  1195         } else if (to_reg->is_single_cpu()) {
  1196           __ set(con, to_reg->as_register());
  1197 #endif
  1198         } else {
  1199           ShouldNotReachHere();
  1200           assert(to_reg->is_double_fpu(), "wrong register kind");
  1201           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1202           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1203           __ set(low(con),  O7);
  1204           __ st(O7, temp_slot_lo);
  1205           __ set(high(con), O7);
  1206           __ st(O7, temp_slot_hi);
  1207           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1210       break;
  1212     case T_OBJECT:
  1214         if (patch_code == lir_patch_none) {
  1215           jobject2reg(c->as_jobject(), to_reg->as_register());
  1216         } else {
  1217           jobject2reg_with_patching(to_reg->as_register(), info);
  1220       break;
  1222     case T_FLOAT:
  1224         address const_addr = __ float_constant(c->as_jfloat());
  1225         if (const_addr == NULL) {
  1226           bailout("const section overflow");
  1227           break;
  1229         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1230         AddressLiteral const_addrlit(const_addr, rspec);
  1231         if (to_reg->is_single_fpu()) {
  1232           __ patchable_sethi(const_addrlit, O7);
  1233           __ relocate(rspec);
  1234           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1236         } else {
  1237           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1239           __ set(const_addrlit, O7);
  1240           __ ld(O7, 0, to_reg->as_register());
  1243       break;
  1245     case T_DOUBLE:
  1247         address const_addr = __ double_constant(c->as_jdouble());
  1248         if (const_addr == NULL) {
  1249           bailout("const section overflow");
  1250           break;
  1252         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1254         if (to_reg->is_double_fpu()) {
  1255           AddressLiteral const_addrlit(const_addr, rspec);
  1256           __ patchable_sethi(const_addrlit, O7);
  1257           __ relocate(rspec);
  1258           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1259         } else {
  1260           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1261 #ifdef _LP64
  1262           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1263 #else
  1264           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1265           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1266 #endif
  1270       break;
  1272     default:
  1273       ShouldNotReachHere();
  1277 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1278   Register reg = addr->base()->as_register();
  1279   return Address(reg, addr->disp());
  1283 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1284   switch (type) {
  1285     case T_INT:
  1286     case T_FLOAT: {
  1287       Register tmp = O7;
  1288       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1289       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1290       __ lduw(from.base(), from.disp(), tmp);
  1291       __ stw(tmp, to.base(), to.disp());
  1292       break;
  1294     case T_OBJECT: {
  1295       Register tmp = O7;
  1296       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1297       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1298       __ ld_ptr(from.base(), from.disp(), tmp);
  1299       __ st_ptr(tmp, to.base(), to.disp());
  1300       break;
  1302     case T_LONG:
  1303     case T_DOUBLE: {
  1304       Register tmp = O7;
  1305       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1306       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1307       __ lduw(from.base(), from.disp(), tmp);
  1308       __ stw(tmp, to.base(), to.disp());
  1309       __ lduw(from.base(), from.disp() + 4, tmp);
  1310       __ stw(tmp, to.base(), to.disp() + 4);
  1311       break;
  1314     default:
  1315       ShouldNotReachHere();
  1320 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1321   Address base = as_Address(addr);
  1322   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1326 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1327   Address base = as_Address(addr);
  1328   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1332 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1333                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
  1335   LIR_Address* addr = src_opr->as_address_ptr();
  1336   LIR_Opr to_reg = dest;
  1338   Register src = addr->base()->as_pointer_register();
  1339   Register disp_reg = noreg;
  1340   int disp_value = addr->disp();
  1341   bool needs_patching = (patch_code != lir_patch_none);
  1343   if (addr->base()->type() == T_OBJECT) {
  1344     __ verify_oop(src);
  1347   PatchingStub* patch = NULL;
  1348   if (needs_patching) {
  1349     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1350     assert(!to_reg->is_double_cpu() ||
  1351            patch_code == lir_patch_none ||
  1352            patch_code == lir_patch_normal, "patching doesn't match register");
  1355   if (addr->index()->is_illegal()) {
  1356     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1357       if (needs_patching) {
  1358         __ patchable_set(0, O7);
  1359       } else {
  1360         __ set(disp_value, O7);
  1362       disp_reg = O7;
  1364   } else if (unaligned || PatchALot) {
  1365     __ add(src, addr->index()->as_register(), O7);
  1366     src = O7;
  1367   } else {
  1368     disp_reg = addr->index()->as_pointer_register();
  1369     assert(disp_value == 0, "can't handle 3 operand addresses");
  1372   // remember the offset of the load.  The patching_epilog must be done
  1373   // before the call to add_debug_info, otherwise the PcDescs don't get
  1374   // entered in increasing order.
  1375   int offset = code_offset();
  1377   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1378   if (disp_reg == noreg) {
  1379     offset = load(src, disp_value, to_reg, type, wide, unaligned);
  1380   } else {
  1381     assert(!unaligned, "can't handle this");
  1382     offset = load(src, disp_reg, to_reg, type, wide);
  1385   if (patch != NULL) {
  1386     patching_epilog(patch, patch_code, src, info);
  1388   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1392 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1393   LIR_Address* addr = src->as_address_ptr();
  1394   Address from_addr = as_Address(addr);
  1396   if (VM_Version::has_v9()) {
  1397     __ prefetch(from_addr, Assembler::severalReads);
  1402 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1403   LIR_Address* addr = src->as_address_ptr();
  1404   Address from_addr = as_Address(addr);
  1406   if (VM_Version::has_v9()) {
  1407     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1412 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1413   Address addr;
  1414   if (src->is_single_word()) {
  1415     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1416   } else if (src->is_double_word())  {
  1417     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1420   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1421   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
  1425 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1426   Address addr;
  1427   if (dest->is_single_word()) {
  1428     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1429   } else if (dest->is_double_word())  {
  1430     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1432   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1433   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
  1437 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1438   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1439     if (from_reg->is_double_fpu()) {
  1440       // double to double moves
  1441       assert(to_reg->is_double_fpu(), "should match");
  1442       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1443     } else {
  1444       // float to float moves
  1445       assert(to_reg->is_single_fpu(), "should match");
  1446       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1448   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1449     if (from_reg->is_double_cpu()) {
  1450 #ifdef _LP64
  1451       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1452 #else
  1453       assert(to_reg->is_double_cpu() &&
  1454              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1455              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1456              "should both be long and not overlap");
  1457       // long to long moves
  1458       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1459       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1460 #endif
  1461 #ifdef _LP64
  1462     } else if (to_reg->is_double_cpu()) {
  1463       // int to int moves
  1464       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1465 #endif
  1466     } else {
  1467       // int to int moves
  1468       __ mov(from_reg->as_register(), to_reg->as_register());
  1470   } else {
  1471     ShouldNotReachHere();
  1473   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1474     __ verify_oop(to_reg->as_register());
  1479 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1480                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1481                             bool wide, bool unaligned) {
  1482   LIR_Address* addr = dest->as_address_ptr();
  1484   Register src = addr->base()->as_pointer_register();
  1485   Register disp_reg = noreg;
  1486   int disp_value = addr->disp();
  1487   bool needs_patching = (patch_code != lir_patch_none);
  1489   if (addr->base()->is_oop_register()) {
  1490     __ verify_oop(src);
  1493   PatchingStub* patch = NULL;
  1494   if (needs_patching) {
  1495     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1496     assert(!from_reg->is_double_cpu() ||
  1497            patch_code == lir_patch_none ||
  1498            patch_code == lir_patch_normal, "patching doesn't match register");
  1501   if (addr->index()->is_illegal()) {
  1502     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1503       if (needs_patching) {
  1504         __ patchable_set(0, O7);
  1505       } else {
  1506         __ set(disp_value, O7);
  1508       disp_reg = O7;
  1510   } else if (unaligned || PatchALot) {
  1511     __ add(src, addr->index()->as_register(), O7);
  1512     src = O7;
  1513   } else {
  1514     disp_reg = addr->index()->as_pointer_register();
  1515     assert(disp_value == 0, "can't handle 3 operand addresses");
  1518   // remember the offset of the store.  The patching_epilog must be done
  1519   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1520   // entered in increasing order.
