src/cpu/sparc/vm/sparc.ad

Fri, 26 Aug 2011 08:52:22 -0700

author
kvn
date
Fri, 26 Aug 2011 08:52:22 -0700
changeset 3092
baf763f388e6
parent 3054
bd87c0dcaba5
child 3098
a64d352d1118
permissions
-rw-r--r--

7059037: Use BIS for zeroing on T4
Summary: Use BIS for zeroing new allocated big (2Kb and more) objects and arrays.
Reviewed-by: never, twisti, ysr

     1 //
     2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedOops) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       if (Universe::narrow_oop_base() == NULL)
   563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   564       else
   565         klass_load_size = 3*BytesPerInstWord;
   566     } else {
   567       klass_load_size = 1*BytesPerInstWord;
   568     }
   569     if( Assembler::is_simm13(v_off) ) {
   570       return klass_load_size +
   571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   572              NativeCall::instruction_size);  // call; delay slot
   573     } else {
   574       return klass_load_size +
   575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   576              NativeCall::instruction_size);  // call; delay slot
   577     }
   578   }
   579 }
   581 int MachCallRuntimeNode::ret_addr_offset() {
   582 #ifdef _LP64
   583   if (MacroAssembler::is_far_target(entry_point())) {
   584     return NativeFarCall::instruction_size;
   585   } else {
   586     return NativeCall::instruction_size;
   587   }
   588 #else
   589   return NativeCall::instruction_size;  // call; delay slot
   590 #endif
   591 }
   593 // Indicate if the safepoint node needs the polling page as an input.
   594 // Since Sparc does not have absolute addressing, it does.
   595 bool SafePointNode::needs_polling_address_input() {
   596   return true;
   597 }
   599 // emit an interrupt that is caught by the debugger (for debugging compiler)
   600 void emit_break(CodeBuffer &cbuf) {
   601   MacroAssembler _masm(&cbuf);
   602   __ breakpoint_trap();
   603 }
   605 #ifndef PRODUCT
   606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   607   st->print("TA");
   608 }
   609 #endif
   611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   612   emit_break(cbuf);
   613 }
   615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   616   return MachNode::size(ra_);
   617 }
   619 // Traceable jump
   620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   621   MacroAssembler _masm(&cbuf);
   622   Register rdest = reg_to_register_object(jump_target);
   623   __ JMP(rdest, 0);
   624   __ delayed()->nop();
   625 }
   627 // Traceable jump and set exception pc
   628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   629   MacroAssembler _masm(&cbuf);
   630   Register rdest = reg_to_register_object(jump_target);
   631   __ JMP(rdest, 0);
   632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   633 }
   635 void emit_nop(CodeBuffer &cbuf) {
   636   MacroAssembler _masm(&cbuf);
   637   __ nop();
   638 }
   640 void emit_illtrap(CodeBuffer &cbuf) {
   641   MacroAssembler _masm(&cbuf);
   642   __ illtrap(0);
   643 }
   646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   647   assert(n->rule() != loadUB_rule, "");
   649   intptr_t offset = 0;
   650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   651   const Node* addr = n->get_base_and_disp(offset, adr_type);
   652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   655   atype = atype->add_offset(offset);
   656   assert(disp32 == offset, "wrong disp32");
   657   return atype->_offset;
   658 }
   661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   662   assert(n->rule() != loadUB_rule, "");
   664   intptr_t offset = 0;
   665   Node* addr = n->in(2);
   666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   668     Node* a = addr->in(2/*AddPNode::Address*/);
   669     Node* o = addr->in(3/*AddPNode::Offset*/);
   670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   672     assert(atype->isa_oop_ptr(), "still an oop");
   673   }
   674   offset = atype->is_ptr()->_offset;
   675   if (offset != Type::OffsetBot)  offset += disp32;
   676   return offset;
   677 }
   679 static inline jdouble replicate_immI(int con, int count, int width) {
   680   // Load a constant replicated "count" times with width "width"
   681   int bit_width = width * 8;
   682   jlong elt_val = con;
   683   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   684   jlong val = elt_val;
   685   for (int i = 0; i < count - 1; i++) {
   686     val <<= bit_width;
   687     val |= elt_val;
   688   }
   689   jdouble dval = *((jdouble*) &val);  // coerce to double type
   690   return dval;
   691 }
   693 // Standard Sparc opcode form2 field breakdown
   694 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   695   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   696   int op = (f30 << 30) |
   697            (f29 << 29) |
   698            (f25 << 25) |
   699            (f22 << 22) |
   700            (f20 << 20) |
   701            (f19 << 19) |
   702            (f0  <<  0);
   703   cbuf.insts()->emit_int32(op);
   704 }
   706 // Standard Sparc opcode form2 field breakdown
   707 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   708   f0 >>= 10;           // Drop 10 bits
   709   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   710   int op = (f30 << 30) |
   711            (f25 << 25) |
   712            (f22 << 22) |
   713            (f0  <<  0);
   714   cbuf.insts()->emit_int32(op);
   715 }
   717 // Standard Sparc opcode form3 field breakdown
   718 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   719   int op = (f30 << 30) |
   720            (f25 << 25) |
   721            (f19 << 19) |
   722            (f14 << 14) |
   723            (f5  <<  5) |
   724            (f0  <<  0);
   725   cbuf.insts()->emit_int32(op);
   726 }
   728 // Standard Sparc opcode form3 field breakdown
   729 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   730   simm13 &= (1<<13)-1; // Mask to 13 bits
   731   int op = (f30 << 30) |
   732            (f25 << 25) |
   733            (f19 << 19) |
   734            (f14 << 14) |
   735            (1   << 13) | // bit to indicate immediate-mode
   736            (simm13<<0);
   737   cbuf.insts()->emit_int32(op);
   738 }
   740 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   741   simm10 &= (1<<10)-1; // Mask to 10 bits
   742   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   743 }
   745 #ifdef ASSERT
   746 // Helper function for VerifyOops in emit_form3_mem_reg
   747 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   748   warning("VerifyOops encountered unexpected instruction:");
   749   n->dump(2);
   750   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   751 }
   752 #endif
   755 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   756                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   758 #ifdef ASSERT
   759   // The following code implements the +VerifyOops feature.
   760   // It verifies oop values which are loaded into or stored out of
   761   // the current method activation.  +VerifyOops complements techniques
   762   // like ScavengeALot, because it eagerly inspects oops in transit,
   763   // as they enter or leave the stack, as opposed to ScavengeALot,
   764   // which inspects oops "at rest", in the stack or heap, at safepoints.
   765   // For this reason, +VerifyOops can sometimes detect bugs very close
   766   // to their point of creation.  It can also serve as a cross-check
   767   // on the validity of oop maps, when used toegether with ScavengeALot.
   769   // It would be good to verify oops at other points, especially
   770   // when an oop is used as a base pointer for a load or store.
   771   // This is presently difficult, because it is hard to know when
   772   // a base address is biased or not.  (If we had such information,
   773   // it would be easy and useful to make a two-argument version of
   774   // verify_oop which unbiases the base, and performs verification.)
   776   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   777   bool is_verified_oop_base  = false;
   778   bool is_verified_oop_load  = false;
   779   bool is_verified_oop_store = false;
   780   int tmp_enc = -1;
   781   if (VerifyOops && src1_enc != R_SP_enc) {
   782     // classify the op, mainly for an assert check
   783     int st_op = 0, ld_op = 0;
   784     switch (primary) {
   785     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   786     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   787     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   788     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   789     case Assembler::std_op3:  st_op = Op_StoreL; break;
   790     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   791     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   793     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   794     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   795     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   796     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   797     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   798     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   799     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   800     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   801     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   802     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   803     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   805     default: ShouldNotReachHere();
   806     }
   807     if (tertiary == REGP_OP) {
   808       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   809       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   810       else                          ShouldNotReachHere();
   811       if (st_op) {
   812         // a store
   813         // inputs are (0:control, 1:memory, 2:address, 3:value)
   814         Node* n2 = n->in(3);
   815         if (n2 != NULL) {
   816           const Type* t = n2->bottom_type();
   817           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   818         }
   819       } else {
   820         // a load
   821         const Type* t = n->bottom_type();
   822         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   823       }
   824     }
   826     if (ld_op) {
   827       // a Load
   828       // inputs are (0:control, 1:memory, 2:address)
   829       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   830           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   831           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   832           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   833           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   834           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   835           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   836           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   837           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   839           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   840           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   841           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   843           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
   844           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
   845           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
   846           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
   847           !(n->rule() == loadUB_rule)) {
   848         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   849       }
   850     } else if (st_op) {
   851       // a Store
   852       // inputs are (0:control, 1:memory, 2:address, 3:value)
   853       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   854           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   855           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   856           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   857           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   858           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
   859           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
   860           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
   861           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   862         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   863       }
   864     }
   866     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   867       Node* addr = n->in(2);
   868       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   869         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   870         if (atype != NULL) {
   871           intptr_t offset = get_offset_from_base(n, atype, disp32);
   872           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   873           if (offset != offset_2) {
   874             get_offset_from_base(n, atype, disp32);
   875             get_offset_from_base_2(n, atype, disp32);
   876           }
   877           assert(offset == offset_2, "different offsets");
   878           if (offset == disp32) {
   879             // we now know that src1 is a true oop pointer
   880             is_verified_oop_base = true;
   881             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   882               if( primary == Assembler::ldd_op3 ) {
   883                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   884               } else {
   885                 tmp_enc = dst_enc;
   886                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   887                 assert(src1_enc != dst_enc, "");
   888               }
   889             }
   890           }
   891           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   892                        || offset == oopDesc::mark_offset_in_bytes())) {
   893                       // loading the mark should not be allowed either, but
   894                       // we don't check this since it conflicts with InlineObjectHash
   895                       // usage of LoadINode to get the mark. We could keep the
   896                       // check if we create a new LoadMarkNode
   897             // but do not verify the object before its header is initialized
   898             ShouldNotReachHere();
   899           }
   900         }
   901       }
   902     }
   903   }
   904 #endif
   906   uint instr;
   907   instr = (Assembler::ldst_op << 30)
   908         | (dst_enc        << 25)
   909         | (primary        << 19)
   910         | (src1_enc       << 14);
   912   uint index = src2_enc;
   913   int disp = disp32;
   915   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   916     disp += STACK_BIAS;
   918   // We should have a compiler bailout here rather than a guarantee.
   919   // Better yet would be some mechanism to handle variable-size matches correctly.
   920   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   922   if( disp == 0 ) {
   923     // use reg-reg form
   924     // bit 13 is already zero
   925     instr |= index;
   926   } else {
   927     // use reg-imm form
   928     instr |= 0x00002000;          // set bit 13 to one
   929     instr |= disp & 0x1FFF;
   930   }
   932   cbuf.insts()->emit_int32(instr);
   934 #ifdef ASSERT
   935   {
   936     MacroAssembler _masm(&cbuf);
   937     if (is_verified_oop_base) {
   938       __ verify_oop(reg_to_register_object(src1_enc));
   939     }
   940     if (is_verified_oop_store) {
   941       __ verify_oop(reg_to_register_object(dst_enc));
   942     }
   943     if (tmp_enc != -1) {
   944       __ mov(O7, reg_to_register_object(tmp_enc));
   945     }
   946     if (is_verified_oop_load) {
   947       __ verify_oop(reg_to_register_object(dst_enc));
   948     }
   949   }
   950 #endif
   951 }
   953 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   954   // The method which records debug information at every safepoint
   955   // expects the call to be the first instruction in the snippet as
   956   // it creates a PcDesc structure which tracks the offset of a call
   957   // from the start of the codeBlob. This offset is computed as
   958   // code_end() - code_begin() of the code which has been emitted
   959   // so far.
   960   // In this particular case we have skirted around the problem by
   961   // putting the "mov" instruction in the delay slot but the problem
   962   // may bite us again at some other point and a cleaner/generic
   963   // solution using relocations would be needed.
   964   MacroAssembler _masm(&cbuf);
   965   __ set_inst_mark();
   967   // We flush the current window just so that there is a valid stack copy
   968   // the fact that the current window becomes active again instantly is
   969   // not a problem there is nothing live in it.
   971 #ifdef ASSERT
   972   int startpos = __ offset();
   973 #endif /* ASSERT */
   975   __ call((address)entry_point, rtype);
   977   if (preserve_g2)   __ delayed()->mov(G2, L7);
   978   else __ delayed()->nop();
   980   if (preserve_g2)   __ mov(L7, G2);
   982 #ifdef ASSERT
   983   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   984 #ifdef _LP64
   985     // Trash argument dump slots.
   986     __ set(0xb0b8ac0db0b8ac0d, G1);
   987     __ mov(G1, G5);
   988     __ stx(G1, SP, STACK_BIAS + 0x80);
   989     __ stx(G1, SP, STACK_BIAS + 0x88);
   990     __ stx(G1, SP, STACK_BIAS + 0x90);
   991     __ stx(G1, SP, STACK_BIAS + 0x98);
   992     __ stx(G1, SP, STACK_BIAS + 0xA0);
   993     __ stx(G1, SP, STACK_BIAS + 0xA8);
   994 #else // _LP64
   995     // this is also a native call, so smash the first 7 stack locations,
   996     // and the various registers
   998     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
   999     // while [SP+0x44..0x58] are the argument dump slots.
  1000     __ set((intptr_t)0xbaadf00d, G1);
  1001     __ mov(G1, G5);
  1002     __ sllx(G1, 32, G1);
  1003     __ or3(G1, G5, G1);
  1004     __ mov(G1, G5);
  1005     __ stx(G1, SP, 0x40);
  1006     __ stx(G1, SP, 0x48);
  1007     __ stx(G1, SP, 0x50);
  1008     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1009 #endif // _LP64
  1011 #endif /*ASSERT*/
  1014 //=============================================================================
  1015 // REQUIRED FUNCTIONALITY for encoding
  1016 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1017 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1020 //=============================================================================
  1021 const bool Matcher::constant_table_absolute_addressing = false;
  1022 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask;
  1024 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1025   Compile* C = ra_->C;
  1026   Compile::ConstantTable& constant_table = C->constant_table();
  1027   MacroAssembler _masm(&cbuf);
  1029   Register r = as_Register(ra_->get_encode(this));
  1030   CodeSection* cs = __ code()->consts();
  1031   int consts_size = cs->align_at_start(cs->size());
  1033   if (UseRDPCForConstantTableBase) {
  1034     // For the following RDPC logic to work correctly the consts
  1035     // section must be allocated right before the insts section.  This
  1036     // assert checks for that.  The layout and the SECT_* constants
  1037     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1038     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1039     int offset = __ offset();
  1040     int disp;
  1042     // If the displacement from the current PC to the constant table
  1043     // base fits into simm13 we set the constant table base to the
  1044     // current PC.
  1045     if (__ is_simm13(-(consts_size + offset))) {
  1046       constant_table.set_table_base_offset(-(consts_size + offset));
  1047       disp = 0;
  1048     } else {
  1049       // If the offset of the top constant (last entry in the table)
  1050       // fits into simm13 we set the constant table base to the actual
  1051       // table base.
  1052       if (__ is_simm13(constant_table.top_offset())) {
  1053         constant_table.set_table_base_offset(0);
  1054         disp = consts_size + offset;
  1055       } else {
  1056         // Otherwise we set the constant table base in the middle of the
  1057         // constant table.
  1058         int half_consts_size = consts_size / 2;
  1059         assert(half_consts_size * 2 == consts_size, "sanity");
  1060         constant_table.set_table_base_offset(-half_consts_size);  // table base offset gets added to the load displacement.
  1061         disp = half_consts_size + offset;
  1065     __ rdpc(r);
  1067     if (disp != 0) {
  1068       assert(r != O7, "need temporary");
  1069       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1072   else {
  1073     // Materialize the constant table base.
  1074     assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1075     address baseaddr = cs->start() + -(constant_table.table_base_offset());
  1076     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1077     AddressLiteral base(baseaddr, rspec);
  1078     __ set(base, r);
  1082 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1083   if (UseRDPCForConstantTableBase) {
  1084     // This is really the worst case but generally it's only 1 instruction.
  1085     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1086   } else {
  1087     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1091 #ifndef PRODUCT
  1092 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1093   char reg[128];
  1094   ra_->dump_register(this, reg);
  1095   if (UseRDPCForConstantTableBase) {
  1096     st->print("RDPC   %s\t! constant table base", reg);
  1097   } else {
  1098     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1101 #endif
  1104 //=============================================================================
  1106 #ifndef PRODUCT
  1107 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1108   Compile* C = ra_->C;
  1110   for (int i = 0; i < OptoPrologueNops; i++) {
  1111     st->print_cr("NOP"); st->print("\t");
  1114   if( VerifyThread ) {
  1115     st->print_cr("Verify_Thread"); st->print("\t");
  1118   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1120   // Calls to C2R adapters often do not accept exceptional returns.
  1121   // We require that their callers must bang for them.  But be careful, because
  1122   // some VM calls (such as call site linkage) can use several kilobytes of
  1123   // stack.  But the stack safety zone should account for that.
  1124   // See bugs 4446381, 4468289, 4497237.
  1125   if (C->need_stack_bang(framesize)) {
  1126     st->print_cr("! stack bang"); st->print("\t");
  1129   if (Assembler::is_simm13(-framesize)) {
  1130     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1131   } else {
  1132     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1133     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1134     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1138 #endif
  1140 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1141   Compile* C = ra_->C;
  1142   MacroAssembler _masm(&cbuf);
  1144   for (int i = 0; i < OptoPrologueNops; i++) {
  1145     __ nop();
  1148   __ verify_thread();
  1150   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1151   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1152   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1154   // Calls to C2R adapters often do not accept exceptional returns.
  1155   // We require that their callers must bang for them.  But be careful, because
  1156   // some VM calls (such as call site linkage) can use several kilobytes of
  1157   // stack.  But the stack safety zone should account for that.
  1158   // See bugs 4446381, 4468289, 4497237.
  1159   if (C->need_stack_bang(framesize)) {
  1160     __ generate_stack_overflow_check(framesize);
  1163   if (Assembler::is_simm13(-framesize)) {
  1164     __ save(SP, -framesize, SP);
  1165   } else {
  1166     __ sethi(-framesize & ~0x3ff, G3);
  1167     __ add(G3, -framesize & 0x3ff, G3);
  1168     __ save(SP, G3, SP);
  1170   C->set_frame_complete( __ offset() );
  1173 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1174   return MachNode::size(ra_);
  1177 int MachPrologNode::reloc() const {
  1178   return 10; // a large enough number
  1181 //=============================================================================
  1182 #ifndef PRODUCT
  1183 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1184   Compile* C = ra_->C;
  1186   if( do_polling() && ra_->C->is_method_compilation() ) {
  1187     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1188 #ifdef _LP64
  1189     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1190 #else
  1191     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1192 #endif
  1195   if( do_polling() )
  1196     st->print("RET\n\t");
  1198   st->print("RESTORE");
  1200 #endif
  1202 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1203   MacroAssembler _masm(&cbuf);
  1204   Compile* C = ra_->C;
  1206   __ verify_thread();
  1208   // If this does safepoint polling, then do it here
  1209   if( do_polling() && ra_->C->is_method_compilation() ) {
  1210     AddressLiteral polling_page(os::get_polling_page());
  1211     __ sethi(polling_page, L0);
  1212     __ relocate(relocInfo::poll_return_type);
  1213     __ ld_ptr( L0, 0, G0 );
  1216   // If this is a return, then stuff the restore in the delay slot
  1217   if( do_polling() ) {
  1218     __ ret();
  1219     __ delayed()->restore();
  1220   } else {
  1221     __ restore();
  1225 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1226   return MachNode::size(ra_);
  1229 int MachEpilogNode::reloc() const {
  1230   return 16; // a large enough number
  1233 const Pipeline * MachEpilogNode::pipeline() const {
  1234   return MachNode::pipeline_class();
  1237 int MachEpilogNode::safepoint_offset() const {
  1238   assert( do_polling(), "no return for this epilog node");
  1239   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1242 //=============================================================================
  1244 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1245 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1246 static enum RC rc_class( OptoReg::Name reg ) {
  1247   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1248   if (OptoReg::is_stack(reg)) return rc_stack;
  1249   VMReg r = OptoReg::as_VMReg(reg);
  1250   if (r->is_Register()) return rc_int;
  1251   assert(r->is_FloatRegister(), "must be");
  1252   return rc_float;
  1255 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1256   if( cbuf ) {
  1257     // Better yet would be some mechanism to handle variable-size matches correctly
  1258     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1259       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1260     } else {
  1261       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1264 #ifndef PRODUCT
  1265   else if( !do_size ) {
  1266     if( size != 0 ) st->print("\n\t");
  1267     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1268     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1270 #endif
  1271   return size+4;
  1274 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1275   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1276 #ifndef PRODUCT
  1277   else if( !do_size ) {
  1278     if( size != 0 ) st->print("\n\t");
  1279     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1281 #endif
  1282   return size+4;
  1285 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1286                                         PhaseRegAlloc *ra_,
  1287                                         bool do_size,
  1288                                         outputStream* st ) const {
  1289   // Get registers to move
  1290   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1291   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1292   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1293   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1295   enum RC src_second_rc = rc_class(src_second);
  1296   enum RC src_first_rc = rc_class(src_first);
  1297   enum RC dst_second_rc = rc_class(dst_second);
  1298   enum RC dst_first_rc = rc_class(dst_first);
  1300   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1302   // Generate spill code!
  1303   int size = 0;
  1305   if( src_first == dst_first && src_second == dst_second )
  1306     return size;            // Self copy, no move
  1308   // --------------------------------------
  1309   // Check for mem-mem move.  Load into unused float registers and fall into
  1310   // the float-store case.
  1311   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1312     int offset = ra_->reg2offset(src_first);
  1313     // Further check for aligned-adjacent pair, so we can use a double load
  1314     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1315       src_second    = OptoReg::Name(R_F31_num);
  1316       src_second_rc = rc_float;
  1317       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1318     } else {
  1319       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1321     src_first    = OptoReg::Name(R_F30_num);
  1322     src_first_rc = rc_float;
  1325   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1326     int offset = ra_->reg2offset(src_second);
  1327     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1328     src_second    = OptoReg::Name(R_F31_num);
  1329     src_second_rc = rc_float;
  1332   // --------------------------------------
  1333   // Check for float->int copy; requires a trip through memory
  1334   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1335     int offset = frame::register_save_words*wordSize;
  1336     if (cbuf) {
  1337       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1338       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1339       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1340       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1342 #ifndef PRODUCT
  1343     else if (!do_size) {
  1344       if (size != 0) st->print("\n\t");
  1345       st->print(  "SUB    R_SP,16,R_SP\n");
  1346       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1347       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1348       st->print("\tADD    R_SP,16,R_SP\n");
  1350 #endif
  1351     size += 16;
  1354   // Check for float->int copy on T4
  1355   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1356     // Further check for aligned-adjacent pair, so we can use a double move
  1357     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1358       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1359     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1361   // Check for int->float copy on T4
  1362   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1363     // Further check for aligned-adjacent pair, so we can use a double move
  1364     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1365       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1366     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1369   // --------------------------------------
  1370   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1371   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1372   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1373   // there.  Misaligned sources only come from native-long-returns (handled
  1374   // special below).
  1375 #ifndef _LP64
  1376   if( src_first_rc == rc_int &&     // source is already big-endian
  1377       src_second_rc != rc_bad &&    // 64-bit move
  1378       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1379     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1380     // Do the big-endian flop.
  1381     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1382     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1384 #endif
  1386   // --------------------------------------
  1387   // Check for integer reg-reg copy
  1388   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1389 #ifndef _LP64
  1390     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1391       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1392       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1393       //       operand contains the least significant word of the 64-bit value and vice versa.
  1394       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1395       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1396       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1397       if( cbuf ) {
  1398         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1399         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1400         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1401 #ifndef PRODUCT
  1402       } else if( !do_size ) {
  1403         if( size != 0 ) st->print("\n\t");
  1404         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1405         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1406         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1407 #endif
  1409       return size+12;
  1411     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1412       // returning a long value in I0/I1
  1413       // a SpillCopy must be able to target a return instruction's reg_class
  1414       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1415       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1416       //       operand contains the least significant word of the 64-bit value and vice versa.
  1417       OptoReg::Name tdest = dst_first;
  1419       if (src_first == dst_first) {
  1420         tdest = OptoReg::Name(R_O7_num);
  1421         size += 4;
  1424       if( cbuf ) {
  1425         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1426         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1427         // ShrL_reg_imm6
  1428         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1429         // ShrR_reg_imm6  src, 0, dst
  1430         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1431         if (tdest != dst_first) {
  1432           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1435 #ifndef PRODUCT
  1436       else if( !do_size ) {
  1437         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1438         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1439         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1440         if (tdest != dst_first) {
  1441           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1444 #endif // PRODUCT
  1445       return size+8;
  1447 #endif // !_LP64
  1448     // Else normal reg-reg copy
  1449     assert( src_second != dst_first, "smashed second before evacuating it" );
  1450     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1451     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1452     // This moves an aligned adjacent pair.
  1453     // See if we are done.
  1454     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1455       return size;
  1458   // Check for integer store
  1459   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1460     int offset = ra_->reg2offset(dst_first);
  1461     // Further check for aligned-adjacent pair, so we can use a double store
  1462     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1463       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1464     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1467   // Check for integer load
  1468   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1469     int offset = ra_->reg2offset(src_first);
  1470     // Further check for aligned-adjacent pair, so we can use a double load
  1471     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1472       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1473     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1476   // Check for float reg-reg copy
  1477   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1478     // Further check for aligned-adjacent pair, so we can use a double move
  1479     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1480       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1481     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1484   // Check for float store
  1485   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1486     int offset = ra_->reg2offset(dst_first);
  1487     // Further check for aligned-adjacent pair, so we can use a double store
  1488     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1489       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1490     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1493   // Check for float load
  1494   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1495     int offset = ra_->reg2offset(src_first);
  1496     // Further check for aligned-adjacent pair, so we can use a double load
  1497     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1498       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1499     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1502   // --------------------------------------------------------------------
  1503   // Check for hi bits still needing moving.  Only happens for misaligned
  1504   // arguments to native calls.
  1505   if( src_second == dst_second )
  1506     return size;               // Self copy; no move
  1507   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1509 #ifndef _LP64
  1510   // In the LP64 build, all registers can be moved as aligned/adjacent
  1511   // pairs, so there's never any need to move the high bits separately.
  1512   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1513   // all sorts of silly alignment problems.
  1515   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1516   // 32-bits of a 64-bit register, but are needed in low bits of another
  1517   // register (else it's a hi-bits-to-hi-bits copy which should have
  1518   // happened already as part of a 64-bit move)
  1519   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1520     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1521     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1522     // Shift src_second down to dst_second's low bits.
  1523     if( cbuf ) {
  1524       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1525 #ifndef PRODUCT
  1526     } else if( !do_size ) {
  1527       if( size != 0 ) st->print("\n\t");
  1528       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1529 #endif
  1531     return size+4;
  1534   // Check for high word integer store.  Must down-shift the hi bits
  1535   // into a temp register, then fall into the case of storing int bits.
  1536   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1537     // Shift src_second down to dst_second's low bits.
  1538     if( cbuf ) {
  1539       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1540 #ifndef PRODUCT
  1541     } else if( !do_size ) {
  1542       if( size != 0 ) st->print("\n\t");
  1543       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1544 #endif
  1546     size+=4;
  1547     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1550   // Check for high word integer load
  1551   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1552     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1554   // Check for high word integer store
  1555   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1556     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1558   // Check for high word float store
  1559   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1560     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1562 #endif // !_LP64
  1564   Unimplemented();
  1567 #ifndef PRODUCT
  1568 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1569   implementation( NULL, ra_, false, st );
  1571 #endif
  1573 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1574   implementation( &cbuf, ra_, false, NULL );
  1577 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1578   return implementation( NULL, ra_, true, NULL );
  1581 //=============================================================================
  1582 #ifndef PRODUCT
  1583 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1584   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1586 #endif
  1588 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1589   MacroAssembler _masm(&cbuf);
  1590   for(int i = 0; i < _count; i += 1) {
  1591     __ nop();
  1595 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1596   return 4 * _count;
  1600 //=============================================================================
  1601 #ifndef PRODUCT
  1602 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1603   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1604   int reg = ra_->get_reg_first(this);
  1605   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1607 #endif
  1609 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1610   MacroAssembler _masm(&cbuf);
  1611   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1612   int reg = ra_->get_encode(this);
  1614   if (Assembler::is_simm13(offset)) {
  1615      __ add(SP, offset, reg_to_register_object(reg));
  1616   } else {
  1617      __ set(offset, O7);
  1618      __ add(SP, O7, reg_to_register_object(reg));
  1622 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1623   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1624   assert(ra_ == ra_->C->regalloc(), "sanity");
  1625   return ra_->C->scratch_emit_size(this);
  1628 //=============================================================================
  1630 // emit call stub, compiled java to interpretor
  1631 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1633   // Stub is fixed up when the corresponding call is converted from calling
  1634   // compiled code to calling interpreted code.
  1635   // set (empty), G5
  1636   // jmp -1
  1638   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1640   MacroAssembler _masm(&cbuf);
  1642   address base =
  1643   __ start_a_stub(Compile::MAX_stubs_size);
  1644   if (base == NULL)  return;  // CodeBuffer::expand failed
  1646   // static stub relocation stores the instruction address of the call
  1647   __ relocate(static_stub_Relocation::spec(mark));
  1649   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1651   __ set_inst_mark();
  1652   AddressLiteral addrlit(-1);
  1653   __ JUMP(addrlit, G3, 0);
  1655   __ delayed()->nop();
  1657   // Update current stubs pointer and restore code_end.
  1658   __ end_a_stub();
  1661 // size of call stub, compiled java to interpretor
  1662 uint size_java_to_interp() {
  1663   // This doesn't need to be accurate but it must be larger or equal to
  1664   // the real size of the stub.
  1665   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1666           NativeJump::instruction_size + // sethi; jmp; nop
  1667           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1669 // relocation entries for call stub, compiled java to interpretor
  1670 uint reloc_java_to_interp() {
  1671   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1675 //=============================================================================
  1676 #ifndef PRODUCT
  1677 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1678   st->print_cr("\nUEP:");
  1679 #ifdef    _LP64
  1680   if (UseCompressedOops) {
  1681     assert(Universe::heap() != NULL, "java heap should be initialized");
  1682     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1683     st->print_cr("\tSLL    R_G5,3,R_G5");
  1684     if (Universe::narrow_oop_base() != NULL)
  1685       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1686   } else {
  1687     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1689   st->print_cr("\tCMP    R_G5,R_G3" );
  1690   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1691 #else  // _LP64
  1692   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1693   st->print_cr("\tCMP    R_G5,R_G3" );
  1694   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1695 #endif // _LP64
  1697 #endif
  1699 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1700   MacroAssembler _masm(&cbuf);
  1701   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1702   Register temp_reg   = G3;
  1703   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1705   // Load klass from receiver
  1706   __ load_klass(O0, temp_reg);
  1707   // Compare against expected klass
  1708   __ cmp(temp_reg, G5_ic_reg);
  1709   // Branch to miss code, checks xcc or icc depending
  1710   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1713 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1714   return MachNode::size(ra_);
  1718 //=============================================================================
  1720 uint size_exception_handler() {
  1721   if (TraceJumps) {
  1722     return (400); // just a guess
  1724   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1727 uint size_deopt_handler() {
  1728   if (TraceJumps) {
  1729     return (400); // just a guess
  1731   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1734 // Emit exception handler code.
  1735 int emit_exception_handler(CodeBuffer& cbuf) {
  1736   Register temp_reg = G3;
  1737   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1738   MacroAssembler _masm(&cbuf);
  1740   address base =
  1741   __ start_a_stub(size_exception_handler());
  1742   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1744   int offset = __ offset();
  1746   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1747   __ delayed()->nop();
  1749   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1751   __ end_a_stub();
  1753   return offset;
  1756 int emit_deopt_handler(CodeBuffer& cbuf) {
  1757   // Can't use any of the current frame's registers as we may have deopted
  1758   // at a poll and everything (including G3) can be live.
  1759   Register temp_reg = L0;
  1760   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1761   MacroAssembler _masm(&cbuf);
  1763   address base =
  1764   __ start_a_stub(size_deopt_handler());
  1765   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1767   int offset = __ offset();
  1768   __ save_frame(0);
  1769   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1770   __ delayed()->restore();
  1772   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1774   __ end_a_stub();
  1775   return offset;
  1779 // Given a register encoding, produce a Integer Register object
  1780 static Register reg_to_register_object(int register_encoding) {
  1781   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1782   return as_Register(register_encoding);
  1785 // Given a register encoding, produce a single-precision Float Register object
  1786 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1787   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1788   return as_SingleFloatRegister(register_encoding);
  1791 // Given a register encoding, produce a double-precision Float Register object
  1792 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1793   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1794   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1795   return as_DoubleFloatRegister(register_encoding);
  1798 const bool Matcher::match_rule_supported(int opcode) {
  1799   if (!has_match_rule(opcode))
  1800     return false;
  1802   switch (opcode) {
  1803   case Op_CountLeadingZerosI:
  1804   case Op_CountLeadingZerosL:
  1805   case Op_CountTrailingZerosI:
  1806   case Op_CountTrailingZerosL:
  1807     if (!UsePopCountInstruction)
  1808       return false;
  1809     break;
  1812   return true;  // Per default match rules are supported.
  1815 int Matcher::regnum_to_fpu_offset(int regnum) {
  1816   return regnum - 32; // The FP registers are in the second chunk
  1819 #ifdef ASSERT
  1820 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1821 #endif
  1823 // Vector width in bytes
  1824 const uint Matcher::vector_width_in_bytes(void) {
  1825   return 8;
  1828 // Vector ideal reg
  1829 const uint Matcher::vector_ideal_reg(void) {
  1830   return Op_RegD;
  1833 // USII supports fxtof through the whole range of number, USIII doesn't
  1834 const bool Matcher::convL2FSupported(void) {
  1835   return VM_Version::has_fast_fxtof();
  1838 // Is this branch offset short enough that a short branch can be used?
  1839 //
  1840 // NOTE: If the platform does not provide any short branch variants, then
  1841 //       this method should return false for offset 0.
  1842 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1843   // The passed offset is relative to address of the branch.
  1844   // Don't need to adjust the offset.
  1845   return UseCBCond && Assembler::is_simm(offset, 12);
  1848 const bool Matcher::isSimpleConstant64(jlong value) {
  1849   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1850   // Depends on optimizations in MacroAssembler::setx.
  1851   int hi = (int)(value >> 32);
  1852   int lo = (int)(value & ~0);
  1853   return (hi == 0) || (hi == -1) || (lo == 0);
  1856 // No scaling for the parameter the ClearArray node.
  1857 const bool Matcher::init_array_count_is_in_bytes = true;
  1859 // Threshold size for cleararray.
  1860 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1862 // Should the Matcher clone shifts on addressing modes, expecting them to
  1863 // be subsumed into complex addressing expressions or compute them into
  1864 // registers?  True for Intel but false for most RISCs
  1865 const bool Matcher::clone_shift_expressions = false;
  1867 // Do we need to mask the count passed to shift instructions or does
  1868 // the cpu only look at the lower 5/6 bits anyway?
  1869 const bool Matcher::need_masked_shift_count = false;
  1871 bool Matcher::narrow_oop_use_complex_address() {
  1872   NOT_LP64(ShouldNotCallThis());
  1873   assert(UseCompressedOops, "only for compressed oops code");
  1874   return false;
  1877 // Is it better to copy float constants, or load them directly from memory?
  1878 // Intel can load a float constant from a direct address, requiring no
  1879 // extra registers.  Most RISCs will have to materialize an address into a
  1880 // register first, so they would do better to copy the constant from stack.
  1881 const bool Matcher::rematerialize_float_constants = false;
  1883 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1884 // needed.  Else we split the double into 2 integer pieces and move it
  1885 // piece-by-piece.  Only happens when passing doubles into C code as the
  1886 // Java calling convention forces doubles to be aligned.
  1887 #ifdef _LP64
  1888 const bool Matcher::misaligned_doubles_ok = true;
  1889 #else
  1890 const bool Matcher::misaligned_doubles_ok = false;
  1891 #endif
  1893 // No-op on SPARC.
  1894 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1897 // Advertise here if the CPU requires explicit rounding operations
  1898 // to implement the UseStrictFP mode.
  1899 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1901 // Are floats conerted to double when stored to stack during deoptimization?
  1902 // Sparc does not handle callee-save floats.
  1903 bool Matcher::float_in_double() { return false; }
  1905 // Do ints take an entire long register or just half?
  1906 // Note that we if-def off of _LP64.
