src/cpu/x86/vm/x86_64.ad

Sun, 13 Apr 2008 17:43:42 -0400

author
coleenp
date
Sun, 13 Apr 2008 17:43:42 -0400
changeset 548
ba764ed4b6f2
parent 506
3d62cb85208d
child 559
b130b98db9cf
permissions
-rw-r--r--

6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Summary: Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold

     1 //
     2 // Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // AMD64 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
    64 // used as byte registers)
    66 // Previously set RBX, RSI, and RDI as save-on-entry for java code
    67 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    68 // Now that allocator is better, turn on RSI and RDI as SOE registers.
    70 reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
    71 reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
    73 reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
    74 reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
    76 reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
    77 reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
    79 reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
    80 reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
    82 reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
    83 reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
    85 // now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
    86 reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
    87 reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
    89 #ifdef _WIN64
    91 reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
    92 reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
    94 reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
    95 reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
    97 #else
    99 reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
   100 reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
   102 reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
   103 reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
   105 #endif
   107 reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
   108 reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
   110 reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
   111 reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
   113 reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
   114 reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
   116 reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
   117 reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
   119 reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
   120 reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
   122 reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
   123 reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
   125 reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
   126 reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
   128 reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
   129 reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
   132 // Floating Point Registers
   134 // XMM registers.  128-bit registers or 4 words each, labeled (a)-d.
   135 // Word a in each register holds a Float, words ab hold a Double.  We
   136 // currently do not use the SIMD capabilities, so registers cd are
   137 // unused at the moment.
   138 // XMM8-XMM15 must be encoded with REX.
   139 // Linux ABI:   No register preserved across function calls
   140 //              XMM0-XMM7 might hold parameters
   141 // Windows ABI: XMM6-XMM15 preserved across function calls
   142 //              XMM0-XMM3 might hold parameters
   144 reg_def XMM0   (SOC, SOC, Op_RegF,  0, xmm0->as_VMReg());
   145 reg_def XMM0_H (SOC, SOC, Op_RegF,  0, xmm0->as_VMReg()->next());
   147 reg_def XMM1   (SOC, SOC, Op_RegF,  1, xmm1->as_VMReg());
   148 reg_def XMM1_H (SOC, SOC, Op_RegF,  1, xmm1->as_VMReg()->next());
   150 reg_def XMM2   (SOC, SOC, Op_RegF,  2, xmm2->as_VMReg());
   151 reg_def XMM2_H (SOC, SOC, Op_RegF,  2, xmm2->as_VMReg()->next());
   153 reg_def XMM3   (SOC, SOC, Op_RegF,  3, xmm3->as_VMReg());
   154 reg_def XMM3_H (SOC, SOC, Op_RegF,  3, xmm3->as_VMReg()->next());
   156 reg_def XMM4   (SOC, SOC, Op_RegF,  4, xmm4->as_VMReg());
   157 reg_def XMM4_H (SOC, SOC, Op_RegF,  4, xmm4->as_VMReg()->next());
   159 reg_def XMM5   (SOC, SOC, Op_RegF,  5, xmm5->as_VMReg());
   160 reg_def XMM5_H (SOC, SOC, Op_RegF,  5, xmm5->as_VMReg()->next());
   162 #ifdef _WIN64
   164 reg_def XMM6   (SOC, SOE, Op_RegF,  6, xmm6->as_VMReg());
   165 reg_def XMM6_H (SOC, SOE, Op_RegF,  6, xmm6->as_VMReg()->next());
   167 reg_def XMM7   (SOC, SOE, Op_RegF,  7, xmm7->as_VMReg());
   168 reg_def XMM7_H (SOC, SOE, Op_RegF,  7, xmm7->as_VMReg()->next());
   170 reg_def XMM8   (SOC, SOE, Op_RegF,  8, xmm8->as_VMReg());
   171 reg_def XMM8_H (SOC, SOE, Op_RegF,  8, xmm8->as_VMReg()->next());
   173 reg_def XMM9   (SOC, SOE, Op_RegF,  9, xmm9->as_VMReg());
   174 reg_def XMM9_H (SOC, SOE, Op_RegF,  9, xmm9->as_VMReg()->next());
   176 reg_def XMM10  (SOC, SOE, Op_RegF, 10, xmm10->as_VMReg());
   177 reg_def XMM10_H(SOC, SOE, Op_RegF, 10, xmm10->as_VMReg()->next());
   179 reg_def XMM11  (SOC, SOE, Op_RegF, 11, xmm11->as_VMReg());
   180 reg_def XMM11_H(SOC, SOE, Op_RegF, 11, xmm11->as_VMReg()->next());
   182 reg_def XMM12  (SOC, SOE, Op_RegF, 12, xmm12->as_VMReg());
   183 reg_def XMM12_H(SOC, SOE, Op_RegF, 12, xmm12->as_VMReg()->next());
   185 reg_def XMM13  (SOC, SOE, Op_RegF, 13, xmm13->as_VMReg());
   186 reg_def XMM13_H(SOC, SOE, Op_RegF, 13, xmm13->as_VMReg()->next());
   188 reg_def XMM14  (SOC, SOE, Op_RegF, 14, xmm14->as_VMReg());
   189 reg_def XMM14_H(SOC, SOE, Op_RegF, 14, xmm14->as_VMReg()->next());
   191 reg_def XMM15  (SOC, SOE, Op_RegF, 15, xmm15->as_VMReg());
   192 reg_def XMM15_H(SOC, SOE, Op_RegF, 15, xmm15->as_VMReg()->next());
   194 #else
   196 reg_def XMM6   (SOC, SOC, Op_RegF,  6, xmm6->as_VMReg());
   197 reg_def XMM6_H (SOC, SOC, Op_RegF,  6, xmm6->as_VMReg()->next());
   199 reg_def XMM7   (SOC, SOC, Op_RegF,  7, xmm7->as_VMReg());
   200 reg_def XMM7_H (SOC, SOC, Op_RegF,  7, xmm7->as_VMReg()->next());
   202 reg_def XMM8   (SOC, SOC, Op_RegF,  8, xmm8->as_VMReg());
   203 reg_def XMM8_H (SOC, SOC, Op_RegF,  8, xmm8->as_VMReg()->next());
   205 reg_def XMM9   (SOC, SOC, Op_RegF,  9, xmm9->as_VMReg());
   206 reg_def XMM9_H (SOC, SOC, Op_RegF,  9, xmm9->as_VMReg()->next());
   208 reg_def XMM10  (SOC, SOC, Op_RegF, 10, xmm10->as_VMReg());
   209 reg_def XMM10_H(SOC, SOC, Op_RegF, 10, xmm10->as_VMReg()->next());
   211 reg_def XMM11  (SOC, SOC, Op_RegF, 11, xmm11->as_VMReg());
   212 reg_def XMM11_H(SOC, SOC, Op_RegF, 11, xmm11->as_VMReg()->next());
   214 reg_def XMM12  (SOC, SOC, Op_RegF, 12, xmm12->as_VMReg());
   215 reg_def XMM12_H(SOC, SOC, Op_RegF, 12, xmm12->as_VMReg()->next());
   217 reg_def XMM13  (SOC, SOC, Op_RegF, 13, xmm13->as_VMReg());
   218 reg_def XMM13_H(SOC, SOC, Op_RegF, 13, xmm13->as_VMReg()->next());
   220 reg_def XMM14  (SOC, SOC, Op_RegF, 14, xmm14->as_VMReg());
   221 reg_def XMM14_H(SOC, SOC, Op_RegF, 14, xmm14->as_VMReg()->next());
   223 reg_def XMM15  (SOC, SOC, Op_RegF, 15, xmm15->as_VMReg());
   224 reg_def XMM15_H(SOC, SOC, Op_RegF, 15, xmm15->as_VMReg()->next());
   226 #endif // _WIN64
   228 reg_def RFLAGS(SOC, SOC, 0, 16, VMRegImpl::Bad());
   230 // Specify priority of register selection within phases of register
   231 // allocation.  Highest priority is first.  A useful heuristic is to
   232 // give registers a low priority when they are required by machine
   233 // instructions, like EAX and EDX on I486, and choose no-save registers
   234 // before save-on-call, & save-on-call before save-on-entry.  Registers
   235 // which participate in fixed calling sequences should come last.
   236 // Registers which are used as pairs must fall on an even boundary.
   238 alloc_class chunk0(R10,         R10_H,
   239                    R11,         R11_H,
   240                    R8,          R8_H,
   241                    R9,          R9_H,
   242                    R12,         R12_H,
   243                    RCX,         RCX_H,
   244                    RBX,         RBX_H,
   245                    RDI,         RDI_H,
   246                    RDX,         RDX_H,
   247                    RSI,         RSI_H,
   248                    RAX,         RAX_H,
   249                    RBP,         RBP_H,
   250                    R13,         R13_H,
   251                    R14,         R14_H,
   252                    R15,         R15_H,
   253                    RSP,         RSP_H);
   255 // XXX probably use 8-15 first on Linux
   256 alloc_class chunk1(XMM0,  XMM0_H,
   257                    XMM1,  XMM1_H,
   258                    XMM2,  XMM2_H,
   259                    XMM3,  XMM3_H,
   260                    XMM4,  XMM4_H,
   261                    XMM5,  XMM5_H,
   262                    XMM6,  XMM6_H,
   263                    XMM7,  XMM7_H,
   264                    XMM8,  XMM8_H,
   265                    XMM9,  XMM9_H,
   266                    XMM10, XMM10_H,
   267                    XMM11, XMM11_H,
   268                    XMM12, XMM12_H,
   269                    XMM13, XMM13_H,
   270                    XMM14, XMM14_H,
   271                    XMM15, XMM15_H);
   273 alloc_class chunk2(RFLAGS);
   276 //----------Architecture Description Register Classes--------------------------
   277 // Several register classes are automatically defined based upon information in
   278 // this architecture description.
