src/share/vm/opto/lcm.cpp

Wed, 04 May 2011 13:12:42 -0700

author
kvn
date
Wed, 04 May 2011 13:12:42 -0700
changeset 2877
bad7ecd0b6ed
parent 2784
92add02409c9
child 2993
7d9e451f5416
permissions
-rw-r--r--

5091921: Sign flip issues in loop optimizer
Summary: Fix integer overflow problem in the code generated by loop optimizer.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/c2compiler.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/machnode.hpp"
    32 #include "opto/runtime.hpp"
    33 #ifdef TARGET_ARCH_MODEL_x86_32
    34 # include "adfiles/ad_x86_32.hpp"
    35 #endif
    36 #ifdef TARGET_ARCH_MODEL_x86_64
    37 # include "adfiles/ad_x86_64.hpp"
    38 #endif
    39 #ifdef TARGET_ARCH_MODEL_sparc
    40 # include "adfiles/ad_sparc.hpp"
    41 #endif
    42 #ifdef TARGET_ARCH_MODEL_zero
    43 # include "adfiles/ad_zero.hpp"
    44 #endif
    45 #ifdef TARGET_ARCH_MODEL_arm
    46 # include "adfiles/ad_arm.hpp"
    47 #endif
    49 // Optimization - Graph Style
    51 //------------------------------implicit_null_check----------------------------
    52 // Detect implicit-null-check opportunities.  Basically, find NULL checks
    53 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
    54 // I can generate a memory op if there is not one nearby.
    55 // The proj is the control projection for the not-null case.
    56 // The val is the pointer being checked for nullness or
    57 // decodeHeapOop_not_null node if it did not fold into address.
    58 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
    59   // Assume if null check need for 0 offset then always needed
    60   // Intel solaris doesn't support any null checks yet and no
    61   // mechanism exists (yet) to set the switches at an os_cpu level
    62   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
    64   // Make sure the ptr-is-null path appears to be uncommon!
    65   float f = end()->as_MachIf()->_prob;
    66   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
    67   if( f > PROB_UNLIKELY_MAG(4) ) return;
    69   uint bidx = 0;                // Capture index of value into memop
    70   bool was_store;               // Memory op is a store op
    72   // Get the successor block for if the test ptr is non-null
    73   Block* not_null_block;  // this one goes with the proj
    74   Block* null_block;
    75   if (_nodes[_nodes.size()-1] == proj) {
    76     null_block     = _succs[0];
    77     not_null_block = _succs[1];
    78   } else {
    79     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
    80     not_null_block = _succs[0];
    81     null_block     = _succs[1];
    82   }
    83   while (null_block->is_Empty() == Block::empty_with_goto) {
    84     null_block     = null_block->_succs[0];
    85   }
    87   // Search the exception block for an uncommon trap.
    88   // (See Parse::do_if and Parse::do_ifnull for the reason
    89   // we need an uncommon trap.  Briefly, we need a way to
    90   // detect failure of this optimization, as in 6366351.)
    91   {
    92     bool found_trap = false;
    93     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
    94       Node* nn = null_block->_nodes[i1];
    95       if (nn->is_MachCall() &&
    96           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
    97         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
    98         if (trtype->isa_int() && trtype->is_int()->is_con()) {
    99           jint tr_con = trtype->is_int()->get_con();
   100           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
   101           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
   102           assert((int)reason < (int)BitsPerInt, "recode bit map");
   103           if (is_set_nth_bit(allowed_reasons, (int) reason)
   104               && action != Deoptimization::Action_none) {
   105             // This uncommon trap is sure to recompile, eventually.
   106             // When that happens, C->too_many_traps will prevent
   107             // this transformation from happening again.
   108             found_trap = true;
   109           }
   110         }
   111         break;
   112       }
   113     }
   114     if (!found_trap) {
   115       // We did not find an uncommon trap.
   116       return;
   117     }
   118   }
   120   // Check for decodeHeapOop_not_null node which did not fold into address
   121   bool is_decoden = ((intptr_t)val) & 1;
   122   val = (Node*)(((intptr_t)val) & ~1);
   124   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
   125          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
   127   // Search the successor block for a load or store who's base value is also
   128   // the tested value.  There may be several.