  1907 // The relevant question is how the int is callee-saved.  In _LP64
  1908 // the whole long is written but de-opt'ing will have to extract
  1909 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1910 #ifdef _LP64
  1911 const bool Matcher::int_in_long = true;
  1912 #else
  1913 const bool Matcher::int_in_long = false;
  1914 #endif
  1916 // Return whether or not this register is ever used as an argument.  This
  1917 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1918 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1919 // arguments in those registers not be available to the callee.
  1920 bool Matcher::can_be_java_arg( int reg ) {
  1921   // Standard sparc 6 args in registers
  1922   if( reg == R_I0_num ||
  1923       reg == R_I1_num ||
  1924       reg == R_I2_num ||
  1925       reg == R_I3_num ||
  1926       reg == R_I4_num ||
  1927       reg == R_I5_num ) return true;
  1928 #ifdef _LP64
  1929   // 64-bit builds can pass 64-bit pointers and longs in
  1930   // the high I registers
  1931   if( reg == R_I0H_num ||
  1932       reg == R_I1H_num ||
  1933       reg == R_I2H_num ||
  1934       reg == R_I3H_num ||
  1935       reg == R_I4H_num ||
  1936       reg == R_I5H_num ) return true;
  1938   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1939     return true;
  1942 #else
  1943   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1944   // Longs cannot be passed in O regs, because O regs become I regs
  1945   // after a 'save' and I regs get their high bits chopped off on
  1946   // interrupt.
  1947   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1948   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1949 #endif
  1950   // A few float args in registers
  1951   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1953   return false;
  1956 bool Matcher::is_spillable_arg( int reg ) {
  1957   return can_be_java_arg(reg);
  1960 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1961   // Use hardware SDIVX instruction when it is
  1962   // faster than a code which use multiply.
  1963   return VM_Version::has_fast_idiv();
  1966 // Register for DIVI projection of divmodI
  1967 RegMask Matcher::divI_proj_mask() {
  1968   ShouldNotReachHere();
  1969   return RegMask();
  1972 // Register for MODI projection of divmodI
  1973 RegMask Matcher::modI_proj_mask() {
  1974   ShouldNotReachHere();
  1975   return RegMask();
  1978 // Register for DIVL projection of divmodL
  1979 RegMask Matcher::divL_proj_mask() {
  1980   ShouldNotReachHere();
  1981   return RegMask();
  1984 // Register for MODL projection of divmodL
  1985 RegMask Matcher::modL_proj_mask() {
  1986   ShouldNotReachHere();
  1987   return RegMask();
  1990 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1991   return L7_REGP_mask;
  1994 %}
  1997 // The intptr_t operand types, defined by textual substitution.
  1998 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1999 #ifdef _LP64
  2000 #define immX      immL
  2001 #define immX13    immL13
  2002 #define immX13m7  immL13m7
  2003 #define iRegX     iRegL
  2004 #define g1RegX    g1RegL
  2005 #else
  2006 #define immX      immI
  2007 #define immX13    immI13
  2008 #define immX13m7  immI13m7
  2009 #define iRegX     iRegI
  2010 #define g1RegX    g1RegI
  2011 #endif
  2013 //----------ENCODING BLOCK-----------------------------------------------------
  2014 // This block specifies the encoding classes used by the compiler to output
  2015 // byte streams.  Encoding classes are parameterized macros used by
  2016 // Machine Instruction Nodes in order to generate the bit encoding of the
  2017 // instruction.  Operands specify their base encoding interface with the
  2018 // interface keyword.  There are currently supported four interfaces,
  2019 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2020 // operand to generate a function which returns its register number when
  2021 // queried.   CONST_INTER causes an operand to generate a function which
  2022 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2023 // operand to generate four functions which return the Base Register, the
  2024 // Index Register, the Scale Value, and the Offset Value of the operand when
  2025 // queried.  COND_INTER causes an operand to generate six functions which
  2026 // return the encoding code (ie - encoding bits for the instruction)
  2027 // associated with each basic boolean condition for a conditional instruction.
  2028 //
  2029 // Instructions specify two basic values for encoding.  Again, a function
  2030 // is available to check if the constant displacement is an oop. They use the
  2031 // ins_encode keyword to specify their encoding classes (which must be
  2032 // a sequence of enc_class names, and their parameters, specified in
  2033 // the encoding block), and they use the
  2034 // opcode keyword to specify, in order, their primary, secondary, and
  2035 // tertiary opcode.  Only the opcode sections which a particular instruction
  2036 // needs for encoding need to be specified.
  2037 encode %{
  2038   enc_class enc_untested %{
  2039 #ifdef ASSERT
  2040     MacroAssembler _masm(&cbuf);
  2041     __ untested("encoding");
  2042 #endif
  2043   %}
  2045   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2046     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2047                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2048   %}
  2050   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2051     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2052                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2053   %}
  2055   enc_class form3_mem_prefetch_read( memory mem ) %{
  2056     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2057                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2058   %}
  2060   enc_class form3_mem_prefetch_write( memory mem ) %{
  2061     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2062                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2063   %}
  2065   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2066     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2067     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2068     guarantee($mem$$index == R_G0_enc, "double index?");
  2069     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2070     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2071     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2072     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2073   %}
  2075   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2076     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2077     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2078     guarantee($mem$$index == R_G0_enc, "double index?");
  2079     // Load long with 2 instructions
  2080     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2081     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2082   %}
  2084   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2085   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2086     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2087     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2088   %}
  2090   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2091     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2092     if( $rs2$$reg != $rd$$reg )
  2093       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2094   %}
  2096   // Target lo half of long
  2097   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2098     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2099     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2100       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2101   %}
  2103   // Source lo half of long
  2104   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2105     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2106     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2107       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2108   %}
  2110   // Target hi half of long
  2111   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2112     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2113   %}
  2115   // Source lo half of long, and leave it sign extended.
  2116   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2117     // Sign extend low half
  2118     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2119   %}
  2121   // Source hi half of long, and leave it sign extended.
  2122   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2123     // Shift high half to low half
  2124     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2125   %}
  2127   // Source hi half of long
  2128   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2129     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2130     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2131       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2132   %}
  2134   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2135     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2136   %}
  2138   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2139     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2140     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2141   %}
  2143   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2144     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2145     // clear if nothing else is happening
  2146     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2147     // blt,a,pn done
  2148     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2149     // mov dst,-1 in delay slot
  2150     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2151   %}
  2153   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2154     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2155   %}
  2157   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2158     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2159   %}
  2161   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2162     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2163   %}
  2165   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2166     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2167   %}
  2169   enc_class move_return_pc_to_o1() %{
  2170     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2171   %}
  2173 #ifdef _LP64
  2174   /* %%% merge with enc_to_bool */
  2175   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2176     MacroAssembler _masm(&cbuf);
  2178     Register   src_reg = reg_to_register_object($src$$reg);
  2179     Register   dst_reg = reg_to_register_object($dst$$reg);
  2180     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2181   %}
  2182 #endif
  2184   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2185     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2186     MacroAssembler _masm(&cbuf);
  2188     Register   p_reg = reg_to_register_object($p$$reg);
  2189     Register   q_reg = reg_to_register_object($q$$reg);
  2190     Register   y_reg = reg_to_register_object($y$$reg);
  2191     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2193     __ subcc( p_reg, q_reg,   p_reg );
  2194     __ add  ( p_reg, y_reg, tmp_reg );
  2195     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2196   %}
  2198   enc_class form_d2i_helper(regD src, regF dst) %{
  2199     // fcmp %fcc0,$src,$src
  2200     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2201     // branch %fcc0 not-nan, predict taken
  2202     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2203     // fdtoi $src,$dst
  2204     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2205     // fitos $dst,$dst (if nan)
  2206     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2207     // clear $dst (if nan)
  2208     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2209     // carry on here...
  2210   %}
  2212   enc_class form_d2l_helper(regD src, regD dst) %{
  2213     // fcmp %fcc0,$src,$src  check for NAN
  2214     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2215     // branch %fcc0 not-nan, predict taken
  2216     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2217     // fdtox $src,$dst   convert in delay slot
  2218     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2219     // fxtod $dst,$dst  (if nan)
  2220     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2221     // clear $dst (if nan)
  2222     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2223     // carry on here...
  2224   %}
  2226   enc_class form_f2i_helper(regF src, regF dst) %{
  2227     // fcmps %fcc0,$src,$src
  2228     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2229     // branch %fcc0 not-nan, predict taken
  2230     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2231     // fstoi $src,$dst
  2232     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2233     // fitos $dst,$dst (if nan)
  2234     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2235     // clear $dst (if nan)
  2236     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2237     // carry on here...
  2238   %}
  2240   enc_class form_f2l_helper(regF src, regD dst) %{
  2241     // fcmps %fcc0,$src,$src
  2242     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2243     // branch %fcc0 not-nan, predict taken
  2244     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2245     // fstox $src,$dst
  2246     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2247     // fxtod $dst,$dst (if nan)
  2248     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2249     // clear $dst (if nan)
  2250     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2251     // carry on here...
  2252   %}
  2254   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2255   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2256   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2257   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2259   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2261   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2262   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2264   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2265     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2266   %}
  2268   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2269     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2270   %}
  2272   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2273     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2274   %}
  2276   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2277     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2278   %}
  2280   enc_class form3_convI2F(regF rs2, regF rd) %{
  2281     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2282   %}
  2284   // Encloding class for traceable jumps
  2285   enc_class form_jmpl(g3RegP dest) %{
  2286     emit_jmpl(cbuf, $dest$$reg);
  2287   %}
  2289   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2290     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2291   %}
  2293   enc_class form2_nop() %{
  2294     emit_nop(cbuf);
  2295   %}
  2297   enc_class form2_illtrap() %{
  2298     emit_illtrap(cbuf);
  2299   %}
  2302   // Compare longs and convert into -1, 0, 1.
  2303   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2304     // CMP $src1,$src2
  2305     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2306     // blt,a,pn done
  2307     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2308     // mov dst,-1 in delay slot
  2309     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2310     // bgt,a,pn done
  2311     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2312     // mov dst,1 in delay slot
  2313     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2314     // CLR    $dst
  2315     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2316   %}
  2318   enc_class enc_PartialSubtypeCheck() %{
  2319     MacroAssembler _masm(&cbuf);
  2320     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2321     __ delayed()->nop();
  2322   %}
  2324   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2325     MacroAssembler _masm(&cbuf);
  2326     Label* L = $labl$$label;
  2327     Assembler::Predict predict_taken =
  2328       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2330     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2331     __ delayed()->nop();
  2332   %}
  2334   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2335     MacroAssembler _masm(&cbuf);
  2336     Label* L = $labl$$label;
  2337     Assembler::Predict predict_taken =
  2338       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2340     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2341     __ delayed()->nop();
  2342   %}
  2344   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2345     int op = (Assembler::arith_op << 30) |
  2346              ($dst$$reg << 25) |
  2347              (Assembler::movcc_op3 << 19) |
  2348              (1 << 18) |                    // cc2 bit for 'icc'
  2349              ($cmp$$cmpcode << 14) |
  2350              (0 << 13) |                    // select register move
  2351              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2352              ($src$$reg << 0);
  2353     cbuf.insts()->emit_int32(op);
  2354   %}
  2356   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2357     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2358     int op = (Assembler::arith_op << 30) |
  2359              ($dst$$reg << 25) |
  2360              (Assembler::movcc_op3 << 19) |
  2361              (1 << 18) |                    // cc2 bit for 'icc'
  2362              ($cmp$$cmpcode << 14) |
  2363              (1 << 13) |                    // select immediate move
  2364              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2365              (simm11 << 0);
  2366     cbuf.insts()->emit_int32(op);
  2367   %}
  2369   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2370     int op = (Assembler::arith_op << 30) |
  2371              ($dst$$reg << 25) |
  2372              (Assembler::movcc_op3 << 19) |
  2373              (0 << 18) |                    // cc2 bit for 'fccX'
  2374              ($cmp$$cmpcode << 14) |
  2375              (0 << 13) |                    // select register move
  2376              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2377              ($src$$reg << 0);
  2378     cbuf.insts()->emit_int32(op);
  2379   %}
  2381   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2382     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2383     int op = (Assembler::arith_op << 30) |
  2384              ($dst$$reg << 25) |
  2385              (Assembler::movcc_op3 << 19) |
  2386              (0 << 18) |                    // cc2 bit for 'fccX'
  2387              ($cmp$$cmpcode << 14) |
  2388              (1 << 13) |                    // select immediate move
  2389              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2390              (simm11 << 0);
  2391     cbuf.insts()->emit_int32(op);
  2392   %}
  2394   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2395     int op = (Assembler::arith_op << 30) |
  2396              ($dst$$reg << 25) |
  2397              (Assembler::fpop2_op3 << 19) |
  2398              (0 << 18) |
  2399              ($cmp$$cmpcode << 14) |
  2400              (1 << 13) |                    // select register move
  2401              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2402              ($primary << 5) |              // select single, double or quad
  2403              ($src$$reg << 0);
  2404     cbuf.insts()->emit_int32(op);
  2405   %}
  2407   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2408     int op = (Assembler::arith_op << 30) |
  2409              ($dst$$reg << 25) |
  2410              (Assembler::fpop2_op3 << 19) |
  2411              (0 << 18) |
  2412              ($cmp$$cmpcode << 14) |
  2413              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2414              ($primary << 5) |              // select single, double or quad
  2415              ($src$$reg << 0);
  2416     cbuf.insts()->emit_int32(op);
  2417   %}
  2419   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2420   // the condition comes from opcode-field instead of an argument.
  2421   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2422     int op = (Assembler::arith_op << 30) |
  2423              ($dst$$reg << 25) |
  2424              (Assembler::movcc_op3 << 19) |
  2425              (1 << 18) |                    // cc2 bit for 'icc'
  2426              ($primary << 14) |
  2427              (0 << 13) |                    // select register move
  2428              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2429              ($src$$reg << 0);
  2430     cbuf.insts()->emit_int32(op);
  2431   %}
  2433   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2434     int op = (Assembler::arith_op << 30) |
  2435              ($dst$$reg << 25) |
  2436              (Assembler::movcc_op3 << 19) |
  2437              (6 << 16) |                    // cc2 bit for 'xcc'
  2438              ($primary << 14) |
  2439              (0 << 13) |                    // select register move
  2440              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2441              ($src$$reg << 0);
  2442     cbuf.insts()->emit_int32(op);
  2443   %}
  2445   enc_class Set13( immI13 src, iRegI rd ) %{
  2446     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2447   %}
  2449   enc_class SetHi22( immI src, iRegI rd ) %{
  2450     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2451   %}
  2453   enc_class Set32( immI src, iRegI rd ) %{
  2454     MacroAssembler _masm(&cbuf);
  2455     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2456   %}
  2458   enc_class call_epilog %{
  2459     if( VerifyStackAtCalls ) {
  2460       MacroAssembler _masm(&cbuf);
  2461       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2462       Register temp_reg = G3;
  2463       __ add(SP, framesize, temp_reg);
  2464       __ cmp(temp_reg, FP);
  2465       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2467   %}
  2469   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2470   // to G1 so the register allocator will not have to deal with the misaligned register
  2471   // pair.
  2472   enc_class adjust_long_from_native_call %{
  2473 #ifndef _LP64
  2474     if (returns_long()) {
  2475       //    sllx  O0,32,O0
  2476       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2477       //    srl   O1,0,O1
  2478       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2479       //    or    O0,O1,G1
  2480       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2482 #endif
  2483   %}
  2485   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2486     // CALL directly to the runtime
  2487     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2488     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2489                     /*preserve_g2=*/true);
  2490   %}
  2492   enc_class preserve_SP %{
  2493     MacroAssembler _masm(&cbuf);
  2494     __ mov(SP, L7_mh_SP_save);
  2495   %}
  2497   enc_class restore_SP %{
  2498     MacroAssembler _masm(&cbuf);
  2499     __ mov(L7_mh_SP_save, SP);
  2500   %}
  2502   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2503     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2504     // who we intended to call.
  2505     if ( !_method ) {
  2506       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2507     } else if (_optimized_virtual) {
  2508       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2509     } else {
  2510       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2512     if( _method ) {  // Emit stub for static call
  2513       emit_java_to_interp(cbuf);
  2515   %}
  2517   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2518     MacroAssembler _masm(&cbuf);
  2519     __ set_inst_mark();
  2520     int vtable_index = this->_vtable_index;
  2521     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2522     if (vtable_index < 0) {
  2523       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2524       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2525       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2526       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2527       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2528       // !!!!!
  2529       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2530       // emit_call_dynamic_prologue( cbuf );
  2531       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2533       address  virtual_call_oop_addr = __ inst_mark();
  2534       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2535       // who we intended to call.
  2536       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2537       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2538     } else {
  2539       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2540       // Just go thru the vtable
  2541       // get receiver klass (receiver already checked for non-null)
  2542       // If we end up going thru a c2i adapter interpreter expects method in G5
  2543       int off = __ offset();
  2544       __ load_klass(O0, G3_scratch);
  2545       int klass_load_size;
  2546       if (UseCompressedOops) {
  2547         assert(Universe::heap() != NULL, "java heap should be initialized");
  2548         if (Universe::narrow_oop_base() == NULL)
  2549           klass_load_size = 2*BytesPerInstWord;
  2550         else
  2551           klass_load_size = 3*BytesPerInstWord;
  2552       } else {
  2553         klass_load_size = 1*BytesPerInstWord;
  2555       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2556       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2557       if( __ is_simm13(v_off) ) {
  2558         __ ld_ptr(G3, v_off, G5_method);
  2559       } else {
  2560         // Generate 2 instructions
  2561         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2562         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2563         // ld_ptr, set_hi, set
  2564         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2565                "Unexpected instruction size(s)");
  2566         __ ld_ptr(G3, G5_method, G5_method);
  2568       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2569       // However it may very well end up in handle_wrong_method if the
  2570       // method is abstract for the particular class.
  2571       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2572       // jump to target (either compiled code or c2iadapter)
  2573       __ jmpl(G3_scratch, G0, O7);
  2574       __ delayed()->nop();
  2576   %}
  2578   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2579     MacroAssembler _masm(&cbuf);
  2581     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2582     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2583                               // we might be calling a C2I adapter which needs it.
  2585     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2586     // Load nmethod
  2587     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2589     // CALL to compiled java, indirect the contents of G3
  2590     __ set_inst_mark();
  2591     __ callr(temp_reg, G0);
  2592     __ delayed()->nop();
  2593   %}
  2595 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2596     MacroAssembler _masm(&cbuf);
  2597     Register Rdividend = reg_to_register_object($src1$$reg);
  2598     Register Rdivisor = reg_to_register_object($src2$$reg);
  2599     Register Rresult = reg_to_register_object($dst$$reg);
  2601     __ sra(Rdivisor, 0, Rdivisor);
  2602     __ sra(Rdividend, 0, Rdividend);
  2603     __ sdivx(Rdividend, Rdivisor, Rresult);
  2604 %}
  2606 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2607     MacroAssembler _masm(&cbuf);
  2609     Register Rdividend = reg_to_register_object($src1$$reg);
  2610     int divisor = $imm$$constant;
  2611     Register Rresult = reg_to_register_object($dst$$reg);
  2613     __ sra(Rdividend, 0, Rdividend);
  2614     __ sdivx(Rdividend, divisor, Rresult);
  2615 %}
  2617 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2618     MacroAssembler _masm(&cbuf);
  2619     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2620     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2621     Register Rdst  = reg_to_register_object($dst$$reg);
  2623     __ sra( Rsrc1, 0, Rsrc1 );
  2624     __ sra( Rsrc2, 0, Rsrc2 );
  2625     __ mulx( Rsrc1, Rsrc2, Rdst );
  2626     __ srlx( Rdst, 32, Rdst );
  2627 %}
  2629 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2630     MacroAssembler _masm(&cbuf);
  2631     Register Rdividend = reg_to_register_object($src1$$reg);
  2632     Register Rdivisor = reg_to_register_object($src2$$reg);
  2633     Register Rresult = reg_to_register_object($dst$$reg);
  2634     Register Rscratch = reg_to_register_object($scratch$$reg);
  2636     assert(Rdividend != Rscratch, "");
  2637     assert(Rdivisor  != Rscratch, "");
  2639     __ sra(Rdividend, 0, Rdividend);
  2640     __ sra(Rdivisor, 0, Rdivisor);
  2641     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2642     __ mulx(Rscratch, Rdivisor, Rscratch);
  2643     __ sub(Rdividend, Rscratch, Rresult);
  2644 %}
  2646 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2647     MacroAssembler _masm(&cbuf);
  2649     Register Rdividend = reg_to_register_object($src1$$reg);
  2650     int divisor = $imm$$constant;
  2651     Register Rresult = reg_to_register_object($dst$$reg);
  2652     Register Rscratch = reg_to_register_object($scratch$$reg);
  2654     assert(Rdividend != Rscratch, "");
  2656     __ sra(Rdividend, 0, Rdividend);
  2657     __ sdivx(Rdividend, divisor, Rscratch);
  2658     __ mulx(Rscratch, divisor, Rscratch);
  2659     __ sub(Rdividend, Rscratch, Rresult);
  2660 %}
  2662 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2663     MacroAssembler _masm(&cbuf);
  2665     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2666     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2668     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2669 %}
  2671 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2672     MacroAssembler _masm(&cbuf);
  2674     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2675     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2677     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2678 %}
  2680 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2681     MacroAssembler _masm(&cbuf);
  2683     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2684     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2686     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2687 %}
  2689 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2690     MacroAssembler _masm(&cbuf);
  2692     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2693     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2695     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2696 %}
  2698 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2699     MacroAssembler _masm(&cbuf);
  2701     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2702     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2704     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2705 %}
  2707 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2708     MacroAssembler _masm(&cbuf);
  2710     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2711     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2713     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2714 %}
  2716 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2717     MacroAssembler _masm(&cbuf);
  2719     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2720     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2722     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2723 %}
  2725 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2726     MacroAssembler _masm(&cbuf);
  2728     Register Roop  = reg_to_register_object($oop$$reg);
  2729     Register Rbox  = reg_to_register_object($box$$reg);
  2730     Register Rscratch = reg_to_register_object($scratch$$reg);
  2731     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2733     assert(Roop  != Rscratch, "");
  2734     assert(Roop  != Rmark, "");
  2735     assert(Rbox  != Rscratch, "");
  2736     assert(Rbox  != Rmark, "");
  2738     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2739 %}
  2741 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2742     MacroAssembler _masm(&cbuf);
  2744     Register Roop  = reg_to_register_object($oop$$reg);
  2745     Register Rbox  = reg_to_register_object($box$$reg);
  2746     Register Rscratch = reg_to_register_object($scratch$$reg);
  2747     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2749     assert(Roop  != Rscratch, "");
  2750     assert(Roop  != Rmark, "");
  2751     assert(Rbox  != Rscratch, "");
  2752     assert(Rbox  != Rmark, "");
  2754     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2755   %}
  2757   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2758     MacroAssembler _masm(&cbuf);
  2759     Register Rmem = reg_to_register_object($mem$$reg);
  2760     Register Rold = reg_to_register_object($old$$reg);
  2761     Register Rnew = reg_to_register_object($new$$reg);
  2763     // casx_under_lock picks 1 of 3 encodings:
  2764     // For 32-bit pointers you get a 32-bit CAS
  2765     // For 64-bit pointers you get a 64-bit CASX
  2766     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2767     __ cmp( Rold, Rnew );
  2768   %}
  2770   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2771     Register Rmem = reg_to_register_object($mem$$reg);
  2772     Register Rold = reg_to_register_object($old$$reg);
  2773     Register Rnew = reg_to_register_object($new$$reg);
  2775     MacroAssembler _masm(&cbuf);
  2776     __ mov(Rnew, O7);
  2777     __ casx(Rmem, Rold, O7);
  2778     __ cmp( Rold, O7 );
  2779   %}
  2781   // raw int cas, used for compareAndSwap
  2782   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2783     Register Rmem = reg_to_register_object($mem$$reg);
  2784     Register Rold = reg_to_register_object($old$$reg);
  2785     Register Rnew = reg_to_register_object($new$$reg);
  2787     MacroAssembler _masm(&cbuf);
  2788     __ mov(Rnew, O7);
  2789     __ cas(Rmem, Rold, O7);
  2790     __ cmp( Rold, O7 );
  2791   %}
  2793   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2794     Register Rres = reg_to_register_object($res$$reg);
  2796     MacroAssembler _masm(&cbuf);
  2797     __ mov(1, Rres);
  2798     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2799   %}
  2801   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2802     Register Rres = reg_to_register_object($res$$reg);
  2804     MacroAssembler _masm(&cbuf);
  2805     __ mov(1, Rres);
  2806     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2807   %}
  2809   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2810     MacroAssembler _masm(&cbuf);
  2811     Register Rdst = reg_to_register_object($dst$$reg);
  2812     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2813                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2814     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2815                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2817     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2818     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2819   %}
  2822   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2823     Label Ldone, Lloop;
  2824     MacroAssembler _masm(&cbuf);
  2826     Register   str1_reg = reg_to_register_object($str1$$reg);
  2827     Register   str2_reg = reg_to_register_object($str2$$reg);
  2828     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2829     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2830     Register result_reg = reg_to_register_object($result$$reg);
  2832     assert(result_reg != str1_reg &&
  2833            result_reg != str2_reg &&
  2834            result_reg != cnt1_reg &&
  2835            result_reg != cnt2_reg ,
  2836            "need different registers");
  2838     // Compute the minimum of the string lengths(str1_reg) and the
  2839     // difference of the string lengths (stack)
  2841     // See if the lengths are different, and calculate min in str1_reg.
  2842     // Stash diff in O7 in case we need it for a tie-breaker.
  2843     Label Lskip;
  2844     __ subcc(cnt1_reg, cnt2_reg, O7);
  2845     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2846     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2847     // cnt2 is shorter, so use its count:
  2848     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2849     __ bind(Lskip);
  2851     // reallocate cnt1_reg, cnt2_reg, result_reg
  2852     // Note:  limit_reg holds the string length pre-scaled by 2
  2853     Register limit_reg =   cnt1_reg;
  2854     Register  chr2_reg =   cnt2_reg;
  2855     Register  chr1_reg = result_reg;
  2856     // str{12} are the base pointers
  2858     // Is the minimum length zero?
  2859     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2860     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2861     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2863     // Load first characters
  2864     __ lduh(str1_reg, 0, chr1_reg);
  2865     __ lduh(str2_reg, 0, chr2_reg);
  2867     // Compare first characters
  2868     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2869     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2870     assert(chr1_reg == result_reg, "result must be pre-placed");
  2871     __ delayed()->nop();
  2874       // Check after comparing first character to see if strings are equivalent
  2875       Label LSkip2;
  2876       // Check if the strings start at same location
  2877       __ cmp(str1_reg, str2_reg);
  2878       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2879       __ delayed()->nop();
  2881       // Check if the length difference is zero (in O7)
  2882       __ cmp(G0, O7);
  2883       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2884       __ delayed()->mov(G0, result_reg);  // result is zero
  2886       // Strings might not be equal
  2887       __ bind(LSkip2);
  2890     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2891     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2892     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2894     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2895     __ add(str1_reg, limit_reg, str1_reg);
  2896     __ add(str2_reg, limit_reg, str2_reg);
  2897     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2899     // Compare the rest of the characters
  2900     __ lduh(str1_reg, limit_reg, chr1_reg);
  2901     __ bind(Lloop);
  2902     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2903     __ lduh(str2_reg, limit_reg, chr2_reg);
  2904     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2905     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2906     assert(chr1_reg == result_reg, "result must be pre-placed");
  2907     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2908     // annul LDUH if branch is not taken to prevent access past end of string
  2909     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2910     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2912     // If strings are equal up to min length, return the length difference.
  2913     __ mov(O7, result_reg);
  2915     // Otherwise, return the difference between the first mismatched chars.
  2916     __ bind(Ldone);
  2917   %}
  2919 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2920     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2921     MacroAssembler _masm(&cbuf);
  2923     Register   str1_reg = reg_to_register_object($str1$$reg);
  2924     Register   str2_reg = reg_to_register_object($str2$$reg);
  2925     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2926     Register   tmp1_reg = O7;
  2927     Register result_reg = reg_to_register_object($result$$reg);
  2929     assert(result_reg != str1_reg &&
  2930            result_reg != str2_reg &&
  2931            result_reg !=  cnt_reg &&
  2932            result_reg != tmp1_reg ,
  2933            "need different registers");
  2935     __ cmp(str1_reg, str2_reg); //same char[] ?
  2936     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2937     __ delayed()->add(G0, 1, result_reg);
  2939     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2940     __ delayed()->add(G0, 1, result_reg); // count == 0
  2942     //rename registers
  2943     Register limit_reg =    cnt_reg;
  2944     Register  chr1_reg = result_reg;
  2945     Register  chr2_reg =   tmp1_reg;
  2947     //check for alignment and position the pointers to the ends
  2948     __ or3(str1_reg, str2_reg, chr1_reg);
  2949     __ andcc(chr1_reg, 0x3, chr1_reg);
  2950     // notZero means at least one not 4-byte aligned.
  2951     // We could optimize the case when both arrays are not aligned
  2952     // but it is not frequent case and it requires additional checks.
  2953     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2954     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2956     // Compare char[] arrays aligned to 4 bytes.
  2957     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2958                           chr1_reg, chr2_reg, Ldone);
  2959     __ ba(Ldone);
  2960     __ delayed()->add(G0, 1, result_reg);
  2962     // char by char compare
  2963     __ bind(Lchar);
  2964     __ add(str1_reg, limit_reg, str1_reg);
  2965     __ add(str2_reg, limit_reg, str2_reg);
  2966     __ neg(limit_reg); //negate count
  2968     __ lduh(str1_reg, limit_reg, chr1_reg);
  2969     // Lchar_loop
  2970     __ bind(Lchar_loop);
  2971     __ lduh(str2_reg, limit_reg, chr2_reg);
  2972     __ cmp(chr1_reg, chr2_reg);
  2973     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  2974     __ delayed()->mov(G0, result_reg); //not equal
  2975     __ inccc(limit_reg, sizeof(jchar));
  2976     // annul LDUH if branch is not taken to prevent access past end of string
  2977     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  2978     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2980     __ add(G0, 1, result_reg);  //equal
  2982     __ bind(Ldone);
  2983   %}
  2985 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  2986     Label Lvector, Ldone, Lloop;
  2987     MacroAssembler _masm(&cbuf);
  2989     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  2990     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  2991     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  2992     Register   tmp2_reg = O7;
  2993     Register result_reg = reg_to_register_object($result$$reg);
  2995     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  2996     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  2998     // return true if the same array
  2999     __ cmp(ary1_reg, ary2_reg);
  3000     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3001     __ delayed()->add(G0, 1, result_reg); // equal
  3003     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3004     __ delayed()->mov(G0, result_reg);    // not equal
  3006     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3007     __ delayed()->mov(G0, result_reg);    // not equal
  3009     //load the lengths of arrays
  3010     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3011     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3013     // return false if the two arrays are not equal length
  3014     __ cmp(tmp1_reg, tmp2_reg);
  3015     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3016     __ delayed()->mov(G0, result_reg);     // not equal
  3018     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3019     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3021     // load array addresses
  3022     __ add(ary1_reg, base_offset, ary1_reg);
  3023     __ add(ary2_reg, base_offset, ary2_reg);
  3025     // renaming registers
  3026     Register chr1_reg  =  result_reg; // for characters in ary1
  3027     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3028     Register limit_reg =  tmp1_reg;   // length
  3030     // set byte count
  3031     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3033     // Compare char[] arrays aligned to 4 bytes.
  3034     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3035                           chr1_reg, chr2_reg, Ldone);
  3036     __ add(G0, 1, result_reg); // equals
  3038     __ bind(Ldone);
  3039   %}
  3041   enc_class enc_rethrow() %{
  3042     cbuf.set_insts_mark();
  3043     Register temp_reg = G3;
  3044     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3045     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3046     MacroAssembler _masm(&cbuf);
  3047 #ifdef ASSERT
  3048     __ save_frame(0);
  3049     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3050     __ sethi(last_rethrow_addrlit, L1);
  3051     Address addr(L1, last_rethrow_addrlit.low10());
  3052     __ get_pc(L2);
  3053     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3054     __ st_ptr(L2, addr);
  3055     __ restore();
  3056 #endif
  3057     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3058     __ delayed()->nop();
  3059   %}
  3061   enc_class emit_mem_nop() %{
  3062     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3063     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3064   %}
  3066   enc_class emit_fadd_nop() %{
  3067     // Generates the instruction FMOVS f31,f31
  3068     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3069   %}
  3071   enc_class emit_br_nop() %{
  3072     // Generates the instruction BPN,PN .
  3073     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3074   %}
  3076   enc_class enc_membar_acquire %{
  3077     MacroAssembler _masm(&cbuf);
  3078     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3079   %}
  3081   enc_class enc_membar_release %{
  3082     MacroAssembler _masm(&cbuf);
  3083     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3084   %}
  3086   enc_class enc_membar_volatile %{
  3087     MacroAssembler _masm(&cbuf);
  3088     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3089   %}
  3091   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3092     MacroAssembler _masm(&cbuf);
  3093     Register src_reg = reg_to_register_object($src$$reg);
  3094     Register dst_reg = reg_to_register_object($dst$$reg);
  3095     __ sllx(src_reg, 56, dst_reg);
  3096     __ srlx(dst_reg,  8, O7);
  3097     __ or3 (dst_reg, O7, dst_reg);
  3098     __ srlx(dst_reg, 16, O7);
  3099     __ or3 (dst_reg, O7, dst_reg);
  3100     __ srlx(dst_reg, 32, O7);
  3101     __ or3 (dst_reg, O7, dst_reg);
  3102   %}
  3104   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3105     MacroAssembler _masm(&cbuf);
  3106     Register src_reg = reg_to_register_object($src$$reg);
  3107     Register dst_reg = reg_to_register_object($dst$$reg);
  3108     __ sll(src_reg, 24, dst_reg);
  3109     __ srl(dst_reg,  8, O7);
  3110     __ or3(dst_reg, O7, dst_reg);
  3111     __ srl(dst_reg, 16, O7);
  3112     __ or3(dst_reg, O7, dst_reg);
  3113   %}
  3115   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3116     MacroAssembler _masm(&cbuf);
  3117     Register src_reg = reg_to_register_object($src$$reg);
  3118     Register dst_reg = reg_to_register_object($dst$$reg);
  3119     __ sllx(src_reg, 48, dst_reg);
  3120     __ srlx(dst_reg, 16, O7);
  3121     __ or3 (dst_reg, O7, dst_reg);
  3122     __ srlx(dst_reg, 32, O7);
  3123     __ or3 (dst_reg, O7, dst_reg);
  3124   %}
  3126   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3127     MacroAssembler _masm(&cbuf);
  3128     Register src_reg = reg_to_register_object($src$$reg);
  3129     Register dst_reg = reg_to_register_object($dst$$reg);
  3130     __ sllx(src_reg, 32, dst_reg);
  3131     __ srlx(dst_reg, 32, O7);
  3132     __ or3 (dst_reg, O7, dst_reg);
  3133   %}
  3135 %}
  3137 //----------FRAME--------------------------------------------------------------
  3138 // Definition of frame structure and management information.
  3139 //
  3140 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3141 //                             |   (to get allocators register number
  3142 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3143 //  r   CALLER     |        |
  3144 //  o     |        +--------+      pad to even-align allocators stack-slot
  3145 //  w     V        |  pad0  |        numbers; owned by CALLER
  3146 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3147 //  h     ^        |   in   |  5
  3148 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3149 //  |     |        |        |  3
  3150 //  |     |        +--------+
  3151 //  V     |        | old out|      Empty on Intel, window on Sparc
  3152 //        |    old |preserve|      Must be even aligned.
  3153 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3154 //        |        |   in   |  3   area for Intel ret address
  3155 //     Owned by    |preserve|      Empty on Sparc.
  3156 //       SELF      +--------+
  3157 //        |        |  pad2  |  2   pad to align old SP
  3158 //        |        +--------+  1
  3159 //        |        | locks  |  0
  3160 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3161 //        |        |  pad1  | 11   pad to align new SP
  3162 //        |        +--------+
  3163 //        |        |        | 10
  3164 //        |        | spills |  9   spills
  3165 //        V        |        |  8   (pad0 slot for callee)
  3166 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3167 //        ^        |  out   |  7
  3168 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3169 //     Owned by    +--------+
  3170 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3171 //        |    new |preserve|      Must be even-aligned.
  3172 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3173 //        |        |        |
  3174 //
  3175 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3176 //         known from SELF's arguments and the Java calling convention.
  3177 //         Region 6-7 is determined per call site.
  3178 // Note 2: If the calling convention leaves holes in the incoming argument
  3179 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3180 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3181 //         incoming area, as the Java calling convention is completely under
  3182 //         the control of the AD file.  Doubles can be sorted and packed to
  3183 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3184 //         varargs C calling conventions.
