src/cpu/x86/vm/macroAssembler_x86.hpp

Fri, 16 Aug 2019 16:50:17 +0200

author
eosterlund
date
Fri, 16 Aug 2019 16:50:17 +0200
changeset 9834
bb1da64b0492
parent 9669
32bc598624bd
child 9703
2fdf635bcf28
permissions
-rw-r--r--

8229345: Memory leak due to vtable stubs not being shared on SPARC
Reviewed-by: mdoerr, dholmes, kvn

     1 /*
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
    26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
    28 #include "asm/assembler.hpp"
    29 #include "utilities/macros.hpp"
    30 #include "runtime/rtmLocking.hpp"
    33 // MacroAssembler extends Assembler by frequently used macros.
    34 //
    35 // Instructions for which a 'better' code sequence exists depending
    36 // on arguments should also go in here.
    38 class MacroAssembler: public Assembler {
    39   friend class LIR_Assembler;
    40   friend class Runtime1;      // as_Address()
    42  protected:
    44   Address as_Address(AddressLiteral adr);
    45   Address as_Address(ArrayAddress adr);
    47   // Support for VM calls
    48   //
    49   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
    50   // may customize this version by overriding it for its purposes (e.g., to save/restore
    51   // additional registers when doing a VM call).
    52 #ifdef CC_INTERP
    53   // c++ interpreter never wants to use interp_masm version of call_VM
    54   #define VIRTUAL
    55 #else
    56   #define VIRTUAL virtual
    57 #endif
    59   VIRTUAL void call_VM_leaf_base(
    60     address entry_point,               // the entry point
    61     int     number_of_arguments        // the number of arguments to pop after the call
    62   );
    64   // This is the base routine called by the different versions of call_VM. The interpreter
    65   // may customize this version by overriding it for its purposes (e.g., to save/restore
    66   // additional registers when doing a VM call).
    67   //
    68   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
    69   // returns the register which contains the thread upon return. If a thread register has been
    70   // specified, the return value will correspond to that register. If no last_java_sp is specified
    71   // (noreg) than rsp will be used instead.
    72   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
    73     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
    74     Register java_thread,              // the thread if computed before     ; use noreg otherwise
    75     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
    76     address  entry_point,              // the entry point
    77     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
    78     bool     check_exceptions          // whether to check for pending exceptions after return
    79   );
    81   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
    82   // The implementation is only non-empty for the InterpreterMacroAssembler,
    83   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
    84   virtual void check_and_handle_popframe(Register java_thread);
    85   virtual void check_and_handle_earlyret(Register java_thread);
    87   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
    89   // helpers for FPU flag access
    90   // tmp is a temporary register, if none is available use noreg
    91   void save_rax   (Register tmp);
    92   void restore_rax(Register tmp);
    94  public:
    95   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
    97   // Support for NULL-checks
    98   //
    99   // Generates code that causes a NULL OS exception if the content of reg is NULL.
   100   // If the accessed location is M[reg + offset] and the offset is known, provide the
   101   // offset. No explicit code generation is needed if the offset is within a certain
   102   // range (0 <= offset <= page_size).
   104   void null_check(Register reg, int offset = -1);
   105   static bool needs_explicit_null_check(intptr_t offset);
   107   // Required platform-specific helpers for Label::patch_instructions.
   108   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
   109   void pd_patch_instruction(address branch, address target) {
   110     unsigned char op = branch[0];
   111     assert(op == 0xE8 /* call */ ||
   112         op == 0xE9 /* jmp */ ||
   113         op == 0xEB /* short jmp */ ||
   114         (op & 0xF0) == 0x70 /* short jcc */ ||
   115         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
   116         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
   117         "Invalid opcode at patch point");
   119     if (op == 0xEB || (op & 0xF0) == 0x70) {
   120       // short offset operators (jmp and jcc)
   121       char* disp = (char*) &branch[1];
   122       int imm8 = target - (address) &disp[1];
   123       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
   124       *disp = imm8;
   125     } else {
   126       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
   127       int imm32 = target - (address) &disp[1];
   128       *disp = imm32;
   129     }
   130   }
   132   // The following 4 methods return the offset of the appropriate move instruction
   134   // Support for fast byte/short loading with zero extension (depending on particular CPU)
   135   int load_unsigned_byte(Register dst, Address src);
   136   int load_unsigned_short(Register dst, Address src);
   138   // Support for fast byte/short loading with sign extension (depending on particular CPU)
   139   int load_signed_byte(Register dst, Address src);
   140   int load_signed_short(Register dst, Address src);
   142   // Support for sign-extension (hi:lo = extend_sign(lo))
   143   void extend_sign(Register hi, Register lo);
   145   // Load and store values by size and signed-ness
   146   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
   147   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
   149   // Support for inc/dec with optimal instruction selection depending on value
   151   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
   152   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
   154   void decrementl(Address dst, int value = 1);
   155   void decrementl(Register reg, int value = 1);
   157   void decrementq(Register reg, int value = 1);
   158   void decrementq(Address dst, int value = 1);
   160   void incrementl(Address dst, int value = 1);
   161   void incrementl(Register reg, int value = 1);
   163   void incrementq(Register reg, int value = 1);
   164   void incrementq(Address dst, int value = 1);
   166   // Support optimal SSE move instructions.