   129   Node_List *out = new Node_List(Thread::current()->resource_area());
   130   MachNode *best = NULL;        // Best found so far
   131   for (DUIterator i = val->outs(); val->has_out(i); i++) {
   132     Node *m = val->out(i);
   133     if( !m->is_Mach() ) continue;
   134     MachNode *mach = m->as_Mach();
   135     was_store = false;
   136     int iop = mach->ideal_Opcode();
   137     switch( iop ) {
   138     case Op_LoadB:
   139     case Op_LoadUS:
   140     case Op_LoadD:
   141     case Op_LoadF:
   142     case Op_LoadI:
   143     case Op_LoadL:
   144     case Op_LoadP:
   145     case Op_LoadN:
   146     case Op_LoadS:
   147     case Op_LoadKlass:
   148     case Op_LoadNKlass:
   149     case Op_LoadRange:
   150     case Op_LoadD_unaligned:
   151     case Op_LoadL_unaligned:
   152       assert(mach->in(2) == val, "should be address");
   153       break;
   154     case Op_StoreB:
   155     case Op_StoreC:
   156     case Op_StoreCM:
   157     case Op_StoreD:
   158     case Op_StoreF:
   159     case Op_StoreI:
   160     case Op_StoreL:
   161     case Op_StoreP:
   162     case Op_StoreN:
   163       was_store = true;         // Memory op is a store op
   164       // Stores will have their address in slot 2 (memory in slot 1).
   165       // If the value being nul-checked is in another slot, it means we
   166       // are storing the checked value, which does NOT check the value!
   167       if( mach->in(2) != val ) continue;
   168       break;                    // Found a memory op?
   169     case Op_StrComp:
   170     case Op_StrEquals:
   171     case Op_StrIndexOf:
   172     case Op_AryEq:
   173       // Not a legit memory op for implicit null check regardless of
   174       // embedded loads
   175       continue;
   176     default:                    // Also check for embedded loads
   177       if( !mach->needs_anti_dependence_check() )
   178         continue;               // Not an memory op; skip it
   179       if( must_clone[iop] ) {
   180         // Do not move nodes which produce flags because
   181         // RA will try to clone it to place near branch and
   182         // it will cause recompilation, see clone_node().
   183         continue;
   184       }
   185       {
   186         // Check that value is used in memory address in
   187         // instructions with embedded load (CmpP val1,(val2+off)).
   188         Node* base;
   189         Node* index;
   190         const MachOper* oper = mach->memory_inputs(base, index);
   191         if (oper == NULL || oper == (MachOper*)-1) {
   192           continue;             // Not an memory op; skip it
   193         }
   194         if (val == base ||
   195             val == index && val->bottom_type()->isa_narrowoop()) {
   196           break;                // Found it
   197         } else {
   198           continue;             // Skip it
   199         }
   200       }
   201       break;
   202     }
   203     // check if the offset is not too high for implicit exception
   204     {
   205       intptr_t offset = 0;
   206       const TypePtr *adr_type = NULL;  // Do not need this return value here
   207       const Node* base = mach->get_base_and_disp(offset, adr_type);
   208       if (base == NULL || base == NodeSentinel) {
   209         // Narrow oop address doesn't have base, only index
   210         if( val->bottom_type()->isa_narrowoop() &&
   211             MacroAssembler::needs_explicit_null_check(offset) )
   212           continue;             // Give up if offset is beyond page size
   213         // cannot reason about it; is probably not implicit null exception
   214       } else {
   215         const TypePtr* tptr;
   216         if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
   217           // 32-bits narrow oop can be the base of address expressions
   218           tptr = base->bottom_type()->make_ptr();
   219         } else {
   220           // only regular oops are expected here
   221           tptr = base->bottom_type()->is_ptr();
   222         }
   223         // Give up if offset is not a compile-time constant
   224         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
   225           continue;
   226         offset += tptr->_offset; // correct if base is offseted
   227         if( MacroAssembler::needs_explicit_null_check(offset) )
   228           continue;             // Give up is reference is beyond 4K page size
   229       }
   230     }
   232     // Check ctrl input to see if the null-check dominates the memory op
   233     Block *cb = cfg->_bbs[mach->_idx];
   234     cb = cb->_idom;             // Always hoist at least 1 block
   235     if( !was_store ) {          // Stores can be hoisted only one block
   236       while( cb->_dom_depth > (_dom_depth + 1))
   237         cb = cb->_idom;         // Hoist loads as far as we want
   238       // The non-null-block should dominate the memory op, too. Live
   239       // range spilling will insert a spill in the non-null-block if it is
   240       // needs to spill the memory op for an implicit null check.
   241       if (cb->_dom_depth == (_dom_depth + 1)) {
   242         if (cb != not_null_block) continue;
   243         cb = cb->_idom;
   244       }
   245     }
   246     if( cb != this ) continue;
   248     // Found a memory user; see if it can be hoisted to check-block
   249     uint vidx = 0;              // Capture index of value into memop
   250     uint j;
   251     for( j = mach->req()-1; j > 0; j-- ) {
   252       if( mach->in(j) == val ) {
   253         vidx = j;
   254         // Ignore DecodeN val which could be hoisted to where needed.