  3185 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3186 //         even aligned with pad0 as needed.
  3187 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3188 //         region 6-11 is even aligned; it may be padded out more so that
  3189 //         the region from SP to FP meets the minimum stack alignment.
  3191 frame %{
  3192   // What direction does stack grow in (assumed to be same for native & Java)
  3193   stack_direction(TOWARDS_LOW);
  3195   // These two registers define part of the calling convention
  3196   // between compiled code and the interpreter.
  3197   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3198   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3200   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3201   cisc_spilling_operand_name(indOffset);
  3203   // Number of stack slots consumed by a Monitor enter
  3204 #ifdef _LP64
  3205   sync_stack_slots(2);
  3206 #else
  3207   sync_stack_slots(1);
  3208 #endif
  3210   // Compiled code's Frame Pointer
  3211   frame_pointer(R_SP);
  3213   // Stack alignment requirement
  3214   stack_alignment(StackAlignmentInBytes);
  3215   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3216   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3218   // Number of stack slots between incoming argument block and the start of
  3219   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3220   // EPILOG must remove this many slots.
  3221   in_preserve_stack_slots(0);
  3223   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3224   // for calls to C.  Supports the var-args backing area for register parms.
  3225   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3226 #ifdef _LP64
  3227   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3228   varargs_C_out_slots_killed(12);
  3229 #else
  3230   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3231   varargs_C_out_slots_killed( 7);
  3232 #endif
  3234   // The after-PROLOG location of the return address.  Location of
  3235   // return address specifies a type (REG or STACK) and a number
  3236   // representing the register number (i.e. - use a register name) or
  3237   // stack slot.
  3238   return_addr(REG R_I7);          // Ret Addr is in register I7
  3240   // Body of function which returns an OptoRegs array locating
  3241   // arguments either in registers or in stack slots for calling
  3242   // java
  3243   calling_convention %{
  3244     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3246   %}
  3248   // Body of function which returns an OptoRegs array locating
  3249   // arguments either in registers or in stack slots for callin
  3250   // C.
  3251   c_calling_convention %{
  3252     // This is obviously always outgoing
  3253     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3254   %}
  3256   // Location of native (C/C++) and interpreter return values.  This is specified to
  3257   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3258   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3259   // to and from the register pairs is done by the appropriate call and epilog
  3260   // opcodes.  This simplifies the register allocator.
  3261   c_return_value %{
  3262     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3263 #ifdef     _LP64
  3264     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3265     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3266     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3267     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3268 #else  // !_LP64
  3269     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3270     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3271     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3272     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3273 #endif
  3274     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3275                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3276   %}
  3278   // Location of compiled Java return values.  Same as C
  3279   return_value %{
  3280     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3281 #ifdef     _LP64
  3282     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3283     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3284     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3285     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3286 #else  // !_LP64
  3287     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3288     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3289     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3290     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3291 #endif
  3292     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3293                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3294   %}
  3296 %}
  3299 //----------ATTRIBUTES---------------------------------------------------------
  3300 //----------Operand Attributes-------------------------------------------------
  3301 op_attrib op_cost(1);          // Required cost attribute
  3303 //----------Instruction Attributes---------------------------------------------
  3304 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3305 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3306 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3307 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3308                                    // non-matching short branch variant of some
  3309                                                             // long branch?
  3311 //----------OPERANDS-----------------------------------------------------------
  3312 // Operand definitions must precede instruction definitions for correct parsing
  3313 // in the ADLC because operands constitute user defined types which are used in
  3314 // instruction definitions.
  3316 //----------Simple Operands----------------------------------------------------
  3317 // Immediate Operands
  3318 // Integer Immediate: 32-bit
  3319 operand immI() %{
  3320   match(ConI);
  3322   op_cost(0);
  3323   // formats are generated automatically for constants and base registers
  3324   format %{ %}
  3325   interface(CONST_INTER);
  3326 %}
  3328 // Integer Immediate: 8-bit
  3329 operand immI8() %{
  3330   predicate(Assembler::is_simm(n->get_int(), 8));
  3331   match(ConI);
  3332   op_cost(0);
  3333   format %{ %}
  3334   interface(CONST_INTER);
  3335 %}
  3337 // Integer Immediate: 13-bit
  3338 operand immI13() %{
  3339   predicate(Assembler::is_simm13(n->get_int()));
  3340   match(ConI);
  3341   op_cost(0);
  3343   format %{ %}
  3344   interface(CONST_INTER);
  3345 %}
  3347 // Integer Immediate: 13-bit minus 7
  3348 operand immI13m7() %{
  3349   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3350   match(ConI);
  3351   op_cost(0);
  3353   format %{ %}
  3354   interface(CONST_INTER);
  3355 %}
  3357 // Integer Immediate: 16-bit
  3358 operand immI16() %{
  3359   predicate(Assembler::is_simm(n->get_int(), 16));
  3360   match(ConI);
  3361   op_cost(0);
  3362   format %{ %}
  3363   interface(CONST_INTER);
  3364 %}
  3366 // Unsigned (positive) Integer Immediate: 13-bit
  3367 operand immU13() %{
  3368   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3369   match(ConI);
  3370   op_cost(0);
  3372   format %{ %}
  3373   interface(CONST_INTER);
  3374 %}
  3376 // Integer Immediate: 6-bit
  3377 operand immU6() %{
  3378   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3379   match(ConI);
  3380   op_cost(0);
  3381   format %{ %}
  3382   interface(CONST_INTER);
  3383 %}
  3385 // Integer Immediate: 11-bit
  3386 operand immI11() %{
  3387   predicate(Assembler::is_simm(n->get_int(),11));
  3388   match(ConI);
  3389   op_cost(0);
  3390   format %{ %}
  3391   interface(CONST_INTER);
  3392 %}
  3394 // Integer Immediate: 5-bit
  3395 operand immI5() %{
  3396   predicate(Assembler::is_simm(n->get_int(), 5));
  3397   match(ConI);
  3398   op_cost(0);
  3399   format %{ %}
  3400   interface(CONST_INTER);
  3401 %}
  3403 // Integer Immediate: 0-bit
  3404 operand immI0() %{
  3405   predicate(n->get_int() == 0);
  3406   match(ConI);
  3407   op_cost(0);
  3409   format %{ %}
  3410   interface(CONST_INTER);
  3411 %}
  3413 // Integer Immediate: the value 10
  3414 operand immI10() %{
  3415   predicate(n->get_int() == 10);
  3416   match(ConI);
  3417   op_cost(0);
  3419   format %{ %}
  3420   interface(CONST_INTER);
  3421 %}
  3423 // Integer Immediate: the values 0-31
  3424 operand immU5() %{
  3425   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3426   match(ConI);
  3427   op_cost(0);
  3429   format %{ %}
  3430   interface(CONST_INTER);
  3431 %}
  3433 // Integer Immediate: the values 1-31
  3434 operand immI_1_31() %{
  3435   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3436   match(ConI);
  3437   op_cost(0);
  3439   format %{ %}
  3440   interface(CONST_INTER);
  3441 %}
  3443 // Integer Immediate: the values 32-63
  3444 operand immI_32_63() %{
  3445   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3446   match(ConI);
  3447   op_cost(0);
  3449   format %{ %}
  3450   interface(CONST_INTER);
  3451 %}
  3453 // Immediates for special shifts (sign extend)
  3455 // Integer Immediate: the value 16
  3456 operand immI_16() %{
  3457   predicate(n->get_int() == 16);
  3458   match(ConI);
  3459   op_cost(0);
  3461   format %{ %}
  3462   interface(CONST_INTER);
  3463 %}
  3465 // Integer Immediate: the value 24
  3466 operand immI_24() %{
  3467   predicate(n->get_int() == 24);
  3468   match(ConI);
  3469   op_cost(0);
  3471   format %{ %}
  3472   interface(CONST_INTER);
  3473 %}
  3475 // Integer Immediate: the value 255
  3476 operand immI_255() %{
  3477   predicate( n->get_int() == 255 );
  3478   match(ConI);
  3479   op_cost(0);
  3481   format %{ %}
  3482   interface(CONST_INTER);
  3483 %}
  3485 // Integer Immediate: the value 65535
  3486 operand immI_65535() %{
  3487   predicate(n->get_int() == 65535);
  3488   match(ConI);
  3489   op_cost(0);
  3491   format %{ %}
  3492   interface(CONST_INTER);
  3493 %}
  3495 // Long Immediate: the value FF
  3496 operand immL_FF() %{
  3497   predicate( n->get_long() == 0xFFL );
  3498   match(ConL);
  3499   op_cost(0);
  3501   format %{ %}
  3502   interface(CONST_INTER);
  3503 %}
  3505 // Long Immediate: the value FFFF
  3506 operand immL_FFFF() %{
  3507   predicate( n->get_long() == 0xFFFFL );
  3508   match(ConL);
  3509   op_cost(0);
  3511   format %{ %}
  3512   interface(CONST_INTER);
  3513 %}
  3515 // Pointer Immediate: 32 or 64-bit
  3516 operand immP() %{
  3517   match(ConP);
  3519   op_cost(5);
  3520   // formats are generated automatically for constants and base registers
  3521   format %{ %}
  3522   interface(CONST_INTER);
  3523 %}
  3525 #ifdef _LP64
  3526 // Pointer Immediate: 64-bit
  3527 operand immP_set() %{
  3528   predicate(!VM_Version::is_niagara_plus());
  3529   match(ConP);
  3531   op_cost(5);
  3532   // formats are generated automatically for constants and base registers
  3533   format %{ %}
  3534   interface(CONST_INTER);
  3535 %}
  3537 // Pointer Immediate: 64-bit
  3538 // From Niagara2 processors on a load should be better than materializing.
  3539 operand immP_load() %{
  3540   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3541   match(ConP);
  3543   op_cost(5);
  3544   // formats are generated automatically for constants and base registers
  3545   format %{ %}
  3546   interface(CONST_INTER);
  3547 %}
  3549 // Pointer Immediate: 64-bit
  3550 operand immP_no_oop_cheap() %{
  3551   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3552   match(ConP);
  3554   op_cost(5);
  3555   // formats are generated automatically for constants and base registers
  3556   format %{ %}
  3557   interface(CONST_INTER);
  3558 %}
  3559 #endif
  3561 operand immP13() %{
  3562   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3563   match(ConP);
  3564   op_cost(0);
  3566   format %{ %}
  3567   interface(CONST_INTER);
  3568 %}
  3570 operand immP0() %{
  3571   predicate(n->get_ptr() == 0);
  3572   match(ConP);
  3573   op_cost(0);
  3575   format %{ %}
  3576   interface(CONST_INTER);
  3577 %}
  3579 operand immP_poll() %{
  3580   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3581   match(ConP);
  3583   // formats are generated automatically for constants and base registers
  3584   format %{ %}
  3585   interface(CONST_INTER);
  3586 %}
  3588 // Pointer Immediate
  3589 operand immN()
  3590 %{
  3591   match(ConN);
  3593   op_cost(10);
  3594   format %{ %}
  3595   interface(CONST_INTER);
  3596 %}
  3598 // NULL Pointer Immediate
  3599 operand immN0()
  3600 %{
  3601   predicate(n->get_narrowcon() == 0);
  3602   match(ConN);
  3604   op_cost(0);
  3605   format %{ %}
  3606   interface(CONST_INTER);
  3607 %}
  3609 operand immL() %{
  3610   match(ConL);
  3611   op_cost(40);
  3612   // formats are generated automatically for constants and base registers
  3613   format %{ %}
  3614   interface(CONST_INTER);
  3615 %}
  3617 operand immL0() %{
  3618   predicate(n->get_long() == 0L);
  3619   match(ConL);
  3620   op_cost(0);
  3621   // formats are generated automatically for constants and base registers
  3622   format %{ %}
  3623   interface(CONST_INTER);
  3624 %}
  3626 // Integer Immediate: 5-bit
  3627 operand immL5() %{
  3628   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm((int)n->get_long(), 5));
  3629   match(ConL);
  3630   op_cost(0);
  3631   format %{ %}
  3632   interface(CONST_INTER);
  3633 %}
  3635 // Long Immediate: 13-bit
  3636 operand immL13() %{
  3637   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3638   match(ConL);
  3639   op_cost(0);
  3641   format %{ %}
  3642   interface(CONST_INTER);
  3643 %}
  3645 // Long Immediate: 13-bit minus 7
  3646 operand immL13m7() %{
  3647   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3648   match(ConL);
  3649   op_cost(0);
  3651   format %{ %}
  3652   interface(CONST_INTER);
  3653 %}
  3655 // Long Immediate: low 32-bit mask
  3656 operand immL_32bits() %{
  3657   predicate(n->get_long() == 0xFFFFFFFFL);
  3658   match(ConL);
  3659   op_cost(0);
  3661   format %{ %}
  3662   interface(CONST_INTER);
  3663 %}
  3665 // Long Immediate: cheap (materialize in <= 3 instructions)
  3666 operand immL_cheap() %{
  3667   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3668   match(ConL);
  3669   op_cost(0);
  3671   format %{ %}
  3672   interface(CONST_INTER);
  3673 %}
  3675 // Long Immediate: expensive (materialize in > 3 instructions)
  3676 operand immL_expensive() %{
  3677   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3678   match(ConL);
  3679   op_cost(0);
  3681   format %{ %}
  3682   interface(CONST_INTER);
  3683 %}
  3685 // Double Immediate
  3686 operand immD() %{
  3687   match(ConD);
  3689   op_cost(40);
  3690   format %{ %}
  3691   interface(CONST_INTER);
  3692 %}
  3694 operand immD0() %{
  3695 #ifdef _LP64
  3696   // on 64-bit architectures this comparision is faster
  3697   predicate(jlong_cast(n->getd()) == 0);
  3698 #else
  3699   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3700 #endif
  3701   match(ConD);
  3703   op_cost(0);
  3704   format %{ %}
  3705   interface(CONST_INTER);
  3706 %}
  3708 // Float Immediate
  3709 operand immF() %{
  3710   match(ConF);
  3712   op_cost(20);
  3713   format %{ %}
  3714   interface(CONST_INTER);
  3715 %}
  3717 // Float Immediate: 0
  3718 operand immF0() %{
  3719   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3720   match(ConF);
  3722   op_cost(0);
  3723   format %{ %}
  3724   interface(CONST_INTER);
  3725 %}
  3727 // Integer Register Operands
  3728 // Integer Register
  3729 operand iRegI() %{
  3730   constraint(ALLOC_IN_RC(int_reg));
  3731   match(RegI);
  3733   match(notemp_iRegI);
  3734   match(g1RegI);
  3735   match(o0RegI);
  3736   match(iRegIsafe);
  3738   format %{ %}
  3739   interface(REG_INTER);
  3740 %}
  3742 operand notemp_iRegI() %{
  3743   constraint(ALLOC_IN_RC(notemp_int_reg));
  3744   match(RegI);
  3746   match(o0RegI);
  3748   format %{ %}
  3749   interface(REG_INTER);
  3750 %}
  3752 operand o0RegI() %{
  3753   constraint(ALLOC_IN_RC(o0_regI));
  3754   match(iRegI);
  3756   format %{ %}
  3757   interface(REG_INTER);
  3758 %}
  3760 // Pointer Register
  3761 operand iRegP() %{
  3762   constraint(ALLOC_IN_RC(ptr_reg));
  3763   match(RegP);
  3765   match(lock_ptr_RegP);
  3766   match(g1RegP);
  3767   match(g2RegP);
  3768   match(g3RegP);
  3769   match(g4RegP);
  3770   match(i0RegP);
  3771   match(o0RegP);
  3772   match(o1RegP);
  3773   match(l7RegP);
  3775   format %{ %}
  3776   interface(REG_INTER);
  3777 %}
  3779 operand sp_ptr_RegP() %{
  3780   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3781   match(RegP);
  3782   match(iRegP);
  3784   format %{ %}
  3785   interface(REG_INTER);
  3786 %}
  3788 operand lock_ptr_RegP() %{
  3789   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3790   match(RegP);
  3791   match(i0RegP);
  3792   match(o0RegP);
  3793   match(o1RegP);
  3794   match(l7RegP);
  3796   format %{ %}
  3797   interface(REG_INTER);
  3798 %}
  3800 operand g1RegP() %{
  3801   constraint(ALLOC_IN_RC(g1_regP));
  3802   match(iRegP);
  3804   format %{ %}
  3805   interface(REG_INTER);
  3806 %}
  3808 operand g2RegP() %{
  3809   constraint(ALLOC_IN_RC(g2_regP));
  3810   match(iRegP);
  3812   format %{ %}
  3813   interface(REG_INTER);
  3814 %}
  3816 operand g3RegP() %{
  3817   constraint(ALLOC_IN_RC(g3_regP));
  3818   match(iRegP);
  3820   format %{ %}
  3821   interface(REG_INTER);
  3822 %}
  3824 operand g1RegI() %{
  3825   constraint(ALLOC_IN_RC(g1_regI));
  3826   match(iRegI);
  3828   format %{ %}
  3829   interface(REG_INTER);
  3830 %}
  3832 operand g3RegI() %{
  3833   constraint(ALLOC_IN_RC(g3_regI));
  3834   match(iRegI);
  3836   format %{ %}
  3837   interface(REG_INTER);
  3838 %}
  3840 operand g4RegI() %{
  3841   constraint(ALLOC_IN_RC(g4_regI));
  3842   match(iRegI);
  3844   format %{ %}
  3845   interface(REG_INTER);
  3846 %}
  3848 operand g4RegP() %{
  3849   constraint(ALLOC_IN_RC(g4_regP));
  3850   match(iRegP);
  3852   format %{ %}
  3853   interface(REG_INTER);
  3854 %}
  3856 operand i0RegP() %{
  3857   constraint(ALLOC_IN_RC(i0_regP));
  3858   match(iRegP);
  3860   format %{ %}
  3861   interface(REG_INTER);
  3862 %}
  3864 operand o0RegP() %{
  3865   constraint(ALLOC_IN_RC(o0_regP));
  3866   match(iRegP);
  3868   format %{ %}
  3869   interface(REG_INTER);
  3870 %}
  3872 operand o1RegP() %{
  3873   constraint(ALLOC_IN_RC(o1_regP));
  3874   match(iRegP);
  3876   format %{ %}
  3877   interface(REG_INTER);
  3878 %}
  3880 operand o2RegP() %{
  3881   constraint(ALLOC_IN_RC(o2_regP));
  3882   match(iRegP);
  3884   format %{ %}
  3885   interface(REG_INTER);
  3886 %}
  3888 operand o7RegP() %{
  3889   constraint(ALLOC_IN_RC(o7_regP));
  3890   match(iRegP);
  3892   format %{ %}
  3893   interface(REG_INTER);
  3894 %}
  3896 operand l7RegP() %{
  3897   constraint(ALLOC_IN_RC(l7_regP));
  3898   match(iRegP);
  3900   format %{ %}
  3901   interface(REG_INTER);
  3902 %}
  3904 operand o7RegI() %{
  3905   constraint(ALLOC_IN_RC(o7_regI));
  3906   match(iRegI);
  3908   format %{ %}
  3909   interface(REG_INTER);
  3910 %}
  3912 operand iRegN() %{
  3913   constraint(ALLOC_IN_RC(int_reg));
  3914   match(RegN);
  3916   format %{ %}
  3917   interface(REG_INTER);
  3918 %}
  3920 // Long Register
  3921 operand iRegL() %{
  3922   constraint(ALLOC_IN_RC(long_reg));
  3923   match(RegL);
  3925   format %{ %}
  3926   interface(REG_INTER);
  3927 %}
  3929 operand o2RegL() %{
  3930   constraint(ALLOC_IN_RC(o2_regL));
  3931   match(iRegL);
  3933   format %{ %}
  3934   interface(REG_INTER);
  3935 %}
  3937 operand o7RegL() %{
  3938   constraint(ALLOC_IN_RC(o7_regL));
  3939   match(iRegL);
  3941   format %{ %}
  3942   interface(REG_INTER);
  3943 %}
  3945 operand g1RegL() %{
  3946   constraint(ALLOC_IN_RC(g1_regL));
  3947   match(iRegL);
  3949   format %{ %}
  3950   interface(REG_INTER);
  3951 %}
  3953 operand g3RegL() %{
  3954   constraint(ALLOC_IN_RC(g3_regL));
  3955   match(iRegL);
  3957   format %{ %}
  3958   interface(REG_INTER);
  3959 %}
  3961 // Int Register safe
  3962 // This is 64bit safe
  3963 operand iRegIsafe() %{
  3964   constraint(ALLOC_IN_RC(long_reg));
  3966   match(iRegI);
  3968   format %{ %}
  3969   interface(REG_INTER);
  3970 %}
  3972 // Condition Code Flag Register
  3973 operand flagsReg() %{
  3974   constraint(ALLOC_IN_RC(int_flags));
  3975   match(RegFlags);
  3977   format %{ "ccr" %} // both ICC and XCC
  3978   interface(REG_INTER);
  3979 %}
  3981 // Condition Code Register, unsigned comparisons.
  3982 operand flagsRegU() %{
  3983   constraint(ALLOC_IN_RC(int_flags));
  3984   match(RegFlags);
  3986   format %{ "icc_U" %}
  3987   interface(REG_INTER);
  3988 %}
  3990 // Condition Code Register, pointer comparisons.
  3991 operand flagsRegP() %{
  3992   constraint(ALLOC_IN_RC(int_flags));
  3993   match(RegFlags);
  3995 #ifdef _LP64
  3996   format %{ "xcc_P" %}
  3997 #else
  3998   format %{ "icc_P" %}
  3999 #endif
  4000   interface(REG_INTER);
  4001 %}
  4003 // Condition Code Register, long comparisons.
  4004 operand flagsRegL() %{
  4005   constraint(ALLOC_IN_RC(int_flags));
  4006   match(RegFlags);
  4008   format %{ "xcc_L" %}
  4009   interface(REG_INTER);
  4010 %}
  4012 // Condition Code Register, floating comparisons, unordered same as "less".
  4013 operand flagsRegF() %{
  4014   constraint(ALLOC_IN_RC(float_flags));
  4015   match(RegFlags);
  4016   match(flagsRegF0);
  4018   format %{ %}
  4019   interface(REG_INTER);
  4020 %}
  4022 operand flagsRegF0() %{
  4023   constraint(ALLOC_IN_RC(float_flag0));
  4024   match(RegFlags);
  4026   format %{ %}
  4027   interface(REG_INTER);
  4028 %}
  4031 // Condition Code Flag Register used by long compare
  4032 operand flagsReg_long_LTGE() %{
  4033   constraint(ALLOC_IN_RC(int_flags));
  4034   match(RegFlags);
  4035   format %{ "icc_LTGE" %}
  4036   interface(REG_INTER);
  4037 %}
  4038 operand flagsReg_long_EQNE() %{
  4039   constraint(ALLOC_IN_RC(int_flags));
  4040   match(RegFlags);
  4041   format %{ "icc_EQNE" %}
  4042   interface(REG_INTER);
  4043 %}
  4044 operand flagsReg_long_LEGT() %{
  4045   constraint(ALLOC_IN_RC(int_flags));
  4046   match(RegFlags);
  4047   format %{ "icc_LEGT" %}
  4048   interface(REG_INTER);
  4049 %}
  4052 operand regD() %{
  4053   constraint(ALLOC_IN_RC(dflt_reg));
  4054   match(RegD);
  4056   match(regD_low);
  4058   format %{ %}
  4059   interface(REG_INTER);
  4060 %}
  4062 operand regF() %{
  4063   constraint(ALLOC_IN_RC(sflt_reg));
  4064   match(RegF);
  4066   format %{ %}
  4067   interface(REG_INTER);
  4068 %}
  4070 operand regD_low() %{
  4071   constraint(ALLOC_IN_RC(dflt_low_reg));
  4072   match(regD);
  4074   format %{ %}
  4075   interface(REG_INTER);
  4076 %}
  4078 // Special Registers
  4080 // Method Register
  4081 operand inline_cache_regP(iRegP reg) %{
  4082   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4083   match(reg);
  4084   format %{ %}
  4085   interface(REG_INTER);
  4086 %}
  4088 operand interpreter_method_oop_regP(iRegP reg) %{
  4089   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4090   match(reg);
  4091   format %{ %}
  4092   interface(REG_INTER);
  4093 %}
  4096 //----------Complex Operands---------------------------------------------------
  4097 // Indirect Memory Reference
  4098 operand indirect(sp_ptr_RegP reg) %{
  4099   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4100   match(reg);
  4102   op_cost(100);
  4103   format %{ "[$reg]" %}
  4104   interface(MEMORY_INTER) %{
  4105     base($reg);
  4106     index(0x0);
  4107     scale(0x0);
  4108     disp(0x0);
  4109   %}
  4110 %}
  4112 // Indirect with simm13 Offset
  4113 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4114   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4115   match(AddP reg offset);
  4117   op_cost(100);
  4118   format %{ "[$reg + $offset]" %}
  4119   interface(MEMORY_INTER) %{
  4120     base($reg);
  4121     index(0x0);
  4122     scale(0x0);
  4123     disp($offset);
  4124   %}
  4125 %}
  4127 // Indirect with simm13 Offset minus 7
  4128 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4129   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4130   match(AddP reg offset);
  4132   op_cost(100);
  4133   format %{ "[$reg + $offset]" %}
  4134   interface(MEMORY_INTER) %{
  4135     base($reg);
  4136     index(0x0);
  4137     scale(0x0);
  4138     disp($offset);
  4139   %}
  4140 %}
  4142 // Note:  Intel has a swapped version also, like this:
  4143 //operand indOffsetX(iRegI reg, immP offset) %{
  4144 //  constraint(ALLOC_IN_RC(int_reg));
  4145 //  match(AddP offset reg);
  4146 //
  4147 //  op_cost(100);
  4148 //  format %{ "[$reg + $offset]" %}
  4149 //  interface(MEMORY_INTER) %{
  4150 //    base($reg);
  4151 //    index(0x0);
  4152 //    scale(0x0);
  4153 //    disp($offset);
  4154 //  %}
  4155 //%}
  4156 //// However, it doesn't make sense for SPARC, since
  4157 // we have no particularly good way to embed oops in
  4158 // single instructions.
  4160 // Indirect with Register Index
  4161 operand indIndex(iRegP addr, iRegX index) %{
  4162   constraint(ALLOC_IN_RC(ptr_reg));
  4163   match(AddP addr index);
  4165   op_cost(100);
  4166   format %{ "[$addr + $index]" %}
  4167   interface(MEMORY_INTER) %{
  4168     base($addr);
  4169     index($index);
  4170     scale(0x0);
  4171     disp(0x0);
  4172   %}
  4173 %}
  4175 //----------Special Memory Operands--------------------------------------------
  4176 // Stack Slot Operand - This operand is used for loading and storing temporary
  4177 //                      values on the stack where a match requires a value to
  4178 //                      flow through memory.
  4179 operand stackSlotI(sRegI reg) %{
  4180   constraint(ALLOC_IN_RC(stack_slots));
  4181   op_cost(100);
  4182   //match(RegI);
  4183   format %{ "[$reg]" %}
  4184   interface(MEMORY_INTER) %{
  4185     base(0xE);   // R_SP
  4186     index(0x0);
  4187     scale(0x0);
  4188     disp($reg);  // Stack Offset
  4189   %}
  4190 %}
  4192 operand stackSlotP(sRegP reg) %{
  4193   constraint(ALLOC_IN_RC(stack_slots));
  4194   op_cost(100);
  4195   //match(RegP);
  4196   format %{ "[$reg]" %}
  4197   interface(MEMORY_INTER) %{
  4198     base(0xE);   // R_SP
  4199     index(0x0);
  4200     scale(0x0);
  4201     disp($reg);  // Stack Offset
  4202   %}
  4203 %}
  4205 operand stackSlotF(sRegF reg) %{
  4206   constraint(ALLOC_IN_RC(stack_slots));
  4207   op_cost(100);
  4208   //match(RegF);
  4209   format %{ "[$reg]" %}
  4210   interface(MEMORY_INTER) %{
  4211     base(0xE);   // R_SP
  4212     index(0x0);
  4213     scale(0x0);
  4214     disp($reg);  // Stack Offset
  4215   %}
  4216 %}
  4217 operand stackSlotD(sRegD reg) %{
  4218   constraint(ALLOC_IN_RC(stack_slots));
  4219   op_cost(100);
  4220   //match(RegD);
  4221   format %{ "[$reg]" %}
  4222   interface(MEMORY_INTER) %{
  4223     base(0xE);   // R_SP
  4224     index(0x0);
  4225     scale(0x0);
  4226     disp($reg);  // Stack Offset
  4227   %}
  4228 %}
  4229 operand stackSlotL(sRegL reg) %{
  4230   constraint(ALLOC_IN_RC(stack_slots));
  4231   op_cost(100);
  4232   //match(RegL);
  4233   format %{ "[$reg]" %}
  4234   interface(MEMORY_INTER) %{
  4235     base(0xE);   // R_SP
  4236     index(0x0);
  4237     scale(0x0);
  4238     disp($reg);  // Stack Offset
  4239   %}
  4240 %}
  4242 // Operands for expressing Control Flow
  4243 // NOTE:  Label is a predefined operand which should not be redefined in
  4244 //        the AD file.  It is generically handled within the ADLC.
  4246 //----------Conditional Branch Operands----------------------------------------
  4247 // Comparison Op  - This is the operation of the comparison, and is limited to
  4248 //                  the following set of codes:
  4249 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4250 //
  4251 // Other attributes of the comparison, such as unsignedness, are specified
  4252 // by the comparison instruction that sets a condition code flags register.
  4253 // That result is represented by a flags operand whose subtype is appropriate
  4254 // to the unsignedness (etc.) of the comparison.
  4255 //
  4256 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4257 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4258 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4260 operand cmpOp() %{
  4261   match(Bool);
  4263   format %{ "" %}
  4264   interface(COND_INTER) %{
  4265     equal(0x1);
  4266     not_equal(0x9);
  4267     less(0x3);
  4268     greater_equal(0xB);
  4269     less_equal(0x2);
  4270     greater(0xA);
  4271   %}
  4272 %}
  4274 // Comparison Op, unsigned
  4275 operand cmpOpU() %{
  4276   match(Bool);
  4278   format %{ "u" %}
  4279   interface(COND_INTER) %{
  4280     equal(0x1);
  4281     not_equal(0x9);
  4282     less(0x5);
  4283     greater_equal(0xD);
  4284     less_equal(0x4);
  4285     greater(0xC);
  4286   %}
  4287 %}
  4289 // Comparison Op, pointer (same as unsigned)
  4290 operand cmpOpP() %{
  4291   match(Bool);
  4293   format %{ "p" %}
  4294   interface(COND_INTER) %{
  4295     equal(0x1);
  4296     not_equal(0x9);
  4297     less(0x5);
  4298     greater_equal(0xD);
  4299     less_equal(0x4);
  4300     greater(0xC);
  4301   %}
  4302 %}
  4304 // Comparison Op, branch-register encoding
  4305 operand cmpOp_reg() %{
  4306   match(Bool);
  4308   format %{ "" %}
  4309   interface(COND_INTER) %{
  4310     equal        (0x1);
  4311     not_equal    (0x5);
  4312     less         (0x3);
  4313     greater_equal(0x7);
  4314     less_equal   (0x2);
  4315     greater      (0x6);
  4316   %}
  4317 %}
  4319 // Comparison Code, floating, unordered same as less
  4320 operand cmpOpF() %{
  4321   match(Bool);
  4323   format %{ "fl" %}
  4324   interface(COND_INTER) %{
  4325     equal(0x9);
  4326     not_equal(0x1);
  4327     less(0x3);
  4328     greater_equal(0xB);
  4329     less_equal(0xE);
  4330     greater(0x6);
  4331   %}
  4332 %}
  4334 // Used by long compare
  4335 operand cmpOp_commute() %{
  4336   match(Bool);
  4338   format %{ "" %}
  4339   interface(COND_INTER) %{
  4340     equal(0x1);
  4341     not_equal(0x9);
  4342     less(0xA);
  4343     greater_equal(0x2);
  4344     less_equal(0xB);
  4345     greater(0x3);
  4346   %}
  4347 %}
  4349 //----------OPERAND CLASSES----------------------------------------------------
  4350 // Operand Classes are groups of operands that are used to simplify
  4351 // instruction definitions by not requiring the AD writer to specify separate
  4352 // instructions for every form of operand when the instruction accepts
  4353 // multiple operand types with the same basic encoding and format.  The classic
  4354 // case of this is memory operands.
  4355 opclass memory( indirect, indOffset13, indIndex );
  4356 opclass indIndexMemory( indIndex );
  4358 //----------PIPELINE-----------------------------------------------------------
  4359 pipeline %{
  4361 //----------ATTRIBUTES---------------------------------------------------------
  4362 attributes %{
  4363   fixed_size_instructions;           // Fixed size instructions
  4364   branch_has_delay_slot;             // Branch has delay slot following
  4365   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4366   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4367   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4368   instruction_fetch_units = 1;       // of 16 bytes
  4370   // List of nop instructions
  4371   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4372 %}
  4374 //----------RESOURCES----------------------------------------------------------
  4375 // Resources are the functional units available to the machine
  4376 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4378 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4379 // Pipeline Description specifies the stages in the machine's pipeline
  4381 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4383 //----------PIPELINE CLASSES---------------------------------------------------
  4384 // Pipeline Classes describe the stages in which input and output are
  4385 // referenced by the hardware pipeline.
  4387 // Integer ALU reg-reg operation
  4388 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4389     single_instruction;
  4390     dst   : E(write);
  4391     src1  : R(read);
  4392     src2  : R(read);
  4393     IALU  : R;
  4394 %}
  4396 // Integer ALU reg-reg long operation
  4397 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4398     instruction_count(2);
  4399     dst   : E(write);
  4400     src1  : R(read);
  4401     src2  : R(read);
  4402     IALU  : R;
  4403     IALU  : R;
  4404 %}
  4406 // Integer ALU reg-reg long dependent operation
  4407 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4408     instruction_count(1); multiple_bundles;
  4409     dst   : E(write);
  4410     src1  : R(read);
  4411     src2  : R(read);
  4412     cr    : E(write);
  4413     IALU  : R(2);
  4414 %}
  4416 // Integer ALU reg-imm operaion
  4417 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4418     single_instruction;
  4419     dst   : E(write);
  4420     src1  : R(read);
  4421     IALU  : R;
  4422 %}
  4424 // Integer ALU reg-reg operation with condition code
  4425 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4426     single_instruction;
  4427     dst   : E(write);
  4428     cr    : E(write);
  4429     src1  : R(read);
  4430     src2  : R(read);
  4431     IALU  : R;
  4432 %}
  4434 // Integer ALU reg-imm operation with condition code
  4435 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4436     single_instruction;
  4437     dst   : E(write);
  4438     cr    : E(write);
  4439     src1  : R(read);
  4440     IALU  : R;
  4441 %}
  4443 // Integer ALU zero-reg operation
  4444 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4445     single_instruction;
  4446     dst   : E(write);
  4447     src2  : R(read);
  4448     IALU  : R;
  4449 %}
  4451 // Integer ALU zero-reg operation with condition code only
  4452 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4453     single_instruction;
  4454     cr    : E(write);
  4455     src   : R(read);
  4456     IALU  : R;
  4457 %}
  4459 // Integer ALU reg-reg operation with condition code only
  4460 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4461     single_instruction;
  4462     cr    : E(write);
  4463     src1  : R(read);
  4464     src2  : R(read);
  4465     IALU  : R;
  4466 %}
  4468 // Integer ALU reg-imm operation with condition code only
  4469 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4470     single_instruction;
  4471     cr    : E(write);
  4472     src1  : R(read);
  4473     IALU  : R;
  4474 %}
  4476 // Integer ALU reg-reg-zero operation with condition code only
  4477 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4478     single_instruction;
  4479     cr    : E(write);
  4480     src1  : R(read);
  4481     src2  : R(read);
  4482     IALU  : R;
  4483 %}
  4485 // Integer ALU reg-imm-zero operation with condition code only
  4486 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4487     single_instruction;
  4488     cr    : E(write);
  4489     src1  : R(read);
  4490     IALU  : R;
  4491 %}
  4493 // Integer ALU reg-reg operation with condition code, src1 modified
  4494 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4495     single_instruction;
  4496     cr    : E(write);
  4497     src1  : E(write);
  4498     src1  : R(read);
  4499     src2  : R(read);
  4500     IALU  : R;
  4501 %}
  4503 // Integer ALU reg-imm operation with condition code, src1 modified
  4504 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4505     single_instruction;
  4506     cr    : E(write);
  4507     src1  : E(write);
  4508     src1  : R(read);
  4509     IALU  : R;
  4510 %}
  4512 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4513     multiple_bundles;
  4514     dst   : E(write)+4;
  4515     cr    : E(write);
  4516     src1  : R(read);
  4517     src2  : R(read);
  4518     IALU  : R(3);
  4519     BR    : R(2);
  4520 %}
  4522 // Integer ALU operation
  4523 pipe_class ialu_none(iRegI dst) %{
  4524     single_instruction;
  4525     dst   : E(write);
  4526     IALU  : R;
  4527 %}
  4529 // Integer ALU reg operation
  4530 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4531     single_instruction; may_have_no_code;
  4532     dst   : E(write);
  4533     src   : R(read);
  4534     IALU  : R;
  4535 %}
  4537 // Integer ALU reg conditional operation
  4538 // This instruction has a 1 cycle stall, and cannot execute
  4539 // in the same cycle as the instruction setting the condition
  4540 // code. We kludge this by pretending to read the condition code
  4541 // 1 cycle earlier, and by marking the functional units as busy
  4542 // for 2 cycles with the result available 1 cycle later than
  4543 // is really the case.
