src/share/vm/utilities/taskqueue.hpp

Sun, 13 Apr 2008 17:43:42 -0400

author
coleenp
date
Sun, 13 Apr 2008 17:43:42 -0400
changeset 548
ba764ed4b6f2
parent 435
a61af66fc99e
child 631
d1605aabd0a1
child 777
37f87013dfd8
permissions
-rw-r--r--

6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Summary: Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold

     1 /*
     2  * Copyright 2001-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class TaskQueueSuper: public CHeapObj {
    26 protected:
    27   // The first free element after the last one pushed (mod _n).
    28   // (For now we'll assume only 32-bit CAS).
    29   volatile juint _bottom;
    31   // log2 of the size of the queue.
    32   enum SomeProtectedConstants {
    33     Log_n = 14
    34   };
    36   // Size of the queue.
    37   juint n() { return (1 << Log_n); }
    38   // For computing "x mod n" efficiently.
    39   juint n_mod_mask() { return n() - 1; }
    41   struct Age {
    42     jushort _top;
    43     jushort _tag;
    45     jushort tag() const { return _tag; }
    46     jushort top() const { return _top; }
    48     Age() { _tag = 0; _top = 0; }
    50     friend bool operator ==(const Age& a1, const Age& a2) {
    51       return a1.tag() == a2.tag() && a1.top() == a2.top();
    52     }
    54   };
    55   Age _age;
    56   // These make sure we do single atomic reads and writes.
    57   Age get_age() {
    58     jint res = *(volatile jint*)(&_age);
    59     return *(Age*)(&res);
    60   }
    61   void set_age(Age a) {
    62     *(volatile jint*)(&_age) = *(int*)(&a);
    63   }
    65   jushort get_top() {
    66     return get_age().top();
    67   }
    69   // These both operate mod _n.
    70   juint increment_index(juint ind) {
    71     return (ind + 1) & n_mod_mask();
    72   }
    73   juint decrement_index(juint ind) {
    74     return (ind - 1) & n_mod_mask();
    75   }
    77   // Returns a number in the range [0.._n).  If the result is "n-1", it
    78   // should be interpreted as 0.
    79   juint dirty_size(juint bot, juint top) {
    80     return ((jint)bot - (jint)top) & n_mod_mask();
    81   }
    83   // Returns the size corresponding to the given "bot" and "top".
    84   juint size(juint bot, juint top) {
    85     juint sz = dirty_size(bot, top);
    86     // Has the queue "wrapped", so that bottom is less than top?
    87     // There's a complicated special case here.  A pair of threads could
    88     // perform pop_local and pop_global operations concurrently, starting
    89     // from a state in which _bottom == _top+1.  The pop_local could
    90     // succeed in decrementing _bottom, and the pop_global in incrementing
    91     // _top (in which case the pop_global will be awarded the contested
    92     // queue element.)  The resulting state must be interpreted as an empty
    93     // queue.  (We only need to worry about one such event: only the queue
    94     // owner performs pop_local's, and several concurrent threads
    95     // attempting to perform the pop_global will all perform the same CAS,
    96     // and only one can succeed.  Any stealing thread that reads after
    97     // either the increment or decrement will seen an empty queue, and will
    98     // not join the competitors.  The "sz == -1 || sz == _n-1" state will
    99     // not be modified  by concurrent queues, so the owner thread can reset
   100     // the state to _bottom == top so subsequent pushes will be performed
   101     // normally.
   102     if (sz == (n()-1)) return 0;
   103     else return sz;
   104   }
   106 public:
   107   TaskQueueSuper() : _bottom(0), _age() {}
   109   // Return "true" if the TaskQueue contains any tasks.
   110   bool peek();
   112   // Return an estimate of the number of elements in the queue.
   113   // The "careful" version admits the possibility of pop_local/pop_global
   114   // races.
   115   juint size() {
   116     return size(_bottom, get_top());
   117   }
   119   juint dirty_size() {
   120     return dirty_size(_bottom, get_top());
   121   }
   123   // Maximum number of elements allowed in the queue.  This is two less
   124   // than the actual queue size, for somewhat complicated reasons.