   279 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   280 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   281 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // Class for all pointer registers (including RSP)
   286 reg_class any_reg(RAX, RAX_H,
   287                   RDX, RDX_H,
   288                   RBP, RBP_H,
   289                   RDI, RDI_H,
   290                   RSI, RSI_H,
   291                   RCX, RCX_H,
   292                   RBX, RBX_H,
   293                   RSP, RSP_H,
   294                   R8,  R8_H,
   295                   R9,  R9_H,
   296                   R10, R10_H,
   297                   R11, R11_H,
   298                   R12, R12_H,
   299                   R13, R13_H,
   300                   R14, R14_H,
   301                   R15, R15_H);
   303 // Class for all pointer registers except RSP
   304 reg_class ptr_reg(RAX, RAX_H,
   305                   RDX, RDX_H,
   306                   RBP, RBP_H,
   307                   RDI, RDI_H,
   308                   RSI, RSI_H,
   309                   RCX, RCX_H,
   310                   RBX, RBX_H,
   311                   R8,  R8_H,
   312                   R9,  R9_H,
   313                   R10, R10_H,
   314                   R11, R11_H,
   315                   R13, R13_H,
   316                   R14, R14_H);
   318 // Class for all pointer registers except RAX and RSP
   319 reg_class ptr_no_rax_reg(RDX, RDX_H,
   320                          RBP, RBP_H,
   321                          RDI, RDI_H,
   322                          RSI, RSI_H,
   323                          RCX, RCX_H,
   324                          RBX, RBX_H,
   325                          R8,  R8_H,
   326                          R9,  R9_H,
   327                          R10, R10_H,
   328                          R11, R11_H,
   329                          R12, R12_H,
   330                          R13, R13_H,
   331                          R14, R14_H);
   333 reg_class ptr_no_rbp_reg(RDX, RDX_H,
   334                          RAX, RAX_H,
   335                          RDI, RDI_H,
   336                          RSI, RSI_H,
   337                          RCX, RCX_H,
   338                          RBX, RBX_H,
   339                          R8,  R8_H,
   340                          R9,  R9_H,
   341                          R10, R10_H,
   342                          R11, R11_H,
   343                          R12, R12_H,
   344                          R13, R13_H,
   345                          R14, R14_H);
   347 // Class for all pointer registers except RAX, RBX and RSP
   348 reg_class ptr_no_rax_rbx_reg(RDX, RDX_H,
   349                              RBP, RBP_H,
   350                              RDI, RDI_H,
   351                              RSI, RSI_H,
   352                              RCX, RCX_H,
   353                              R8,  R8_H,
   354                              R9,  R9_H,
   355                              R10, R10_H,
   356                              R11, R11_H,
   357                              R12, R12_H,
   358                              R13, R13_H,
   359                              R14, R14_H);
   361 // Singleton class for RAX pointer register
   362 reg_class ptr_rax_reg(RAX, RAX_H);
   364 // Singleton class for RBX pointer register
   365 reg_class ptr_rbx_reg(RBX, RBX_H);
   367 // Singleton class for RSI pointer register
   368 reg_class ptr_rsi_reg(RSI, RSI_H);
   370 // Singleton class for RDI pointer register
   371 reg_class ptr_rdi_reg(RDI, RDI_H);
   373 // Singleton class for RBP pointer register
   374 reg_class ptr_rbp_reg(RBP, RBP_H);
   376 // Singleton class for stack pointer
   377 reg_class ptr_rsp_reg(RSP, RSP_H);
   379 // Singleton class for TLS pointer
   380 reg_class ptr_r15_reg(R15, R15_H);
   382 // Class for all long registers (except RSP)
   383 reg_class long_reg(RAX, RAX_H,
   384                    RDX, RDX_H,
   385                    RBP, RBP_H,
   386                    RDI, RDI_H,
   387                    RSI, RSI_H,
   388                    RCX, RCX_H,
   389                    RBX, RBX_H,
   390                    R8,  R8_H,
   391                    R9,  R9_H,
   392                    R10, R10_H,
   393                    R11, R11_H,
   394                    R13, R13_H,
   395                    R14, R14_H);
   397 // Class for all long registers except RAX, RDX (and RSP)
   398 reg_class long_no_rax_rdx_reg(RBP, RBP_H,
   399                               RDI, RDI_H,
   400                               RSI, RSI_H,
   401                               RCX, RCX_H,
   402                               RBX, RBX_H,
   403                               R8,  R8_H,
   404                               R9,  R9_H,
   405                               R10, R10_H,
   406                               R11, R11_H,
   407                               R13, R13_H,
   408                               R14, R14_H);
   410 // Class for all long registers except RCX (and RSP)
   411 reg_class long_no_rcx_reg(RBP, RBP_H,
   412                           RDI, RDI_H,
   413                           RSI, RSI_H,
   414                           RAX, RAX_H,
   415                           RDX, RDX_H,
   416                           RBX, RBX_H,
   417                           R8,  R8_H,
   418                           R9,  R9_H,
   419                           R10, R10_H,
   420                           R11, R11_H,
   421                           R13, R13_H,
   422                           R14, R14_H);
   424 // Class for all long registers except RAX (and RSP)
   425 reg_class long_no_rax_reg(RBP, RBP_H,
   426                           RDX, RDX_H,
   427                           RDI, RDI_H,
   428                           RSI, RSI_H,
   429                           RCX, RCX_H,
   430                           RBX, RBX_H,
   431                           R8,  R8_H,
   432                           R9,  R9_H,
   433                           R10, R10_H,
   434                           R11, R11_H,
   435                           R13, R13_H,
   436                           R14, R14_H);
   438 // Singleton class for RAX long register
   439 reg_class long_rax_reg(RAX, RAX_H);
   441 // Singleton class for RCX long register
   442 reg_class long_rcx_reg(RCX, RCX_H);
   444 // Singleton class for RDX long register
   445 reg_class long_rdx_reg(RDX, RDX_H);
   447 // Singleton class for R12 long register
   448 reg_class long_r12_reg(R12, R12_H);
   450 // Class for all int registers (except RSP)
   451 reg_class int_reg(RAX,
   452                   RDX,
   453                   RBP,
   454                   RDI,
   455                   RSI,
   456                   RCX,
   457                   RBX,
   458                   R8,
   459                   R9,
   460                   R10,
   461                   R11,
   462                   R13,
   463                   R14);
   465 // Class for all int registers except RCX (and RSP)
   466 reg_class int_no_rcx_reg(RAX,
   467                          RDX,
   468                          RBP,
   469                          RDI,
   470                          RSI,
   471                          RBX,
   472                          R8,
   473                          R9,
   474                          R10,
   475                          R11,
   476                          R13,
   477                          R14);
   479 // Class for all int registers except RAX, RDX (and RSP)
   480 reg_class int_no_rax_rdx_reg(RBP,
   481                              RDI
   482                              RSI,
   483                              RCX,
   484                              RBX,
   485                              R8,
   486                              R9,
   487                              R10,
   488                              R11,
   489                              R13,
   490                              R14);
   492 // Singleton class for RAX int register
   493 reg_class int_rax_reg(RAX);
   495 // Singleton class for RBX int register
   496 reg_class int_rbx_reg(RBX);
   498 // Singleton class for RCX int register
   499 reg_class int_rcx_reg(RCX);
   501 // Singleton class for RCX int register
   502 reg_class int_rdx_reg(RDX);
   504 // Singleton class for RCX int register
   505 reg_class int_rdi_reg(RDI);
   507 // Singleton class for instruction pointer
   508 // reg_class ip_reg(RIP);
   510 // Singleton class for condition codes
   511 reg_class int_flags(RFLAGS);
   513 // Class for all float registers
   514 reg_class float_reg(XMM0,
   515                     XMM1,
   516                     XMM2,
   517                     XMM3,
   518                     XMM4,
   519                     XMM5,
   520                     XMM6,
   521                     XMM7,
   522                     XMM8,
   523                     XMM9,
   524                     XMM10,
   525                     XMM11,
   526                     XMM12,
   527                     XMM13,
   528                     XMM14,
   529                     XMM15);
   531 // Class for all double registers
   532 reg_class double_reg(XMM0,  XMM0_H,
   533                      XMM1,  XMM1_H,
   534                      XMM2,  XMM2_H,
   535                      XMM3,  XMM3_H,
   536                      XMM4,  XMM4_H,
   537                      XMM5,  XMM5_H,
   538                      XMM6,  XMM6_H,
   539                      XMM7,  XMM7_H,
   540                      XMM8,  XMM8_H,
   541                      XMM9,  XMM9_H,
   542                      XMM10, XMM10_H,
   543                      XMM11, XMM11_H,
   544                      XMM12, XMM12_H,
   545                      XMM13, XMM13_H,
   546                      XMM14, XMM14_H,
   547                      XMM15, XMM15_H);
   548 %}
   551 //----------SOURCE BLOCK-------------------------------------------------------
   552 // This is a block of C++ code which provides values, functions, and
   553 // definitions necessary in the rest of the architecture description
   554 source %{
   555 #define   RELOC_IMM64    Assembler::imm64_operand
   556 #define   RELOC_DISP32   Assembler::disp32_operand
   558 #define __ _masm.
   560 // !!!!! Special hack to get all types of calls to specify the byte offset
   561 //       from the start of the call to the point where the return address
   562 //       will point.
   563 int MachCallStaticJavaNode::ret_addr_offset()
   564 {
   565   return 5; // 5 bytes from start of call to where return address points
   566 }
   568 int MachCallDynamicJavaNode::ret_addr_offset()
   569 {
   570   return 15; // 15 bytes from start of call to where return address points
   571 }
   573 // In os_cpu .ad file
   574 // int MachCallRuntimeNode::ret_addr_offset()
   576 // Indicate if the safepoint node needs the polling page as an input.
   577 // Since amd64 does not have absolute addressing but RIP-relative
   578 // addressing and the polling page is within 2G, it doesn't.
   579 bool SafePointNode::needs_polling_address_input()
   580 {
   581   return false;
   582 }
   584 //
   585 // Compute padding required for nodes which need alignment
   586 //
   588 // The address of the call instruction needs to be 4-byte aligned to
   589 // ensure that it does not span a cache line so that it can be patched.
   590 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
   591 {
   592   current_offset += 1; // skip call opcode byte
   593   return round_to(current_offset, alignment_required()) - current_offset;
   594 }
   596 // The address of the call instruction needs to be 4-byte aligned to
   597 // ensure that it does not span a cache line so that it can be patched.