  1521   int offset;
  1523   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1524   if (disp_reg == noreg) {
  1525     offset = store(from_reg, src, disp_value, type, wide, unaligned);
  1526   } else {
  1527     assert(!unaligned, "can't handle this");
  1528     offset = store(from_reg, src, disp_reg, type, wide);
  1531   if (patch != NULL) {
  1532     patching_epilog(patch, patch_code, src, info);
  1535   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1539 void LIR_Assembler::return_op(LIR_Opr result) {
  1540   // the poll may need a register so just pick one that isn't the return register
  1541 #if defined(TIERED) && !defined(_LP64)
  1542   if (result->type_field() == LIR_OprDesc::long_type) {
  1543     // Must move the result to G1
  1544     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1545     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1546     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1547     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1548 #ifdef ASSERT
  1549     // mangle it so any problems will show up
  1550     __ set(0xdeadbeef, I0);
  1551     __ set(0xdeadbeef, I1);
  1552 #endif
  1554 #endif // TIERED
  1555   __ set((intptr_t)os::get_polling_page(), L0);
  1556   __ relocate(relocInfo::poll_return_type);
  1557   __ ld_ptr(L0, 0, G0);
  1558   __ ret();
  1559   __ delayed()->restore();
  1563 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1564   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1565   if (info != NULL) {
  1566     add_debug_info_for_branch(info);
  1567   } else {
  1568     __ relocate(relocInfo::poll_type);
  1571   int offset = __ offset();
  1572   __ ld_ptr(tmp->as_register(), 0, G0);
  1574   return offset;
  1578 void LIR_Assembler::emit_static_call_stub() {
  1579   address call_pc = __ pc();
  1580   address stub = __ start_a_stub(call_stub_size);
  1581   if (stub == NULL) {
  1582     bailout("static call stub overflow");
  1583     return;
  1586   int start = __ offset();
  1587   __ relocate(static_stub_Relocation::spec(call_pc));
  1589   __ set_oop(NULL, G5);
  1590   // must be set to -1 at code generation time
  1591   AddressLiteral addrlit(-1);
  1592   __ jump_to(addrlit, G3);
  1593   __ delayed()->nop();
  1595   assert(__ offset() - start <= call_stub_size, "stub too big");
  1596   __ end_a_stub();
  1600 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1601   if (opr1->is_single_fpu()) {
  1602     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1603   } else if (opr1->is_double_fpu()) {
  1604     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1605   } else if (opr1->is_single_cpu()) {
  1606     if (opr2->is_constant()) {
  1607       switch (opr2->as_constant_ptr()->type()) {
  1608         case T_INT:
  1609           { jint con = opr2->as_constant_ptr()->as_jint();
  1610             if (Assembler::is_simm13(con)) {
  1611               __ cmp(opr1->as_register(), con);
  1612             } else {
  1613               __ set(con, O7);
  1614               __ cmp(opr1->as_register(), O7);
  1617           break;
  1619         case T_OBJECT:
  1620           // there are only equal/notequal comparisions on objects
  1621           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1622             if (con == NULL) {
  1623               __ cmp(opr1->as_register(), 0);
  1624             } else {
  1625               jobject2reg(con, O7);
  1626               __ cmp(opr1->as_register(), O7);
  1629           break;
  1631         default:
  1632           ShouldNotReachHere();
  1633           break;
  1635     } else {
  1636       if (opr2->is_address()) {
  1637         LIR_Address * addr = opr2->as_address_ptr();
  1638         BasicType type = addr->type();
  1639         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1640         else                    __ ld(as_Address(addr), O7);
  1641         __ cmp(opr1->as_register(), O7);
  1642       } else {
  1643         __ cmp(opr1->as_register(), opr2->as_register());
  1646   } else if (opr1->is_double_cpu()) {
  1647     Register xlo = opr1->as_register_lo();
  1648     Register xhi = opr1->as_register_hi();
  1649     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1650       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1651 #ifdef _LP64
  1652       __ orcc(xhi, G0, G0);
  1653 #else
  1654       __ orcc(xhi, xlo, G0);
  1655 #endif
  1656     } else if (opr2->is_register()) {
  1657       Register ylo = opr2->as_register_lo();
  1658       Register yhi = opr2->as_register_hi();
  1659 #ifdef _LP64
  1660       __ cmp(xlo, ylo);
  1661 #else
  1662       __ subcc(xlo, ylo, xlo);
  1663       __ subccc(xhi, yhi, xhi);
  1664       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1665         __ orcc(xhi, xlo, G0);
  1667 #endif
  1668     } else {
  1669       ShouldNotReachHere();
  1671   } else if (opr1->is_address()) {
  1672     LIR_Address * addr = opr1->as_address_ptr();
  1673     BasicType type = addr->type();
  1674     assert (opr2->is_constant(), "Checking");
  1675     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1676     else                    __ ld(as_Address(addr), O7);
  1677     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1678   } else {
  1679     ShouldNotReachHere();
  1684 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1685   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1686     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1687     if (left->is_single_fpu()) {
  1688       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1689     } else if (left->is_double_fpu()) {
  1690       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1691     } else {
  1692       ShouldNotReachHere();
  1694   } else if (code == lir_cmp_l2i) {
  1695 #ifdef _LP64
  1696     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
  1697 #else
  1698     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1699             right->as_register_hi(), right->as_register_lo(),
  1700             dst->as_register());
  1701 #endif
  1702   } else {
  1703     ShouldNotReachHere();
  1708 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  1709   Assembler::Condition acond;
  1710   switch (condition) {
  1711     case lir_cond_equal:        acond = Assembler::equal;        break;
  1712     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1713     case lir_cond_less:         acond = Assembler::less;         break;
  1714     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1715     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1716     case lir_cond_greater:      acond = Assembler::greater;      break;
  1717     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1718     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1719     default:                         ShouldNotReachHere();
  1720   };
  1722   if (opr1->is_constant() && opr1->type() == T_INT) {
  1723     Register dest = result->as_register();
  1724     // load up first part of constant before branch
  1725     // and do the rest in the delay slot.