  4544 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4545     single_instruction;
  4546     op2_out : C(write);
  4547     op1     : R(read);
  4548     cr      : R(read);       // This is really E, with a 1 cycle stall
  4549     BR      : R(2);
  4550     MS      : R(2);
  4551 %}
  4553 #ifdef _LP64
  4554 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4555     instruction_count(1); multiple_bundles;
  4556     dst     : C(write)+1;
  4557     src     : R(read)+1;
  4558     IALU    : R(1);
  4559     BR      : E(2);
  4560     MS      : E(2);
  4561 %}
  4562 #endif
  4564 // Integer ALU reg operation
  4565 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4566     single_instruction; may_have_no_code;
  4567     dst   : E(write);
  4568     src   : R(read);
  4569     IALU  : R;
  4570 %}
  4571 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4572     single_instruction; may_have_no_code;
  4573     dst   : E(write);
  4574     src   : R(read);
  4575     IALU  : R;
  4576 %}
  4578 // Two integer ALU reg operations
  4579 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4580     instruction_count(2);
  4581     dst   : E(write);
  4582     src   : R(read);
  4583     A0    : R;
  4584     A1    : R;
  4585 %}
  4587 // Two integer ALU reg operations
  4588 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4589     instruction_count(2); may_have_no_code;
  4590     dst   : E(write);
  4591     src   : R(read);
  4592     A0    : R;
  4593     A1    : R;
  4594 %}
  4596 // Integer ALU imm operation
  4597 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4598     single_instruction;
  4599     dst   : E(write);
  4600     IALU  : R;
  4601 %}
  4603 // Integer ALU reg-reg with carry operation
  4604 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4605     single_instruction;
  4606     dst   : E(write);
  4607     src1  : R(read);
  4608     src2  : R(read);
  4609     IALU  : R;
  4610 %}
  4612 // Integer ALU cc operation
  4613 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4614     single_instruction;
  4615     dst   : E(write);
  4616     cc    : R(read);
  4617     IALU  : R;
  4618 %}
  4620 // Integer ALU cc / second IALU operation
  4621 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4622     instruction_count(1); multiple_bundles;
  4623     dst   : E(write)+1;
  4624     src   : R(read);
  4625     IALU  : R;
  4626 %}
  4628 // Integer ALU cc / second IALU operation
  4629 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4630     instruction_count(1); multiple_bundles;
  4631     dst   : E(write)+1;
  4632     p     : R(read);
  4633     q     : R(read);
  4634     IALU  : R;
  4635 %}
  4637 // Integer ALU hi-lo-reg operation
  4638 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4639     instruction_count(1); multiple_bundles;
  4640     dst   : E(write)+1;
  4641     IALU  : R(2);
  4642 %}
  4644 // Float ALU hi-lo-reg operation (with temp)
  4645 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4646     instruction_count(1); multiple_bundles;
  4647     dst   : E(write)+1;
  4648     IALU  : R(2);
  4649 %}
  4651 // Long Constant
  4652 pipe_class loadConL( iRegL dst, immL src ) %{
  4653     instruction_count(2); multiple_bundles;
  4654     dst   : E(write)+1;
  4655     IALU  : R(2);
  4656     IALU  : R(2);
  4657 %}
  4659 // Pointer Constant
  4660 pipe_class loadConP( iRegP dst, immP src ) %{
  4661     instruction_count(0); multiple_bundles;
  4662     fixed_latency(6);
  4663 %}
  4665 // Polling Address
  4666 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4667 #ifdef _LP64
  4668     instruction_count(0); multiple_bundles;
  4669     fixed_latency(6);
  4670 #else
  4671     dst   : E(write);
  4672     IALU  : R;
  4673 #endif
  4674 %}
  4676 // Long Constant small
  4677 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4678     instruction_count(2);
  4679     dst   : E(write);
  4680     IALU  : R;
  4681     IALU  : R;
  4682 %}
  4684 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4685 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4686     instruction_count(1); multiple_bundles;
  4687     src   : R(read);
  4688     dst   : M(write)+1;
  4689     IALU  : R;
  4690     MS    : E;
  4691 %}
  4693 // Integer ALU nop operation
  4694 pipe_class ialu_nop() %{
  4695     single_instruction;
  4696     IALU  : R;
  4697 %}
  4699 // Integer ALU nop operation
  4700 pipe_class ialu_nop_A0() %{
  4701     single_instruction;
  4702     A0    : R;
  4703 %}
  4705 // Integer ALU nop operation
  4706 pipe_class ialu_nop_A1() %{
  4707     single_instruction;
  4708     A1    : R;
  4709 %}
  4711 // Integer Multiply reg-reg operation
  4712 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4713     single_instruction;
  4714     dst   : E(write);
  4715     src1  : R(read);
  4716     src2  : R(read);
  4717     MS    : R(5);
  4718 %}
  4720 // Integer Multiply reg-imm operation
  4721 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4722     single_instruction;
  4723     dst   : E(write);
  4724     src1  : R(read);
  4725     MS    : R(5);
  4726 %}
  4728 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4729     single_instruction;
  4730     dst   : E(write)+4;
  4731     src1  : R(read);
  4732     src2  : R(read);
  4733     MS    : R(6);
  4734 %}
  4736 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4737     single_instruction;
  4738     dst   : E(write)+4;
  4739     src1  : R(read);
  4740     MS    : R(6);
  4741 %}
  4743 // Integer Divide reg-reg
  4744 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4745     instruction_count(1); multiple_bundles;
  4746     dst   : E(write);
  4747     temp  : E(write);
  4748     src1  : R(read);
  4749     src2  : R(read);
  4750     temp  : R(read);
  4751     MS    : R(38);
  4752 %}
  4754 // Integer Divide reg-imm
  4755 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4756     instruction_count(1); multiple_bundles;
  4757     dst   : E(write);
  4758     temp  : E(write);
  4759     src1  : R(read);
  4760     temp  : R(read);
  4761     MS    : R(38);
  4762 %}
  4764 // Long Divide
  4765 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4766     dst  : E(write)+71;
  4767     src1 : R(read);
  4768     src2 : R(read)+1;
  4769     MS   : R(70);
  4770 %}
  4772 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4773     dst  : E(write)+71;
  4774     src1 : R(read);
  4775     MS   : R(70);
  4776 %}
  4778 // Floating Point Add Float
  4779 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4780     single_instruction;
  4781     dst   : X(write);
  4782     src1  : E(read);
  4783     src2  : E(read);
  4784     FA    : R;
  4785 %}
  4787 // Floating Point Add Double
  4788 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4789     single_instruction;
  4790     dst   : X(write);
  4791     src1  : E(read);
  4792     src2  : E(read);
  4793     FA    : R;
  4794 %}
  4796 // Floating Point Conditional Move based on integer flags
  4797 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4798     single_instruction;
  4799     dst   : X(write);
  4800     src   : E(read);
  4801     cr    : R(read);
  4802     FA    : R(2);
  4803     BR    : R(2);
  4804 %}
  4806 // Floating Point Conditional Move based on integer flags
  4807 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4808     single_instruction;
  4809     dst   : X(write);
  4810     src   : E(read);
  4811     cr    : R(read);
  4812     FA    : R(2);
  4813     BR    : R(2);
  4814 %}
  4816 // Floating Point Multiply Float
  4817 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4818     single_instruction;
  4819     dst   : X(write);
  4820     src1  : E(read);
  4821     src2  : E(read);
  4822     FM    : R;
  4823 %}
  4825 // Floating Point Multiply Double
  4826 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4827     single_instruction;
  4828     dst   : X(write);
  4829     src1  : E(read);
  4830     src2  : E(read);
  4831     FM    : R;
  4832 %}
  4834 // Floating Point Divide Float
  4835 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4836     single_instruction;
  4837     dst   : X(write);
  4838     src1  : E(read);
  4839     src2  : E(read);
  4840     FM    : R;
  4841     FDIV  : C(14);
  4842 %}
  4844 // Floating Point Divide Double
  4845 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4846     single_instruction;
  4847     dst   : X(write);
  4848     src1  : E(read);
  4849     src2  : E(read);
  4850     FM    : R;
  4851     FDIV  : C(17);
  4852 %}
  4854 // Floating Point Move/Negate/Abs Float
  4855 pipe_class faddF_reg(regF dst, regF src) %{
  4856     single_instruction;
  4857     dst   : W(write);
  4858     src   : E(read);
  4859     FA    : R(1);
  4860 %}
  4862 // Floating Point Move/Negate/Abs Double
  4863 pipe_class faddD_reg(regD dst, regD src) %{
  4864     single_instruction;
  4865     dst   : W(write);
  4866     src   : E(read);
  4867     FA    : R;
  4868 %}
  4870 // Floating Point Convert F->D
  4871 pipe_class fcvtF2D(regD dst, regF src) %{
  4872     single_instruction;
  4873     dst   : X(write);
  4874     src   : E(read);
  4875     FA    : R;
  4876 %}
  4878 // Floating Point Convert I->D
  4879 pipe_class fcvtI2D(regD dst, regF src) %{
  4880     single_instruction;
  4881     dst   : X(write);
  4882     src   : E(read);
  4883     FA    : R;
  4884 %}
  4886 // Floating Point Convert LHi->D
  4887 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4888     single_instruction;
  4889     dst   : X(write);
  4890     src   : E(read);
  4891     FA    : R;
  4892 %}
  4894 // Floating Point Convert L->D
  4895 pipe_class fcvtL2D(regD dst, regF src) %{
  4896     single_instruction;
  4897     dst   : X(write);
  4898     src   : E(read);
  4899     FA    : R;
  4900 %}
  4902 // Floating Point Convert L->F
  4903 pipe_class fcvtL2F(regD dst, regF src) %{
  4904     single_instruction;
  4905     dst   : X(write);
  4906     src   : E(read);
  4907     FA    : R;
  4908 %}
  4910 // Floating Point Convert D->F
  4911 pipe_class fcvtD2F(regD dst, regF src) %{
  4912     single_instruction;
  4913     dst   : X(write);
  4914     src   : E(read);
  4915     FA    : R;
  4916 %}
  4918 // Floating Point Convert I->L
  4919 pipe_class fcvtI2L(regD dst, regF src) %{
  4920     single_instruction;
  4921     dst   : X(write);
  4922     src   : E(read);
  4923     FA    : R;
  4924 %}
  4926 // Floating Point Convert D->F
  4927 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4928     instruction_count(1); multiple_bundles;
  4929     dst   : X(write)+6;
  4930     src   : E(read);
  4931     FA    : R;
  4932 %}
  4934 // Floating Point Convert D->L
  4935 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4936     instruction_count(1); multiple_bundles;
  4937     dst   : X(write)+6;
  4938     src   : E(read);
  4939     FA    : R;
  4940 %}
  4942 // Floating Point Convert F->I
  4943 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4944     instruction_count(1); multiple_bundles;
  4945     dst   : X(write)+6;
  4946     src   : E(read);
  4947     FA    : R;
  4948 %}
  4950 // Floating Point Convert F->L
  4951 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4952     instruction_count(1); multiple_bundles;
  4953     dst   : X(write)+6;
  4954     src   : E(read);
  4955     FA    : R;
  4956 %}
  4958 // Floating Point Convert I->F
  4959 pipe_class fcvtI2F(regF dst, regF src) %{
  4960     single_instruction;
  4961     dst   : X(write);
  4962     src   : E(read);
  4963     FA    : R;
  4964 %}
  4966 // Floating Point Compare
  4967 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4968     single_instruction;
  4969     cr    : X(write);
  4970     src1  : E(read);
  4971     src2  : E(read);
  4972     FA    : R;
  4973 %}
  4975 // Floating Point Compare
  4976 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4977     single_instruction;
  4978     cr    : X(write);
  4979     src1  : E(read);
  4980     src2  : E(read);
  4981     FA    : R;
  4982 %}
  4984 // Floating Add Nop
  4985 pipe_class fadd_nop() %{
  4986     single_instruction;
  4987     FA  : R;
  4988 %}
  4990 // Integer Store to Memory
  4991 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4992     single_instruction;
  4993     mem   : R(read);
  4994     src   : C(read);
  4995     MS    : R;
  4996 %}
  4998 // Integer Store to Memory
  4999 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5000     single_instruction;
  5001     mem   : R(read);
  5002     src   : C(read);
  5003     MS    : R;
  5004 %}
  5006 // Integer Store Zero to Memory
  5007 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5008     single_instruction;
  5009     mem   : R(read);
  5010     MS    : R;
  5011 %}
  5013 // Special Stack Slot Store
  5014 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5015     single_instruction;
  5016     stkSlot : R(read);
  5017     src     : C(read);
  5018     MS      : R;
  5019 %}
  5021 // Special Stack Slot Store
  5022 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5023     instruction_count(2); multiple_bundles;
  5024     stkSlot : R(read);
  5025     src     : C(read);
  5026     MS      : R(2);
  5027 %}
  5029 // Float Store
  5030 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5031     single_instruction;
  5032     mem : R(read);
  5033     src : C(read);
  5034     MS  : R;
  5035 %}
  5037 // Float Store
  5038 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5039     single_instruction;
  5040     mem : R(read);
  5041     MS  : R;
  5042 %}
  5044 // Double Store
  5045 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5046     instruction_count(1);
  5047     mem : R(read);
  5048     src : C(read);
  5049     MS  : R;
  5050 %}
  5052 // Double Store
  5053 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5054     single_instruction;
  5055     mem : R(read);
  5056     MS  : R;
  5057 %}
  5059 // Special Stack Slot Float Store
  5060 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5061     single_instruction;
  5062     stkSlot : R(read);
  5063     src     : C(read);
  5064     MS      : R;
  5065 %}
  5067 // Special Stack Slot Double Store
  5068 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5069     single_instruction;
  5070     stkSlot : R(read);
  5071     src     : C(read);
  5072     MS      : R;
  5073 %}
  5075 // Integer Load (when sign bit propagation not needed)
  5076 pipe_class iload_mem(iRegI dst, memory mem) %{
  5077     single_instruction;
  5078     mem : R(read);
  5079     dst : C(write);
  5080     MS  : R;
  5081 %}
  5083 // Integer Load from stack operand
  5084 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5085     single_instruction;
  5086     mem : R(read);
  5087     dst : C(write);
  5088     MS  : R;
  5089 %}
  5091 // Integer Load (when sign bit propagation or masking is needed)
  5092 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5093     single_instruction;
  5094     mem : R(read);
  5095     dst : M(write);
  5096     MS  : R;
  5097 %}
  5099 // Float Load
  5100 pipe_class floadF_mem(regF dst, memory mem) %{
  5101     single_instruction;
  5102     mem : R(read);
  5103     dst : M(write);
  5104     MS  : R;
  5105 %}
  5107 // Float Load
  5108 pipe_class floadD_mem(regD dst, memory mem) %{
  5109     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5110     mem : R(read);
  5111     dst : M(write);
  5112     MS  : R;
  5113 %}
  5115 // Float Load
  5116 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5117     single_instruction;
  5118     stkSlot : R(read);
  5119     dst : M(write);
  5120     MS  : R;
  5121 %}
  5123 // Float Load
  5124 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5125     single_instruction;
  5126     stkSlot : R(read);
  5127     dst : M(write);
  5128     MS  : R;
  5129 %}
  5131 // Memory Nop
  5132 pipe_class mem_nop() %{
  5133     single_instruction;
  5134     MS  : R;
  5135 %}
  5137 pipe_class sethi(iRegP dst, immI src) %{
  5138     single_instruction;
  5139     dst  : E(write);
  5140     IALU : R;
  5141 %}
  5143 pipe_class loadPollP(iRegP poll) %{
  5144     single_instruction;
  5145     poll : R(read);
  5146     MS   : R;
  5147 %}
  5149 pipe_class br(Universe br, label labl) %{
  5150     single_instruction_with_delay_slot;
  5151     BR  : R;
  5152 %}
  5154 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5155     single_instruction_with_delay_slot;
  5156     cr    : E(read);
  5157     BR    : R;
  5158 %}
  5160 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5161     single_instruction_with_delay_slot;
  5162     op1 : E(read);
  5163     BR  : R;
  5164     MS  : R;
  5165 %}
  5167 // Compare and branch
  5168 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5169     instruction_count(2); has_delay_slot;
  5170     cr    : E(write);
  5171     src1  : R(read);
  5172     src2  : R(read);
  5173     IALU  : R;
  5174     BR    : R;
  5175 %}
  5177 // Compare and branch
  5178 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5179     instruction_count(2); has_delay_slot;
  5180     cr    : E(write);
  5181     src1  : R(read);
  5182     IALU  : R;
  5183     BR    : R;
  5184 %}
  5186 // Compare and branch using cbcond
  5187 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5188     single_instruction;
  5189     src1  : E(read);
  5190     src2  : E(read);
  5191     IALU  : R;
  5192     BR    : R;
  5193 %}
  5195 // Compare and branch using cbcond
  5196 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5197     single_instruction;
  5198     src1  : E(read);
  5199     IALU  : R;
  5200     BR    : R;
  5201 %}
  5203 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5204     single_instruction_with_delay_slot;
  5205     cr    : E(read);
  5206     BR    : R;
  5207 %}
  5209 pipe_class br_nop() %{
  5210     single_instruction;
  5211     BR  : R;
  5212 %}
  5214 pipe_class simple_call(method meth) %{
  5215     instruction_count(2); multiple_bundles; force_serialization;
  5216     fixed_latency(100);
  5217     BR  : R(1);
  5218     MS  : R(1);
  5219     A0  : R(1);
  5220 %}
  5222 pipe_class compiled_call(method meth) %{
  5223     instruction_count(1); multiple_bundles; force_serialization;
  5224     fixed_latency(100);
  5225     MS  : R(1);
  5226 %}
  5228 pipe_class call(method meth) %{
  5229     instruction_count(0); multiple_bundles; force_serialization;
  5230     fixed_latency(100);
  5231 %}
  5233 pipe_class tail_call(Universe ignore, label labl) %{
  5234     single_instruction; has_delay_slot;
  5235     fixed_latency(100);
  5236     BR  : R(1);
  5237     MS  : R(1);
  5238 %}
  5240 pipe_class ret(Universe ignore) %{
  5241     single_instruction; has_delay_slot;
  5242     BR  : R(1);
  5243     MS  : R(1);
  5244 %}
  5246 pipe_class ret_poll(g3RegP poll) %{
  5247     instruction_count(3); has_delay_slot;
  5248     poll : E(read);
  5249     MS   : R;
  5250 %}
  5252 // The real do-nothing guy
  5253 pipe_class empty( ) %{
  5254     instruction_count(0);
  5255 %}
  5257 pipe_class long_memory_op() %{
  5258     instruction_count(0); multiple_bundles; force_serialization;
  5259     fixed_latency(25);
  5260     MS  : R(1);
  5261 %}
  5263 // Check-cast
  5264 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5265     array : R(read);
  5266     match  : R(read);
  5267     IALU   : R(2);
  5268     BR     : R(2);
  5269     MS     : R;
  5270 %}
  5272 // Convert FPU flags into +1,0,-1
  5273 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5274     src1  : E(read);
  5275     src2  : E(read);
  5276     dst   : E(write);
  5277     FA    : R;
  5278     MS    : R(2);
  5279     BR    : R(2);
  5280 %}
  5282 // Compare for p < q, and conditionally add y
  5283 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5284     p     : E(read);
  5285     q     : E(read);
  5286     y     : E(read);
  5287     IALU  : R(3)
  5288 %}
  5290 // Perform a compare, then move conditionally in a branch delay slot.
  5291 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5292     src2   : E(read);
  5293     srcdst : E(read);
  5294     IALU   : R;
  5295     BR     : R;
  5296 %}
  5298 // Define the class for the Nop node
  5299 define %{
  5300    MachNop = ialu_nop;
  5301 %}
  5303 %}
  5305 //----------INSTRUCTIONS-------------------------------------------------------
  5307 //------------Special Stack Slot instructions - no match rules-----------------
  5308 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5309   // No match rule to avoid chain rule match.
  5310   effect(DEF dst, USE src);
  5311   ins_cost(MEMORY_REF_COST);
  5312   size(4);
  5313   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5314   opcode(Assembler::ldf_op3);
  5315   ins_encode(simple_form3_mem_reg(src, dst));
  5316   ins_pipe(floadF_stk);
  5317 %}
  5319 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5320   // No match rule to avoid chain rule match.
  5321   effect(DEF dst, USE src);
  5322   ins_cost(MEMORY_REF_COST);
  5323   size(4);
  5324   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5325   opcode(Assembler::lddf_op3);
  5326   ins_encode(simple_form3_mem_reg(src, dst));
  5327   ins_pipe(floadD_stk);
  5328 %}
  5330 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5331   // No match rule to avoid chain rule match.
  5332   effect(DEF dst, USE src);
  5333   ins_cost(MEMORY_REF_COST);
  5334   size(4);
  5335   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5336   opcode(Assembler::stf_op3);
  5337   ins_encode(simple_form3_mem_reg(dst, src));
  5338   ins_pipe(fstoreF_stk_reg);
  5339 %}
  5341 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5342   // No match rule to avoid chain rule match.
  5343   effect(DEF dst, USE src);
  5344   ins_cost(MEMORY_REF_COST);
  5345   size(4);
  5346   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5347   opcode(Assembler::stdf_op3);
  5348   ins_encode(simple_form3_mem_reg(dst, src));
  5349   ins_pipe(fstoreD_stk_reg);
  5350 %}
  5352 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5353   effect(DEF dst, USE src);
  5354   ins_cost(MEMORY_REF_COST*2);
  5355   size(8);
  5356   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5357             "STW    R_G0,$dst.lo" %}
  5358   opcode(Assembler::stw_op3);
  5359   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5360   ins_pipe(lstoreI_stk_reg);
  5361 %}
  5363 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5364   // No match rule to avoid chain rule match.
  5365   effect(DEF dst, USE src);
  5366   ins_cost(MEMORY_REF_COST);
  5367   size(4);
  5368   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5369   opcode(Assembler::stx_op3);
  5370   ins_encode(simple_form3_mem_reg( dst, src ) );
  5371   ins_pipe(istore_stk_reg);
  5372 %}
  5374 //---------- Chain stack slots between similar types --------
  5376 // Load integer from stack slot
  5377 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5378   match(Set dst src);
  5379   ins_cost(MEMORY_REF_COST);
  5381   size(4);
  5382   format %{ "LDUW   $src,$dst\t!stk" %}
  5383   opcode(Assembler::lduw_op3);
  5384   ins_encode(simple_form3_mem_reg( src, dst ) );
  5385   ins_pipe(iload_mem);
  5386 %}
  5388 // Store integer to stack slot
  5389 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5390   match(Set dst src);
  5391   ins_cost(MEMORY_REF_COST);
  5393   size(4);
  5394   format %{ "STW    $src,$dst\t!stk" %}
  5395   opcode(Assembler::stw_op3);
  5396   ins_encode(simple_form3_mem_reg( dst, src ) );
  5397   ins_pipe(istore_mem_reg);
  5398 %}
  5400 // Load long from stack slot
  5401 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5402   match(Set dst src);
  5404   ins_cost(MEMORY_REF_COST);
  5405   size(4);
  5406   format %{ "LDX    $src,$dst\t! long" %}
  5407   opcode(Assembler::ldx_op3);
  5408   ins_encode(simple_form3_mem_reg( src, dst ) );
  5409   ins_pipe(iload_mem);
  5410 %}
  5412 // Store long to stack slot
  5413 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5414   match(Set dst src);
  5416   ins_cost(MEMORY_REF_COST);
  5417   size(4);
  5418   format %{ "STX    $src,$dst\t! long" %}
  5419   opcode(Assembler::stx_op3);
  5420   ins_encode(simple_form3_mem_reg( dst, src ) );
  5421   ins_pipe(istore_mem_reg);
  5422 %}
  5424 #ifdef _LP64
  5425 // Load pointer from stack slot, 64-bit encoding
  5426 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5427   match(Set dst src);
  5428   ins_cost(MEMORY_REF_COST);
  5429   size(4);
  5430   format %{ "LDX    $src,$dst\t!ptr" %}
  5431   opcode(Assembler::ldx_op3);
  5432   ins_encode(simple_form3_mem_reg( src, dst ) );
  5433   ins_pipe(iload_mem);
  5434 %}
  5436 // Store pointer to stack slot
  5437 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5438   match(Set dst src);
  5439   ins_cost(MEMORY_REF_COST);
  5440   size(4);
  5441   format %{ "STX    $src,$dst\t!ptr" %}
  5442   opcode(Assembler::stx_op3);
  5443   ins_encode(simple_form3_mem_reg( dst, src ) );
  5444   ins_pipe(istore_mem_reg);
  5445 %}
  5446 #else // _LP64
  5447 // Load pointer from stack slot, 32-bit encoding
  5448 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5449   match(Set dst src);
  5450   ins_cost(MEMORY_REF_COST);
  5451   format %{ "LDUW   $src,$dst\t!ptr" %}
  5452   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5453   ins_encode(simple_form3_mem_reg( src, dst ) );
  5454   ins_pipe(iload_mem);
  5455 %}
  5457 // Store pointer to stack slot
  5458 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5459   match(Set dst src);
  5460   ins_cost(MEMORY_REF_COST);
  5461   format %{ "STW    $src,$dst\t!ptr" %}
  5462   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5463   ins_encode(simple_form3_mem_reg( dst, src ) );
  5464   ins_pipe(istore_mem_reg);
  5465 %}
  5466 #endif // _LP64
  5468 //------------Special Nop instructions for bundling - no match rules-----------
  5469 // Nop using the A0 functional unit
  5470 instruct Nop_A0() %{
  5471   ins_cost(0);
  5473   format %{ "NOP    ! Alu Pipeline" %}
  5474   opcode(Assembler::or_op3, Assembler::arith_op);
  5475   ins_encode( form2_nop() );
  5476   ins_pipe(ialu_nop_A0);
  5477 %}
  5479 // Nop using the A1 functional unit
  5480 instruct Nop_A1( ) %{
  5481   ins_cost(0);
  5483   format %{ "NOP    ! Alu Pipeline" %}
  5484   opcode(Assembler::or_op3, Assembler::arith_op);
  5485   ins_encode( form2_nop() );
  5486   ins_pipe(ialu_nop_A1);
  5487 %}
  5489 // Nop using the memory functional unit
  5490 instruct Nop_MS( ) %{
  5491   ins_cost(0);
  5493   format %{ "NOP    ! Memory Pipeline" %}
  5494   ins_encode( emit_mem_nop );
  5495   ins_pipe(mem_nop);
  5496 %}
  5498 // Nop using the floating add functional unit
  5499 instruct Nop_FA( ) %{
  5500   ins_cost(0);
  5502   format %{ "NOP    ! Floating Add Pipeline" %}
  5503   ins_encode( emit_fadd_nop );
  5504   ins_pipe(fadd_nop);
  5505 %}
  5507 // Nop using the branch functional unit
  5508 instruct Nop_BR( ) %{
  5509   ins_cost(0);
  5511   format %{ "NOP    ! Branch Pipeline" %}
  5512   ins_encode( emit_br_nop );
  5513   ins_pipe(br_nop);
  5514 %}
  5516 //----------Load/Store/Move Instructions---------------------------------------
  5517 //----------Load Instructions--------------------------------------------------
  5518 // Load Byte (8bit signed)
  5519 instruct loadB(iRegI dst, memory mem) %{
  5520   match(Set dst (LoadB mem));
  5521   ins_cost(MEMORY_REF_COST);
  5523   size(4);
  5524   format %{ "LDSB   $mem,$dst\t! byte" %}
  5525   ins_encode %{
  5526     __ ldsb($mem$$Address, $dst$$Register);
  5527   %}
  5528   ins_pipe(iload_mask_mem);
  5529 %}
  5531 // Load Byte (8bit signed) into a Long Register
  5532 instruct loadB2L(iRegL dst, memory mem) %{
  5533   match(Set dst (ConvI2L (LoadB mem)));
  5534   ins_cost(MEMORY_REF_COST);
  5536   size(4);
  5537   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5538   ins_encode %{
  5539     __ ldsb($mem$$Address, $dst$$Register);
  5540   %}
  5541   ins_pipe(iload_mask_mem);
  5542 %}
  5544 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5545 instruct loadUB(iRegI dst, memory mem) %{
  5546   match(Set dst (LoadUB mem));
  5547   ins_cost(MEMORY_REF_COST);
  5549   size(4);
  5550   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5551   ins_encode %{
  5552     __ ldub($mem$$Address, $dst$$Register);
  5553   %}
  5554   ins_pipe(iload_mem);
  5555 %}
  5557 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5558 instruct loadUB2L(iRegL dst, memory mem) %{
  5559   match(Set dst (ConvI2L (LoadUB mem)));
  5560   ins_cost(MEMORY_REF_COST);
  5562   size(4);
  5563   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5564   ins_encode %{
  5565     __ ldub($mem$$Address, $dst$$Register);
  5566   %}
  5567   ins_pipe(iload_mem);
  5568 %}
  5570 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5571 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5572   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5573   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5575   size(2*4);
  5576   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5577             "AND    $dst,$mask,$dst" %}
  5578   ins_encode %{
  5579     __ ldub($mem$$Address, $dst$$Register);
  5580     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5581   %}
  5582   ins_pipe(iload_mem);
  5583 %}
  5585 // Load Short (16bit signed)
  5586 instruct loadS(iRegI dst, memory mem) %{
  5587   match(Set dst (LoadS mem));
  5588   ins_cost(MEMORY_REF_COST);
  5590   size(4);
  5591   format %{ "LDSH   $mem,$dst\t! short" %}
  5592   ins_encode %{
  5593     __ ldsh($mem$$Address, $dst$$Register);
  5594   %}
  5595   ins_pipe(iload_mask_mem);
  5596 %}
  5598 // Load Short (16 bit signed) to Byte (8 bit signed)
  5599 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5600   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5601   ins_cost(MEMORY_REF_COST);
  5603   size(4);
  5605   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5606   ins_encode %{
  5607     __ ldsb($mem$$Address, $dst$$Register, 1);
  5608   %}
  5609   ins_pipe(iload_mask_mem);
  5610 %}
  5612 // Load Short (16bit signed) into a Long Register
  5613 instruct loadS2L(iRegL dst, memory mem) %{
  5614   match(Set dst (ConvI2L (LoadS mem)));
  5615   ins_cost(MEMORY_REF_COST);
  5617   size(4);
  5618   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5619   ins_encode %{
  5620     __ ldsh($mem$$Address, $dst$$Register);
  5621   %}
  5622   ins_pipe(iload_mask_mem);
  5623 %}
  5625 // Load Unsigned Short/Char (16bit UNsigned)
  5626 instruct loadUS(iRegI dst, memory mem) %{
  5627   match(Set dst (LoadUS mem));
  5628   ins_cost(MEMORY_REF_COST);
  5630   size(4);
  5631   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5632   ins_encode %{
  5633     __ lduh($mem$$Address, $dst$$Register);
  5634   %}
  5635   ins_pipe(iload_mem);
  5636 %}
  5638 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5639 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5640   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5641   ins_cost(MEMORY_REF_COST);
  5643   size(4);
  5644   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5645   ins_encode %{
  5646     __ ldsb($mem$$Address, $dst$$Register, 1);
  5647   %}
  5648   ins_pipe(iload_mask_mem);
  5649 %}
  5651 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5652 instruct loadUS2L(iRegL dst, memory mem) %{
  5653   match(Set dst (ConvI2L (LoadUS mem)));
  5654   ins_cost(MEMORY_REF_COST);
  5656   size(4);
  5657   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5658   ins_encode %{
  5659     __ lduh($mem$$Address, $dst$$Register);
  5660   %}
  5661   ins_pipe(iload_mem);
  5662 %}
  5664 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5665 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5666   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5667   ins_cost(MEMORY_REF_COST);
  5669   size(4);
  5670   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5671   ins_encode %{
  5672     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5673   %}
  5674   ins_pipe(iload_mem);
  5675 %}
  5677 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5678 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5679   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5680   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5682   size(2*4);
  5683   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5684             "AND    $dst,$mask,$dst" %}
  5685   ins_encode %{
  5686     Register Rdst = $dst$$Register;
  5687     __ lduh($mem$$Address, Rdst);
  5688     __ and3(Rdst, $mask$$constant, Rdst);
  5689   %}
  5690   ins_pipe(iload_mem);
  5691 %}
  5693 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5694 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5695   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5696   effect(TEMP dst, TEMP tmp);
  5697   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5699   size((3+1)*4);  // set may use two instructions.
  5700   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5701             "SET    $mask,$tmp\n\t"
  5702             "AND    $dst,$tmp,$dst" %}
  5703   ins_encode %{
  5704     Register Rdst = $dst$$Register;
  5705     Register Rtmp = $tmp$$Register;
  5706     __ lduh($mem$$Address, Rdst);
  5707     __ set($mask$$constant, Rtmp);
  5708     __ and3(Rdst, Rtmp, Rdst);
  5709   %}
  5710   ins_pipe(iload_mem);
  5711 %}
  5713 // Load Integer
  5714 instruct loadI(iRegI dst, memory mem) %{
  5715   match(Set dst (LoadI mem));
  5716   ins_cost(MEMORY_REF_COST);
  5718   size(4);
  5719   format %{ "LDUW   $mem,$dst\t! int" %}
  5720   ins_encode %{
  5721     __ lduw($mem$$Address, $dst$$Register);
  5722   %}
  5723   ins_pipe(iload_mem);
  5724 %}
  5726 // Load Integer to Byte (8 bit signed)
  5727 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5728   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5729   ins_cost(MEMORY_REF_COST);
  5731   size(4);
  5733   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5734   ins_encode %{
  5735     __ ldsb($mem$$Address, $dst$$Register, 3);
  5736   %}
  5737   ins_pipe(iload_mask_mem);
  5738 %}
  5740 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5741 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5742   match(Set dst (AndI (LoadI mem) mask));
  5743   ins_cost(MEMORY_REF_COST);
  5745   size(4);
  5747   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5748   ins_encode %{
  5749     __ ldub($mem$$Address, $dst$$Register, 3);
  5750   %}
  5751   ins_pipe(iload_mask_mem);
  5752 %}
  5754 // Load Integer to Short (16 bit signed)
  5755 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5756   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5757   ins_cost(MEMORY_REF_COST);
  5759   size(4);
  5761   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5762   ins_encode %{
  5763     __ ldsh($mem$$Address, $dst$$Register, 2);
  5764   %}
  5765   ins_pipe(iload_mask_mem);
  5766 %}
  5768 // Load Integer to Unsigned Short (16 bit UNsigned)
  5769 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5770   match(Set dst (AndI (LoadI mem) mask));
  5771   ins_cost(MEMORY_REF_COST);
  5773   size(4);
  5775   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5776   ins_encode %{
  5777     __ lduh($mem$$Address, $dst$$Register, 2);
  5778   %}
  5779   ins_pipe(iload_mask_mem);
  5780 %}
  5782 // Load Integer into a Long Register
  5783 instruct loadI2L(iRegL dst, memory mem) %{
  5784   match(Set dst (ConvI2L (LoadI mem)));
  5785   ins_cost(MEMORY_REF_COST);
  5787   size(4);
  5788   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5789   ins_encode %{
  5790     __ ldsw($mem$$Address, $dst$$Register);
  5791   %}
  5792   ins_pipe(iload_mask_mem);
  5793 %}
  5795 // Load Integer with mask 0xFF into a Long Register
  5796 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5797   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5798   ins_cost(MEMORY_REF_COST);
  5800   size(4);
  5801   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5802   ins_encode %{
  5803     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5804   %}
  5805   ins_pipe(iload_mem);
  5806 %}
  5808 // Load Integer with mask 0xFFFF into a Long Register
  5809 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5810   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5811   ins_cost(MEMORY_REF_COST);
  5813   size(4);
  5814   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5815   ins_encode %{
  5816     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5817   %}
  5818   ins_pipe(iload_mem);
  5819 %}
  5821 // Load Integer with a 13-bit mask into a Long Register
  5822 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5823   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5824   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5826   size(2*4);
  5827   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5828             "AND    $dst,$mask,$dst" %}
  5829   ins_encode %{
  5830     Register Rdst = $dst$$Register;
  5831     __ lduw($mem$$Address, Rdst);
  5832     __ and3(Rdst, $mask$$constant, Rdst);
  5833   %}
  5834   ins_pipe(iload_mem);
  5835 %}
  5837 // Load Integer with a 32-bit mask into a Long Register
  5838 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5839   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5840   effect(TEMP dst, TEMP tmp);
  5841   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5843   size((3+1)*4);  // set may use two instructions.