   167   void movflt(XMMRegister dst, XMMRegister src) {
   168     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
   169     else                       { movss (dst, src); return; }
   170   }
   171   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
   172   void movflt(XMMRegister dst, AddressLiteral src);
   173   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
   175   void movdbl(XMMRegister dst, XMMRegister src) {
   176     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
   177     else                       { movsd (dst, src); return; }
   178   }
   180   void movdbl(XMMRegister dst, AddressLiteral src);
   182   void movdbl(XMMRegister dst, Address src) {
   183     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
   184     else                         { movlpd(dst, src); return; }
   185   }
   186   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
   188   void incrementl(AddressLiteral dst);
   189   void incrementl(ArrayAddress dst);
   191   void incrementq(AddressLiteral dst);
   193   // Alignment
   194   void align(int modulus);
   196   // A 5 byte nop that is safe for patching (see patch_verified_entry)
   197   void fat_nop();
   199   // Stack frame creation/removal
   200   void enter();
   201   void leave();
   203   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
   204   // The pointer will be loaded into the thread register.
   205   void get_thread(Register thread);
   208   // Support for VM calls
   209   //
   210   // It is imperative that all calls into the VM are handled via the call_VM macros.
   211   // They make sure that the stack linkage is setup correctly. call_VM's correspond
   212   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
   215   void call_VM(Register oop_result,
   216                address entry_point,
   217                bool check_exceptions = true);
   218   void call_VM(Register oop_result,
   219                address entry_point,
   220                Register arg_1,
   221                bool check_exceptions = true);
   222   void call_VM(Register oop_result,
   223                address entry_point,
   224                Register arg_1, Register arg_2,
   225                bool check_exceptions = true);
   226   void call_VM(Register oop_result,
   227                address entry_point,
   228                Register arg_1, Register arg_2, Register arg_3,
   229                bool check_exceptions = true);
   231   // Overloadings with last_Java_sp
   232   void call_VM(Register oop_result,
   233                Register last_java_sp,
   234                address entry_point,
   235                int number_of_arguments = 0,
   236                bool check_exceptions = true);
   237   void call_VM(Register oop_result,
   238                Register last_java_sp,
   239                address entry_point,
   240                Register arg_1, bool
   241                check_exceptions = true);
   242   void call_VM(Register oop_result,
   243                Register last_java_sp,
   244                address entry_point,
   245                Register arg_1, Register arg_2,
   246                bool check_exceptions = true);
   247   void call_VM(Register oop_result,
   248                Register last_java_sp,
   249                address entry_point,
   250                Register arg_1, Register arg_2, Register arg_3,
   251                bool check_exceptions = true);
   253   void get_vm_result  (Register oop_result, Register thread);
   254   void get_vm_result_2(Register metadata_result, Register thread);
   256   // These always tightly bind to MacroAssembler::call_VM_base
   257   // bypassing the virtual implementation
   258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
   259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
   260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
   261   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
   262   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
   264   void call_VM_leaf(address entry_point,
   265                     int number_of_arguments = 0);
   266   void call_VM_leaf(address entry_point,
   267                     Register arg_1);
   268   void call_VM_leaf(address entry_point,
   269                     Register arg_1, Register arg_2);
   270   void call_VM_leaf(address entry_point,
   271                     Register arg_1, Register arg_2, Register arg_3);
   273   // These always tightly bind to MacroAssembler::call_VM_leaf_base
   274   // bypassing the virtual implementation
   275   void super_call_VM_leaf(address entry_point);
   276   void super_call_VM_leaf(address entry_point, Register arg_1);
   277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
   278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
   279   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
   281   // last Java Frame (fills frame anchor)
   282   void set_last_Java_frame(Register thread,
   283                            Register last_java_sp,
   284                            Register last_java_fp,
   285                            address last_java_pc);
   287   // thread in the default location (r15_thread on 64bit)
   288   void set_last_Java_frame(Register last_java_sp,
   289                            Register last_java_fp,
   290                            address last_java_pc);
   292   void reset_last_Java_frame(Register thread, bool clear_fp);
   294   // thread in the default location (r15_thread on 64bit)
   295   void reset_last_Java_frame(bool clear_fp);
   297   // Stores
   298   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
   299   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
   301   void resolve_jobject(Register value, Register thread, Register tmp);
   302   void clear_jweak_tag(Register possibly_jweak);
   304 #if INCLUDE_ALL_GCS
   306   void g1_write_barrier_pre(Register obj,
   307                             Register pre_val,
   308                             Register thread,
   309                             Register tmp,
   310                             bool tosca_live,
   311                             bool expand_call);
   313   void g1_write_barrier_post(Register store_addr,
   314                              Register new_val,
   315                              Register thread,
   316                              Register tmp,
   317                              Register tmp2);
   319 #endif // INCLUDE_ALL_GCS
   321   // split store_check(Register obj) to enhance instruction interleaving
   322   void store_check_part_1(Register obj);
   323   void store_check_part_2(Register obj);
   325   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
   326   void c2bool(Register x);
   328   // C++ bool manipulation
   330   void movbool(Register dst, Address src);
   331   void movbool(Address dst, bool boolconst);
   332   void movbool(Address dst, Register src);
   333   void testbool(Register dst);
   335   // oop manipulations
   336   void load_klass(Register dst, Register src);
   337   void store_klass(Register dst, Register src);
   339   void load_heap_oop(Register dst, Address src);
   340   void load_heap_oop_not_null(Register dst, Address src);
   341   void store_heap_oop(Address dst, Register src);
   342   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
   344   // Used for storing NULL. All other oop constants should be
   345   // stored using routines that take a jobject.