   255         if( is_decoden ) continue;
   256       }
   257       // Block of memory-op input
   258       Block *inb = cfg->_bbs[mach->in(j)->_idx];
   259       Block *b = this;          // Start from nul check
   260       while( b != inb && b->_dom_depth > inb->_dom_depth )
   261         b = b->_idom;           // search upwards for input
   262       // See if input dominates null check
   263       if( b != inb )
   264         break;
   265     }
   266     if( j > 0 )
   267       continue;
   268     Block *mb = cfg->_bbs[mach->_idx];
   269     // Hoisting stores requires more checks for the anti-dependence case.
   270     // Give up hoisting if we have to move the store past any load.
   271     if( was_store ) {
   272       Block *b = mb;            // Start searching here for a local load
   273       // mach use (faulting) trying to hoist
   274       // n might be blocker to hoisting
   275       while( b != this ) {
   276         uint k;
   277         for( k = 1; k < b->_nodes.size(); k++ ) {
   278           Node *n = b->_nodes[k];
   279           if( n->needs_anti_dependence_check() &&
   280               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
   281             break;              // Found anti-dependent load
   282         }
   283         if( k < b->_nodes.size() )
   284           break;                // Found anti-dependent load
   285         // Make sure control does not do a merge (would have to check allpaths)
   286         if( b->num_preds() != 2 ) break;
   287         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
   288       }
   289       if( b != this ) continue;
   290     }
   292     // Make sure this memory op is not already being used for a NullCheck
   293     Node *e = mb->end();
   294     if( e->is_MachNullCheck() && e->in(1) == mach )
   295       continue;                 // Already being used as a NULL check
   297     // Found a candidate!  Pick one with least dom depth - the highest
   298     // in the dom tree should be closest to the null check.
   299     if( !best ||
   300         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
   301       best = mach;
   302       bidx = vidx;
   304     }
   305   }
   306   // No candidate!
   307   if( !best ) return;
   309   // ---- Found an implicit null check
   310   extern int implicit_null_checks;
   311   implicit_null_checks++;
   313   if( is_decoden ) {
   314     // Check if we need to hoist decodeHeapOop_not_null first.
   315     Block *valb = cfg->_bbs[val->_idx];
   316     if( this != valb && this->_dom_depth < valb->_dom_depth ) {
   317       // Hoist it up to the end of the test block.
   318       valb->find_remove(val);
   319       this->add_inst(val);
   320       cfg->_bbs.map(val->_idx,this);
   321       // DecodeN on x86 may kill flags. Check for flag-killing projections
   322       // that also need to be hoisted.
   323       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
   324         Node* n = val->fast_out(j);
   325         if( n->Opcode() == Op_MachProj ) {
   326           cfg->_bbs[n->_idx]->find_remove(n);
   327           this->add_inst(n);
   328           cfg->_bbs.map(n->_idx,this);
   329         }
   330       }
   331     }
   332   }
   333   // Hoist the memory candidate up to the end of the test block.
   334   Block *old_block = cfg->_bbs[best->_idx];
   335   old_block->find_remove(best);
   336   add_inst(best);
   337   cfg->_bbs.map(best->_idx,this);
   339   // Move the control dependence
   340   if (best->in(0) && best->in(0) == old_block->_nodes[0])
   341     best->set_req(0, _nodes[0]);
   343   // Check for flag-killing projections that also need to be hoisted
   344   // Should be DU safe because no edge updates.
   345   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
   346     Node* n = best->fast_out(j);
   347     if( n->Opcode() == Op_MachProj ) {
   348       cfg->_bbs[n->_idx]->find_remove(n);
   349       add_inst(n);
   350       cfg->_bbs.map(n->_idx,this);
   351     }
   352   }
   354   Compile *C = cfg->C;
   355   // proj==Op_True --> ne test; proj==Op_False --> eq test.
   356   // One of two graph shapes got matched:
   357   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
   358   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
   359   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
   360   // then we are replacing a 'ne' test with a 'eq' NULL check test.
   361   // We need to flip the projections to keep the same semantics.
   362   if( proj->Opcode() == Op_IfTrue ) {
   363     // Swap order of projections in basic block to swap branch targets
   364     Node *tmp1 = _nodes[end_idx()+1];
   365     Node *tmp2 = _nodes[end_idx()+2];
   366     _nodes.map(end_idx()+1, tmp2);
   367     _nodes.map(end_idx()+2, tmp1);
   368     Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
   369     tmp1->replace_by(tmp);
   370     tmp2->replace_by(tmp1);
   371     tmp->replace_by(tmp2);
   372     tmp->destruct();
   373   }
   375   // Remove the existing null check; use a new implicit null check instead.
   376   // Since schedule-local needs precise def-use info, we need to correct
   377   // it as well.
