src/cpu/x86/vm/templateTable_x86_32.cpp

Fri, 16 Aug 2019 16:50:17 +0200

author
eosterlund
date
Fri, 16 Aug 2019 16:50:17 +0200
changeset 9834
bb1da64b0492
parent 9604
da2e98c027fd
child 9637
eef07cd490d4
permissions
-rw-r--r--

8229345: Memory leak due to vtable stubs not being shared on SPARC
Reviewed-by: mdoerr, dholmes, kvn

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "interpreter/templateTable.hpp"
    30 #include "memory/universe.inline.hpp"
    31 #include "oops/methodData.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/synchronizer.hpp"
    38 #include "utilities/macros.hpp"
    40 #ifndef CC_INTERP
    41 #define __ _masm->
    43 //----------------------------------------------------------------------------------------------------
    44 // Platform-dependent initialization
    46 void TemplateTable::pd_initialize() {
    47   // No i486 specific initialization
    48 }
    50 //----------------------------------------------------------------------------------------------------
    51 // Address computation
    53 // local variables
    54 static inline Address iaddress(int n)            {
    55   return Address(rdi, Interpreter::local_offset_in_bytes(n));
    56 }
    58 static inline Address laddress(int n)            { return iaddress(n + 1); }
    59 static inline Address haddress(int n)            { return iaddress(n + 0); }
    60 static inline Address faddress(int n)            { return iaddress(n); }
    61 static inline Address daddress(int n)            { return laddress(n); }
    62 static inline Address aaddress(int n)            { return iaddress(n); }
    64 static inline Address iaddress(Register r)       {
    65   return Address(rdi, r, Interpreter::stackElementScale());
    66 }
    67 static inline Address laddress(Register r)       {
    68   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
    69 }
    70 static inline Address haddress(Register r)       {
    71   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
    72 }
    74 static inline Address faddress(Register r)       { return iaddress(r); }
    75 static inline Address daddress(Register r)       { return laddress(r); }
    76 static inline Address aaddress(Register r)       { return iaddress(r); }
    78 // expression stack
    79 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
    80 // data beyond the rsp which is potentially unsafe in an MT environment;
    81 // an interrupt may overwrite that data.)
    82 static inline Address at_rsp   () {
    83   return Address(rsp, 0);
    84 }
    86 // At top of Java expression stack which may be different than rsp().  It
    87 // isn't for category 1 objects.
    88 static inline Address at_tos   () {
    89   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    90   return tos;
    91 }
    93 static inline Address at_tos_p1() {
    94   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    95 }
    97 static inline Address at_tos_p2() {
    98   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    99 }
   101 // Condition conversion
   102 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   103   switch (cc) {
   104     case TemplateTable::equal        : return Assembler::notEqual;
   105     case TemplateTable::not_equal    : return Assembler::equal;
   106     case TemplateTable::less         : return Assembler::greaterEqual;
   107     case TemplateTable::less_equal   : return Assembler::greater;
   108     case TemplateTable::greater      : return Assembler::lessEqual;
   109     case TemplateTable::greater_equal: return Assembler::less;
   110   }
   111   ShouldNotReachHere();
   112   return Assembler::zero;
   113 }
   116 //----------------------------------------------------------------------------------------------------
   117 // Miscelaneous helper routines
   119 // Store an oop (or NULL) at the address described by obj.
   120 // If val == noreg this means store a NULL
   122 static void do_oop_store(InterpreterMacroAssembler* _masm,
   123                          Address obj,
   124                          Register val,
   125                          BarrierSet::Name barrier,
   126                          bool precise) {
   127   assert(val == noreg || val == rax, "parameter is just for looks");
   128   switch (barrier) {
   129 #if INCLUDE_ALL_GCS
   130     case BarrierSet::G1SATBCT:
   131     case BarrierSet::G1SATBCTLogging:
   132       {
   133         // flatten object address if needed
   134         // We do it regardless of precise because we need the registers
   135         if (obj.index() == noreg && obj.disp() == 0) {
   136           if (obj.base() != rdx) {
   137             __ movl(rdx, obj.base());
   138           }
   139         } else {
   140           __ leal(rdx, obj);
   141         }
   142         __ get_thread(rcx);
   143         __ save_bcp();
   144         __ g1_write_barrier_pre(rdx /* obj */,
   145                                 rbx /* pre_val */,
   146                                 rcx /* thread */,
   147                                 rsi /* tmp */,
   148                                 val != noreg /* tosca_live */,
   149                                 false /* expand_call */);
   151         // Do the actual store
   152         // noreg means NULL
   153         if (val == noreg) {
   154           __ movptr(Address(rdx, 0), NULL_WORD);
   155           // No post barrier for NULL
   156         } else {
   157           __ movl(Address(rdx, 0), val);
   158           __ g1_write_barrier_post(rdx /* store_adr */,
   159                                    val /* new_val */,
   160                                    rcx /* thread */,
   161                                    rbx /* tmp */,
   162                                    rsi /* tmp2 */);
   163         }
   164         __ restore_bcp();
   166       }
   167       break;
   168 #endif // INCLUDE_ALL_GCS
   169     case BarrierSet::CardTableModRef:
   170     case BarrierSet::CardTableExtension:
   171       {
   172         if (val == noreg) {
   173           __ movptr(obj, NULL_WORD);
   174         } else {
   175           __ movl(obj, val);
   176           // flatten object address if needed
   177           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   178             __ store_check(obj.base());
   179           } else {
   180             __ leal(rdx, obj);
   181             __ store_check(rdx);
   182           }
   183         }
   184       }
   185       break;
   186     case BarrierSet::ModRef:
   187     case BarrierSet::Other:
   188       if (val == noreg) {
   189         __ movptr(obj, NULL_WORD);
   190       } else {
   191         __ movl(obj, val);
   192       }
   193       break;
   194     default      :
   195       ShouldNotReachHere();
   197   }
   198 }
   200 Address TemplateTable::at_bcp(int offset) {
   201   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   202   return Address(rsi, offset);
   203 }
   206 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   207                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   208                                    int byte_no) {
   209   if (!RewriteBytecodes)  return;
   210   Label L_patch_done;
   212   switch (bc) {
   213   case Bytecodes::_fast_aputfield:
   214   case Bytecodes::_fast_bputfield:
   215   case Bytecodes::_fast_zputfield:
   216   case Bytecodes::_fast_cputfield:
   217   case Bytecodes::_fast_dputfield:
   218   case Bytecodes::_fast_fputfield:
   219   case Bytecodes::_fast_iputfield:
   220   case Bytecodes::_fast_lputfield:
   221   case Bytecodes::_fast_sputfield:
   222     {
   223       // We skip bytecode quickening for putfield instructions when
   224       // the put_code written to the constant pool cache is zero.
   225       // This is required so that every execution of this instruction
   226       // calls out to InterpreterRuntime::resolve_get_put to do
   227       // additional, required work.
   228       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   229       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   230       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
   231       __ movl(bc_reg, bc);
   232       __ cmpl(temp_reg, (int) 0);
   233       __ jcc(Assembler::zero, L_patch_done);  // don't patch
   234     }
   235     break;
   236   default:
   237     assert(byte_no == -1, "sanity");
   238     // the pair bytecodes have already done the load.
   239     if (load_bc_into_bc_reg) {
   240       __ movl(bc_reg, bc);
   241     }
   242   }
   244   if (JvmtiExport::can_post_breakpoint()) {
   245     Label L_fast_patch;
   246     // if a breakpoint is present we can't rewrite the stream directly
   247     __ movzbl(temp_reg, at_bcp(0));
   248     __ cmpl(temp_reg, Bytecodes::_breakpoint);
   249     __ jcc(Assembler::notEqual, L_fast_patch);
   250     __ get_method(temp_reg);
   251     // Let breakpoint table handling rewrite to quicker bytecode
   252     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rsi, bc_reg);
   253 #ifndef ASSERT
   254     __ jmpb(L_patch_done);
   255 #else
   256     __ jmp(L_patch_done);
   257 #endif
   258     __ bind(L_fast_patch);
   259   }
   261 #ifdef ASSERT
   262   Label L_okay;
   263   __ load_unsigned_byte(temp_reg, at_bcp(0));
   264   __ cmpl(temp_reg, (int)Bytecodes::java_code(bc));
   265   __ jccb(Assembler::equal, L_okay);
   266   __ cmpl(temp_reg, bc_reg);
   267   __ jcc(Assembler::equal, L_okay);
   268   __ stop("patching the wrong bytecode");
   269   __ bind(L_okay);
   270 #endif
   272   // patch bytecode
   273   __ movb(at_bcp(0), bc_reg);
   274   __ bind(L_patch_done);
   275 }
   277 //----------------------------------------------------------------------------------------------------
   278 // Individual instructions
   280 void TemplateTable::nop() {
   281   transition(vtos, vtos);
   282   // nothing to do
   283 }
   285 void TemplateTable::shouldnotreachhere() {
   286   transition(vtos, vtos);
   287   __ stop("shouldnotreachhere bytecode");
   288 }
   292 void TemplateTable::aconst_null() {
   293   transition(vtos, atos);
   294   __ xorptr(rax, rax);
   295 }
   298 void TemplateTable::iconst(int value) {
   299   transition(vtos, itos);
   300   if (value == 0) {
   301     __ xorptr(rax, rax);
   302   } else {
   303     __ movptr(rax, value);
   304   }
   305 }
   308 void TemplateTable::lconst(int value) {
   309   transition(vtos, ltos);
   310   if (value == 0) {
   311     __ xorptr(rax, rax);
   312   } else {
   313     __ movptr(rax, value);
   314   }
   315   assert(value >= 0, "check this code");
   316   __ xorptr(rdx, rdx);
   317 }
   320 void TemplateTable::fconst(int value) {
   321   transition(vtos, ftos);
   322          if (value == 0) { __ fldz();
   323   } else if (value == 1) { __ fld1();
   324   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
   325   } else                 { ShouldNotReachHere();
   326   }
   327 }
   330 void TemplateTable::dconst(int value) {
   331   transition(vtos, dtos);
   332          if (value == 0) { __ fldz();
   333   } else if (value == 1) { __ fld1();
   334   } else                 { ShouldNotReachHere();
   335   }
   336 }
   339 void TemplateTable::bipush() {
   340   transition(vtos, itos);
   341   __ load_signed_byte(rax, at_bcp(1));
   342 }
   345 void TemplateTable::sipush() {
   346   transition(vtos, itos);
   347   __ load_unsigned_short(rax, at_bcp(1));
   348   __ bswapl(rax);
   349   __ sarl(rax, 16);
   350 }
   352 void TemplateTable::ldc(bool wide) {
   353   transition(vtos, vtos);
   354   Label call_ldc, notFloat, notClass, Done;
   356   if (wide) {
   357     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   358   } else {
   359     __ load_unsigned_byte(rbx, at_bcp(1));
   360   }
   361   __ get_cpool_and_tags(rcx, rax);
   362   const int base_offset = ConstantPool::header_size() * wordSize;
   363   const int tags_offset = Array<u1>::base_offset_in_bytes();
   365   // get type
   366   __ xorptr(rdx, rdx);
   367   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   369   // unresolved class - get the resolved class
   370   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   371   __ jccb(Assembler::equal, call_ldc);
   373   // unresolved class in error (resolution failed) - call into runtime
   374   // so that the same error from first resolution attempt is thrown.
   375   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   376   __ jccb(Assembler::equal, call_ldc);
   378   // resolved class - need to call vm to get java mirror of the class
   379   __ cmpl(rdx, JVM_CONSTANT_Class);
   380   __ jcc(Assembler::notEqual, notClass);
   382   __ bind(call_ldc);
   383   __ movl(rcx, wide);
   384   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
   385   __ push(atos);
   386   __ jmp(Done);
   388   __ bind(notClass);
   389   __ cmpl(rdx, JVM_CONSTANT_Float);
   390   __ jccb(Assembler::notEqual, notFloat);
   391   // ftos
   392   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
   393   __ push(ftos);
   394   __ jmp(Done);
   396   __ bind(notFloat);
   397 #ifdef ASSERT
   398   { Label L;
   399     __ cmpl(rdx, JVM_CONSTANT_Integer);
   400     __ jcc(Assembler::equal, L);
   401     // String and Object are rewritten to fast_aldc
   402     __ stop("unexpected tag type in ldc");
   403     __ bind(L);
   404   }
   405 #endif
   406   // itos JVM_CONSTANT_Integer only
   407   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   408   __ push(itos);
   409   __ bind(Done);
   410 }
   412 // Fast path for caching oop constants.
   413 void TemplateTable::fast_aldc(bool wide) {
   414   transition(vtos, atos);
   416   Register result = rax;
   417   Register tmp = rdx;
   418   int index_size = wide ? sizeof(u2) : sizeof(u1);
   420   Label resolved;
   422   // We are resolved if the resolved reference cache entry contains a
   423   // non-null object (String, MethodType, etc.)
   424   assert_different_registers(result, tmp);
   425   __ get_cache_index_at_bcp(tmp, 1, index_size);
   426   __ load_resolved_reference_at_index(result, tmp);
   427   __ testl(result, result);
   428   __ jcc(Assembler::notZero, resolved);
   430   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
   432   // first time invocation - must resolve first
   433   __ movl(tmp, (int)bytecode());
   434   __ call_VM(result, entry, tmp);
   436   __ bind(resolved);
   438   if (VerifyOops) {
   439     __ verify_oop(result);
   440   }
   441 }
   443 void TemplateTable::ldc2_w() {
   444   transition(vtos, vtos);
   445   Label Long, Done;
   446   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   448   __ get_cpool_and_tags(rcx, rax);
   449   const int base_offset = ConstantPool::header_size() * wordSize;
   450   const int tags_offset = Array<u1>::base_offset_in_bytes();
   452   // get type
   453   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
   454   __ jccb(Assembler::notEqual, Long);
   455   // dtos
   456   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
   457   __ push(dtos);
   458   __ jmpb(Done);
   460   __ bind(Long);
   461   // ltos
   462   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
   463   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
   465   __ push(ltos);
   467   __ bind(Done);
   468 }
   471 void TemplateTable::locals_index(Register reg, int offset) {
   472   __ load_unsigned_byte(reg, at_bcp(offset));
   473   __ negptr(reg);
   474 }
   477 void TemplateTable::iload() {
   478   transition(vtos, itos);
   479   if (RewriteFrequentPairs) {
   480     Label rewrite, done;
   482     // get next byte
   483     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   484     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   485     // last two iloads in a pair.  Comparing against fast_iload means that
   486     // the next bytecode is neither an iload or a caload, and therefore
   487     // an iload pair.