   346   void store_heap_oop_null(Address dst);
   348   void load_prototype_header(Register dst, Register src);
   350 #ifdef _LP64
   351   void store_klass_gap(Register dst, Register src);
   353   // This dummy is to prevent a call to store_heap_oop from
   354   // converting a zero (like NULL) into a Register by giving
   355   // the compiler two choices it can't resolve
   357   void store_heap_oop(Address dst, void* dummy);
   359   void encode_heap_oop(Register r);
   360   void decode_heap_oop(Register r);
   361   void encode_heap_oop_not_null(Register r);
   362   void decode_heap_oop_not_null(Register r);
   363   void encode_heap_oop_not_null(Register dst, Register src);
   364   void decode_heap_oop_not_null(Register dst, Register src);
   366   void set_narrow_oop(Register dst, jobject obj);
   367   void set_narrow_oop(Address dst, jobject obj);
   368   void cmp_narrow_oop(Register dst, jobject obj);
   369   void cmp_narrow_oop(Address dst, jobject obj);
   371   void encode_klass_not_null(Register r);
   372   void decode_klass_not_null(Register r);
   373   void encode_klass_not_null(Register dst, Register src);
   374   void decode_klass_not_null(Register dst, Register src);
   375   void set_narrow_klass(Register dst, Klass* k);
   376   void set_narrow_klass(Address dst, Klass* k);
   377   void cmp_narrow_klass(Register dst, Klass* k);
   378   void cmp_narrow_klass(Address dst, Klass* k);
   380   // Returns the byte size of the instructions generated by decode_klass_not_null()
   381   // when compressed klass pointers are being used.
   382   static int instr_size_for_decode_klass_not_null();
   384   // if heap base register is used - reinit it with the correct value
   385   void reinit_heapbase();
   387   DEBUG_ONLY(void verify_heapbase(const char* msg);)
   389 #endif // _LP64
   391   // Int division/remainder for Java
   392   // (as idivl, but checks for special case as described in JVM spec.)
   393   // returns idivl instruction offset for implicit exception handling
   394   int corrected_idivl(Register reg);
   396   // Long division/remainder for Java
   397   // (as idivq, but checks for special case as described in JVM spec.)
   398   // returns idivq instruction offset for implicit exception handling
   399   int corrected_idivq(Register reg);
   401   void int3();
   403   // Long operation macros for a 32bit cpu
   404   // Long negation for Java
   405   void lneg(Register hi, Register lo);
   407   // Long multiplication for Java
   408   // (destroys contents of eax, ebx, ecx and edx)
   409   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
   411   // Long shifts for Java
   412   // (semantics as described in JVM spec.)
   413   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
   414   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
   416   // Long compare for Java
   417   // (semantics as described in JVM spec.)
   418   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
   421   // misc
   423   // Sign extension
   424   void sign_extend_short(Register reg);
   425   void sign_extend_byte(Register reg);
   427   // Division by power of 2, rounding towards 0
   428   void division_with_shift(Register reg, int shift_value);
   430   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
   431   //
   432   // CF (corresponds to C0) if x < y
   433   // PF (corresponds to C2) if unordered
   434   // ZF (corresponds to C3) if x = y
   435   //
   436   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
   437   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
   438   void fcmp(Register tmp);
   439   // Variant of the above which allows y to be further down the stack
   440   // and which only pops x and y if specified. If pop_right is
   441   // specified then pop_left must also be specified.
   442   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
   444   // Floating-point comparison for Java
   445   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
   446   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
   447   // (semantics as described in JVM spec.)
   448   void fcmp2int(Register dst, bool unordered_is_less);
   449   // Variant of the above which allows y to be further down the stack
   450   // and which only pops x and y if specified. If pop_right is
   451   // specified then pop_left must also be specified.
   452   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
   454   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
   455   // tmp is a temporary register, if none is available use noreg
   456   void fremr(Register tmp);
   459   // same as fcmp2int, but using SSE2
   460   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
   461   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
   463   // Inlined sin/cos generator for Java; must not use CPU instruction
   464   // directly on Intel as it does not have high enough precision
   465   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
   466   // number of FPU stack slots in use; all but the topmost will
   467   // require saving if a slow case is necessary. Assumes argument is
   468   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
   469   // this code.