  1726     if (!Assembler::is_simm13(opr1->as_jint())) {
  1727       __ sethi(opr1->as_jint(), dest);
  1729   } else if (opr1->is_constant()) {
  1730     const2reg(opr1, result, lir_patch_none, NULL);
  1731   } else if (opr1->is_register()) {
  1732     reg2reg(opr1, result);
  1733   } else if (opr1->is_stack()) {
  1734     stack2reg(opr1, result, result->type());
  1735   } else {
  1736     ShouldNotReachHere();
  1738   Label skip;
  1739 #ifdef _LP64
  1740     if  (type == T_INT) {
  1741       __ br(acond, false, Assembler::pt, skip);
  1742     } else
  1743 #endif
  1744       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
  1745   if (opr1->is_constant() && opr1->type() == T_INT) {
  1746     Register dest = result->as_register();
  1747     if (Assembler::is_simm13(opr1->as_jint())) {
  1748       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1749     } else {
  1750       // the sethi has been done above, so just put in the low 10 bits
  1751       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1753   } else {
  1754     // can't do anything useful in the delay slot
  1755     __ delayed()->nop();
  1757   if (opr2->is_constant()) {
  1758     const2reg(opr2, result, lir_patch_none, NULL);
  1759   } else if (opr2->is_register()) {
  1760     reg2reg(opr2, result);
  1761   } else if (opr2->is_stack()) {
  1762     stack2reg(opr2, result, result->type());
  1763   } else {
  1764     ShouldNotReachHere();
  1766   __ bind(skip);
  1770 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1771   assert(info == NULL, "unused on this code path");
  1772   assert(left->is_register(), "wrong items state");
  1773   assert(dest->is_register(), "wrong items state");
  1775   if (right->is_register()) {
  1776     if (dest->is_float_kind()) {
  1778       FloatRegister lreg, rreg, res;
  1779       FloatRegisterImpl::Width w;
  1780       if (right->is_single_fpu()) {
  1781         w = FloatRegisterImpl::S;
  1782         lreg = left->as_float_reg();
  1783         rreg = right->as_float_reg();
  1784         res  = dest->as_float_reg();
  1785       } else {
  1786         w = FloatRegisterImpl::D;
  1787         lreg = left->as_double_reg();
  1788         rreg = right->as_double_reg();
  1789         res  = dest->as_double_reg();
  1792       switch (code) {
  1793         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1794         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1795         case lir_mul: // fall through
  1796         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1797         case lir_div: // fall through
  1798         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1799         default: ShouldNotReachHere();
  1802     } else if (dest->is_double_cpu()) {
  1803 #ifdef _LP64
  1804       Register dst_lo = dest->as_register_lo();
  1805       Register op1_lo = left->as_pointer_register();
  1806       Register op2_lo = right->as_pointer_register();
  1808       switch (code) {
  1809         case lir_add:
  1810           __ add(op1_lo, op2_lo, dst_lo);
  1811           break;
  1813         case lir_sub:
  1814           __ sub(op1_lo, op2_lo, dst_lo);
  1815           break;
  1817         default: ShouldNotReachHere();
  1819 #else
  1820       Register op1_lo = left->as_register_lo();
  1821       Register op1_hi = left->as_register_hi();
  1822       Register op2_lo = right->as_register_lo();
  1823       Register op2_hi = right->as_register_hi();
  1824       Register dst_lo = dest->as_register_lo();
  1825       Register dst_hi = dest->as_register_hi();
  1827       switch (code) {
  1828         case lir_add:
  1829           __ addcc(op1_lo, op2_lo, dst_lo);
  1830           __ addc (op1_hi, op2_hi, dst_hi);
  1831           break;
  1833         case lir_sub:
  1834           __ subcc(op1_lo, op2_lo, dst_lo);
  1835           __ subc (op1_hi, op2_hi, dst_hi);
  1836           break;
  1838         default: ShouldNotReachHere();
  1840 #endif
  1841     } else {
  1842       assert (right->is_single_cpu(), "Just Checking");
  1844       Register lreg = left->as_register();
  1845       Register res  = dest->as_register();
  1846       Register rreg = right->as_register();
  1847       switch (code) {
  1848         case lir_add:  __ add  (lreg, rreg, res); break;
  1849         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1850         case lir_mul:  __ mult (lreg, rreg, res); break;
  1851         default: ShouldNotReachHere();
  1854   } else {
  1855     assert (right->is_constant(), "must be constant");
  1857     if (dest->is_single_cpu()) {
  1858       Register lreg = left->as_register();
  1859       Register res  = dest->as_register();
  1860       int    simm13 = right->as_constant_ptr()->as_jint();
  1862       switch (code) {
  1863         case lir_add:  __ add  (lreg, simm13, res); break;
  1864         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1865         case lir_mul:  __ mult (lreg, simm13, res); break;
  1866         default: ShouldNotReachHere();
  1868     } else {
  1869       Register lreg = left->as_pointer_register();
  1870       Register res  = dest->as_register_lo();
  1871       long con = right->as_constant_ptr()->as_jlong();
  1872       assert(Assembler::is_simm13(con), "must be simm13");
  1874       switch (code) {
  1875         case lir_add:  __ add  (lreg, (int)con, res); break;
  1876         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1877         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1878         default: ShouldNotReachHere();
  1885 void LIR_Assembler::fpop() {
  1886   // do nothing
  1890 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1891   switch (code) {
  1892     case lir_sin:
  1893     case lir_tan:
  1894     case lir_cos: {
  1895       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1896       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1897       break;
  1899     case lir_sqrt: {
  1900       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1901       FloatRegister src_reg = value->as_double_reg();
  1902       FloatRegister dst_reg = dest->as_double_reg();
  1903       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1904       break;
  1906     case lir_abs: {
  1907       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1908       FloatRegister src_reg = value->as_double_reg();
  1909       FloatRegister dst_reg = dest->as_double_reg();
  1910       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1911       break;
  1913     default: {
  1914       ShouldNotReachHere();
  1915       break;
  1921 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  1922   if (right->is_constant()) {
  1923     if (dest->is_single_cpu()) {
  1924       int simm13 = right->as_constant_ptr()->as_jint();
  1925       switch (code) {
  1926         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  1927         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  1928         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  1929         default: ShouldNotReachHere();
  1931     } else {
  1932       long c = right->as_constant_ptr()->as_jlong();
  1933       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  1934       int simm13 = (int)c;
  1935       switch (code) {
  1936         case lir_logic_and:
  1937 #ifndef _LP64
  1938           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1939 #endif
  1940           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1941           break;
  1943         case lir_logic_or:
  1944 #ifndef _LP64
  1945           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1946 #endif
  1947           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1948           break;
  1950         case lir_logic_xor:
  1951 #ifndef _LP64
  1952           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1953 #endif
  1954           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1955           break;
  1957         default: ShouldNotReachHere();
  1960   } else {
  1961     assert(right->is_register(), "right should be in register");
  1963     if (dest->is_single_cpu()) {
  1964       switch (code) {
  1965         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1966         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  1967         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1968         default: ShouldNotReachHere();
  1970     } else {
  1971 #ifdef _LP64
  1972       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  1973                                                                         left->as_register_lo();
  1974       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  1975                                                                           right->as_register_lo();
  1977       switch (code) {
  1978         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  1979         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  1980         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  1981         default: ShouldNotReachHere();
  1983 #else
  1984       switch (code) {
  1985         case lir_logic_and:
  1986           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  1987           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  1988           break;
  1990         case lir_logic_or:
  1991           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  1992           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  1993           break;
  1995         case lir_logic_xor:
  1996           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  1997           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  1998           break;
  2000         default: ShouldNotReachHere();
  2002 #endif
  2008 int LIR_Assembler::shift_amount(BasicType t) {
  2009   int elem_size = type2aelembytes(t);
  2010   switch (elem_size) {
  2011     case 1 : return 0;
  2012     case 2 : return 1;
  2013     case 4 : return 2;
  2014     case 8 : return 3;
  2016   ShouldNotReachHere();
  2017   return -1;
  2021 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2022   assert(exceptionOop->as_register() == Oexception, "should match");
  2023   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
  2025   info->add_register_oop(exceptionOop);
  2027   // reuse the debug info from the safepoint poll for the throw op itself
  2028   address pc_for_athrow  = __ pc();
  2029   int pc_for_athrow_offset = __ offset();
  2030   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2031   __ set(pc_for_athrow, Oissuing_pc, rspec);
  2032   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2034   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2035   __ delayed()->nop();
  2039 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2040   assert(exceptionOop->as_register() == Oexception, "should match");
  2042   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
  2043   __ delayed()->nop();
  2047 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2048   Register src = op->src()->as_register();
  2049   Register dst = op->dst()->as_register();
  2050   Register src_pos = op->src_pos()->as_register();
  2051   Register dst_pos = op->dst_pos()->as_register();
  2052   Register length  = op->length()->as_register();
  2053   Register tmp = op->tmp()->as_register();
  2054   Register tmp2 = O7;
  2056   int flags = op->flags();
  2057   ciArrayKlass* default_type = op->expected_type();
  2058   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2059   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2061 #ifdef _LP64
  2062   // higher 32bits must be null
  2063   __ sra(dst_pos, 0, dst_pos);
  2064   __ sra(src_pos, 0, src_pos);
  2065   __ sra(length, 0, length);
  2066 #endif
  2068   // set up the arraycopy stub information
  2069   ArrayCopyStub* stub = op->stub();
  2071   // always do stub if no type information is available.  it's ok if
  2072   // the known type isn't loaded since the code sanity checks
  2073   // in debug mode and the type isn't required when we know the exact type
  2074   // also check that the type is an array type.
