src/share/vm/memory/referenceProcessor.hpp

Sun, 13 Apr 2008 17:43:42 -0400

author
coleenp
date
Sun, 13 Apr 2008 17:43:42 -0400
changeset 548
ba764ed4b6f2
parent 435
a61af66fc99e
child 631
d1605aabd0a1
child 777
37f87013dfd8
permissions
-rw-r--r--

6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Summary: Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold

     1 /*
     2  * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // ReferenceProcessor class encapsulates the per-"collector" processing
    26 // of "weak" references for GC. The interface is useful for supporting
    27 // a generational abstraction, in particular when there are multiple
    28 // generations that are being independently collected -- possibly
    29 // concurrently and/or incrementally.  Note, however, that the
    30 // ReferenceProcessor class abstracts away from a generational setting
    31 // by using only a heap interval (called "span" below), thus allowing
    32 // its use in a straightforward manner in a general, non-generational
    33 // setting.
    34 //
    35 // The basic idea is that each ReferenceProcessor object concerns
    36 // itself with ("weak") reference processing in a specific "span"
    37 // of the heap of interest to a specific collector. Currently,
    38 // the span is a convex interval of the heap, but, efficiency
    39 // apart, there seems to be no reason it couldn't be extended
    40 // (with appropriate modifications) to any "non-convex interval".
    42 // forward references
    43 class ReferencePolicy;
    44 class AbstractRefProcTaskExecutor;
    45 class DiscoveredList;
    47 class ReferenceProcessor : public CHeapObj {
    48  protected:
    49   // End of list marker
    50   static oop  _sentinelRef;
    51   MemRegion   _span; // (right-open) interval of heap
    52                      // subject to wkref discovery
    53   bool        _discovering_refs;      // true when discovery enabled
    54   bool        _discovery_is_atomic;   // if discovery is atomic wrt
    55                                       // other collectors in configuration
    56   bool        _discovery_is_mt;       // true if reference discovery is MT.
    57   bool        _enqueuing_is_done;     // true if all weak references enqueued
    58   bool        _processing_is_mt;      // true during phases when
    59                                       // reference processing is MT.
    60   int         _next_id;               // round-robin counter in
    61                                       // support of work distribution
    63   // For collectors that do not keep GC marking information
    64   // in the object header, this field holds a closure that
    65   // helps the reference processor determine the reachability
    66   // of an oop (the field is currently initialized to NULL for
    67   // all collectors but the CMS collector).
    68   BoolObjectClosure* _is_alive_non_header;
    70   // The discovered ref lists themselves
    72   // The MT'ness degree of the queues below
    73   int             _num_q;
    74   // Arrays of lists of oops, one per thread
    75   DiscoveredList* _discoveredSoftRefs;
    76   DiscoveredList* _discoveredWeakRefs;
    77   DiscoveredList* _discoveredFinalRefs;
    78   DiscoveredList* _discoveredPhantomRefs;
    80  public:
    81   int num_q()                            { return _num_q; }
    82   DiscoveredList* discovered_soft_refs() { return _discoveredSoftRefs; }
    83   static oop  sentinel_ref()             { return _sentinelRef; }
    84   static oop* adr_sentinel_ref()         { return &_sentinelRef; }
    86  public:
    87   // Process references with a certain reachability level.
    88   void process_discovered_reflist(DiscoveredList               refs_lists[],
    89                                   ReferencePolicy*             policy,
    90                                   bool                         clear_referent,
    91                                   BoolObjectClosure*           is_alive,
    92                                   OopClosure*                  keep_alive,
    93                                   VoidClosure*                 complete_gc,
    94                                   AbstractRefProcTaskExecutor* task_executor);
    96   void process_phaseJNI(BoolObjectClosure* is_alive,
    97                         OopClosure*        keep_alive,
    98                         VoidClosure*       complete_gc);
   100   // Work methods used by the method process_discovered_reflist
   101   // Phase1: keep alive all those referents that are otherwise
   102   // dead but which must be kept alive by policy (and their closure).
   103   void process_phase1(DiscoveredList&     refs_list,
   104                       ReferencePolicy*    policy,
   105                       BoolObjectClosure*  is_alive,
   106                       OopClosure*         keep_alive,
   107                       VoidClosure*        complete_gc);
   108   // Phase2: remove all those references whose referents are
   109   // reachable.