   470   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
   472   // branch to L if FPU flag C2 is set/not set
   473   // tmp is a temporary register, if none is available use noreg
   474   void jC2 (Register tmp, Label& L);
   475   void jnC2(Register tmp, Label& L);
   477   // Pop ST (ffree & fincstp combined)
   478   void fpop();
   480   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
   481   void push_fTOS();
   483   // pops double TOS element from CPU stack and pushes on FPU stack
   484   void pop_fTOS();
   486   void empty_FPU_stack();
   488   void push_IU_state();
   489   void pop_IU_state();
   491   void push_FPU_state();
   492   void pop_FPU_state();
   494   void push_CPU_state();
   495   void pop_CPU_state();
   497   // Round up to a power of two
   498   void round_to(Register reg, int modulus);
   500   // Callee saved registers handling
   501   void push_callee_saved_registers();
   502   void pop_callee_saved_registers();
   504   // allocation
   505   void eden_allocate(
   506     Register obj,                      // result: pointer to object after successful allocation
   507     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
   508     int      con_size_in_bytes,        // object size in bytes if   known at compile time
   509     Register t1,                       // temp register
   510     Label&   slow_case                 // continuation point if fast allocation fails
   511   );
   512   void tlab_allocate(
   513     Register obj,                      // result: pointer to object after successful allocation
   514     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
   515     int      con_size_in_bytes,        // object size in bytes if   known at compile time
   516     Register t1,                       // temp register
   517     Register t2,                       // temp register
   518     Label&   slow_case                 // continuation point if fast allocation fails
   519   );
   520   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
   521   void incr_allocated_bytes(Register thread,
   522                             Register var_size_in_bytes, int con_size_in_bytes,
   523                             Register t1 = noreg);
   525   // interface method calling
   526   void lookup_interface_method(Register recv_klass,
   527                                Register intf_klass,
   528                                RegisterOrConstant itable_index,
   529                                Register method_result,
   530                                Register scan_temp,
   531                                Label& no_such_interface,
   532                                bool return_method = true);
   534   // virtual method calling
   535   void lookup_virtual_method(Register recv_klass,
   536                              RegisterOrConstant vtable_index,
   537                              Register method_result);
   539   // Test sub_klass against super_klass, with fast and slow paths.
   541   // The fast path produces a tri-state answer: yes / no / maybe-slow.
   542   // One of the three labels can be NULL, meaning take the fall-through.
   543   // If super_check_offset is -1, the value is loaded up from super_klass.
   544   // No registers are killed, except temp_reg.
   545   void check_klass_subtype_fast_path(Register sub_klass,
   546                                      Register super_klass,
   547                                      Register temp_reg,
   548                                      Label* L_success,
   549                                      Label* L_failure,
   550                                      Label* L_slow_path,
   551                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
   553   // The rest of the type check; must be wired to a corresponding fast path.
   554   // It does not repeat the fast path logic, so don't use it standalone.
   555   // The temp_reg and temp2_reg can be noreg, if no temps are available.
   556   // Updates the sub's secondary super cache as necessary.
   557   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
   558   void check_klass_subtype_slow_path(Register sub_klass,
   559                                      Register super_klass,
   560                                      Register temp_reg,
   561                                      Register temp2_reg,
   562                                      Label* L_success,
   563                                      Label* L_failure,
   564                                      bool set_cond_codes = false);
   566   // Simplified, combined version, good for typical uses.
   567   // Falls through on failure.
   568   void check_klass_subtype(Register sub_klass,
   569                            Register super_klass,
   570                            Register temp_reg,
   571                            Label& L_success);
   573   // method handles (JSR 292)
   574   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
   576   //----
   577   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
   579   // Debugging
   581   // only if +VerifyOops
   582   // TODO: Make these macros with file and line like sparc version!
   583   void verify_oop(Register reg, const char* s = "broken oop");
   584   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
   586   // TODO: verify method and klass metadata (compare against vptr?)
   587   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
   588   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
   590 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
   591 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
   593   // only if +VerifyFPU
   594   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
   596   // Verify or restore cpu control state after JNI call
   597   void restore_cpu_control_state_after_jni();
   599   // prints msg, dumps registers and stops execution
   600   void stop(const char* msg);
   602   // prints msg and continues
   603   void warn(const char* msg);
   605   // dumps registers and other state
   606   void print_state();
   608   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
   609   static void debug64(char* msg, int64_t pc, int64_t regs[]);
   610   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
   611   static void print_state64(int64_t pc, int64_t regs[]);
   613   void os_breakpoint();
   615   void untested()                                { stop("untested"); }
   617   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
   619   void should_not_reach_here()                   { stop("should not reach here"); }
   621   void print_CPU_state();
   623   // Stack overflow checking
   624   void bang_stack_with_offset(int offset) {
   625     // stack grows down, caller passes positive offset
   626     assert(offset > 0, "must bang with negative offset");
   627     movl(Address(rsp, (-offset)), rax);
   628   }
   630   // Writes to stack successive pages until offset reached to check for
   631   // stack overflow + shadow pages.  Also, clobbers tmp
   632   void bang_stack_size(Register size, Register tmp);
   634   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
   635                                                 Register tmp,
   636                                                 int offset);
   638   // Support for serializing memory accesses between threads
   639   void serialize_memory(Register thread, Register tmp);
   641   void verify_tlab();
   643   // Biased locking support
   644   // lock_reg and obj_reg must be loaded up with the appropriate values.