   125   juint max_elems() { return n() - 2; }
   127 };
   129 template<class E> class GenericTaskQueue: public TaskQueueSuper {
   130 private:
   131   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   132   bool push_slow(E t, juint dirty_n_elems);
   133   bool pop_local_slow(juint localBot, Age oldAge);
   135 public:
   136   // Initializes the queue to empty.
   137   GenericTaskQueue();
   139   void initialize();
   141   // Push the task "t" on the queue.  Returns "false" iff the queue is
   142   // full.
   143   inline bool push(E t);
   145   // If succeeds in claiming a task (from the 'local' end, that is, the
   146   // most recently pushed task), returns "true" and sets "t" to that task.
   147   // Otherwise, the queue is empty and returns false.
   148   inline bool pop_local(E& t);
   150   // If succeeds in claiming a task (from the 'global' end, that is, the
   151   // least recently pushed task), returns "true" and sets "t" to that task.
   152   // Otherwise, the queue is empty and returns false.
   153   bool pop_global(E& t);
   155   // Delete any resource associated with the queue.
   156   ~GenericTaskQueue();
   158 private:
   159   // Element array.
   160   volatile E* _elems;
   161 };
   163 template<class E>
   164 GenericTaskQueue<E>::GenericTaskQueue():TaskQueueSuper() {
   165   assert(sizeof(Age) == sizeof(jint), "Depends on this.");
   166 }
   168 template<class E>
   169 void GenericTaskQueue<E>::initialize() {
   170   _elems = NEW_C_HEAP_ARRAY(E, n());
   171   guarantee(_elems != NULL, "Allocation failed.");
   172 }
   174 template<class E>
   175 bool GenericTaskQueue<E>::push_slow(E t, juint dirty_n_elems) {
   176   if (dirty_n_elems == n() - 1) {
   177     // Actually means 0, so do the push.
   178     juint localBot = _bottom;
   179     _elems[localBot] = t;
   180     _bottom = increment_index(localBot);
   181     return true;
   182   } else
   183     return false;
   184 }
   186 template<class E>
   187 bool GenericTaskQueue<E>::
   188 pop_local_slow(juint localBot, Age oldAge) {
   189   // This queue was observed to contain exactly one element; either this
   190   // thread will claim it, or a competing "pop_global".  In either case,
   191   // the queue will be logically empty afterwards.  Create a new Age value
   192   // that represents the empty queue for the given value of "_bottom".  (We
   193   // must also increment "tag" because of the case where "bottom == 1",
   194   // "top == 0".  A pop_global could read the queue element in that case,
   195   // then have the owner thread do a pop followed by another push.  Without
   196   // the incrementing of "tag", the pop_global's CAS could succeed,
   197   // allowing it to believe it has claimed the stale element.)
   198   Age newAge;
   199   newAge._top = localBot;
   200   newAge._tag = oldAge.tag() + 1;
   201   // Perhaps a competing pop_global has already incremented "top", in which
   202   // case it wins the element.
   203   if (localBot == oldAge.top()) {
   204     Age tempAge;
   205     // No competing pop_global has yet incremented "top"; we'll try to
   206     // install new_age, thus claiming the element.
   207     assert(sizeof(Age) == sizeof(jint) && sizeof(jint) == sizeof(juint),
   208            "Assumption about CAS unit.");
   209     *(jint*)&tempAge = Atomic::cmpxchg(*(jint*)&newAge, (volatile jint*)&_age, *(jint*)&oldAge);
   210     if (tempAge == oldAge) {
   211       // We win.
   212       assert(dirty_size(localBot, get_top()) != n() - 1,
   213              "Shouldn't be possible...");
   214       return true;
   215     }
   216   }
   217   // We fail; a completing pop_global gets the element.  But the queue is
   218   // empty (and top is greater than bottom.)  Fix this representation of
   219   // the empty queue to become the canonical one.
