src/cpu/x86/vm/c1_LIRGenerator_x86.cpp

Fri, 16 Aug 2019 16:50:17 +0200

author
eosterlund
date
Fri, 16 Aug 2019 16:50:17 +0200
changeset 9834
bb1da64b0492
parent 9614
bb44c0e88235
child 9637
eef07cd490d4
child 9843
a6f289d66efe
permissions
-rw-r--r--

8229345: Memory leak due to vtable stubs not being shared on SPARC
Reviewed-by: mdoerr, dholmes, kvn

     1 /*
     2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_Instruction.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_LIRGenerator.hpp"
    31 #include "c1/c1_Runtime1.hpp"
    32 #include "c1/c1_ValueStack.hpp"
    33 #include "ci/ciArray.hpp"
    34 #include "ci/ciObjArrayKlass.hpp"
    35 #include "ci/ciTypeArrayKlass.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #include "vmreg_x86.inline.hpp"
    40 #ifdef ASSERT
    41 #define __ gen()->lir(__FILE__, __LINE__)->
    42 #else
    43 #define __ gen()->lir()->
    44 #endif
    46 // Item will be loaded into a byte register; Intel only
    47 void LIRItem::load_byte_item() {
    48   load_item();
    49   LIR_Opr res = result();
    51   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
    52     // make sure that it is a byte register
    53     assert(!value()->type()->is_float() && !value()->type()->is_double(),
    54            "can't load floats in byte register");
    55     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
    56     __ move(res, reg);
    58     _result = reg;
    59   }
    60 }
    63 void LIRItem::load_nonconstant() {
    64   LIR_Opr r = value()->operand();
    65   if (r->is_constant()) {
    66     _result = r;
    67   } else {
    68     load_item();
    69   }
    70 }
    72 //--------------------------------------------------------------
    73 //               LIRGenerator
    74 //--------------------------------------------------------------
    77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
    78 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
    79 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
    80 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
    81 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
    82 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
    83 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
    84 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
    87 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
    88   LIR_Opr opr;
    89   switch (type->tag()) {
    90     case intTag:     opr = FrameMap::rax_opr;          break;
    91     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
    92     case longTag:    opr = FrameMap::long0_opr;        break;
    93     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
    94     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
    96     case addressTag:
    97     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
    98   }
   100   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
   101   return opr;
   102 }
   105 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
   106   LIR_Opr reg = new_register(T_INT);
   107   set_vreg_flag(reg, LIRGenerator::byte_reg);
   108   return reg;
   109 }
   112 //--------- loading items into registers --------------------------------
   115 // i486 instructions can inline constants
   116 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
   117   if (type == T_SHORT || type == T_CHAR) {
   118     // there is no immediate move of word values in asembler_i486.?pp
   119     return false;
   120   }
   121   Constant* c = v->as_Constant();
   122   if (c && c->state_before() == NULL) {
   123     // constants of any type can be stored directly, except for
   124     // unloaded object constants.
   125     return true;
   126   }
   127   return false;
   128 }
   131 bool LIRGenerator::can_inline_as_constant(Value v) const {
   132   if (v->type()->tag() == longTag) return false;
   133   return v->type()->tag() != objectTag ||
   134     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
   135 }
   138 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
   139   if (c->type() == T_LONG) return false;
   140   return c->type() != T_OBJECT || c->as_jobject() == NULL;
   141 }
   144 LIR_Opr LIRGenerator::safepoint_poll_register() {
   145   return LIR_OprFact::illegalOpr;
   146 }
   149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
   150                                             int shift, int disp, BasicType type) {
   151   assert(base->is_register(), "must be");
   152   if (index->is_constant()) {
   153     return new LIR_Address(base,
   154                            (index->as_constant_ptr()->as_jint() << shift) + disp,
   155                            type);
   156   } else {
   157     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
   158   }
   159 }
   162 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
   163                                               BasicType type, bool needs_card_mark) {
   164   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
   166   LIR_Address* addr;
   167   if (index_opr->is_constant()) {
   168     int elem_size = type2aelembytes(type);
   169     addr = new LIR_Address(array_opr,
   170                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
   171   } else {
   172 #ifdef _LP64
   173     if (index_opr->type() == T_INT) {
   174       LIR_Opr tmp = new_register(T_LONG);
   175       __ convert(Bytecodes::_i2l, index_opr, tmp);
   176       index_opr = tmp;
   177     }
   178 #endif // _LP64
   179     addr =  new LIR_Address(array_opr,
   180                             index_opr,
   181                             LIR_Address::scale(type),
   182                             offset_in_bytes, type);
   183   }
   184   if (needs_card_mark) {
   185     // This store will need a precise card mark, so go ahead and
   186     // compute the full adddres instead of computing once for the
   187     // store and again for the card mark.