   378   Node *old_tst = proj->in(0);
   379   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
   380   _nodes.map(end_idx(),nul_chk);
   381   cfg->_bbs.map(nul_chk->_idx,this);
   382   // Redirect users of old_test to nul_chk
   383   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
   384     old_tst->last_out(i2)->set_req(0, nul_chk);
   385   // Clean-up any dead code
   386   for (uint i3 = 0; i3 < old_tst->req(); i3++)
   387     old_tst->set_req(i3, NULL);
   389   cfg->latency_from_uses(nul_chk);
   390   cfg->latency_from_uses(best);
   391 }
   394 //------------------------------select-----------------------------------------
   395 // Select a nice fellow from the worklist to schedule next. If there is only
   396 // one choice, then use it. Projections take top priority for correctness
   397 // reasons - if I see a projection, then it is next.  There are a number of
   398 // other special cases, for instructions that consume condition codes, et al.
   399 // These are chosen immediately. Some instructions are required to immediately
   400 // precede the last instruction in the block, and these are taken last. Of the
   401 // remaining cases (most), choose the instruction with the greatest latency
   402 // (that is, the most number of pseudo-cycles required to the end of the
   403 // routine). If there is a tie, choose the instruction with the most inputs.
   404 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
   406   // If only a single entry on the stack, use it
   407   uint cnt = worklist.size();
   408   if (cnt == 1) {
   409     Node *n = worklist[0];
   410     worklist.map(0,worklist.pop());
   411     return n;
   412   }
   414   uint choice  = 0; // Bigger is most important
   415   uint latency = 0; // Bigger is scheduled first
   416   uint score   = 0; // Bigger is better
   417   int idx = -1;     // Index in worklist
   419   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
   420     // Order in worklist is used to break ties.
   421     // See caller for how this is used to delay scheduling
   422     // of induction variable increments to after the other
   423     // uses of the phi are scheduled.
   424     Node *n = worklist[i];      // Get Node on worklist
   426     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
   427     if( n->is_Proj() ||         // Projections always win
   428         n->Opcode()== Op_Con || // So does constant 'Top'
   429         iop == Op_CreateEx ||   // Create-exception must start block
   430         iop == Op_CheckCastPP
   431         ) {
   432       worklist.map(i,worklist.pop());
   433       return n;
   434     }
   436     // Final call in a block must be adjacent to 'catch'
   437     Node *e = end();
   438     if( e->is_Catch() && e->in(0)->in(0) == n )
   439       continue;
   441     // Memory op for an implicit null check has to be at the end of the block
   442     if( e->is_MachNullCheck() && e->in(1) == n )
   443       continue;
   445     uint n_choice  = 2;
   447     // See if this instruction is consumed by a branch. If so, then (as the
   448     // branch is the last instruction in the basic block) force it to the
   449     // end of the basic block
   450     if ( must_clone[iop] ) {
   451       // See if any use is a branch
   452       bool found_machif = false;
   454       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   455         Node* use = n->fast_out(j);
   457         // The use is a conditional branch, make them adjacent
   458         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
   459           found_machif = true;
   460           break;
   461         }
   463         // More than this instruction pending for successor to be ready,
   464         // don't choose this if other opportunities are ready
   465         if (ready_cnt[use->_idx] > 1)
   466           n_choice = 1;
   467       }
   469       // loop terminated, prefer not to use this instruction
   470       if (found_machif)
   471         continue;
   472     }
   474     // See if this has a predecessor that is "must_clone", i.e. sets the
   475     // condition code. If so, choose this first
   476     for (uint j = 0; j < n->req() ; j++) {
   477       Node *inn = n->in(j);
   478       if (inn) {
   479         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
   480           n_choice = 3;
   481           break;
   482         }
   483       }
   484     }
   486     // MachTemps should be scheduled last so they are near their uses
   487     if (n->is_MachTemp()) {
   488       n_choice = 1;
   489     }
   491     uint n_latency = cfg->_node_latency->at_grow(n->_idx);
   492     uint n_score   = n->req();   // Many inputs get high score to break ties
   494     // Keep best latency found
   495     if( choice < n_choice ||
   496         ( choice == n_choice &&
   497           ( latency < n_latency ||
   498             ( latency == n_latency &&
   499               ( score < n_score ))))) {
   500       choice  = n_choice;
   501       latency = n_latency;
   502       score   = n_score;
   503       idx     = i;               // Also keep index in worklist
   504     }
   505   } // End of for all ready nodes in worklist
   507   assert(idx >= 0, "index should be set");
   508   Node *n = worklist[(uint)idx];      // Get the winner
   510   worklist.map((uint)idx, worklist.pop());     // Compress worklist
   511   return n;
   512 }
   515 //------------------------------set_next_call----------------------------------
   516 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
   517   if( next_call.test_set(n->_idx) ) return;
   518   for( uint i=0; i<n->len(); i++ ) {
   519     Node *m = n->in(i);
   520     if( !m ) continue;  // must see all nodes in block that precede call
   521     if( bbs[m->_idx] == this )
   522       set_next_call( m, next_call, bbs );
   523   }
   524 }
   526 //------------------------------needed_for_next_call---------------------------
   527 // Set the flag 'next_call' for each Node that is needed for the next call to
   528 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
   529 // next subroutine call get priority - basically it moves things NOT needed
   530 // for the next call till after the call.  This prevents me from trying to
   531 // carry lots of stuff live across a call.
