src/cpu/x86/vm/vm_version_x86.hpp

Fri, 16 Aug 2019 16:50:17 +0200

author
eosterlund
date
Fri, 16 Aug 2019 16:50:17 +0200
changeset 9834
bb1da64b0492
parent 8729
402618d5afc9
child 8856
ac27a9c85bea
permissions
-rw-r--r--

8229345: Memory leak due to vtable stubs not being shared on SPARC
Reviewed-by: mdoerr, dholmes, kvn

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
    26 #define CPU_X86_VM_VM_VERSION_X86_HPP
    28 #include "runtime/globals_extension.hpp"
    29 #include "runtime/vm_version.hpp"
    31 class VM_Version : public Abstract_VM_Version {
    32 public:
    33   // cpuid result register layouts.  These are all unions of a uint32_t
    34   // (in case anyone wants access to the register as a whole) and a bitfield.
    36   union StdCpuid1Eax {
    37     uint32_t value;
    38     struct {
    39       uint32_t stepping   : 4,
    40                model      : 4,
    41                family     : 4,
    42                proc_type  : 2,
    43                           : 2,
    44                ext_model  : 4,
    45                ext_family : 8,
    46                           : 4;
    47     } bits;
    48   };
    50   union StdCpuid1Ebx { // example, unused
    51     uint32_t value;
    52     struct {
    53       uint32_t brand_id         : 8,
    54                clflush_size     : 8,
    55                threads_per_cpu  : 8,
    56                apic_id          : 8;
    57     } bits;
    58   };
    60   union StdCpuid1Ecx {
    61     uint32_t value;
    62     struct {
    63       uint32_t sse3     : 1,
    64                clmul    : 1,
    65                         : 1,
    66                monitor  : 1,
    67                         : 1,
    68                vmx      : 1,
    69                         : 1,
    70                est      : 1,
    71                         : 1,
    72                ssse3    : 1,
    73                cid      : 1,
    74                         : 2,
    75                cmpxchg16: 1,
    76                         : 4,
    77                dca      : 1,
    78                sse4_1   : 1,
    79                sse4_2   : 1,
    80                         : 2,
    81                popcnt   : 1,
    82                         : 1,
    83                aes      : 1,
    84                         : 1,
    85                osxsave  : 1,
    86                avx      : 1,
    87                         : 3;
    88     } bits;
    89   };
    91   union StdCpuid1Edx {
    92     uint32_t value;
    93     struct {
    94       uint32_t          : 4,
    95                tsc      : 1,
    96                         : 3,
    97                cmpxchg8 : 1,
    98                         : 6,
    99                cmov     : 1,
   100                         : 3,
   101                clflush  : 1,
   102                         : 3,
   103                mmx      : 1,
   104                fxsr     : 1,
   105                sse      : 1,
   106                sse2     : 1,
   107                         : 1,
   108                ht       : 1,
   109                         : 3;
   110     } bits;
   111   };
   113   union DcpCpuid4Eax {
   114     uint32_t value;
   115     struct {
   116       uint32_t cache_type    : 5,
   117                              : 21,
   118                cores_per_cpu : 6;
   119     } bits;
   120   };
   122   union DcpCpuid4Ebx {
   123     uint32_t value;
   124     struct {
   125       uint32_t L1_line_size  : 12,
   126                partitions    : 10,
   127                associativity : 10;
   128     } bits;
   129   };
   131   union TplCpuidBEbx {
   132     uint32_t value;
   133     struct {
   134       uint32_t logical_cpus : 16,
   135                             : 16;
   136     } bits;
   137   };
   139   union ExtCpuid1Ecx {
   140     uint32_t value;
   141     struct {
   142       uint32_t LahfSahf     : 1,
   143                CmpLegacy    : 1,
   144                             : 3,
   145                lzcnt_intel  : 1,
   146                lzcnt        : 1,
   147                sse4a        : 1,
   148                misalignsse  : 1,
   149                prefetchw    : 1,
   150                             : 22;
   151     } bits;
   152   };
   154   union ExtCpuid1Edx {
   155     uint32_t value;
   156     struct {
   157       uint32_t           : 22,
   158                mmx_amd   : 1,
   159                mmx       : 1,