  2075   if (op->expected_type() == NULL) {
  2076     __ mov(src,     O0);
  2077     __ mov(src_pos, O1);
  2078     __ mov(dst,     O2);
  2079     __ mov(dst_pos, O3);
  2080     __ mov(length,  O4);
  2081     address copyfunc_addr = StubRoutines::generic_arraycopy();
  2083     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  2084       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2085     } else {
  2086 #ifndef PRODUCT
  2087       if (PrintC1Statistics) {
  2088         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
  2089         __ inc_counter(counter, G1, G3);
  2091 #endif
  2092       __ call_VM_leaf(tmp, copyfunc_addr);
  2095     if (copyfunc_addr != NULL) {
  2096       __ xor3(O0, -1, tmp);
  2097       __ sub(length, tmp, length);
  2098       __ add(src_pos, tmp, src_pos);
  2099       __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
  2100       __ delayed()->add(dst_pos, tmp, dst_pos);
  2101     } else {
  2102       __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
  2103       __ delayed()->nop();
  2105     __ bind(*stub->continuation());
  2106     return;
  2109   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2111   // make sure src and dst are non-null and load array length
  2112   if (flags & LIR_OpArrayCopy::src_null_check) {
  2113     __ tst(src);
  2114     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2115     __ delayed()->nop();
  2118   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2119     __ tst(dst);
  2120     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2121     __ delayed()->nop();
  2124   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2125     // test src_pos register
  2126     __ tst(src_pos);
  2127     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2128     __ delayed()->nop();
  2131   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2132     // test dst_pos register
  2133     __ tst(dst_pos);
  2134     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2135     __ delayed()->nop();
  2138   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2139     // make sure length isn't negative
  2140     __ tst(length);
  2141     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2142     __ delayed()->nop();
  2145   if (flags & LIR_OpArrayCopy::src_range_check) {
  2146     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2147     __ add(length, src_pos, tmp);
  2148     __ cmp(tmp2, tmp);
  2149     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2150     __ delayed()->nop();
  2153   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2154     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2155     __ add(length, dst_pos, tmp);
  2156     __ cmp(tmp2, tmp);
  2157     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2158     __ delayed()->nop();
  2161   int shift = shift_amount(basic_type);
  2163   if (flags & LIR_OpArrayCopy::type_check) {
  2164     // We don't know the array types are compatible
  2165     if (basic_type != T_OBJECT) {
  2166       // Simple test for basic type arrays
  2167       if (UseCompressedOops) {
  2168         // We don't need decode because we just need to compare
  2169         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
  2170         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2171         __ cmp(tmp, tmp2);
  2172         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2173       } else {
  2174         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2175         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2176         __ cmp(tmp, tmp2);
  2177         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2179       __ delayed()->nop();
  2180     } else {
  2181       // For object arrays, if src is a sub class of dst then we can
  2182       // safely do the copy.
  2183       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  2185       Label cont, slow;
  2186       assert_different_registers(tmp, tmp2, G3, G1);
  2188       __ load_klass(src, G3);
  2189       __ load_klass(dst, G1);
  2191       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
  2193       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2194       __ delayed()->nop();
  2196       __ cmp(G3, 0);
  2197       if (copyfunc_addr != NULL) { // use stub if available
  2198         // src is not a sub class of dst so we have to do a
  2199         // per-element check.
  2200         __ br(Assembler::notEqual, false, Assembler::pt, cont);
  2201         __ delayed()->nop();
  2203         __ bind(slow);
  2205         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  2206         if ((flags & mask) != mask) {
  2207           // Check that at least both of them object arrays.
  2208           assert(flags & mask, "one of the two should be known to be an object array");
  2210           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  2211             __ load_klass(src, tmp);
  2212           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  2213             __ load_klass(dst, tmp);
  2215           int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  2216             Klass::layout_helper_offset_in_bytes();
  2218           __ lduw(tmp, lh_offset, tmp2);
  2220           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2221           __ set(objArray_lh, tmp);
  2222           __ cmp(tmp, tmp2);
  2223           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
  2224           __ delayed()->nop();
  2227         Register src_ptr = O0;
  2228         Register dst_ptr = O1;
  2229         Register len     = O2;
  2230         Register chk_off = O3;
  2231         Register super_k = O4;
  2233         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2234         if (shift == 0) {
  2235           __ add(src_ptr, src_pos, src_ptr);
  2236         } else {
  2237           __ sll(src_pos, shift, tmp);
  2238           __ add(src_ptr, tmp, src_ptr);
  2241         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2242         if (shift == 0) {
  2243           __ add(dst_ptr, dst_pos, dst_ptr);
  2244         } else {
  2245           __ sll(dst_pos, shift, tmp);
  2246           __ add(dst_ptr, tmp, dst_ptr);
  2248         __ mov(length, len);
  2249         __ load_klass(dst, tmp);
  2251         int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  2252                          objArrayKlass::element_klass_offset_in_bytes());
  2253         __ ld_ptr(tmp, ek_offset, super_k);
  2255         int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2256                           Klass::super_check_offset_offset_in_bytes());
  2257         __ lduw(super_k, sco_offset, chk_off);
  2259         __ call_VM_leaf(tmp, copyfunc_addr);
  2261 #ifndef PRODUCT
  2262         if (PrintC1Statistics) {
  2263           Label failed;
  2264           __ br_notnull(O0, false, Assembler::pn,  failed);
  2265           __ delayed()->nop();
  2266           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
  2267           __ bind(failed);
  2269 #endif
  2271         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
  2272         __ delayed()->xor3(O0, -1, tmp);
  2274 #ifndef PRODUCT
  2275         if (PrintC1Statistics) {
  2276           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
  2278 #endif
  2280         __ sub(length, tmp, length);
  2281         __ add(src_pos, tmp, src_pos);
  2282         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
  2283         __ delayed()->add(dst_pos, tmp, dst_pos);
  2285         __ bind(cont);
  2286       } else {
  2287         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2288         __ delayed()->nop();
  2289         __ bind(cont);
  2294 #ifdef ASSERT
  2295   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2296     // Sanity check the known type with the incoming class.  For the
  2297     // primitive case the types must match exactly with src.klass and
  2298     // dst.klass each exactly matching the default type.  For the
  2299     // object array case, if no type check is needed then either the
  2300     // dst type is exactly the expected type and the src type is a
  2301     // subtype which we can't check or src is the same array as dst
  2302     // but not necessarily exactly of type default_type.
  2303     Label known_ok, halt;
  2304     jobject2reg(op->expected_type()->constant_encoding(), tmp);
  2305     if (UseCompressedOops) {
  2306       // tmp holds the default type. It currently comes uncompressed after the
  2307       // load of a constant, so encode it.
  2308       __ encode_heap_oop(tmp);
  2309       // load the raw value of the dst klass, since we will be comparing
  2310       // uncompressed values directly.
  2311       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2312       if (basic_type != T_OBJECT) {
  2313         __ cmp(tmp, tmp2);
  2314         __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2315         // load the raw value of the src klass.
  2316         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2317         __ cmp(tmp, tmp2);
  2318         __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2319         __ delayed()->nop();
  2320       } else {
  2321         __ cmp(tmp, tmp2);
  2322         __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2323         __ delayed()->cmp(src, dst);
  2324         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2325         __ delayed()->nop();
  2327     } else {
  2328       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2329       if (basic_type != T_OBJECT) {
  2330         __ cmp(tmp, tmp2);
  2331         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
  2332         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2333         __ cmp(tmp, tmp2);
  2334         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2335         __ delayed()->nop();
  2336       } else {
  2337         __ cmp(tmp, tmp2);
  2338         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2339         __ delayed()->cmp(src, dst);
  2340         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2341         __ delayed()->nop();
  2344     __ bind(halt);
  2345     __ stop("incorrect type information in arraycopy");
  2346     __ bind(known_ok);
  2348 #endif
  2350 #ifndef PRODUCT
  2351   if (PrintC1Statistics) {
  2352     address counter = Runtime1::arraycopy_count_address(basic_type);
  2353     __ inc_counter(counter, G1, G3);
  2355 #endif
  2357   Register src_ptr = O0;
  2358   Register dst_ptr = O1;
  2359   Register len     = O2;
  2361   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2362   if (shift == 0) {
  2363     __ add(src_ptr, src_pos, src_ptr);
  2364   } else {
  2365     __ sll(src_pos, shift, tmp);
  2366     __ add(src_ptr, tmp, src_ptr);
  2369   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2370   if (shift == 0) {
  2371     __ add(dst_ptr, dst_pos, dst_ptr);
  2372   } else {
  2373     __ sll(dst_pos, shift, tmp);
  2374     __ add(dst_ptr, tmp, dst_ptr);
  2377   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  2378   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  2379   const char *name;
  2380   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  2382   // arraycopy stubs takes a length in number of elements, so don't scale it.