   532 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
   533   // Find the next control-defining Node in this block
   534   Node* call = NULL;
   535   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
   536     Node* m = this_call->fast_out(i);
   537     if( bbs[m->_idx] == this && // Local-block user
   538         m != this_call &&       // Not self-start node
   539         m->is_Call() )
   540       call = m;
   541       break;
   542   }
   543   if (call == NULL)  return;    // No next call (e.g., block end is near)
   544   // Set next-call for all inputs to this call
   545   set_next_call(call, next_call, bbs);
   546 }
   548 //------------------------------sched_call-------------------------------------
   549 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
   550   RegMask regs;
   552   // Schedule all the users of the call right now.  All the users are
   553   // projection Nodes, so they must be scheduled next to the call.
   554   // Collect all the defined registers.
   555   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
   556     Node* n = mcall->fast_out(i);
   557     assert( n->Opcode()==Op_MachProj, "" );
   558     --ready_cnt[n->_idx];
   559     assert( !ready_cnt[n->_idx], "" );
   560     // Schedule next to call
   561     _nodes.map(node_cnt++, n);
   562     // Collect defined registers
   563     regs.OR(n->out_RegMask());
   564     // Check for scheduling the next control-definer
   565     if( n->bottom_type() == Type::CONTROL )
   566       // Warm up next pile of heuristic bits
   567       needed_for_next_call(n, next_call, bbs);
   569     // Children of projections are now all ready
   570     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   571       Node* m = n->fast_out(j); // Get user
   572       if( bbs[m->_idx] != this ) continue;
   573       if( m->is_Phi() ) continue;
   574       if( !--ready_cnt[m->_idx] )
   575         worklist.push(m);
   576     }
   578   }
   580   // Act as if the call defines the Frame Pointer.
   581   // Certainly the FP is alive and well after the call.
   582   regs.Insert(matcher.c_frame_pointer());
   584   // Set all registers killed and not already defined by the call.
   585   uint r_cnt = mcall->tf()->range()->cnt();
   586   int op = mcall->ideal_Opcode();
   587   MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
   588   bbs.map(proj->_idx,this);
   589   _nodes.insert(node_cnt++, proj);
   591   // Select the right register save policy.
   592   const char * save_policy;
   593   switch (op) {
   594     case Op_CallRuntime:
   595     case Op_CallLeaf:
   596     case Op_CallLeafNoFP:
   597       // Calling C code so use C calling convention
   598       save_policy = matcher._c_reg_save_policy;
   599       break;
   601     case Op_CallStaticJava:
   602     case Op_CallDynamicJava:
   603       // Calling Java code so use Java calling convention
   604       save_policy = matcher._register_save_policy;
   605       break;
   607     default:
   608       ShouldNotReachHere();
   609   }
   611   // When using CallRuntime mark SOE registers as killed by the call
   612   // so values that could show up in the RegisterMap aren't live in a
   613   // callee saved register since the register wouldn't know where to
   614   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
   615   // have debug info on them.  Strictly speaking this only needs to be
   616   // done for oops since idealreg2debugmask takes care of debug info
   617   // references but there no way to handle oops differently than other
   618   // pointers as far as the kill mask goes.
   619   bool exclude_soe = op == Op_CallRuntime;
   621   // If the call is a MethodHandle invoke, we need to exclude the
   622   // register which is used to save the SP value over MH invokes from
   623   // the mask.  Otherwise this register could be used for
   624   // deoptimization information.
   625   if (op == Op_CallStaticJava) {
   626     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
   627     if (mcallstaticjava->_method_handle_invoke)
   628       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
   629   }
   631   // Fill in the kill mask for the call
   632   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
   633     if( !regs.Member(r) ) {     // Not already defined by the call
   634       // Save-on-call register?
   635       if ((save_policy[r] == 'C') ||
   636           (save_policy[r] == 'A') ||
   637           ((save_policy[r] == 'E') && exclude_soe)) {
   638         proj->_rout.Insert(r);
   639       }
   640     }
   641   }
   643   return node_cnt;
   644 }
   647 //------------------------------schedule_local---------------------------------
   648 // Topological sort within a block.  Someday become a real scheduler.