  5844   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5845             "SET    $mask,$tmp\n\t"
  5846             "AND    $dst,$tmp,$dst" %}
  5847   ins_encode %{
  5848     Register Rdst = $dst$$Register;
  5849     Register Rtmp = $tmp$$Register;
  5850     __ lduw($mem$$Address, Rdst);
  5851     __ set($mask$$constant, Rtmp);
  5852     __ and3(Rdst, Rtmp, Rdst);
  5853   %}
  5854   ins_pipe(iload_mem);
  5855 %}
  5857 // Load Unsigned Integer into a Long Register
  5858 instruct loadUI2L(iRegL dst, memory mem) %{
  5859   match(Set dst (LoadUI2L mem));
  5860   ins_cost(MEMORY_REF_COST);
  5862   size(4);
  5863   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5864   ins_encode %{
  5865     __ lduw($mem$$Address, $dst$$Register);
  5866   %}
  5867   ins_pipe(iload_mem);
  5868 %}
  5870 // Load Long - aligned
  5871 instruct loadL(iRegL dst, memory mem ) %{
  5872   match(Set dst (LoadL mem));
  5873   ins_cost(MEMORY_REF_COST);
  5875   size(4);
  5876   format %{ "LDX    $mem,$dst\t! long" %}
  5877   ins_encode %{
  5878     __ ldx($mem$$Address, $dst$$Register);
  5879   %}
  5880   ins_pipe(iload_mem);
  5881 %}
  5883 // Load Long - UNaligned
  5884 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5885   match(Set dst (LoadL_unaligned mem));
  5886   effect(KILL tmp);
  5887   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5888   size(16);
  5889   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5890           "\tLDUW   $mem  ,$dst\n"
  5891           "\tSLLX   #32, $dst, $dst\n"
  5892           "\tOR     $dst, R_O7, $dst" %}
  5893   opcode(Assembler::lduw_op3);
  5894   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5895   ins_pipe(iload_mem);
  5896 %}
  5898 // Load Aligned Packed Byte into a Double Register
  5899 instruct loadA8B(regD dst, memory mem) %{
  5900   match(Set dst (Load8B mem));
  5901   ins_cost(MEMORY_REF_COST);
  5902   size(4);
  5903   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5904   opcode(Assembler::lddf_op3);
  5905   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5906   ins_pipe(floadD_mem);
  5907 %}
  5909 // Load Aligned Packed Char into a Double Register
  5910 instruct loadA4C(regD dst, memory mem) %{
  5911   match(Set dst (Load4C mem));
  5912   ins_cost(MEMORY_REF_COST);
  5913   size(4);
  5914   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5915   opcode(Assembler::lddf_op3);
  5916   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5917   ins_pipe(floadD_mem);
  5918 %}
  5920 // Load Aligned Packed Short into a Double Register
  5921 instruct loadA4S(regD dst, memory mem) %{
  5922   match(Set dst (Load4S mem));
  5923   ins_cost(MEMORY_REF_COST);
  5924   size(4);
  5925   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5926   opcode(Assembler::lddf_op3);
  5927   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5928   ins_pipe(floadD_mem);
  5929 %}
  5931 // Load Aligned Packed Int into a Double Register
  5932 instruct loadA2I(regD dst, memory mem) %{
  5933   match(Set dst (Load2I mem));
  5934   ins_cost(MEMORY_REF_COST);
  5935   size(4);
  5936   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5937   opcode(Assembler::lddf_op3);
  5938   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5939   ins_pipe(floadD_mem);
  5940 %}
  5942 // Load Range
  5943 instruct loadRange(iRegI dst, memory mem) %{
  5944   match(Set dst (LoadRange mem));
  5945   ins_cost(MEMORY_REF_COST);
  5947   size(4);
  5948   format %{ "LDUW   $mem,$dst\t! range" %}
  5949   opcode(Assembler::lduw_op3);
  5950   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5951   ins_pipe(iload_mem);
  5952 %}
  5954 // Load Integer into %f register (for fitos/fitod)
  5955 instruct loadI_freg(regF dst, memory mem) %{
  5956   match(Set dst (LoadI mem));
  5957   ins_cost(MEMORY_REF_COST);
  5958   size(4);
  5960   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5961   opcode(Assembler::ldf_op3);
  5962   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5963   ins_pipe(floadF_mem);
  5964 %}
  5966 // Load Pointer
  5967 instruct loadP(iRegP dst, memory mem) %{
  5968   match(Set dst (LoadP mem));
  5969   ins_cost(MEMORY_REF_COST);
  5970   size(4);
  5972 #ifndef _LP64
  5973   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5974   ins_encode %{
  5975     __ lduw($mem$$Address, $dst$$Register);
  5976   %}
  5977 #else
  5978   format %{ "LDX    $mem,$dst\t! ptr" %}
  5979   ins_encode %{
  5980     __ ldx($mem$$Address, $dst$$Register);
  5981   %}
  5982 #endif
  5983   ins_pipe(iload_mem);
  5984 %}
  5986 // Load Compressed Pointer
  5987 instruct loadN(iRegN dst, memory mem) %{
  5988   match(Set dst (LoadN mem));
  5989   ins_cost(MEMORY_REF_COST);
  5990   size(4);
  5992   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5993   ins_encode %{
  5994     __ lduw($mem$$Address, $dst$$Register);
  5995   %}
  5996   ins_pipe(iload_mem);
  5997 %}
  5999 // Load Klass Pointer
  6000 instruct loadKlass(iRegP dst, memory mem) %{
  6001   match(Set dst (LoadKlass mem));
  6002   ins_cost(MEMORY_REF_COST);
  6003   size(4);
  6005 #ifndef _LP64
  6006   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  6007   ins_encode %{
  6008     __ lduw($mem$$Address, $dst$$Register);
  6009   %}
  6010 #else
  6011   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  6012   ins_encode %{
  6013     __ ldx($mem$$Address, $dst$$Register);
  6014   %}
  6015 #endif
  6016   ins_pipe(iload_mem);
  6017 %}
  6019 // Load narrow Klass Pointer
  6020 instruct loadNKlass(iRegN dst, memory mem) %{
  6021   match(Set dst (LoadNKlass mem));
  6022   ins_cost(MEMORY_REF_COST);
  6023   size(4);
  6025   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6026   ins_encode %{
  6027     __ lduw($mem$$Address, $dst$$Register);
  6028   %}
  6029   ins_pipe(iload_mem);
  6030 %}
  6032 // Load Double
  6033 instruct loadD(regD dst, memory mem) %{
  6034   match(Set dst (LoadD mem));
  6035   ins_cost(MEMORY_REF_COST);
  6037   size(4);
  6038   format %{ "LDDF   $mem,$dst" %}
  6039   opcode(Assembler::lddf_op3);
  6040   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6041   ins_pipe(floadD_mem);
  6042 %}
  6044 // Load Double - UNaligned
  6045 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6046   match(Set dst (LoadD_unaligned mem));
  6047   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6048   size(8);
  6049   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6050           "\tLDF    $mem+4,$dst.lo\t!" %}
  6051   opcode(Assembler::ldf_op3);
  6052   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6053   ins_pipe(iload_mem);
  6054 %}
  6056 // Load Float
  6057 instruct loadF(regF dst, memory mem) %{
  6058   match(Set dst (LoadF mem));
  6059   ins_cost(MEMORY_REF_COST);
  6061   size(4);
  6062   format %{ "LDF    $mem,$dst" %}
  6063   opcode(Assembler::ldf_op3);
  6064   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6065   ins_pipe(floadF_mem);
  6066 %}
  6068 // Load Constant
  6069 instruct loadConI( iRegI dst, immI src ) %{
  6070   match(Set dst src);
  6071   ins_cost(DEFAULT_COST * 3/2);
  6072   format %{ "SET    $src,$dst" %}
  6073   ins_encode( Set32(src, dst) );
  6074   ins_pipe(ialu_hi_lo_reg);
  6075 %}
  6077 instruct loadConI13( iRegI dst, immI13 src ) %{
  6078   match(Set dst src);
  6080   size(4);
  6081   format %{ "MOV    $src,$dst" %}
  6082   ins_encode( Set13( src, dst ) );
  6083   ins_pipe(ialu_imm);
  6084 %}
  6086 #ifndef _LP64
  6087 instruct loadConP(iRegP dst, immP con) %{
  6088   match(Set dst con);
  6089   ins_cost(DEFAULT_COST * 3/2);
  6090   format %{ "SET    $con,$dst\t!ptr" %}
  6091   ins_encode %{
  6092     // [RGV] This next line should be generated from ADLC
  6093     if (_opnds[1]->constant_is_oop()) {
  6094       intptr_t val = $con$$constant;
  6095       __ set_oop_constant((jobject) val, $dst$$Register);
  6096     } else {          // non-oop pointers, e.g. card mark base, heap top
  6097       __ set($con$$constant, $dst$$Register);
  6099   %}
  6100   ins_pipe(loadConP);
  6101 %}
  6102 #else
  6103 instruct loadConP_set(iRegP dst, immP_set con) %{
  6104   match(Set dst con);
  6105   ins_cost(DEFAULT_COST * 3/2);
  6106   format %{ "SET    $con,$dst\t! ptr" %}
  6107   ins_encode %{
  6108     // [RGV] This next line should be generated from ADLC
  6109     if (_opnds[1]->constant_is_oop()) {
  6110       intptr_t val = $con$$constant;
  6111       __ set_oop_constant((jobject) val, $dst$$Register);
  6112     } else {          // non-oop pointers, e.g. card mark base, heap top
  6113       __ set($con$$constant, $dst$$Register);
  6115   %}
  6116   ins_pipe(loadConP);
  6117 %}
  6119 instruct loadConP_load(iRegP dst, immP_load con) %{
  6120   match(Set dst con);
  6121   ins_cost(MEMORY_REF_COST);
  6122   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6123   ins_encode %{
  6124     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6125     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6126   %}
  6127   ins_pipe(loadConP);
  6128 %}
  6130 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6131   match(Set dst con);
  6132   ins_cost(DEFAULT_COST * 3/2);
  6133   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6134   ins_encode %{
  6135     __ set($con$$constant, $dst$$Register);
  6136   %}
  6137   ins_pipe(loadConP);
  6138 %}
  6139 #endif // _LP64
  6141 instruct loadConP0(iRegP dst, immP0 src) %{
  6142   match(Set dst src);
  6144   size(4);
  6145   format %{ "CLR    $dst\t!ptr" %}
  6146   ins_encode %{
  6147     __ clr($dst$$Register);
  6148   %}
  6149   ins_pipe(ialu_imm);
  6150 %}
  6152 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6153   match(Set dst src);
  6154   ins_cost(DEFAULT_COST);
  6155   format %{ "SET    $src,$dst\t!ptr" %}
  6156   ins_encode %{
  6157     AddressLiteral polling_page(os::get_polling_page());
  6158     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6159   %}
  6160   ins_pipe(loadConP_poll);
  6161 %}
  6163 instruct loadConN0(iRegN dst, immN0 src) %{
  6164   match(Set dst src);
  6166   size(4);
  6167   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6168   ins_encode %{
  6169     __ clr($dst$$Register);
  6170   %}
  6171   ins_pipe(ialu_imm);
  6172 %}
  6174 instruct loadConN(iRegN dst, immN src) %{
  6175   match(Set dst src);
  6176   ins_cost(DEFAULT_COST * 3/2);
  6177   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6178   ins_encode %{
  6179     Register dst = $dst$$Register;
  6180     __ set_narrow_oop((jobject)$src$$constant, dst);
  6181   %}
  6182   ins_pipe(ialu_hi_lo_reg);
  6183 %}
  6185 // Materialize long value (predicated by immL_cheap).
  6186 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6187   match(Set dst con);
  6188   effect(KILL tmp);
  6189   ins_cost(DEFAULT_COST * 3);
  6190   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6191   ins_encode %{
  6192     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6193   %}
  6194   ins_pipe(loadConL);
  6195 %}
  6197 // Load long value from constant table (predicated by immL_expensive).
  6198 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6199   match(Set dst con);
  6200   ins_cost(MEMORY_REF_COST);
  6201   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6202   ins_encode %{
  6203       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6204     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6205   %}
  6206   ins_pipe(loadConL);
  6207 %}
  6209 instruct loadConL0( iRegL dst, immL0 src ) %{
  6210   match(Set dst src);
  6211   ins_cost(DEFAULT_COST);
  6212   size(4);
  6213   format %{ "CLR    $dst\t! long" %}
  6214   ins_encode( Set13( src, dst ) );
  6215   ins_pipe(ialu_imm);
  6216 %}
  6218 instruct loadConL13( iRegL dst, immL13 src ) %{
  6219   match(Set dst src);
  6220   ins_cost(DEFAULT_COST * 2);
  6222   size(4);
  6223   format %{ "MOV    $src,$dst\t! long" %}
  6224   ins_encode( Set13( src, dst ) );
  6225   ins_pipe(ialu_imm);
  6226 %}
  6228 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6229   match(Set dst con);
  6230   effect(KILL tmp);
  6231   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6232   ins_encode %{
  6233       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6234     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6235   %}
  6236   ins_pipe(loadConFD);
  6237 %}
  6239 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6240   match(Set dst con);
  6241   effect(KILL tmp);
  6242   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6243   ins_encode %{
  6244     // XXX This is a quick fix for 6833573.
  6245     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6246     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6247     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6248   %}
  6249   ins_pipe(loadConFD);
  6250 %}
  6252 // Prefetch instructions.
  6253 // Must be safe to execute with invalid address (cannot fault).
  6255 instruct prefetchr( memory mem ) %{
  6256   match( PrefetchRead mem );
  6257   ins_cost(MEMORY_REF_COST);
  6258   size(4);
  6260   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6261   opcode(Assembler::prefetch_op3);
  6262   ins_encode( form3_mem_prefetch_read( mem ) );
  6263   ins_pipe(iload_mem);
  6264 %}
  6266 instruct prefetchw( memory mem ) %{
  6267   match( PrefetchWrite mem );
  6268   ins_cost(MEMORY_REF_COST);
  6269   size(4);
  6271   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6272   opcode(Assembler::prefetch_op3);
  6273   ins_encode( form3_mem_prefetch_write( mem ) );
  6274   ins_pipe(iload_mem);
  6275 %}
  6277 // Prefetch instructions for allocation.
  6279 instruct prefetchAlloc( memory mem ) %{
  6280   predicate(AllocatePrefetchInstr == 0);
  6281   match( PrefetchAllocation mem );
  6282   ins_cost(MEMORY_REF_COST);
  6283   size(4);
  6285   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6286   opcode(Assembler::prefetch_op3);
  6287   ins_encode( form3_mem_prefetch_write( mem ) );
  6288   ins_pipe(iload_mem);
  6289 %}
  6291 // Use BIS instruction to prefetch for allocation.
  6292 // Could fault, need space at the end of TLAB.
  6293 instruct prefetchAlloc_bis( iRegP dst ) %{
  6294   predicate(AllocatePrefetchInstr == 1);
  6295   match( PrefetchAllocation dst );
  6296   ins_cost(MEMORY_REF_COST);
  6297   size(4);
  6299   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6300   ins_encode %{
  6301     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6302   %}
  6303   ins_pipe(istore_mem_reg);
  6304 %}
  6306 // Next code is used for finding next cache line address to prefetch.
  6307 #ifndef _LP64
  6308 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6309   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6310   ins_cost(DEFAULT_COST);
  6311   size(4);
  6313   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6314   ins_encode %{
  6315     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6316   %}
  6317   ins_pipe(ialu_reg_imm);
  6318 %}
  6319 #else
  6320 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6321   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6322   ins_cost(DEFAULT_COST);
  6323   size(4);
  6325   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6326   ins_encode %{
  6327     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6328   %}
  6329   ins_pipe(ialu_reg_imm);
  6330 %}
  6331 #endif
  6333 //----------Store Instructions-------------------------------------------------
  6334 // Store Byte
  6335 instruct storeB(memory mem, iRegI src) %{
  6336   match(Set mem (StoreB mem src));
  6337   ins_cost(MEMORY_REF_COST);
  6339   size(4);
  6340   format %{ "STB    $src,$mem\t! byte" %}
  6341   opcode(Assembler::stb_op3);
  6342   ins_encode(simple_form3_mem_reg( mem, src ) );
  6343   ins_pipe(istore_mem_reg);
  6344 %}
  6346 instruct storeB0(memory mem, immI0 src) %{
  6347   match(Set mem (StoreB mem src));
  6348   ins_cost(MEMORY_REF_COST);
  6350   size(4);
  6351   format %{ "STB    $src,$mem\t! byte" %}
  6352   opcode(Assembler::stb_op3);
  6353   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6354   ins_pipe(istore_mem_zero);
  6355 %}
  6357 instruct storeCM0(memory mem, immI0 src) %{
  6358   match(Set mem (StoreCM mem src));
  6359   ins_cost(MEMORY_REF_COST);
  6361   size(4);
  6362   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6363   opcode(Assembler::stb_op3);
  6364   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6365   ins_pipe(istore_mem_zero);
  6366 %}
  6368 // Store Char/Short
  6369 instruct storeC(memory mem, iRegI src) %{
  6370   match(Set mem (StoreC mem src));
  6371   ins_cost(MEMORY_REF_COST);
  6373   size(4);
  6374   format %{ "STH    $src,$mem\t! short" %}
  6375   opcode(Assembler::sth_op3);
  6376   ins_encode(simple_form3_mem_reg( mem, src ) );
  6377   ins_pipe(istore_mem_reg);
  6378 %}
  6380 instruct storeC0(memory mem, immI0 src) %{
  6381   match(Set mem (StoreC mem src));
  6382   ins_cost(MEMORY_REF_COST);
  6384   size(4);
  6385   format %{ "STH    $src,$mem\t! short" %}
  6386   opcode(Assembler::sth_op3);
  6387   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6388   ins_pipe(istore_mem_zero);
  6389 %}
  6391 // Store Integer
  6392 instruct storeI(memory mem, iRegI src) %{
  6393   match(Set mem (StoreI mem src));
  6394   ins_cost(MEMORY_REF_COST);
  6396   size(4);
  6397   format %{ "STW    $src,$mem" %}
  6398   opcode(Assembler::stw_op3);
  6399   ins_encode(simple_form3_mem_reg( mem, src ) );
  6400   ins_pipe(istore_mem_reg);
  6401 %}
  6403 // Store Long
  6404 instruct storeL(memory mem, iRegL src) %{
  6405   match(Set mem (StoreL mem src));
  6406   ins_cost(MEMORY_REF_COST);
  6407   size(4);
  6408   format %{ "STX    $src,$mem\t! long" %}
  6409   opcode(Assembler::stx_op3);
  6410   ins_encode(simple_form3_mem_reg( mem, src ) );
  6411   ins_pipe(istore_mem_reg);
  6412 %}
  6414 instruct storeI0(memory mem, immI0 src) %{
  6415   match(Set mem (StoreI mem src));
  6416   ins_cost(MEMORY_REF_COST);
  6418   size(4);
  6419   format %{ "STW    $src,$mem" %}
  6420   opcode(Assembler::stw_op3);
  6421   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6422   ins_pipe(istore_mem_zero);
  6423 %}
  6425 instruct storeL0(memory mem, immL0 src) %{
  6426   match(Set mem (StoreL mem src));
  6427   ins_cost(MEMORY_REF_COST);
  6429   size(4);
  6430   format %{ "STX    $src,$mem" %}
  6431   opcode(Assembler::stx_op3);
  6432   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6433   ins_pipe(istore_mem_zero);
  6434 %}
  6436 // Store Integer from float register (used after fstoi)
  6437 instruct storeI_Freg(memory mem, regF src) %{
  6438   match(Set mem (StoreI mem src));
  6439   ins_cost(MEMORY_REF_COST);
  6441   size(4);
  6442   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6443   opcode(Assembler::stf_op3);
  6444   ins_encode(simple_form3_mem_reg( mem, src ) );
  6445   ins_pipe(fstoreF_mem_reg);
  6446 %}
  6448 // Store Pointer
  6449 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6450   match(Set dst (StoreP dst src));
  6451   ins_cost(MEMORY_REF_COST);
  6452   size(4);
  6454 #ifndef _LP64
  6455   format %{ "STW    $src,$dst\t! ptr" %}
  6456   opcode(Assembler::stw_op3, 0, REGP_OP);
  6457 #else
  6458   format %{ "STX    $src,$dst\t! ptr" %}
  6459   opcode(Assembler::stx_op3, 0, REGP_OP);
  6460 #endif
  6461   ins_encode( form3_mem_reg( dst, src ) );
  6462   ins_pipe(istore_mem_spORreg);
  6463 %}
  6465 instruct storeP0(memory dst, immP0 src) %{
  6466   match(Set dst (StoreP dst src));
  6467   ins_cost(MEMORY_REF_COST);
  6468   size(4);
  6470 #ifndef _LP64
  6471   format %{ "STW    $src,$dst\t! ptr" %}
  6472   opcode(Assembler::stw_op3, 0, REGP_OP);
  6473 #else
  6474   format %{ "STX    $src,$dst\t! ptr" %}
  6475   opcode(Assembler::stx_op3, 0, REGP_OP);
  6476 #endif
  6477   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6478   ins_pipe(istore_mem_zero);
  6479 %}
  6481 // Store Compressed Pointer
  6482 instruct storeN(memory dst, iRegN src) %{
  6483    match(Set dst (StoreN dst src));
  6484    ins_cost(MEMORY_REF_COST);
  6485    size(4);
  6487    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6488    ins_encode %{
  6489      Register base = as_Register($dst$$base);
  6490      Register index = as_Register($dst$$index);
  6491      Register src = $src$$Register;
  6492      if (index != G0) {
  6493        __ stw(src, base, index);
  6494      } else {
  6495        __ stw(src, base, $dst$$disp);
  6497    %}
  6498    ins_pipe(istore_mem_spORreg);
  6499 %}
  6501 instruct storeN0(memory dst, immN0 src) %{
  6502    match(Set dst (StoreN dst src));
  6503    ins_cost(MEMORY_REF_COST);
  6504    size(4);
  6506    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6507    ins_encode %{
  6508      Register base = as_Register($dst$$base);
  6509      Register index = as_Register($dst$$index);
  6510      if (index != G0) {
  6511        __ stw(0, base, index);
  6512      } else {
  6513        __ stw(0, base, $dst$$disp);
  6515    %}
  6516    ins_pipe(istore_mem_zero);
  6517 %}
  6519 // Store Double
  6520 instruct storeD( memory mem, regD src) %{
  6521   match(Set mem (StoreD mem src));
  6522   ins_cost(MEMORY_REF_COST);
  6524   size(4);
  6525   format %{ "STDF   $src,$mem" %}
  6526   opcode(Assembler::stdf_op3);
  6527   ins_encode(simple_form3_mem_reg( mem, src ) );
  6528   ins_pipe(fstoreD_mem_reg);
  6529 %}
  6531 instruct storeD0( memory mem, immD0 src) %{
  6532   match(Set mem (StoreD mem src));
  6533   ins_cost(MEMORY_REF_COST);
  6535   size(4);
  6536   format %{ "STX    $src,$mem" %}
  6537   opcode(Assembler::stx_op3);
  6538   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6539   ins_pipe(fstoreD_mem_zero);
  6540 %}
  6542 // Store Float
  6543 instruct storeF( memory mem, regF src) %{
  6544   match(Set mem (StoreF mem src));
  6545   ins_cost(MEMORY_REF_COST);
  6547   size(4);
  6548   format %{ "STF    $src,$mem" %}
  6549   opcode(Assembler::stf_op3);
  6550   ins_encode(simple_form3_mem_reg( mem, src ) );
  6551   ins_pipe(fstoreF_mem_reg);
  6552 %}
  6554 instruct storeF0( memory mem, immF0 src) %{
  6555   match(Set mem (StoreF mem src));
  6556   ins_cost(MEMORY_REF_COST);
  6558   size(4);
  6559   format %{ "STW    $src,$mem\t! storeF0" %}
  6560   opcode(Assembler::stw_op3);
  6561   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6562   ins_pipe(fstoreF_mem_zero);
  6563 %}
  6565 // Store Aligned Packed Bytes in Double register to memory
  6566 instruct storeA8B(memory mem, regD src) %{
  6567   match(Set mem (Store8B mem src));
  6568   ins_cost(MEMORY_REF_COST);
  6569   size(4);
  6570   format %{ "STDF   $src,$mem\t! packed8B" %}
  6571   opcode(Assembler::stdf_op3);
  6572   ins_encode(simple_form3_mem_reg( mem, src ) );
  6573   ins_pipe(fstoreD_mem_reg);
  6574 %}
  6576 // Convert oop pointer into compressed form
  6577 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6578   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6579   match(Set dst (EncodeP src));
  6580   format %{ "encode_heap_oop $src, $dst" %}
  6581   ins_encode %{
  6582     __ encode_heap_oop($src$$Register, $dst$$Register);
  6583   %}
  6584   ins_pipe(ialu_reg);
  6585 %}
  6587 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6588   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6589   match(Set dst (EncodeP src));
  6590   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6591   ins_encode %{
  6592     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6593   %}
  6594   ins_pipe(ialu_reg);
  6595 %}
  6597 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6598   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6599             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6600   match(Set dst (DecodeN src));
  6601   format %{ "decode_heap_oop $src, $dst" %}
  6602   ins_encode %{
  6603     __ decode_heap_oop($src$$Register, $dst$$Register);
  6604   %}
  6605   ins_pipe(ialu_reg);
  6606 %}
  6608 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6609   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6610             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6611   match(Set dst (DecodeN src));
  6612   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6613   ins_encode %{
  6614     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6615   %}
  6616   ins_pipe(ialu_reg);
  6617 %}
  6620 // Store Zero into Aligned Packed Bytes
  6621 instruct storeA8B0(memory mem, immI0 zero) %{
  6622   match(Set mem (Store8B mem zero));
  6623   ins_cost(MEMORY_REF_COST);
  6624   size(4);
  6625   format %{ "STX    $zero,$mem\t! packed8B" %}
  6626   opcode(Assembler::stx_op3);
  6627   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6628   ins_pipe(fstoreD_mem_zero);
  6629 %}
  6631 // Store Aligned Packed Chars/Shorts in Double register to memory
  6632 instruct storeA4C(memory mem, regD src) %{
  6633   match(Set mem (Store4C mem src));
  6634   ins_cost(MEMORY_REF_COST);
  6635   size(4);
  6636   format %{ "STDF   $src,$mem\t! packed4C" %}
  6637   opcode(Assembler::stdf_op3);
  6638   ins_encode(simple_form3_mem_reg( mem, src ) );
  6639   ins_pipe(fstoreD_mem_reg);
  6640 %}
  6642 // Store Zero into Aligned Packed Chars/Shorts
  6643 instruct storeA4C0(memory mem, immI0 zero) %{
  6644   match(Set mem (Store4C mem (Replicate4C zero)));
  6645   ins_cost(MEMORY_REF_COST);
  6646   size(4);
  6647   format %{ "STX    $zero,$mem\t! packed4C" %}
  6648   opcode(Assembler::stx_op3);
  6649   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6650   ins_pipe(fstoreD_mem_zero);
  6651 %}
  6653 // Store Aligned Packed Ints in Double register to memory
  6654 instruct storeA2I(memory mem, regD src) %{
  6655   match(Set mem (Store2I mem src));
  6656   ins_cost(MEMORY_REF_COST);
  6657   size(4);
  6658   format %{ "STDF   $src,$mem\t! packed2I" %}
  6659   opcode(Assembler::stdf_op3);
  6660   ins_encode(simple_form3_mem_reg( mem, src ) );
  6661   ins_pipe(fstoreD_mem_reg);
  6662 %}
  6664 // Store Zero into Aligned Packed Ints
  6665 instruct storeA2I0(memory mem, immI0 zero) %{
  6666   match(Set mem (Store2I mem zero));
  6667   ins_cost(MEMORY_REF_COST);
  6668   size(4);
  6669   format %{ "STX    $zero,$mem\t! packed2I" %}
  6670   opcode(Assembler::stx_op3);
  6671   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6672   ins_pipe(fstoreD_mem_zero);
  6673 %}
  6676 //----------MemBar Instructions-----------------------------------------------
  6677 // Memory barrier flavors
  6679 instruct membar_acquire() %{
  6680   match(MemBarAcquire);
  6681   ins_cost(4*MEMORY_REF_COST);
  6683   size(0);
  6684   format %{ "MEMBAR-acquire" %}
  6685   ins_encode( enc_membar_acquire );
  6686   ins_pipe(long_memory_op);
  6687 %}
  6689 instruct membar_acquire_lock() %{
  6690   match(MemBarAcquireLock);
  6691   ins_cost(0);
  6693   size(0);
  6694   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6695   ins_encode( );
  6696   ins_pipe(empty);
  6697 %}
  6699 instruct membar_release() %{
  6700   match(MemBarRelease);
  6701   ins_cost(4*MEMORY_REF_COST);
  6703   size(0);
  6704   format %{ "MEMBAR-release" %}
  6705   ins_encode( enc_membar_release );
  6706   ins_pipe(long_memory_op);
  6707 %}
  6709 instruct membar_release_lock() %{
  6710   match(MemBarReleaseLock);
  6711   ins_cost(0);
  6713   size(0);
  6714   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6715   ins_encode( );
  6716   ins_pipe(empty);
  6717 %}
  6719 instruct membar_volatile() %{
  6720   match(MemBarVolatile);
  6721   ins_cost(4*MEMORY_REF_COST);
  6723   size(4);
  6724   format %{ "MEMBAR-volatile" %}
  6725   ins_encode( enc_membar_volatile );
  6726   ins_pipe(long_memory_op);
  6727 %}
  6729 instruct unnecessary_membar_volatile() %{
  6730   match(MemBarVolatile);
  6731   predicate(Matcher::post_store_load_barrier(n));
  6732   ins_cost(0);
  6734   size(0);
  6735   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6736   ins_encode( );
  6737   ins_pipe(empty);
  6738 %}
  6740 //----------Register Move Instructions-----------------------------------------
  6741 instruct roundDouble_nop(regD dst) %{
  6742   match(Set dst (RoundDouble dst));
  6743   ins_cost(0);
  6744   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6745   ins_encode( );
  6746   ins_pipe(empty);
  6747 %}
  6750 instruct roundFloat_nop(regF dst) %{
  6751   match(Set dst (RoundFloat dst));
  6752   ins_cost(0);
  6753   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6754   ins_encode( );
  6755   ins_pipe(empty);
  6756 %}
  6759 // Cast Index to Pointer for unsafe natives
  6760 instruct castX2P(iRegX src, iRegP dst) %{
  6761   match(Set dst (CastX2P src));
  6763   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6764   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6765   ins_pipe(ialu_reg);
  6766 %}
  6768 // Cast Pointer to Index for unsafe natives
  6769 instruct castP2X(iRegP src, iRegX dst) %{
  6770   match(Set dst (CastP2X src));
  6772   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6773   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6774   ins_pipe(ialu_reg);
  6775 %}
  6777 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6778   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6779   match(Set stkSlot src);   // chain rule
  6780   ins_cost(MEMORY_REF_COST);
  6781   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6782   opcode(Assembler::stdf_op3);
  6783   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6784   ins_pipe(fstoreD_stk_reg);
  6785 %}
  6787 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6788   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6789   match(Set dst stkSlot);   // chain rule
  6790   ins_cost(MEMORY_REF_COST);
  6791   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6792   opcode(Assembler::lddf_op3);
  6793   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6794   ins_pipe(floadD_stk);
  6795 %}
  6797 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6798   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6799   match(Set stkSlot src);   // chain rule
  6800   ins_cost(MEMORY_REF_COST);
  6801   format %{ "STF   $src,$stkSlot\t!stk" %}
  6802   opcode(Assembler::stf_op3);
  6803   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6804   ins_pipe(fstoreF_stk_reg);
  6805 %}
  6807 //----------Conditional Move---------------------------------------------------
  6808 // Conditional move
  6809 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6810   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6811   ins_cost(150);
  6812   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6813   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6814   ins_pipe(ialu_reg);
  6815 %}
  6817 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6818   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6819   ins_cost(140);
  6820   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6821   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6822   ins_pipe(ialu_imm);
  6823 %}
  6825 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6826   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6827   ins_cost(150);
  6828   size(4);
  6829   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6830   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6831   ins_pipe(ialu_reg);
  6832 %}
  6834 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6835   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6836   ins_cost(140);
  6837   size(4);
  6838   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6839   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6840   ins_pipe(ialu_imm);
  6841 %}
  6843 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6844   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6845   ins_cost(150);
  6846   size(4);
  6847   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6848   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6849   ins_pipe(ialu_reg);
  6850 %}
  6852 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6853   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6854   ins_cost(140);
  6855   size(4);
  6856   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6857   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6858   ins_pipe(ialu_imm);
  6859 %}
  6861 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6862   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6863   ins_cost(150);
  6864   size(4);
  6865   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6866   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6867   ins_pipe(ialu_reg);
  6868 %}
  6870 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6871   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6872   ins_cost(140);
  6873   size(4);
  6874   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6875   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6876   ins_pipe(ialu_imm);
  6877 %}
  6879 // Conditional move for RegN. Only cmov(reg,reg).
  6880 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6881   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6882   ins_cost(150);
  6883   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6884   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6885   ins_pipe(ialu_reg);
  6886 %}
  6888 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6889 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6890   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6891   ins_cost(150);
  6892   size(4);
  6893   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6894   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6895   ins_pipe(ialu_reg);
  6896 %}
  6898 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6899 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6900   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6901   ins_cost(150);
  6902   size(4);
  6903   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6904   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6905   ins_pipe(ialu_reg);
  6906 %}
  6908 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6909   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6910   ins_cost(150);
  6911   size(4);
  6912   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6913   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6914   ins_pipe(ialu_reg);
  6915 %}
  6917 // Conditional move
  6918 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6919   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6920   ins_cost(150);
  6921   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6922   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6923   ins_pipe(ialu_reg);
  6924 %}
  6926 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6927   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6928   ins_cost(140);
  6929   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6930   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6931   ins_pipe(ialu_imm);
  6932 %}
  6934 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6935 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6936   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6937   ins_cost(150);
  6939   size(4);
  6940   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6941   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6942   ins_pipe(ialu_reg);
  6943 %}
  6945 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6946   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6947   ins_cost(150);
  6949   size(4);
  6950   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6951   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6952   ins_pipe(ialu_reg);
  6953 %}
  6955 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6956   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6957   ins_cost(140);
  6959   size(4);
  6960   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6961   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6962   ins_pipe(ialu_imm);
  6963 %}
  6965 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6966   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6967   ins_cost(140);
  6969   size(4);
  6970   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6971   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6972   ins_pipe(ialu_imm);
  6973 %}
  6975 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6976   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6977   ins_cost(150);
  6978   size(4);
  6979   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6980   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6981   ins_pipe(ialu_imm);
  6982 %}
  6984 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6985   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6986   ins_cost(140);
  6987   size(4);
  6988   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6989   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6990   ins_pipe(ialu_imm);
  6991 %}
  6993 // Conditional move
  6994 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6995   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6996   ins_cost(150);
  6997   opcode(0x101);
  6998   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6999   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7000   ins_pipe(int_conditional_float_move);
  7001 %}
  7003 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  7004   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7005   ins_cost(150);
  7007   size(4);
  7008   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7009   opcode(0x101);
  7010   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7011   ins_pipe(int_conditional_float_move);
  7012 %}
  7014 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  7015   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7016   ins_cost(150);
  7018   size(4);
  7019   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7020   opcode(0x101);
  7021   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7022   ins_pipe(int_conditional_float_move);
  7023 %}
  7025 // Conditional move,
  7026 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7027   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7028   ins_cost(150);
  7029   size(4);
  7030   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7031   opcode(0x1);
  7032   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7033   ins_pipe(int_conditional_double_move);
  7034 %}
  7036 // Conditional move
  7037 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7038   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7039   ins_cost(150);
  7040   size(4);
  7041   opcode(0x102);
  7042   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7043   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7044   ins_pipe(int_conditional_double_move);
  7045 %}
  7047 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7048   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7049   ins_cost(150);
  7051   size(4);
  7052   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7053   opcode(0x102);
  7054   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7055   ins_pipe(int_conditional_double_move);
  7056 %}
  7058 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7059   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7060   ins_cost(150);
  7062   size(4);
  7063   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7064   opcode(0x102);
  7065   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7066   ins_pipe(int_conditional_double_move);
  7067 %}
  7069 // Conditional move,
  7070 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7071   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7072   ins_cost(150);
  7073   size(4);
  7074   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7075   opcode(0x2);
  7076   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7077   ins_pipe(int_conditional_double_move);
  7078 %}
  7080 // Conditional move
  7081 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7082   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7083   ins_cost(150);
  7084   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7085   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7086   ins_pipe(ialu_reg);
  7087 %}
  7089 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7090   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7091   ins_cost(140);
  7092   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7093   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7094   ins_pipe(ialu_imm);
  7095 %}
  7097 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7098   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7099   ins_cost(150);
  7101   size(4);
  7102   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7103   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7104   ins_pipe(ialu_reg);
  7105 %}
  7108 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7109   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7110   ins_cost(150);
  7112   size(4);
  7113   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7114   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7115   ins_pipe(ialu_reg);
  7116 %}
  7119 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7120   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7121   ins_cost(150);
  7123   size(4);
  7124   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7125   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7126   ins_pipe(ialu_reg);
  7127 %}
  7131 //----------OS and Locking Instructions----------------------------------------
  7133 // This name is KNOWN by the ADLC and cannot be changed.