   188     LIR_Opr tmp = new_pointer_register();
   189     __ leal(LIR_OprFact::address(addr), tmp);
   190     return new LIR_Address(tmp, type);
   191   } else {
   192     return addr;
   193   }
   194 }
   197 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
   198   LIR_Opr r = NULL;
   199   if (type == T_LONG) {
   200     r = LIR_OprFact::longConst(x);
   201   } else if (type == T_INT) {
   202     r = LIR_OprFact::intConst(x);
   203   } else {
   204     ShouldNotReachHere();
   205   }
   206   return r;
   207 }
   209 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
   210   LIR_Opr pointer = new_pointer_register();
   211   __ move(LIR_OprFact::intptrConst(counter), pointer);
   212   LIR_Address* addr = new LIR_Address(pointer, type);
   213   increment_counter(addr, step);
   214 }
   217 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
   218   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
   219 }
   221 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
   222   __ cmp_mem_int(condition, base, disp, c, info);
   223 }
   226 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
   227   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
   228 }
   231 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
   232   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
   233 }
   236 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
   237   if (tmp->is_valid()) {
   238     if (is_power_of_2(c + 1)) {
   239       __ move(left, tmp);
   240       __ shift_left(left, log2_jint(c + 1), left);
   241       __ sub(left, tmp, result);
   242       return true;
   243     } else if (is_power_of_2(c - 1)) {
   244       __ move(left, tmp);
   245       __ shift_left(left, log2_jint(c - 1), left);
   246       __ add(left, tmp, result);
   247       return true;
   248     }
   249   }
   250   return false;
   251 }
   254 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
   255   BasicType type = item->type();
   256   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
   257 }
   259 //----------------------------------------------------------------------
   260 //             visitor functions
   261 //----------------------------------------------------------------------
   264 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
   265   assert(x->is_pinned(),"");
   266   bool needs_range_check = x->compute_needs_range_check();
   267   bool use_length = x->length() != NULL;
   268   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
   269   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
   270                                          !get_jobject_constant(x->value())->is_null_object() ||
   271                                          x->should_profile());
   273   LIRItem array(x->array(), this);
   274   LIRItem index(x->index(), this);
   275   LIRItem value(x->value(), this);
   276   LIRItem length(this);
   278   array.load_item();
   279   index.load_nonconstant();
   281   if (use_length && needs_range_check) {
   282     length.set_instruction(x->length());
   283     length.load_item();
   285   }
   286   if (needs_store_check || x->check_boolean()) {
   287     value.load_item();
   288   } else {
   289     value.load_for_store(x->elt_type());
   290   }
   292   set_no_result(x);
   294   // the CodeEmitInfo must be duplicated for each different
   295   // LIR-instruction because spilling can occur anywhere between two
   296   // instructions and so the debug information must be different
   297   CodeEmitInfo* range_check_info = state_for(x);
   298   CodeEmitInfo* null_check_info = NULL;
   299   if (x->needs_null_check()) {
   300     null_check_info = new CodeEmitInfo(range_check_info);
   301   }
   303   // emit array address setup early so it schedules better
   304   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
   306   if (GenerateRangeChecks && needs_range_check) {
   307     if (use_length) {
   308       __ cmp(lir_cond_belowEqual, length.result(), index.result());
   309       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
   310     } else {
   311       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
   312       // range_check also does the null check
   313       null_check_info = NULL;
   314     }
   315   }
   317   if (GenerateArrayStoreCheck && needs_store_check) {
   318     LIR_Opr tmp1 = new_register(objectType);
   319     LIR_Opr tmp2 = new_register(objectType);
   320     LIR_Opr tmp3 = new_register(objectType);
   322     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
   323     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
   324   }
   326   if (obj_store) {
   327     // Needs GC write barriers.
   328     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
   329                 true /* do_load */, false /* patch */, NULL);
   330     __ move(value.result(), array_addr, null_check_info);
   331     // Seems to be a precise
   332     post_barrier(LIR_OprFact::address(array_addr), value.result());
   333   } else {
   334     LIR_Opr result = maybe_mask_boolean(x, array.result(), value.result(), null_check_info);
   335     __ move(result, array_addr, null_check_info);
   336   }
   337 }
   340 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
   341   assert(x->is_pinned(),"");
   342   LIRItem obj(x->obj(), this);
   343   obj.load_item();
   345   set_no_result(x);
   347   // "lock" stores the address of the monitor stack slot, so this is not an oop
   348   LIR_Opr lock = new_register(T_INT);
   349   // Need a scratch register for biased locking on x86
   350   LIR_Opr scratch = LIR_OprFact::illegalOpr;
   351   if (UseBiasedLocking) {
   352     scratch = new_register(T_INT);
   353   }
   355   CodeEmitInfo* info_for_exception = NULL;
   356   if (x->needs_null_check()) {
   357     info_for_exception = state_for(x);
   358   }
   359   // this CodeEmitInfo must not have the xhandlers because here the
   360   // object is already locked (xhandlers expect object to be unlocked)
   361   CodeEmitInfo* info = state_for(x, x->state(), true);
   362   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
   363                         x->monitor_no(), info_for_exception, info);
   364 }
   367 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
   368   assert(x->is_pinned(),"");
   370   LIRItem obj(x->obj(), this);
   371   obj.dont_load_item();
   373   LIR_Opr lock = new_register(T_INT);
   374   LIR_Opr obj_temp = new_register(T_INT);
   375   set_no_result(x);
   376   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
   377 }
   380 // _ineg, _lneg, _fneg, _dneg
   381 void LIRGenerator::do_NegateOp(NegateOp* x) {
   382   LIRItem value(x->x(), this);
   383   value.set_destroys_register();
   384   value.load_item();
   385   LIR_Opr reg = rlock(x);
   386   __ negate(value.result(), reg);
   388   set_result(x, round_item(reg));
   389 }
   392 // for  _fadd, _fmul, _fsub, _fdiv, _frem
   393 //      _dadd, _dmul, _dsub, _ddiv, _drem
   394 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
   395   LIRItem left(x->x(),  this);
   396   LIRItem right(x->y(), this);
   397   LIRItem* left_arg  = &left;
   398   LIRItem* right_arg = &right;
   399   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
   400   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
   401   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
   402     left.load_item();
   403   } else {
   404     left.dont_load_item();
   405   }
   407   // do not load right operand if it is a constant.  only 0 and 1 are
   408   // loaded because there are special instructions for loading them
   409   // without memory access (not needed for SSE2 instructions)
   410   bool must_load_right = false;
   411   if (right.is_constant()) {
   412     LIR_Const* c = right.result()->as_constant_ptr();
   413     assert(c != NULL, "invalid constant");
   414     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
   416     if (c->type() == T_FLOAT) {
   417       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
   418     } else {
   419       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
   420     }
   421   }
   423   if (must_load_both) {
   424     // frem and drem destroy also right operand, so move it to a new register
   425     right.set_destroys_register();
   426     right.load_item();
   427   } else if (right.is_register() || must_load_right) {
   428     right.load_item();
   429   } else {
   430     right.dont_load_item();
   431   }
   432   LIR_Opr reg = rlock(x);
   433   LIR_Opr tmp = LIR_OprFact::illegalOpr;
   434   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
   435     tmp = new_register(T_DOUBLE);
   436   }
   438   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
   439     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
   440     LIR_Opr fpu0, fpu1;
   441     if (x->op() == Bytecodes::_frem) {
   442       fpu0 = LIR_OprFact::single_fpu(0);
   443       fpu1 = LIR_OprFact::single_fpu(1);
   444     } else {
   445       fpu0 = LIR_OprFact::double_fpu(0);
   446       fpu1 = LIR_OprFact::double_fpu(1);
   447     }
   448     __ move(right.result(), fpu1); // order of left and right operand is important!