   598 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
   599 {
   600   current_offset += 11; // skip movq instruction + call opcode byte
   601   return round_to(current_offset, alignment_required()) - current_offset;
   602 }
   604 #ifndef PRODUCT
   605 void MachBreakpointNode::format(PhaseRegAlloc*, outputStream* st) const
   606 {
   607   st->print("INT3");
   608 }
   609 #endif
   611 // EMIT_RM()
   612 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3)
   613 {
   614   unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
   615   *(cbuf.code_end()) = c;
   616   cbuf.set_code_end(cbuf.code_end() + 1);
   617 }
   619 // EMIT_CC()
   620 void emit_cc(CodeBuffer &cbuf, int f1, int f2)
   621 {
   622   unsigned char c = (unsigned char) (f1 | f2);
   623   *(cbuf.code_end()) = c;
   624   cbuf.set_code_end(cbuf.code_end() + 1);
   625 }
   627 // EMIT_OPCODE()
   628 void emit_opcode(CodeBuffer &cbuf, int code)
   629 {
   630   *(cbuf.code_end()) = (unsigned char) code;
   631   cbuf.set_code_end(cbuf.code_end() + 1);
   632 }
   634 // EMIT_OPCODE() w/ relocation information
   635 void emit_opcode(CodeBuffer &cbuf,
   636                  int code, relocInfo::relocType reloc, int offset, int format)
   637 {
   638   cbuf.relocate(cbuf.inst_mark() + offset, reloc, format);
   639   emit_opcode(cbuf, code);
   640 }
   642 // EMIT_D8()
   643 void emit_d8(CodeBuffer &cbuf, int d8)
   644 {
   645   *(cbuf.code_end()) = (unsigned char) d8;
   646   cbuf.set_code_end(cbuf.code_end() + 1);
   647 }
   649 // EMIT_D16()
   650 void emit_d16(CodeBuffer &cbuf, int d16)
   651 {
   652   *((short *)(cbuf.code_end())) = d16;
   653   cbuf.set_code_end(cbuf.code_end() + 2);
   654 }
   656 // EMIT_D32()
   657 void emit_d32(CodeBuffer &cbuf, int d32)
   658 {
   659   *((int *)(cbuf.code_end())) = d32;
   660   cbuf.set_code_end(cbuf.code_end() + 4);
   661 }
   663 // EMIT_D64()
   664 void emit_d64(CodeBuffer &cbuf, int64_t d64)
   665 {
   666   *((int64_t*) (cbuf.code_end())) = d64;
   667   cbuf.set_code_end(cbuf.code_end() + 8);
   668 }
   670 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   671 void emit_d32_reloc(CodeBuffer& cbuf,
   672                     int d32,
   673                     relocInfo::relocType reloc,
   674                     int format)
   675 {
   676   assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
   677   cbuf.relocate(cbuf.inst_mark(), reloc, format);
   679   *((int*) (cbuf.code_end())) = d32;
   680   cbuf.set_code_end(cbuf.code_end() + 4);
   681 }
   683 // emit 32 bit value and construct relocation entry from RelocationHolder
   684 void emit_d32_reloc(CodeBuffer& cbuf,
   685                     int d32,
   686                     RelocationHolder const& rspec,
   687                     int format)
   688 {
   689 #ifdef ASSERT
   690   if (rspec.reloc()->type() == relocInfo::oop_type &&
   691       d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
   692     assert(oop((intptr_t)d32)->is_oop() && oop((intptr_t)d32)->is_perm(), "cannot embed non-perm oops in code");
   693   }
   694 #endif
   695   cbuf.relocate(cbuf.inst_mark(), rspec, format);
   697   *((int* )(cbuf.code_end())) = d32;
   698   cbuf.set_code_end(cbuf.code_end() + 4);
   699 }
   701 void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
   702   address next_ip = cbuf.code_end() + 4;
   703   emit_d32_reloc(cbuf, (int) (addr - next_ip),
   704                  external_word_Relocation::spec(addr),
   705                  RELOC_DISP32);
   706 }
   709 // emit 64 bit value and construct relocation entry from relocInfo::relocType
   710 void emit_d64_reloc(CodeBuffer& cbuf,
   711                     int64_t d64,
   712                     relocInfo::relocType reloc,
   713                     int format)
   714 {
   715   cbuf.relocate(cbuf.inst_mark(), reloc, format);
   717   *((int64_t*) (cbuf.code_end())) = d64;
   718   cbuf.set_code_end(cbuf.code_end() + 8);
   719 }
   721 // emit 64 bit value and construct relocation entry from RelocationHolder
   722 void emit_d64_reloc(CodeBuffer& cbuf,
   723                     int64_t d64,
   724                     RelocationHolder const& rspec,
   725                     int format)
   726 {
   727 #ifdef ASSERT
   728   if (rspec.reloc()->type() == relocInfo::oop_type &&
   729       d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
   730     assert(oop(d64)->is_oop() && oop(d64)->is_perm(),
   731            "cannot embed non-perm oops in code");
   732   }
   733 #endif
   734   cbuf.relocate(cbuf.inst_mark(), rspec, format);
   736   *((int64_t*) (cbuf.code_end())) = d64;
   737   cbuf.set_code_end(cbuf.code_end() + 8);
   738 }
   740 // Access stack slot for load or store
   741 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
   742 {
   743   emit_opcode(cbuf, opcode);                  // (e.g., FILD   [RSP+src])
   744   if (-0x80 <= disp && disp < 0x80) {
   745     emit_rm(cbuf, 0x01, rm_field, RSP_enc);   // R/M byte
   746     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
   747     emit_d8(cbuf, disp);     // Displacement  // R/M byte
   748   } else {
   749     emit_rm(cbuf, 0x02, rm_field, RSP_enc);   // R/M byte
   750     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
   751     emit_d32(cbuf, disp);     // Displacement // R/M byte
   752   }
   753 }
   755    // rRegI ereg, memory mem) %{    // emit_reg_mem
   756 void encode_RegMem(CodeBuffer &cbuf,
   757                    int reg,
   758                    int base, int index, int scale, int disp, bool disp_is_oop)
   759 {
   760   assert(!disp_is_oop, "cannot have disp");
   761   int regenc = reg & 7;
   762   int baseenc = base & 7;
   763   int indexenc = index & 7;
   765   // There is no index & no scale, use form without SIB byte
   766   if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
   767     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
   768     if (disp == 0 && base != RBP_enc && base != R13_enc) {
   769       emit_rm(cbuf, 0x0, regenc, baseenc); // *
   770     } else if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
   771       // If 8-bit displacement, mode 0x1
   772       emit_rm(cbuf, 0x1, regenc, baseenc); // *
   773       emit_d8(cbuf, disp);
   774     } else {
   775       // If 32-bit displacement
   776       if (base == -1) { // Special flag for absolute address
   777         emit_rm(cbuf, 0x0, regenc, 0x5); // *
   778         if (disp_is_oop) {
   779           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
   780         } else {
   781           emit_d32(cbuf, disp);
   782         }
   783       } else {
   784         // Normal base + offset
   785         emit_rm(cbuf, 0x2, regenc, baseenc); // *
   786         if (disp_is_oop) {
   787           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
   788         } else {
   789           emit_d32(cbuf, disp);
   790         }
   791       }
   792     }
   793   } else {
   794     // Else, encode with the SIB byte
   795     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
   796     if (disp == 0 && base != RBP_enc && base != R13_enc) {
   797       // If no displacement
   798       emit_rm(cbuf, 0x0, regenc, 0x4); // *
   799       emit_rm(cbuf, scale, indexenc, baseenc);
   800     } else {
   801       if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
   802         // If 8-bit displacement, mode 0x1
   803         emit_rm(cbuf, 0x1, regenc, 0x4); // *
   804         emit_rm(cbuf, scale, indexenc, baseenc);
   805         emit_d8(cbuf, disp);
   806       } else {
   807         // If 32-bit displacement
   808         if (base == 0x04 ) {
   809           emit_rm(cbuf, 0x2, regenc, 0x4);
   810           emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
   811         } else {
   812           emit_rm(cbuf, 0x2, regenc, 0x4);
   813           emit_rm(cbuf, scale, indexenc, baseenc); // *
   814         }
   815         if (disp_is_oop) {
   816           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
   817         } else {
   818           emit_d32(cbuf, disp);
   819         }
   820       }
   821     }
   822   }
   823 }
   825 void encode_copy(CodeBuffer &cbuf, int dstenc, int srcenc)
   826 {
   827   if (dstenc != srcenc) {
   828     if (dstenc < 8) {
   829       if (srcenc >= 8) {
   830         emit_opcode(cbuf, Assembler::REX_B);
   831         srcenc -= 8;
   832       }
   833     } else {
   834       if (srcenc < 8) {
   835         emit_opcode(cbuf, Assembler::REX_R);
   836       } else {
   837         emit_opcode(cbuf, Assembler::REX_RB);
   838         srcenc -= 8;
   839       }
   840       dstenc -= 8;
   841     }
   843     emit_opcode(cbuf, 0x8B);
   844     emit_rm(cbuf, 0x3, dstenc, srcenc);
   845   }
   846 }
   848 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   849   if( dst_encoding == src_encoding ) {
   850     // reg-reg copy, use an empty encoding
   851   } else {
   852     MacroAssembler _masm(&cbuf);
   854     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
   855   }
   856 }
   859 //=============================================================================
   860 #ifndef PRODUCT
   861 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const
   862 {
   863   Compile* C = ra_->C;
   865   int framesize = C->frame_slots() << LogBytesPerInt;
   866   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   867   // Remove wordSize for return adr already pushed
   868   // and another for the RBP we are going to save
   869   framesize -= 2*wordSize;
   870   bool need_nop = true;
   872   // Calls to C2R adapters often do not accept exceptional returns.
   873   // We require that their callers must bang for them.  But be
   874   // careful, because some VM calls (such as call site linkage) can
   875   // use several kilobytes of stack.  But the stack safety zone should
   876   // account for that.  See bugs 4446381, 4468289, 4497237.
   877   if (C->need_stack_bang(framesize)) {
   878     st->print_cr("# stack bang"); st->print("\t");
   879     need_nop = false;
   880   }
   881   st->print_cr("pushq   rbp"); st->print("\t");
   883   if (VerifyStackAtCalls) {
   884     // Majik cookie to verify stack depth
   885     st->print_cr("pushq   0xffffffffbadb100d"
   886                   "\t# Majik cookie for stack depth check");
   887     st->print("\t");
   888     framesize -= wordSize; // Remove 2 for cookie
   889     need_nop = false;
   890   }
   892   if (framesize) {
   893     st->print("subq    rsp, #%d\t# Create frame", framesize);
   894     if (framesize < 0x80 && need_nop) {
   895       st->print("\n\tnop\t# nop for patch_verified_entry");
   896     }
   897   }
   898 }
   899 #endif
   901 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
   902 {
   903   Compile* C = ra_->C;
   905   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   906   // NativeJump::patch_verified_entry will be able to patch out the entry
   907   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   908   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   909   // 6 bytes. So if we don't do the fldcw or the push then we must
   910   // use the 6 byte frame allocation even if we have no frame. :-(
   911   // If method sets FPU control word do it now
   913   int framesize = C->frame_slots() << LogBytesPerInt;
   914   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   915   // Remove wordSize for return adr already pushed
   916   // and another for the RBP we are going to save
   917   framesize -= 2*wordSize;
   918   bool need_nop = true;
   920   // Calls to C2R adapters often do not accept exceptional returns.