  7134 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7135 // for this guy.
  7136 instruct tlsLoadP(g2RegP dst) %{
  7137   match(Set dst (ThreadLocal));
  7139   size(0);
  7140   ins_cost(0);
  7141   format %{ "# TLS is in G2" %}
  7142   ins_encode( /*empty encoding*/ );
  7143   ins_pipe(ialu_none);
  7144 %}
  7146 instruct checkCastPP( iRegP dst ) %{
  7147   match(Set dst (CheckCastPP dst));
  7149   size(0);
  7150   format %{ "# checkcastPP of $dst" %}
  7151   ins_encode( /*empty encoding*/ );
  7152   ins_pipe(empty);
  7153 %}
  7156 instruct castPP( iRegP dst ) %{
  7157   match(Set dst (CastPP dst));
  7158   format %{ "# castPP of $dst" %}
  7159   ins_encode( /*empty encoding*/ );
  7160   ins_pipe(empty);
  7161 %}
  7163 instruct castII( iRegI dst ) %{
  7164   match(Set dst (CastII dst));
  7165   format %{ "# castII of $dst" %}
  7166   ins_encode( /*empty encoding*/ );
  7167   ins_cost(0);
  7168   ins_pipe(empty);
  7169 %}
  7171 //----------Arithmetic Instructions--------------------------------------------
  7172 // Addition Instructions
  7173 // Register Addition
  7174 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7175   match(Set dst (AddI src1 src2));
  7177   size(4);
  7178   format %{ "ADD    $src1,$src2,$dst" %}
  7179   ins_encode %{
  7180     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7181   %}
  7182   ins_pipe(ialu_reg_reg);
  7183 %}
  7185 // Immediate Addition
  7186 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7187   match(Set dst (AddI src1 src2));
  7189   size(4);
  7190   format %{ "ADD    $src1,$src2,$dst" %}
  7191   opcode(Assembler::add_op3, Assembler::arith_op);
  7192   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7193   ins_pipe(ialu_reg_imm);
  7194 %}
  7196 // Pointer Register Addition
  7197 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7198   match(Set dst (AddP src1 src2));
  7200   size(4);
  7201   format %{ "ADD    $src1,$src2,$dst" %}
  7202   opcode(Assembler::add_op3, Assembler::arith_op);
  7203   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7204   ins_pipe(ialu_reg_reg);
  7205 %}
  7207 // Pointer Immediate Addition
  7208 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7209   match(Set dst (AddP src1 src2));
  7211   size(4);
  7212   format %{ "ADD    $src1,$src2,$dst" %}
  7213   opcode(Assembler::add_op3, Assembler::arith_op);
  7214   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7215   ins_pipe(ialu_reg_imm);
  7216 %}
  7218 // Long Addition
  7219 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7220   match(Set dst (AddL src1 src2));
  7222   size(4);
  7223   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7224   opcode(Assembler::add_op3, Assembler::arith_op);
  7225   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7226   ins_pipe(ialu_reg_reg);
  7227 %}
  7229 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7230   match(Set dst (AddL src1 con));
  7232   size(4);
  7233   format %{ "ADD    $src1,$con,$dst" %}
  7234   opcode(Assembler::add_op3, Assembler::arith_op);
  7235   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7236   ins_pipe(ialu_reg_imm);
  7237 %}
  7239 //----------Conditional_store--------------------------------------------------
  7240 // Conditional-store of the updated heap-top.
  7241 // Used during allocation of the shared heap.
  7242 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7244 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7245 instruct loadPLocked(iRegP dst, memory mem) %{
  7246   match(Set dst (LoadPLocked mem));
  7247   ins_cost(MEMORY_REF_COST);
  7249 #ifndef _LP64
  7250   size(4);
  7251   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7252   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7253 #else
  7254   format %{ "LDX    $mem,$dst\t! ptr" %}
  7255   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7256 #endif
  7257   ins_encode( form3_mem_reg( mem, dst ) );
  7258   ins_pipe(iload_mem);
  7259 %}
  7261 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  7262 instruct loadLLocked(iRegL dst, memory mem) %{
  7263   match(Set dst (LoadLLocked mem));
  7264   ins_cost(MEMORY_REF_COST);
  7265   size(4);
  7266   format %{ "LDX    $mem,$dst\t! long" %}
  7267   opcode(Assembler::ldx_op3);
  7268   ins_encode(simple_form3_mem_reg( mem, dst ) );
  7269   ins_pipe(iload_mem);
  7270 %}
  7272 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7273   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7274   effect( KILL newval );
  7275   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7276             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7277   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7278   ins_pipe( long_memory_op );
  7279 %}
  7281 // Conditional-store of an int value.
  7282 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7283   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7284   effect( KILL newval );
  7285   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7286             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7287   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7288   ins_pipe( long_memory_op );
  7289 %}
  7291 // Conditional-store of a long value.
  7292 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7293   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7294   effect( KILL newval );
  7295   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7296             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7297   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7298   ins_pipe( long_memory_op );
  7299 %}
  7301 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7303 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7304   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7305   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7306   format %{
  7307             "MOV    $newval,O7\n\t"
  7308             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7309             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7310             "MOV    1,$res\n\t"
  7311             "MOVne  xcc,R_G0,$res"
  7312   %}
  7313   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7314               enc_lflags_ne_to_boolean(res) );
  7315   ins_pipe( long_memory_op );
  7316 %}
  7319 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7320   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7321   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7322   format %{
  7323             "MOV    $newval,O7\n\t"
  7324             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7325             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7326             "MOV    1,$res\n\t"
  7327             "MOVne  icc,R_G0,$res"
  7328   %}
  7329   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7330               enc_iflags_ne_to_boolean(res) );
  7331   ins_pipe( long_memory_op );
  7332 %}
  7334 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7335   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7336   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7337   format %{
  7338             "MOV    $newval,O7\n\t"
  7339             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7340             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7341             "MOV    1,$res\n\t"
  7342             "MOVne  xcc,R_G0,$res"
  7343   %}
  7344 #ifdef _LP64
  7345   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7346               enc_lflags_ne_to_boolean(res) );
  7347 #else
  7348   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7349               enc_iflags_ne_to_boolean(res) );
  7350 #endif
  7351   ins_pipe( long_memory_op );
  7352 %}
  7354 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7355   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7356   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7357   format %{
  7358             "MOV    $newval,O7\n\t"
  7359             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7360             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7361             "MOV    1,$res\n\t"
  7362             "MOVne  icc,R_G0,$res"
  7363   %}
  7364   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7365               enc_iflags_ne_to_boolean(res) );
  7366   ins_pipe( long_memory_op );
  7367 %}
  7369 //---------------------
  7370 // Subtraction Instructions
  7371 // Register Subtraction
  7372 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7373   match(Set dst (SubI src1 src2));
  7375   size(4);
  7376   format %{ "SUB    $src1,$src2,$dst" %}
  7377   opcode(Assembler::sub_op3, Assembler::arith_op);
  7378   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7379   ins_pipe(ialu_reg_reg);
  7380 %}
  7382 // Immediate Subtraction
  7383 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7384   match(Set dst (SubI src1 src2));
  7386   size(4);
  7387   format %{ "SUB    $src1,$src2,$dst" %}
  7388   opcode(Assembler::sub_op3, Assembler::arith_op);
  7389   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7390   ins_pipe(ialu_reg_imm);
  7391 %}
  7393 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7394   match(Set dst (SubI zero src2));
  7396   size(4);
  7397   format %{ "NEG    $src2,$dst" %}
  7398   opcode(Assembler::sub_op3, Assembler::arith_op);
  7399   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7400   ins_pipe(ialu_zero_reg);
  7401 %}
  7403 // Long subtraction
  7404 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7405   match(Set dst (SubL src1 src2));
  7407   size(4);
  7408   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7409   opcode(Assembler::sub_op3, Assembler::arith_op);
  7410   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7411   ins_pipe(ialu_reg_reg);
  7412 %}
  7414 // Immediate Subtraction
  7415 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7416   match(Set dst (SubL src1 con));
  7418   size(4);
  7419   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7420   opcode(Assembler::sub_op3, Assembler::arith_op);
  7421   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7422   ins_pipe(ialu_reg_imm);
  7423 %}
  7425 // Long negation
  7426 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7427   match(Set dst (SubL zero src2));
  7429   size(4);
  7430   format %{ "NEG    $src2,$dst\t! long" %}
  7431   opcode(Assembler::sub_op3, Assembler::arith_op);
  7432   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7433   ins_pipe(ialu_zero_reg);
  7434 %}
  7436 // Multiplication Instructions
  7437 // Integer Multiplication
  7438 // Register Multiplication
  7439 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7440   match(Set dst (MulI src1 src2));
  7442   size(4);
  7443   format %{ "MULX   $src1,$src2,$dst" %}
  7444   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7445   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7446   ins_pipe(imul_reg_reg);
  7447 %}
  7449 // Immediate Multiplication
  7450 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7451   match(Set dst (MulI src1 src2));
  7453   size(4);
  7454   format %{ "MULX   $src1,$src2,$dst" %}
  7455   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7456   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7457   ins_pipe(imul_reg_imm);
  7458 %}
  7460 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7461   match(Set dst (MulL src1 src2));
  7462   ins_cost(DEFAULT_COST * 5);
  7463   size(4);
  7464   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7465   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7466   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7467   ins_pipe(mulL_reg_reg);
  7468 %}
  7470 // Immediate Multiplication
  7471 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7472   match(Set dst (MulL src1 src2));
  7473   ins_cost(DEFAULT_COST * 5);
  7474   size(4);
  7475   format %{ "MULX   $src1,$src2,$dst" %}
  7476   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7477   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7478   ins_pipe(mulL_reg_imm);
  7479 %}
  7481 // Integer Division
  7482 // Register Division
  7483 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7484   match(Set dst (DivI src1 src2));
  7485   ins_cost((2+71)*DEFAULT_COST);
  7487   format %{ "SRA     $src2,0,$src2\n\t"
  7488             "SRA     $src1,0,$src1\n\t"
  7489             "SDIVX   $src1,$src2,$dst" %}
  7490   ins_encode( idiv_reg( src1, src2, dst ) );
  7491   ins_pipe(sdiv_reg_reg);
  7492 %}
  7494 // Immediate Division
  7495 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7496   match(Set dst (DivI src1 src2));
  7497   ins_cost((2+71)*DEFAULT_COST);
  7499   format %{ "SRA     $src1,0,$src1\n\t"
  7500             "SDIVX   $src1,$src2,$dst" %}
  7501   ins_encode( idiv_imm( src1, src2, dst ) );
  7502   ins_pipe(sdiv_reg_imm);
  7503 %}
  7505 //----------Div-By-10-Expansion------------------------------------------------
  7506 // Extract hi bits of a 32x32->64 bit multiply.
  7507 // Expand rule only, not matched
  7508 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7509   effect( DEF dst, USE src1, USE src2 );
  7510   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7511             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7512   ins_encode( enc_mul_hi(dst,src1,src2));
  7513   ins_pipe(sdiv_reg_reg);
  7514 %}
  7516 // Magic constant, reciprocal of 10
  7517 instruct loadConI_x66666667(iRegIsafe dst) %{
  7518   effect( DEF dst );
  7520   size(8);
  7521   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7522   ins_encode( Set32(0x66666667, dst) );
  7523   ins_pipe(ialu_hi_lo_reg);
  7524 %}
  7526 // Register Shift Right Arithmetic Long by 32-63
  7527 instruct sra_31( iRegI dst, iRegI src ) %{
  7528   effect( DEF dst, USE src );
  7529   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7530   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7531   ins_pipe(ialu_reg_reg);
  7532 %}
  7534 // Arithmetic Shift Right by 8-bit immediate
  7535 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7536   effect( DEF dst, USE src );
  7537   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7538   opcode(Assembler::sra_op3, Assembler::arith_op);
  7539   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7540   ins_pipe(ialu_reg_imm);
  7541 %}
  7543 // Integer DIV with 10
  7544 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7545   match(Set dst (DivI src div));
  7546   ins_cost((6+6)*DEFAULT_COST);
  7547   expand %{
  7548     iRegIsafe tmp1;               // Killed temps;
  7549     iRegIsafe tmp2;               // Killed temps;
  7550     iRegI tmp3;                   // Killed temps;
  7551     iRegI tmp4;                   // Killed temps;
  7552     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7553     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7554     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7555     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7556     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7557   %}
  7558 %}
  7560 // Register Long Division
  7561 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7562   match(Set dst (DivL src1 src2));
  7563   ins_cost(DEFAULT_COST*71);
  7564   size(4);
  7565   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7566   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7567   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7568   ins_pipe(divL_reg_reg);
  7569 %}
  7571 // Register Long Division
  7572 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7573   match(Set dst (DivL src1 src2));
  7574   ins_cost(DEFAULT_COST*71);
  7575   size(4);
  7576   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7577   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7578   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7579   ins_pipe(divL_reg_imm);
  7580 %}
  7582 // Integer Remainder
  7583 // Register Remainder
  7584 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7585   match(Set dst (ModI src1 src2));
  7586   effect( KILL ccr, KILL temp);
  7588   format %{ "SREM   $src1,$src2,$dst" %}
  7589   ins_encode( irem_reg(src1, src2, dst, temp) );
  7590   ins_pipe(sdiv_reg_reg);
  7591 %}
  7593 // Immediate Remainder
  7594 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7595   match(Set dst (ModI src1 src2));
  7596   effect( KILL ccr, KILL temp);
  7598   format %{ "SREM   $src1,$src2,$dst" %}
  7599   ins_encode( irem_imm(src1, src2, dst, temp) );
  7600   ins_pipe(sdiv_reg_imm);
  7601 %}
  7603 // Register Long Remainder
  7604 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7605   effect(DEF dst, USE src1, USE src2);
  7606   size(4);
  7607   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7608   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7609   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7610   ins_pipe(divL_reg_reg);
  7611 %}
  7613 // Register Long Division
  7614 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7615   effect(DEF dst, USE src1, USE src2);
  7616   size(4);
  7617   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7618   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7619   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7620   ins_pipe(divL_reg_imm);
  7621 %}
  7623 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7624   effect(DEF dst, USE src1, USE src2);
  7625   size(4);
  7626   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7627   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7628   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7629   ins_pipe(mulL_reg_reg);
  7630 %}
  7632 // Immediate Multiplication
  7633 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7634   effect(DEF dst, USE src1, USE src2);
  7635   size(4);
  7636   format %{ "MULX   $src1,$src2,$dst" %}
  7637   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7638   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7639   ins_pipe(mulL_reg_imm);
  7640 %}
  7642 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7643   effect(DEF dst, USE src1, USE src2);
  7644   size(4);
  7645   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7646   opcode(Assembler::sub_op3, Assembler::arith_op);
  7647   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7648   ins_pipe(ialu_reg_reg);
  7649 %}
  7651 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7652   effect(DEF dst, USE src1, USE src2);
  7653   size(4);
  7654   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7655   opcode(Assembler::sub_op3, Assembler::arith_op);
  7656   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7657   ins_pipe(ialu_reg_reg);
  7658 %}
  7660 // Register Long Remainder
  7661 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7662   match(Set dst (ModL src1 src2));
  7663   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7664   expand %{
  7665     iRegL tmp1;
  7666     iRegL tmp2;
  7667     divL_reg_reg_1(tmp1, src1, src2);
  7668     mulL_reg_reg_1(tmp2, tmp1, src2);
  7669     subL_reg_reg_1(dst,  src1, tmp2);
  7670   %}
  7671 %}
  7673 // Register Long Remainder
  7674 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7675   match(Set dst (ModL src1 src2));
  7676   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7677   expand %{
  7678     iRegL tmp1;
  7679     iRegL tmp2;
  7680     divL_reg_imm13_1(tmp1, src1, src2);
  7681     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7682     subL_reg_reg_2  (dst,  src1, tmp2);
  7683   %}
  7684 %}
  7686 // Integer Shift Instructions
  7687 // Register Shift Left
  7688 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7689   match(Set dst (LShiftI src1 src2));
  7691   size(4);
  7692   format %{ "SLL    $src1,$src2,$dst" %}
  7693   opcode(Assembler::sll_op3, Assembler::arith_op);
  7694   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7695   ins_pipe(ialu_reg_reg);
  7696 %}
  7698 // Register Shift Left Immediate
  7699 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7700   match(Set dst (LShiftI src1 src2));
  7702   size(4);
  7703   format %{ "SLL    $src1,$src2,$dst" %}
  7704   opcode(Assembler::sll_op3, Assembler::arith_op);
  7705   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7706   ins_pipe(ialu_reg_imm);
  7707 %}
  7709 // Register Shift Left
  7710 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7711   match(Set dst (LShiftL src1 src2));
  7713   size(4);
  7714   format %{ "SLLX   $src1,$src2,$dst" %}
  7715   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7716   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7717   ins_pipe(ialu_reg_reg);
  7718 %}
  7720 // Register Shift Left Immediate
  7721 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7722   match(Set dst (LShiftL src1 src2));
  7724   size(4);
  7725   format %{ "SLLX   $src1,$src2,$dst" %}
  7726   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7727   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7728   ins_pipe(ialu_reg_imm);
  7729 %}
  7731 // Register Arithmetic Shift Right
  7732 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7733   match(Set dst (RShiftI src1 src2));
  7734   size(4);
  7735   format %{ "SRA    $src1,$src2,$dst" %}
  7736   opcode(Assembler::sra_op3, Assembler::arith_op);
  7737   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7738   ins_pipe(ialu_reg_reg);
  7739 %}
  7741 // Register Arithmetic Shift Right Immediate
  7742 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7743   match(Set dst (RShiftI src1 src2));
  7745   size(4);
  7746   format %{ "SRA    $src1,$src2,$dst" %}
  7747   opcode(Assembler::sra_op3, Assembler::arith_op);
  7748   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7749   ins_pipe(ialu_reg_imm);
  7750 %}
  7752 // Register Shift Right Arithmatic Long
  7753 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7754   match(Set dst (RShiftL src1 src2));
  7756   size(4);
  7757   format %{ "SRAX   $src1,$src2,$dst" %}
  7758   opcode(Assembler::srax_op3, Assembler::arith_op);
  7759   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7760   ins_pipe(ialu_reg_reg);
  7761 %}
  7763 // Register Shift Left Immediate
  7764 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7765   match(Set dst (RShiftL src1 src2));
  7767   size(4);
  7768   format %{ "SRAX   $src1,$src2,$dst" %}
  7769   opcode(Assembler::srax_op3, Assembler::arith_op);
  7770   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7771   ins_pipe(ialu_reg_imm);
  7772 %}
  7774 // Register Shift Right
  7775 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7776   match(Set dst (URShiftI src1 src2));
  7778   size(4);
  7779   format %{ "SRL    $src1,$src2,$dst" %}
  7780   opcode(Assembler::srl_op3, Assembler::arith_op);
  7781   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7782   ins_pipe(ialu_reg_reg);
  7783 %}
  7785 // Register Shift Right Immediate
  7786 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7787   match(Set dst (URShiftI src1 src2));
  7789   size(4);
  7790   format %{ "SRL    $src1,$src2,$dst" %}
  7791   opcode(Assembler::srl_op3, Assembler::arith_op);
  7792   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7793   ins_pipe(ialu_reg_imm);
  7794 %}
  7796 // Register Shift Right
  7797 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7798   match(Set dst (URShiftL src1 src2));
  7800   size(4);
  7801   format %{ "SRLX   $src1,$src2,$dst" %}
  7802   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7803   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7804   ins_pipe(ialu_reg_reg);
  7805 %}
  7807 // Register Shift Right Immediate
  7808 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7809   match(Set dst (URShiftL src1 src2));
  7811   size(4);
  7812   format %{ "SRLX   $src1,$src2,$dst" %}
  7813   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7814   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7815   ins_pipe(ialu_reg_imm);
  7816 %}
  7818 // Register Shift Right Immediate with a CastP2X
  7819 #ifdef _LP64
  7820 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7821   match(Set dst (URShiftL (CastP2X src1) src2));
  7822   size(4);
  7823   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7824   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7825   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7826   ins_pipe(ialu_reg_imm);
  7827 %}
  7828 #else
  7829 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7830   match(Set dst (URShiftI (CastP2X src1) src2));
  7831   size(4);
  7832   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7833   opcode(Assembler::srl_op3, Assembler::arith_op);
  7834   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7835   ins_pipe(ialu_reg_imm);
  7836 %}
  7837 #endif
  7840 //----------Floating Point Arithmetic Instructions-----------------------------
  7842 //  Add float single precision
  7843 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7844   match(Set dst (AddF src1 src2));
  7846   size(4);
  7847   format %{ "FADDS  $src1,$src2,$dst" %}
  7848   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7849   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7850   ins_pipe(faddF_reg_reg);
  7851 %}
  7853 //  Add float double precision
  7854 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7855   match(Set dst (AddD src1 src2));
  7857   size(4);
  7858   format %{ "FADDD  $src1,$src2,$dst" %}
  7859   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7860   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7861   ins_pipe(faddD_reg_reg);
  7862 %}
  7864 //  Sub float single precision
  7865 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7866   match(Set dst (SubF src1 src2));
  7868   size(4);
  7869   format %{ "FSUBS  $src1,$src2,$dst" %}
  7870   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7871   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7872   ins_pipe(faddF_reg_reg);
  7873 %}
  7875 //  Sub float double precision
  7876 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7877   match(Set dst (SubD src1 src2));
  7879   size(4);
  7880   format %{ "FSUBD  $src1,$src2,$dst" %}
  7881   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7882   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7883   ins_pipe(faddD_reg_reg);
  7884 %}
  7886 //  Mul float single precision
  7887 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7888   match(Set dst (MulF src1 src2));
  7890   size(4);
  7891   format %{ "FMULS  $src1,$src2,$dst" %}
  7892   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7893   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7894   ins_pipe(fmulF_reg_reg);
  7895 %}
  7897 //  Mul float double precision
  7898 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7899   match(Set dst (MulD src1 src2));
  7901   size(4);
  7902   format %{ "FMULD  $src1,$src2,$dst" %}
  7903   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7904   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7905   ins_pipe(fmulD_reg_reg);
  7906 %}
  7908 //  Div float single precision
  7909 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7910   match(Set dst (DivF src1 src2));
  7912   size(4);
  7913   format %{ "FDIVS  $src1,$src2,$dst" %}
  7914   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7915   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7916   ins_pipe(fdivF_reg_reg);
  7917 %}
  7919 //  Div float double precision
  7920 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7921   match(Set dst (DivD src1 src2));
  7923   size(4);
  7924   format %{ "FDIVD  $src1,$src2,$dst" %}
  7925   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7926   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7927   ins_pipe(fdivD_reg_reg);
  7928 %}
  7930 //  Absolute float double precision
  7931 instruct absD_reg(regD dst, regD src) %{
  7932   match(Set dst (AbsD src));
  7934   format %{ "FABSd  $src,$dst" %}
  7935   ins_encode(fabsd(dst, src));
  7936   ins_pipe(faddD_reg);
  7937 %}
  7939 //  Absolute float single precision
  7940 instruct absF_reg(regF dst, regF src) %{
  7941   match(Set dst (AbsF src));
  7943   format %{ "FABSs  $src,$dst" %}
  7944   ins_encode(fabss(dst, src));
  7945   ins_pipe(faddF_reg);
  7946 %}
  7948 instruct negF_reg(regF dst, regF src) %{
  7949   match(Set dst (NegF src));
  7951   size(4);
  7952   format %{ "FNEGs  $src,$dst" %}
  7953   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7954   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7955   ins_pipe(faddF_reg);
  7956 %}
  7958 instruct negD_reg(regD dst, regD src) %{
  7959   match(Set dst (NegD src));
  7961   format %{ "FNEGd  $src,$dst" %}
  7962   ins_encode(fnegd(dst, src));
  7963   ins_pipe(faddD_reg);
  7964 %}
  7966 //  Sqrt float double precision
  7967 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7968   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7970   size(4);
  7971   format %{ "FSQRTS $src,$dst" %}
  7972   ins_encode(fsqrts(dst, src));
  7973   ins_pipe(fdivF_reg_reg);
  7974 %}
  7976 //  Sqrt float double precision
  7977 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7978   match(Set dst (SqrtD src));
  7980   size(4);
  7981   format %{ "FSQRTD $src,$dst" %}
  7982   ins_encode(fsqrtd(dst, src));
  7983   ins_pipe(fdivD_reg_reg);
  7984 %}
  7986 //----------Logical Instructions-----------------------------------------------
  7987 // And Instructions
  7988 // Register And
  7989 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7990   match(Set dst (AndI src1 src2));
  7992   size(4);
  7993   format %{ "AND    $src1,$src2,$dst" %}
  7994   opcode(Assembler::and_op3, Assembler::arith_op);
  7995   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7996   ins_pipe(ialu_reg_reg);
  7997 %}
  7999 // Immediate And
  8000 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8001   match(Set dst (AndI src1 src2));
  8003   size(4);
  8004   format %{ "AND    $src1,$src2,$dst" %}
  8005   opcode(Assembler::and_op3, Assembler::arith_op);
  8006   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8007   ins_pipe(ialu_reg_imm);
  8008 %}
  8010 // Register And Long
  8011 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8012   match(Set dst (AndL src1 src2));
  8014   ins_cost(DEFAULT_COST);
  8015   size(4);
  8016   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8017   opcode(Assembler::and_op3, Assembler::arith_op);
  8018   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8019   ins_pipe(ialu_reg_reg);
  8020 %}
  8022 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8023   match(Set dst (AndL src1 con));
  8025   ins_cost(DEFAULT_COST);
  8026   size(4);
  8027   format %{ "AND    $src1,$con,$dst\t! long" %}
  8028   opcode(Assembler::and_op3, Assembler::arith_op);
  8029   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8030   ins_pipe(ialu_reg_imm);
  8031 %}
  8033 // Or Instructions
  8034 // Register Or
  8035 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8036   match(Set dst (OrI src1 src2));
  8038   size(4);
  8039   format %{ "OR     $src1,$src2,$dst" %}
  8040   opcode(Assembler::or_op3, Assembler::arith_op);
  8041   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8042   ins_pipe(ialu_reg_reg);
  8043 %}
  8045 // Immediate Or
  8046 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8047   match(Set dst (OrI src1 src2));
  8049   size(4);
  8050   format %{ "OR     $src1,$src2,$dst" %}
  8051   opcode(Assembler::or_op3, Assembler::arith_op);
  8052   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8053   ins_pipe(ialu_reg_imm);
  8054 %}
  8056 // Register Or Long
  8057 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8058   match(Set dst (OrL src1 src2));
  8060   ins_cost(DEFAULT_COST);
  8061   size(4);
  8062   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8063   opcode(Assembler::or_op3, Assembler::arith_op);
  8064   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8065   ins_pipe(ialu_reg_reg);
  8066 %}
  8068 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8069   match(Set dst (OrL src1 con));
  8070   ins_cost(DEFAULT_COST*2);
  8072   ins_cost(DEFAULT_COST);
  8073   size(4);
  8074   format %{ "OR     $src1,$con,$dst\t! long" %}
  8075   opcode(Assembler::or_op3, Assembler::arith_op);
  8076   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8077   ins_pipe(ialu_reg_imm);
  8078 %}
  8080 #ifndef _LP64
  8082 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8083 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8084   match(Set dst (OrI src1 (CastP2X src2)));
  8086   size(4);
  8087   format %{ "OR     $src1,$src2,$dst" %}
  8088   opcode(Assembler::or_op3, Assembler::arith_op);
  8089   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8090   ins_pipe(ialu_reg_reg);
  8091 %}
  8093 #else
  8095 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8096   match(Set dst (OrL src1 (CastP2X src2)));
  8098   ins_cost(DEFAULT_COST);
  8099   size(4);
  8100   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8101   opcode(Assembler::or_op3, Assembler::arith_op);
  8102   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8103   ins_pipe(ialu_reg_reg);
  8104 %}
  8106 #endif
  8108 // Xor Instructions
  8109 // Register Xor
  8110 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8111   match(Set dst (XorI src1 src2));
  8113   size(4);
  8114   format %{ "XOR    $src1,$src2,$dst" %}
  8115   opcode(Assembler::xor_op3, Assembler::arith_op);
  8116   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8117   ins_pipe(ialu_reg_reg);
  8118 %}
  8120 // Immediate Xor
  8121 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8122   match(Set dst (XorI src1 src2));
  8124   size(4);
  8125   format %{ "XOR    $src1,$src2,$dst" %}
  8126   opcode(Assembler::xor_op3, Assembler::arith_op);
  8127   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8128   ins_pipe(ialu_reg_imm);
  8129 %}
  8131 // Register Xor Long
  8132 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8133   match(Set dst (XorL src1 src2));
  8135   ins_cost(DEFAULT_COST);
  8136   size(4);
  8137   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8138   opcode(Assembler::xor_op3, Assembler::arith_op);
  8139   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8140   ins_pipe(ialu_reg_reg);
  8141 %}
  8143 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8144   match(Set dst (XorL src1 con));
  8146   ins_cost(DEFAULT_COST);
  8147   size(4);
  8148   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8149   opcode(Assembler::xor_op3, Assembler::arith_op);
  8150   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8151   ins_pipe(ialu_reg_imm);
  8152 %}
  8154 //----------Convert to Boolean-------------------------------------------------
  8155 // Nice hack for 32-bit tests but doesn't work for
  8156 // 64-bit pointers.
  8157 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8158   match(Set dst (Conv2B src));
  8159   effect( KILL ccr );
  8160   ins_cost(DEFAULT_COST*2);
  8161   format %{ "CMP    R_G0,$src\n\t"
  8162             "ADDX   R_G0,0,$dst" %}
  8163   ins_encode( enc_to_bool( src, dst ) );
  8164   ins_pipe(ialu_reg_ialu);
  8165 %}
  8167 #ifndef _LP64
  8168 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8169   match(Set dst (Conv2B src));
  8170   effect( KILL ccr );
  8171   ins_cost(DEFAULT_COST*2);
  8172   format %{ "CMP    R_G0,$src\n\t"
  8173             "ADDX   R_G0,0,$dst" %}
  8174   ins_encode( enc_to_bool( src, dst ) );
  8175   ins_pipe(ialu_reg_ialu);
  8176 %}
  8177 #else
  8178 instruct convP2B( iRegI dst, iRegP src ) %{
  8179   match(Set dst (Conv2B src));
  8180   ins_cost(DEFAULT_COST*2);
  8181   format %{ "MOV    $src,$dst\n\t"
  8182             "MOVRNZ $src,1,$dst" %}
  8183   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8184   ins_pipe(ialu_clr_and_mover);
  8185 %}
  8186 #endif
  8188 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8189   match(Set dst (CmpLTMask src zero));
  8190   effect(KILL ccr);
  8191   size(4);
  8192   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8193   ins_encode %{
  8194     __ sra($src$$Register, 31, $dst$$Register);
  8195   %}
  8196   ins_pipe(ialu_reg_imm);
  8197 %}
  8199 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8200   match(Set dst (CmpLTMask p q));
  8201   effect( KILL ccr );
  8202   ins_cost(DEFAULT_COST*4);
  8203   format %{ "CMP    $p,$q\n\t"
  8204             "MOV    #0,$dst\n\t"
  8205             "BLT,a  .+8\n\t"
  8206             "MOV    #-1,$dst" %}
  8207   ins_encode( enc_ltmask(p,q,dst) );
  8208   ins_pipe(ialu_reg_reg_ialu);
  8209 %}
  8211 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8212   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8213   effect(KILL ccr, TEMP tmp);
  8214   ins_cost(DEFAULT_COST*3);
  8216   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8217             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8218             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8219   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8220   ins_pipe( cadd_cmpltmask );
  8221 %}
  8224 //-----------------------------------------------------------------
  8225 // Direct raw moves between float and general registers using VIS3.
  8227 //  ins_pipe(faddF_reg);
  8228 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8229   predicate(UseVIS >= 3);
  8230   match(Set dst (MoveF2I src));
  8232   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8233   ins_encode %{
  8234     __ movstouw($src$$FloatRegister, $dst$$Register);
  8235   %}
  8236   ins_pipe(ialu_reg_reg);
  8237 %}
  8239 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8240   predicate(UseVIS >= 3);
  8241   match(Set dst (MoveI2F src));
  8243   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8244   ins_encode %{
  8245     __ movwtos($src$$Register, $dst$$FloatRegister);
  8246   %}
  8247   ins_pipe(ialu_reg_reg);
  8248 %}
  8250 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8251   predicate(UseVIS >= 3);
  8252   match(Set dst (MoveD2L src));
  8254   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8255   ins_encode %{
  8256     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8257   %}
  8258   ins_pipe(ialu_reg_reg);
  8259 %}
  8261 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8262   predicate(UseVIS >= 3);
  8263   match(Set dst (MoveL2D src));
  8265   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8266   ins_encode %{
  8267     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8268   %}
  8269   ins_pipe(ialu_reg_reg);
  8270 %}
  8273 // Raw moves between float and general registers using stack.
  8275 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8276   match(Set dst (MoveF2I src));
  8277   effect(DEF dst, USE src);
  8278   ins_cost(MEMORY_REF_COST);
  8280   size(4);
  8281   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8282   opcode(Assembler::lduw_op3);
  8283   ins_encode(simple_form3_mem_reg( src, dst ) );
  8284   ins_pipe(iload_mem);
  8285 %}
  8287 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8288   match(Set dst (MoveI2F src));
  8289   effect(DEF dst, USE src);
  8290   ins_cost(MEMORY_REF_COST);
  8292   size(4);
  8293   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8294   opcode(Assembler::ldf_op3);
  8295   ins_encode(simple_form3_mem_reg(src, dst));
  8296   ins_pipe(floadF_stk);
  8297 %}
  8299 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8300   match(Set dst (MoveD2L src));
  8301   effect(DEF dst, USE src);
  8302   ins_cost(MEMORY_REF_COST);
  8304   size(4);
  8305   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8306   opcode(Assembler::ldx_op3);
  8307   ins_encode(simple_form3_mem_reg( src, dst ) );
  8308   ins_pipe(iload_mem);
  8309 %}
  8311 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8312   match(Set dst (MoveL2D src));
  8313   effect(DEF dst, USE src);
  8314   ins_cost(MEMORY_REF_COST);
  8316   size(4);
  8317   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8318   opcode(Assembler::lddf_op3);
  8319   ins_encode(simple_form3_mem_reg(src, dst));
  8320   ins_pipe(floadD_stk);
  8321 %}
  8323 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8324   match(Set dst (MoveF2I src));
  8325   effect(DEF dst, USE src);
  8326   ins_cost(MEMORY_REF_COST);
  8328   size(4);
  8329   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8330   opcode(Assembler::stf_op3);
  8331   ins_encode(simple_form3_mem_reg(dst, src));
  8332   ins_pipe(fstoreF_stk_reg);
  8333 %}
  8335 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8336   match(Set dst (MoveI2F src));
  8337   effect(DEF dst, USE src);
  8338   ins_cost(MEMORY_REF_COST);
  8340   size(4);
  8341   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8342   opcode(Assembler::stw_op3);
  8343   ins_encode(simple_form3_mem_reg( dst, src ) );
  8344   ins_pipe(istore_mem_reg);
  8345 %}
  8347 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8348   match(Set dst (MoveD2L src));
  8349   effect(DEF dst, USE src);
  8350   ins_cost(MEMORY_REF_COST);
  8352   size(4);
  8353   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8354   opcode(Assembler::stdf_op3);
  8355   ins_encode(simple_form3_mem_reg(dst, src));
  8356   ins_pipe(fstoreD_stk_reg);
  8357 %}
  8359 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8360   match(Set dst (MoveL2D src));
  8361   effect(DEF dst, USE src);
  8362   ins_cost(MEMORY_REF_COST);
  8364   size(4);
  8365   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8366   opcode(Assembler::stx_op3);
  8367   ins_encode(simple_form3_mem_reg( dst, src ) );
  8368   ins_pipe(istore_mem_reg);
  8369 %}
  8372 //----------Arithmetic Conversion Instructions---------------------------------
  8373 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8375 instruct convD2F_reg(regF dst, regD src) %{
  8376   match(Set dst (ConvD2F src));
  8377   size(4);
  8378   format %{ "FDTOS  $src,$dst" %}
  8379   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8380   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8381   ins_pipe(fcvtD2F);
  8382 %}
  8385 // Convert a double to an int in a float register.