   449     __ move(left.result(), fpu0);
   450     __ rem (fpu0, fpu1, fpu0);
   451     __ move(fpu0, reg);
   453   } else {
   454     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
   455   }
   457   set_result(x, round_item(reg));
   458 }
   461 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
   462 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
   463   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
   464     // long division is implemented as a direct call into the runtime
   465     LIRItem left(x->x(), this);
   466     LIRItem right(x->y(), this);
   468     // the check for division by zero destroys the right operand
   469     right.set_destroys_register();
   471     BasicTypeList signature(2);
   472     signature.append(T_LONG);
   473     signature.append(T_LONG);
   474     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
   476     // check for division by zero (destroys registers of right operand!)
   477     CodeEmitInfo* info = state_for(x);
   479     const LIR_Opr result_reg = result_register_for(x->type());
   480     left.load_item_force(cc->at(1));
   481     right.load_item();
   483     __ move(right.result(), cc->at(0));
   485     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
   486     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
   488     address entry = NULL;
   489     switch (x->op()) {
   490     case Bytecodes::_lrem:
   491       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
   492       break; // check if dividend is 0 is done elsewhere
   493     case Bytecodes::_ldiv:
   494       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
   495       break; // check if dividend is 0 is done elsewhere
   496     case Bytecodes::_lmul:
   497       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
   498       break;
   499     default:
   500       ShouldNotReachHere();
   501     }
   503     LIR_Opr result = rlock_result(x);
   504     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
   505     __ move(result_reg, result);
   506   } else if (x->op() == Bytecodes::_lmul) {
   507     // missing test if instr is commutative and if we should swap
   508     LIRItem left(x->x(), this);
   509     LIRItem right(x->y(), this);
   511     // right register is destroyed by the long mul, so it must be
   512     // copied to a new register.
   513     right.set_destroys_register();
   515     left.load_item();
   516     right.load_item();
   518     LIR_Opr reg = FrameMap::long0_opr;
   519     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
   520     LIR_Opr result = rlock_result(x);
   521     __ move(reg, result);
   522   } else {
   523     // missing test if instr is commutative and if we should swap
   524     LIRItem left(x->x(), this);
   525     LIRItem right(x->y(), this);
   527     left.load_item();
   528     // don't load constants to save register
   529     right.load_nonconstant();
   530     rlock_result(x);
   531     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
   532   }
   533 }
   537 // for: _iadd, _imul, _isub, _idiv, _irem
   538 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
   539   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
   540     // The requirements for division and modulo
   541     // input : rax,: dividend                         min_int
   542     //         reg: divisor   (may not be rax,/rdx)   -1
   543     //
   544     // output: rax,: quotient  (= rax, idiv reg)       min_int
   545     //         rdx: remainder (= rax, irem reg)       0
   547     // rax, and rdx will be destroyed
   549     // Note: does this invalidate the spec ???
   550     LIRItem right(x->y(), this);
   551     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
   553     // call state_for before load_item_force because state_for may
   554     // force the evaluation of other instructions that are needed for
   555     // correct debug info.  Otherwise the live range of the fix
   556     // register might be too long.