   110   inline void process_phase2(DiscoveredList&    refs_list,
   111                              BoolObjectClosure* is_alive,
   112                              OopClosure*        keep_alive,
   113                              VoidClosure*       complete_gc) {
   114     if (discovery_is_atomic()) {
   115       // complete_gc is ignored in this case for this phase
   116       pp2_work(refs_list, is_alive, keep_alive);
   117     } else {
   118       assert(complete_gc != NULL, "Error");
   119       pp2_work_concurrent_discovery(refs_list, is_alive,
   120                                     keep_alive, complete_gc);
   121     }
   122   }
   123   // Work methods in support of process_phase2
   124   void pp2_work(DiscoveredList&    refs_list,
   125                 BoolObjectClosure* is_alive,
   126                 OopClosure*        keep_alive);
   127   void pp2_work_concurrent_discovery(
   128                 DiscoveredList&    refs_list,
   129                 BoolObjectClosure* is_alive,
   130                 OopClosure*        keep_alive,
   131                 VoidClosure*       complete_gc);
   132   // Phase3: process the referents by either clearing them
   133   // or keeping them alive (and their closure)
   134   void process_phase3(DiscoveredList&    refs_list,
   135                       bool               clear_referent,
   136                       BoolObjectClosure* is_alive,
   137                       OopClosure*        keep_alive,
   138                       VoidClosure*       complete_gc);
   140   // Enqueue references with a certain reachability level
   141   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
   143   // "Preclean" all the discovered reference lists
   144   // by removing references with strongly reachable referents.
   145   // The first argument is a predicate on an oop that indicates
   146   // its (strong) reachability and the second is a closure that
   147   // may be used to incrementalize or abort the precleaning process.
   148   // The caller is responsible for taking care of potential
   149   // interference with concurrent operations on these lists
   150   // (or predicates involved) by other threads. Currently
   151   // only used by the CMS collector.
   152   void preclean_discovered_references(BoolObjectClosure* is_alive,
   153                                       OopClosure*        keep_alive,
   154                                       VoidClosure*       complete_gc,
   155                                       YieldClosure*      yield);
   157   // Delete entries in the discovered lists that have
   158   // either a null referent or are not active. Such
   159   // Reference objects can result from the clearing
   160   // or enqueueing of Reference objects concurrent
   161   // with their discovery by a (concurrent) collector.
   162   // For a definition of "active" see java.lang.ref.Reference;
   163   // Refs are born active, become inactive when enqueued,
   164   // and never become active again. The state of being
   165   // active is encoded as follows: A Ref is active
   166   // if and only if its "next" field is NULL.
   167   void clean_up_discovered_references();
   168   void clean_up_discovered_reflist(DiscoveredList& refs_list);
   170   // Returns the name of the discovered reference list
   171   // occupying the i / _num_q slot.
   172   const char* list_name(int i);
   174   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
   176  protected:
   177   // "Preclean" the given discovered reference list
   178   // by removing references with strongly reachable referents.
   179   // Currently used in support of CMS only.
   180   void preclean_discovered_reflist(DiscoveredList&    refs_list,
   181                                    BoolObjectClosure* is_alive,
   182                                    OopClosure*        keep_alive,
   183                                    VoidClosure*       complete_gc,
   184                                    YieldClosure*      yield);
   186   int next_id() {
   187     int id = _next_id;
   188     if (++_next_id == _num_q) {
   189       _next_id = 0;
   190     }
   191     return id;
   192   }
   193   DiscoveredList* get_discovered_list(ReferenceType rt);
   194   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
   195                                         HeapWord* discovered_addr);
   196   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
   198   void abandon_partial_discovered_list(DiscoveredList& refs_list);
   199   void abandon_partial_discovered_list_arr(DiscoveredList refs_lists[]);
   201   // Calculate the number of jni handles.
   202   unsigned int count_jni_refs();
   204   // Balances reference queues.
   205   void balance_queues(DiscoveredList ref_lists[]);
   207   // Update (advance) the soft ref master clock field.
   208   void update_soft_ref_master_clock();
   210  public:
   211   // constructor
   212   ReferenceProcessor():
   213     _span((HeapWord*)NULL, (HeapWord*)NULL),
   214     _discoveredSoftRefs(NULL),  _discoveredWeakRefs(NULL),
   215     _discoveredFinalRefs(NULL), _discoveredPhantomRefs(NULL),
   216     _discovering_refs(false),
   217     _discovery_is_atomic(true),
   218     _enqueuing_is_done(false),
   219     _discovery_is_mt(false),
   220     _is_alive_non_header(NULL),
   221     _num_q(0),
   222     _processing_is_mt(false),
   223     _next_id(0)
   224   {}
   226   ReferenceProcessor(MemRegion span, bool atomic_discovery,
   227                      bool mt_discovery, int mt_degree = 1,
   228                      bool mt_processing = false);
   230   // Allocates and initializes a reference processor.