   645   // swap_reg must be rax, and is killed.
   646   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
   647   // be killed; if not supplied, push/pop will be used internally to
   648   // allocate a temporary (inefficient, avoid if possible).
   649   // Optional slow case is for implementations (interpreter and C1) which branch to
   650   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
   651   // Returns offset of first potentially-faulting instruction for null
   652   // check info (currently consumed only by C1). If
   653   // swap_reg_contains_mark is true then returns -1 as it is assumed
   654   // the calling code has already passed any potential faults.
   655   int biased_locking_enter(Register lock_reg, Register obj_reg,
   656                            Register swap_reg, Register tmp_reg,
   657                            bool swap_reg_contains_mark,
   658                            Label& done, Label* slow_case = NULL,
   659                            BiasedLockingCounters* counters = NULL);
   660   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
   661 #ifdef COMPILER2
   662   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
   663   // See full desription in macroAssembler_x86.cpp.
   664   void fast_lock(Register obj, Register box, Register tmp,
   665                  Register scr, Register cx1, Register cx2,
   666                  BiasedLockingCounters* counters,
   667                  RTMLockingCounters* rtm_counters,
   668                  RTMLockingCounters* stack_rtm_counters,
   669                  Metadata* method_data,
   670                  bool use_rtm, bool profile_rtm);
   671   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
   672 #if INCLUDE_RTM_OPT
   673   void rtm_counters_update(Register abort_status, Register rtm_counters);
   674   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
   675   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
   676                                    RTMLockingCounters* rtm_counters,
   677                                    Metadata* method_data);
   678   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
   679                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
   680   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
   681   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
   682   void rtm_stack_locking(Register obj, Register tmp, Register scr,
   683                          Register retry_on_abort_count,
   684                          RTMLockingCounters* stack_rtm_counters,
   685                          Metadata* method_data, bool profile_rtm,
   686                          Label& DONE_LABEL, Label& IsInflated);
   687   void rtm_inflated_locking(Register obj, Register box, Register tmp,
   688                             Register scr, Register retry_on_busy_count,
   689                             Register retry_on_abort_count,
   690                             RTMLockingCounters* rtm_counters,
   691                             Metadata* method_data, bool profile_rtm,
   692                             Label& DONE_LABEL);
   693 #endif
   694 #endif
   696   Condition negate_condition(Condition cond);
   698   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
   699   // operands. In general the names are modified to avoid hiding the instruction in Assembler
   700   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
   701   // here in MacroAssembler. The major exception to this rule is call
   703   // Arithmetics
   706   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
   707   void addptr(Address dst, Register src);
   709   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
   710   void addptr(Register dst, int32_t src);
   711   void addptr(Register dst, Register src);
   712   void addptr(Register dst, RegisterOrConstant src) {
   713     if (src.is_constant()) addptr(dst, (int) src.as_constant());
   714     else                   addptr(dst,       src.as_register());
   715   }
   717   void andptr(Register dst, int32_t src);
   718   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
   720   void cmp8(AddressLiteral src1, int imm);
   722   // renamed to drag out the casting of address to int32_t/intptr_t
   723   void cmp32(Register src1, int32_t imm);
   725   void cmp32(AddressLiteral src1, int32_t imm);
   726   // compare reg - mem, or reg - &mem
   727   void cmp32(Register src1, AddressLiteral src2);
   729   void cmp32(Register src1, Address src2);
   731 #ifndef _LP64
   732   void cmpklass(Address dst, Metadata* obj);
   733   void cmpklass(Register dst, Metadata* obj);
   734   void cmpoop(Address dst, jobject obj);
   735   void cmpoop(Register dst, jobject obj);
   736 #endif // _LP64
   738   // NOTE src2 must be the lval. This is NOT an mem-mem compare
   739   void cmpptr(Address src1, AddressLiteral src2);
   741   void cmpptr(Register src1, AddressLiteral src2);
   743   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   744   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   745   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   747   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   748   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   750   // cmp64 to avoild hiding cmpq
   751   void cmp64(Register src1, AddressLiteral src);
   753   void cmpxchgptr(Register reg, Address adr);
   755   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
   758   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
   759   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
   762   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
   764   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
   766   void shlptr(Register dst, int32_t shift);
   767   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
   769   void shrptr(Register dst, int32_t shift);
   770   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
   772   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
   773   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
   775   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
   777   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
   778   void subptr(Register dst, int32_t src);
   779   // Force generation of a 4 byte immediate value even if it fits into 8bit
   780   void subptr_imm32(Register dst, int32_t src);
   781   void subptr(Register dst, Register src);
   782   void subptr(Register dst, RegisterOrConstant src) {
   783     if (src.is_constant()) subptr(dst, (int) src.as_constant());
   784     else                   subptr(dst,       src.as_register());
   785   }
   787   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
   788   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
   790   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
   791   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
   793   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
   797   // Helper functions for statistics gathering.