   160                fxsr      : 1,
   161                          : 4,
   162                long_mode : 1,
   163                tdnow2    : 1,
   164                tdnow     : 1;
   165     } bits;
   166   };
   168   union ExtCpuid5Ex {
   169     uint32_t value;
   170     struct {
   171       uint32_t L1_line_size : 8,
   172                L1_tag_lines : 8,
   173                L1_assoc     : 8,
   174                L1_size      : 8;
   175     } bits;
   176   };
   178   union ExtCpuid7Edx {
   179     uint32_t value;
   180     struct {
   181       uint32_t               : 8,
   182               tsc_invariance : 1,
   183                              : 23;
   184     } bits;
   185   };
   187   union ExtCpuid8Ecx {
   188     uint32_t value;
   189     struct {
   190       uint32_t cores_per_cpu : 8,
   191                              : 24;
   192     } bits;
   193   };
   195   union SefCpuid7Eax {
   196     uint32_t value;
   197   };
   199   union SefCpuid7Ebx {
   200     uint32_t value;
   201     struct {
   202       uint32_t fsgsbase : 1,
   203                         : 2,
   204                    bmi1 : 1,
   205                         : 1,
   206                    avx2 : 1,
   207                         : 2,
   208                    bmi2 : 1,
   209                    erms : 1,
   210                         : 1,
   211                    rtm  : 1,
   212                         : 7,
   213                    adx  : 1,
   214                         : 12;
   215     } bits;
   216   };
   218   union XemXcr0Eax {
   219     uint32_t value;
   220     struct {
   221       uint32_t x87 : 1,
   222                sse : 1,
   223                ymm : 1,
   224                    : 29;
   225     } bits;
   226   };
   228 protected:
   229   static int _cpu;
   230   static int _model;
   231   static int _stepping;
   232   static int _cpuFeatures;     // features returned by the "cpuid" instruction
   233                                // 0 if this instruction is not available
   234   static const char* _features_str;
   236   static address   _cpuinfo_segv_addr; // address of instruction which causes SEGV
   237   static address   _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
   239   enum {
   240     CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
   241     CPU_CMOV   = (1 << 1),
   242     CPU_FXSR   = (1 << 2),
   243     CPU_HT     = (1 << 3),
   244     CPU_MMX    = (1 << 4),
   245     CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
   246                                     // may not necessarily support other 3dnow instructions
   247     CPU_SSE    = (1 << 6),
   248     CPU_SSE2   = (1 << 7),
   249     CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
   250     CPU_SSSE3  = (1 << 9),
   251     CPU_SSE4A  = (1 << 10),
   252     CPU_SSE4_1 = (1 << 11),
   253     CPU_SSE4_2 = (1 << 12),
   254     CPU_POPCNT = (1 << 13),
   255     CPU_LZCNT  = (1 << 14),
   256     CPU_TSC    = (1 << 15),
   257     CPU_TSCINV = (1 << 16),
   258     CPU_AVX    = (1 << 17),
   259     CPU_AVX2   = (1 << 18),
   260     CPU_AES    = (1 << 19),
   261     CPU_ERMS   = (1 << 20), // enhanced 'rep movsb/stosb' instructions
   262     CPU_CLMUL  = (1 << 21), // carryless multiply for CRC
   263     CPU_BMI1   = (1 << 22),
   264     CPU_BMI2   = (1 << 23),
   265     CPU_RTM    = (1 << 24),  // Restricted Transactional Memory instructions
   266     CPU_ADX    = (1 << 25)
   267   } cpuFeatureFlags;
   269   enum {
   270     // AMD
   271     CPU_FAMILY_AMD_11H       = 0x11,
   272     // Intel
   273     CPU_FAMILY_INTEL_CORE    = 6,
   274     CPU_MODEL_NEHALEM        = 0x1e,
   275     CPU_MODEL_NEHALEM_EP     = 0x1a,
   276     CPU_MODEL_NEHALEM_EX     = 0x2e,
   277     CPU_MODEL_WESTMERE       = 0x25,
   278     CPU_MODEL_WESTMERE_EP    = 0x2c,
   279     CPU_MODEL_WESTMERE_EX    = 0x2f,
   280     CPU_MODEL_SANDYBRIDGE    = 0x2a,
   281     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
   282     CPU_MODEL_IVYBRIDGE_EP   = 0x3a,
   283     CPU_MODEL_HASWELL_E3     = 0x3c,
   284     CPU_MODEL_HASWELL_E7     = 0x3f,
   285     CPU_MODEL_BROADWELL      = 0x3d
   286   } cpuExtendedFamily;
   288   // cpuid information block.  All info derived from executing cpuid with
   289   // various function numbers is stored here.  Intel and AMD info is
   290   // merged in this block: accessor methods disentangle it.