   557     CodeEmitInfo* info = state_for(x);
   559     left.load_item_force(divInOpr());
   561     right.load_item();
   563     LIR_Opr result = rlock_result(x);
   564     LIR_Opr result_reg;
   565     if (x->op() == Bytecodes::_idiv) {
   566       result_reg = divOutOpr();
   567     } else {
   568       result_reg = remOutOpr();
   569     }
   571     if (!ImplicitDiv0Checks) {
   572       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
   573       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
   574     }
   575     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
   576     if (x->op() == Bytecodes::_irem) {
   577       __ irem(left.result(), right.result(), result_reg, tmp, info);
   578     } else if (x->op() == Bytecodes::_idiv) {
   579       __ idiv(left.result(), right.result(), result_reg, tmp, info);
   580     } else {
   581       ShouldNotReachHere();
   582     }
   584     __ move(result_reg, result);
   585   } else {
   586     // missing test if instr is commutative and if we should swap
   587     LIRItem left(x->x(),  this);
   588     LIRItem right(x->y(), this);
   589     LIRItem* left_arg = &left;
   590     LIRItem* right_arg = &right;
   591     if (x->is_commutative() && left.is_stack() && right.is_register()) {
   592       // swap them if left is real stack (or cached) and right is real register(not cached)
   593       left_arg = &right;
   594       right_arg = &left;
   595     }
   597     left_arg->load_item();
   599     // do not need to load right, as we can handle stack and constants
   600     if (x->op() == Bytecodes::_imul ) {
   601       // check if we can use shift instead
   602       bool use_constant = false;
   603       bool use_tmp = false;
   604       if (right_arg->is_constant()) {
   605         int iconst = right_arg->get_jint_constant();
   606         if (iconst > 0) {
   607           if (is_power_of_2(iconst)) {
   608             use_constant = true;
   609           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
   610             use_constant = true;
   611             use_tmp = true;
   612           }
   613         }
   614       }
   615       if (use_constant) {
   616         right_arg->dont_load_item();
   617       } else {
   618         right_arg->load_item();
   619       }
   620       LIR_Opr tmp = LIR_OprFact::illegalOpr;
   621       if (use_tmp) {
   622         tmp = new_register(T_INT);
   623       }
   624       rlock_result(x);
   626       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
   627     } else {
   628       right_arg->dont_load_item();
   629       rlock_result(x);
   630       LIR_Opr tmp = LIR_OprFact::illegalOpr;
   631       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
   632     }
   633   }
   634 }
   637 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
   638   // when an operand with use count 1 is the left operand, then it is
   639   // likely that no move for 2-operand-LIR-form is necessary
   640   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
   641     x->swap_operands();
   642   }
   644   ValueTag tag = x->type()->tag();
   645   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
   646   switch (tag) {
   647     case floatTag:
   648     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
   649     case longTag:    do_ArithmeticOp_Long(x); return;
   650     case intTag:     do_ArithmeticOp_Int(x);  return;
   651   }
   652   ShouldNotReachHere();
   653 }
   656 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
   657 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
   658   // count must always be in rcx
   659   LIRItem value(x->x(), this);
   660   LIRItem count(x->y(), this);
   662   ValueTag elemType = x->type()->tag();
   663   bool must_load_count = !count.is_constant() || elemType == longTag;
   664   if (must_load_count) {
   665     // count for long must be in register
   666     count.load_item_force(shiftCountOpr());
   667   } else {
   668     count.dont_load_item();
   669   }
   670   value.load_item();
   671   LIR_Opr reg = rlock_result(x);
   673   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
   674 }
   677 // _iand, _land, _ior, _lor, _ixor, _lxor
   678 void LIRGenerator::do_LogicOp(LogicOp* x) {
   679   // when an operand with use count 1 is the left operand, then it is
   680   // likely that no move for 2-operand-LIR-form is necessary
   681   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
   682     x->swap_operands();
   683   }
   685   LIRItem left(x->x(), this);
   686   LIRItem right(x->y(), this);
   688   left.load_item();
   689   right.load_nonconstant();
   690   LIR_Opr reg = rlock_result(x);
   692   logic_op(x->op(), reg, left.result(), right.result());
   693 }
   697 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
   698 void LIRGenerator::do_CompareOp(CompareOp* x) {
   699   LIRItem left(x->x(), this);
   700   LIRItem right(x->y(), this);
   701   ValueTag tag = x->x()->type()->tag();
   702   if (tag == longTag) {
   703     left.set_destroys_register();
   704   }
   705   left.load_item();
   706   right.load_item();
   707   LIR_Opr reg = rlock_result(x);
   709   if (x->x()->type()->is_float_kind()) {
   710     Bytecodes::Code code = x->op();
   711     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
   712   } else if (x->x()->type()->tag() == longTag) {
   713     __ lcmp2int(left.result(), right.result(), reg);
   714   } else {
   715     Unimplemented();
   716   }
   717 }
   720 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
   721   assert(x->number_of_arguments() == 4, "wrong type");
   722   LIRItem obj   (x->argument_at(0), this);  // object
   723   LIRItem offset(x->argument_at(1), this);  // offset of field
   724   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
   725   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
   727   assert(obj.type()->tag() == objectTag, "invalid type");
   729   // In 64bit the type can be long, sparc doesn't have this assert
   730   // assert(offset.type()->tag() == intTag, "invalid type");
   732   assert(cmp.type()->tag() == type->tag(), "invalid type");
   733   assert(val.type()->tag() == type->tag(), "invalid type");
   735   // get address of field
   736   obj.load_item();
   737   offset.load_nonconstant();
   739   if (type == objectType) {
   740     cmp.load_item_force(FrameMap::rax_oop_opr);
   741     val.load_item();
   742   } else if (type == intType) {
   743     cmp.load_item_force(FrameMap::rax_opr);
   744     val.load_item();
   745   } else if (type == longType) {
   746     cmp.load_item_force(FrameMap::long0_opr);
   747     val.load_item_force(FrameMap::long1_opr);
   748   } else {
   749     ShouldNotReachHere();
   750   }
   752   LIR_Opr addr = new_pointer_register();
   753   LIR_Address* a;
   754   if(offset.result()->is_constant()) {
   755 #ifdef _LP64
   756     jlong c = offset.result()->as_jlong();
   757     if ((jlong)((jint)c) == c) {
   758       a = new LIR_Address(obj.result(),
   759                           (jint)c,
   760                           as_BasicType(type));
   761     } else {
   762       LIR_Opr tmp = new_register(T_LONG);
   763       __ move(offset.result(), tmp);
   764       a = new LIR_Address(obj.result(),
   765                           tmp,
   766                           as_BasicType(type));
   767     }
   768 #else
   769     a = new LIR_Address(obj.result(),
   770                         offset.result()->as_jint(),
   771                         as_BasicType(type));
   772 #endif
   773   } else {
   774     a = new LIR_Address(obj.result(),
   775                         offset.result(),
   776                         LIR_Address::times_1,
   777                         0,
   778                         as_BasicType(type));
   779   }
   780   __ leal(LIR_OprFact::address(a), addr);
   782   if (type == objectType) {  // Write-barrier needed for Object fields.
   783     // Do the pre-write barrier, if any.