   798   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
   799   void cond_inc32(Condition cond, AddressLiteral counter_addr);
   800   // Unconditional atomic increment.
   801   void atomic_incl(Address counter_addr);
   802   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
   803 #ifdef _LP64
   804   void atomic_incq(Address counter_addr);
   805   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
   806 #endif
   807   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
   808   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
   810   void lea(Register dst, AddressLiteral adr);
   811   void lea(Address dst, AddressLiteral adr);
   812   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
   814   void leal32(Register dst, Address src) { leal(dst, src); }
   816   // Import other testl() methods from the parent class or else
   817   // they will be hidden by the following overriding declaration.
   818   using Assembler::testl;
   819   void testl(Register dst, AddressLiteral src);
   821   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   822   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   823   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   824   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
   826   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
   827   void testptr(Register src1, Register src2);
   829   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
   830   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
   832   // Calls
   834   void call(Label& L, relocInfo::relocType rtype);
   835   void call(Register entry);
   837   // NOTE: this call tranfers to the effective address of entry NOT
   838   // the address contained by entry. This is because this is more natural
   839   // for jumps/calls.
   840   void call(AddressLiteral entry);
   842   // Emit the CompiledIC call idiom
   843   void ic_call(address entry);
   845   // Jumps
   847   // NOTE: these jumps tranfer to the effective address of dst NOT
   848   // the address contained by dst. This is because this is more natural
   849   // for jumps/calls.
   850   void jump(AddressLiteral dst);
   851   void jump_cc(Condition cc, AddressLiteral dst);
   853   // 32bit can do a case table jump in one instruction but we no longer allow the base
   854   // to be installed in the Address class. This jump will tranfers to the address
   855   // contained in the location described by entry (not the address of entry)
   856   void jump(ArrayAddress entry);
   858   // Floating
   860   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
   861   void andpd(XMMRegister dst, AddressLiteral src);
   863   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
   864   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
   865   void andps(XMMRegister dst, AddressLiteral src);
   867   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
   868   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
   869   void comiss(XMMRegister dst, AddressLiteral src);
   871   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
   872   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
   873   void comisd(XMMRegister dst, AddressLiteral src);
   875   void fadd_s(Address src)        { Assembler::fadd_s(src); }
   876   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
   878   void fldcw(Address src) { Assembler::fldcw(src); }
   879   void fldcw(AddressLiteral src);
   881   void fld_s(int index)   { Assembler::fld_s(index); }
   882   void fld_s(Address src) { Assembler::fld_s(src); }
   883   void fld_s(AddressLiteral src);
   885   void fld_d(Address src) { Assembler::fld_d(src); }
   886   void fld_d(AddressLiteral src);
   888   void fld_x(Address src) { Assembler::fld_x(src); }
   889   void fld_x(AddressLiteral src);
   891   void fmul_s(Address src)        { Assembler::fmul_s(src); }
   892   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
   894   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
   895   void ldmxcsr(AddressLiteral src);
   897   // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
   898   // all corner cases and may result in NaN and require fallback to a
   899   // runtime call.
   900   void fast_pow();
   901   void fast_exp();
   902   void increase_precision();
   903   void restore_precision();
   905   // computes exp(x). Fallback to runtime call included.
   906   void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
   907   // computes pow(x,y). Fallback to runtime call included.
   908   void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
   910 private:
   912   // call runtime as a fallback for trig functions and pow/exp.
   913   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
   915   // computes 2^(Ylog2X); Ylog2X in ST(0)
   916   void pow_exp_core_encoding();
   918   // computes pow(x,y) or exp(x). Fallback to runtime call included.