   488     __ cmpl(rbx, Bytecodes::_iload);
   489     __ jcc(Assembler::equal, done);
   491     __ cmpl(rbx, Bytecodes::_fast_iload);
   492     __ movl(rcx, Bytecodes::_fast_iload2);
   493     __ jccb(Assembler::equal, rewrite);
   495     // if _caload, rewrite to fast_icaload
   496     __ cmpl(rbx, Bytecodes::_caload);
   497     __ movl(rcx, Bytecodes::_fast_icaload);
   498     __ jccb(Assembler::equal, rewrite);
   500     // rewrite so iload doesn't check again.
   501     __ movl(rcx, Bytecodes::_fast_iload);
   503     // rewrite
   504     // rcx: fast bytecode
   505     __ bind(rewrite);
   506     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
   507     __ bind(done);
   508   }
   510   // Get the local value into tos
   511   locals_index(rbx);
   512   __ movl(rax, iaddress(rbx));
   513 }
   516 void TemplateTable::fast_iload2() {
   517   transition(vtos, itos);
   518   locals_index(rbx);
   519   __ movl(rax, iaddress(rbx));
   520   __ push(itos);
   521   locals_index(rbx, 3);
   522   __ movl(rax, iaddress(rbx));
   523 }
   525 void TemplateTable::fast_iload() {
   526   transition(vtos, itos);
   527   locals_index(rbx);
   528   __ movl(rax, iaddress(rbx));
   529 }
   532 void TemplateTable::lload() {
   533   transition(vtos, ltos);
   534   locals_index(rbx);
   535   __ movptr(rax, laddress(rbx));
   536   NOT_LP64(__ movl(rdx, haddress(rbx)));
   537 }
   540 void TemplateTable::fload() {
   541   transition(vtos, ftos);
   542   locals_index(rbx);
   543   __ fld_s(faddress(rbx));
   544 }
   547 void TemplateTable::dload() {
   548   transition(vtos, dtos);
   549   locals_index(rbx);
   550   __ fld_d(daddress(rbx));
   551 }
   554 void TemplateTable::aload() {
   555   transition(vtos, atos);
   556   locals_index(rbx);
   557   __ movptr(rax, aaddress(rbx));
   558 }
   561 void TemplateTable::locals_index_wide(Register reg) {
   562   __ load_unsigned_short(reg, at_bcp(2));
   563   __ bswapl(reg);
   564   __ shrl(reg, 16);
   565   __ negptr(reg);
   566 }
   569 void TemplateTable::wide_iload() {
   570   transition(vtos, itos);
   571   locals_index_wide(rbx);
   572   __ movl(rax, iaddress(rbx));
   573 }
   576 void TemplateTable::wide_lload() {
   577   transition(vtos, ltos);
   578   locals_index_wide(rbx);
   579   __ movptr(rax, laddress(rbx));
   580   NOT_LP64(__ movl(rdx, haddress(rbx)));
   581 }
   584 void TemplateTable::wide_fload() {
   585   transition(vtos, ftos);
   586   locals_index_wide(rbx);
   587   __ fld_s(faddress(rbx));
   588 }
   591 void TemplateTable::wide_dload() {
   592   transition(vtos, dtos);
   593   locals_index_wide(rbx);
   594   __ fld_d(daddress(rbx));
   595 }
   598 void TemplateTable::wide_aload() {
   599   transition(vtos, atos);
   600   locals_index_wide(rbx);
   601   __ movptr(rax, aaddress(rbx));
   602 }
   604 void TemplateTable::index_check(Register array, Register index) {
   605   // Pop ptr into array
   606   __ pop_ptr(array);
   607   index_check_without_pop(array, index);
   608 }
   610 void TemplateTable::index_check_without_pop(Register array, Register index) {
   611   // destroys rbx,
   612   // check array
   613   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   614   LP64_ONLY(__ movslq(index, index));
   615   // check index
   616   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   617   if (index != rbx) {
   618     // ??? convention: move aberrant index into rbx, for exception message
   619     assert(rbx != array, "different registers");
   620     __ mov(rbx, index);
   621   }
   622   __ jump_cc(Assembler::aboveEqual,
   623              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   624 }
   627 void TemplateTable::iaload() {
   628   transition(itos, itos);
   629   // rdx: array
   630   index_check(rdx, rax);  // kills rbx,
   631   // rax,: index
   632   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
   633 }
   636 void TemplateTable::laload() {
   637   transition(itos, ltos);
   638   // rax,: index
   639   // rdx: array
   640   index_check(rdx, rax);
   641   __ mov(rbx, rax);
   642   // rbx,: index
   643   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
   644   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
   645 }
   648 void TemplateTable::faload() {
   649   transition(itos, ftos);
   650   // rdx: array
   651   index_check(rdx, rax);  // kills rbx,
   652   // rax,: index
   653   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   654 }
   657 void TemplateTable::daload() {
   658   transition(itos, dtos);
   659   // rdx: array
   660   index_check(rdx, rax);  // kills rbx,
   661   // rax,: index
   662   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   663 }
   666 void TemplateTable::aaload() {
   667   transition(itos, atos);
   668   // rdx: array
   669   index_check(rdx, rax);  // kills rbx,
   670   // rax,: index
   671   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   672 }
   675 void TemplateTable::baload() {
   676   transition(itos, itos);
   677   // rdx: array
   678   index_check(rdx, rax);  // kills rbx,
   679   // rax,: index
   680   // can do better code for P5 - fix this at some point
   681   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   682   __ mov(rax, rbx);
   683 }
   686 void TemplateTable::caload() {
   687   transition(itos, itos);
   688   // rdx: array
   689   index_check(rdx, rax);  // kills rbx,
   690   // rax,: index
   691   // can do better code for P5 - may want to improve this at some point
   692   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   693   __ mov(rax, rbx);
   694 }
   696 // iload followed by caload frequent pair
   697 void TemplateTable::fast_icaload() {
   698   transition(vtos, itos);
   699   // load index out of locals
   700   locals_index(rbx);
   701   __ movl(rax, iaddress(rbx));
   703   // rdx: array
   704   index_check(rdx, rax);
   705   // rax,: index
   706   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   707   __ mov(rax, rbx);
   708 }
   710 void TemplateTable::saload() {
   711   transition(itos, itos);
   712   // rdx: array
   713   index_check(rdx, rax);  // kills rbx,
   714   // rax,: index
   715   // can do better code for P5 - may want to improve this at some point
   716   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   717   __ mov(rax, rbx);
   718 }
   721 void TemplateTable::iload(int n) {
   722   transition(vtos, itos);
   723   __ movl(rax, iaddress(n));
   724 }
   727 void TemplateTable::lload(int n) {
   728   transition(vtos, ltos);
   729   __ movptr(rax, laddress(n));
   730   NOT_LP64(__ movptr(rdx, haddress(n)));
   731 }
   734 void TemplateTable::fload(int n) {
   735   transition(vtos, ftos);
   736   __ fld_s(faddress(n));
   737 }
   740 void TemplateTable::dload(int n) {
   741   transition(vtos, dtos);
   742   __ fld_d(daddress(n));
   743 }
   746 void TemplateTable::aload(int n) {
   747   transition(vtos, atos);
   748   __ movptr(rax, aaddress(n));
   749 }
   752 void TemplateTable::aload_0() {
   753   transition(vtos, atos);
   754   // According to bytecode histograms, the pairs:
   755   //
   756   // _aload_0, _fast_igetfield
   757   // _aload_0, _fast_agetfield
   758   // _aload_0, _fast_fgetfield
   759   //
   760   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   761   // bytecode checks if the next bytecode is either _fast_igetfield,
   762   // _fast_agetfield or _fast_fgetfield and then rewrites the
   763   // current bytecode into a pair bytecode; otherwise it rewrites the current
   764   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   765   //
   766   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
   767   //       otherwise we may miss an opportunity for a pair.
   768   //
   769   // Also rewrite frequent pairs
   770   //   aload_0, aload_1
   771   //   aload_0, iload_1
   772   // These bytecodes with a small amount of code are most profitable to rewrite
   773   if (RewriteFrequentPairs) {
   774     Label rewrite, done;
   775     // get next byte
   776     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   778     // do actual aload_0
   779     aload(0);
   781     // if _getfield then wait with rewrite
   782     __ cmpl(rbx, Bytecodes::_getfield);
   783     __ jcc(Assembler::equal, done);
   785     // if _igetfield then reqrite to _fast_iaccess_0
   786     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   787     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   788     __ movl(rcx, Bytecodes::_fast_iaccess_0);
   789     __ jccb(Assembler::equal, rewrite);
   791     // if _agetfield then reqrite to _fast_aaccess_0
   792     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   793     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   794     __ movl(rcx, Bytecodes::_fast_aaccess_0);
   795     __ jccb(Assembler::equal, rewrite);
   797     // if _fgetfield then reqrite to _fast_faccess_0
   798     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   799     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   800     __ movl(rcx, Bytecodes::_fast_faccess_0);
   801     __ jccb(Assembler::equal, rewrite);
   803     // else rewrite to _fast_aload0
   804     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
   805     __ movl(rcx, Bytecodes::_fast_aload_0);
   807     // rewrite
   808     // rcx: fast bytecode
   809     __ bind(rewrite);
   810     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
   812     __ bind(done);
   813   } else {
   814     aload(0);
   815   }
   816 }
   818 void TemplateTable::istore() {
   819   transition(itos, vtos);
   820   locals_index(rbx);
   821   __ movl(iaddress(rbx), rax);
   822 }
   825 void TemplateTable::lstore() {
   826   transition(ltos, vtos);
   827   locals_index(rbx);
   828   __ movptr(laddress(rbx), rax);
   829   NOT_LP64(__ movptr(haddress(rbx), rdx));
   830 }
   833 void TemplateTable::fstore() {
   834   transition(ftos, vtos);
   835   locals_index(rbx);
   836   __ fstp_s(faddress(rbx));
   837 }
   840 void TemplateTable::dstore() {
   841   transition(dtos, vtos);
   842   locals_index(rbx);
   843   __ fstp_d(daddress(rbx));
   844 }
   847 void TemplateTable::astore() {
   848   transition(vtos, vtos);
   849   __ pop_ptr(rax);
   850   locals_index(rbx);
   851   __ movptr(aaddress(rbx), rax);
   852 }
   855 void TemplateTable::wide_istore() {
   856   transition(vtos, vtos);
   857   __ pop_i(rax);
   858   locals_index_wide(rbx);
   859   __ movl(iaddress(rbx), rax);
   860 }
   863 void TemplateTable::wide_lstore() {
   864   transition(vtos, vtos);
   865   __ pop_l(rax, rdx);
   866   locals_index_wide(rbx);
   867   __ movptr(laddress(rbx), rax);
   868   NOT_LP64(__ movl(haddress(rbx), rdx));
   869 }
   872 void TemplateTable::wide_fstore() {
   873   wide_istore();
   874 }
   877 void TemplateTable::wide_dstore() {
   878   wide_lstore();
   879 }
   882 void TemplateTable::wide_astore() {
   883   transition(vtos, vtos);
   884   __ pop_ptr(rax);
   885   locals_index_wide(rbx);
   886   __ movptr(aaddress(rbx), rax);
   887 }
   890 void TemplateTable::iastore() {
   891   transition(itos, vtos);
   892   __ pop_i(rbx);
   893   // rax,: value
   894   // rdx: array
   895   index_check(rdx, rbx);  // prefer index in rbx,
   896   // rbx,: index
   897   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
   898 }
   901 void TemplateTable::lastore() {
   902   transition(ltos, vtos);
   903   __ pop_i(rbx);
   904   // rax,: low(value)
   905   // rcx: array
   906   // rdx: high(value)
   907   index_check(rcx, rbx);  // prefer index in rbx,
   908   // rbx,: index
   909   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
   910   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
   911 }
   914 void TemplateTable::fastore() {
   915   transition(ftos, vtos);
   916   __ pop_i(rbx);
   917   // rdx: array
   918   // st0: value
   919   index_check(rdx, rbx);  // prefer index in rbx,
   920   // rbx,: index
   921   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   922 }
   925 void TemplateTable::dastore() {
   926   transition(dtos, vtos);
   927   __ pop_i(rbx);
   928   // rdx: array
   929   // st0: value
   930   index_check(rdx, rbx);  // prefer index in rbx,
   931   // rbx,: index
   932   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   933 }
   936 void TemplateTable::aastore() {
   937   Label is_null, ok_is_subtype, done;
   938   transition(vtos, vtos);
   939   // stack: ..., array, index, value
   940   __ movptr(rax, at_tos());     // Value
   941   __ movl(rcx, at_tos_p1());  // Index
   942   __ movptr(rdx, at_tos_p2());  // Array
   944   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   945   index_check_without_pop(rdx, rcx);      // kills rbx,
   946   // do array store check - check for NULL value first
   947   __ testptr(rax, rax);
   948   __ jcc(Assembler::zero, is_null);
   950   // Move subklass into EBX
   951   __ load_klass(rbx, rax);
   952   // Move superklass into EAX
   953   __ load_klass(rax, rdx);
   954   __ movptr(rax, Address(rax, ObjArrayKlass::element_klass_offset()));
   955   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
   956   __ lea(rdx, element_address);
   958   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
   959   // Superklass in EAX.  Subklass in EBX.
   960   __ gen_subtype_check( rbx, ok_is_subtype );
   962   // Come here on failure
   963   // object is at TOS
   964   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   966   // Come here on success
   967   __ bind(ok_is_subtype);
   969   // Get the value to store
   970   __ movptr(rax, at_rsp());
   971   // and store it with appropriate barrier
   972   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   974   __ jmp(done);
   976   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
   977   __ bind(is_null);
   978   __ profile_null_seen(rbx);
   980   // Store NULL, (noreg means NULL to do_oop_store)
   981   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   983   // Pop stack arguments
   984   __ bind(done);
   985   __ addptr(rsp, 3 * Interpreter::stackElementSize);
   986 }
   989 void TemplateTable::bastore() {
   990   transition(itos, vtos);
   991   __ pop_i(rbx);
   992   // rax: value
   993   // rbx: index
   994   // rdx: array
   995   index_check(rdx, rbx);  // prefer index in rbx
   996   // Need to check whether array is boolean or byte
   997   // since both types share the bastore bytecode.