   291   //
   292   // The info block is laid out in subblocks of 4 dwords corresponding to
   293   // eax, ebx, ecx and edx, whether or not they contain anything useful.
   294   struct CpuidInfo {
   295     // cpuid function 0
   296     uint32_t std_max_function;
   297     uint32_t std_vendor_name_0;
   298     uint32_t std_vendor_name_1;
   299     uint32_t std_vendor_name_2;
   301     // cpuid function 1
   302     StdCpuid1Eax std_cpuid1_eax;
   303     StdCpuid1Ebx std_cpuid1_ebx;
   304     StdCpuid1Ecx std_cpuid1_ecx;
   305     StdCpuid1Edx std_cpuid1_edx;
   307     // cpuid function 4 (deterministic cache parameters)
   308     DcpCpuid4Eax dcp_cpuid4_eax;
   309     DcpCpuid4Ebx dcp_cpuid4_ebx;
   310     uint32_t     dcp_cpuid4_ecx; // unused currently
   311     uint32_t     dcp_cpuid4_edx; // unused currently
   313     // cpuid function 7 (structured extended features)
   314     SefCpuid7Eax sef_cpuid7_eax;
   315     SefCpuid7Ebx sef_cpuid7_ebx;
   316     uint32_t     sef_cpuid7_ecx; // unused currently
   317     uint32_t     sef_cpuid7_edx; // unused currently
   319     // cpuid function 0xB (processor topology)
   320     // ecx = 0
   321     uint32_t     tpl_cpuidB0_eax;
   322     TplCpuidBEbx tpl_cpuidB0_ebx;
   323     uint32_t     tpl_cpuidB0_ecx; // unused currently
   324     uint32_t     tpl_cpuidB0_edx; // unused currently
   326     // ecx = 1
   327     uint32_t     tpl_cpuidB1_eax;
   328     TplCpuidBEbx tpl_cpuidB1_ebx;
   329     uint32_t     tpl_cpuidB1_ecx; // unused currently
   330     uint32_t     tpl_cpuidB1_edx; // unused currently
   332     // ecx = 2
   333     uint32_t     tpl_cpuidB2_eax;
   334     TplCpuidBEbx tpl_cpuidB2_ebx;
   335     uint32_t     tpl_cpuidB2_ecx; // unused currently
   336     uint32_t     tpl_cpuidB2_edx; // unused currently
   338     // cpuid function 0x80000000 // example, unused
   339     uint32_t ext_max_function;
   340     uint32_t ext_vendor_name_0;
   341     uint32_t ext_vendor_name_1;
   342     uint32_t ext_vendor_name_2;
   344     // cpuid function 0x80000001
   345     uint32_t     ext_cpuid1_eax; // reserved
   346     uint32_t     ext_cpuid1_ebx; // reserved
   347     ExtCpuid1Ecx ext_cpuid1_ecx;
   348     ExtCpuid1Edx ext_cpuid1_edx;
   350     // cpuid functions 0x80000002 thru 0x80000004: example, unused
   351     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
   352     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
   353     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
   355     // cpuid function 0x80000005 // AMD L1, Intel reserved
   356     uint32_t     ext_cpuid5_eax; // unused currently
   357     uint32_t     ext_cpuid5_ebx; // reserved
   358     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
   359     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
   361     // cpuid function 0x80000007
   362     uint32_t     ext_cpuid7_eax; // reserved
   363     uint32_t     ext_cpuid7_ebx; // reserved
   364     uint32_t     ext_cpuid7_ecx; // reserved
   365     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
   367     // cpuid function 0x80000008
   368     uint32_t     ext_cpuid8_eax; // unused currently
   369     uint32_t     ext_cpuid8_ebx; // reserved
   370     ExtCpuid8Ecx ext_cpuid8_ecx;
   371     uint32_t     ext_cpuid8_edx; // reserved
   373     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
   374     XemXcr0Eax   xem_xcr0_eax;
   375     uint32_t     xem_xcr0_edx; // reserved
   377     // Space to save ymm registers after signal handle
   378     int          ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
   379   };
   381   // The actual cpuid info block
   382   static CpuidInfo _cpuid_info;
   384   // Extractors and predicates
   385   static uint32_t extended_cpu_family() {
   386     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
   387     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
   388     return result;
   389   }
   391   static uint32_t extended_cpu_model() {
   392     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
   393     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