  2383   __ mov(length, len);
  2384   __ call_VM_leaf(tmp, entry);
  2386   __ bind(*stub->continuation());
  2390 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2391   if (dest->is_single_cpu()) {
  2392 #ifdef _LP64
  2393     if (left->type() == T_OBJECT) {
  2394       switch (code) {
  2395         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2396         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2397         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2398         default: ShouldNotReachHere();
  2400     } else
  2401 #endif
  2402       switch (code) {
  2403         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2404         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2405         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2406         default: ShouldNotReachHere();
  2408   } else {
  2409 #ifdef _LP64
  2410     switch (code) {
  2411       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2412       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2413       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2414       default: ShouldNotReachHere();
  2416 #else
  2417     switch (code) {
  2418       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2419       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2420       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2421       default: ShouldNotReachHere();
  2423 #endif
  2428 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2429 #ifdef _LP64
  2430   if (left->type() == T_OBJECT) {
  2431     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2432     Register l = left->as_register();
  2433     Register d = dest->as_register_lo();
  2434     switch (code) {
  2435       case lir_shl:  __ sllx  (l, count, d); break;
  2436       case lir_shr:  __ srax  (l, count, d); break;
  2437       case lir_ushr: __ srlx  (l, count, d); break;
  2438       default: ShouldNotReachHere();
  2440     return;
  2442 #endif
  2444   if (dest->is_single_cpu()) {
  2445     count = count & 0x1F; // Java spec
  2446     switch (code) {
  2447       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2448       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2449       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2450       default: ShouldNotReachHere();
  2452   } else if (dest->is_double_cpu()) {
  2453     count = count & 63; // Java spec
  2454     switch (code) {
  2455       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2456       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2457       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2458       default: ShouldNotReachHere();
  2460   } else {
  2461     ShouldNotReachHere();
  2466 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2467   assert(op->tmp1()->as_register()  == G1 &&
  2468          op->tmp2()->as_register()  == G3 &&
  2469          op->tmp3()->as_register()  == G4 &&
  2470          op->obj()->as_register()   == O0 &&
  2471          op->klass()->as_register() == G5, "must be");
  2472   if (op->init_check()) {
  2473     __ ld(op->klass()->as_register(),
  2474           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
  2475           op->tmp1()->as_register());
  2476     add_debug_info_for_null_check_here(op->stub()->info());
  2477     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
  2478     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2479     __ delayed()->nop();
  2481   __ allocate_object(op->obj()->as_register(),
  2482                      op->tmp1()->as_register(),
  2483                      op->tmp2()->as_register(),
  2484                      op->tmp3()->as_register(),
  2485                      op->header_size(),
  2486                      op->object_size(),
  2487                      op->klass()->as_register(),
  2488                      *op->stub()->entry());
  2489   __ bind(*op->stub()->continuation());
  2490   __ verify_oop(op->obj()->as_register());
  2494 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2495   assert(op->tmp1()->as_register()  == G1 &&
  2496          op->tmp2()->as_register()  == G3 &&
  2497          op->tmp3()->as_register()  == G4 &&
  2498          op->tmp4()->as_register()  == O1 &&
  2499          op->klass()->as_register() == G5, "must be");
  2501   LP64_ONLY( __ signx(op->len()->as_register()); )
  2502   if (UseSlowPath ||
  2503       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2504       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2505     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2506     __ delayed()->nop();
  2507   } else {
  2508     __ allocate_array(op->obj()->as_register(),
  2509                       op->len()->as_register(),
  2510                       op->tmp1()->as_register(),
  2511                       op->tmp2()->as_register(),
  2512                       op->tmp3()->as_register(),
  2513                       arrayOopDesc::header_size(op->type()),
  2514                       type2aelembytes(op->type()),
  2515                       op->klass()->as_register(),
  2516                       *op->stub()->entry());
  2518   __ bind(*op->stub()->continuation());
  2522 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
  2523                                         ciMethodData *md, ciProfileData *data,
  2524                                         Register recv, Register tmp1, Label* update_done) {
  2525   uint i;
  2526   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2527     Label next_test;
  2528     // See if the receiver is receiver[n].
  2529     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2530                           mdo_offset_bias);
  2531     __ ld_ptr(receiver_addr, tmp1);
  2532     __ verify_oop(tmp1);
  2533     __ cmp(recv, tmp1);
  2534     __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2535     __ delayed()->nop();
  2536     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2537                       mdo_offset_bias);
  2538     __ ld_ptr(data_addr, tmp1);
  2539     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2540     __ st_ptr(tmp1, data_addr);
  2541     __ ba(false, *update_done);
  2542     __ delayed()->nop();
  2543     __ bind(next_test);
  2546   // Didn't find receiver; find next empty slot and fill it in
  2547   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2548     Label next_test;
  2549     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2550                       mdo_offset_bias);
  2551     __ ld_ptr(recv_addr, tmp1);
  2552     __ br_notnull(tmp1, false, Assembler::pt, next_test);
  2553     __ delayed()->nop();
  2554     __ st_ptr(recv, recv_addr);
  2555     __ set(DataLayout::counter_increment, tmp1);
  2556     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2557               mdo_offset_bias);
  2558     __ ba(false, *update_done);
  2559     __ delayed()->nop();
  2560     __ bind(next_test);
  2565 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
  2566                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
  2567   md = method->method_data_or_null();
  2568   assert(md != NULL, "Sanity");
  2569   data = md->bci_to_data(bci);
  2570   assert(data != NULL,       "need data for checkcast");
  2571   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  2572   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2573     // The offset is large so bias the mdo by the base of the slot so
  2574     // that the ld can use simm13s to reference the slots of the data
  2575     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2579 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  2580   // we always need a stub for the failure case.