   998   __ load_klass(rcx, rdx);
   999   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
  1000   int diffbit = Klass::layout_helper_boolean_diffbit();
  1001   __ testl(rcx, diffbit);
  1002   Label L_skip;
  1003   __ jccb(Assembler::zero, L_skip);
  1004   __ andl(rax, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
  1005   __ bind(L_skip);
  1006  __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
  1010 void TemplateTable::castore() {
  1011   transition(itos, vtos);
  1012   __ pop_i(rbx);
  1013   // rax,: value
  1014   // rdx: array
  1015   index_check(rdx, rbx);  // prefer index in rbx,
  1016   // rbx,: index
  1017   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
  1021 void TemplateTable::sastore() {
  1022   castore();
  1026 void TemplateTable::istore(int n) {
  1027   transition(itos, vtos);
  1028   __ movl(iaddress(n), rax);
  1032 void TemplateTable::lstore(int n) {
  1033   transition(ltos, vtos);
  1034   __ movptr(laddress(n), rax);
  1035   NOT_LP64(__ movptr(haddress(n), rdx));
  1039 void TemplateTable::fstore(int n) {
  1040   transition(ftos, vtos);
  1041   __ fstp_s(faddress(n));
  1045 void TemplateTable::dstore(int n) {
  1046   transition(dtos, vtos);
  1047   __ fstp_d(daddress(n));
  1051 void TemplateTable::astore(int n) {
  1052   transition(vtos, vtos);
  1053   __ pop_ptr(rax);
  1054   __ movptr(aaddress(n), rax);
  1058 void TemplateTable::pop() {
  1059   transition(vtos, vtos);
  1060   __ addptr(rsp, Interpreter::stackElementSize);
  1064 void TemplateTable::pop2() {
  1065   transition(vtos, vtos);
  1066   __ addptr(rsp, 2*Interpreter::stackElementSize);
  1070 void TemplateTable::dup() {
  1071   transition(vtos, vtos);
  1072   // stack: ..., a
  1073   __ load_ptr(0, rax);
  1074   __ push_ptr(rax);
  1075   // stack: ..., a, a
  1079 void TemplateTable::dup_x1() {
  1080   transition(vtos, vtos);
  1081   // stack: ..., a, b
  1082   __ load_ptr( 0, rax);  // load b
  1083   __ load_ptr( 1, rcx);  // load a
  1084   __ store_ptr(1, rax);  // store b
  1085   __ store_ptr(0, rcx);  // store a
  1086   __ push_ptr(rax);      // push b
  1087   // stack: ..., b, a, b
  1091 void TemplateTable::dup_x2() {
  1092   transition(vtos, vtos);
  1093   // stack: ..., a, b, c
  1094   __ load_ptr( 0, rax);  // load c
  1095   __ load_ptr( 2, rcx);  // load a
  1096   __ store_ptr(2, rax);  // store c in a
  1097   __ push_ptr(rax);      // push c
  1098   // stack: ..., c, b, c, c
  1099   __ load_ptr( 2, rax);  // load b
  1100   __ store_ptr(2, rcx);  // store a in b
  1101   // stack: ..., c, a, c, c
  1102   __ store_ptr(1, rax);  // store b in c
  1103   // stack: ..., c, a, b, c
  1107 void TemplateTable::dup2() {
  1108   transition(vtos, vtos);
  1109   // stack: ..., a, b
  1110   __ load_ptr(1, rax);  // load a
  1111   __ push_ptr(rax);     // push a
  1112   __ load_ptr(1, rax);  // load b
  1113   __ push_ptr(rax);     // push b
  1114   // stack: ..., a, b, a, b
  1118 void TemplateTable::dup2_x1() {
  1119   transition(vtos, vtos);
  1120   // stack: ..., a, b, c
  1121   __ load_ptr( 0, rcx);  // load c
  1122   __ load_ptr( 1, rax);  // load b
  1123   __ push_ptr(rax);      // push b
  1124   __ push_ptr(rcx);      // push c
  1125   // stack: ..., a, b, c, b, c
  1126   __ store_ptr(3, rcx);  // store c in b
  1127   // stack: ..., a, c, c, b, c
  1128   __ load_ptr( 4, rcx);  // load a
  1129   __ store_ptr(2, rcx);  // store a in 2nd c
  1130   // stack: ..., a, c, a, b, c
  1131   __ store_ptr(4, rax);  // store b in a
  1132   // stack: ..., b, c, a, b, c
  1133   // stack: ..., b, c, a, b, c
  1137 void TemplateTable::dup2_x2() {
  1138   transition(vtos, vtos);
  1139   // stack: ..., a, b, c, d
  1140   __ load_ptr( 0, rcx);  // load d
  1141   __ load_ptr( 1, rax);  // load c
  1142   __ push_ptr(rax);      // push c
  1143   __ push_ptr(rcx);      // push d
  1144   // stack: ..., a, b, c, d, c, d
  1145   __ load_ptr( 4, rax);  // load b
  1146   __ store_ptr(2, rax);  // store b in d
  1147   __ store_ptr(4, rcx);  // store d in b
  1148   // stack: ..., a, d, c, b, c, d
  1149   __ load_ptr( 5, rcx);  // load a
  1150   __ load_ptr( 3, rax);  // load c
  1151   __ store_ptr(3, rcx);  // store a in c
  1152   __ store_ptr(5, rax);  // store c in a
  1153   // stack: ..., c, d, a, b, c, d
  1154   // stack: ..., c, d, a, b, c, d
  1158 void TemplateTable::swap() {
  1159   transition(vtos, vtos);
  1160   // stack: ..., a, b
  1161   __ load_ptr( 1, rcx);  // load a
  1162   __ load_ptr( 0, rax);  // load b
  1163   __ store_ptr(0, rcx);  // store a in b
  1164   __ store_ptr(1, rax);  // store b in a
  1165   // stack: ..., b, a
  1169 void TemplateTable::iop2(Operation op) {
  1170   transition(itos, itos);
  1171   switch (op) {
  1172     case add  :                   __ pop_i(rdx); __ addl (rax, rdx); break;
  1173     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1174     case mul  :                   __ pop_i(rdx); __ imull(rax, rdx); break;
  1175     case _and :                   __ pop_i(rdx); __ andl (rax, rdx); break;
  1176     case _or  :                   __ pop_i(rdx); __ orl  (rax, rdx); break;
  1177     case _xor :                   __ pop_i(rdx); __ xorl (rax, rdx); break;
  1178     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1179     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1180     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1181     default   : ShouldNotReachHere();
  1186 void TemplateTable::lop2(Operation op) {
  1187   transition(ltos, ltos);
  1188   __ pop_l(rbx, rcx);
  1189   switch (op) {
  1190     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
  1191     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
  1192                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
  1193     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
  1194     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
  1195     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
  1196     default   : ShouldNotReachHere();
  1201 void TemplateTable::idiv() {
  1202   transition(itos, itos);
  1203   __ mov(rcx, rax);
  1204   __ pop_i(rax);
  1205   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1206   //       they are not equal, one could do a normal division (no correction
  1207   //       needed), which may speed up this implementation for the common case.
  1208   //       (see also JVM spec., p.243 & p.271)
  1209   __ corrected_idivl(rcx);
  1213 void TemplateTable::irem() {
  1214   transition(itos, itos);
  1215   __ mov(rcx, rax);
  1216   __ pop_i(rax);
  1217   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1218   //       they are not equal, one could do a normal division (no correction
  1219   //       needed), which may speed up this implementation for the common case.
  1220   //       (see also JVM spec., p.243 & p.271)
  1221   __ corrected_idivl(rcx);
  1222   __ mov(rax, rdx);
  1226 void TemplateTable::lmul() {
  1227   transition(ltos, ltos);
  1228   __ pop_l(rbx, rcx);
  1229   __ push(rcx); __ push(rbx);
  1230   __ push(rdx); __ push(rax);
  1231   __ lmul(2 * wordSize, 0);
  1232   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1236 void TemplateTable::ldiv() {
  1237   transition(ltos, ltos);
  1238   __ pop_l(rbx, rcx);
  1239   __ push(rcx); __ push(rbx);
  1240   __ push(rdx); __ push(rax);
  1241   // check if y = 0
  1242   __ orl(rax, rdx);
  1243   __ jump_cc(Assembler::zero,
  1244              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1245   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1246   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1250 void TemplateTable::lrem() {
  1251   transition(ltos, ltos);
  1252   __ pop_l(rbx, rcx);
  1253   __ push(rcx); __ push(rbx);
  1254   __ push(rdx); __ push(rax);
  1255   // check if y = 0
  1256   __ orl(rax, rdx);
  1257   __ jump_cc(Assembler::zero,
  1258              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1259   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1260   __ addptr(rsp, 4 * wordSize);
  1264 void TemplateTable::lshl() {
  1265   transition(itos, ltos);
  1266   __ movl(rcx, rax);                             // get shift count
  1267   __ pop_l(rax, rdx);                            // get shift value
  1268   __ lshl(rdx, rax);
  1272 void TemplateTable::lshr() {
  1273   transition(itos, ltos);
  1274   __ mov(rcx, rax);                              // get shift count
  1275   __ pop_l(rax, rdx);                            // get shift value
  1276   __ lshr(rdx, rax, true);
  1280 void TemplateTable::lushr() {
  1281   transition(itos, ltos);
  1282   __ mov(rcx, rax);                              // get shift count
  1283   __ pop_l(rax, rdx);                            // get shift value
  1284   __ lshr(rdx, rax);
  1288 void TemplateTable::fop2(Operation op) {
  1289   transition(ftos, ftos);
  1290   switch (op) {
  1291     case add: __ fadd_s (at_rsp());                break;
  1292     case sub: __ fsubr_s(at_rsp());                break;
  1293     case mul: __ fmul_s (at_rsp());                break;
  1294     case div: __ fdivr_s(at_rsp());                break;
  1295     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
  1296     default : ShouldNotReachHere();
  1298   __ f2ieee();
  1299   __ pop(rax);  // pop float thing off
  1303 void TemplateTable::dop2(Operation op) {
  1304   transition(dtos, dtos);
  1306   switch (op) {
  1307     case add: __ fadd_d (at_rsp());                break;
  1308     case sub: __ fsubr_d(at_rsp());                break;
  1309     case mul: {
  1310       Label L_strict;
  1311       Label L_join;
  1312       const Address access_flags      (rcx, Method::access_flags_offset());
  1313       __ get_method(rcx);
  1314       __ movl(rcx, access_flags);
  1315       __ testl(rcx, JVM_ACC_STRICT);
  1316       __ jccb(Assembler::notZero, L_strict);
  1317       __ fmul_d (at_rsp());
  1318       __ jmpb(L_join);
  1319       __ bind(L_strict);
  1320       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1321       __ fmulp();
  1322       __ fmul_d (at_rsp());
  1323       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1324       __ fmulp();
  1325       __ bind(L_join);
  1326       break;
  1328     case div: {
  1329       Label L_strict;
  1330       Label L_join;
  1331       const Address access_flags      (rcx, Method::access_flags_offset());
  1332       __ get_method(rcx);
  1333       __ movl(rcx, access_flags);
  1334       __ testl(rcx, JVM_ACC_STRICT);
  1335       __ jccb(Assembler::notZero, L_strict);
  1336       __ fdivr_d(at_rsp());
  1337       __ jmp(L_join);
  1338       __ bind(L_strict);
  1339       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1340       __ fmul_d (at_rsp());
  1341       __ fdivrp();
  1342       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1343       __ fmulp();
  1344       __ bind(L_join);
  1345       break;
  1347     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
  1348     default : ShouldNotReachHere();
  1350   __ d2ieee();
  1351   // Pop double precision number from rsp.