   921   // We require that their callers must bang for them.  But be
   922   // careful, because some VM calls (such as call site linkage) can
   923   // use several kilobytes of stack.  But the stack safety zone should
   924   // account for that.  See bugs 4446381, 4468289, 4497237.
   925   if (C->need_stack_bang(framesize)) {
   926     MacroAssembler masm(&cbuf);
   927     masm.generate_stack_overflow_check(framesize);
   928     need_nop = false;
   929   }
   931   // We always push rbp so that on return to interpreter rbp will be
   932   // restored correctly and we can correct the stack.
   933   emit_opcode(cbuf, 0x50 | RBP_enc);
   935   if (VerifyStackAtCalls) {
   936     // Majik cookie to verify stack depth
   937     emit_opcode(cbuf, 0x68); // pushq (sign-extended) 0xbadb100d
   938     emit_d32(cbuf, 0xbadb100d);
   939     framesize -= wordSize; // Remove 2 for cookie
   940     need_nop = false;
   941   }
   943   if (framesize) {
   944     emit_opcode(cbuf, Assembler::REX_W);
   945     if (framesize < 0x80) {
   946       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   947       emit_rm(cbuf, 0x3, 0x05, RSP_enc);
   948       emit_d8(cbuf, framesize);
   949       if (need_nop) {
   950         emit_opcode(cbuf, 0x90); // nop
   951       }
   952     } else {
   953       emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   954       emit_rm(cbuf, 0x3, 0x05, RSP_enc);
   955       emit_d32(cbuf, framesize);
   956     }
   957   }
   959   C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
   961 #ifdef ASSERT
   962   if (VerifyStackAtCalls) {
   963     Label L;
   964     MacroAssembler masm(&cbuf);
   965     masm.pushq(rax);
   966     masm.movq(rax, rsp);
   967     masm.andq(rax, StackAlignmentInBytes-1);
   968     masm.cmpq(rax, StackAlignmentInBytes-wordSize);
   969     masm.popq(rax);
   970     masm.jcc(Assembler::equal, L);
   971     masm.stop("Stack is not properly aligned!");
   972     masm.bind(L);
   973   }
   974 #endif
   975 }
   977 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
   978 {
   979   return MachNode::size(ra_); // too many variables; just compute it
   980                               // the hard way
   981 }
   983 int MachPrologNode::reloc() const
   984 {
   985   return 0; // a large enough number
   986 }
   988 //=============================================================================
   989 #ifndef PRODUCT
   990 void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
   991 {
   992   Compile* C = ra_->C;
   993   int framesize = C->frame_slots() << LogBytesPerInt;
   994   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   995   // Remove word for return adr already pushed
   996   // and RBP
   997   framesize -= 2*wordSize;
   999   if (framesize) {
  1000     st->print_cr("addq\trsp, %d\t# Destroy frame", framesize);
  1001     st->print("\t");
  1004   st->print_cr("popq\trbp");
  1005   if (do_polling() && C->is_method_compilation()) {
  1006     st->print_cr("\ttestl\trax, [rip + #offset_to_poll_page]\t"
  1007                   "# Safepoint: poll for GC");
  1008     st->print("\t");
  1011 #endif
  1013 void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
  1015   Compile* C = ra_->C;
  1016   int framesize = C->frame_slots() << LogBytesPerInt;
  1017   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1018   // Remove word for return adr already pushed
  1019   // and RBP
  1020   framesize -= 2*wordSize;
  1022   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
  1024   if (framesize) {
  1025     emit_opcode(cbuf, Assembler::REX_W);
  1026     if (framesize < 0x80) {
  1027       emit_opcode(cbuf, 0x83); // addq rsp, #framesize
  1028       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
  1029       emit_d8(cbuf, framesize);
  1030     } else {
  1031       emit_opcode(cbuf, 0x81); // addq rsp, #framesize
  1032       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
  1033       emit_d32(cbuf, framesize);
  1037   // popq rbp
  1038   emit_opcode(cbuf, 0x58 | RBP_enc);
  1040   if (do_polling() && C->is_method_compilation()) {
  1041     // testl %rax, off(%rip) // Opcode + ModRM + Disp32 == 6 bytes
  1042     // XXX reg_mem doesn't support RIP-relative addressing yet
  1043     cbuf.set_inst_mark();
  1044     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_return_type, 0); // XXX
  1045     emit_opcode(cbuf, 0x85); // testl
  1046     emit_rm(cbuf, 0x0, RAX_enc, 0x5); // 00 rax 101 == 0x5
  1047     // cbuf.inst_mark() is beginning of instruction
  1048     emit_d32_reloc(cbuf, os::get_polling_page());
  1049 //                    relocInfo::poll_return_type,
  1053 uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
  1055   Compile* C = ra_->C;
  1056   int framesize = C->frame_slots() << LogBytesPerInt;
  1057   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1058   // Remove word for return adr already pushed
  1059   // and RBP
  1060   framesize -= 2*wordSize;
  1062   uint size = 0;
  1064   if (do_polling() && C->is_method_compilation()) {
  1065     size += 6;
  1068   // count popq rbp
  1069   size++;
  1071   if (framesize) {
  1072     if (framesize < 0x80) {
  1073       size += 4;
  1074     } else if (framesize) {
  1075       size += 7;
  1079   return size;
  1082 int MachEpilogNode::reloc() const
  1084   return 2; // a large enough number
  1087 const Pipeline* MachEpilogNode::pipeline() const
  1089   return MachNode::pipeline_class();
  1092 int MachEpilogNode::safepoint_offset() const
  1094   return 0;
  1097 //=============================================================================
  1099 enum RC {
  1100   rc_bad,
  1101   rc_int,
  1102   rc_float,
  1103   rc_stack
  1104 };
  1106 static enum RC rc_class(OptoReg::Name reg)
  1108   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1110   if (OptoReg::is_stack(reg)) return rc_stack;
  1112   VMReg r = OptoReg::as_VMReg(reg);
  1114   if (r->is_Register()) return rc_int;
  1116   assert(r->is_XMMRegister(), "must be");
  1117   return rc_float;
  1120 uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
  1121                                        PhaseRegAlloc* ra_,
  1122                                        bool do_size,
  1123                                        outputStream* st) const
  1126   // Get registers to move
  1127   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1128   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1129   OptoReg::Name dst_second = ra_->get_reg_second(this);
  1130   OptoReg::Name dst_first = ra_->get_reg_first(this);
  1132   enum RC src_second_rc = rc_class(src_second);
  1133   enum RC src_first_rc = rc_class(src_first);
  1134   enum RC dst_second_rc = rc_class(dst_second);
  1135   enum RC dst_first_rc = rc_class(dst_first);
  1137   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
  1138          "must move at least 1 register" );
  1140   if (src_first == dst_first && src_second == dst_second) {
  1141     // Self copy, no move
  1142     return 0;
  1143   } else if (src_first_rc == rc_stack) {
  1144     // mem ->
  1145     if (dst_first_rc == rc_stack) {
  1146       // mem -> mem
  1147       assert(src_second != dst_first, "overlap");
  1148       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1149           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1150         // 64-bit
  1151         int src_offset = ra_->reg2offset(src_first);
  1152         int dst_offset = ra_->reg2offset(dst_first);
  1153         if (cbuf) {
  1154           emit_opcode(*cbuf, 0xFF);
  1155           encode_RegMem(*cbuf, RSI_enc, RSP_enc, 0x4, 0, src_offset, false);
  1157           emit_opcode(*cbuf, 0x8F);
  1158           encode_RegMem(*cbuf, RAX_enc, RSP_enc, 0x4, 0, dst_offset, false);
  1160 #ifndef PRODUCT
  1161         } else if (!do_size) {
  1162           st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
  1163                      "popq    [rsp + #%d]",
  1164                      src_offset,
  1165                      dst_offset);
  1166 #endif
  1168         return
  1169           3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) +
  1170           3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4));
  1171       } else {
  1172         // 32-bit
  1173         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1174         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1175         // No pushl/popl, so:
  1176         int src_offset = ra_->reg2offset(src_first);
  1177         int dst_offset = ra_->reg2offset(dst_first);
  1178         if (cbuf) {
  1179           emit_opcode(*cbuf, Assembler::REX_W);
  1180           emit_opcode(*cbuf, 0x89);
  1181           emit_opcode(*cbuf, 0x44);
  1182           emit_opcode(*cbuf, 0x24);
  1183           emit_opcode(*cbuf, 0xF8);
  1185           emit_opcode(*cbuf, 0x8B);
  1186           encode_RegMem(*cbuf,
  1187                         RAX_enc,
  1188                         RSP_enc, 0x4, 0, src_offset,
  1189                         false);
  1191           emit_opcode(*cbuf, 0x89);
  1192           encode_RegMem(*cbuf,
  1193                         RAX_enc,
  1194                         RSP_enc, 0x4, 0, dst_offset,
  1195                         false);
  1197           emit_opcode(*cbuf, Assembler::REX_W);
  1198           emit_opcode(*cbuf, 0x8B);
  1199           emit_opcode(*cbuf, 0x44);
  1200           emit_opcode(*cbuf, 0x24);
  1201           emit_opcode(*cbuf, 0xF8);
  1203 #ifndef PRODUCT
  1204         } else if (!do_size) {
  1205           st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
  1206                      "movl    rax, [rsp + #%d]\n\t"
  1207                      "movl    [rsp + #%d], rax\n\t"
  1208                      "movq    rax, [rsp - #8]",
  1209                      src_offset,
  1210                      dst_offset);
  1211 #endif
  1213         return
  1214           5 + // movq
  1215           3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) + // movl
  1216           3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4)) + // movl
  1217           5; // movq
  1219     } else if (dst_first_rc == rc_int) {
  1220       // mem -> gpr
  1221       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1222           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1223         // 64-bit
  1224         int offset = ra_->reg2offset(src_first);
  1225         if (cbuf) {
  1226           if (Matcher::_regEncode[dst_first] < 8) {
  1227             emit_opcode(*cbuf, Assembler::REX_W);
  1228           } else {
  1229             emit_opcode(*cbuf, Assembler::REX_WR);
  1231           emit_opcode(*cbuf, 0x8B);
  1232           encode_RegMem(*cbuf,
  1233                         Matcher::_regEncode[dst_first],
  1234                         RSP_enc, 0x4, 0, offset,
  1235                         false);
  1236 #ifndef PRODUCT
  1237         } else if (!do_size) {
  1238           st->print("movq    %s, [rsp + #%d]\t# spill",
  1239                      Matcher::regName[dst_first],
  1240                      offset);
  1241 #endif
  1243         return
  1244           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
  1245       } else {
  1246         // 32-bit
  1247         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1248         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1249         int offset = ra_->reg2offset(src_first);
  1250         if (cbuf) {
  1251           if (Matcher::_regEncode[dst_first] >= 8) {
  1252             emit_opcode(*cbuf, Assembler::REX_R);
  1254           emit_opcode(*cbuf, 0x8B);
  1255           encode_RegMem(*cbuf,
  1256                         Matcher::_regEncode[dst_first],
  1257                         RSP_enc, 0x4, 0, offset,
  1258                         false);
  1259 #ifndef PRODUCT
  1260         } else if (!do_size) {
  1261           st->print("movl    %s, [rsp + #%d]\t# spill",
  1262                      Matcher::regName[dst_first],
  1263                      offset);
  1264 #endif
  1266         return
  1267           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1268           ((Matcher::_regEncode[dst_first] < 8)
  1269            ? 3
  1270            : 4); // REX
  1272     } else if (dst_first_rc == rc_float) {
  1273       // mem-> xmm
  1274       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1275           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1276         // 64-bit