  2581   CodeStub* stub = op->stub();
  2582   Register obj = op->object()->as_register();
  2583   Register k_RInfo = op->tmp1()->as_register();
  2584   Register klass_RInfo = op->tmp2()->as_register();
  2585   Register dst = op->result_opr()->as_register();
  2586   Register Rtmp1 = op->tmp3()->as_register();
  2587   ciKlass* k = op->klass();
  2590   if (obj == k_RInfo) {
  2591     k_RInfo = klass_RInfo;
  2592     klass_RInfo = obj;
  2595   ciMethodData* md;
  2596   ciProfileData* data;
  2597   int mdo_offset_bias = 0;
  2598   if (op->should_profile()) {
  2599     ciMethod* method = op->profiled_method();
  2600     assert(method != NULL, "Should have method");
  2601     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2603     Label not_null;
  2604     __ br_notnull(obj, false, Assembler::pn, not_null);
  2605     __ delayed()->nop();
  2606     Register mdo      = k_RInfo;
  2607     Register data_val = Rtmp1;
  2608     jobject2reg(md->constant_encoding(), mdo);
  2609     if (mdo_offset_bias > 0) {
  2610       __ set(mdo_offset_bias, data_val);
  2611       __ add(mdo, data_val, mdo);
  2613     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2614     __ ldub(flags_addr, data_val);
  2615     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2616     __ stb(data_val, flags_addr);
  2617     __ ba(false, *obj_is_null);
  2618     __ delayed()->nop();
  2619     __ bind(not_null);
  2620   } else {
  2621     __ br_null(obj, false, Assembler::pn, *obj_is_null);
  2622     __ delayed()->nop();
  2625   Label profile_cast_failure, profile_cast_success;
  2626   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  2627   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  2629   // patching may screw with our temporaries on sparc,
  2630   // so let's do it before loading the class
  2631   if (k->is_loaded()) {
  2632     jobject2reg(k->constant_encoding(), k_RInfo);
  2633   } else {
  2634     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2636   assert(obj != k_RInfo, "must be different");
  2638   // get object class
  2639   // not a safepoint as obj null check happens earlier
  2640   __ load_klass(obj, klass_RInfo);
  2641   if (op->fast_check()) {
  2642     assert_different_registers(klass_RInfo, k_RInfo);
  2643     __ cmp(k_RInfo, klass_RInfo);
  2644     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
  2645     __ delayed()->nop();
  2646   } else {
  2647     bool need_slow_path = true;
  2648     if (k->is_loaded()) {
  2649       if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2650         need_slow_path = false;
  2651       // perform the fast part of the checking logic
  2652       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2653                                        (need_slow_path ? success_target : NULL),
  2654                                        failure_target, NULL,
  2655                                        RegisterOrConstant(k->super_check_offset()));
  2656     } else {
  2657       // perform the fast part of the checking logic
  2658       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
  2659                                        failure_target, NULL);
  2661     if (need_slow_path) {
  2662       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2663       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2664       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2665       __ delayed()->nop();
  2666       __ cmp(G3, 0);
  2667       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2668       __ delayed()->nop();
  2669       // Fall through to success case
  2673   if (op->should_profile()) {
  2674     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2675     assert_different_registers(obj, mdo, recv, tmp1);
  2676     __ bind(profile_cast_success);
  2677     jobject2reg(md->constant_encoding(), mdo);
  2678     if (mdo_offset_bias > 0) {
  2679       __ set(mdo_offset_bias, tmp1);
  2680       __ add(mdo, tmp1, mdo);
  2682     __ load_klass(obj, recv);
  2683     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
  2684     // Jump over the failure case
  2685     __ ba(false, *success);
  2686     __ delayed()->nop();
  2687     // Cast failure case
  2688     __ bind(profile_cast_failure);
  2689     jobject2reg(md->constant_encoding(), mdo);
  2690     if (mdo_offset_bias > 0) {
  2691       __ set(mdo_offset_bias, tmp1);
  2692       __ add(mdo, tmp1, mdo);
  2694     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2695     __ ld_ptr(data_addr, tmp1);
  2696     __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2697     __ st_ptr(tmp1, data_addr);
  2698     __ ba(false, *failure);
  2699     __ delayed()->nop();
  2701   __ ba(false, *success);
  2702   __ delayed()->nop();
  2705 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2706   LIR_Code code = op->code();
  2707   if (code == lir_store_check) {
  2708     Register value = op->object()->as_register();
  2709     Register array = op->array()->as_register();
  2710     Register k_RInfo = op->tmp1()->as_register();
  2711     Register klass_RInfo = op->tmp2()->as_register();
  2712     Register Rtmp1 = op->tmp3()->as_register();
  2714     __ verify_oop(value);
  2715     CodeStub* stub = op->stub();
  2716     // check if it needs to be profiled
  2717     ciMethodData* md;
  2718     ciProfileData* data;
  2719     int mdo_offset_bias = 0;
  2720     if (op->should_profile()) {
  2721       ciMethod* method = op->profiled_method();
  2722       assert(method != NULL, "Should have method");
  2723       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2725     Label profile_cast_success, profile_cast_failure, done;
  2726     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  2727     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  2729     if (op->should_profile()) {
  2730       Label not_null;
  2731       __ br_notnull(value, false, Assembler::pn, not_null);
  2732       __ delayed()->nop();
  2733       Register mdo      = k_RInfo;
  2734       Register data_val = Rtmp1;
  2735       jobject2reg(md->constant_encoding(), mdo);
  2736       if (mdo_offset_bias > 0) {
  2737         __ set(mdo_offset_bias, data_val);
  2738         __ add(mdo, data_val, mdo);
  2740       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2741       __ ldub(flags_addr, data_val);
  2742       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2743       __ stb(data_val, flags_addr);
  2744       __ ba(false, done);
  2745       __ delayed()->nop();
  2746       __ bind(not_null);
  2747     } else {
  2748       __ br_null(value, false, Assembler::pn, done);
  2749       __ delayed()->nop();
  2751     add_debug_info_for_null_check_here(op->info_for_exception());
  2752     __ load_klass(array, k_RInfo);
  2753     __ load_klass(value, klass_RInfo);
  2755     // get instance klass
  2756     __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)), k_RInfo);
  2757     // perform the fast part of the checking logic
  2758     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
  2760     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2761     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2762     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2763     __ delayed()->nop();
  2764     __ cmp(G3, 0);
  2765     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2766     __ delayed()->nop();
  2767     // fall through to the success case
  2769     if (op->should_profile()) {
  2770       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2771       assert_different_registers(value, mdo, recv, tmp1);
  2772       __ bind(profile_cast_success);
  2773       jobject2reg(md->constant_encoding(), mdo);
  2774       if (mdo_offset_bias > 0) {
  2775         __ set(mdo_offset_bias, tmp1);
  2776         __ add(mdo, tmp1, mdo);
  2778       __ load_klass(value, recv);
  2779       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
  2780       __ ba(false, done);
  2781       __ delayed()->nop();
  2782       // Cast failure case
  2783       __ bind(profile_cast_failure);
  2784       jobject2reg(md->constant_encoding(), mdo);
  2785       if (mdo_offset_bias > 0) {
  2786         __ set(mdo_offset_bias, tmp1);
  2787         __ add(mdo, tmp1, mdo);
  2789       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2790       __ ld_ptr(data_addr, tmp1);
  2791       __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2792       __ st_ptr(tmp1, data_addr);
  2793       __ ba(false, *stub->entry());
  2794       __ delayed()->nop();
  2796     __ bind(done);
  2797   } else if (code == lir_checkcast) {
  2798     Register obj = op->object()->as_register();
  2799     Register dst = op->result_opr()->as_register();
  2800     Label success;
  2801     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  2802     __ bind(success);
  2803     __ mov(obj, dst);
  2804   } else if (code == lir_instanceof) {
  2805     Register obj = op->object()->as_register();
  2806     Register dst = op->result_opr()->as_register();
  2807     Label success, failure, done;
  2808     emit_typecheck_helper(op, &success, &failure, &failure);
  2809     __ bind(failure);
  2810     __ set(0, dst);
  2811     __ ba(false, done);
  2812     __ delayed()->nop();
  2813     __ bind(success);
  2814     __ set(1, dst);
  2815     __ bind(done);
  2816   } else {
  2817     ShouldNotReachHere();
  2823 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2824   if (op->code() == lir_cas_long) {
  2825     assert(VM_Version::supports_cx8(), "wrong machine");
  2826     Register addr = op->addr()->as_pointer_register();
  2827     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2828     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2829     Register new_value_lo = op->new_value()->as_register_lo();
  2830     Register new_value_hi = op->new_value()->as_register_hi();
  2831     Register t1 = op->tmp1()->as_register();
  2832     Register t2 = op->tmp2()->as_register();
  2833 #ifdef _LP64
  2834     __ mov(cmp_value_lo, t1);
  2835     __ mov(new_value_lo, t2);
  2836     // perform the compare and swap operation
  2837     __ casx(addr, t1, t2);
  2838     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2839     // overwritten with the original value in "addr" and will be equal to t1.
  2840     __ cmp(t1, t2);
  2841 #else
  2842     // move high and low halves of long values into single registers
  2843     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2844     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2845     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2846     __ sllx(new_value_hi, 32, t2);
  2847     __ srl(new_value_lo, 0, new_value_lo);
  2848     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2849     // perform the compare and swap operation
  2850     __ casx(addr, t1, t2);
  2851     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2852     // overwritten with the original value in "addr" and will be equal to t1.
  2853     // Produce icc flag for 32bit.