   394     return result;
   395   }
   397   static uint32_t cpu_stepping() {
   398     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
   399     return result;
   400   }
   402   static uint logical_processor_count() {
   403     uint result = threads_per_core();
   404     return result;
   405   }
   407   static uint32_t feature_flags() {
   408     uint32_t result = 0;
   409     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
   410       result |= CPU_CX8;
   411     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
   412       result |= CPU_CMOV;
   413     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
   414         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
   415       result |= CPU_FXSR;
   416     // HT flag is set for multi-core processors also.
   417     if (threads_per_core() > 1)
   418       result |= CPU_HT;
   419     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
   420         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
   421       result |= CPU_MMX;
   422     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
   423       result |= CPU_SSE;
   424     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
   425       result |= CPU_SSE2;
   426     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
   427       result |= CPU_SSE3;
   428     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
   429       result |= CPU_SSSE3;
   430     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
   431       result |= CPU_SSE4_1;
   432     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
   433       result |= CPU_SSE4_2;
   434     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
   435       result |= CPU_POPCNT;
   436     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
   437         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
   438         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
   439         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
   440       result |= CPU_AVX;
   441       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
   442         result |= CPU_AVX2;
   443     }
   444     if(_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
   445       result |= CPU_BMI1;
   446     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
   447       result |= CPU_TSC;
   448     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
   449       result |= CPU_TSCINV;
   450     if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
   451       result |= CPU_AES;
   452     if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
   453       result |= CPU_ERMS;
   454     if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
   455       result |= CPU_CLMUL;
   456     if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0)
   457       result |= CPU_RTM;
   459     // AMD features.
   460     if (is_amd()) {
   461       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
   462           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
   463         result |= CPU_3DNOW_PREFETCH;
   464       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
   465         result |= CPU_LZCNT;
   466       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
   467         result |= CPU_SSE4A;
   468     }
   469     // Intel features.
   470     if(is_intel()) {
   471       if(_cpuid_info.sef_cpuid7_ebx.bits.adx != 0)
   472          result |= CPU_ADX;
   473       if(_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
   474         result |= CPU_BMI2;
   475       if(_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
   476         result |= CPU_LZCNT;
   477       // for Intel, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw
   478       if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) {
   479         result |= CPU_3DNOW_PREFETCH;
   480       }
   481     }
   483     return result;
   484   }
   486   static bool os_supports_avx_vectors() {
   487     if (!supports_avx()) {
   488       return false;
   489     }
   490     // Verify that OS save/restore all bits of AVX registers
   491     // during signal processing.