  1277         int offset = ra_->reg2offset(src_first);
  1278         if (cbuf) {
  1279           emit_opcode(*cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  1280           if (Matcher::_regEncode[dst_first] >= 8) {
  1281             emit_opcode(*cbuf, Assembler::REX_R);
  1283           emit_opcode(*cbuf, 0x0F);
  1284           emit_opcode(*cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  1285           encode_RegMem(*cbuf,
  1286                         Matcher::_regEncode[dst_first],
  1287                         RSP_enc, 0x4, 0, offset,
  1288                         false);
  1289 #ifndef PRODUCT
  1290         } else if (!do_size) {
  1291           st->print("%s  %s, [rsp + #%d]\t# spill",
  1292                      UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
  1293                      Matcher::regName[dst_first],
  1294                      offset);
  1295 #endif
  1297         return
  1298           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1299           ((Matcher::_regEncode[dst_first] < 8)
  1300            ? 5
  1301            : 6); // REX
  1302       } else {
  1303         // 32-bit
  1304         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1305         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1306         int offset = ra_->reg2offset(src_first);
  1307         if (cbuf) {
  1308           emit_opcode(*cbuf, 0xF3);
  1309           if (Matcher::_regEncode[dst_first] >= 8) {
  1310             emit_opcode(*cbuf, Assembler::REX_R);
  1312           emit_opcode(*cbuf, 0x0F);
  1313           emit_opcode(*cbuf, 0x10);
  1314           encode_RegMem(*cbuf,
  1315                         Matcher::_regEncode[dst_first],
  1316                         RSP_enc, 0x4, 0, offset,
  1317                         false);
  1318 #ifndef PRODUCT
  1319         } else if (!do_size) {
  1320           st->print("movss   %s, [rsp + #%d]\t# spill",
  1321                      Matcher::regName[dst_first],
  1322                      offset);
  1323 #endif
  1325         return
  1326           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1327           ((Matcher::_regEncode[dst_first] < 8)
  1328            ? 5
  1329            : 6); // REX
  1332   } else if (src_first_rc == rc_int) {
  1333     // gpr ->
  1334     if (dst_first_rc == rc_stack) {
  1335       // gpr -> mem
  1336       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1337           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1338         // 64-bit
  1339         int offset = ra_->reg2offset(dst_first);
  1340         if (cbuf) {
  1341           if (Matcher::_regEncode[src_first] < 8) {
  1342             emit_opcode(*cbuf, Assembler::REX_W);
  1343           } else {
  1344             emit_opcode(*cbuf, Assembler::REX_WR);
  1346           emit_opcode(*cbuf, 0x89);
  1347           encode_RegMem(*cbuf,
  1348                         Matcher::_regEncode[src_first],
  1349                         RSP_enc, 0x4, 0, offset,
  1350                         false);
  1351 #ifndef PRODUCT
  1352         } else if (!do_size) {
  1353           st->print("movq    [rsp + #%d], %s\t# spill",
  1354                      offset,
  1355                      Matcher::regName[src_first]);
  1356 #endif
  1358         return ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
  1359       } else {
  1360         // 32-bit
  1361         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1362         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1363         int offset = ra_->reg2offset(dst_first);
  1364         if (cbuf) {
  1365           if (Matcher::_regEncode[src_first] >= 8) {
  1366             emit_opcode(*cbuf, Assembler::REX_R);
  1368           emit_opcode(*cbuf, 0x89);
  1369           encode_RegMem(*cbuf,
  1370                         Matcher::_regEncode[src_first],
  1371                         RSP_enc, 0x4, 0, offset,
  1372                         false);
  1373 #ifndef PRODUCT
  1374         } else if (!do_size) {
  1375           st->print("movl    [rsp + #%d], %s\t# spill",
  1376                      offset,
  1377                      Matcher::regName[src_first]);
  1378 #endif
  1380         return
  1381           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1382           ((Matcher::_regEncode[src_first] < 8)
  1383            ? 3
  1384            : 4); // REX
  1386     } else if (dst_first_rc == rc_int) {
  1387       // gpr -> gpr
  1388       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1389           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1390         // 64-bit
  1391         if (cbuf) {
  1392           if (Matcher::_regEncode[dst_first] < 8) {
  1393             if (Matcher::_regEncode[src_first] < 8) {
  1394               emit_opcode(*cbuf, Assembler::REX_W);
  1395             } else {
  1396               emit_opcode(*cbuf, Assembler::REX_WB);
  1398           } else {
  1399             if (Matcher::_regEncode[src_first] < 8) {
  1400               emit_opcode(*cbuf, Assembler::REX_WR);
  1401             } else {
  1402               emit_opcode(*cbuf, Assembler::REX_WRB);
  1405           emit_opcode(*cbuf, 0x8B);
  1406           emit_rm(*cbuf, 0x3,
  1407                   Matcher::_regEncode[dst_first] & 7,
  1408                   Matcher::_regEncode[src_first] & 7);
  1409 #ifndef PRODUCT
  1410         } else if (!do_size) {
  1411           st->print("movq    %s, %s\t# spill",
  1412                      Matcher::regName[dst_first],
  1413                      Matcher::regName[src_first]);
  1414 #endif
  1416         return 3; // REX
  1417       } else {
  1418         // 32-bit
  1419         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1420         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1421         if (cbuf) {
  1422           if (Matcher::_regEncode[dst_first] < 8) {
  1423             if (Matcher::_regEncode[src_first] >= 8) {
  1424               emit_opcode(*cbuf, Assembler::REX_B);
  1426           } else {
  1427             if (Matcher::_regEncode[src_first] < 8) {
  1428               emit_opcode(*cbuf, Assembler::REX_R);
  1429             } else {
  1430               emit_opcode(*cbuf, Assembler::REX_RB);
  1433           emit_opcode(*cbuf, 0x8B);
  1434           emit_rm(*cbuf, 0x3,
  1435                   Matcher::_regEncode[dst_first] & 7,
  1436                   Matcher::_regEncode[src_first] & 7);
  1437 #ifndef PRODUCT
  1438         } else if (!do_size) {
  1439           st->print("movl    %s, %s\t# spill",
  1440                      Matcher::regName[dst_first],
  1441                      Matcher::regName[src_first]);
  1442 #endif
  1444         return
  1445           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1446           ? 2
  1447           : 3; // REX
  1449     } else if (dst_first_rc == rc_float) {
  1450       // gpr -> xmm
  1451       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1452           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1453         // 64-bit
  1454         if (cbuf) {
  1455           emit_opcode(*cbuf, 0x66);
  1456           if (Matcher::_regEncode[dst_first] < 8) {
  1457             if (Matcher::_regEncode[src_first] < 8) {
  1458               emit_opcode(*cbuf, Assembler::REX_W);
  1459             } else {
  1460               emit_opcode(*cbuf, Assembler::REX_WB);
  1462           } else {
  1463             if (Matcher::_regEncode[src_first] < 8) {
  1464               emit_opcode(*cbuf, Assembler::REX_WR);
  1465             } else {
  1466               emit_opcode(*cbuf, Assembler::REX_WRB);
  1469           emit_opcode(*cbuf, 0x0F);
  1470           emit_opcode(*cbuf, 0x6E);
  1471           emit_rm(*cbuf, 0x3,
  1472                   Matcher::_regEncode[dst_first] & 7,
  1473                   Matcher::_regEncode[src_first] & 7);
  1474 #ifndef PRODUCT
  1475         } else if (!do_size) {
  1476           st->print("movdq   %s, %s\t# spill",
  1477                      Matcher::regName[dst_first],
  1478                      Matcher::regName[src_first]);
  1479 #endif
  1481         return 5; // REX
  1482       } else {
  1483         // 32-bit
  1484         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1485         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1486         if (cbuf) {
  1487           emit_opcode(*cbuf, 0x66);
  1488           if (Matcher::_regEncode[dst_first] < 8) {
  1489             if (Matcher::_regEncode[src_first] >= 8) {
  1490               emit_opcode(*cbuf, Assembler::REX_B);
  1492           } else {
  1493             if (Matcher::_regEncode[src_first] < 8) {
  1494               emit_opcode(*cbuf, Assembler::REX_R);
  1495             } else {
  1496               emit_opcode(*cbuf, Assembler::REX_RB);
  1499           emit_opcode(*cbuf, 0x0F);
  1500           emit_opcode(*cbuf, 0x6E);
  1501           emit_rm(*cbuf, 0x3,
  1502                   Matcher::_regEncode[dst_first] & 7,
  1503                   Matcher::_regEncode[src_first] & 7);
  1504 #ifndef PRODUCT
  1505         } else if (!do_size) {
  1506           st->print("movdl   %s, %s\t# spill",
  1507                      Matcher::regName[dst_first],
  1508                      Matcher::regName[src_first]);
  1509 #endif
  1511         return
  1512           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1513           ? 4
  1514           : 5; // REX
  1517   } else if (src_first_rc == rc_float) {
  1518     // xmm ->
  1519     if (dst_first_rc == rc_stack) {
  1520       // xmm -> mem
  1521       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1522           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1523         // 64-bit
  1524         int offset = ra_->reg2offset(dst_first);
  1525         if (cbuf) {
  1526           emit_opcode(*cbuf, 0xF2);
  1527           if (Matcher::_regEncode[src_first] >= 8) {
  1528               emit_opcode(*cbuf, Assembler::REX_R);
  1530           emit_opcode(*cbuf, 0x0F);
  1531           emit_opcode(*cbuf, 0x11);
  1532           encode_RegMem(*cbuf,
  1533                         Matcher::_regEncode[src_first],
  1534                         RSP_enc, 0x4, 0, offset,
  1535                         false);
  1536 #ifndef PRODUCT
  1537         } else if (!do_size) {
  1538           st->print("movsd   [rsp + #%d], %s\t# spill",
  1539                      offset,
  1540                      Matcher::regName[src_first]);
  1541 #endif
  1543         return
  1544           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1545           ((Matcher::_regEncode[src_first] < 8)
  1546            ? 5
  1547            : 6); // REX
  1548       } else {
  1549         // 32-bit
  1550         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1551         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1552         int offset = ra_->reg2offset(dst_first);
  1553         if (cbuf) {
  1554           emit_opcode(*cbuf, 0xF3);
  1555           if (Matcher::_regEncode[src_first] >= 8) {
  1556               emit_opcode(*cbuf, Assembler::REX_R);
  1558           emit_opcode(*cbuf, 0x0F);
  1559           emit_opcode(*cbuf, 0x11);
  1560           encode_RegMem(*cbuf,
  1561                         Matcher::_regEncode[src_first],
  1562                         RSP_enc, 0x4, 0, offset,
  1563                         false);
  1564 #ifndef PRODUCT
  1565         } else if (!do_size) {
  1566           st->print("movss   [rsp + #%d], %s\t# spill",
  1567                      offset,
  1568                      Matcher::regName[src_first]);
  1569 #endif
  1571         return
  1572           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1573           ((Matcher::_regEncode[src_first] < 8)
  1574            ? 5
  1575            : 6); // REX
  1577     } else if (dst_first_rc == rc_int) {
  1578       // xmm -> gpr
  1579       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1580           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1581         // 64-bit
  1582         if (cbuf) {
  1583           emit_opcode(*cbuf, 0x66);
  1584           if (Matcher::_regEncode[dst_first] < 8) {
  1585             if (Matcher::_regEncode[src_first] < 8) {
  1586               emit_opcode(*cbuf, Assembler::REX_W);
  1587             } else {
  1588               emit_opcode(*cbuf, Assembler::REX_WR); // attention!