   919   void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
   921   // these are private because users should be doing movflt/movdbl
   923   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
   924   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
   925   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
   926   void movss(XMMRegister dst, AddressLiteral src);
   928   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
   929   void movlpd(XMMRegister dst, AddressLiteral src);
   931 public:
   933   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
   934   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
   935   void addsd(XMMRegister dst, AddressLiteral src);
   937   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
   938   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
   939   void addss(XMMRegister dst, AddressLiteral src);
   941   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
   942   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
   943   void divsd(XMMRegister dst, AddressLiteral src);
   945   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
   946   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
   947   void divss(XMMRegister dst, AddressLiteral src);
   949   // Move Unaligned Double Quadword
   950   void movdqu(Address     dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
   951   void movdqu(XMMRegister dst, Address src)       { Assembler::movdqu(dst, src); }
   952   void movdqu(XMMRegister dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
   953   void movdqu(XMMRegister dst, AddressLiteral src);
   955   // Move Aligned Double Quadword
   956   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
   957   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
   958   void movdqa(XMMRegister dst, AddressLiteral src);
   960   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
   961   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
   962   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
   963   void movsd(XMMRegister dst, AddressLiteral src);
   965   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
   966   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
   967   void mulsd(XMMRegister dst, AddressLiteral src);
   969   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
   970   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
   971   void mulss(XMMRegister dst, AddressLiteral src);
   973   // Carry-Less Multiplication Quadword
   974   void pclmulldq(XMMRegister dst, XMMRegister src) {
   975     // 0x00 - multiply lower 64 bits [0:63]
   976     Assembler::pclmulqdq(dst, src, 0x00);
   977   }
   978   void pclmulhdq(XMMRegister dst, XMMRegister src) {
   979     // 0x11 - multiply upper 64 bits [64:127]
   980     Assembler::pclmulqdq(dst, src, 0x11);
   981   }
   983   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
   984   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
   985   void sqrtsd(XMMRegister dst, AddressLiteral src);
   987   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
   988   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
   989   void sqrtss(XMMRegister dst, AddressLiteral src);
   991   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
   992   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
   993   void subsd(XMMRegister dst, AddressLiteral src);
   995   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
   996   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
   997   void subss(XMMRegister dst, AddressLiteral src);
   999   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
  1000   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
  1001   void ucomiss(XMMRegister dst, AddressLiteral src);
  1003   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  1004   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
  1005   void ucomisd(XMMRegister dst, AddressLiteral src);
  1007   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  1008   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  1009   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  1010   void xorpd(XMMRegister dst, AddressLiteral src);
  1012   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  1013   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  1014   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  1015   void xorps(XMMRegister dst, AddressLiteral src);
  1017   // Shuffle Bytes
  1018   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
  1019   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
  1020   void pshufb(XMMRegister dst, AddressLiteral src);
  1021   // AVX 3-operands instructions
  1023   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
  1024   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
  1025   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1027   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
  1028   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
  1029   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1031   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
  1032   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandpd(dst, nds, src, vector256); }
  1033   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  1035   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
  1036   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandps(dst, nds, src, vector256); }
  1037   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  1039   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
  1040   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
  1041   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1043   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
  1044   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
  1045   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1047   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
  1048   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
  1049   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1051   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
  1052   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
  1053   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1055   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
  1056   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
  1057   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1059   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
  1060   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
  1061   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1063   // AVX Vector instructions
  1065   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
  1066   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
  1067   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  1069   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
  1070   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
  1071   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  1073   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  1074     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
  1075       Assembler::vpxor(dst, nds, src, vector256);
  1076     else
  1077       Assembler::vxorpd(dst, nds, src, vector256);
  1079   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  1080     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
  1081       Assembler::vpxor(dst, nds, src, vector256);
  1082     else
  1083       Assembler::vxorpd(dst, nds, src, vector256);
  1086   // Simple version for AVX2 256bit vectors
  1087   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
  1088   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
  1090   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
  1091   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  1092     if (UseAVX > 1) // vinserti128h is available only in AVX2
  1093       Assembler::vinserti128h(dst, nds, src);
  1094     else
  1095       Assembler::vinsertf128h(dst, nds, src);
  1098   // Carry-Less Multiplication Quadword
  1099   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  1100     // 0x00 - multiply lower 64 bits [0:63]
  1101     Assembler::vpclmulqdq(dst, nds, src, 0x00);
  1103   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  1104     // 0x11 - multiply upper 64 bits [64:127]
  1105     Assembler::vpclmulqdq(dst, nds, src, 0x11);
  1108   // Data
  1110   void cmov32( Condition cc, Register dst, Address  src);
  1111   void cmov32( Condition cc, Register dst, Register src);
  1113   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
  1115   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  1116   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  1118   void movoop(Register dst, jobject obj);
  1119   void movoop(Address dst, jobject obj);
  1121   void mov_metadata(Register dst, Metadata* obj);
  1122   void mov_metadata(Address dst, Metadata* obj);
  1124   void movptr(ArrayAddress dst, Register src);
  1125   // can this do an lea?
  1126   void movptr(Register dst, ArrayAddress src);
  1128   void movptr(Register dst, Address src);
  1130 #ifdef _LP64
  1131   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
  1132 #else
  1133   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
  1134 #endif
  1136   void movptr(Register dst, intptr_t src);
  1137   void movptr(Register dst, Register src);
  1138   void movptr(Address dst, intptr_t src);
  1140   void movptr(Address dst, Register src);
  1142   void movptr(Register dst, RegisterOrConstant src) {
  1143     if (src.is_constant()) movptr(dst, src.as_constant());
  1144     else                   movptr(dst, src.as_register());
  1147 #ifdef _LP64
  1148   // Generally the next two are only used for moving NULL
  1149   // Although there are situations in initializing the mark word where
  1150   // they could be used. They are dangerous.