   220   set_age(newAge);
   221   assert(dirty_size(localBot, get_top()) != n() - 1,
   222          "Shouldn't be possible...");
   223   return false;
   224 }
   226 template<class E>
   227 bool GenericTaskQueue<E>::pop_global(E& t) {
   228   Age newAge;
   229   Age oldAge = get_age();
   230   juint localBot = _bottom;
   231   juint n_elems = size(localBot, oldAge.top());
   232   if (n_elems == 0) {
   233     return false;
   234   }
   235   t = _elems[oldAge.top()];
   236   newAge = oldAge;
   237   newAge._top = increment_index(newAge.top());
   238   if ( newAge._top == 0 ) newAge._tag++;
   239   Age resAge;
   240   *(jint*)&resAge = Atomic::cmpxchg(*(jint*)&newAge, (volatile jint*)&_age, *(jint*)&oldAge);
   241   // Note that using "_bottom" here might fail, since a pop_local might
   242   // have decremented it.
   243   assert(dirty_size(localBot, newAge._top) != n() - 1,
   244          "Shouldn't be possible...");
   245   return (resAge == oldAge);
   246 }
   248 template<class E>
   249 GenericTaskQueue<E>::~GenericTaskQueue() {
   250   FREE_C_HEAP_ARRAY(E, _elems);
   251 }
   253 // Inherits the typedef of "Task" from above.
   254 class TaskQueueSetSuper: public CHeapObj {
   255 protected:
   256   static int randomParkAndMiller(int* seed0);
   257 public:
   258   // Returns "true" if some TaskQueue in the set contains a task.
   259   virtual bool peek() = 0;
   260 };
   262 template<class E> class GenericTaskQueueSet: public TaskQueueSetSuper {
   263 private:
   264   int _n;
   265   GenericTaskQueue<E>** _queues;
   267 public:
   268   GenericTaskQueueSet(int n) : _n(n) {
   269     typedef GenericTaskQueue<E>* GenericTaskQueuePtr;
   270     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
   271     guarantee(_queues != NULL, "Allocation failure.");
   272     for (int i = 0; i < n; i++) {
   273       _queues[i] = NULL;
   274     }
   275   }
   277   bool steal_1_random(int queue_num, int* seed, E& t);
   278   bool steal_best_of_2(int queue_num, int* seed, E& t);
   279   bool steal_best_of_all(int queue_num, int* seed, E& t);
   281   void register_queue(int i, GenericTaskQueue<E>* q);
   283   GenericTaskQueue<E>* queue(int n);
   285   // The thread with queue number "queue_num" (and whose random number seed
   286   // is at "seed") is trying to steal a task from some other queue.  (It
   287   // may try several queues, according to some configuration parameter.)
   288   // If some steal succeeds, returns "true" and sets "t" the stolen task,
   289   // otherwise returns false.
   290   bool steal(int queue_num, int* seed, E& t);
   292   bool peek();
   293 };
   295 template<class E>
   296 void GenericTaskQueueSet<E>::register_queue(int i, GenericTaskQueue<E>* q) {
   297   assert(0 <= i && i < _n, "index out of range.");
   298   _queues[i] = q;
   299 }
   301 template<class E>
   302 GenericTaskQueue<E>* GenericTaskQueueSet<E>::queue(int i) {
   303   return _queues[i];
   304 }
   306 template<class E>
   307 bool GenericTaskQueueSet<E>::steal(int queue_num, int* seed, E& t) {
   308   for (int i = 0; i < 2 * _n; i++)
   309     if (steal_best_of_2(queue_num, seed, t))
   310       return true;
   311   return false;
   312 }
   314 template<class E>
   315 bool GenericTaskQueueSet<E>::steal_best_of_all(int queue_num, int* seed, E& t) {
   316   if (_n > 2) {
   317     int best_k;
   318     jint best_sz = 0;
   319     for (int k = 0; k < _n; k++) {
   320       if (k == queue_num) continue;
   321       jint sz = _queues[k]->size();
   322       if (sz > best_sz) {
   323         best_sz = sz;
   324         best_k = k;
   325       }
   326     }
   327     return best_sz > 0 && _queues[best_k]->pop_global(t);
   328   } else if (_n == 2) {
   329     // Just try the other one.