   492     int nreg = 2 LP64_ONLY(+2);
   493     for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
   494       if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
   495         return false;
   496       }
   497     }
   498     return true;
   499   }
   501   static void get_processor_features();
   503 public:
   504   // Offsets for cpuid asm stub
   505   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
   506   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
   507   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
   508   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
   509   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
   510   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
   511   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
   512   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
   513   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
   514   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
   515   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
   516   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
   517   static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
   519   // The value used to check ymm register after signal handle
   520   static int ymm_test_value()    { return 0xCAFEBABE; }
   522   static void get_cpu_info_wrapper();
   523   static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
   524   static bool  is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
   525   static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
   526   static address  cpuinfo_cont_addr()           { return _cpuinfo_cont_addr; }
   528   static void clean_cpuFeatures()   { _cpuFeatures = 0; }
   529   static void set_avx_cpuFeatures() { _cpuFeatures = (CPU_SSE | CPU_SSE2 | CPU_AVX); }
   532   // Initialization
   533   static void initialize();
   535   // Override Abstract_VM_Version implementation
   536   static bool use_biased_locking();
   538   // Asserts
   539   static void assert_is_initialized() {
   540     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
   541   }
   543   //
   544   // Processor family:
   545   //       3   -  386
   546   //       4   -  486
   547   //       5   -  Pentium
   548   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
   549   //              Pentium M, Core Solo, Core Duo, Core2 Duo
   550   //    family 6 model:   9,        13,       14,        15
   551   //    0x0f   -  Pentium 4, Opteron
   552   //
   553   // Note: The cpu family should be used to select between
   554   //       instruction sequences which are valid on all Intel
   555   //       processors.  Use the feature test functions below to
   556   //       determine whether a particular instruction is supported.
   557   //
   558   static int  cpu_family()        { return _cpu;}
   559   static bool is_P6()             { return cpu_family() >= 6; }
   560   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
   561   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
   563   static bool supports_processor_topology() {
   564     return (_cpuid_info.std_max_function >= 0xB) &&
   565            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
   566            // Some cpus have max cpuid >= 0xB but do not support processor topology.
   567            (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
   568   }
   570   static uint cores_per_cpu()  {
   571     uint result = 1;
   572     if (is_intel()) {
   573       bool supports_topology = supports_processor_topology();
   574       if (supports_topology) {
   575         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
   576                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   577       }
   578       if (!supports_topology || result == 0) {
   579         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
   580       }
   581     } else if (is_amd()) {
   582       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
   583     }
   584     return result;
   585   }
   587   static uint threads_per_core()  {
   588     uint result = 1;
   589     if (is_intel() && supports_processor_topology()) {
   590       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   591     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
   592       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
   593                cores_per_cpu();
   594     }
   595     return (result == 0 ? 1 : result);
   596   }
   598   static intx L1_line_size()  {
   599     intx result = 0;
   600     if (is_intel()) {
   601       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
   602     } else if (is_amd()) {
   603       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
   604     }
   605     if (result < 32) // not defined ?
   606       result = 32;   // 32 bytes by default on x86 and other x64
   607     return result;
   608   }
   610   static intx prefetch_data_size()  {
   611     return L1_line_size();
   612   }
   614   //
   615   // Feature identification
   616   //
   617   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
   618   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
   619   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
   620   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
   621   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
   622   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
   623   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
   624   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
   625   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
   626   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
   627   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
   628   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
   629   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
   630   static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
   631   static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
   632   static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
   633   static bool supports_aes()      { return (_cpuFeatures & CPU_AES) != 0; }
   634   static bool supports_erms()     { return (_cpuFeatures & CPU_ERMS) != 0; }
   635   static bool supports_clmul()    { return (_cpuFeatures & CPU_CLMUL) != 0; }
   636   static bool supports_rtm()      { return (_cpuFeatures & CPU_RTM) != 0; }
   637   static bool supports_bmi1()     { return (_cpuFeatures & CPU_BMI1) != 0; }
   638   static bool supports_bmi2()     { return (_cpuFeatures & CPU_BMI2) != 0; }
   639   static bool supports_adx()     { return (_cpuFeatures & CPU_ADX) != 0; }
   640   // Intel features
   641   static bool is_intel_family_core() { return is_intel() &&
   642                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
   644   static bool is_intel_tsc_synched_at_init()  {
   645     if (is_intel_family_core()) {
   646       uint32_t ext_model = extended_cpu_model();
   647       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
   648           ext_model == CPU_MODEL_WESTMERE_EP    ||
   649           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
   650           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
   651         // <= 2-socket invariant tsc support. EX versions are usually used
   652         // in > 2-socket systems and likely don't synchronize tscs at
   653         // initialization.