  1152   // They only exist on LP64 so that int32_t and intptr_t are not the same
  1153   // and we have ambiguous declarations.
  1155   void movptr(Address dst, int32_t imm32);
  1156   void movptr(Register dst, int32_t imm32);
  1157 #endif // _LP64
  1159   // to avoid hiding movl
  1160   void mov32(AddressLiteral dst, Register src);
  1161   void mov32(Register dst, AddressLiteral src);
  1163   // to avoid hiding movb
  1164   void movbyte(ArrayAddress dst, int src);
  1166   // Import other mov() methods from the parent class or else
  1167   // they will be hidden by the following overriding declaration.
  1168   using Assembler::movdl;
  1169   using Assembler::movq;
  1170   void movdl(XMMRegister dst, AddressLiteral src);
  1171   void movq(XMMRegister dst, AddressLiteral src);
  1173   // Can push value or effective address
  1174   void pushptr(AddressLiteral src);
  1176   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  1177   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
  1179   void pushoop(jobject obj);
  1180   void pushklass(Metadata* obj);
  1182   // sign extend as need a l to ptr sized element
  1183   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  1184   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
  1186   // C2 compiled method's prolog code.
  1187   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
  1189   // clear memory of size 'cnt' qwords, starting at 'base'.
  1190   void clear_mem(Register base, Register cnt, Register rtmp);
  1192   // IndexOf strings.
  1193   // Small strings are loaded through stack if they cross page boundary.
  1194   void string_indexof(Register str1, Register str2,
  1195                       Register cnt1, Register cnt2,
  1196                       int int_cnt2,  Register result,
  1197                       XMMRegister vec, Register tmp);
  1199   // IndexOf for constant substrings with size >= 8 elements
  1200   // which don't need to be loaded through stack.
  1201   void string_indexofC8(Register str1, Register str2,
  1202                       Register cnt1, Register cnt2,
  1203                       int int_cnt2,  Register result,
  1204                       XMMRegister vec, Register tmp);
  1206     // Smallest code: we don't need to load through stack,
  1207     // check string tail.
  1209   // Compare strings.
  1210   void string_compare(Register str1, Register str2,
  1211                       Register cnt1, Register cnt2, Register result,
  1212                       XMMRegister vec1);
  1214   // Compare char[] arrays.
  1215   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  1216                           Register limit, Register result, Register chr,
  1217                           XMMRegister vec1, XMMRegister vec2);
  1219   // Fill primitive arrays
  1220   void generate_fill(BasicType t, bool aligned,
  1221                      Register to, Register value, Register count,
  1222                      Register rtmp, XMMRegister xtmp);
  1224   void encode_iso_array(Register src, Register dst, Register len,
  1225                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
  1226                         XMMRegister tmp4, Register tmp5, Register result);
  1228 #ifdef _LP64
  1229   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
  1230   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
  1231                              Register y, Register y_idx, Register z,
  1232                              Register carry, Register product,
  1233                              Register idx, Register kdx);
  1234   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
  1235                               Register yz_idx, Register idx,
  1236                               Register carry, Register product, int offset);
  1237   void multiply_128_x_128_bmi2_loop(Register y, Register z,
  1238                                     Register carry, Register carry2,
  1239                                     Register idx, Register jdx,
  1240                                     Register yz_idx1, Register yz_idx2,
  1241                                     Register tmp, Register tmp3, Register tmp4);
  1242   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
  1243                                Register yz_idx, Register idx, Register jdx,
  1244                                Register carry, Register product,
  1245                                Register carry2);
  1246   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
  1247                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
  1249   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
  1250                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
  1251   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
  1252                             Register tmp2);
  1253   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
  1254                        Register rdxReg, Register raxReg);
  1255   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
  1256   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
  1257                        Register tmp3, Register tmp4);
  1258   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
  1259                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
  1261   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
  1262                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
  1263                Register raxReg);
  1264   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
  1265                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
  1266                Register raxReg);
  1267 #endif
  1269   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
  1270   void update_byte_crc32(Register crc, Register val, Register table);
  1271   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
  1272   // Fold 128-bit data chunk
  1273   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
  1274   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
  1275   // Fold 8-bit data
  1276   void fold_8bit_crc32(Register crc, Register table, Register tmp);
  1277   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
  1279 #undef VIRTUAL
  1281 };
  1283 /**
  1284  * class SkipIfEqual:
  1286  * Instantiating this class will result in assembly code being output that will
  1287  * jump around any code emitted between the creation of the instance and it's
  1288  * automatic destruction at the end of a scope block, depending on the value of
  1289  * the flag passed to the constructor, which will be checked at run-time.
  1290  */
  1291 class SkipIfEqual {
  1292  private:
  1293   MacroAssembler* _masm;
  1294   Label _label;
  1296  public:
  1297    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  1298    ~SkipIfEqual();
  1299 };
  1301 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP

mercurial