   784     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
   785                 true /* do_load */, false /* patch */, NULL);
   786   }
   788   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
   789   if (type == objectType)
   790     __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
   791   else if (type == intType)
   792     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
   793   else if (type == longType)
   794     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
   795   else {
   796     ShouldNotReachHere();
   797   }
   799   // generate conditional move of boolean result
   800   LIR_Opr result = rlock_result(x);
   801   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
   802            result, as_BasicType(type));
   803   if (type == objectType) {   // Write-barrier needed for Object fields.
   804     // Seems to be precise
   805     post_barrier(addr, val.result());
   806   }
   807 }
   810 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
   811   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
   812   LIRItem value(x->argument_at(0), this);
   814   bool use_fpu = false;
   815   if (UseSSE >= 2) {
   816     switch(x->id()) {
   817       case vmIntrinsics::_dsin:
   818       case vmIntrinsics::_dcos:
   819       case vmIntrinsics::_dtan:
   820       case vmIntrinsics::_dlog:
   821       case vmIntrinsics::_dlog10:
   822       case vmIntrinsics::_dexp:
   823       case vmIntrinsics::_dpow:
   824         use_fpu = true;
   825     }
   826   } else {
   827     value.set_destroys_register();
   828   }
   830   value.load_item();
   832   LIR_Opr calc_input = value.result();
   833   LIR_Opr calc_input2 = NULL;
   834   if (x->id() == vmIntrinsics::_dpow) {
   835     LIRItem extra_arg(x->argument_at(1), this);
   836     if (UseSSE < 2) {
   837       extra_arg.set_destroys_register();
   838     }
   839     extra_arg.load_item();
   840     calc_input2 = extra_arg.result();
   841   }
   842   LIR_Opr calc_result = rlock_result(x);
   844   // sin, cos, pow and exp need two free fpu stack slots, so register
   845   // two temporary operands
   846   LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
   847   LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
   849   if (use_fpu) {
   850     LIR_Opr tmp = FrameMap::fpu0_double_opr;
   851     int tmp_start = 1;
   852     if (calc_input2 != NULL) {
   853       __ move(calc_input2, tmp);
   854       tmp_start = 2;
   855       calc_input2 = tmp;
   856     }
   857     __ move(calc_input, tmp);
   859     calc_input = tmp;
   860     calc_result = tmp;
   862     tmp1 = FrameMap::caller_save_fpu_reg_at(tmp_start);
   863     tmp2 = FrameMap::caller_save_fpu_reg_at(tmp_start + 1);
   864   }
   866   switch(x->id()) {
   867     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   868     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   869     case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
   870     case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
   871     case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
   872     case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, tmp1);                    break;
   873     case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1);                    break;
   874     case vmIntrinsics::_dexp:   __ exp  (calc_input, calc_result,              tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
   875     case vmIntrinsics::_dpow:   __ pow  (calc_input, calc_input2, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
   876     default:                    ShouldNotReachHere();
   877   }
   879   if (use_fpu) {
   880     __ move(calc_result, x->operand());
   881   }
   882 }
   885 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
   886   assert(x->number_of_arguments() == 5, "wrong type");
   888   // Make all state_for calls early since they can emit code
   889   CodeEmitInfo* info = state_for(x, x->state());
   891   LIRItem src(x->argument_at(0), this);
   892   LIRItem src_pos(x->argument_at(1), this);
   893   LIRItem dst(x->argument_at(2), this);
   894   LIRItem dst_pos(x->argument_at(3), this);
   895   LIRItem length(x->argument_at(4), this);
   897   // operands for arraycopy must use fixed registers, otherwise
   898   // LinearScan will fail allocation (because arraycopy always needs a
   899   // call)
   901 #ifndef _LP64
   902   src.load_item_force     (FrameMap::rcx_oop_opr);
   903   src_pos.load_item_force (FrameMap::rdx_opr);
   904   dst.load_item_force     (FrameMap::rax_oop_opr);
   905   dst_pos.load_item_force (FrameMap::rbx_opr);
   906   length.load_item_force  (FrameMap::rdi_opr);
   907   LIR_Opr tmp =           (FrameMap::rsi_opr);
   908 #else
   910   // The java calling convention will give us enough registers
   911   // so that on the stub side the args will be perfect already.
   912   // On the other slow/special case side we call C and the arg
   913   // positions are not similar enough to pick one as the best.