  8386 // If the double is a NAN, stuff a zero in instead.
  8387 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8388   effect(DEF dst, USE src, KILL fcc0);
  8389   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8390             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8391             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8392             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8393             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8394       "skip:" %}
  8395   ins_encode(form_d2i_helper(src,dst));
  8396   ins_pipe(fcvtD2I);
  8397 %}
  8399 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8400   match(Set dst (ConvD2I src));
  8401   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8402   expand %{
  8403     regF tmp;
  8404     convD2I_helper(tmp, src);
  8405     regF_to_stkI(dst, tmp);
  8406   %}
  8407 %}
  8409 instruct convD2I_reg(iRegI dst, regD src) %{
  8410   predicate(UseVIS >= 3);
  8411   match(Set dst (ConvD2I src));
  8412   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8413   expand %{
  8414     regF tmp;
  8415     convD2I_helper(tmp, src);
  8416     MoveF2I_reg_reg(dst, tmp);
  8417   %}
  8418 %}
  8421 // Convert a double to a long in a double register.
  8422 // If the double is a NAN, stuff a zero in instead.
  8423 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8424   effect(DEF dst, USE src, KILL fcc0);
  8425   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8426             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8427             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8428             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8429             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8430       "skip:" %}
  8431   ins_encode(form_d2l_helper(src,dst));
  8432   ins_pipe(fcvtD2L);
  8433 %}
  8435 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8436   match(Set dst (ConvD2L src));
  8437   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8438   expand %{
  8439     regD tmp;
  8440     convD2L_helper(tmp, src);
  8441     regD_to_stkL(dst, tmp);
  8442   %}
  8443 %}
  8445 instruct convD2L_reg(iRegL dst, regD src) %{
  8446   predicate(UseVIS >= 3);
  8447   match(Set dst (ConvD2L src));
  8448   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8449   expand %{
  8450     regD tmp;
  8451     convD2L_helper(tmp, src);
  8452     MoveD2L_reg_reg(dst, tmp);
  8453   %}
  8454 %}
  8457 instruct convF2D_reg(regD dst, regF src) %{
  8458   match(Set dst (ConvF2D src));
  8459   format %{ "FSTOD  $src,$dst" %}
  8460   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8461   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8462   ins_pipe(fcvtF2D);
  8463 %}
  8466 // Convert a float to an int in a float register.
  8467 // If the float is a NAN, stuff a zero in instead.
  8468 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8469   effect(DEF dst, USE src, KILL fcc0);
  8470   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8471             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8472             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8473             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8474             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8475       "skip:" %}
  8476   ins_encode(form_f2i_helper(src,dst));
  8477   ins_pipe(fcvtF2I);
  8478 %}
  8480 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8481   match(Set dst (ConvF2I src));
  8482   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8483   expand %{
  8484     regF tmp;
  8485     convF2I_helper(tmp, src);
  8486     regF_to_stkI(dst, tmp);
  8487   %}
  8488 %}
  8490 instruct convF2I_reg(iRegI dst, regF src) %{
  8491   predicate(UseVIS >= 3);
  8492   match(Set dst (ConvF2I src));
  8493   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8494   expand %{
  8495     regF tmp;
  8496     convF2I_helper(tmp, src);
  8497     MoveF2I_reg_reg(dst, tmp);
  8498   %}
  8499 %}
  8502 // Convert a float to a long in a float register.
  8503 // If the float is a NAN, stuff a zero in instead.
  8504 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8505   effect(DEF dst, USE src, KILL fcc0);
  8506   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8507             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8508             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8509             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8510             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8511       "skip:" %}
  8512   ins_encode(form_f2l_helper(src,dst));
  8513   ins_pipe(fcvtF2L);
  8514 %}
  8516 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8517   match(Set dst (ConvF2L src));
  8518   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8519   expand %{
  8520     regD tmp;
  8521     convF2L_helper(tmp, src);
  8522     regD_to_stkL(dst, tmp);
  8523   %}
  8524 %}
  8526 instruct convF2L_reg(iRegL dst, regF src) %{
  8527   predicate(UseVIS >= 3);
  8528   match(Set dst (ConvF2L src));
  8529   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8530   expand %{
  8531     regD tmp;
  8532     convF2L_helper(tmp, src);
  8533     MoveD2L_reg_reg(dst, tmp);
  8534   %}
  8535 %}
  8538 instruct convI2D_helper(regD dst, regF tmp) %{
  8539   effect(USE tmp, DEF dst);
  8540   format %{ "FITOD  $tmp,$dst" %}
  8541   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8542   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8543   ins_pipe(fcvtI2D);
  8544 %}
  8546 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8547   match(Set dst (ConvI2D src));
  8548   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8549   expand %{
  8550     regF tmp;
  8551     stkI_to_regF(tmp, src);
  8552     convI2D_helper(dst, tmp);
  8553   %}
  8554 %}
  8556 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8557   predicate(UseVIS >= 3);
  8558   match(Set dst (ConvI2D src));
  8559   expand %{
  8560     regF tmp;
  8561     MoveI2F_reg_reg(tmp, src);
  8562     convI2D_helper(dst, tmp);
  8563   %}
  8564 %}
  8566 instruct convI2D_mem(regD_low dst, memory mem) %{
  8567   match(Set dst (ConvI2D (LoadI mem)));
  8568   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8569   size(8);
  8570   format %{ "LDF    $mem,$dst\n\t"
  8571             "FITOD  $dst,$dst" %}
  8572   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8573   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8574   ins_pipe(floadF_mem);
  8575 %}
  8578 instruct convI2F_helper(regF dst, regF tmp) %{
  8579   effect(DEF dst, USE tmp);
  8580   format %{ "FITOS  $tmp,$dst" %}
  8581   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8582   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8583   ins_pipe(fcvtI2F);
  8584 %}
  8586 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8587   match(Set dst (ConvI2F src));
  8588   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8589   expand %{
  8590     regF tmp;
  8591     stkI_to_regF(tmp,src);
  8592     convI2F_helper(dst, tmp);
  8593   %}
  8594 %}
  8596 instruct convI2F_reg(regF dst, iRegI src) %{
  8597   predicate(UseVIS >= 3);
  8598   match(Set dst (ConvI2F src));
  8599   ins_cost(DEFAULT_COST);
  8600   expand %{
  8601     regF tmp;
  8602     MoveI2F_reg_reg(tmp, src);
  8603     convI2F_helper(dst, tmp);
  8604   %}
  8605 %}
  8607 instruct convI2F_mem( regF dst, memory mem ) %{
  8608   match(Set dst (ConvI2F (LoadI mem)));
  8609   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8610   size(8);
  8611   format %{ "LDF    $mem,$dst\n\t"
  8612             "FITOS  $dst,$dst" %}
  8613   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8614   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8615   ins_pipe(floadF_mem);
  8616 %}
  8619 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8620   match(Set dst (ConvI2L src));
  8621   size(4);
  8622   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8623   opcode(Assembler::sra_op3, Assembler::arith_op);
  8624   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8625   ins_pipe(ialu_reg_reg);
  8626 %}
  8628 // Zero-extend convert int to long
  8629 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8630   match(Set dst (AndL (ConvI2L src) mask) );
  8631   size(4);
  8632   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8633   opcode(Assembler::srl_op3, Assembler::arith_op);
  8634   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8635   ins_pipe(ialu_reg_reg);
  8636 %}
  8638 // Zero-extend long
  8639 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8640   match(Set dst (AndL src mask) );
  8641   size(4);
  8642   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8643   opcode(Assembler::srl_op3, Assembler::arith_op);
  8644   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8645   ins_pipe(ialu_reg_reg);
  8646 %}
  8649 //-----------
  8650 // Long to Double conversion using V8 opcodes.
  8651 // Still useful because cheetah traps and becomes
  8652 // amazingly slow for some common numbers.
  8654 // Magic constant, 0x43300000
  8655 instruct loadConI_x43300000(iRegI dst) %{
  8656   effect(DEF dst);
  8657   size(4);
  8658   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8659   ins_encode(SetHi22(0x43300000, dst));
  8660   ins_pipe(ialu_none);
  8661 %}
  8663 // Magic constant, 0x41f00000
  8664 instruct loadConI_x41f00000(iRegI dst) %{
  8665   effect(DEF dst);
  8666   size(4);
  8667   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8668   ins_encode(SetHi22(0x41f00000, dst));
  8669   ins_pipe(ialu_none);
  8670 %}
  8672 // Construct a double from two float halves
  8673 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8674   effect(DEF dst, USE src1, USE src2);
  8675   size(8);
  8676   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8677             "FMOVS  $src2.lo,$dst.lo" %}
  8678   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8679   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8680   ins_pipe(faddD_reg_reg);
  8681 %}
  8683 // Convert integer in high half of a double register (in the lower half of
  8684 // the double register file) to double
  8685 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8686   effect(DEF dst, USE src);
  8687   size(4);
  8688   format %{ "FITOD  $src,$dst" %}
  8689   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8690   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8691   ins_pipe(fcvtLHi2D);
  8692 %}
  8694 // Add float double precision
  8695 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8696   effect(DEF dst, USE src1, USE src2);
  8697   size(4);
  8698   format %{ "FADDD  $src1,$src2,$dst" %}
  8699   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8700   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8701   ins_pipe(faddD_reg_reg);
  8702 %}
  8704 // Sub float double precision
  8705 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8706   effect(DEF dst, USE src1, USE src2);
  8707   size(4);
  8708   format %{ "FSUBD  $src1,$src2,$dst" %}
  8709   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8710   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8711   ins_pipe(faddD_reg_reg);
  8712 %}
  8714 // Mul float double precision
  8715 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8716   effect(DEF dst, USE src1, USE src2);
  8717   size(4);
  8718   format %{ "FMULD  $src1,$src2,$dst" %}
  8719   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8720   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8721   ins_pipe(fmulD_reg_reg);
  8722 %}
  8724 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8725   match(Set dst (ConvL2D src));
  8726   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8728   expand %{
  8729     regD_low   tmpsrc;
  8730     iRegI      ix43300000;
  8731     iRegI      ix41f00000;
  8732     stackSlotL lx43300000;
  8733     stackSlotL lx41f00000;
  8734     regD_low   dx43300000;
  8735     regD       dx41f00000;
  8736     regD       tmp1;
  8737     regD_low   tmp2;
  8738     regD       tmp3;
  8739     regD       tmp4;
  8741     stkL_to_regD(tmpsrc, src);
  8743     loadConI_x43300000(ix43300000);
  8744     loadConI_x41f00000(ix41f00000);
  8745     regI_to_stkLHi(lx43300000, ix43300000);
  8746     regI_to_stkLHi(lx41f00000, ix41f00000);
  8747     stkL_to_regD(dx43300000, lx43300000);
  8748     stkL_to_regD(dx41f00000, lx41f00000);
  8750     convI2D_regDHi_regD(tmp1, tmpsrc);
  8751     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8752     subD_regD_regD(tmp3, tmp2, dx43300000);
  8753     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8754     addD_regD_regD(dst, tmp3, tmp4);
  8755   %}
  8756 %}
  8758 // Long to Double conversion using fast fxtof
  8759 instruct convL2D_helper(regD dst, regD tmp) %{
  8760   effect(DEF dst, USE tmp);
  8761   size(4);
  8762   format %{ "FXTOD  $tmp,$dst" %}
  8763   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8764   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8765   ins_pipe(fcvtL2D);
  8766 %}
  8768 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8769   predicate(VM_Version::has_fast_fxtof());
  8770   match(Set dst (ConvL2D src));
  8771   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8772   expand %{
  8773     regD tmp;
  8774     stkL_to_regD(tmp, src);
  8775     convL2D_helper(dst, tmp);
  8776   %}
  8777 %}
  8779 instruct convL2D_reg(regD dst, iRegL src) %{
  8780   predicate(UseVIS >= 3);
  8781   match(Set dst (ConvL2D src));
  8782   expand %{
  8783     regD tmp;
  8784     MoveL2D_reg_reg(tmp, src);
  8785     convL2D_helper(dst, tmp);
  8786   %}
  8787 %}
  8789 // Long to Float conversion using fast fxtof
  8790 instruct convL2F_helper(regF dst, regD tmp) %{
  8791   effect(DEF dst, USE tmp);
  8792   size(4);
  8793   format %{ "FXTOS  $tmp,$dst" %}
  8794   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8795   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8796   ins_pipe(fcvtL2F);
  8797 %}
  8799 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8800   match(Set dst (ConvL2F src));
  8801   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8802   expand %{
  8803     regD tmp;
  8804     stkL_to_regD(tmp, src);
  8805     convL2F_helper(dst, tmp);
  8806   %}
  8807 %}
  8809 instruct convL2F_reg(regF dst, iRegL src) %{
  8810   predicate(UseVIS >= 3);
  8811   match(Set dst (ConvL2F src));
  8812   ins_cost(DEFAULT_COST);
  8813   expand %{
  8814     regD tmp;
  8815     MoveL2D_reg_reg(tmp, src);
  8816     convL2F_helper(dst, tmp);
  8817   %}
  8818 %}
  8820 //-----------
  8822 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8823   match(Set dst (ConvL2I src));
  8824 #ifndef _LP64
  8825   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8826   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8827   ins_pipe(ialu_move_reg_I_to_L);
  8828 #else
  8829   size(4);
  8830   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8831   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8832   ins_pipe(ialu_reg);
  8833 #endif
  8834 %}
  8836 // Register Shift Right Immediate
  8837 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8838   match(Set dst (ConvL2I (RShiftL src cnt)));
  8840   size(4);
  8841   format %{ "SRAX   $src,$cnt,$dst" %}
  8842   opcode(Assembler::srax_op3, Assembler::arith_op);
  8843   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8844   ins_pipe(ialu_reg_imm);
  8845 %}
  8847 // Replicate scalar to packed byte values in Double register
  8848 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8849   effect(DEF dst, USE src);
  8850   format %{ "SLLX  $src,56,$dst\n\t"
  8851             "SRLX  $dst, 8,O7\n\t"
  8852             "OR    $dst,O7,$dst\n\t"
  8853             "SRLX  $dst,16,O7\n\t"
  8854             "OR    $dst,O7,$dst\n\t"
  8855             "SRLX  $dst,32,O7\n\t"
  8856             "OR    $dst,O7,$dst\t! replicate8B" %}
  8857   ins_encode( enc_repl8b(src, dst));
  8858   ins_pipe(ialu_reg);
  8859 %}
  8861 // Replicate scalar to packed byte values in Double register
  8862 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8863   match(Set dst (Replicate8B src));
  8864   expand %{
  8865     iRegL tmp;
  8866     Repl8B_reg_helper(tmp, src);
  8867     regL_to_stkD(dst, tmp);
  8868   %}
  8869 %}
  8871 // Replicate scalar constant to packed byte values in Double register
  8872 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
  8873   match(Set dst (Replicate8B con));
  8874   effect(KILL tmp);
  8875   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
  8876   ins_encode %{
  8877     // XXX This is a quick fix for 6833573.
  8878     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
  8879     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
  8880     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8881   %}
  8882   ins_pipe(loadConFD);
  8883 %}
  8885 // Replicate scalar to packed char values into stack slot
  8886 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8887   effect(DEF dst, USE src);
  8888   format %{ "SLLX  $src,48,$dst\n\t"
  8889             "SRLX  $dst,16,O7\n\t"
  8890             "OR    $dst,O7,$dst\n\t"
  8891             "SRLX  $dst,32,O7\n\t"
  8892             "OR    $dst,O7,$dst\t! replicate4C" %}
  8893   ins_encode( enc_repl4s(src, dst) );
  8894   ins_pipe(ialu_reg);
  8895 %}
  8897 // Replicate scalar to packed char values into stack slot
  8898 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8899   match(Set dst (Replicate4C src));
  8900   expand %{
  8901     iRegL tmp;
  8902     Repl4C_reg_helper(tmp, src);
  8903     regL_to_stkD(dst, tmp);
  8904   %}
  8905 %}
  8907 // Replicate scalar constant to packed char values in Double register
  8908 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
  8909   match(Set dst (Replicate4C con));
  8910   effect(KILL tmp);
  8911   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
  8912   ins_encode %{
  8913     // XXX This is a quick fix for 6833573.
  8914     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8915     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8916     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8917   %}
  8918   ins_pipe(loadConFD);
  8919 %}
  8921 // Replicate scalar to packed short values into stack slot
  8922 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8923   effect(DEF dst, USE src);
  8924   format %{ "SLLX  $src,48,$dst\n\t"
  8925             "SRLX  $dst,16,O7\n\t"
  8926             "OR    $dst,O7,$dst\n\t"
  8927             "SRLX  $dst,32,O7\n\t"
  8928             "OR    $dst,O7,$dst\t! replicate4S" %}
  8929   ins_encode( enc_repl4s(src, dst) );
  8930   ins_pipe(ialu_reg);
  8931 %}
  8933 // Replicate scalar to packed short values into stack slot
  8934 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8935   match(Set dst (Replicate4S src));
  8936   expand %{
  8937     iRegL tmp;
  8938     Repl4S_reg_helper(tmp, src);
  8939     regL_to_stkD(dst, tmp);
  8940   %}
  8941 %}
  8943 // Replicate scalar constant to packed short values in Double register
  8944 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
  8945   match(Set dst (Replicate4S con));
  8946   effect(KILL tmp);
  8947   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
  8948   ins_encode %{
  8949     // XXX This is a quick fix for 6833573.
  8950     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8951     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8952     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8953   %}
  8954   ins_pipe(loadConFD);
  8955 %}
  8957 // Replicate scalar to packed int values in Double register
  8958 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8959   effect(DEF dst, USE src);
  8960   format %{ "SLLX  $src,32,$dst\n\t"
  8961             "SRLX  $dst,32,O7\n\t"
  8962             "OR    $dst,O7,$dst\t! replicate2I" %}
  8963   ins_encode( enc_repl2i(src, dst));
  8964   ins_pipe(ialu_reg);
  8965 %}
  8967 // Replicate scalar to packed int values in Double register
  8968 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8969   match(Set dst (Replicate2I src));
  8970   expand %{
  8971     iRegL tmp;
  8972     Repl2I_reg_helper(tmp, src);
  8973     regL_to_stkD(dst, tmp);
  8974   %}
  8975 %}
  8977 // Replicate scalar zero constant to packed int values in Double register
  8978 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
  8979   match(Set dst (Replicate2I con));
  8980   effect(KILL tmp);
  8981   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
  8982   ins_encode %{
  8983     // XXX This is a quick fix for 6833573.
  8984     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
  8985     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
  8986     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8987   %}
  8988   ins_pipe(loadConFD);
  8989 %}
  8991 //----------Control Flow Instructions------------------------------------------
  8992 // Compare Instructions
  8993 // Compare Integers
  8994 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8995   match(Set icc (CmpI op1 op2));
  8996   effect( DEF icc, USE op1, USE op2 );
  8998   size(4);
  8999   format %{ "CMP    $op1,$op2" %}
  9000   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9001   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9002   ins_pipe(ialu_cconly_reg_reg);
  9003 %}
  9005 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  9006   match(Set icc (CmpU op1 op2));
  9008   size(4);
  9009   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9010   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9011   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9012   ins_pipe(ialu_cconly_reg_reg);
  9013 %}
  9015 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  9016   match(Set icc (CmpI op1 op2));
  9017   effect( DEF icc, USE op1 );
  9019   size(4);
  9020   format %{ "CMP    $op1,$op2" %}
  9021   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9022   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9023   ins_pipe(ialu_cconly_reg_imm);
  9024 %}
  9026 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  9027   match(Set icc (CmpI (AndI op1 op2) zero));
  9029   size(4);
  9030   format %{ "BTST   $op2,$op1" %}
  9031   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9032   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9033   ins_pipe(ialu_cconly_reg_reg_zero);
  9034 %}
  9036 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  9037   match(Set icc (CmpI (AndI op1 op2) zero));
  9039   size(4);
  9040   format %{ "BTST   $op2,$op1" %}
  9041   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9042   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9043   ins_pipe(ialu_cconly_reg_imm_zero);
  9044 %}
  9046 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  9047   match(Set xcc (CmpL op1 op2));
  9048   effect( DEF xcc, USE op1, USE op2 );
  9050   size(4);
  9051   format %{ "CMP    $op1,$op2\t\t! long" %}
  9052   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9053   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9054   ins_pipe(ialu_cconly_reg_reg);
  9055 %}
  9057 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  9058   match(Set xcc (CmpL op1 con));
  9059   effect( DEF xcc, USE op1, USE con );
  9061   size(4);
  9062   format %{ "CMP    $op1,$con\t\t! long" %}
  9063   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9064   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9065   ins_pipe(ialu_cconly_reg_reg);
  9066 %}
  9068 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  9069   match(Set xcc (CmpL (AndL op1 op2) zero));
  9070   effect( DEF xcc, USE op1, USE op2 );
  9072   size(4);
  9073   format %{ "BTST   $op1,$op2\t\t! long" %}
  9074   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9075   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9076   ins_pipe(ialu_cconly_reg_reg);
  9077 %}
  9079 // useful for checking the alignment of a pointer:
  9080 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  9081   match(Set xcc (CmpL (AndL op1 con) zero));
  9082   effect( DEF xcc, USE op1, USE con );
  9084   size(4);
  9085   format %{ "BTST   $op1,$con\t\t! long" %}
  9086   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9087   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9088   ins_pipe(ialu_cconly_reg_reg);
  9089 %}
  9091 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  9092   match(Set icc (CmpU op1 op2));
  9094   size(4);
  9095   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9096   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9097   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9098   ins_pipe(ialu_cconly_reg_imm);
  9099 %}
  9101 // Compare Pointers
  9102 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  9103   match(Set pcc (CmpP op1 op2));
  9105   size(4);
  9106   format %{ "CMP    $op1,$op2\t! ptr" %}
  9107   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9108   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9109   ins_pipe(ialu_cconly_reg_reg);
  9110 %}
  9112 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  9113   match(Set pcc (CmpP op1 op2));
  9115   size(4);
  9116   format %{ "CMP    $op1,$op2\t! ptr" %}
  9117   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9118   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9119   ins_pipe(ialu_cconly_reg_imm);
  9120 %}
  9122 // Compare Narrow oops
  9123 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  9124   match(Set icc (CmpN op1 op2));
  9126   size(4);
  9127   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9128   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9129   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9130   ins_pipe(ialu_cconly_reg_reg);
  9131 %}
  9133 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9134   match(Set icc (CmpN op1 op2));
  9136   size(4);
  9137   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9138   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9139   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9140   ins_pipe(ialu_cconly_reg_imm);
  9141 %}
  9143 //----------Max and Min--------------------------------------------------------
  9144 // Min Instructions
  9145 // Conditional move for min
  9146 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9147   effect( USE_DEF op2, USE op1, USE icc );
  9149   size(4);
  9150   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9151   opcode(Assembler::less);
  9152   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9153   ins_pipe(ialu_reg_flags);
  9154 %}
  9156 // Min Register with Register.
  9157 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9158   match(Set op2 (MinI op1 op2));
  9159   ins_cost(DEFAULT_COST*2);
  9160   expand %{
  9161     flagsReg icc;
  9162     compI_iReg(icc,op1,op2);
  9163     cmovI_reg_lt(op2,op1,icc);
  9164   %}
  9165 %}
  9167 // Max Instructions
  9168 // Conditional move for max
  9169 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9170   effect( USE_DEF op2, USE op1, USE icc );
  9171   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9172   opcode(Assembler::greater);
  9173   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9174   ins_pipe(ialu_reg_flags);
  9175 %}
  9177 // Max Register with Register
  9178 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9179   match(Set op2 (MaxI op1 op2));
  9180   ins_cost(DEFAULT_COST*2);
  9181   expand %{
  9182     flagsReg icc;
  9183     compI_iReg(icc,op1,op2);
  9184     cmovI_reg_gt(op2,op1,icc);
  9185   %}
  9186 %}
  9189 //----------Float Compares----------------------------------------------------
  9190 // Compare floating, generate condition code
  9191 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9192   match(Set fcc (CmpF src1 src2));
  9194   size(4);
  9195   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9196   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9197   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9198   ins_pipe(faddF_fcc_reg_reg_zero);
  9199 %}
  9201 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9202   match(Set fcc (CmpD src1 src2));
  9204   size(4);
  9205   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9206   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9207   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9208   ins_pipe(faddD_fcc_reg_reg_zero);
  9209 %}
  9212 // Compare floating, generate -1,0,1
  9213 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9214   match(Set dst (CmpF3 src1 src2));
  9215   effect(KILL fcc0);
  9216   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9217   format %{ "fcmpl  $dst,$src1,$src2" %}
  9218   // Primary = float
  9219   opcode( true );
  9220   ins_encode( floating_cmp( dst, src1, src2 ) );
  9221   ins_pipe( floating_cmp );
  9222 %}
  9224 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9225   match(Set dst (CmpD3 src1 src2));
  9226   effect(KILL fcc0);
  9227   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9228   format %{ "dcmpl  $dst,$src1,$src2" %}
  9229   // Primary = double (not float)
  9230   opcode( false );
  9231   ins_encode( floating_cmp( dst, src1, src2 ) );
  9232   ins_pipe( floating_cmp );
  9233 %}
  9235 //----------Branches---------------------------------------------------------
  9236 // Jump
  9237 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9238 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9239   match(Jump switch_val);
  9241   ins_cost(350);
  9243   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9244              "LD     [O7 + $switch_val], O7\n\t"
  9245              "JUMP   O7"
  9246          %}
  9247   ins_encode %{
  9248     // Calculate table address into a register.
  9249     Register table_reg;
  9250     Register label_reg = O7;
  9251     if (constant_offset() == 0) {
  9252       table_reg = $constanttablebase;
  9253     } else {
  9254       table_reg = O7;
  9255       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9256       __ add($constanttablebase, con_offset, table_reg);
  9259     // Jump to base address + switch value
  9260     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9261     __ jmp(label_reg, G0);
  9262     __ delayed()->nop();
  9263   %}
  9264   ins_pipe(ialu_reg_reg);
  9265 %}
  9267 // Direct Branch.  Use V8 version with longer range.
  9268 instruct branch(label labl) %{
  9269   match(Goto);
  9270   effect(USE labl);
  9272   size(8);
  9273   ins_cost(BRANCH_COST);
  9274   format %{ "BA     $labl" %}
  9275   ins_encode %{
  9276     Label* L = $labl$$label;
  9277     __ ba(*L);
  9278     __ delayed()->nop();
  9279   %}
  9280   ins_pipe(br);
  9281 %}
  9283 // Direct Branch, short with no delay slot
  9284 instruct branch_short(label labl) %{
  9285   match(Goto);
  9286   predicate(UseCBCond);
  9287   effect(USE labl);
  9289   size(4);
  9290   ins_cost(BRANCH_COST);
  9291   format %{ "BA     $labl\t! short branch" %}
  9292   ins_encode %{ 
  9293     Label* L = $labl$$label;
  9294     assert(__ use_cbcond(*L), "back to back cbcond");
  9295     __ ba_short(*L);
  9296   %}
  9297   ins_short_branch(1);
  9298   ins_avoid_back_to_back(1);
  9299   ins_pipe(cbcond_reg_imm);
  9300 %}
  9302 // Conditional Direct Branch
  9303 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9304   match(If cmp icc);
  9305   effect(USE labl);
  9307   size(8);
  9308   ins_cost(BRANCH_COST);
  9309   format %{ "BP$cmp   $icc,$labl" %}
  9310   // Prim = bits 24-22, Secnd = bits 31-30
  9311   ins_encode( enc_bp( labl, cmp, icc ) );
  9312   ins_pipe(br_cc);
  9313 %}
  9315 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9316   match(If cmp icc);
  9317   effect(USE labl);
  9319   ins_cost(BRANCH_COST);
  9320   format %{ "BP$cmp  $icc,$labl" %}
  9321   // Prim = bits 24-22, Secnd = bits 31-30
  9322   ins_encode( enc_bp( labl, cmp, icc ) );
  9323   ins_pipe(br_cc);
  9324 %}
  9326 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9327   match(If cmp pcc);
  9328   effect(USE labl);
  9330   size(8);
  9331   ins_cost(BRANCH_COST);
  9332   format %{ "BP$cmp  $pcc,$labl" %}
  9333   ins_encode %{
  9334     Label* L = $labl$$label;
  9335     Assembler::Predict predict_taken =
  9336       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9338     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9339     __ delayed()->nop();
  9340   %}
  9341   ins_pipe(br_cc);
  9342 %}
  9344 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9345   match(If cmp fcc);
  9346   effect(USE labl);
  9348   size(8);
  9349   ins_cost(BRANCH_COST);
  9350   format %{ "FBP$cmp $fcc,$labl" %}
  9351   ins_encode %{
  9352     Label* L = $labl$$label;
  9353     Assembler::Predict predict_taken =
  9354       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9356     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9357     __ delayed()->nop();
  9358   %}
  9359   ins_pipe(br_fcc);
  9360 %}
  9362 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9363   match(CountedLoopEnd cmp icc);
  9364   effect(USE labl);
  9366   size(8);
  9367   ins_cost(BRANCH_COST);
  9368   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9369   // Prim = bits 24-22, Secnd = bits 31-30
  9370   ins_encode( enc_bp( labl, cmp, icc ) );
  9371   ins_pipe(br_cc);
  9372 %}
  9374 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9375   match(CountedLoopEnd cmp icc);
  9376   effect(USE labl);
  9378   size(8);
  9379   ins_cost(BRANCH_COST);
  9380   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9381   // Prim = bits 24-22, Secnd = bits 31-30
  9382   ins_encode( enc_bp( labl, cmp, icc ) );
  9383   ins_pipe(br_cc);
  9384 %}
  9386 // Compare and branch instructions
  9387 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9388   match(If cmp (CmpI op1 op2));
  9389   effect(USE labl, KILL icc);
  9391   size(12);
  9392   ins_cost(BRANCH_COST);
  9393   format %{ "CMP    $op1,$op2\t! int\n\t"
  9394             "BP$cmp   $labl" %}
  9395   ins_encode %{
  9396     Label* L = $labl$$label;
  9397     Assembler::Predict predict_taken =
  9398       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9399     __ cmp($op1$$Register, $op2$$Register);
  9400     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9401     __ delayed()->nop();
  9402   %}
  9403   ins_pipe(cmp_br_reg_reg);
  9404 %}
  9406 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9407   match(If cmp (CmpI op1 op2));
  9408   effect(USE labl, KILL icc);
  9410   size(12);
  9411   ins_cost(BRANCH_COST);
  9412   format %{ "CMP    $op1,$op2\t! int\n\t"
  9413             "BP$cmp   $labl" %}
  9414   ins_encode %{
  9415     Label* L = $labl$$label;
  9416     Assembler::Predict predict_taken =
  9417       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9418     __ cmp($op1$$Register, $op2$$constant);
  9419     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9420     __ delayed()->nop();
  9421   %}
  9422   ins_pipe(cmp_br_reg_imm);
  9423 %}
  9425 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9426   match(If cmp (CmpU op1 op2));
  9427   effect(USE labl, KILL icc);
  9429   size(12);
  9430   ins_cost(BRANCH_COST);
  9431   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9432             "BP$cmp  $labl" %}
  9433   ins_encode %{
  9434     Label* L = $labl$$label;
  9435     Assembler::Predict predict_taken =
  9436       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9437     __ cmp($op1$$Register, $op2$$Register);
  9438     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9439     __ delayed()->nop();
  9440   %}
  9441   ins_pipe(cmp_br_reg_reg);
  9442 %}
  9444 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9445   match(If cmp (CmpU op1 op2));
  9446   effect(USE labl, KILL icc);
  9448   size(12);
  9449   ins_cost(BRANCH_COST);
  9450   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9451             "BP$cmp  $labl" %}
  9452   ins_encode %{
  9453     Label* L = $labl$$label;
  9454     Assembler::Predict predict_taken =
  9455       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9456     __ cmp($op1$$Register, $op2$$constant);
  9457     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9458     __ delayed()->nop();
  9459   %}
  9460   ins_pipe(cmp_br_reg_imm);
  9461 %}
  9463 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9464   match(If cmp (CmpL op1 op2));
  9465   effect(USE labl, KILL xcc);
  9467   size(12);
  9468   ins_cost(BRANCH_COST);
  9469   format %{ "CMP    $op1,$op2\t! long\n\t"
  9470             "BP$cmp   $labl" %}
  9471   ins_encode %{
  9472     Label* L = $labl$$label;
  9473     Assembler::Predict predict_taken =
  9474       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9475     __ cmp($op1$$Register, $op2$$Register);
  9476     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9477     __ delayed()->nop();
  9478   %}
  9479   ins_pipe(cmp_br_reg_reg);
  9480 %}
  9482 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9483   match(If cmp (CmpL op1 op2));
  9484   effect(USE labl, KILL xcc);
  9486   size(12);
  9487   ins_cost(BRANCH_COST);
  9488   format %{ "CMP    $op1,$op2\t! long\n\t"
  9489             "BP$cmp   $labl" %}
  9490   ins_encode %{
  9491     Label* L = $labl$$label;
  9492     Assembler::Predict predict_taken =
  9493       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9494     __ cmp($op1$$Register, $op2$$constant);
  9495     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9496     __ delayed()->nop();
  9497   %}
  9498   ins_pipe(cmp_br_reg_imm);
  9499 %}
  9501 // Compare Pointers and branch
  9502 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9503   match(If cmp (CmpP op1 op2));
  9504   effect(USE labl, KILL pcc);
  9506   size(12);
  9507   ins_cost(BRANCH_COST);
  9508   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9509             "B$cmp   $labl" %}
  9510   ins_encode %{
  9511     Label* L = $labl$$label;
  9512     Assembler::Predict predict_taken =
  9513       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9514     __ cmp($op1$$Register, $op2$$Register);
  9515     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9516     __ delayed()->nop();
  9517   %}
  9518   ins_pipe(cmp_br_reg_reg);
  9519 %}
  9521 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9522   match(If cmp (CmpP op1 null));
  9523   effect(USE labl, KILL pcc);
  9525   size(12);
  9526   ins_cost(BRANCH_COST);
  9527   format %{ "CMP    $op1,0\t! ptr\n\t"
  9528             "B$cmp   $labl" %}
  9529   ins_encode %{
  9530     Label* L = $labl$$label;
  9531     Assembler::Predict predict_taken =
  9532       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9533     __ cmp($op1$$Register, G0);
  9534     // bpr() is not used here since it has shorter distance.