   330     int k = (queue_num + 1) % 2;
   331     return _queues[k]->pop_global(t);
   332   } else {
   333     assert(_n == 1, "can't be zero.");
   334     return false;
   335   }
   336 }
   338 template<class E>
   339 bool GenericTaskQueueSet<E>::steal_1_random(int queue_num, int* seed, E& t) {
   340   if (_n > 2) {
   341     int k = queue_num;
   342     while (k == queue_num) k = randomParkAndMiller(seed) % _n;
   343     return _queues[2]->pop_global(t);
   344   } else if (_n == 2) {
   345     // Just try the other one.
   346     int k = (queue_num + 1) % 2;
   347     return _queues[k]->pop_global(t);
   348   } else {
   349     assert(_n == 1, "can't be zero.");
   350     return false;
   351   }
   352 }
   354 template<class E>
   355 bool GenericTaskQueueSet<E>::steal_best_of_2(int queue_num, int* seed, E& t) {
   356   if (_n > 2) {
   357     int k1 = queue_num;
   358     while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
   359     int k2 = queue_num;
   360     while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
   361     // Sample both and try the larger.
   362     juint sz1 = _queues[k1]->size();
   363     juint sz2 = _queues[k2]->size();
   364     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   365     else return _queues[k1]->pop_global(t);
   366   } else if (_n == 2) {
   367     // Just try the other one.
   368     int k = (queue_num + 1) % 2;
   369     return _queues[k]->pop_global(t);
   370   } else {
   371     assert(_n == 1, "can't be zero.");
   372     return false;
   373   }
   374 }
   376 template<class E>
   377 bool GenericTaskQueueSet<E>::peek() {
   378   // Try all the queues.
   379   for (int j = 0; j < _n; j++) {
   380     if (_queues[j]->peek())
   381       return true;
   382   }
   383   return false;
   384 }
   386 // A class to aid in the termination of a set of parallel tasks using
   387 // TaskQueueSet's for work stealing.
   389 class ParallelTaskTerminator: public StackObj {
   390 private:
   391   int _n_threads;
   392   TaskQueueSetSuper* _queue_set;
   393   jint _offered_termination;
   395   bool peek_in_queue_set();
   396 protected:
   397   virtual void yield();
   398   void sleep(uint millis);
   400 public:
   402   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   403   // queue sets of work queues of other threads.
   404   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   406   // The current thread has no work, and is ready to terminate if everyone
   407   // else is.  If returns "true", all threads are terminated.  If returns
   408   // "false", available work has been observed in one of the task queues,
   409   // so the global task is not complete.
   410   bool offer_termination();
   412   // Reset the terminator, so that it may be reused again.
   413   // The caller is responsible for ensuring that this is done
   414   // in an MT-safe manner, once the previous round of use of
   415   // the terminator is finished.
   416   void reset_for_reuse();
   418 };
   420 #define SIMPLE_STACK 0
   422 template<class E> inline bool GenericTaskQueue<E>::push(E t) {
   423 #if SIMPLE_STACK
   424   juint localBot = _bottom;
   425   if (_bottom < max_elems()) {
   426     _elems[localBot] = t;
   427     _bottom = localBot + 1;
   428     return true;
   429   } else {
   430     return false;
   431   }
   432 #else
   433   juint localBot = _bottom;
   434   assert((localBot >= 0) && (localBot < n()), "_bottom out of range.");
   435   jushort top = get_top();
   436   juint dirty_n_elems = dirty_size(localBot, top);
   437   assert((dirty_n_elems >= 0) && (dirty_n_elems < n()),
   438          "n_elems out of range.");
   439   if (dirty_n_elems < max_elems()) {
   440     _elems[localBot] = t;
   441     _bottom = increment_index(localBot);
   442     return true;
   443   } else {
   444     return push_slow(t, dirty_n_elems);
   445   }
   446 #endif
   447 }
   449 template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
   450 #if SIMPLE_STACK
   451   juint localBot = _bottom;
   452   assert(localBot > 0, "precondition.");
   453   localBot--;
   454   t = _elems[localBot];
   455   _bottom = localBot;
   456   return true;
   457 #else
   458   juint localBot = _bottom;
   459   // This value cannot be n-1.  That can only occur as a result of
   460   // the assignment to bottom in this method.  If it does, this method
   461   // resets the size( to 0 before the next call (which is sequential,
   462   // since this is pop_local.)