   649 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
   650   // Already "sorted" are the block start Node (as the first entry), and
   651   // the block-ending Node and any trailing control projections.  We leave
   652   // these alone.  PhiNodes and ParmNodes are made to follow the block start
   653   // Node.  Everything else gets topo-sorted.
   655 #ifndef PRODUCT
   656     if (cfg->trace_opto_pipelining()) {
   657       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
   658       for (uint i = 0;i < _nodes.size();i++) {
   659         tty->print("# ");
   660         _nodes[i]->fast_dump();
   661       }
   662       tty->print_cr("#");
   663     }
   664 #endif
   666   // RootNode is already sorted
   667   if( _nodes.size() == 1 ) return true;
   669   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
   670   uint node_cnt = end_idx();
   671   uint phi_cnt = 1;
   672   uint i;
   673   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
   674     Node *n = _nodes[i];
   675     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
   676         (n->is_Proj()  && n->in(0) == head()) ) {
   677       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
   678       _nodes.map(i,_nodes[phi_cnt]);
   679       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
   680     } else {                    // All others
   681       // Count block-local inputs to 'n'
   682       uint cnt = n->len();      // Input count
   683       uint local = 0;
   684       for( uint j=0; j<cnt; j++ ) {
   685         Node *m = n->in(j);
   686         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
   687           local++;              // One more block-local input
   688       }
   689       ready_cnt[n->_idx] = local; // Count em up
   691 #ifdef ASSERT
   692       if( UseConcMarkSweepGC || UseG1GC ) {
   693         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
   694           // Check the precedence edges
   695           for (uint prec = n->req(); prec < n->len(); prec++) {
   696             Node* oop_store = n->in(prec);
   697             if (oop_store != NULL) {
   698               assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
   699             }
   700           }
   701         }
   702       }
   703 #endif
   705       // A few node types require changing a required edge to a precedence edge
   706       // before allocation.
   707       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
   708           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
   709            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
   710         // MemBarAcquire could be created without Precedent edge.
   711         // del_req() replaces the specified edge with the last input edge
   712         // and then removes the last edge. If the specified edge > number of
   713         // edges the last edge will be moved outside of the input edges array
   714         // and the edge will be lost. This is why this code should be
   715         // executed only when Precedent (== TypeFunc::Parms) edge is present.
   716         Node *x = n->in(TypeFunc::Parms);
   717         n->del_req(TypeFunc::Parms);
   718         n->add_prec(x);
   719       }
   720     }
   721   }
   722   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
   723     ready_cnt[_nodes[i2]->_idx] = 0;
   725   // All the prescheduled guys do not hold back internal nodes
   726   uint i3;
   727   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
   728     Node *n = _nodes[i3];       // Get pre-scheduled
   729     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   730       Node* m = n->fast_out(j);
   731       if( cfg->_bbs[m->_idx] ==this ) // Local-block user
   732         ready_cnt[m->_idx]--;   // Fix ready count
   733     }
   734   }
   736   Node_List delay;
   737   // Make a worklist
   738   Node_List worklist;
   739   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
   740     Node *m = _nodes[i4];
   741     if( !ready_cnt[m->_idx] ) {   // Zero ready count?
   742       if (m->is_iteratively_computed()) {
   743         // Push induction variable increments last to allow other uses
   744         // of the phi to be scheduled first. The select() method breaks
   745         // ties in scheduling by worklist order.
   746         delay.push(m);
   747       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   748         // Force the CreateEx to the top of the list so it's processed
   749         // first and ends up at the start of the block.
   750         worklist.insert(0, m);
   751       } else {
   752         worklist.push(m);         // Then on to worklist!