  1352   __ pop(rax);
  1353   __ pop(rdx);
  1357 void TemplateTable::ineg() {
  1358   transition(itos, itos);
  1359   __ negl(rax);
  1363 void TemplateTable::lneg() {
  1364   transition(ltos, ltos);
  1365   __ lneg(rdx, rax);
  1369 void TemplateTable::fneg() {
  1370   transition(ftos, ftos);
  1371   __ fchs();
  1375 void TemplateTable::dneg() {
  1376   transition(dtos, dtos);
  1377   __ fchs();
  1381 void TemplateTable::iinc() {
  1382   transition(vtos, vtos);
  1383   __ load_signed_byte(rdx, at_bcp(2));           // get constant
  1384   locals_index(rbx);
  1385   __ addl(iaddress(rbx), rdx);
  1389 void TemplateTable::wide_iinc() {
  1390   transition(vtos, vtos);
  1391   __ movl(rdx, at_bcp(4));                       // get constant
  1392   locals_index_wide(rbx);
  1393   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
  1394   __ sarl(rdx, 16);
  1395   __ addl(iaddress(rbx), rdx);
  1396   // Note: should probably use only one movl to get both
  1397   //       the index and the constant -> fix this
  1401 void TemplateTable::convert() {
  1402   // Checking
  1403 #ifdef ASSERT
  1404   { TosState tos_in  = ilgl;
  1405     TosState tos_out = ilgl;
  1406     switch (bytecode()) {
  1407       case Bytecodes::_i2l: // fall through
  1408       case Bytecodes::_i2f: // fall through
  1409       case Bytecodes::_i2d: // fall through
  1410       case Bytecodes::_i2b: // fall through
  1411       case Bytecodes::_i2c: // fall through
  1412       case Bytecodes::_i2s: tos_in = itos; break;
  1413       case Bytecodes::_l2i: // fall through
  1414       case Bytecodes::_l2f: // fall through
  1415       case Bytecodes::_l2d: tos_in = ltos; break;
  1416       case Bytecodes::_f2i: // fall through
  1417       case Bytecodes::_f2l: // fall through
  1418       case Bytecodes::_f2d: tos_in = ftos; break;
  1419       case Bytecodes::_d2i: // fall through
  1420       case Bytecodes::_d2l: // fall through
  1421       case Bytecodes::_d2f: tos_in = dtos; break;
  1422       default             : ShouldNotReachHere();
  1424     switch (bytecode()) {
  1425       case Bytecodes::_l2i: // fall through
  1426       case Bytecodes::_f2i: // fall through
  1427       case Bytecodes::_d2i: // fall through
  1428       case Bytecodes::_i2b: // fall through
  1429       case Bytecodes::_i2c: // fall through
  1430       case Bytecodes::_i2s: tos_out = itos; break;
  1431       case Bytecodes::_i2l: // fall through
  1432       case Bytecodes::_f2l: // fall through
  1433       case Bytecodes::_d2l: tos_out = ltos; break;
  1434       case Bytecodes::_i2f: // fall through
  1435       case Bytecodes::_l2f: // fall through
  1436       case Bytecodes::_d2f: tos_out = ftos; break;
  1437       case Bytecodes::_i2d: // fall through
  1438       case Bytecodes::_l2d: // fall through
  1439       case Bytecodes::_f2d: tos_out = dtos; break;
  1440       default             : ShouldNotReachHere();
  1442     transition(tos_in, tos_out);
  1444 #endif // ASSERT
  1446   // Conversion
  1447   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
  1448   switch (bytecode()) {
  1449     case Bytecodes::_i2l:
  1450       __ extend_sign(rdx, rax);
  1451       break;
  1452     case Bytecodes::_i2f:
  1453       __ push(rax);          // store int on tos
  1454       __ fild_s(at_rsp());   // load int to ST0
  1455       __ f2ieee();           // truncate to float size
  1456       __ pop(rcx);           // adjust rsp
  1457       break;
  1458     case Bytecodes::_i2d:
  1459       __ push(rax);          // add one slot for d2ieee()
  1460       __ push(rax);          // store int on tos
  1461       __ fild_s(at_rsp());   // load int to ST0
  1462       __ d2ieee();           // truncate to double size
  1463       __ pop(rcx);           // adjust rsp
  1464       __ pop(rcx);
  1465       break;
  1466     case Bytecodes::_i2b:
  1467       __ shll(rax, 24);      // truncate upper 24 bits
  1468       __ sarl(rax, 24);      // and sign-extend byte
  1469       LP64_ONLY(__ movsbl(rax, rax));
  1470       break;
  1471     case Bytecodes::_i2c:
  1472       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
  1473       LP64_ONLY(__ movzwl(rax, rax));
  1474       break;
  1475     case Bytecodes::_i2s:
  1476       __ shll(rax, 16);      // truncate upper 16 bits
  1477       __ sarl(rax, 16);      // and sign-extend short
  1478       LP64_ONLY(__ movswl(rax, rax));
  1479       break;
  1480     case Bytecodes::_l2i:
  1481       /* nothing to do */
  1482       break;
  1483     case Bytecodes::_l2f:
  1484       __ push(rdx);          // store long on tos
  1485       __ push(rax);
  1486       __ fild_d(at_rsp());   // load long to ST0
  1487       __ f2ieee();           // truncate to float size
  1488       __ pop(rcx);           // adjust rsp
  1489       __ pop(rcx);
  1490       break;
  1491     case Bytecodes::_l2d:
  1492       __ push(rdx);          // store long on tos
  1493       __ push(rax);
  1494       __ fild_d(at_rsp());   // load long to ST0
  1495       __ d2ieee();           // truncate to double size
  1496       __ pop(rcx);           // adjust rsp
  1497       __ pop(rcx);
  1498       break;
  1499     case Bytecodes::_f2i:
  1500       __ push(rcx);          // reserve space for argument
  1501       __ fstp_s(at_rsp());   // pass float argument on stack
  1502       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1503       break;
  1504     case Bytecodes::_f2l:
  1505       __ push(rcx);          // reserve space for argument
  1506       __ fstp_s(at_rsp());   // pass float argument on stack
  1507       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1508       break;
  1509     case Bytecodes::_f2d:
  1510       /* nothing to do */
  1511       break;
  1512     case Bytecodes::_d2i:
  1513       __ push(rcx);          // reserve space for argument
  1514       __ push(rcx);
  1515       __ fstp_d(at_rsp());   // pass double argument on stack
  1516       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
  1517       break;
  1518     case Bytecodes::_d2l:
  1519       __ push(rcx);          // reserve space for argument
  1520       __ push(rcx);
  1521       __ fstp_d(at_rsp());   // pass double argument on stack
  1522       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
  1523       break;
  1524     case Bytecodes::_d2f:
  1525       __ push(rcx);          // reserve space for f2ieee()
  1526       __ f2ieee();           // truncate to float size
  1527       __ pop(rcx);           // adjust rsp
  1528       break;
  1529     default             :
  1530       ShouldNotReachHere();
  1535 void TemplateTable::lcmp() {
  1536   transition(ltos, itos);
  1537   // y = rdx:rax
  1538   __ pop_l(rbx, rcx);             // get x = rcx:rbx
  1539   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
  1540   __ mov(rax, rcx);
  1544 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1545   if (is_float) {
  1546     __ fld_s(at_rsp());
  1547   } else {
  1548     __ fld_d(at_rsp());
  1549     __ pop(rdx);
  1551   __ pop(rcx);
  1552   __ fcmp2int(rax, unordered_result < 0);
  1556 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1557   __ get_method(rcx);           // ECX holds method
  1558   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
  1560   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
  1561                              InvocationCounter::counter_offset();
  1562   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
  1563                               InvocationCounter::counter_offset();
  1565   // Load up EDX with the branch displacement
  1566   if (is_wide) {
  1567     __ movl(rdx, at_bcp(1));
  1568   } else {
  1569     __ load_signed_short(rdx, at_bcp(1));
  1571   __ bswapl(rdx);
  1572   if (!is_wide) __ sarl(rdx, 16);
  1573   LP64_ONLY(__ movslq(rdx, rdx));
  1576   // Handle all the JSR stuff here, then exit.
  1577   // It's much shorter and cleaner than intermingling with the
  1578   // non-JSR normal-branch stuff occurring below.
  1579   if (is_jsr) {
  1580     // Pre-load the next target bytecode into EBX
  1581     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
  1583     // compute return address as bci in rax,
  1584     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset())));
  1585     __ subptr(rax, Address(rcx, Method::const_offset()));
  1586     // Adjust the bcp in RSI by the displacement in EDX
  1587     __ addptr(rsi, rdx);
  1588     // Push return address
  1589     __ push_i(rax);
  1590     // jsr returns vtos
  1591     __ dispatch_only_noverify(vtos);
  1592     return;
  1595   // Normal (non-jsr) branch handling
  1597   // Adjust the bcp in RSI by the displacement in EDX
  1598   __ addptr(rsi, rdx);
  1600   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
  1601   Label backedge_counter_overflow;
  1602   Label profile_method;
  1603   Label dispatch;
  1604   if (UseLoopCounter) {
  1605     // increment backedge counter for backward branches
  1606     // rax,: MDO
  1607     // rbx,: MDO bumped taken-count
  1608     // rcx: method
  1609     // rdx: target offset
  1610     // rsi: target bcp
  1611     // rdi: locals pointer
  1612     __ testl(rdx, rdx);             // check if forward or backward branch
  1613     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1615     // check if MethodCounters exists
  1616     Label has_counters;
  1617     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
  1618     __ testptr(rax, rax);
  1619     __ jcc(Assembler::notZero, has_counters);
  1620     __ push(rdx);
  1621     __ push(rcx);
  1622     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
  1623                rcx);
  1624     __ pop(rcx);
  1625     __ pop(rdx);
  1626     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
  1627     __ testptr(rax, rax);
  1628     __ jcc(Assembler::zero, dispatch);
  1629     __ bind(has_counters);
  1631     if (TieredCompilation) {
  1632       Label no_mdo;
  1633       int increment = InvocationCounter::count_increment;
  1634       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1635       if (ProfileInterpreter) {
  1636         // Are we profiling?
  1637         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
  1638         __ testptr(rbx, rbx);
  1639         __ jccb(Assembler::zero, no_mdo);
  1640         // Increment the MDO backedge counter
  1641         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
  1642                                                 in_bytes(InvocationCounter::counter_offset()));
  1643         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, rax, false, Assembler::zero,
  1644                                    UseOnStackReplacement ? &backedge_counter_overflow : NULL);
  1645         __ jmp(dispatch);
  1647       __ bind(no_mdo);
  1648       // Increment backedge counter in MethodCounters*
  1649       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
  1650       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1651                                  rax, false, Assembler::zero,
  1652                                  UseOnStackReplacement ? &backedge_counter_overflow : NULL);
  1653     } else {
  1654       // increment counter
  1655       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
  1656       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1657       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1658       __ movl(Address(rcx, be_offset), rax);        // store counter
  1660       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1662       __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
  1663       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1665       if (ProfileInterpreter) {
  1666         // Test to see if we should create a method data oop
  1667         __ cmp32(rax,
  1668                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1669         __ jcc(Assembler::less, dispatch);
  1671         // if no method data exists, go to profile method
  1672         __ test_method_data_pointer(rax, profile_method);
  1674         if (UseOnStackReplacement) {
  1675           // check for overflow against rbx, which is the MDO taken count
  1676           __ cmp32(rbx,
  1677                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1678           __ jcc(Assembler::below, dispatch);
  1680           // When ProfileInterpreter is on, the backedge_count comes from the
  1681           // MethodData*, which value does not get reset on the call to
  1682           // frequency_counter_overflow().  To avoid excessive calls to the overflow
  1683           // routine while the method is being compiled, add a second test to make
  1684           // sure the overflow function is called only once every overflow_frequency.
  1685           const int overflow_frequency = 1024;
  1686           __ andptr(rbx, overflow_frequency-1);
  1687           __ jcc(Assembler::zero, backedge_counter_overflow);
  1689       } else {
  1690         if (UseOnStackReplacement) {
  1691           // check for overflow against rax, which is the sum of the counters
  1692           __ cmp32(rax,
  1693                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1694           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1699     __ bind(dispatch);
  1702   // Pre-load the next target bytecode into EBX
  1703   __ load_unsigned_byte(rbx, Address(rsi, 0));
  1705   // continue with the bytecode @ target
  1706   // rax,: return bci for jsr's, unused otherwise
  1707   // rbx,: target bytecode
  1708   // rsi: target bcp
  1709   __ dispatch_only(vtos);
  1711   if (UseLoopCounter) {
  1712     if (ProfileInterpreter) {
  1713       // Out-of-line code to allocate method data oop.
  1714       __ bind(profile_method);
  1715       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1716       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1717       __ set_method_data_pointer_for_bcp();
  1718       __ jmp(dispatch);
  1721     if (UseOnStackReplacement) {
  1723       // invocation counter overflow
  1724       __ bind(backedge_counter_overflow);
  1725       __ negptr(rdx);
  1726       __ addptr(rdx, rsi);        // branch bcp
  1727       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
  1728       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1730       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
  1731       // rbx,: target bytecode
  1732       // rdx: scratch
  1733       // rdi: locals pointer
  1734       // rsi: bcp
  1735       __ testptr(rax, rax);                      // test result
  1736       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1737       // nmethod may have been invalidated (VM may block upon call_VM return)
  1738       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1739       __ cmpl(rcx, InvalidOSREntryBci);
  1740       __ jcc(Assembler::equal, dispatch);
  1742       // We have the address of an on stack replacement routine in rax,
  1743       // We need to prepare to execute the OSR method. First we must
  1744       // migrate the locals and monitors off of the stack.
  1746       __ mov(rbx, rax);                             // save the nmethod
  1748       const Register thread = rcx;
  1749       __ get_thread(thread);
  1750       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1751       // rax, is OSR buffer, move it to expected parameter location
  1752       __ mov(rcx, rax);
  1754       // pop the interpreter frame
  1755       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1756       __ leave();                                // remove frame anchor
  1757       __ pop(rdi);                               // get return address
  1758       __ mov(rsp, rdx);                          // set sp to sender sp
  1760       // Align stack pointer for compiled code (note that caller is
  1761       // responsible for undoing this fixup by remembering the old SP
  1762       // in an rbp,-relative location)
  1763       __ andptr(rsp, -(StackAlignmentInBytes));
  1765       // push the (possibly adjusted) return address
  1766       __ push(rdi);
  1768       // and begin the OSR nmethod
  1769       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
  1775 void TemplateTable::if_0cmp(Condition cc) {
  1776   transition(itos, vtos);
  1777   // assume branch is more often taken than not (loops use backward branches)
  1778   Label not_taken;
  1779   __ testl(rax, rax);
  1780   __ jcc(j_not(cc), not_taken);
  1781   branch(false, false);
  1782   __ bind(not_taken);
  1783   __ profile_not_taken_branch(rax);
  1787 void TemplateTable::if_icmp(Condition cc) {
  1788   transition(itos, vtos);
  1789   // assume branch is more often taken than not (loops use backward branches)
  1790   Label not_taken;
  1791   __ pop_i(rdx);
  1792   __ cmpl(rdx, rax);
  1793   __ jcc(j_not(cc), not_taken);
  1794   branch(false, false);
  1795   __ bind(not_taken);
  1796   __ profile_not_taken_branch(rax);
  1800 void TemplateTable::if_nullcmp(Condition cc) {
  1801   transition(atos, vtos);
  1802   // assume branch is more often taken than not (loops use backward branches)
  1803   Label not_taken;
  1804   __ testptr(rax, rax);
  1805   __ jcc(j_not(cc), not_taken);
  1806   branch(false, false);
  1807   __ bind(not_taken);
  1808   __ profile_not_taken_branch(rax);
  1812 void TemplateTable::if_acmp(Condition cc) {
  1813   transition(atos, vtos);
  1814   // assume branch is more often taken than not (loops use backward branches)
  1815   Label not_taken;
  1816   __ pop_ptr(rdx);
  1817   __ cmpptr(rdx, rax);
  1818   __ jcc(j_not(cc), not_taken);
  1819   branch(false, false);
  1820   __ bind(not_taken);
  1821   __ profile_not_taken_branch(rax);
  1825 void TemplateTable::ret() {
  1826   transition(vtos, vtos);
  1827   locals_index(rbx);
  1828   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1829   __ profile_ret(rbx, rcx);
  1830   __ get_method(rax);
  1831   __ movptr(rsi, Address(rax, Method::const_offset()));
  1832   __ lea(rsi, Address(rsi, rbx, Address::times_1,
  1833                       ConstMethod::codes_offset()));
  1834   __ dispatch_next(vtos);
  1838 void TemplateTable::wide_ret() {
  1839   transition(vtos, vtos);
  1840   locals_index_wide(rbx);
  1841   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1842   __ profile_ret(rbx, rcx);
  1843   __ get_method(rax);
  1844   __ movptr(rsi, Address(rax, Method::const_offset()));
  1845   __ lea(rsi, Address(rsi, rbx, Address::times_1, ConstMethod::codes_offset()));
  1846   __ dispatch_next(vtos);
  1850 void TemplateTable::tableswitch() {
  1851   Label default_case, continue_execution;
  1852   transition(itos, vtos);
  1853   // align rsi
  1854   __ lea(rbx, at_bcp(wordSize));
  1855   __ andptr(rbx, -wordSize);
  1856   // load lo & hi
  1857   __ movl(rcx, Address(rbx, 1 * wordSize));
  1858   __ movl(rdx, Address(rbx, 2 * wordSize));
  1859   __ bswapl(rcx);
  1860   __ bswapl(rdx);
  1861   // check against lo & hi
  1862   __ cmpl(rax, rcx);
  1863   __ jccb(Assembler::less, default_case);
  1864   __ cmpl(rax, rdx);
  1865   __ jccb(Assembler::greater, default_case);
  1866   // lookup dispatch offset
  1867   __ subl(rax, rcx);
  1868   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1869   __ profile_switch_case(rax, rbx, rcx);
  1870   // continue execution
  1871   __ bind(continue_execution);
  1872   __ bswapl(rdx);
  1873   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1874   __ addptr(rsi, rdx);
  1875   __ dispatch_only(vtos);
  1876   // handle default
  1877   __ bind(default_case);
  1878   __ profile_switch_default(rax);
  1879   __ movl(rdx, Address(rbx, 0));
  1880   __ jmp(continue_execution);
  1884 void TemplateTable::lookupswitch() {
  1885   transition(itos, itos);
  1886   __ stop("lookupswitch bytecode should have been rewritten");
  1890 void TemplateTable::fast_linearswitch() {
  1891   transition(itos, vtos);
  1892   Label loop_entry, loop, found, continue_execution;
  1893   // bswapl rax, so we can avoid bswapping the table entries
  1894   __ bswapl(rax);
  1895   // align rsi
  1896   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
  1897   __ andptr(rbx, -wordSize);
  1898   // set counter
  1899   __ movl(rcx, Address(rbx, wordSize));
  1900   __ bswapl(rcx);
  1901   __ jmpb(loop_entry);
  1902   // table search
  1903   __ bind(loop);
  1904   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
  1905   __ jccb(Assembler::equal, found);
  1906   __ bind(loop_entry);
  1907   __ decrementl(rcx);
  1908   __ jcc(Assembler::greaterEqual, loop);
  1909   // default case
  1910   __ profile_switch_default(rax);
  1911   __ movl(rdx, Address(rbx, 0));
  1912   __ jmpb(continue_execution);
  1913   // entry found -> get offset
  1914   __ bind(found);
  1915   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
  1916   __ profile_switch_case(rcx, rax, rbx);
  1917   // continue execution
  1918   __ bind(continue_execution);
  1919   __ bswapl(rdx);
  1920   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1921   __ addptr(rsi, rdx);
  1922   __ dispatch_only(vtos);
  1926 void TemplateTable::fast_binaryswitch() {
  1927   transition(itos, vtos);
  1928   // Implementation using the following core algorithm:
  1929   //
  1930   // int binary_search(int key, LookupswitchPair* array, int n) {
  1931   //   // Binary search according to "Methodik des Programmierens" by
  1932   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1933   //   int i = 0;
  1934   //   int j = n;
  1935   //   while (i+1 < j) {
  1936   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1937   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1938   //     // where a stands for the array and assuming that the (inexisting)
  1939   //     // element a[n] is infinitely big.