   914   // Also because the java calling convention is a "shifted" version
   915   // of the C convention we can process the java args trivially into C
   916   // args without worry of overwriting during the xfer
   918   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
   919   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
   920   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
   921   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
   922   length.load_item_force  (FrameMap::as_opr(j_rarg4));
   924   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
   925 #endif // LP64
   927   set_no_result(x);
   929   int flags;
   930   ciArrayKlass* expected_type;
   931   arraycopy_helper(x, &flags, &expected_type);
   933   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
   934 }
   936 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
   937   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
   938   // Make all state_for calls early since they can emit code
   939   LIR_Opr result = rlock_result(x);
   940   int flags = 0;
   941   switch (x->id()) {
   942     case vmIntrinsics::_updateCRC32: {
   943       LIRItem crc(x->argument_at(0), this);
   944       LIRItem val(x->argument_at(1), this);
   945       // val is destroyed by update_crc32
   946       val.set_destroys_register();
   947       crc.load_item();
   948       val.load_item();
   949       __ update_crc32(crc.result(), val.result(), result);
   950       break;
   951     }
   952     case vmIntrinsics::_updateBytesCRC32:
   953     case vmIntrinsics::_updateByteBufferCRC32: {
   954       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
   956       LIRItem crc(x->argument_at(0), this);
   957       LIRItem buf(x->argument_at(1), this);
   958       LIRItem off(x->argument_at(2), this);
   959       LIRItem len(x->argument_at(3), this);
   960       buf.load_item();
   961       off.load_nonconstant();
   963       LIR_Opr index = off.result();
   964       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
   965       if(off.result()->is_constant()) {
   966         index = LIR_OprFact::illegalOpr;
   967        offset += off.result()->as_jint();
   968       }
   969       LIR_Opr base_op = buf.result();
   971 #ifndef _LP64
   972       if (!is_updateBytes) { // long b raw address
   973          base_op = new_register(T_INT);
   974          __ convert(Bytecodes::_l2i, buf.result(), base_op);
   975       }
   976 #else
   977       if (index->is_valid()) {
   978         LIR_Opr tmp = new_register(T_LONG);
   979         __ convert(Bytecodes::_i2l, index, tmp);
   980         index = tmp;
   981       }
   982 #endif
   984       LIR_Address* a = new LIR_Address(base_op,
   985                                        index,
   986                                        LIR_Address::times_1,
   987                                        offset,
   988                                        T_BYTE);
   989       BasicTypeList signature(3);
   990       signature.append(T_INT);
   991       signature.append(T_ADDRESS);
   992       signature.append(T_INT);
   993       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
   994       const LIR_Opr result_reg = result_register_for(x->type());
   996       LIR_Opr addr = new_pointer_register();
   997       __ leal(LIR_OprFact::address(a), addr);
   999       crc.load_item_force(cc->at(0));
  1000       __ move(addr, cc->at(1));
  1001       len.load_item_force(cc->at(2));
  1003       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
  1004       __ move(result_reg, result);
  1006       break;
  1008     default: {
  1009       ShouldNotReachHere();
  1014 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
  1015 // _i2b, _i2c, _i2s
  1016 LIR_Opr fixed_register_for(BasicType type) {
  1017   switch (type) {
  1018     case T_FLOAT:  return FrameMap::fpu0_float_opr;
  1019     case T_DOUBLE: return FrameMap::fpu0_double_opr;
  1020     case T_INT:    return FrameMap::rax_opr;
  1021     case T_LONG:   return FrameMap::long0_opr;
  1022     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  1026 void LIRGenerator::do_Convert(Convert* x) {
  1027   // flags that vary for the different operations and different SSE-settings
  1028   bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false;
  1030   switch (x->op()) {
  1031     case Bytecodes::_i2l: // fall through
  1032     case Bytecodes::_l2i: // fall through
  1033     case Bytecodes::_i2b: // fall through
  1034     case Bytecodes::_i2c: // fall through
  1035     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
  1037     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
  1038     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
  1039     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
  1040     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
  1041     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
  1042     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
  1043     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
  1044     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
  1045     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
  1046     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
  1047     default: ShouldNotReachHere();
  1050   LIRItem value(x->value(), this);
  1051   value.load_item();
  1052   LIR_Opr input = value.result();
  1053   LIR_Opr result = rlock(x);
  1055   // arguments of lir_convert
  1056   LIR_Opr conv_input = input;
  1057   LIR_Opr conv_result = result;
  1058   ConversionStub* stub = NULL;
  1060   if (fixed_input) {
  1061     conv_input = fixed_register_for(input->type());
  1062     __ move(input, conv_input);
  1065   assert(fixed_result == false || round_result == false, "cannot set both");
  1066   if (fixed_result) {
  1067     conv_result = fixed_register_for(result->type());
  1068   } else if (round_result) {
  1069     result = new_register(result->type());
  1070     set_vreg_flag(result, must_start_in_memory);
  1073   if (needs_stub) {
  1074     stub = new ConversionStub(x->op(), conv_input, conv_result);
  1077   __ convert(x->op(), conv_input, conv_result, stub);
  1079   if (result != conv_result) {
  1080     __ move(conv_result, result);
  1083   assert(result->is_virtual(), "result must be virtual register");
  1084   set_result(x, result);
  1088 void LIRGenerator::do_NewInstance(NewInstance* x) {
  1089   print_if_not_loaded(x);
  1091   CodeEmitInfo* info = state_for(x, x->state());
  1092   LIR_Opr reg = result_register_for(x->type());
  1093   new_instance(reg, x->klass(), x->is_unresolved(),
  1094                        FrameMap::rcx_oop_opr,
  1095                        FrameMap::rdi_oop_opr,
  1096                        FrameMap::rsi_oop_opr,
  1097                        LIR_OprFact::illegalOpr,
  1098                        FrameMap::rdx_metadata_opr, info);
  1099   LIR_Opr result = rlock_result(x);
  1100   __ move(reg, result);
  1104 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
  1105   CodeEmitInfo* info = state_for(x, x->state());
  1107   LIRItem length(x->length(), this);
  1108   length.load_item_force(FrameMap::rbx_opr);
  1110   LIR_Opr reg = result_register_for(x->type());
  1111   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
  1112   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
  1113   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
  1114   LIR_Opr tmp4 = reg;
  1115   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
  1116   LIR_Opr len = length.result();
  1117   BasicType elem_type = x->elt_type();
  1119   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
  1121   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
  1122   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
  1124   LIR_Opr result = rlock_result(x);
  1125   __ move(reg, result);
  1129 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
  1130   LIRItem length(x->length(), this);
  1131   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
  1132   // and therefore provide the state before the parameters have been consumed
  1133   CodeEmitInfo* patching_info = NULL;
  1134   if (!x->klass()->is_loaded() || PatchALot) {
  1135     patching_info =  state_for(x, x->state_before());
  1138   CodeEmitInfo* info = state_for(x, x->state());
  1140   const LIR_Opr reg = result_register_for(x->type());
  1141   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
  1142   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
  1143   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
  1144   LIR_Opr tmp4 = reg;
  1145   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
  1147   length.load_item_force(FrameMap::rbx_opr);
  1148   LIR_Opr len = length.result();
  1150   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
  1151   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
  1152   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
  1153     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
  1155   klass2reg_with_patching(klass_reg, obj, patching_info);
  1156   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
  1158   LIR_Opr result = rlock_result(x);
  1159   __ move(reg, result);
  1163 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
  1164   Values* dims = x->dims();
  1165   int i = dims->length();
  1166   LIRItemList* items = new LIRItemList(dims->length(), NULL);
  1167   while (i-- > 0) {
  1168     LIRItem* size = new LIRItem(dims->at(i), this);
  1169     items->at_put(i, size);
  1172   // Evaluate state_for early since it may emit code.