  1590           } else {
  1591             if (Matcher::_regEncode[src_first] < 8) {
  1592               emit_opcode(*cbuf, Assembler::REX_WB); // attention!
  1593             } else {
  1594               emit_opcode(*cbuf, Assembler::REX_WRB);
  1597           emit_opcode(*cbuf, 0x0F);
  1598           emit_opcode(*cbuf, 0x7E);
  1599           emit_rm(*cbuf, 0x3,
  1600                   Matcher::_regEncode[dst_first] & 7,
  1601                   Matcher::_regEncode[src_first] & 7);
  1602 #ifndef PRODUCT
  1603         } else if (!do_size) {
  1604           st->print("movdq   %s, %s\t# spill",
  1605                      Matcher::regName[dst_first],
  1606                      Matcher::regName[src_first]);
  1607 #endif
  1609         return 5; // REX
  1610       } else {
  1611         // 32-bit
  1612         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1613         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1614         if (cbuf) {
  1615           emit_opcode(*cbuf, 0x66);
  1616           if (Matcher::_regEncode[dst_first] < 8) {
  1617             if (Matcher::_regEncode[src_first] >= 8) {
  1618               emit_opcode(*cbuf, Assembler::REX_R); // attention!
  1620           } else {
  1621             if (Matcher::_regEncode[src_first] < 8) {
  1622               emit_opcode(*cbuf, Assembler::REX_B); // attention!
  1623             } else {
  1624               emit_opcode(*cbuf, Assembler::REX_RB);
  1627           emit_opcode(*cbuf, 0x0F);
  1628           emit_opcode(*cbuf, 0x7E);
  1629           emit_rm(*cbuf, 0x3,
  1630                   Matcher::_regEncode[dst_first] & 7,
  1631                   Matcher::_regEncode[src_first] & 7);
  1632 #ifndef PRODUCT
  1633         } else if (!do_size) {
  1634           st->print("movdl   %s, %s\t# spill",
  1635                      Matcher::regName[dst_first],
  1636                      Matcher::regName[src_first]);
  1637 #endif
  1639         return
  1640           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1641           ? 4
  1642           : 5; // REX
  1644     } else if (dst_first_rc == rc_float) {
  1645       // xmm -> xmm
  1646       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1647           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1648         // 64-bit
  1649         if (cbuf) {
  1650           emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x66 : 0xF2);
  1651           if (Matcher::_regEncode[dst_first] < 8) {
  1652             if (Matcher::_regEncode[src_first] >= 8) {
  1653               emit_opcode(*cbuf, Assembler::REX_B);
  1655           } else {
  1656             if (Matcher::_regEncode[src_first] < 8) {
  1657               emit_opcode(*cbuf, Assembler::REX_R);
  1658             } else {
  1659               emit_opcode(*cbuf, Assembler::REX_RB);
  1662           emit_opcode(*cbuf, 0x0F);
  1663           emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  1664           emit_rm(*cbuf, 0x3,
  1665                   Matcher::_regEncode[dst_first] & 7,
  1666                   Matcher::_regEncode[src_first] & 7);
  1667 #ifndef PRODUCT
  1668         } else if (!do_size) {
  1669           st->print("%s  %s, %s\t# spill",
  1670                      UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
  1671                      Matcher::regName[dst_first],
  1672                      Matcher::regName[src_first]);
  1673 #endif
  1675         return
  1676           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1677           ? 4
  1678           : 5; // REX
  1679       } else {
  1680         // 32-bit
  1681         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1682         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1683         if (cbuf) {
  1684           if (!UseXmmRegToRegMoveAll)
  1685             emit_opcode(*cbuf, 0xF3);
  1686           if (Matcher::_regEncode[dst_first] < 8) {
  1687             if (Matcher::_regEncode[src_first] >= 8) {
  1688               emit_opcode(*cbuf, Assembler::REX_B);
  1690           } else {
  1691             if (Matcher::_regEncode[src_first] < 8) {
  1692               emit_opcode(*cbuf, Assembler::REX_R);
  1693             } else {
  1694               emit_opcode(*cbuf, Assembler::REX_RB);
  1697           emit_opcode(*cbuf, 0x0F);
  1698           emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  1699           emit_rm(*cbuf, 0x3,
  1700                   Matcher::_regEncode[dst_first] & 7,
  1701                   Matcher::_regEncode[src_first] & 7);
  1702 #ifndef PRODUCT
  1703         } else if (!do_size) {
  1704           st->print("%s  %s, %s\t# spill",
  1705                      UseXmmRegToRegMoveAll ? "movaps" : "movss ",
  1706                      Matcher::regName[dst_first],
  1707                      Matcher::regName[src_first]);
  1708 #endif
  1710         return
  1711           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1712           ? (UseXmmRegToRegMoveAll ? 3 : 4)
  1713           : (UseXmmRegToRegMoveAll ? 4 : 5); // REX
  1718   assert(0," foo ");
  1719   Unimplemented();
  1721   return 0;
  1724 #ifndef PRODUCT
  1725 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const
  1727   implementation(NULL, ra_, false, st);
  1729 #endif
  1731 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
  1733   implementation(&cbuf, ra_, false, NULL);
  1736 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const
  1738   return implementation(NULL, ra_, true, NULL);
  1741 //=============================================================================
  1742 #ifndef PRODUCT
  1743 void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const
  1745   st->print("nop \t# %d bytes pad for loops and calls", _count);
  1747 #endif
  1749 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc*) const
  1751   MacroAssembler _masm(&cbuf);
  1752   __ nop(_count);
  1755 uint MachNopNode::size(PhaseRegAlloc*) const
  1757   return _count;
  1761 //=============================================================================
  1762 #ifndef PRODUCT
  1763 void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
  1765   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1766   int reg = ra_->get_reg_first(this);
  1767   st->print("leaq    %s, [rsp + #%d]\t# box lock",
  1768             Matcher::regName[reg], offset);
  1770 #endif
  1772 void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
  1774   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1775   int reg = ra_->get_encode(this);
  1776   if (offset >= 0x80) {
  1777     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
  1778     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
  1779     emit_rm(cbuf, 0x2, reg & 7, 0x04);
  1780     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
  1781     emit_d32(cbuf, offset);
  1782   } else {
  1783     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
  1784     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
  1785     emit_rm(cbuf, 0x1, reg & 7, 0x04);
  1786     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
  1787     emit_d8(cbuf, offset);
  1791 uint BoxLockNode::size(PhaseRegAlloc *ra_) const
  1793   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1794   return (offset < 0x80) ? 5 : 8; // REX
  1797 //=============================================================================
  1799 // emit call stub, compiled java to interpreter
  1800 void emit_java_to_interp(CodeBuffer& cbuf)
  1802   // Stub is fixed up when the corresponding call is converted from
  1803   // calling compiled code to calling interpreted code.
  1804   // movq rbx, 0
  1805   // jmp -5 # to self
  1807   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1809   // Note that the code buffer's inst_mark is always relative to insts.
  1810   // That's why we must use the macroassembler to generate a stub.
  1811   MacroAssembler _masm(&cbuf);
  1813   address base =
  1814   __ start_a_stub(Compile::MAX_stubs_size);
  1815   if (base == NULL)  return;  // CodeBuffer::expand failed
  1816   // static stub relocation stores the instruction address of the call
  1817   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM64);
  1818   // static stub relocation also tags the methodOop in the code-stream.