   753       }
   754     }
   755   }
   756   while (delay.size()) {
   757     Node* d = delay.pop();
   758     worklist.push(d);
   759   }
   761   // Warm up the 'next_call' heuristic bits
   762   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
   764 #ifndef PRODUCT
   765     if (cfg->trace_opto_pipelining()) {
   766       for (uint j=0; j<_nodes.size(); j++) {
   767         Node     *n = _nodes[j];
   768         int     idx = n->_idx;
   769         tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
   770         tty->print("latency:%3d  ", cfg->_node_latency->at_grow(idx));
   771         tty->print("%4d: %s\n", idx, n->Name());
   772       }
   773     }
   774 #endif
   776   // Pull from worklist and schedule
   777   while( worklist.size() ) {    // Worklist is not ready
   779 #ifndef PRODUCT
   780     if (cfg->trace_opto_pipelining()) {
   781       tty->print("#   ready list:");
   782       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   783         Node *n = worklist[i];      // Get Node on worklist
   784         tty->print(" %d", n->_idx);
   785       }
   786       tty->cr();
   787     }
   788 #endif
   790     // Select and pop a ready guy from worklist
   791     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
   792     _nodes.map(phi_cnt++,n);    // Schedule him next
   794 #ifndef PRODUCT
   795     if (cfg->trace_opto_pipelining()) {
   796       tty->print("#    select %d: %s", n->_idx, n->Name());
   797       tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
   798       n->dump();
   799       if (Verbose) {
   800         tty->print("#   ready list:");
   801         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   802           Node *n = worklist[i];      // Get Node on worklist
   803           tty->print(" %d", n->_idx);
   804         }
   805         tty->cr();
   806       }
   807     }
   809 #endif
   810     if( n->is_MachCall() ) {
   811       MachCallNode *mcall = n->as_MachCall();
   812       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
   813       continue;
   814     }
   815     // Children are now all ready
   816     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
   817       Node* m = n->fast_out(i5); // Get user
   818       if( cfg->_bbs[m->_idx] != this ) continue;
   819       if( m->is_Phi() ) continue;
   820       if( !--ready_cnt[m->_idx] )
   821         worklist.push(m);
   822     }
   823   }
   825   if( phi_cnt != end_idx() ) {
   826     // did not schedule all.  Retry, Bailout, or Die
   827     Compile* C = matcher.C;
   828     if (C->subsume_loads() == true && !C->failing()) {
   829       // Retry with subsume_loads == false
   830       // If this is the first failure, the sentinel string will "stick"
   831       // to the Compile object, and the C2Compiler will see it and retry.
   832       C->record_failure(C2Compiler::retry_no_subsuming_loads());
   833     }
   834     // assert( phi_cnt == end_idx(), "did not schedule all" );
   835     return false;
   836   }
   838 #ifndef PRODUCT
   839   if (cfg->trace_opto_pipelining()) {
   840     tty->print_cr("#");
   841     tty->print_cr("# after schedule_local");
   842     for (uint i = 0;i < _nodes.size();i++) {
   843       tty->print("# ");
   844       _nodes[i]->fast_dump();
   845     }
   846     tty->cr();
   847   }
   848 #endif
   851   return true;
   852 }
   854 //--------------------------catch_cleanup_fix_all_inputs-----------------------
   855 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
   856   for (uint l = 0; l < use->len(); l++) {
   857     if (use->in(l) == old_def) {
   858       if (l < use->req()) {
   859         use->set_req(l, new_def);
   860       } else {
   861         use->rm_prec(l);
   862         use->add_prec(new_def);
   863         l--;
   864       }
   865     }
   866   }
   867 }
   869 //------------------------------catch_cleanup_find_cloned_def------------------
   870 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   871   assert( use_blk != def_blk, "Inter-block cleanup only");
   873   // The use is some block below the Catch.  Find and return the clone of the def
   874   // that dominates the use. If there is no clone in a dominating block, then
   875   // create a phi for the def in a dominating block.
   877   // Find which successor block dominates this use.  The successor
   878   // blocks must all be single-entry (from the Catch only; I will have
   879   // split blocks to make this so), hence they all dominate.
   880   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
   881     use_blk = use_blk->_idom;
   883   // Find the successor
   884   Node *fixup = NULL;
   886   uint j;
   887   for( j = 0; j < def_blk->_num_succs; j++ )
   888     if( use_blk == def_blk->_succs[j] )
   889       break;
   891   if( j == def_blk->_num_succs ) {
   892     // Block at same level in dom-tree is not a successor.  It needs a
   893     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
   894     Node_Array inputs = new Node_List(Thread::current()->resource_area());
   895     for(uint k = 1; k < use_blk->num_preds(); k++) {
   896       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
   897     }
   899     // Check to see if the use_blk already has an identical phi inserted.
   900     // If it exists, it will be at the first position since all uses of a
   901     // def are processed together.
   902     Node *phi = use_blk->_nodes[1];
   903     if( phi->is_Phi() ) {
   904       fixup = phi;
   905       for (uint k = 1; k < use_blk->num_preds(); k++) {
   906         if (phi->in(k) != inputs[k]) {
   907           // Not a match
   908           fixup = NULL;
   909           break;
   910         }
   911       }
   912     }
   914     // If an existing PhiNode was not found, make a new one.
   915     if (fixup == NULL) {
   916       Node *new_phi = PhiNode::make(use_blk->head(), def);
   917       use_blk->_nodes.insert(1, new_phi);
   918       bbs.map(new_phi->_idx, use_blk);
   919       for (uint k = 1; k < use_blk->num_preds(); k++) {
   920         new_phi->set_req(k, inputs[k]);
   921       }
   922       fixup = new_phi;
   923     }
   925   } else {
   926     // Found the use just below the Catch.  Make it use the clone.