   654         // Code that uses tsc values must be prepared for them to arbitrarily
   655         // jump forward or backward.
   656         return true;
   657       }
   658     }
   659     return false;
   660   }
   662   // AMD features
   663   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
   664   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
   665   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
   666   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
   668   static bool is_amd_Barcelona()  { return is_amd() &&
   669                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
   671   // Intel and AMD newer cores support fast timestamps well
   672   static bool supports_tscinv_bit() {
   673     return (_cpuFeatures & CPU_TSCINV) != 0;
   674   }
   675   static bool supports_tscinv() {
   676     return supports_tscinv_bit() &&
   677            ( (is_amd() && !is_amd_Barcelona()) ||
   678              is_intel_tsc_synched_at_init() );
   679   }
   681   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
   682   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
   683                                            supports_sse3() && _model != 0x1C; }
   685   static bool supports_compare_and_exchange() { return true; }
   687   static const char* cpu_features()           { return _features_str; }
   689   static intx allocate_prefetch_distance() {
   690     // This method should be called before allocate_prefetch_style().
   691     //
   692     // Hardware prefetching (distance/size in bytes):
   693     // Pentium 3 -  64 /  32
   694     // Pentium 4 - 256 / 128
   695     // Athlon    -  64 /  32 ????
   696     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
   697     // Core      - 128 /  64
   698     //
   699     // Software prefetching (distance in bytes / instruction with best score):
   700     // Pentium 3 - 128 / prefetchnta
   701     // Pentium 4 - 512 / prefetchnta
   702     // Athlon    - 128 / prefetchnta
   703     // Opteron   - 256 / prefetchnta
   704     // Core      - 256 / prefetchnta
   705     // It will be used only when AllocatePrefetchStyle > 0
   707     intx count = AllocatePrefetchDistance;
   708     if (count < 0) {   // default ?
   709       if (is_amd()) {  // AMD
   710         if (supports_sse2())
   711           count = 256; // Opteron
   712         else
   713           count = 128; // Athlon
   714       } else {         // Intel
   715         if (supports_sse2())
   716           if (cpu_family() == 6) {
   717             count = 256; // Pentium M, Core, Core2
   718           } else {
   719             count = 512; // Pentium 4
   720           }
   721         else
   722           count = 128; // Pentium 3 (and all other old CPUs)
   723       }
   724     }
   725     return count;
   726   }
   727   static intx allocate_prefetch_style() {
   728     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
   729     // Return 0 if AllocatePrefetchDistance was not defined.
   730     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
   731   }
   733   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
   734   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
   735   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
   736   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
   738   // gc copy/scan is disabled if prefetchw isn't supported, because
   739   // Prefetch::write emits an inlined prefetchw on Linux.
   740   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
   741   // The used prefetcht0 instruction works for both amd64 and em64t.
   742   static intx prefetch_copy_interval_in_bytes() {
   743     intx interval = PrefetchCopyIntervalInBytes;
   744     return interval >= 0 ? interval : 576;
   745   }
   746   static intx prefetch_scan_interval_in_bytes() {
   747     intx interval = PrefetchScanIntervalInBytes;
   748     return interval >= 0 ? interval : 576;
   749   }
   750   static intx prefetch_fields_ahead() {
   751     intx count = PrefetchFieldsAhead;
   752     return count >= 0 ? count : 1;
   753   }
   754 };
   756 #endif // CPU_X86_VM_VM_VERSION_X86_HPP

mercurial