  1819   __ movoop(rbx, (jobject) NULL);  // method is zapped till fixup time
  1820   __ jump(RuntimeAddress(__ pc()));
  1822   // Update current stubs pointer and restore code_end.
  1823   __ end_a_stub();
  1826 // size of call stub, compiled java to interpretor
  1827 uint size_java_to_interp()
  1829   return 15;  // movq (1+1+8); jmp (1+4)
  1832 // relocation entries for call stub, compiled java to interpretor
  1833 uint reloc_java_to_interp()
  1835   return 4; // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1838 //=============================================================================
  1839 #ifndef PRODUCT
  1840 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
  1842   if (UseCompressedOops) {
  1843     st->print_cr("movl    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes() #%d]\t", oopDesc::klass_offset_in_bytes());
  1844     st->print_cr("leaq    rscratch1, [r12_heapbase, r, Address::times_8, 0]");
  1845     st->print_cr("cmpq    rax, rscratch1\t # Inline cache check");
  1846   } else {
  1847     st->print_cr("cmpq    rax, [j_rarg0 + oopDesc::klass_offset_in_bytes() #%d]\t"
  1848                  "# Inline cache check", oopDesc::klass_offset_in_bytes());
  1850   st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
  1851   st->print_cr("\tnop");
  1852   if (!OptoBreakpoint) {
  1853     st->print_cr("\tnop");
  1856 #endif
  1858 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
  1860   MacroAssembler masm(&cbuf);
  1861 #ifdef ASSERT
  1862   uint code_size = cbuf.code_size();
  1863 #endif
  1864   if (UseCompressedOops) {
  1865     masm.load_klass(rscratch1, j_rarg0);
  1866     masm.cmpq(rax, rscratch1);
  1867   } else {
  1868     masm.cmpq(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
  1871   masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1873   /* WARNING these NOPs are critical so that verified entry point is properly
  1874      aligned for patching by NativeJump::patch_verified_entry() */
  1875   int nops_cnt = 1;
  1876   if (!OptoBreakpoint) {
  1877     // Leave space for int3
  1878      nops_cnt += 1;
  1880   if (UseCompressedOops) {
  1881     // ??? divisible by 4 is aligned?
  1882     nops_cnt += 1;
  1884   masm.nop(nops_cnt);
  1886   assert(cbuf.code_size() - code_size == size(ra_),
  1887          "checking code size of inline cache node");
  1890 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
  1892   if (UseCompressedOops) {
  1893     return OptoBreakpoint ? 19 : 20;
  1894   } else {
  1895     return OptoBreakpoint ? 11 : 12;
  1900 //=============================================================================
  1901 uint size_exception_handler()
  1903   // NativeCall instruction size is the same as NativeJump.
  1904   // Note that this value is also credited (in output.cpp) to
  1905   // the size of the code section.
  1906   return NativeJump::instruction_size;
  1909 // Emit exception handler code.
  1910 int emit_exception_handler(CodeBuffer& cbuf)
  1913   // Note that the code buffer's inst_mark is always relative to insts.
  1914   // That's why we must use the macroassembler to generate a handler.
  1915   MacroAssembler _masm(&cbuf);
  1916   address base =
  1917   __ start_a_stub(size_exception_handler());
  1918   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1919   int offset = __ offset();
  1920   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
  1921   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1922   __ end_a_stub();
  1923   return offset;
  1926 uint size_deopt_handler()
  1928   // three 5 byte instructions
  1929   return 15;
  1932 // Emit deopt handler code.
  1933 int emit_deopt_handler(CodeBuffer& cbuf)
  1936   // Note that the code buffer's inst_mark is always relative to insts.
  1937   // That's why we must use the macroassembler to generate a handler.
  1938   MacroAssembler _masm(&cbuf);
  1939   address base =
  1940   __ start_a_stub(size_deopt_handler());
  1941   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1942   int offset = __ offset();
  1943   address the_pc = (address) __ pc();
  1944   Label next;
  1945   // push a "the_pc" on the stack without destroying any registers
  1946   // as they all may be live.
  1948   // push address of "next"
  1949   __ call(next, relocInfo::none); // reloc none is fine since it is a disp32
  1950   __ bind(next);
  1951   // adjust it so it matches "the_pc"
  1952   __ subq(Address(rsp, 0), __ offset() - offset);
  1953   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1954   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1955   __ end_a_stub();
  1956   return offset;
  1959 static void emit_double_constant(CodeBuffer& cbuf, double x) {
  1960   int mark = cbuf.insts()->mark_off();
  1961   MacroAssembler _masm(&cbuf);
  1962   address double_address = __ double_constant(x);
  1963   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1964   emit_d32_reloc(cbuf,
  1965                  (int) (double_address - cbuf.code_end() - 4),
  1966                  internal_word_Relocation::spec(double_address),
  1967                  RELOC_DISP32);
  1970 static void emit_float_constant(CodeBuffer& cbuf, float x) {
  1971   int mark = cbuf.insts()->mark_off();
  1972   MacroAssembler _masm(&cbuf);
  1973   address float_address = __ float_constant(x);
  1974   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1975   emit_d32_reloc(cbuf,
  1976                  (int) (float_address - cbuf.code_end() - 4),
  1977                  internal_word_Relocation::spec(float_address),
  1978                  RELOC_DISP32);
  1982 int Matcher::regnum_to_fpu_offset(int regnum)
  1984   return regnum - 32; // The FP registers are in the second chunk
  1987 // This is UltraSparc specific, true just means we have fast l2f conversion
  1988 const bool Matcher::convL2FSupported(void) {
  1989   return true;
  1992 // Vector width in bytes
  1993 const uint Matcher::vector_width_in_bytes(void) {
  1994   return 8;
  1997 // Vector ideal reg
  1998 const uint Matcher::vector_ideal_reg(void) {
  1999   return Op_RegD;
  2002 // Is this branch offset short enough that a short branch can be used?
  2003 //
  2004 // NOTE: If the platform does not provide any short branch variants, then
  2005 //       this method should return false for offset 0.
  2006 bool Matcher::is_short_branch_offset(int offset)
  2008   return -0x80 <= offset && offset < 0x80;
  2011 const bool Matcher::isSimpleConstant64(jlong value) {
  2012   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  2013   //return value == (int) value;  // Cf. storeImmL and immL32.
  2015   // Probably always true, even if a temp register is required.
  2016   return true;
  2019 // The ecx parameter to rep stosq for the ClearArray node is in words.
  2020 const bool Matcher::init_array_count_is_in_bytes = false;
  2022 // Threshold size for cleararray.
  2023 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  2025 // Should the Matcher clone shifts on addressing modes, expecting them
  2026 // to be subsumed into complex addressing expressions or compute them
  2027 // into registers?  True for Intel but false for most RISCs
  2028 const bool Matcher::clone_shift_expressions = true;
  2030 // Is it better to copy float constants, or load them directly from
  2031 // memory?  Intel can load a float constant from a direct address,
  2032 // requiring no extra registers.  Most RISCs will have to materialize
  2033 // an address into a register first, so they would do better to copy
  2034 // the constant from stack.
  2035 const bool Matcher::rematerialize_float_constants = true; // XXX
  2037 // If CPU can load and store mis-aligned doubles directly then no
  2038 // fixup is needed.  Else we split the double into 2 integer pieces
  2039 // and move it piece-by-piece.  Only happens when passing doubles into
  2040 // C code as the Java calling convention forces doubles to be aligned.
  2041 const bool Matcher::misaligned_doubles_ok = true;
  2043 // No-op on amd64
  2044 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
  2046 // Advertise here if the CPU requires explicit rounding operations to
  2047 // implement the UseStrictFP mode.
  2048 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  2050 // Do floats take an entire double register or just half?
  2051 const bool Matcher::float_in_double = true;
  2052 // Do ints take an entire long register or just half?
  2053 const bool Matcher::int_in_long = true;
  2055 // Return whether or not this register is ever used as an argument.
  2056 // This function is used on startup to build the trampoline stubs in
  2057 // generateOptoStub.  Registers not mentioned will be killed by the VM
  2058 // call in the trampoline, and arguments in those registers not be
  2059 // available to the callee.
  2060 bool Matcher::can_be_java_arg(int reg)
  2062   return
  2063     reg ==  RDI_num || reg ==  RDI_H_num ||
  2064     reg ==  RSI_num || reg ==  RSI_H_num ||
  2065     reg ==  RDX_num || reg ==  RDX_H_num ||
  2066     reg ==  RCX_num || reg ==  RCX_H_num ||
  2067     reg ==   R8_num || reg ==   R8_H_num ||
  2068     reg ==   R9_num || reg ==   R9_H_num ||
  2069     reg ==  R12_num || reg ==  R12_H_num ||
  2070     reg == XMM0_num || reg == XMM0_H_num ||
  2071     reg == XMM1_num || reg == XMM1_H_num ||
  2072     reg == XMM2_num || reg == XMM2_H_num ||
  2073     reg == XMM3_num || reg == XMM3_H_num ||
  2074     reg == XMM4_num || reg == XMM4_H_num ||
  2075     reg == XMM5_num || reg == XMM5_H_num ||
  2076     reg == XMM6_num || reg == XMM6_H_num ||
  2077     reg == XMM7_num || reg == XMM7_H_num;
  2080 bool Matcher::is_spillable_arg(int reg)
  2082   return can_be_java_arg(reg);
  2085 // Register for DIVI projection of divmodI
  2086 RegMask Matcher::divI_proj_mask() {
  2087   return INT_RAX_REG_mask;
  2090 // Register for MODI projection of divmodI
  2091 RegMask Matcher::modI_proj_mask() {
  2092   return INT_RDX_REG_mask;
  2095 // Register for DIVL projection of divmodL
  2096 RegMask Matcher::divL_proj_mask() {
  2097   return LONG_RAX_REG_mask;
  2100 // Register for MODL projection of divmodL
  2101 RegMask Matcher::modL_proj_mask() {
  2102   return LONG_RDX_REG_mask;
  2105 static Address build_address(int b, int i, int s, int d) {
  2106   Register index = as_Register(i);
  2107   Address::ScaleFactor scale = (Address::ScaleFactor)s;
  2108   if (index == rsp) {
  2109     index = noreg;
  2110     scale = Address::no_scale;
  2112   Address addr(as_Register(b), index, scale, d);
  2113   return addr;
  2116 %}
  2118 //----------ENCODING BLOCK-----------------------------------------------------
  2119 // This block specifies the encoding classes used by the compiler to
  2120 // output byte streams.  Encoding classes are parameterized macros
  2121 // used by Machine Instruction Nodes in order to generate the bit
  2122 // encoding of the instruction.  Operands specify their base encoding
  2123 // interface with the interface keyword.  There are currently
  2124 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
  2125 // COND_INTER.  REG_INTER causes an operand to generate a function
  2126 // which returns its register number when queried.  CONST_INTER causes
  2127 // an operand to generate a function which returns the value of the
  2128 // constant when queried.  MEMORY_INTER causes an operand to generate
  2129 // four functions which return the Base Register, the Index Register,
  2130 // the Scale Value, and the Offset Value of the operand when queried.