  1940   //     int h = (i + j) >> 1;
  1941   //     // i < h < j
  1942   //     if (key < array[h].fast_match()) {
  1943   //       j = h;
  1944   //     } else {
  1945   //       i = h;
  1946   //     }
  1947   //   }
  1948   //   // R: a[i] <= key < a[i+1] or Q
  1949   //   // (i.e., if key is within array, i is the correct index)
  1950   //   return i;
  1951   // }
  1953   // register allocation
  1954   const Register key   = rax;                    // already set (tosca)
  1955   const Register array = rbx;
  1956   const Register i     = rcx;
  1957   const Register j     = rdx;
  1958   const Register h     = rdi;                    // needs to be restored
  1959   const Register temp  = rsi;
  1960   // setup array
  1961   __ save_bcp();
  1963   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
  1964   __ andptr(array, -wordSize);
  1965   // initialize i & j
  1966   __ xorl(i, i);                                 // i = 0;
  1967   __ movl(j, Address(array, -wordSize));         // j = length(array);
  1968   // Convert j into native byteordering
  1969   __ bswapl(j);
  1970   // and start
  1971   Label entry;
  1972   __ jmp(entry);
  1974   // binary search loop
  1975   { Label loop;
  1976     __ bind(loop);
  1977     // int h = (i + j) >> 1;
  1978     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1979     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1980     // if (key < array[h].fast_match()) {
  1981     //   j = h;
  1982     // } else {
  1983     //   i = h;
  1984     // }
  1985     // Convert array[h].match to native byte-ordering before compare
  1986     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
  1987     __ bswapl(temp);
  1988     __ cmpl(key, temp);
  1989     // j = h if (key <  array[h].fast_match())
  1990     __ cmov32(Assembler::less        , j, h);
  1991     // i = h if (key >= array[h].fast_match())
  1992     __ cmov32(Assembler::greaterEqual, i, h);
  1993     // while (i+1 < j)
  1994     __ bind(entry);
  1995     __ leal(h, Address(i, 1));                   // i+1
  1996     __ cmpl(h, j);                               // i+1 < j
  1997     __ jcc(Assembler::less, loop);
  2000   // end of binary search, result index is i (must check again!)
  2001   Label default_case;
  2002   // Convert array[i].match to native byte-ordering before compare
  2003   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
  2004   __ bswapl(temp);
  2005   __ cmpl(key, temp);
  2006   __ jcc(Assembler::notEqual, default_case);
  2008   // entry found -> j = offset
  2009   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
  2010   __ profile_switch_case(i, key, array);
  2011   __ bswapl(j);
  2012   LP64_ONLY(__ movslq(j, j));
  2013   __ restore_bcp();
  2014   __ restore_locals();                           // restore rdi
  2015   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  2017   __ addptr(rsi, j);
  2018   __ dispatch_only(vtos);
  2020   // default case -> j = default offset
  2021   __ bind(default_case);
  2022   __ profile_switch_default(i);
  2023   __ movl(j, Address(array, -2*wordSize));
  2024   __ bswapl(j);
  2025   LP64_ONLY(__ movslq(j, j));
  2026   __ restore_bcp();
  2027   __ restore_locals();                           // restore rdi
  2028   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  2029   __ addptr(rsi, j);
  2030   __ dispatch_only(vtos);
  2034 void TemplateTable::_return(TosState state) {
  2035   transition(state, state);
  2036   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
  2038   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2039     assert(state == vtos, "only valid state");
  2040     __ movptr(rax, aaddress(0));
  2041     __ load_klass(rdi, rax);
  2042     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
  2043     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2044     Label skip_register_finalizer;
  2045     __ jcc(Assembler::zero, skip_register_finalizer);
  2047     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
  2049     __ bind(skip_register_finalizer);
  2052   // Narrow result if state is itos but result type is smaller.
  2053   // Need to narrow in the return bytecode rather than in generate_return_entry
  2054   // since compiled code callers expect the result to already be narrowed.
  2055   if (state == itos) {
  2056     __ narrow(rax);
  2058   __ remove_activation(state, rsi);
  2060   __ jmp(rsi);
  2064 // ----------------------------------------------------------------------------
  2065 // Volatile variables demand their effects be made known to all CPU's in
  2066 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2067 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2068 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2069 // reorder volatile references, the hardware also must not reorder them).
  2070 //
  2071 // According to the new Java Memory Model (JMM):
  2072 // (1) All volatiles are serialized wrt to each other.
  2073 // ALSO reads & writes act as aquire & release, so:
  2074 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2075 // the read float up to before the read.  It's OK for non-volatile memory refs
  2076 // that happen before the volatile read to float down below it.
  2077 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2078 // that happen BEFORE the write float down to after the write.  It's OK for
  2079 // non-volatile memory refs that happen after the volatile write to float up
  2080 // before it.
  2081 //
  2082 // We only put in barriers around volatile refs (they are expensive), not
  2083 // _between_ memory refs (that would require us to track the flavor of the
  2084 // previous memory refs).  Requirements (2) and (3) require some barriers
  2085 // before volatile stores and after volatile loads.  These nearly cover
  2086 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2087 // case is placed after volatile-stores although it could just as well go
  2088 // before volatile-loads.
  2089 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
  2090   // Helper function to insert a is-volatile test and memory barrier
  2091   if( !os::is_MP() ) return;    // Not needed on single CPU
  2092   __ membar(order_constraint);
  2095 void TemplateTable::resolve_cache_and_index(int byte_no,
  2096                                             Register Rcache,
  2097                                             Register index,
  2098                                             size_t index_size) {
  2099   const Register temp = rbx;
  2100   assert_different_registers(Rcache, index, temp);
  2102   Label resolved;
  2103     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2104     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
  2105     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
  2106     __ jcc(Assembler::equal, resolved);
  2108   // resolve first time through
  2109   address entry;
  2110   switch (bytecode()) {
  2111     case Bytecodes::_getstatic      : // fall through
  2112     case Bytecodes::_putstatic      : // fall through
  2113     case Bytecodes::_getfield       : // fall through
  2114     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);        break;
  2115     case Bytecodes::_invokevirtual  : // fall through
  2116     case Bytecodes::_invokespecial  : // fall through
  2117     case Bytecodes::_invokestatic   : // fall through
  2118     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);         break;
  2119     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);   break;
  2120     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
  2121     default:
  2122       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
  2123       break;
  2125   __ movl(temp, (int)bytecode());
  2126   __ call_VM(noreg, entry, temp);
  2127   // Update registers with resolved info
  2128   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2129   __ bind(resolved);
  2133 // The cache and index registers must be set before call
  2134 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2135                                               Register cache,
  2136                                               Register index,
  2137                                               Register off,
  2138                                               Register flags,
  2139                                               bool is_static = false) {
  2140   assert_different_registers(cache, index, flags, off);
  2142   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2143   // Field offset
  2144   __ movptr(off, Address(cache, index, Address::times_ptr,
  2145                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
  2146   // Flags
  2147   __ movl(flags, Address(cache, index, Address::times_ptr,
  2148            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
  2150   // klass overwrite register
  2151   if (is_static) {
  2152     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2153                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
  2154     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  2155     __ movptr(obj, Address(obj, mirror_offset));
  2159 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2160                                                Register method,
  2161                                                Register itable_index,
  2162                                                Register flags,
  2163                                                bool is_invokevirtual,
  2164                                                bool is_invokevfinal, /*unused*/
  2165                                                bool is_invokedynamic) {
  2166   // setup registers
  2167   const Register cache = rcx;
  2168   const Register index = rdx;
  2169   assert_different_registers(method, flags);
  2170   assert_different_registers(method, cache, index);
  2171   assert_different_registers(itable_index, flags);
  2172   assert_different_registers(itable_index, cache, index);
  2173   // determine constant pool cache field offsets
  2174   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  2175   const int method_offset = in_bytes(
  2176     ConstantPoolCache::base_offset() +
  2177       ((byte_no == f2_byte)
  2178        ? ConstantPoolCacheEntry::f2_offset()
  2179        : ConstantPoolCacheEntry::f1_offset()));
  2180   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
  2181                                     ConstantPoolCacheEntry::flags_offset());
  2182   // access constant pool cache fields
  2183   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
  2184                                     ConstantPoolCacheEntry::f2_offset());
  2186   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
  2187   resolve_cache_and_index(byte_no, cache, index, index_size);
  2188     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2190   if (itable_index != noreg) {
  2191     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2193   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2197 // The registers cache and index expected to be set before call.
  2198 // Correct values of the cache and index registers are preserved.
  2199 void TemplateTable::jvmti_post_field_access(Register cache,
  2200                                             Register index,
  2201                                             bool is_static,
  2202                                             bool has_tos) {
  2203   if (JvmtiExport::can_post_field_access()) {
  2204     // Check to see if a field access watch has been set before we take
  2205     // the time to call into the VM.
  2206     Label L1;
  2207     assert_different_registers(cache, index, rax);
  2208     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2209     __ testl(rax,rax);
  2210     __ jcc(Assembler::zero, L1);
  2212     // cache entry pointer
  2213     __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
  2214     __ shll(index, LogBytesPerWord);
  2215     __ addptr(cache, index);
  2216     if (is_static) {
  2217       __ xorptr(rax, rax);      // NULL object reference
  2218     } else {
  2219       __ pop(atos);         // Get the object
  2220       __ verify_oop(rax);
  2221       __ push(atos);        // Restore stack state
  2223     // rax,:   object pointer or NULL
  2224     // cache: cache entry pointer
  2225     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2226                rax, cache);
  2227     __ get_cache_and_index_at_bcp(cache, index, 1);
  2228     __ bind(L1);
  2232 void TemplateTable::pop_and_check_object(Register r) {
  2233   __ pop_ptr(r);
  2234   __ null_check(r);  // for field access must check obj.
  2235   __ verify_oop(r);
  2238 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2239   transition(vtos, vtos);
  2241   const Register cache = rcx;
  2242   const Register index = rdx;
  2243   const Register obj   = rcx;
  2244   const Register off   = rbx;
  2245   const Register flags = rax;
  2247   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2248   jvmti_post_field_access(cache, index, is_static, false);
  2249   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2251   if (!is_static) pop_and_check_object(obj);
  2253   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2254   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2256   Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2258   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2259   assert(btos == 0, "change code, btos != 0");
  2260   // btos
  2261   __ andptr(flags, ConstantPoolCacheEntry::tos_state_mask);
  2262   __ jcc(Assembler::notZero, notByte);
  2264   __ load_signed_byte(rax, lo );
  2265   __ push(btos);
  2266   // Rewrite bytecode to be faster
  2267   if (!is_static) {
  2268     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
  2270   __ jmp(Done);
  2272   __ bind(notByte);
  2274   __ cmpl(flags, ztos);
  2275   __ jcc(Assembler::notEqual, notBool);
  2277   // ztos (same code as btos)
  2278   __ load_signed_byte(rax, lo);
  2279   __ push(ztos);
  2280   // Rewrite bytecode to be faster
  2281   if (!is_static) {
  2282     // use btos rewriting, no truncating to t/f bit is needed for getfield.