   463   juint dirty_n_elems = dirty_size(localBot, get_top());
   464   assert(dirty_n_elems != n() - 1, "Shouldn't be possible...");
   465   if (dirty_n_elems == 0) return false;
   466   localBot = decrement_index(localBot);
   467   _bottom = localBot;
   468   // This is necessary to prevent any read below from being reordered
   469   // before the store just above.
   470   OrderAccess::fence();
   471   t = _elems[localBot];
   472   // This is a second read of "age"; the "size()" above is the first.
   473   // If there's still at least one element in the queue, based on the
   474   // "_bottom" and "age" we've read, then there can be no interference with
   475   // a "pop_global" operation, and we're done.
   476   juint tp = get_top();
   477   if (size(localBot, tp) > 0) {
   478     assert(dirty_size(localBot, tp) != n() - 1,
   479            "Shouldn't be possible...");
   480     return true;
   481   } else {
   482     // Otherwise, the queue contained exactly one element; we take the slow
   483     // path.
   484     return pop_local_slow(localBot, get_age());
   485   }
   486 #endif
   487 }
   489 typedef oop Task;
   490 typedef GenericTaskQueue<Task>         OopTaskQueue;
   491 typedef GenericTaskQueueSet<Task>      OopTaskQueueSet;
   494 #define COMPRESSED_OOP_MASK  1
   496 // This is a container class for either an oop* or a narrowOop*.
   497 // Both are pushed onto a task queue and the consumer will test is_narrow()
   498 // to determine which should be processed.
   499 class StarTask {
   500   void*  _holder;        // either union oop* or narrowOop*
   501  public:
   502   StarTask(narrowOop *p) { _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK); }
   503   StarTask(oop *p)       { _holder = (void*)p; }
   504   StarTask()             { _holder = NULL; }
   505   operator oop*()        { return (oop*)_holder; }
   506   operator narrowOop*()  {
   507     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   508   }
   510   // Operators to preserve const/volatile in assignments required by gcc
   511   void operator=(const volatile StarTask& t) volatile { _holder = t._holder; }
   513   bool is_narrow() const {
   514     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   515   }
   516 };
   518 typedef GenericTaskQueue<StarTask>     OopStarTaskQueue;
   519 typedef GenericTaskQueueSet<StarTask>  OopStarTaskQueueSet;
   521 typedef size_t ChunkTask;  // index for chunk
   522 typedef GenericTaskQueue<ChunkTask>    ChunkTaskQueue;
   523 typedef GenericTaskQueueSet<ChunkTask> ChunkTaskQueueSet;
   525 class ChunkTaskQueueWithOverflow: public CHeapObj {
   526  protected:
   527   ChunkTaskQueue              _chunk_queue;
   528   GrowableArray<ChunkTask>*   _overflow_stack;
   530  public:
   531   ChunkTaskQueueWithOverflow() : _overflow_stack(NULL) {}
   532   // Initialize both stealable queue and overflow
   533   void initialize();
   534   // Save first to stealable queue and then to overflow
   535   void save(ChunkTask t);
   536   // Retrieve first from overflow and then from stealable queue
   537   bool retrieve(ChunkTask& chunk_index);
   538   // Retrieve from stealable queue
   539   bool retrieve_from_stealable_queue(ChunkTask& chunk_index);
   540   // Retrieve from overflow
   541   bool retrieve_from_overflow(ChunkTask& chunk_index);
   542   bool is_empty();
   543   bool stealable_is_empty();
   544   bool overflow_is_empty();
   545   juint stealable_size() { return _chunk_queue.size(); }
   546   ChunkTaskQueue* task_queue() { return &_chunk_queue; }
   547 };
   549 #define USE_ChunkTaskQueueWithOverflow

mercurial