  1173   CodeEmitInfo* patching_info = NULL;
  1174   if (!x->klass()->is_loaded() || PatchALot) {
  1175     patching_info = state_for(x, x->state_before());
  1177     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
  1178     // clone all handlers (NOTE: Usually this is handled transparently
  1179     // by the CodeEmitInfo cloning logic in CodeStub constructors but
  1180     // is done explicitly here because a stub isn't being used).
  1181     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
  1183   CodeEmitInfo* info = state_for(x, x->state());
  1185   i = dims->length();
  1186   while (i-- > 0) {
  1187     LIRItem* size = items->at(i);
  1188     size->load_nonconstant();
  1190     store_stack_parameter(size->result(), in_ByteSize(i*4));
  1193   LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
  1194   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
  1196   LIR_Opr rank = FrameMap::rbx_opr;
  1197   __ move(LIR_OprFact::intConst(x->rank()), rank);
  1198   LIR_Opr varargs = FrameMap::rcx_opr;
  1199   __ move(FrameMap::rsp_opr, varargs);
  1200   LIR_OprList* args = new LIR_OprList(3);
  1201   args->append(klass_reg);
  1202   args->append(rank);
  1203   args->append(varargs);
  1204   LIR_Opr reg = result_register_for(x->type());
  1205   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
  1206                   LIR_OprFact::illegalOpr,
  1207                   reg, args, info);
  1209   LIR_Opr result = rlock_result(x);
  1210   __ move(reg, result);
  1214 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
  1215   // nothing to do for now
  1219 void LIRGenerator::do_CheckCast(CheckCast* x) {
  1220   LIRItem obj(x->obj(), this);
  1222   CodeEmitInfo* patching_info = NULL;
  1223   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
  1224     // must do this before locking the destination register as an oop register,
  1225     // and before the obj is loaded (the latter is for deoptimization)
  1226     patching_info = state_for(x, x->state_before());
  1228   obj.load_item();
  1230   // info for exceptions
  1231   CodeEmitInfo* info_for_exception =
  1232       (x->needs_exception_state() ? state_for(x) :
  1233                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
  1235   CodeStub* stub;
  1236   if (x->is_incompatible_class_change_check()) {
  1237     assert(patching_info == NULL, "can't patch this");
  1238     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
  1239   } else if (x->is_invokespecial_receiver_check()) {
  1240     assert(patching_info == NULL, "can't patch this");
  1241     stub = new DeoptimizeStub(info_for_exception);
  1242   } else {
  1243     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
  1245   LIR_Opr reg = rlock_result(x);
  1246   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
  1247   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
  1248     tmp3 = new_register(objectType);
  1250   __ checkcast(reg, obj.result(), x->klass(),
  1251                new_register(objectType), new_register(objectType), tmp3,
  1252                x->direct_compare(), info_for_exception, patching_info, stub,
  1253                x->profiled_method(), x->profiled_bci());
  1257 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
  1258   LIRItem obj(x->obj(), this);
  1260   // result and test object may not be in same register
  1261   LIR_Opr reg = rlock_result(x);
  1262   CodeEmitInfo* patching_info = NULL;
  1263   if ((!x->klass()->is_loaded() || PatchALot)) {
  1264     // must do this before locking the destination register as an oop register
  1265     patching_info = state_for(x, x->state_before());
  1267   obj.load_item();
  1268   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
  1269   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
  1270     tmp3 = new_register(objectType);
  1272   __ instanceof(reg, obj.result(), x->klass(),
  1273                 new_register(objectType), new_register(objectType), tmp3,
  1274                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
  1278 void LIRGenerator::do_If(If* x) {
  1279   assert(x->number_of_sux() == 2, "inconsistency");
  1280   ValueTag tag = x->x()->type()->tag();
  1281   bool is_safepoint = x->is_safepoint();
  1283   If::Condition cond = x->cond();
  1285   LIRItem xitem(x->x(), this);
  1286   LIRItem yitem(x->y(), this);
  1287   LIRItem* xin = &xitem;
  1288   LIRItem* yin = &yitem;
  1290   if (tag == longTag) {
  1291     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
  1292     // mirror for other conditions
  1293     if (cond == If::gtr || cond == If::leq) {
  1294       cond = Instruction::mirror(cond);
  1295       xin = &yitem;
  1296       yin = &xitem;
  1298     xin->set_destroys_register();
  1300   xin->load_item();
  1301   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
  1302     // inline long zero
  1303     yin->dont_load_item();
  1304   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
  1305     // longs cannot handle constants at right side
  1306     yin->load_item();
  1307   } else {
  1308     yin->dont_load_item();
  1311   // add safepoint before generating condition code so it can be recomputed
  1312   if (x->is_safepoint()) {
  1313     // increment backedge counter if needed
  1314     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
  1315     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
  1317   set_no_result(x);
  1319   LIR_Opr left = xin->result();
  1320   LIR_Opr right = yin->result();
  1321   __ cmp(lir_cond(cond), left, right);
  1322   // Generate branch profiling. Profiling code doesn't kill flags.