   927     fixup = use_blk->_nodes[n_clone_idx];
   928   }
   930   return fixup;
   931 }
   933 //--------------------------catch_cleanup_intra_block--------------------------
   934 // Fix all input edges in use that reference "def".  The use is in the same
   935 // block as the def and both have been cloned in each successor block.
   936 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
   938   // Both the use and def have been cloned. For each successor block,
   939   // get the clone of the use, and make its input the clone of the def
   940   // found in that block.
   942   uint use_idx = blk->find_node(use);
   943   uint offset_idx = use_idx - beg;
   944   for( uint k = 0; k < blk->_num_succs; k++ ) {
   945     // Get clone in each successor block
   946     Block *sb = blk->_succs[k];
   947     Node *clone = sb->_nodes[offset_idx+1];
   948     assert( clone->Opcode() == use->Opcode(), "" );
   950     // Make use-clone reference the def-clone
   951     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
   952   }
   953 }
   955 //------------------------------catch_cleanup_inter_block---------------------
   956 // Fix all input edges in use that reference "def".  The use is in a different
   957 // block than the def.
   958 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   959   if( !use_blk ) return;        // Can happen if the use is a precedence edge
   961   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
   962   catch_cleanup_fix_all_inputs(use, def, new_def);
   963 }
   965 //------------------------------call_catch_cleanup-----------------------------
   966 // If we inserted any instructions between a Call and his CatchNode,
   967 // clone the instructions on all paths below the Catch.
   968 void Block::call_catch_cleanup(Block_Array &bbs) {
   970   // End of region to clone
   971   uint end = end_idx();
   972   if( !_nodes[end]->is_Catch() ) return;
   973   // Start of region to clone
   974   uint beg = end;
   975   while( _nodes[beg-1]->Opcode() != Op_MachProj ||
   976         !_nodes[beg-1]->in(0)->is_Call() ) {
   977     beg--;
   978     assert(beg > 0,"Catch cleanup walking beyond block boundary");
   979   }
   980   // Range of inserted instructions is [beg, end)
   981   if( beg == end ) return;
   983   // Clone along all Catch output paths.  Clone area between the 'beg' and
   984   // 'end' indices.
   985   for( uint i = 0; i < _num_succs; i++ ) {
   986     Block *sb = _succs[i];
   987     // Clone the entire area; ignoring the edge fixup for now.
   988     for( uint j = end; j > beg; j-- ) {
   989       // It is safe here to clone a node with anti_dependence
   990       // since clones dominate on each path.
   991       Node *clone = _nodes[j-1]->clone();
   992       sb->_nodes.insert( 1, clone );
   993       bbs.map(clone->_idx,sb);
   994     }
   995   }
   998   // Fixup edges.  Check the def-use info per cloned Node
   999   for(uint i2 = beg; i2 < end; i2++ ) {
  1000     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
  1001     Node *n = _nodes[i2];        // Node that got cloned
  1002     // Need DU safe iterator because of edge manipulation in calls.
  1003     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
  1004     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
  1005       out->push(n->fast_out(j1));
  1007     uint max = out->size();
  1008     for (uint j = 0; j < max; j++) {// For all users
  1009       Node *use = out->pop();
  1010       Block *buse = bbs[use->_idx];
  1011       if( use->is_Phi() ) {
  1012         for( uint k = 1; k < use->req(); k++ )
  1013           if( use->in(k) == n ) {
  1014             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
  1015             use->set_req(k, fixup);
  1017       } else {
  1018         if (this == buse) {
  1019           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
  1020         } else {
  1021           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
  1024     } // End for all users
  1026   } // End of for all Nodes in cloned area
  1028   // Remove the now-dead cloned ops
  1029   for(uint i3 = beg; i3 < end; i3++ ) {
  1030     _nodes[beg]->disconnect_inputs(NULL);
  1031     _nodes.remove(beg);
  1034   // If the successor blocks have a CreateEx node, move it back to the top
  1035   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
  1036     Block *sb = _succs[i4];
  1037     uint new_cnt = end - beg;
  1038     // Remove any newly created, but dead, nodes.
  1039     for( uint j = new_cnt; j > 0; j-- ) {
  1040       Node *n = sb->_nodes[j];
  1041       if (n->outcnt() == 0 &&
  1042           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
  1043         n->disconnect_inputs(NULL);
  1044         sb->_nodes.remove(j);
  1045         new_cnt--;
  1048     // If any newly created nodes remain, move the CreateEx node to the top
  1049     if (new_cnt > 0) {
  1050       Node *cex = sb->_nodes[1+new_cnt];
  1051       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
  1052         sb->_nodes.remove(1+new_cnt);
  1053         sb->_nodes.insert(1,cex);

mercurial