  2283     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
  2285   __ jmp(Done);
  2287   __ bind(notBool);
  2289   // itos
  2290   __ cmpl(flags, itos );
  2291   __ jcc(Assembler::notEqual, notInt);
  2293   __ movl(rax, lo );
  2294   __ push(itos);
  2295   // Rewrite bytecode to be faster
  2296   if (!is_static) {
  2297     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
  2299   __ jmp(Done);
  2301   __ bind(notInt);
  2302   // atos
  2303   __ cmpl(flags, atos );
  2304   __ jcc(Assembler::notEqual, notObj);
  2306   __ movl(rax, lo );
  2307   __ push(atos);
  2308   if (!is_static) {
  2309     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
  2311   __ jmp(Done);
  2313   __ bind(notObj);
  2314   // ctos
  2315   __ cmpl(flags, ctos );
  2316   __ jcc(Assembler::notEqual, notChar);
  2318   __ load_unsigned_short(rax, lo );
  2319   __ push(ctos);
  2320   if (!is_static) {
  2321     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
  2323   __ jmp(Done);
  2325   __ bind(notChar);
  2326   // stos
  2327   __ cmpl(flags, stos );
  2328   __ jcc(Assembler::notEqual, notShort);
  2330   __ load_signed_short(rax, lo );
  2331   __ push(stos);
  2332   if (!is_static) {
  2333     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
  2335   __ jmp(Done);
  2337   __ bind(notShort);
  2338   // ltos
  2339   __ cmpl(flags, ltos );
  2340   __ jcc(Assembler::notEqual, notLong);
  2342   // Generate code as if volatile.  There just aren't enough registers to
  2343   // save that information and this code is faster than the test.
  2344   __ fild_d(lo);                // Must load atomically
  2345   __ subptr(rsp,2*wordSize);    // Make space for store
  2346   __ fistp_d(Address(rsp,0));
  2347   __ pop(rax);
  2348   __ pop(rdx);
  2350   __ push(ltos);
  2351   // Don't rewrite to _fast_lgetfield for potential volatile case.
  2352   __ jmp(Done);
  2354   __ bind(notLong);
  2355   // ftos
  2356   __ cmpl(flags, ftos );
  2357   __ jcc(Assembler::notEqual, notFloat);
  2359   __ fld_s(lo);
  2360   __ push(ftos);
  2361   if (!is_static) {
  2362     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
  2364   __ jmp(Done);
  2366   __ bind(notFloat);
  2367   // dtos
  2368   __ cmpl(flags, dtos );
  2369   __ jcc(Assembler::notEqual, notDouble);
  2371   __ fld_d(lo);
  2372   __ push(dtos);
  2373   if (!is_static) {
  2374     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
  2376   __ jmpb(Done);
  2378   __ bind(notDouble);
  2380   __ stop("Bad state");
  2382   __ bind(Done);
  2383   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2384   // volatile_barrier( );
  2388 void TemplateTable::getfield(int byte_no) {
  2389   getfield_or_static(byte_no, false);
  2393 void TemplateTable::getstatic(int byte_no) {
  2394   getfield_or_static(byte_no, true);
  2397 // The registers cache and index expected to be set before call.
  2398 // The function may destroy various registers, just not the cache and index registers.
  2399 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2401   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2403   if (JvmtiExport::can_post_field_modification()) {
  2404     // Check to see if a field modification watch has been set before we take
  2405     // the time to call into the VM.
  2406     Label L1;
  2407     assert_different_registers(cache, index, rax);
  2408     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2409     __ testl(rax, rax);
  2410     __ jcc(Assembler::zero, L1);
  2412     // The cache and index registers have been already set.
  2413     // This allows to eliminate this call but the cache and index
  2414     // registers have to be correspondingly used after this line.
  2415     __ get_cache_and_index_at_bcp(rax, rdx, 1);
  2417     if (is_static) {
  2418       // Life is simple.  Null out the object pointer.
  2419       __ xorptr(rbx, rbx);
  2420     } else {
  2421       // Life is harder. The stack holds the value on top, followed by the object.
  2422       // We don't know the size of the value, though; it could be one or two words
  2423       // depending on its type. As a result, we must find the type to determine where
  2424       // the object is.
  2425       Label two_word, valsize_known;
  2426       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
  2427                                    ConstantPoolCacheEntry::flags_offset())));
  2428       __ mov(rbx, rsp);
  2429       __ shrl(rcx, ConstantPoolCacheEntry::tos_state_shift);
  2430       // Make sure we don't need to mask rcx after the above shift
  2431       ConstantPoolCacheEntry::verify_tos_state_shift();
  2432       __ cmpl(rcx, ltos);
  2433       __ jccb(Assembler::equal, two_word);
  2434       __ cmpl(rcx, dtos);
  2435       __ jccb(Assembler::equal, two_word);
  2436       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
  2437       __ jmpb(valsize_known);
  2439       __ bind(two_word);
  2440       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
  2442       __ bind(valsize_known);
  2443       // setup object pointer
  2444       __ movptr(rbx, Address(rbx, 0));
  2446     // cache entry pointer
  2447     __ addptr(rax, in_bytes(cp_base_offset));
  2448     __ shll(rdx, LogBytesPerWord);
  2449     __ addptr(rax, rdx);
  2450     // object (tos)
  2451     __ mov(rcx, rsp);
  2452     // rbx,: object pointer set up above (NULL if static)
  2453     // rax,: cache entry pointer
  2454     // rcx: jvalue object on the stack
  2455     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2456                rbx, rax, rcx);
  2457     __ get_cache_and_index_at_bcp(cache, index, 1);
  2458     __ bind(L1);
  2463 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2464   transition(vtos, vtos);
  2466   const Register cache = rcx;
  2467   const Register index = rdx;
  2468   const Register obj   = rcx;
  2469   const Register off   = rbx;
  2470   const Register flags = rax;
  2472   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2473   jvmti_post_field_mod(cache, index, is_static);
  2474   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2476   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2477   // volatile_barrier( );
  2479   Label notVolatile, Done;
  2480   __ movl(rdx, flags);
  2481   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2482   __ andl(rdx, 0x1);
  2484   // field addresses
  2485   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2486   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2488   Label notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2490   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2491   assert(btos == 0, "change code, btos != 0");
  2492   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2493   __ jcc(Assembler::notZero, notByte);
  2495   // btos
  2497     __ pop(btos);
  2498     if (!is_static) pop_and_check_object(obj);
  2499     __ movb(lo, rax);
  2500     if (!is_static) {
  2501       patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx, true, byte_no);
  2503     __ jmp(Done);
  2506   __ bind(notByte);
  2507   __ cmpl(flags, ztos);
  2508   __ jcc(Assembler::notEqual, notBool);
  2510   // ztos
  2512     __ pop(ztos);
  2513     if (!is_static) pop_and_check_object(obj);
  2514     __ andl(rax, 0x1);
  2515     __ movb(lo, rax);
  2516     if (!is_static) {
  2517       patch_bytecode(Bytecodes::_fast_zputfield, rcx, rbx, true, byte_no);
  2519     __ jmp(Done);
  2522   __ bind(notBool);
  2523   __ cmpl(flags, itos);
  2524   __ jcc(Assembler::notEqual, notInt);
  2526   // itos
  2528     __ pop(itos);
  2529     if (!is_static) pop_and_check_object(obj);
  2530     __ movl(lo, rax);
  2531     if (!is_static) {
  2532       patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx, true, byte_no);
  2534     __ jmp(Done);
  2537   __ bind(notInt);
  2538   __ cmpl(flags, atos);
  2539   __ jcc(Assembler::notEqual, notObj);
  2541   // atos
  2543     __ pop(atos);
  2544     if (!is_static) pop_and_check_object(obj);
  2545     do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2546     if (!is_static) {
  2547       patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx, true, byte_no);
  2549     __ jmp(Done);
  2552   __ bind(notObj);
  2553   __ cmpl(flags, ctos);
  2554   __ jcc(Assembler::notEqual, notChar);
  2556   // ctos
  2558     __ pop(ctos);
  2559     if (!is_static) pop_and_check_object(obj);
  2560     __ movw(lo, rax);
  2561     if (!is_static) {
  2562       patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx, true, byte_no);
  2564     __ jmp(Done);
  2567   __ bind(notChar);
  2568   __ cmpl(flags, stos);
  2569   __ jcc(Assembler::notEqual, notShort);
  2571   // stos
  2573     __ pop(stos);
  2574     if (!is_static) pop_and_check_object(obj);
  2575     __ movw(lo, rax);
  2576     if (!is_static) {
  2577       patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx, true, byte_no);
  2579     __ jmp(Done);
  2582   __ bind(notShort);
  2583   __ cmpl(flags, ltos);
  2584   __ jcc(Assembler::notEqual, notLong);
  2586   // ltos
  2588     Label notVolatileLong;
  2589     __ testl(rdx, rdx);
  2590     __ jcc(Assembler::zero, notVolatileLong);
  2592     __ pop(ltos);  // overwrites rdx, do this after testing volatile.
  2593     if (!is_static) pop_and_check_object(obj);
  2595     // Replace with real volatile test
  2596     __ push(rdx);
  2597     __ push(rax);                 // Must update atomically with FIST
  2598     __ fild_d(Address(rsp,0));    // So load into FPU register
  2599     __ fistp_d(lo);               // and put into memory atomically
  2600     __ addptr(rsp, 2*wordSize);
  2601     // volatile_barrier();
  2602     volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2603                                                  Assembler::StoreStore));
  2604     // Don't rewrite volatile version
  2605     __ jmp(notVolatile);
  2607     __ bind(notVolatileLong);
  2609     __ pop(ltos);  // overwrites rdx
  2610     if (!is_static) pop_and_check_object(obj);
  2611     NOT_LP64(__ movptr(hi, rdx));
  2612     __ movptr(lo, rax);
  2613     if (!is_static) {
  2614       patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx, true, byte_no);
  2616     __ jmp(notVolatile);
  2619   __ bind(notLong);
  2620   __ cmpl(flags, ftos);
  2621   __ jcc(Assembler::notEqual, notFloat);
  2623   // ftos
  2625     __ pop(ftos);
  2626     if (!is_static) pop_and_check_object(obj);
  2627     __ fstp_s(lo);
  2628     if (!is_static) {
  2629       patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx, true, byte_no);
  2631     __ jmp(Done);
  2634   __ bind(notFloat);
  2635 #ifdef ASSERT
  2636   __ cmpl(flags, dtos);
  2637   __ jcc(Assembler::notEqual, notDouble);
  2638 #endif
  2640   // dtos
  2642     __ pop(dtos);
  2643     if (!is_static) pop_and_check_object(obj);
  2644     __ fstp_d(lo);
  2645     if (!is_static) {
  2646       patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx, true, byte_no);
  2648     __ jmp(Done);
  2651 #ifdef ASSERT
  2652   __ bind(notDouble);
  2653   __ stop("Bad state");
  2654 #endif
  2656   __ bind(Done);
  2658   // Check for volatile store
  2659   __ testl(rdx, rdx);
  2660   __ jcc(Assembler::zero, notVolatile);
  2661   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2662                                                Assembler::StoreStore));
  2663   __ bind(notVolatile);
  2667 void TemplateTable::putfield(int byte_no) {
  2668   putfield_or_static(byte_no, false);
  2672 void TemplateTable::putstatic(int byte_no) {
  2673   putfield_or_static(byte_no, true);
  2676 void TemplateTable::jvmti_post_fast_field_mod() {
  2677   if (JvmtiExport::can_post_field_modification()) {
  2678     // Check to see if a field modification watch has been set before we take
  2679     // the time to call into the VM.
  2680     Label L2;
  2681      __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2682      __ testl(rcx,rcx);
  2683      __ jcc(Assembler::zero, L2);
  2684      __ pop_ptr(rbx);               // copy the object pointer from tos
  2685      __ verify_oop(rbx);
  2686      __ push_ptr(rbx);              // put the object pointer back on tos
  2688      // Save tos values before call_VM() clobbers them. Since we have
  2689      // to do it for every data type, we use the saved values as the
  2690      // jvalue object.
  2691      switch (bytecode()) {          // load values into the jvalue object
  2692      case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
  2693      case Bytecodes::_fast_bputfield: // fall through
  2694      case Bytecodes::_fast_zputfield: // fall through
  2695      case Bytecodes::_fast_sputfield: // fall through
  2696      case Bytecodes::_fast_cputfield: // fall through
  2697      case Bytecodes::_fast_iputfield: __ push_i(rax); break;
  2698      case Bytecodes::_fast_dputfield: __ push_d(); break;
  2699      case Bytecodes::_fast_fputfield: __ push_f(); break;
  2700      case Bytecodes::_fast_lputfield: __ push_l(rax); break;
  2702      default:
  2703        ShouldNotReachHere();
  2705      __ mov(rcx, rsp);              // points to jvalue on the stack
  2706      // access constant pool cache entry
  2707      __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
  2708      __ verify_oop(rbx);
  2709      // rbx,: object pointer copied above
  2710      // rax,: cache entry pointer
  2711      // rcx: jvalue object on the stack
  2712      __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
  2714      switch (bytecode()) {             // restore tos values
  2715      case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
  2716      case Bytecodes::_fast_bputfield: // fall through
  2717      case Bytecodes::_fast_zputfield: // fall through
  2718      case Bytecodes::_fast_sputfield: // fall through
  2719      case Bytecodes::_fast_cputfield: // fall through
  2720      case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
  2721      case Bytecodes::_fast_dputfield: __ pop_d(); break;
  2722      case Bytecodes::_fast_fputfield: __ pop_f(); break;
  2723      case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
  2725      __ bind(L2);
  2729 void TemplateTable::fast_storefield(TosState state) {
  2730   transition(state, vtos);
  2732   ByteSize base = ConstantPoolCache::base_offset();
  2734   jvmti_post_fast_field_mod();
  2736   // access constant pool cache
  2737   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2739   // test for volatile with rdx but rdx is tos register for lputfield.
  2740   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2741   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
  2742                        ConstantPoolCacheEntry::flags_offset())));
  2744   // replace index with field offset from cache entry
  2745   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2747   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2748   // volatile_barrier( );
  2750   Label notVolatile, Done;
  2751   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2752   __ andl(rdx, 0x1);
  2753   // Check for volatile store
  2754   __ testl(rdx, rdx);
  2755   __ jcc(Assembler::zero, notVolatile);
  2757   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2759   // Get object from stack
  2760   pop_and_check_object(rcx);
  2762   // field addresses
  2763   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
  2764   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
  2766   // access field
  2767   switch (bytecode()) {
  2768     case Bytecodes::_fast_zputfield: __ andl(rax, 0x1);  // boolean is true if LSB is 1
  2769     // fall through to bputfield
  2770     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2771     case Bytecodes::_fast_sputfield: // fall through
  2772     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2773     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2774     case Bytecodes::_fast_lputfield:
  2775       NOT_LP64(__ movptr(hi, rdx));
  2776       __ movptr(lo, rax);
  2777       break;
  2778     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2779     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2780     case Bytecodes::_fast_aputfield: {
  2781       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2782       break;
  2784     default:
  2785       ShouldNotReachHere();
  2788   Label done;
  2789   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2790                                                Assembler::StoreStore));
  2791   // Barriers are so large that short branch doesn't reach!