  1323   profile_branch(x, cond);
  1324   move_to_phi(x->state());
  1325   if (x->x()->type()->is_float_kind()) {
  1326     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
  1327   } else {
  1328     __ branch(lir_cond(cond), right->type(), x->tsux());
  1330   assert(x->default_sux() == x->fsux(), "wrong destination above");
  1331   __ jump(x->default_sux());
  1335 LIR_Opr LIRGenerator::getThreadPointer() {
  1336 #ifdef _LP64
  1337   return FrameMap::as_pointer_opr(r15_thread);
  1338 #else
  1339   LIR_Opr result = new_register(T_INT);
  1340   __ get_thread(result);
  1341   return result;
  1342 #endif //
  1345 void LIRGenerator::trace_block_entry(BlockBegin* block) {
  1346   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
  1347   LIR_OprList* args = new LIR_OprList();
  1348   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
  1349   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
  1353 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
  1354                                         CodeEmitInfo* info) {
  1355   if (address->type() == T_LONG) {
  1356     address = new LIR_Address(address->base(),
  1357                               address->index(), address->scale(),
  1358                               address->disp(), T_DOUBLE);
  1359     // Transfer the value atomically by using FP moves.  This means
  1360     // the value has to be moved between CPU and FPU registers.  It
  1361     // always has to be moved through spill slot since there's no
  1362     // quick way to pack the value into an SSE register.
  1363     LIR_Opr temp_double = new_register(T_DOUBLE);
  1364     LIR_Opr spill = new_register(T_LONG);
  1365     set_vreg_flag(spill, must_start_in_memory);
  1366     __ move(value, spill);
  1367     __ volatile_move(spill, temp_double, T_LONG);
  1368     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
  1369   } else {
  1370     __ store(value, address, info);
  1376 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
  1377                                        CodeEmitInfo* info) {
  1378   if (address->type() == T_LONG) {
  1379     address = new LIR_Address(address->base(),
  1380                               address->index(), address->scale(),
  1381                               address->disp(), T_DOUBLE);
  1382     // Transfer the value atomically by using FP moves.  This means
  1383     // the value has to be moved between CPU and FPU registers.  In
  1384     // SSE0 and SSE1 mode it has to be moved through spill slot but in
  1385     // SSE2+ mode it can be moved directly.
  1386     LIR_Opr temp_double = new_register(T_DOUBLE);
  1387     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
  1388     __ volatile_move(temp_double, result, T_LONG);
  1389     if (UseSSE < 2) {
  1390       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
  1391       set_vreg_flag(result, must_start_in_memory);
  1393   } else {
  1394     __ load(address, result, info);
  1398 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
  1399                                      BasicType type, bool is_volatile) {
  1400   if (is_volatile && type == T_LONG) {
  1401     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
  1402     LIR_Opr tmp = new_register(T_DOUBLE);
  1403     __ load(addr, tmp);
  1404     LIR_Opr spill = new_register(T_LONG);
  1405     set_vreg_flag(spill, must_start_in_memory);
  1406     __ move(tmp, spill);
  1407     __ move(spill, dst);
  1408   } else {
  1409     LIR_Address* addr = new LIR_Address(src, offset, type);
  1410     __ load(addr, dst);
  1415 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
  1416                                      BasicType type, bool is_volatile) {
  1417   if (is_volatile && type == T_LONG) {
  1418     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
  1419     LIR_Opr tmp = new_register(T_DOUBLE);
  1420     LIR_Opr spill = new_register(T_DOUBLE);
  1421     set_vreg_flag(spill, must_start_in_memory);
  1422     __ move(data, spill);
  1423     __ move(spill, tmp);
  1424     __ move(tmp, addr);
  1425   } else {
  1426     LIR_Address* addr = new LIR_Address(src, offset, type);
  1427     bool is_obj = (type == T_ARRAY || type == T_OBJECT);
  1428     if (is_obj) {
  1429       // Do the pre-write barrier, if any.
  1430       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
  1431                   true /* do_load */, false /* patch */, NULL);
  1432       __ move(data, addr);
  1433       assert(src->is_register(), "must be register");
  1434       // Seems to be a precise address
  1435       post_barrier(LIR_OprFact::address(addr), data);
  1436     } else {
  1437       __ move(data, addr);
  1442 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
  1443   BasicType type = x->basic_type();
  1444   LIRItem src(x->object(), this);
  1445   LIRItem off(x->offset(), this);
  1446   LIRItem value(x->value(), this);
  1448   src.load_item();
  1449   value.load_item();
  1450   off.load_nonconstant();
  1452   LIR_Opr dst = rlock_result(x, type);
  1453   LIR_Opr data = value.result();
  1454   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
  1455   LIR_Opr offset = off.result();
  1457   assert (type == T_INT || (!x->is_add() && is_obj) LP64_ONLY( || type == T_LONG ), "unexpected type");
  1458   LIR_Address* addr;
  1459   if (offset->is_constant()) {
  1460 #ifdef _LP64
  1461     jlong c = offset->as_jlong();
  1462     if ((jlong)((jint)c) == c) {
  1463       addr = new LIR_Address(src.result(), (jint)c, type);
  1464     } else {
  1465       LIR_Opr tmp = new_register(T_LONG);
  1466       __ move(offset, tmp);
  1467       addr = new LIR_Address(src.result(), tmp, type);
  1469 #else
  1470     addr = new LIR_Address(src.result(), offset->as_jint(), type);
  1471 #endif
  1472   } else {
  1473     addr = new LIR_Address(src.result(), offset, type);
  1476   // Because we want a 2-arg form of xchg and xadd
  1477   __ move(data, dst);
  1479   if (x->is_add()) {
  1480     __ xadd(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr);
  1481   } else {
  1482     if (is_obj) {
  1483       // Do the pre-write barrier, if any.
  1484       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
  1485                   true /* do_load */, false /* patch */, NULL);
  1487     __ xchg(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr);
  1488     if (is_obj) {
  1489       // Seems to be a precise address
  1490       post_barrier(LIR_OprFact::address(addr), data);

mercurial