  9535     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9536     __ delayed()->nop();
  9537   %}
  9538   ins_pipe(cmp_br_reg_reg);
  9539 %}
  9541 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9542   match(If cmp (CmpN op1 op2));
  9543   effect(USE labl, KILL icc);
  9545   size(12);
  9546   ins_cost(BRANCH_COST);
  9547   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9548             "BP$cmp   $labl" %}
  9549   ins_encode %{
  9550     Label* L = $labl$$label;
  9551     Assembler::Predict predict_taken =
  9552       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9553     __ cmp($op1$$Register, $op2$$Register);
  9554     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9555     __ delayed()->nop();
  9556   %}
  9557   ins_pipe(cmp_br_reg_reg);
  9558 %}
  9560 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9561   match(If cmp (CmpN op1 null));
  9562   effect(USE labl, KILL icc);
  9564   size(12);
  9565   ins_cost(BRANCH_COST);
  9566   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9567             "BP$cmp   $labl" %}
  9568   ins_encode %{
  9569     Label* L = $labl$$label;
  9570     Assembler::Predict predict_taken =
  9571       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9572     __ cmp($op1$$Register, G0);
  9573     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9574     __ delayed()->nop();
  9575   %}
  9576   ins_pipe(cmp_br_reg_reg);
  9577 %}
  9579 // Loop back branch
  9580 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9581   match(CountedLoopEnd cmp (CmpI op1 op2));
  9582   effect(USE labl, KILL icc);
  9584   size(12);
  9585   ins_cost(BRANCH_COST);
  9586   format %{ "CMP    $op1,$op2\t! int\n\t"
  9587             "BP$cmp   $labl\t! Loop end" %}
  9588   ins_encode %{
  9589     Label* L = $labl$$label;
  9590     Assembler::Predict predict_taken =
  9591       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9592     __ cmp($op1$$Register, $op2$$Register);
  9593     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9594     __ delayed()->nop();
  9595   %}
  9596   ins_pipe(cmp_br_reg_reg);
  9597 %}
  9599 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9600   match(CountedLoopEnd cmp (CmpI op1 op2));
  9601   effect(USE labl, KILL icc);
  9603   size(12);
  9604   ins_cost(BRANCH_COST);
  9605   format %{ "CMP    $op1,$op2\t! int\n\t"
  9606             "BP$cmp   $labl\t! Loop end" %}
  9607   ins_encode %{
  9608     Label* L = $labl$$label;
  9609     Assembler::Predict predict_taken =
  9610       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9611     __ cmp($op1$$Register, $op2$$constant);
  9612     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9613     __ delayed()->nop();
  9614   %}
  9615   ins_pipe(cmp_br_reg_imm);
  9616 %}
  9618 // Short compare and branch instructions
  9619 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9620   match(If cmp (CmpI op1 op2));
  9621   predicate(UseCBCond);
  9622   effect(USE labl, KILL icc);
  9624   size(4);
  9625   ins_cost(BRANCH_COST);
  9626   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9627   ins_encode %{
  9628     Label* L = $labl$$label;
  9629     assert(__ use_cbcond(*L), "back to back cbcond");
  9630     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9631   %}
  9632   ins_short_branch(1);
  9633   ins_avoid_back_to_back(1);
  9634   ins_pipe(cbcond_reg_reg);
  9635 %}
  9637 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9638   match(If cmp (CmpI op1 op2));
  9639   predicate(UseCBCond);
  9640   effect(USE labl, KILL icc);
  9642   size(4);
  9643   ins_cost(BRANCH_COST);
  9644   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9645   ins_encode %{
  9646     Label* L = $labl$$label;
  9647     assert(__ use_cbcond(*L), "back to back cbcond");
  9648     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9649   %}
  9650   ins_short_branch(1);
  9651   ins_avoid_back_to_back(1);
  9652   ins_pipe(cbcond_reg_imm);
  9653 %}
  9655 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9656   match(If cmp (CmpU op1 op2));
  9657   predicate(UseCBCond);
  9658   effect(USE labl, KILL icc);
  9660   size(4);
  9661   ins_cost(BRANCH_COST);
  9662   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9663   ins_encode %{
  9664     Label* L = $labl$$label;
  9665     assert(__ use_cbcond(*L), "back to back cbcond");
  9666     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9667   %}
  9668   ins_short_branch(1);
  9669   ins_avoid_back_to_back(1);
  9670   ins_pipe(cbcond_reg_reg);
  9671 %}
  9673 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9674   match(If cmp (CmpU op1 op2));
  9675   predicate(UseCBCond);
  9676   effect(USE labl, KILL icc);
  9678   size(4);
  9679   ins_cost(BRANCH_COST);
  9680   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9681   ins_encode %{
  9682     Label* L = $labl$$label;
  9683     assert(__ use_cbcond(*L), "back to back cbcond");
  9684     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9685   %}
  9686   ins_short_branch(1);
  9687   ins_avoid_back_to_back(1);
  9688   ins_pipe(cbcond_reg_imm);
  9689 %}
  9691 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9692   match(If cmp (CmpL op1 op2));
  9693   predicate(UseCBCond);
  9694   effect(USE labl, KILL xcc);
  9696   size(4);
  9697   ins_cost(BRANCH_COST);
  9698   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9699   ins_encode %{
  9700     Label* L = $labl$$label;
  9701     assert(__ use_cbcond(*L), "back to back cbcond");
  9702     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9703   %}
  9704   ins_short_branch(1);
  9705   ins_avoid_back_to_back(1);
  9706   ins_pipe(cbcond_reg_reg);
  9707 %}
  9709 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9710   match(If cmp (CmpL op1 op2));
  9711   predicate(UseCBCond);
  9712   effect(USE labl, KILL xcc);
  9714   size(4);
  9715   ins_cost(BRANCH_COST);
  9716   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9717   ins_encode %{
  9718     Label* L = $labl$$label;
  9719     assert(__ use_cbcond(*L), "back to back cbcond");
  9720     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9721   %}
  9722   ins_short_branch(1);
  9723   ins_avoid_back_to_back(1);
  9724   ins_pipe(cbcond_reg_imm);
  9725 %}
  9727 // Compare Pointers and branch
  9728 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9729   match(If cmp (CmpP op1 op2));
  9730   predicate(UseCBCond);
  9731   effect(USE labl, KILL pcc);
  9733   size(4);
  9734   ins_cost(BRANCH_COST);
  9735 #ifdef _LP64
  9736   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9737 #else
  9738   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9739 #endif
  9740   ins_encode %{
  9741     Label* L = $labl$$label;
  9742     assert(__ use_cbcond(*L), "back to back cbcond");
  9743     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9744   %}
  9745   ins_short_branch(1);
  9746   ins_avoid_back_to_back(1);
  9747   ins_pipe(cbcond_reg_reg);
  9748 %}
  9750 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9751   match(If cmp (CmpP op1 null));
  9752   predicate(UseCBCond);
  9753   effect(USE labl, KILL pcc);
  9755   size(4);
  9756   ins_cost(BRANCH_COST);
  9757 #ifdef _LP64
  9758   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9759 #else
  9760   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9761 #endif
  9762   ins_encode %{
  9763     Label* L = $labl$$label;
  9764     assert(__ use_cbcond(*L), "back to back cbcond");
  9765     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9766   %}
  9767   ins_short_branch(1);
  9768   ins_avoid_back_to_back(1);
  9769   ins_pipe(cbcond_reg_reg);
  9770 %}
  9772 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9773   match(If cmp (CmpN op1 op2));
  9774   predicate(UseCBCond);
  9775   effect(USE labl, KILL icc);
  9777   size(4);
  9778   ins_cost(BRANCH_COST);
  9779   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9780   ins_encode %{
  9781     Label* L = $labl$$label;
  9782     assert(__ use_cbcond(*L), "back to back cbcond");
  9783     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9784   %}
  9785   ins_short_branch(1);
  9786   ins_avoid_back_to_back(1);
  9787   ins_pipe(cbcond_reg_reg);
  9788 %}
  9790 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9791   match(If cmp (CmpN op1 null));
  9792   predicate(UseCBCond);
  9793   effect(USE labl, KILL icc);
  9795   size(4);
  9796   ins_cost(BRANCH_COST);
  9797   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9798   ins_encode %{
  9799     Label* L = $labl$$label;
  9800     assert(__ use_cbcond(*L), "back to back cbcond");
  9801     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9802   %}
  9803   ins_short_branch(1);
  9804   ins_avoid_back_to_back(1);
  9805   ins_pipe(cbcond_reg_reg);
  9806 %}
  9808 // Loop back branch
  9809 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9810   match(CountedLoopEnd cmp (CmpI op1 op2));
  9811   predicate(UseCBCond);
  9812   effect(USE labl, KILL icc);
  9814   size(4);
  9815   ins_cost(BRANCH_COST);
  9816   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9817   ins_encode %{
  9818     Label* L = $labl$$label;
  9819     assert(__ use_cbcond(*L), "back to back cbcond");
  9820     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9821   %}
  9822   ins_short_branch(1);
  9823   ins_avoid_back_to_back(1);
  9824   ins_pipe(cbcond_reg_reg);
  9825 %}
  9827 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9828   match(CountedLoopEnd cmp (CmpI op1 op2));
  9829   predicate(UseCBCond);
  9830   effect(USE labl, KILL icc);
  9832   size(4);
  9833   ins_cost(BRANCH_COST);
  9834   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9835   ins_encode %{
  9836     Label* L = $labl$$label;
  9837     assert(__ use_cbcond(*L), "back to back cbcond");
  9838     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9839   %}
  9840   ins_short_branch(1);
  9841   ins_avoid_back_to_back(1);
  9842   ins_pipe(cbcond_reg_imm);
  9843 %}
  9845 // Branch-on-register tests all 64 bits.  We assume that values
  9846 // in 64-bit registers always remains zero or sign extended
  9847 // unless our code munges the high bits.  Interrupts can chop
  9848 // the high order bits to zero or sign at any time.
  9849 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9850   match(If cmp (CmpI op1 zero));
  9851   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9852   effect(USE labl);
  9854   size(8);
  9855   ins_cost(BRANCH_COST);
  9856   format %{ "BR$cmp   $op1,$labl" %}
  9857   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9858   ins_pipe(br_reg);
  9859 %}
  9861 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9862   match(If cmp (CmpP op1 null));
  9863   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9864   effect(USE labl);
  9866   size(8);
  9867   ins_cost(BRANCH_COST);
  9868   format %{ "BR$cmp   $op1,$labl" %}
  9869   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9870   ins_pipe(br_reg);
  9871 %}
  9873 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9874   match(If cmp (CmpL op1 zero));
  9875   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9876   effect(USE labl);
  9878   size(8);
  9879   ins_cost(BRANCH_COST);
  9880   format %{ "BR$cmp   $op1,$labl" %}
  9881   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9882   ins_pipe(br_reg);
  9883 %}
  9886 // ============================================================================
  9887 // Long Compare
  9888 //
  9889 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9890 // is tricky.  The flavor of compare used depends on whether we are testing
  9891 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9892 // The GE test is the negated LT test.  The LE test can be had by commuting
  9893 // the operands (yielding a GE test) and then negating; negate again for the
  9894 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9895 // NE test is negated from that.
  9897 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9898 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9899 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9900 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9901 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9902 // foo match ends up with the wrong leaf.  One fix is to not match both
  9903 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9904 // both forms beat the trinary form of long-compare and both are very useful
  9905 // on Intel which has so few registers.
  9907 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9908   match(If cmp xcc);
  9909   effect(USE labl);
  9911   size(8);
  9912   ins_cost(BRANCH_COST);
  9913   format %{ "BP$cmp   $xcc,$labl" %}
  9914   ins_encode %{
  9915     Label* L = $labl$$label;
  9916     Assembler::Predict predict_taken =
  9917       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9919     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9920     __ delayed()->nop();
  9921   %}
  9922   ins_pipe(br_cc);
  9923 %}
  9925 // Manifest a CmpL3 result in an integer register.  Very painful.
  9926 // This is the test to avoid.
  9927 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9928   match(Set dst (CmpL3 src1 src2) );
  9929   effect( KILL ccr );
  9930   ins_cost(6*DEFAULT_COST);
  9931   size(24);
  9932   format %{ "CMP    $src1,$src2\t\t! long\n"
  9933           "\tBLT,a,pn done\n"
  9934           "\tMOV    -1,$dst\t! delay slot\n"
  9935           "\tBGT,a,pn done\n"
  9936           "\tMOV    1,$dst\t! delay slot\n"
  9937           "\tCLR    $dst\n"
  9938     "done:"     %}
  9939   ins_encode( cmpl_flag(src1,src2,dst) );
  9940   ins_pipe(cmpL_reg);
  9941 %}
  9943 // Conditional move
  9944 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9945   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9946   ins_cost(150);
  9947   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9948   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9949   ins_pipe(ialu_reg);
  9950 %}
  9952 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9953   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9954   ins_cost(140);
  9955   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9956   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9957   ins_pipe(ialu_imm);
  9958 %}
  9960 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9961   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9962   ins_cost(150);
  9963   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9964   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9965   ins_pipe(ialu_reg);
  9966 %}
  9968 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9969   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9970   ins_cost(140);
  9971   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9972   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9973   ins_pipe(ialu_imm);
  9974 %}
  9976 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9977   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9978   ins_cost(150);
  9979   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9980   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9981   ins_pipe(ialu_reg);
  9982 %}
  9984 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9985   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9986   ins_cost(150);
  9987   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9988   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9989   ins_pipe(ialu_reg);
  9990 %}
  9992 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9993   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9994   ins_cost(140);
  9995   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9996   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9997   ins_pipe(ialu_imm);
  9998 %}
 10000 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
 10001   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
 10002   ins_cost(150);
 10003   opcode(0x101);
 10004   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
 10005   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
 10006   ins_pipe(int_conditional_float_move);
 10007 %}
 10009 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
 10010   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
 10011   ins_cost(150);
 10012   opcode(0x102);
 10013   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
 10014   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
 10015   ins_pipe(int_conditional_float_move);
 10016 %}
 10018 // ============================================================================
 10019 // Safepoint Instruction
 10020 instruct safePoint_poll(iRegP poll) %{
 10021   match(SafePoint poll);
 10022   effect(USE poll);
 10024   size(4);
 10025 #ifdef _LP64
 10026   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
 10027 #else
 10028   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
 10029 #endif
 10030   ins_encode %{
 10031     __ relocate(relocInfo::poll_type);
 10032     __ ld_ptr($poll$$Register, 0, G0);
 10033   %}
 10034   ins_pipe(loadPollP);
 10035 %}
 10037 // ============================================================================
 10038 // Call Instructions
 10039 // Call Java Static Instruction
 10040 instruct CallStaticJavaDirect( method meth ) %{
 10041   match(CallStaticJava);
 10042   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10043   effect(USE meth);
 10045   size(8);
 10046   ins_cost(CALL_COST);
 10047   format %{ "CALL,static  ; NOP ==> " %}
 10048   ins_encode( Java_Static_Call( meth ), call_epilog );
 10049   ins_pipe(simple_call);
 10050 %}
 10052 // Call Java Static Instruction (method handle version)
 10053 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
 10054   match(CallStaticJava);
 10055   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10056   effect(USE meth, KILL l7_mh_SP_save);
 10058   size(16);
 10059   ins_cost(CALL_COST);
 10060   format %{ "CALL,static/MethodHandle" %}
 10061   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
 10062   ins_pipe(simple_call);
 10063 %}
 10065 // Call Java Dynamic Instruction
 10066 instruct CallDynamicJavaDirect( method meth ) %{
 10067   match(CallDynamicJava);
 10068   effect(USE meth);
 10070   ins_cost(CALL_COST);
 10071   format %{ "SET    (empty),R_G5\n\t"
 10072             "CALL,dynamic  ; NOP ==> " %}
 10073   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
 10074   ins_pipe(call);
 10075 %}
 10077 // Call Runtime Instruction
 10078 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
 10079   match(CallRuntime);
 10080   effect(USE meth, KILL l7);
 10081   ins_cost(CALL_COST);
 10082   format %{ "CALL,runtime" %}
 10083   ins_encode( Java_To_Runtime( meth ),
 10084               call_epilog, adjust_long_from_native_call );
 10085   ins_pipe(simple_call);
 10086 %}
 10088 // Call runtime without safepoint - same as CallRuntime
 10089 instruct CallLeafDirect(method meth, l7RegP l7) %{
 10090   match(CallLeaf);
 10091   effect(USE meth, KILL l7);
 10092   ins_cost(CALL_COST);
 10093   format %{ "CALL,runtime leaf" %}
 10094   ins_encode( Java_To_Runtime( meth ),
 10095               call_epilog,
 10096               adjust_long_from_native_call );
 10097   ins_pipe(simple_call);
 10098 %}
 10100 // Call runtime without safepoint - same as CallLeaf
 10101 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
 10102   match(CallLeafNoFP);
 10103   effect(USE meth, KILL l7);
 10104   ins_cost(CALL_COST);
 10105   format %{ "CALL,runtime leaf nofp" %}
 10106   ins_encode( Java_To_Runtime( meth ),
 10107               call_epilog,
 10108               adjust_long_from_native_call );
 10109   ins_pipe(simple_call);
 10110 %}
 10112 // Tail Call; Jump from runtime stub to Java code.
 10113 // Also known as an 'interprocedural jump'.
 10114 // Target of jump will eventually return to caller.
 10115 // TailJump below removes the return address.
 10116 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
 10117   match(TailCall jump_target method_oop );
 10119   ins_cost(CALL_COST);
 10120   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
 10121   ins_encode(form_jmpl(jump_target));
 10122   ins_pipe(tail_call);
 10123 %}
 10126 // Return Instruction
 10127 instruct Ret() %{
 10128   match(Return);
 10130   // The epilogue node did the ret already.
 10131   size(0);
 10132   format %{ "! return" %}
 10133   ins_encode();
 10134   ins_pipe(empty);
 10135 %}
 10138 // Tail Jump; remove the return address; jump to target.
 10139 // TailCall above leaves the return address around.
 10140 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10141 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10142 // "restore" before this instruction (in Epilogue), we need to materialize it
 10143 // in %i0.
 10144 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10145   match( TailJump jump_target ex_oop );
 10146   ins_cost(CALL_COST);
 10147   format %{ "! discard R_O7\n\t"
 10148             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10149   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10150   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10151   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10152   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10153   ins_pipe(tail_call);
 10154 %}
 10156 // Create exception oop: created by stack-crawling runtime code.
 10157 // Created exception is now available to this handler, and is setup
 10158 // just prior to jumping to this handler.  No code emitted.
 10159 instruct CreateException( o0RegP ex_oop )
 10160 %{
 10161   match(Set ex_oop (CreateEx));
 10162   ins_cost(0);
 10164   size(0);
 10165   // use the following format syntax
 10166   format %{ "! exception oop is in R_O0; no code emitted" %}
 10167   ins_encode();
 10168   ins_pipe(empty);
 10169 %}
 10172 // Rethrow exception:
 10173 // The exception oop will come in the first argument position.
 10174 // Then JUMP (not call) to the rethrow stub code.
 10175 instruct RethrowException()
 10176 %{
 10177   match(Rethrow);
 10178   ins_cost(CALL_COST);
 10180   // use the following format syntax
 10181   format %{ "Jmp    rethrow_stub" %}
 10182   ins_encode(enc_rethrow);
 10183   ins_pipe(tail_call);
 10184 %}
 10187 // Die now
 10188 instruct ShouldNotReachHere( )
 10189 %{
 10190   match(Halt);
 10191   ins_cost(CALL_COST);
 10193   size(4);
 10194   // Use the following format syntax
 10195   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10196   ins_encode( form2_illtrap() );
 10197   ins_pipe(tail_call);
 10198 %}
 10200 // ============================================================================
 10201 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10202 // array for an instance of the superklass.  Set a hidden internal cache on a
 10203 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10204 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10205 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10206   match(Set index (PartialSubtypeCheck sub super));
 10207   effect( KILL pcc, KILL o7 );
 10208   ins_cost(DEFAULT_COST*10);
 10209   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10210   ins_encode( enc_PartialSubtypeCheck() );
 10211   ins_pipe(partial_subtype_check_pipe);
 10212 %}
 10214 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10215   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10216   effect( KILL idx, KILL o7 );
 10217   ins_cost(DEFAULT_COST*10);
 10218   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10219   ins_encode( enc_PartialSubtypeCheck() );
 10220   ins_pipe(partial_subtype_check_pipe);
 10221 %}
 10224 // ============================================================================
 10225 // inlined locking and unlocking
 10227 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
 10228   match(Set pcc (FastLock object box));
 10230   effect(KILL scratch, TEMP scratch2);
 10231   ins_cost(100);
 10233   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
 10234   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10235   ins_pipe(long_memory_op);
 10236 %}
 10239 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
 10240   match(Set pcc (FastUnlock object box));
 10241   effect(KILL scratch, TEMP scratch2);
 10242   ins_cost(100);
 10244   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
 10245   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10246   ins_pipe(long_memory_op);
 10247 %}
 10249 // The encodings are generic.
 10250 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10251   predicate(!use_block_zeroing(n->in(2)) );
 10252   match(Set dummy (ClearArray cnt base));
 10253   effect(TEMP temp, KILL ccr);
 10254   ins_cost(300);
 10255   format %{ "MOV    $cnt,$temp\n"
 10256     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10257     "        BRge   loop\t\t! Clearing loop\n"
 10258     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10260   ins_encode %{
 10261     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10262     Register nof_bytes_arg    = $cnt$$Register;
 10263     Register nof_bytes_tmp    = $temp$$Register;
 10264     Register base_pointer_arg = $base$$Register;
 10266     Label loop;
 10267     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10269     // Loop and clear, walking backwards through the array.
 10270     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10271     __ bind(loop);
 10272     __ deccc(nof_bytes_tmp, 8);
 10273     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10274     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10275     // %%%% this mini-loop must not cross a cache boundary!
 10276   %}
 10277   ins_pipe(long_memory_op);
 10278 %}
 10280 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10281   predicate(use_block_zeroing(n->in(2)));
 10282   match(Set dummy (ClearArray cnt base));
 10283   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10284   ins_cost(300);
 10285   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10287   ins_encode %{
 10289     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10290     Register to    = $base$$Register;
 10291     Register count = $cnt$$Register;
 10293     Label Ldone;
 10294     __ nop(); // Separate short branches
 10295     // Use BIS for zeroing (temp is not used).
 10296     __ bis_zeroing(to, count, G0, Ldone);
 10297     __ bind(Ldone);
 10299   %}
 10300   ins_pipe(long_memory_op);
 10301 %}
 10303 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10304   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10305   match(Set dummy (ClearArray cnt base));
 10306   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10307   ins_cost(300);
 10308   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10310   ins_encode %{
 10312     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10313     Register to    = $base$$Register;
 10314     Register count = $cnt$$Register;
 10315     Register temp  = $tmp$$Register;
 10317     Label Ldone;
 10318     __ nop(); // Separate short branches
 10319     // Use BIS for zeroing
 10320     __ bis_zeroing(to, count, temp, Ldone);
 10321     __ bind(Ldone);
 10323   %}
 10324   ins_pipe(long_memory_op);
 10325 %}
 10327 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10328                         o7RegI tmp, flagsReg ccr) %{
 10329   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10330   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10331   ins_cost(300);
 10332   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10333   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10334   ins_pipe(long_memory_op);
 10335 %}
 10337 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10338                        o7RegI tmp, flagsReg ccr) %{
 10339   match(Set result (StrEquals (Binary str1 str2) cnt));
 10340   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10341   ins_cost(300);
 10342   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10343   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10344   ins_pipe(long_memory_op);
 10345 %}
 10347 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10348                       o7RegI tmp2, flagsReg ccr) %{
 10349   match(Set result (AryEq ary1 ary2));
 10350   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10351   ins_cost(300);
 10352   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10353   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10354   ins_pipe(long_memory_op);
 10355 %}
 10358 //---------- Zeros Count Instructions ------------------------------------------
 10360 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10361   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10362   match(Set dst (CountLeadingZerosI src));
 10363   effect(TEMP dst, TEMP tmp, KILL cr);
 10365   // x |= (x >> 1);
 10366   // x |= (x >> 2);
 10367   // x |= (x >> 4);
 10368   // x |= (x >> 8);
 10369   // x |= (x >> 16);
 10370   // return (WORDBITS - popc(x));
 10371   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10372             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10373             "OR      $dst,$tmp,$dst\n\t"
 10374             "SRL     $dst,2,$tmp\n\t"
 10375             "OR      $dst,$tmp,$dst\n\t"
 10376             "SRL     $dst,4,$tmp\n\t"
 10377             "OR      $dst,$tmp,$dst\n\t"
 10378             "SRL     $dst,8,$tmp\n\t"
 10379             "OR      $dst,$tmp,$dst\n\t"
 10380             "SRL     $dst,16,$tmp\n\t"
 10381             "OR      $dst,$tmp,$dst\n\t"
 10382             "POPC    $dst,$dst\n\t"
 10383             "MOV     32,$tmp\n\t"
 10384             "SUB     $tmp,$dst,$dst" %}
 10385   ins_encode %{
 10386     Register Rdst = $dst$$Register;
 10387     Register Rsrc = $src$$Register;
 10388     Register Rtmp = $tmp$$Register;
 10389     __ srl(Rsrc, 1,    Rtmp);
 10390     __ srl(Rsrc, 0,    Rdst);
 10391     __ or3(Rdst, Rtmp, Rdst);
 10392     __ srl(Rdst, 2,    Rtmp);
 10393     __ or3(Rdst, Rtmp, Rdst);
 10394     __ srl(Rdst, 4,    Rtmp);
 10395     __ or3(Rdst, Rtmp, Rdst);
 10396     __ srl(Rdst, 8,    Rtmp);
 10397     __ or3(Rdst, Rtmp, Rdst);
 10398     __ srl(Rdst, 16,   Rtmp);
 10399     __ or3(Rdst, Rtmp, Rdst);
 10400     __ popc(Rdst, Rdst);
 10401     __ mov(BitsPerInt, Rtmp);
 10402     __ sub(Rtmp, Rdst, Rdst);
 10403   %}
 10404   ins_pipe(ialu_reg);
 10405 %}
 10407 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10408   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10409   match(Set dst (CountLeadingZerosL src));
 10410   effect(TEMP dst, TEMP tmp, KILL cr);
 10412   // x |= (x >> 1);
 10413   // x |= (x >> 2);
 10414   // x |= (x >> 4);
 10415   // x |= (x >> 8);
 10416   // x |= (x >> 16);
 10417   // x |= (x >> 32);
 10418   // return (WORDBITS - popc(x));
 10419   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10420             "OR      $src,$tmp,$dst\n\t"
 10421             "SRLX    $dst,2,$tmp\n\t"
 10422             "OR      $dst,$tmp,$dst\n\t"
 10423             "SRLX    $dst,4,$tmp\n\t"
 10424             "OR      $dst,$tmp,$dst\n\t"
 10425             "SRLX    $dst,8,$tmp\n\t"
 10426             "OR      $dst,$tmp,$dst\n\t"
 10427             "SRLX    $dst,16,$tmp\n\t"
 10428             "OR      $dst,$tmp,$dst\n\t"
 10429             "SRLX    $dst,32,$tmp\n\t"
 10430             "OR      $dst,$tmp,$dst\n\t"
 10431             "POPC    $dst,$dst\n\t"
 10432             "MOV     64,$tmp\n\t"
 10433             "SUB     $tmp,$dst,$dst" %}
 10434   ins_encode %{
 10435     Register Rdst = $dst$$Register;
 10436     Register Rsrc = $src$$Register;
 10437     Register Rtmp = $tmp$$Register;
 10438     __ srlx(Rsrc, 1,    Rtmp);
 10439     __ or3( Rsrc, Rtmp, Rdst);
 10440     __ srlx(Rdst, 2,    Rtmp);
 10441     __ or3( Rdst, Rtmp, Rdst);
 10442     __ srlx(Rdst, 4,    Rtmp);
 10443     __ or3( Rdst, Rtmp, Rdst);
 10444     __ srlx(Rdst, 8,    Rtmp);
 10445     __ or3( Rdst, Rtmp, Rdst);
 10446     __ srlx(Rdst, 16,   Rtmp);
 10447     __ or3( Rdst, Rtmp, Rdst);
 10448     __ srlx(Rdst, 32,   Rtmp);
 10449     __ or3( Rdst, Rtmp, Rdst);
 10450     __ popc(Rdst, Rdst);
 10451     __ mov(BitsPerLong, Rtmp);
 10452     __ sub(Rtmp, Rdst, Rdst);
 10453   %}
 10454   ins_pipe(ialu_reg);
 10455 %}
 10457 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
 10458   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10459   match(Set dst (CountTrailingZerosI src));
 10460   effect(TEMP dst, KILL cr);
 10462   // return popc(~x & (x - 1));
 10463   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10464             "ANDN    $dst,$src,$dst\n\t"
 10465             "SRL     $dst,R_G0,$dst\n\t"
 10466             "POPC    $dst,$dst" %}
 10467   ins_encode %{
 10468     Register Rdst = $dst$$Register;
 10469     Register Rsrc = $src$$Register;
 10470     __ sub(Rsrc, 1, Rdst);
 10471     __ andn(Rdst, Rsrc, Rdst);
 10472     __ srl(Rdst, G0, Rdst);
 10473     __ popc(Rdst, Rdst);
 10474   %}
 10475   ins_pipe(ialu_reg);
 10476 %}
 10478 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
 10479   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10480   match(Set dst (CountTrailingZerosL src));
 10481   effect(TEMP dst, KILL cr);
 10483   // return popc(~x & (x - 1));
 10484   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10485             "ANDN    $dst,$src,$dst\n\t"
 10486             "POPC    $dst,$dst" %}
 10487   ins_encode %{
 10488     Register Rdst = $dst$$Register;
 10489     Register Rsrc = $src$$Register;
 10490     __ sub(Rsrc, 1, Rdst);
 10491     __ andn(Rdst, Rsrc, Rdst);
 10492     __ popc(Rdst, Rdst);
 10493   %}
 10494   ins_pipe(ialu_reg);
 10495 %}
 10498 //---------- Population Count Instructions -------------------------------------
 10500 instruct popCountI(iRegI dst, iRegI src) %{
 10501   predicate(UsePopCountInstruction);
 10502   match(Set dst (PopCountI src));
 10504   format %{ "POPC   $src, $dst" %}
 10505   ins_encode %{
 10506     __ popc($src$$Register, $dst$$Register);
 10507   %}
 10508   ins_pipe(ialu_reg);
 10509 %}
 10511 // Note: Long.bitCount(long) returns an int.
 10512 instruct popCountL(iRegI dst, iRegL src) %{
 10513   predicate(UsePopCountInstruction);
 10514   match(Set dst (PopCountL src));
 10516   format %{ "POPC   $src, $dst" %}
 10517   ins_encode %{
 10518     __ popc($src$$Register, $dst$$Register);
 10519   %}
 10520   ins_pipe(ialu_reg);
 10521 %}
 10524 // ============================================================================
 10525 //------------Bytes reverse--------------------------------------------------
 10527 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10528   match(Set dst (ReverseBytesI src));
 10530   // Op cost is artificially doubled to make sure that load or store
 10531   // instructions are preferred over this one which requires a spill
 10532   // onto a stack slot.
 10533   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10534   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10536   ins_encode %{
 10537     __ set($src$$disp + STACK_BIAS, O7);
 10538     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10539   %}
 10540   ins_pipe( iload_mem );
 10541 %}
 10543 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10544   match(Set dst (ReverseBytesL src));
 10546   // Op cost is artificially doubled to make sure that load or store
 10547   // instructions are preferred over this one which requires a spill
 10548   // onto a stack slot.
 10549   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10550   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10552   ins_encode %{
 10553     __ set($src$$disp + STACK_BIAS, O7);
 10554     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10555   %}
 10556   ins_pipe( iload_mem );
 10557 %}
 10559 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10560   match(Set dst (ReverseBytesUS src));
 10562   // Op cost is artificially doubled to make sure that load or store
 10563   // instructions are preferred over this one which requires a spill
 10564   // onto a stack slot.
 10565   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10566   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10568   ins_encode %{
 10569     // the value was spilled as an int so bias the load
 10570     __ set($src$$disp + STACK_BIAS + 2, O7);
 10571     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10572   %}
 10573   ins_pipe( iload_mem );
 10574 %}
 10576 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10577   match(Set dst (ReverseBytesS src));
 10579   // Op cost is artificially doubled to make sure that load or store
 10580   // instructions are preferred over this one which requires a spill
 10581   // onto a stack slot.
 10582   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10583   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10585   ins_encode %{
 10586     // the value was spilled as an int so bias the load
 10587     __ set($src$$disp + STACK_BIAS + 2, O7);
 10588     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10589   %}
 10590   ins_pipe( iload_mem );
 10591 %}
 10593 // Load Integer reversed byte order
 10594 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10595   match(Set dst (ReverseBytesI (LoadI src)));
 10597   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10598   size(4);
 10599   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10601   ins_encode %{
 10602     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10603   %}
 10604   ins_pipe(iload_mem);
 10605 %}
 10607 // Load Long - aligned and reversed
 10608 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10609   match(Set dst (ReverseBytesL (LoadL src)));
 10611   ins_cost(MEMORY_REF_COST);
 10612   size(4);
 10613   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10615   ins_encode %{
 10616     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10617   %}
 10618   ins_pipe(iload_mem);
 10619 %}
 10621 // Load unsigned short / char reversed byte order
 10622 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10623   match(Set dst (ReverseBytesUS (LoadUS src)));
 10625   ins_cost(MEMORY_REF_COST);
 10626   size(4);
 10627   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10629   ins_encode %{
 10630     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10631   %}
 10632   ins_pipe(iload_mem);
 10633 %}
 10635 // Load short reversed byte order
 10636 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10637   match(Set dst (ReverseBytesS (LoadS src)));
 10639   ins_cost(MEMORY_REF_COST);
 10640   size(4);
 10641   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10643   ins_encode %{
 10644     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10645   %}
 10646   ins_pipe(iload_mem);
 10647 %}
 10649 // Store Integer reversed byte order
 10650 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10651   match(Set dst (StoreI dst (ReverseBytesI src)));
 10653   ins_cost(MEMORY_REF_COST);
 10654   size(4);
 10655   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10657   ins_encode %{
 10658     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10659   %}
 10660   ins_pipe(istore_mem_reg);
 10661 %}
 10663 // Store Long reversed byte order
 10664 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10665   match(Set dst (StoreL dst (ReverseBytesL src)));
 10667   ins_cost(MEMORY_REF_COST);
 10668   size(4);
 10669   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10671   ins_encode %{
 10672     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10673   %}
 10674   ins_pipe(istore_mem_reg);
 10675 %}
 10677 // Store unsighed short/char reversed byte order
 10678 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10679   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10681   ins_cost(MEMORY_REF_COST);
 10682   size(4);
 10683   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10685   ins_encode %{
 10686     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10687   %}
 10688   ins_pipe(istore_mem_reg);
 10689 %}
 10691 // Store short reversed byte order
 10692 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10693   match(Set dst (StoreC dst (ReverseBytesS src)));
 10695   ins_cost(MEMORY_REF_COST);
 10696   size(4);
 10697   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10699   ins_encode %{
 10700     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10701   %}
 10702   ins_pipe(istore_mem_reg);
 10703 %}
 10705 //----------PEEPHOLE RULES-----------------------------------------------------
 10706 // These must follow all instruction definitions as they use the names
 10707 // defined in the instructions definitions.
 10708 //
 10709 // peepmatch ( root_instr_name [preceding_instruction]* );
 10710 //
 10711 // peepconstraint %{
 10712 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10713 //  [, ...] );
 10714 // // instruction numbers are zero-based using left to right order in peepmatch
 10715 //
 10716 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10717 // // provide an instruction_number.operand_name for each operand that appears
 10718 // // in the replacement instruction's match rule
 10719 //
 10720 // ---------VM FLAGS---------------------------------------------------------
 10721 //
 10722 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10723 //
 10724 // Each peephole rule is given an identifying number starting with zero and
 10725 // increasing by one in the order seen by the parser.  An individual peephole
 10726 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10727 // on the command-line.
 10728 //
 10729 // ---------CURRENT LIMITATIONS----------------------------------------------
 10730 //
 10731 // Only match adjacent instructions in same basic block
 10732 // Only equality constraints
 10733 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10734 // Only one replacement instruction
 10735 //
 10736 // ---------EXAMPLE----------------------------------------------------------
 10737 //
 10738 // // pertinent parts of existing instructions in architecture description
 10739 // instruct movI(eRegI dst, eRegI src) %{
 10740 //   match(Set dst (CopyI src));
 10741 // %}
 10742 //
 10743 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10744 //   match(Set dst (AddI dst src));
 10745 //   effect(KILL cr);
 10746 // %}
 10747 //
 10748 // // Change (inc mov) to lea
 10749 // peephole %{
 10750 //   // increment preceeded by register-register move
 10751 //   peepmatch ( incI_eReg movI );
 10752 //   // require that the destination register of the increment
 10753 //   // match the destination register of the move
 10754 //   peepconstraint ( 0.dst == 1.dst );
 10755 //   // construct a replacement instruction that sets
 10756 //   // the destination to ( move's source register + one )
 10757 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10758 // %}
 10759 //
 10761 // // Change load of spilled value to only a spill
 10762 // instruct storeI(memory mem, eRegI src) %{
 10763 //   match(Set mem (StoreI mem src));
 10764 // %}
 10765 //
 10766 // instruct loadI(eRegI dst, memory mem) %{
 10767 //   match(Set dst (LoadI mem));
 10768 // %}
 10769 //
 10770 // peephole %{
 10771 //   peepmatch ( loadI storeI );
 10772 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10773 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10774 // %}
 10776 //----------SMARTSPILL RULES---------------------------------------------------
 10777 // These must follow all instruction definitions as they use the names
 10778 // defined in the instructions definitions.
 10779 //
 10780 // SPARC will probably not have any of these rules due to RISC instruction set.
 10782 //----------PIPELINE-----------------------------------------------------------
 10783 // Rules which define the behavior of the target architectures pipeline.

mercurial