  2792   __ jmp(done);
  2794   // Same code as above, but don't need rdx to test for volatile.
  2795   __ bind(notVolatile);
  2797   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2799   // Get object from stack
  2800   pop_and_check_object(rcx);
  2802   // access field
  2803   switch (bytecode()) {
  2804     case Bytecodes::_fast_zputfield: __ andl(rax, 0x1);  // boolean is true if LSB is 1
  2805     // fall through to bputfield
  2806     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2807     case Bytecodes::_fast_sputfield: // fall through
  2808     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2809     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2810     case Bytecodes::_fast_lputfield:
  2811       NOT_LP64(__ movptr(hi, rdx));
  2812       __ movptr(lo, rax);
  2813       break;
  2814     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2815     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2816     case Bytecodes::_fast_aputfield: {
  2817       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2818       break;
  2820     default:
  2821       ShouldNotReachHere();
  2823   __ bind(done);
  2827 void TemplateTable::fast_accessfield(TosState state) {
  2828   transition(atos, state);
  2830   // do the JVMTI work here to avoid disturbing the register state below
  2831   if (JvmtiExport::can_post_field_access()) {
  2832     // Check to see if a field access watch has been set before we take
  2833     // the time to call into the VM.
  2834     Label L1;
  2835     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2836     __ testl(rcx,rcx);
  2837     __ jcc(Assembler::zero, L1);
  2838     // access constant pool cache entry
  2839     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
  2840     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2841     __ verify_oop(rax);
  2842     // rax,: object pointer copied above
  2843     // rcx: cache entry pointer
  2844     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
  2845     __ pop_ptr(rax);   // restore object pointer
  2846     __ bind(L1);
  2849   // access constant pool cache
  2850   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2851   // replace index with field offset from cache entry
  2852   __ movptr(rbx, Address(rcx,
  2853                          rbx,
  2854                          Address::times_ptr,
  2855                          in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2858   // rax,: object
  2859   __ verify_oop(rax);
  2860   __ null_check(rax);
  2861   // field addresses
  2862   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2863   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
  2865   // access field
  2866   switch (bytecode()) {
  2867     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
  2868     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
  2869     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
  2870     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
  2871     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
  2872     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
  2873     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
  2874     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
  2875     default:
  2876       ShouldNotReachHere();
  2879   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
  2880   // volatile_barrier( );
  2883 void TemplateTable::fast_xaccess(TosState state) {
  2884   transition(vtos, state);
  2885   // get receiver
  2886   __ movptr(rax, aaddress(0));
  2887   // access constant pool cache
  2888   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2889   __ movptr(rbx, Address(rcx,
  2890                          rdx,
  2891                          Address::times_ptr,
  2892                          in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2893   // make sure exception is reported in correct bcp range (getfield is next instruction)
  2894   __ increment(rsi);
  2895   __ null_check(rax);
  2896   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2897   if (state == itos) {
  2898     __ movl(rax, lo);
  2899   } else if (state == atos) {
  2900     __ movptr(rax, lo);
  2901     __ verify_oop(rax);
  2902   } else if (state == ftos) {
  2903     __ fld_s(lo);
  2904   } else {
  2905     ShouldNotReachHere();
  2907   __ decrement(rsi);
  2912 //----------------------------------------------------------------------------------------------------
  2913 // Calls
  2915 void TemplateTable::count_calls(Register method, Register temp) {
  2916   // implemented elsewhere
  2917   ShouldNotReachHere();
  2921 void TemplateTable::prepare_invoke(int byte_no,
  2922                                    Register method,  // linked method (or i-klass)
  2923                                    Register index,   // itable index, MethodType, etc.
  2924                                    Register recv,    // if caller wants to see it
  2925                                    Register flags    // if caller wants to test it
  2926                                    ) {
  2927   // determine flags
  2928   const Bytecodes::Code code = bytecode();
  2929   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2930   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2931   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  2932   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2933   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2934   const bool load_receiver       = (recv  != noreg);
  2935   const bool save_flags          = (flags != noreg);
  2936   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
  2937   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
  2938   assert(flags == noreg || flags == rdx, "");
  2939   assert(recv  == noreg || recv  == rcx, "");
  2941   // setup registers & access constant pool cache
  2942   if (recv  == noreg)  recv  = rcx;
  2943   if (flags == noreg)  flags = rdx;
  2944   assert_different_registers(method, index, recv, flags);
  2946   // save 'interpreter return address'
  2947   __ save_bcp();
  2949   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2951   // maybe push appendix to arguments (just before return address)
  2952   if (is_invokedynamic || is_invokehandle) {
  2953     Label L_no_push;
  2954     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
  2955     __ jccb(Assembler::zero, L_no_push);
  2956     // Push the appendix as a trailing parameter.
  2957     // This must be done before we get the receiver,
  2958     // since the parameter_size includes it.
  2959     __ push(rbx);
  2960     __ mov(rbx, index);
  2961     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
  2962     __ load_resolved_reference_at_index(index, rbx);
  2963     __ pop(rbx);
  2964     __ push(index);  // push appendix (MethodType, CallSite, etc.)
  2965     __ bind(L_no_push);
  2968   // load receiver if needed (note: no return address pushed yet)
  2969   if (load_receiver) {
  2970     __ movl(recv, flags);
  2971     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
  2972     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
  2973     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
  2974     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
  2975     __ movptr(recv, recv_addr);
  2976     __ verify_oop(recv);
  2979   if (save_flags) {
  2980     __ mov(rsi, flags);
  2983   // compute return type
  2984   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2985   // Make sure we don't need to mask flags after the above shift
  2986   ConstantPoolCacheEntry::verify_tos_state_shift();
  2987   // load return address
  2989     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
  2990     ExternalAddress table(table_addr);
  2991     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
  2994   // push return address
  2995   __ push(flags);
  2997   // Restore flags value from the constant pool cache, and restore rsi
  2998   // for later null checks.  rsi is the bytecode pointer
  2999   if (save_flags) {
  3000     __ mov(flags, rsi);
  3001     __ restore_bcp();
  3006 void TemplateTable::invokevirtual_helper(Register index,
  3007                                          Register recv,
  3008                                          Register flags) {
  3009   // Uses temporary registers rax, rdx
  3010   assert_different_registers(index, recv, rax, rdx);
  3011   assert(index == rbx, "");
  3012   assert(recv  == rcx, "");
  3014   // Test for an invoke of a final method
  3015   Label notFinal;
  3016   __ movl(rax, flags);
  3017   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
  3018   __ jcc(Assembler::zero, notFinal);
  3020   const Register method = index;  // method must be rbx
  3021   assert(method == rbx,
  3022          "Method* must be rbx for interpreter calling convention");
  3024   // do the call - the index is actually the method to call
  3025   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
  3027   // It's final, need a null check here!
  3028   __ null_check(recv);
  3030   // profile this call
  3031   __ profile_final_call(rax);
  3032   __ profile_arguments_type(rax, method, rsi, true);
  3034   __ jump_from_interpreted(method, rax);
  3036   __ bind(notFinal);
  3038   // get receiver klass
  3039   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  3040   __ load_klass(rax, recv);
  3042   // profile this call
  3043   __ profile_virtual_call(rax, rdi, rdx);
  3045   // get target Method* & entry point
  3046   __ lookup_virtual_method(rax, index, method);
  3047   __ profile_arguments_type(rdx, method, rsi, true);
  3048   __ jump_from_interpreted(method, rdx);
  3052 void TemplateTable::invokevirtual(int byte_no) {
  3053   transition(vtos, vtos);
  3054   assert(byte_no == f2_byte, "use this argument");
  3055   prepare_invoke(byte_no,
  3056                  rbx,    // method or vtable index
  3057                  noreg,  // unused itable index
  3058                  rcx, rdx); // recv, flags
  3060   // rbx: index
  3061   // rcx: receiver
  3062   // rdx: flags
  3064   invokevirtual_helper(rbx, rcx, rdx);
  3068 void TemplateTable::invokespecial(int byte_no) {
  3069   transition(vtos, vtos);
  3070   assert(byte_no == f1_byte, "use this argument");
  3071   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
  3072                  rcx);  // get receiver also for null check
  3073   __ verify_oop(rcx);
  3074   __ null_check(rcx);
  3075   // do the call
  3076   __ profile_call(rax);
  3077   __ profile_arguments_type(rax, rbx, rsi, false);
  3078   __ jump_from_interpreted(rbx, rax);
  3082 void TemplateTable::invokestatic(int byte_no) {
  3083   transition(vtos, vtos);
  3084   assert(byte_no == f1_byte, "use this argument");
  3085   prepare_invoke(byte_no, rbx);  // get f1 Method*
  3086   // do the call
  3087   __ profile_call(rax);
  3088   __ profile_arguments_type(rax, rbx, rsi, false);
  3089   __ jump_from_interpreted(rbx, rax);
  3093 void TemplateTable::fast_invokevfinal(int byte_no) {
  3094   transition(vtos, vtos);
  3095   assert(byte_no == f2_byte, "use this argument");
  3096   __ stop("fast_invokevfinal not used on x86");
  3100 void TemplateTable::invokeinterface(int byte_no) {
  3101   transition(vtos, vtos);
  3102   assert(byte_no == f1_byte, "use this argument");
  3103   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 Method*
  3104                  rcx, rdx); // recv, flags
  3106   // rax: reference klass (from f1)
  3107   // rbx: method (from f2)
  3108   // rcx: receiver
  3109   // rdx: flags
  3111   // Special case of invokeinterface called for virtual method of
  3112   // java.lang.Object.  See cpCacheOop.cpp for details.
  3113   // This code isn't produced by javac, but could be produced by
  3114   // another compliant java compiler.
  3115   Label notMethod;
  3116   __ movl(rdi, rdx);
  3117   __ andl(rdi, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
  3118   __ jcc(Assembler::zero, notMethod);
  3120   invokevirtual_helper(rbx, rcx, rdx);
  3121   __ bind(notMethod);
  3123   // Get receiver klass into rdx - also a null check
  3124   __ restore_locals();  // restore rdi
  3125   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
  3126   __ load_klass(rdx, rcx);
  3128   Label no_such_interface, no_such_method;
  3130   // Receiver subtype check against REFC.
  3131   // Superklass in rax. Subklass in rdx. Blows rcx, rdi.
  3132   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3133                              rdx, rax, noreg,
  3134                              // outputs: scan temp. reg, scan temp. reg
  3135                              rsi, rdi,
  3136                              no_such_interface,
  3137                              /*return_method=*/false);
  3140   // profile this call
  3141   __ restore_bcp(); // rbcp was destroyed by receiver type check
  3142   __ profile_virtual_call(rdx, rsi, rdi);
  3144   // Get declaring interface class from method, and itable index
  3145   __ movptr(rax, Address(rbx, Method::const_offset()));
  3146   __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
  3147   __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
  3148   __ movl(rbx, Address(rbx, Method::itable_index_offset()));
  3149   __ subl(rbx, Method::itable_index_max);
  3150   __ negl(rbx);
  3152   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3153                              rdx, rax, rbx,
  3154                              // outputs: method, scan temp. reg
  3155                              rbx, rsi,
  3156                              no_such_interface);
  3158   // rbx: Method* to call
  3159   // rcx: receiver
  3160   // Check for abstract method error
  3161   // Note: This should be done more efficiently via a throw_abstract_method_error
  3162   //       interpreter entry point and a conditional jump to it in case of a null
  3163   //       method.
  3164   __ testptr(rbx, rbx);
  3165   __ jcc(Assembler::zero, no_such_method);
  3167   __ profile_arguments_type(rdx, rbx, rsi, true);
  3169   // do the call
  3170   // rcx: receiver
  3171   // rbx,: Method*
  3172   __ jump_from_interpreted(rbx, rdx);
  3173   __ should_not_reach_here();
  3175   // exception handling code follows...
  3176   // note: must restore interpreter registers to canonical
  3177   //       state for exception handling to work correctly!
  3179   __ bind(no_such_method);
  3180   // throw exception
  3181   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3182   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3183   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3184   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3185   // the call_VM checks for exception, so we should never return here.
  3186   __ should_not_reach_here();
  3188   __ bind(no_such_interface);
  3189   // throw exception
  3190   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3191   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3192   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3193   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3194                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3195   // the call_VM checks for exception, so we should never return here.
  3196   __ should_not_reach_here();
  3199 void TemplateTable::invokehandle(int byte_no) {
  3200   transition(vtos, vtos);
  3201   assert(byte_no == f1_byte, "use this argument");
  3202   const Register rbx_method = rbx;
  3203   const Register rax_mtype  = rax;
  3204   const Register rcx_recv   = rcx;
  3205   const Register rdx_flags  = rdx;
  3207   if (!EnableInvokeDynamic) {
  3208     // rewriter does not generate this bytecode
  3209     __ should_not_reach_here();
  3210     return;
  3213   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
  3214   __ verify_method_ptr(rbx_method);
  3215   __ verify_oop(rcx_recv);
  3216   __ null_check(rcx_recv);
  3218   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
  3219   // rbx: MH.invokeExact_MT method (from f2)
  3221   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
  3223   // FIXME: profile the LambdaForm also
  3224   __ profile_final_call(rax);
  3225   __ profile_arguments_type(rdx, rbx_method, rsi, true);
  3227   __ jump_from_interpreted(rbx_method, rdx);
  3231 void TemplateTable::invokedynamic(int byte_no) {
  3232   transition(vtos, vtos);
  3233   assert(byte_no == f1_byte, "use this argument");
  3235   if (!EnableInvokeDynamic) {
  3236     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3237     // The verifier will stop it.  However, if we get past the verifier,
  3238     // this will stop the thread in a reasonable way, without crashing the JVM.
  3239     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3240                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3241     // the call_VM checks for exception, so we should never return here.
  3242     __ should_not_reach_here();
  3243     return;
  3246   const Register rbx_method   = rbx;
  3247   const Register rax_callsite = rax;
  3249   prepare_invoke(byte_no, rbx_method, rax_callsite);
  3251   // rax: CallSite object (from cpool->resolved_references[f1])
  3252   // rbx: MH.linkToCallSite method (from f2)
  3254   // Note:  rax_callsite is already pushed by prepare_invoke
  3256   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3257   // profile this call
  3258   __ profile_call(rsi);
  3259   __ profile_arguments_type(rdx, rbx, rsi, false);
  3261   __ verify_oop(rax_callsite);
  3263   __ jump_from_interpreted(rbx_method, rdx);
  3266 //----------------------------------------------------------------------------------------------------
  3267 // Allocation
  3269 void TemplateTable::_new() {
  3270   transition(vtos, atos);
  3271   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3272   Label slow_case;
  3273   Label slow_case_no_pop;
  3274   Label done;
  3275   Label initialize_header;
  3276   Label initialize_object;  // including clearing the fields
  3277   Label allocate_shared;
  3279   __ get_cpool_and_tags(rcx, rax);
  3281   // Make sure the class we're about to instantiate has been resolved.