  2854     __ sub(t1, t2, t2);
  2855     __ srlx(t2, 32, t1);
  2856     __ orcc(t2, t1, G0);
  2857 #endif
  2858   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2859     Register addr = op->addr()->as_pointer_register();
  2860     Register cmp_value = op->cmp_value()->as_register();
  2861     Register new_value = op->new_value()->as_register();
  2862     Register t1 = op->tmp1()->as_register();
  2863     Register t2 = op->tmp2()->as_register();
  2864     __ mov(cmp_value, t1);
  2865     __ mov(new_value, t2);
  2866     if (op->code() == lir_cas_obj) {
  2867       if (UseCompressedOops) {
  2868         __ encode_heap_oop(t1);
  2869         __ encode_heap_oop(t2);
  2870         __ cas(addr, t1, t2);
  2871       } else {
  2872         __ cas_ptr(addr, t1, t2);
  2874     } else {
  2875       __ cas(addr, t1, t2);
  2877     __ cmp(t1, t2);
  2878   } else {
  2879     Unimplemented();
  2883 void LIR_Assembler::set_24bit_FPU() {
  2884   Unimplemented();
  2888 void LIR_Assembler::reset_FPU() {
  2889   Unimplemented();
  2893 void LIR_Assembler::breakpoint() {
  2894   __ breakpoint_trap();
  2898 void LIR_Assembler::push(LIR_Opr opr) {
  2899   Unimplemented();
  2903 void LIR_Assembler::pop(LIR_Opr opr) {
  2904   Unimplemented();
  2908 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2909   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2910   Register dst = dst_opr->as_register();
  2911   Register reg = mon_addr.base();
  2912   int offset = mon_addr.disp();
  2913   // compute pointer to BasicLock
  2914   if (mon_addr.is_simm13()) {
  2915     __ add(reg, offset, dst);
  2916   } else {
  2917     __ set(offset, dst);
  2918     __ add(dst, reg, dst);
  2923 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2924   Register obj = op->obj_opr()->as_register();
  2925   Register hdr = op->hdr_opr()->as_register();
  2926   Register lock = op->lock_opr()->as_register();
  2928   // obj may not be an oop
  2929   if (op->code() == lir_lock) {
  2930     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2931     if (UseFastLocking) {
  2932       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2933       // add debug info for NullPointerException only if one is possible
  2934       if (op->info() != NULL) {
  2935         add_debug_info_for_null_check_here(op->info());
  2937       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2938     } else {
  2939       // always do slow locking
  2940       // note: the slow locking code could be inlined here, however if we use
  2941       //       slow locking, speed doesn't matter anyway and this solution is
  2942       //       simpler and requires less duplicated code - additionally, the
  2943       //       slow locking code is the same in either case which simplifies
  2944       //       debugging
  2945       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2946       __ delayed()->nop();
  2948   } else {
  2949     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2950     if (UseFastLocking) {
  2951       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2952       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2953     } else {
  2954       // always do slow unlocking
  2955       // note: the slow unlocking code could be inlined here, however if we use
  2956       //       slow unlocking, speed doesn't matter anyway and this solution is
  2957       //       simpler and requires less duplicated code - additionally, the
  2958       //       slow unlocking code is the same in either case which simplifies
  2959       //       debugging
  2960       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2961       __ delayed()->nop();
  2964   __ bind(*op->stub()->continuation());
  2968 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  2969   ciMethod* method = op->profiled_method();
  2970   int bci          = op->profiled_bci();
  2972   // Update counter for all call types
  2973   ciMethodData* md = method->method_data_or_null();
  2974   assert(md != NULL, "Sanity");
  2975   ciProfileData* data = md->bci_to_data(bci);
  2976   assert(data->is_CounterData(), "need CounterData for calls");
  2977   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  2978   Register mdo  = op->mdo()->as_register();
  2979 #ifdef _LP64
  2980   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
  2981   Register tmp1 = op->tmp1()->as_register_lo();
  2982 #else
  2983   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  2984   Register tmp1 = op->tmp1()->as_register();
  2985 #endif
  2986   jobject2reg(md->constant_encoding(), mdo);
  2987   int mdo_offset_bias = 0;
  2988   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  2989                             data->size_in_bytes())) {
  2990     // The offset is large so bias the mdo by the base of the slot so
  2991     // that the ld can use simm13s to reference the slots of the data
  2992     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  2993     __ set(mdo_offset_bias, O7);
  2994     __ add(mdo, O7, mdo);
  2997   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2998   Bytecodes::Code bc = method->java_code_at_bci(bci);
  2999   // Perform additional virtual call profiling for invokevirtual and
  3000   // invokeinterface bytecodes
  3001   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3002       C1ProfileVirtualCalls) {
  3003     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3004     Register recv = op->recv()->as_register();
  3005     assert_different_registers(mdo, tmp1, recv);
  3006     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3007     ciKlass* known_klass = op->known_holder();
  3008     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3009       // We know the type that will be seen at this call site; we can
  3010       // statically update the methodDataOop rather than needing to do
  3011       // dynamic tests on the receiver type
  3013       // NOTE: we should probably put a lock around this search to
  3014       // avoid collisions by concurrent compilations
  3015       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3016       uint i;
  3017       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3018         ciKlass* receiver = vc_data->receiver(i);
  3019         if (known_klass->equals(receiver)) {
  3020           Address data_addr(mdo, md->byte_offset_of_slot(data,
  3021                                                          VirtualCallData::receiver_count_offset(i)) -
  3022                             mdo_offset_bias);
  3023           __ ld_ptr(data_addr, tmp1);
  3024           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3025           __ st_ptr(tmp1, data_addr);
  3026           return;
  3030       // Receiver type not found in profile data; select an empty slot
  3032       // Note that this is less efficient than it should be because it
  3033       // always does a write to the receiver part of the
  3034       // VirtualCallData rather than just the first time
  3035       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3036         ciKlass* receiver = vc_data->receiver(i);
  3037         if (receiver == NULL) {
  3038           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  3039                             mdo_offset_bias);
  3040           jobject2reg(known_klass->constant_encoding(), tmp1);
  3041           __ st_ptr(tmp1, recv_addr);
  3042           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  3043                             mdo_offset_bias);
  3044           __ ld_ptr(data_addr, tmp1);
  3045           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3046           __ st_ptr(tmp1, data_addr);
  3047           return;
  3050     } else {
  3051       __ load_klass(recv, recv);
  3052       Label update_done;
  3053       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
  3054       // Receiver did not match any saved receiver and there is no empty row for it.
  3055       // Increment total counter to indicate polymorphic case.
  3056       __ ld_ptr(counter_addr, tmp1);
  3057       __ add(tmp1, DataLayout::counter_increment, tmp1);
  3058       __ st_ptr(tmp1, counter_addr);
  3060       __ bind(update_done);
  3062   } else {
  3063     // Static call
  3064     __ ld_ptr(counter_addr, tmp1);
  3065     __ add(tmp1, DataLayout::counter_increment, tmp1);
  3066     __ st_ptr(tmp1, counter_addr);
  3070 void LIR_Assembler::align_backward_branch_target() {
  3071   __ align(OptoLoopAlignment);
  3075 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  3076   // make sure we are expecting a delay
  3077   // this has the side effect of clearing the delay state
  3078   // so we can use _masm instead of _masm->delayed() to do the
  3079   // code generation.
  3080   __ delayed();
  3082   // make sure we only emit one instruction
  3083   int offset = code_offset();
  3084   op->delay_op()->emit_code(this);
  3085 #ifdef ASSERT
  3086   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  3087     op->delay_op()->print();
  3089   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  3090          "only one instruction can go in a delay slot");
  3091 #endif
  3093   // we may also be emitting the call info for the instruction
  3094   // which we are the delay slot of.