   231   static ReferenceProcessor* create_ref_processor(
   232     MemRegion          span,
   233     bool               atomic_discovery,
   234     bool               mt_discovery,
   235     BoolObjectClosure* is_alive_non_header = NULL,
   236     int                parallel_gc_threads = 1,
   237     bool               mt_processing = false);
   239   // RefDiscoveryPolicy values
   240   enum {
   241     ReferenceBasedDiscovery = 0,
   242     ReferentBasedDiscovery  = 1
   243   };
   245   static void init_statics();
   247  public:
   248   // get and set "is_alive_non_header" field
   249   BoolObjectClosure* is_alive_non_header() {
   250     return _is_alive_non_header;
   251   }
   252   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
   253     _is_alive_non_header = is_alive_non_header;
   254   }
   256   // get and set span
   257   MemRegion span()                   { return _span; }
   258   void      set_span(MemRegion span) { _span = span; }
   260   // start and stop weak ref discovery
   261   void enable_discovery()   { _discovering_refs = true;  }
   262   void disable_discovery()  { _discovering_refs = false; }
   263   bool discovery_enabled()  { return _discovering_refs;  }
   265   // whether discovery is atomic wrt other collectors
   266   bool discovery_is_atomic() const { return _discovery_is_atomic; }
   267   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
   269   // whether discovery is done by multiple threads same-old-timeously
   270   bool discovery_is_mt() const { return _discovery_is_mt; }
   271   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
   273   // Whether we are in a phase when _processing_ is MT.
   274   bool processing_is_mt() const { return _processing_is_mt; }
   275   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
   277   // whether all enqueuing of weak references is complete
   278   bool enqueuing_is_done()  { return _enqueuing_is_done; }
   279   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
   281   // iterate over oops
   282   void weak_oops_do(OopClosure* f);       // weak roots
   283   static void oops_do(OopClosure* f);     // strong root(s)
   285   // Discover a Reference object, using appropriate discovery criteria
   286   bool discover_reference(oop obj, ReferenceType rt);
   288   // Process references found during GC (called by the garbage collector)
   289   void process_discovered_references(ReferencePolicy*             policy,
   290                                      BoolObjectClosure*           is_alive,
   291                                      OopClosure*                  keep_alive,
   292                                      VoidClosure*                 complete_gc,
   293                                      AbstractRefProcTaskExecutor* task_executor);
   295  public:
   296   // Enqueue references at end of GC (called by the garbage collector)
   297   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
   299   // debugging
   300   void verify_no_references_recorded() PRODUCT_RETURN;
   301   static void verify();
   303   // clear the discovered lists (unlinking each entry).
   304   void clear_discovered_references() PRODUCT_RETURN;
   305 };
   307 // A utility class to disable reference discovery in
   308 // the scope which contains it, for given ReferenceProcessor.
   309 class NoRefDiscovery: StackObj {
   310  private:
   311   ReferenceProcessor* _rp;
   312   bool _was_discovering_refs;
   313  public:
   314   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
   315     if (_was_discovering_refs = _rp->discovery_enabled()) {
   316       _rp->disable_discovery();
   317     }
   318   }
   320   ~NoRefDiscovery() {
   321     if (_was_discovering_refs) {
   322       _rp->enable_discovery();
   323     }
   324   }
   325 };
   328 // A utility class to temporarily mutate the span of the
   329 // given ReferenceProcessor in the scope that contains it.
   330 class ReferenceProcessorSpanMutator: StackObj {
   331  private:
   332   ReferenceProcessor* _rp;
   333   MemRegion           _saved_span;
   335  public:
   336   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
   337                                 MemRegion span):
   338     _rp(rp) {
   339     _saved_span = _rp->span();
   340     _rp->set_span(span);
   341   }
   343   ~ReferenceProcessorSpanMutator() {
   344     _rp->set_span(_saved_span);
   345   }
   346 };
   348 // A utility class to temporarily change the MT'ness of
   349 // reference discovery for the given ReferenceProcessor
   350 // in the scope that contains it.
   351 class ReferenceProcessorMTMutator: StackObj {
   352  private:
   353   ReferenceProcessor* _rp;
   354   bool                _saved_mt;
   356  public:
   357   ReferenceProcessorMTMutator(ReferenceProcessor* rp,
   358                               bool mt):
   359     _rp(rp) {
   360     _saved_mt = _rp->discovery_is_mt();
   361     _rp->set_mt_discovery(mt);
   362   }
   364   ~ReferenceProcessorMTMutator() {
   365     _rp->set_mt_discovery(_saved_mt);
   366   }
   367 };
   370 // A utility class to temporarily change the disposition
   371 // of the "is_alive_non_header" closure field of the
   372 // given ReferenceProcessor in the scope that contains it.