  3282   // This is done before loading InstanceKlass to be consistent with the order
  3283   // how Constant Pool is updated (see ConstantPool::klass_at_put)
  3284   const int tags_offset = Array<u1>::base_offset_in_bytes();
  3285   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
  3286   __ jcc(Assembler::notEqual, slow_case_no_pop);
  3288   // get InstanceKlass
  3289   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(ConstantPool)));
  3290   __ push(rcx);  // save the contexts of klass for initializing the header
  3292   // make sure klass is initialized & doesn't have finalizer
  3293   // make sure klass is fully initialized
  3294   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
  3295   __ jcc(Assembler::notEqual, slow_case);
  3297   // get instance_size in InstanceKlass (scaled to a count of bytes)
  3298   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
  3299   // test to see if it has a finalizer or is malformed in some way
  3300   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3301   __ jcc(Assembler::notZero, slow_case);
  3303   //
  3304   // Allocate the instance
  3305   // 1) Try to allocate in the TLAB
  3306   // 2) if fail and the object is large allocate in the shared Eden
  3307   // 3) if the above fails (or is not applicable), go to a slow case
  3308   // (creates a new TLAB, etc.)
  3310   const bool allow_shared_alloc =
  3311     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3313   const Register thread = rcx;
  3314   if (UseTLAB || allow_shared_alloc) {
  3315     __ get_thread(thread);
  3318   if (UseTLAB) {
  3319     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
  3320     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3321     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
  3322     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3323     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3324     if (ZeroTLAB) {
  3325       // the fields have been already cleared
  3326       __ jmp(initialize_header);
  3327     } else {
  3328       // initialize both the header and fields
  3329       __ jmp(initialize_object);
  3333   // Allocation in the shared Eden, if allowed.
  3334   //
  3335   // rdx: instance size in bytes
  3336   if (allow_shared_alloc) {
  3337     __ bind(allocate_shared);
  3339     ExternalAddress heap_top((address)Universe::heap()->top_addr());
  3341     Label retry;
  3342     __ bind(retry);
  3343     __ movptr(rax, heap_top);
  3344     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3345     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
  3346     __ jcc(Assembler::above, slow_case);
  3348     // Compare rax, with the top addr, and if still equal, store the new
  3349     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
  3350     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3351     //
  3352     // rax,: object begin
  3353     // rbx,: object end
  3354     // rdx: instance size in bytes
  3355     __ locked_cmpxchgptr(rbx, heap_top);
  3357     // if someone beat us on the allocation, try again, otherwise continue
  3358     __ jcc(Assembler::notEqual, retry);
  3360     __ incr_allocated_bytes(thread, rdx, 0);
  3363   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3364     // The object is initialized before the header.  If the object size is
  3365     // zero, go directly to the header initialization.
  3366     __ bind(initialize_object);
  3367     __ decrement(rdx, sizeof(oopDesc));
  3368     __ jcc(Assembler::zero, initialize_header);
  3370     // Initialize topmost object field, divide rdx by 8, check if odd and
  3371     // test if zero.
  3372     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
  3373     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
  3375     // rdx must have been multiple of 8
  3376 #ifdef ASSERT
  3377     // make sure rdx was multiple of 8
  3378     Label L;
  3379     // Ignore partial flag stall after shrl() since it is debug VM
  3380     __ jccb(Assembler::carryClear, L);
  3381     __ stop("object size is not multiple of 2 - adjust this code");
  3382     __ bind(L);
  3383     // rdx must be > 0, no extra check needed here
  3384 #endif
  3386     // initialize remaining object fields: rdx was a multiple of 8
  3387     { Label loop;
  3388     __ bind(loop);
  3389     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
  3390     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
  3391     __ decrement(rdx);
  3392     __ jcc(Assembler::notZero, loop);
  3395     // initialize object header only.
  3396     __ bind(initialize_header);
  3397     if (UseBiasedLocking) {
  3398       __ pop(rcx);   // get saved klass back in the register.
  3399       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
  3400       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
  3401     } else {
  3402       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
  3403                 (int32_t)markOopDesc::prototype()); // header
  3404       __ pop(rcx);   // get saved klass back in the register.
  3406     __ store_klass(rax, rcx);  // klass
  3409       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
  3410       // Trigger dtrace event for fastpath
  3411       __ push(atos);
  3412       __ call_VM_leaf(
  3413            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3414       __ pop(atos);
  3417     __ jmp(done);
  3420   // slow case
  3421   __ bind(slow_case);
  3422   __ pop(rcx);   // restore stack pointer to what it was when we came in.
  3423   __ bind(slow_case_no_pop);
  3424   __ get_constant_pool(rax);
  3425   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3426   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
  3428   // continue
  3429   __ bind(done);
  3433 void TemplateTable::newarray() {
  3434   transition(itos, atos);
  3435   __ push_i(rax);                                 // make sure everything is on the stack
  3436   __ load_unsigned_byte(rdx, at_bcp(1));
  3437   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
  3438   __ pop_i(rdx);                                  // discard size
  3442 void TemplateTable::anewarray() {
  3443   transition(itos, atos);
  3444   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3445   __ get_constant_pool(rcx);
  3446   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
  3450 void TemplateTable::arraylength() {
  3451   transition(atos, itos);
  3452   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3453   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3457 void TemplateTable::checkcast() {
  3458   transition(atos, atos);
  3459   Label done, is_null, ok_is_subtype, quicked, resolved;
  3460   __ testptr(rax, rax);   // Object is in EAX
  3461   __ jcc(Assembler::zero, is_null);
  3463   // Get cpool & tags index
  3464   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3465   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3466   // See if bytecode has already been quicked
  3467   __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class);
  3468   __ jcc(Assembler::equal, quicked);
  3470   __ push(atos);
  3471   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3472   // vm_result_2 has metadata result
  3473   // borrow rdi from locals
  3474   __ get_thread(rdi);
  3475   __ get_vm_result_2(rax, rdi);
  3476   __ restore_locals();
  3477   __ pop_ptr(rdx);
  3478   __ jmpb(resolved);
  3480   // Get superklass in EAX and subklass in EBX
  3481   __ bind(quicked);
  3482   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
  3483   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool)));
  3485   __ bind(resolved);
  3486   __ load_klass(rbx, rdx);
  3488   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
  3489   // Superklass in EAX.  Subklass in EBX.
  3490   __ gen_subtype_check( rbx, ok_is_subtype );
  3492   // Come here on failure
  3493   __ push(rdx);
  3494   // object is at TOS
  3495   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3497   // Come here on success
  3498   __ bind(ok_is_subtype);
  3499   __ mov(rax,rdx);           // Restore object in EDX
  3501   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3502   if (ProfileInterpreter) {
  3503     __ jmp(done);
  3504     __ bind(is_null);
  3505     __ profile_null_seen(rcx);
  3506   } else {
  3507     __ bind(is_null);   // same as 'done'
  3509   __ bind(done);
  3513 void TemplateTable::instanceof() {
  3514   transition(atos, itos);
  3515   Label done, is_null, ok_is_subtype, quicked, resolved;
  3516   __ testptr(rax, rax);
  3517   __ jcc(Assembler::zero, is_null);
  3519   // Get cpool & tags index
  3520   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3521   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3522   // See if bytecode has already been quicked
  3523   __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class);
  3524   __ jcc(Assembler::equal, quicked);
  3526   __ push(atos);
  3527   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3528   // vm_result_2 has metadata result
  3529   // borrow rdi from locals
  3530   __ get_thread(rdi);
  3531   __ get_vm_result_2(rax, rdi);
  3532   __ restore_locals();
  3533   __ pop_ptr(rdx);
  3534   __ load_klass(rdx, rdx);
  3535   __ jmp(resolved);
  3537   // Get superklass in EAX and subklass in EDX
  3538   __ bind(quicked);
  3539   __ load_klass(rdx, rax);
  3540   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool)));
  3542   __ bind(resolved);
  3544   // Generate subtype check.  Blows ECX.  Resets EDI.
  3545   // Superklass in EAX.  Subklass in EDX.
  3546   __ gen_subtype_check( rdx, ok_is_subtype );
  3548   // Come here on failure
  3549   __ xorl(rax,rax);
  3550   __ jmpb(done);
  3551   // Come here on success
  3552   __ bind(ok_is_subtype);
  3553   __ movl(rax, 1);
  3555   // Collect counts on whether this test sees NULLs a lot or not.
  3556   if (ProfileInterpreter) {
  3557     __ jmp(done);
  3558     __ bind(is_null);
  3559     __ profile_null_seen(rcx);
  3560   } else {
  3561     __ bind(is_null);   // same as 'done'
  3563   __ bind(done);
  3564   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
  3565   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
  3569 //----------------------------------------------------------------------------------------------------
  3570 // Breakpoints
  3571 void TemplateTable::_breakpoint() {
  3573   // Note: We get here even if we are single stepping..
  3574   // jbug inists on setting breakpoints at every bytecode
  3575   // even if we are in single step mode.
  3577   transition(vtos, vtos);
  3579   // get the unpatched byte code
  3580   __ get_method(rcx);
  3581   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
  3582   __ mov(rbx, rax);
  3584   // post the breakpoint event
  3585   __ get_method(rcx);
  3586   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
  3588   // complete the execution of original bytecode
  3589   __ dispatch_only_normal(vtos);
  3593 //----------------------------------------------------------------------------------------------------
  3594 // Exceptions
  3596 void TemplateTable::athrow() {
  3597   transition(atos, vtos);
  3598   __ null_check(rax);
  3599   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3603 //----------------------------------------------------------------------------------------------------
  3604 // Synchronization
  3605 //
  3606 // Note: monitorenter & exit are symmetric routines; which is reflected
  3607 //       in the assembly code structure as well
  3608 //
  3609 // Stack layout:
  3610 //
  3611 // [expressions  ] <--- rsp               = expression stack top
  3612 // ..
  3613 // [expressions  ]
  3614 // [monitor entry] <--- monitor block top = expression stack bot
  3615 // ..
  3616 // [monitor entry]
  3617 // [frame data   ] <--- monitor block bot
  3618 // ...
  3619 // [saved rbp,    ] <--- rbp,
  3622 void TemplateTable::monitorenter() {
  3623   transition(atos, vtos);
  3625   // check for NULL object
  3626   __ null_check(rax);
  3628   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3629   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3630   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3631   Label allocated;
  3633   // initialize entry pointer
  3634   __ xorl(rdx, rdx);                             // points to free slot or NULL
  3636   // find a free slot in the monitor block (result in rdx)
  3637   { Label entry, loop, exit;
  3638     __ movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
  3640     __ lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
  3641     __ jmpb(entry);
  3643     __ bind(loop);
  3644     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
  3645     __ cmovptr(Assembler::equal, rdx, rcx);      // if not used then remember entry in rdx
  3646     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3647     __ jccb(Assembler::equal, exit);             // if same object then stop searching
  3648     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
  3649     __ bind(entry);
  3650     __ cmpptr(rcx, rbx);                         // check if bottom reached
  3651     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3652     __ bind(exit);
  3655   __ testptr(rdx, rdx);                          // check if a slot has been found
  3656   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
  3658   // allocate one if there's no free slot
  3659   { Label entry, loop;
  3660     // 1. compute new pointers                   // rsp: old expression stack top
  3661     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
  3662     __ subptr(rsp, entry_size);                  // move expression stack top
  3663     __ subptr(rdx, entry_size);                  // move expression stack bottom
  3664     __ mov(rcx, rsp);                            // set start value for copy loop
  3665     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
  3666     __ jmp(entry);
  3667     // 2. move expression stack contents
  3668     __ bind(loop);
  3669     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
  3670     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
  3671     __ addptr(rcx, wordSize);                    // advance to next word
  3672     __ bind(entry);
  3673     __ cmpptr(rcx, rdx);                         // check if bottom reached
  3674     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
  3677   // call run-time routine
  3678   // rdx: points to monitor entry
  3679   __ bind(allocated);
  3681   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3682   // The object has already been poped from the stack, so the expression stack looks correct.
  3683   __ increment(rsi);
  3685   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
  3686   __ lock_object(rdx);
  3688   // check to make sure this monitor doesn't cause stack overflow after locking
  3689   __ save_bcp();  // in case of exception
  3690   __ generate_stack_overflow_check(0);
  3692   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3693   __ dispatch_next(vtos);
  3697 void TemplateTable::monitorexit() {
  3698   transition(atos, vtos);
  3700   // check for NULL object
  3701   __ null_check(rax);
  3703   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3704   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3705   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3706   Label found;
  3708   // find matching slot
  3709   { Label entry, loop;
  3710     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
  3711     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3712     __ jmpb(entry);
  3714     __ bind(loop);
  3715     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3716     __ jcc(Assembler::equal, found);             // if same object then stop searching
  3717     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
  3718     __ bind(entry);
  3719     __ cmpptr(rdx, rbx);                         // check if bottom reached
  3720     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3723   // error handling. Unlocking was not block-structured
  3724   Label end;
  3725   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3726   __ should_not_reach_here();
  3728   // call run-time routine
  3729   // rcx: points to monitor entry
  3730   __ bind(found);
  3731   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
  3732   __ unlock_object(rdx);
  3733   __ pop_ptr(rax);                                  // discard object
  3734   __ bind(end);
  3738 //----------------------------------------------------------------------------------------------------
  3739 // Wide instructions
  3741 void TemplateTable::wide() {
  3742   transition(vtos, vtos);
  3743   __ load_unsigned_byte(rbx, at_bcp(1));
  3744   ExternalAddress wtable((address)Interpreter::_wentry_point);
  3745   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
  3746   // Note: the rsi increment step is part of the individual wide bytecode implementations
  3750 //----------------------------------------------------------------------------------------------------
  3751 // Multi arrays
  3753 void TemplateTable::multianewarray() {
  3754   transition(vtos, atos);
  3755   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3756   // last dim is on top of stack; we want address of first one:
  3757   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
  3758   // the latter wordSize to point to the beginning of the array.
  3759   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
  3760   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
  3761   __ load_unsigned_byte(rbx, at_bcp(3));
  3762   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
  3765 #endif /* !CC_INTERP */

mercurial