  3095   CodeEmitInfo* call_info = op->call_info();
  3096   if (call_info) {
  3097     add_call_info(code_offset(), call_info);
  3100   if (VerifyStackAtCalls) {
  3101     _masm->sub(FP, SP, O7);
  3102     _masm->cmp(O7, initial_frame_size_in_bytes());
  3103     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  3108 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3109   assert(left->is_register(), "can only handle registers");
  3111   if (left->is_single_cpu()) {
  3112     __ neg(left->as_register(), dest->as_register());
  3113   } else if (left->is_single_fpu()) {
  3114     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  3115   } else if (left->is_double_fpu()) {
  3116     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  3117   } else {
  3118     assert (left->is_double_cpu(), "Must be a long");
  3119     Register Rlow = left->as_register_lo();
  3120     Register Rhi = left->as_register_hi();
  3121 #ifdef _LP64
  3122     __ sub(G0, Rlow, dest->as_register_lo());
  3123 #else
  3124     __ subcc(G0, Rlow, dest->as_register_lo());
  3125     __ subc (G0, Rhi,  dest->as_register_hi());
  3126 #endif
  3131 void LIR_Assembler::fxch(int i) {
  3132   Unimplemented();
  3135 void LIR_Assembler::fld(int i) {
  3136   Unimplemented();
  3139 void LIR_Assembler::ffree(int i) {
  3140   Unimplemented();
  3143 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  3144                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3146   // if tmp is invalid, then the function being called doesn't destroy the thread
  3147   if (tmp->is_valid()) {
  3148     __ save_thread(tmp->as_register());
  3150   __ call(dest, relocInfo::runtime_call_type);
  3151   __ delayed()->nop();
  3152   if (info != NULL) {
  3153     add_call_info_here(info);
  3155   if (tmp->is_valid()) {
  3156     __ restore_thread(tmp->as_register());
  3159 #ifdef ASSERT
  3160   __ verify_thread();
  3161 #endif // ASSERT
  3165 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3166 #ifdef _LP64
  3167   ShouldNotReachHere();
  3168 #endif
  3170   NEEDS_CLEANUP;
  3171   if (type == T_LONG) {
  3172     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  3174     // (extended to allow indexed as well as constant displaced for JSR-166)
  3175     Register idx = noreg; // contains either constant offset or index
  3177     int disp = mem_addr->disp();
  3178     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  3179       if (!Assembler::is_simm13(disp)) {
  3180         idx = O7;
  3181         __ set(disp, idx);
  3183     } else {
  3184       assert(disp == 0, "not both indexed and disp");
  3185       idx = mem_addr->index()->as_register();
  3188     int null_check_offset = -1;
  3190     Register base = mem_addr->base()->as_register();
  3191     if (src->is_register() && dest->is_address()) {
  3192       // G4 is high half, G5 is low half
  3193       if (VM_Version::v9_instructions_work()) {
  3194         // clear the top bits of G5, and scale up G4
  3195         __ srl (src->as_register_lo(),  0, G5);
  3196         __ sllx(src->as_register_hi(), 32, G4);
  3197         // combine the two halves into the 64 bits of G4
  3198         __ or3(G4, G5, G4);
  3199         null_check_offset = __ offset();
  3200         if (idx == noreg) {
  3201           __ stx(G4, base, disp);
  3202         } else {
  3203           __ stx(G4, base, idx);
  3205       } else {
  3206         __ mov (src->as_register_hi(), G4);
  3207         __ mov (src->as_register_lo(), G5);
  3208         null_check_offset = __ offset();
  3209         if (idx == noreg) {
  3210           __ std(G4, base, disp);
  3211         } else {
  3212           __ std(G4, base, idx);
  3215     } else if (src->is_address() && dest->is_register()) {
  3216       null_check_offset = __ offset();
  3217       if (VM_Version::v9_instructions_work()) {
  3218         if (idx == noreg) {
  3219           __ ldx(base, disp, G5);
  3220         } else {
  3221           __ ldx(base, idx, G5);
  3223         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3224         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3225       } else {
  3226         if (idx == noreg) {
  3227           __ ldd(base, disp, G4);
  3228         } else {
  3229           __ ldd(base, idx, G4);
  3231         // G4 is high half, G5 is low half
  3232         __ mov (G4, dest->as_register_hi());
  3233         __ mov (G5, dest->as_register_lo());
  3235     } else {
  3236       Unimplemented();
  3238     if (info != NULL) {
  3239       add_debug_info_for_null_check(null_check_offset, info);
  3242   } else {
  3243     // use normal move for all other volatiles since they don't need
  3244     // special handling to remain atomic.
  3245     move_op(src, dest, type, lir_patch_none, info, false, false, false);
  3249 void LIR_Assembler::membar() {
  3250   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3251   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3254 void LIR_Assembler::membar_acquire() {
  3255   // no-op on TSO
  3258 void LIR_Assembler::membar_release() {
  3259   // no-op on TSO
  3262 // Pack two sequential registers containing 32 bit values
  3263 // into a single 64 bit register.
  3264 // src and src->successor() are packed into dst
  3265 // src and dst may be the same register.
  3266 // Note: src is destroyed
  3267 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
  3268   Register rs = src->as_register();
  3269   Register rd = dst->as_register_lo();
  3270   __ sllx(rs, 32, rs);
  3271   __ srl(rs->successor(), 0, rs->successor());
  3272   __ or3(rs, rs->successor(), rd);
  3275 // Unpack a 64 bit value in a register into
  3276 // two sequential registers.
  3277 // src is unpacked into dst and dst->successor()
  3278 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
  3279   Register rs = src->as_register_lo();
  3280   Register rd = dst->as_register_hi();
  3281   assert_different_registers(rs, rd, rd->successor());
  3282   __ srlx(rs, 32, rd);
  3283   __ srl (rs,  0, rd->successor());
  3287 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3288   LIR_Address* addr = addr_opr->as_address_ptr();
  3289   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3291   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
  3295 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3296   assert(result_reg->is_register(), "check");
  3297   __ mov(G2_thread, result_reg->as_register());
  3301 void LIR_Assembler::peephole(LIR_List* lir) {
  3302   LIR_OpList* inst = lir->instructions_list();
  3303   for (int i = 0; i < inst->length(); i++) {
  3304     LIR_Op* op = inst->at(i);
  3305     switch (op->code()) {
  3306       case lir_cond_float_branch:
  3307       case lir_branch: {
  3308         LIR_OpBranch* branch = op->as_OpBranch();
  3309         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3310         LIR_Op* delay_op = NULL;
  3311         // we'd like to be able to pull following instructions into
  3312         // this slot but we don't know enough to do it safely yet so
  3313         // only optimize block to block control flow.
  3314         if (LIRFillDelaySlots && branch->block()) {
  3315           LIR_Op* prev = inst->at(i - 1);
  3316           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3317             // swap previous instruction into delay slot
  3318             inst->at_put(i - 1, op);
  3319             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3320 #ifndef PRODUCT
  3321             if (LIRTracePeephole) {
  3322               tty->print_cr("delayed");
  3323               inst->at(i - 1)->print();
  3324               inst->at(i)->print();
  3325               tty->cr();
  3327 #endif
  3328             continue;
  3332         if (!delay_op) {
  3333           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3335         inst->insert_before(i + 1, delay_op);
  3336         break;
  3338       case lir_static_call:
  3339       case lir_virtual_call:
  3340       case lir_icvirtual_call:
  3341       case lir_optvirtual_call:
  3342       case lir_dynamic_call: {
  3343         LIR_Op* prev = inst->at(i - 1);
  3344         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3345             (op->code() != lir_virtual_call ||
  3346              !prev->result_opr()->is_single_cpu() ||
  3347              prev->result_opr()->as_register() != O0) &&
  3348             LIR_Assembler::is_single_instruction(prev)) {
  3349           // Only moves without info can be put into the delay slot.
  3350           // Also don't allow the setup of the receiver in the delay
  3351           // slot for vtable calls.
  3352           inst->at_put(i - 1, op);
  3353           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3354 #ifndef PRODUCT
  3355           if (LIRTracePeephole) {
  3356             tty->print_cr("delayed");
  3357             inst->at(i - 1)->print();
  3358             inst->at(i)->print();
  3359             tty->cr();
  3361 #endif
  3362         } else {
  3363           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3364           inst->insert_before(i + 1, delay_op);
  3365           i++;
  3368 #if defined(TIERED) && !defined(_LP64)
  3369         // fixup the return value from G1 to O0/O1 for long returns.
  3370         // It's done here instead of in LIRGenerator because there's
  3371         // such a mismatch between the single reg and double reg
  3372         // calling convention.
  3373         LIR_OpJavaCall* callop = op->as_OpJavaCall();
  3374         if (callop->result_opr() == FrameMap::out_long_opr) {
  3375           LIR_OpJavaCall* call;
  3376           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
  3377           for (int a = 0; a < arguments->length(); a++) {
  3378             arguments[a] = callop->arguments()[a];
  3380           if (op->code() == lir_virtual_call) {
  3381             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3382                                       callop->vtable_offset(), arguments, callop->info());
  3383           } else {
  3384             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3385                                       callop->addr(), arguments, callop->info());
  3387           inst->at_put(i - 1, call);
  3388           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
  3389                                                  T_LONG, lir_patch_none, NULL));
  3391 #endif
  3392         break;
  3401 #undef __

mercurial