   373 class ReferenceProcessorIsAliveMutator: StackObj {
   374  private:
   375   ReferenceProcessor* _rp;
   376   BoolObjectClosure*  _saved_cl;
   378  public:
   379   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
   380                                    BoolObjectClosure*  cl):
   381     _rp(rp) {
   382     _saved_cl = _rp->is_alive_non_header();
   383     _rp->set_is_alive_non_header(cl);
   384   }
   386   ~ReferenceProcessorIsAliveMutator() {
   387     _rp->set_is_alive_non_header(_saved_cl);
   388   }
   389 };
   391 // A utility class to temporarily change the disposition
   392 // of the "discovery_is_atomic" field of the
   393 // given ReferenceProcessor in the scope that contains it.
   394 class ReferenceProcessorAtomicMutator: StackObj {
   395  private:
   396   ReferenceProcessor* _rp;
   397   bool                _saved_atomic_discovery;
   399  public:
   400   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
   401                                   bool atomic):
   402     _rp(rp) {
   403     _saved_atomic_discovery = _rp->discovery_is_atomic();
   404     _rp->set_atomic_discovery(atomic);
   405   }
   407   ~ReferenceProcessorAtomicMutator() {
   408     _rp->set_atomic_discovery(_saved_atomic_discovery);
   409   }
   410 };
   413 // A utility class to temporarily change the MT processing
   414 // disposition of the given ReferenceProcessor instance
   415 // in the scope that contains it.
   416 class ReferenceProcessorMTProcMutator: StackObj {
   417  private:
   418   ReferenceProcessor* _rp;
   419   bool  _saved_mt;
   421  public:
   422   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
   423                                   bool mt):
   424     _rp(rp) {
   425     _saved_mt = _rp->processing_is_mt();
   426     _rp->set_mt_processing(mt);
   427   }
   429   ~ReferenceProcessorMTProcMutator() {
   430     _rp->set_mt_processing(_saved_mt);
   431   }
   432 };
   435 // This class is an interface used to implement task execution for the
   436 // reference processing.
   437 class AbstractRefProcTaskExecutor {
   438 public:
   440   // Abstract tasks to execute.
   441   class ProcessTask;
   442   class EnqueueTask;
   444   // Executes a task using worker threads.
   445   virtual void execute(ProcessTask& task) = 0;
   446   virtual void execute(EnqueueTask& task) = 0;
   448   // Switch to single threaded mode.
   449   virtual void set_single_threaded_mode() { };
   450 };
   452 // Abstract reference processing task to execute.
   453 class AbstractRefProcTaskExecutor::ProcessTask {
   454 protected:
   455   ProcessTask(ReferenceProcessor& ref_processor,
   456               DiscoveredList      refs_lists[],
   457               bool                marks_oops_alive)
   458     : _ref_processor(ref_processor),
   459       _refs_lists(refs_lists),
   460       _marks_oops_alive(marks_oops_alive)
   461   { }
   463 public:
   464   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
   465                     OopClosure& keep_alive,
   466                     VoidClosure& complete_gc) = 0;
   468   // Returns true if a task marks some oops as alive.
   469   bool marks_oops_alive() const
   470   { return _marks_oops_alive; }
   472 protected:
   473   ReferenceProcessor& _ref_processor;
   474   DiscoveredList*     _refs_lists;
   475   const bool          _marks_oops_alive;
   476 };
   478 // Abstract reference processing task to execute.
   479 class AbstractRefProcTaskExecutor::EnqueueTask {
   480 protected:
   481   EnqueueTask(ReferenceProcessor& ref_processor,
   482               DiscoveredList      refs_lists[],
   483               HeapWord*           pending_list_addr,
   484               oop                 sentinel_ref,
   485               int                 n_queues)
   486     : _ref_processor(ref_processor),
   487       _refs_lists(refs_lists),
   488       _pending_list_addr(pending_list_addr),
   489       _sentinel_ref(sentinel_ref),
   490       _n_queues(n_queues)
   491   { }
   493 public:
   494   virtual void work(unsigned int work_id) = 0;
   496 protected:
   497   ReferenceProcessor& _ref_processor;
   498   DiscoveredList*     _refs_lists;
   499   HeapWord*           _pending_list_addr;
   500   oop                 _sentinel_ref;
   501   int                 _n_queues;
   502 };

mercurial