  2131 // COND_INTER causes an operand to generate six functions which return
  2132 // the encoding code (ie - encoding bits for the instruction)
  2133 // associated with each basic boolean condition for a conditional
  2134 // instruction.
  2135 //
  2136 // Instructions specify two basic values for encoding.  Again, a
  2137 // function is available to check if the constant displacement is an
  2138 // oop. They use the ins_encode keyword to specify their encoding
  2139 // classes (which must be a sequence of enc_class names, and their
  2140 // parameters, specified in the encoding block), and they use the
  2141 // opcode keyword to specify, in order, their primary, secondary, and
  2142 // tertiary opcode.  Only the opcode sections which a particular
  2143 // instruction needs for encoding need to be specified.
  2144 encode %{
  2145   // Build emit functions for each basic byte or larger field in the
  2146   // intel encoding scheme (opcode, rm, sib, immediate), and call them
  2147   // from C++ code in the enc_class source block.  Emit functions will
  2148   // live in the main source block for now.  In future, we can
  2149   // generalize this by adding a syntax that specifies the sizes of
  2150   // fields in an order, so that the adlc can build the emit functions
  2151   // automagically
  2153   // Emit primary opcode
  2154   enc_class OpcP
  2155   %{
  2156     emit_opcode(cbuf, $primary);
  2157   %}
  2159   // Emit secondary opcode
  2160   enc_class OpcS
  2161   %{
  2162     emit_opcode(cbuf, $secondary);
  2163   %}
  2165   // Emit tertiary opcode
  2166   enc_class OpcT
  2167   %{
  2168     emit_opcode(cbuf, $tertiary);
  2169   %}
  2171   // Emit opcode directly
  2172   enc_class Opcode(immI d8)
  2173   %{
  2174     emit_opcode(cbuf, $d8$$constant);
  2175   %}
  2177   // Emit size prefix
  2178   enc_class SizePrefix
  2179   %{
  2180     emit_opcode(cbuf, 0x66);
  2181   %}
  2183   enc_class reg(rRegI reg)
  2184   %{
  2185     emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
  2186   %}
  2188   enc_class reg_reg(rRegI dst, rRegI src)
  2189   %{
  2190     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2191   %}
  2193   enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
  2194   %{
  2195     emit_opcode(cbuf, $opcode$$constant);
  2196     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2197   %}
  2199   enc_class cmpfp_fixup()
  2200   %{
  2201     // jnp,s exit
  2202     emit_opcode(cbuf, 0x7B);
  2203     emit_d8(cbuf, 0x0A);
  2205     // pushfq
  2206     emit_opcode(cbuf, 0x9C);
  2208     // andq $0xffffff2b, (%rsp)
  2209     emit_opcode(cbuf, Assembler::REX_W);
  2210     emit_opcode(cbuf, 0x81);
  2211     emit_opcode(cbuf, 0x24);
  2212     emit_opcode(cbuf, 0x24);
  2213     emit_d32(cbuf, 0xffffff2b);
  2215     // popfq
  2216     emit_opcode(cbuf, 0x9D);
  2218     // nop (target for branch to avoid branch to branch)
  2219     emit_opcode(cbuf, 0x90);
  2220   %}
  2222   enc_class cmpfp3(rRegI dst)
  2223   %{
  2224     int dstenc = $dst$$reg;
  2226     // movl $dst, -1
  2227     if (dstenc >= 8) {
  2228       emit_opcode(cbuf, Assembler::REX_B);
  2230     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
  2231     emit_d32(cbuf, -1);
  2233     // jp,s done
  2234     emit_opcode(cbuf, 0x7A);
  2235     emit_d8(cbuf, dstenc < 4 ? 0x08 : 0x0A);
  2237     // jb,s done
  2238     emit_opcode(cbuf, 0x72);
  2239     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
  2241     // setne $dst
  2242     if (dstenc >= 4) {
  2243       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
  2245     emit_opcode(cbuf, 0x0F);
  2246     emit_opcode(cbuf, 0x95);
  2247     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
  2249     // movzbl $dst, $dst
  2250     if (dstenc >= 4) {
  2251       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
  2253     emit_opcode(cbuf, 0x0F);
  2254     emit_opcode(cbuf, 0xB6);
  2255     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
  2256   %}
  2258   enc_class cdql_enc(no_rax_rdx_RegI div)
  2259   %{
  2260     // Full implementation of Java idiv and irem; checks for
  2261     // special case as described in JVM spec., p.243 & p.271.
  2262     //
  2263     //         normal case                           special case
  2264     //
  2265     // input : rax: dividend                         min_int
  2266     //         reg: divisor                          -1
  2267     //
  2268     // output: rax: quotient  (= rax idiv reg)       min_int
  2269     //         rdx: remainder (= rax irem reg)       0
  2270     //
  2271     //  Code sequnce:
  2272     //
  2273     //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
  2274     //    5:   75 07/08                jne    e <normal>
  2275     //    7:   33 d2                   xor    %edx,%edx
  2276     //  [div >= 8 -> offset + 1]
  2277     //  [REX_B]
  2278     //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
  2279     //    c:   74 03/04                je     11 <done>
  2280     // 000000000000000e <normal>:
  2281     //    e:   99                      cltd
  2282     //  [div >= 8 -> offset + 1]
  2283     //  [REX_B]
  2284     //    f:   f7 f9                   idiv   $div
  2285     // 0000000000000011 <done>:
  2287     // cmp    $0x80000000,%eax
  2288     emit_opcode(cbuf, 0x3d);
  2289     emit_d8(cbuf, 0x00);
  2290     emit_d8(cbuf, 0x00);
  2291     emit_d8(cbuf, 0x00);
  2292     emit_d8(cbuf, 0x80);
  2294     // jne    e <normal>
  2295     emit_opcode(cbuf, 0x75);
  2296     emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
  2298     // xor    %edx,%edx
  2299     emit_opcode(cbuf, 0x33);
  2300     emit_d8(cbuf, 0xD2);
  2302     // cmp    $0xffffffffffffffff,%ecx
  2303     if ($div$$reg >= 8) {
  2304       emit_opcode(cbuf, Assembler::REX_B);
  2306     emit_opcode(cbuf, 0x83);
  2307     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
  2308     emit_d8(cbuf, 0xFF);
  2310     // je     11 <done>
  2311     emit_opcode(cbuf, 0x74);
  2312     emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
  2314     // <normal>
  2315     // cltd
  2316     emit_opcode(cbuf, 0x99);
  2318     // idivl (note: must be emitted by the user of this rule)
  2319     // <done>
  2320   %}
  2322   enc_class cdqq_enc(no_rax_rdx_RegL div)
  2323   %{
  2324     // Full implementation of Java ldiv and lrem; checks for
  2325     // special case as described in JVM spec., p.243 & p.271.
  2326     //
  2327     //         normal case                           special case
  2328     //
  2329     // input : rax: dividend                         min_long
  2330     //         reg: divisor                          -1
  2331     //
  2332     // output: rax: quotient  (= rax idiv reg)       min_long
  2333     //         rdx: remainder (= rax irem reg)       0
  2334     //
  2335     //  Code sequnce:
  2336     //
  2337     //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
  2338     //    7:   00 00 80
  2339     //    a:   48 39 d0                cmp    %rdx,%rax
  2340     //    d:   75 08                   jne    17 <normal>
  2341     //    f:   33 d2                   xor    %edx,%edx
  2342     //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
  2343     //   15:   74 05                   je     1c <done>
  2344     // 0000000000000017 <normal>:
  2345     //   17:   48 99                   cqto
  2346     //   19:   48 f7 f9                idiv   $div
  2347     // 000000000000001c <done>:
  2349     // mov    $0x8000000000000000,%rdx
  2350     emit_opcode(cbuf, Assembler::REX_W);
  2351     emit_opcode(cbuf, 0xBA);
  2352     emit_d8(cbuf, 0x00);
  2353     emit_d8(cbuf, 0x00);
  2354     emit_d8(cbuf, 0x00);
  2355     emit_d8(cbuf, 0x00);
  2356     emit_d8(cbuf, 0x00);
  2357     emit_d8(cbuf, 0x00);
  2358     emit_d8(cbuf, 0x00);
  2359     emit_d8(cbuf, 0x80);
  2361     // cmp    %rdx,%rax
  2362     emit_opcode(cbuf, Assembler::REX_W);
  2363     emit_opcode(cbuf, 0x39);
  2364     emit_d8(cbuf, 0xD0);
  2366     // jne    17 <normal>
  2367     emit_opcode(cbuf, 0x75);
  2368     emit_d8(cbuf, 0x08);
  2370     // xor    %edx,%edx
  2371     emit_opcode(cbuf, 0x33);
  2372     emit_d8(cbuf, 0xD2);
  2374     // cmp    $0xffffffffffffffff,$div
  2375     emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
  2376     emit_opcode(cbuf, 0x83);
  2377     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
  2378     emit_d8(cbuf, 0xFF);
  2380     // je     1e <done>
  2381     emit_opcode(cbuf, 0x74);
  2382     emit_d8(cbuf, 0x05);
  2384     // <normal>
  2385     // cqto
  2386     emit_opcode(cbuf, Assembler::REX_W);
  2387     emit_opcode(cbuf, 0x99);
  2389     // idivq (note: must be emitted by the user of this rule)
  2390     // <done>
  2391   %}
  2393   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  2394   enc_class OpcSE(immI imm)
  2395   %{
  2396     // Emit primary opcode and set sign-extend bit
  2397     // Check for 8-bit immediate, and set sign extend bit in opcode
  2398     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2399       emit_opcode(cbuf, $primary | 0x02);
  2400     } else {
  2401       // 32-bit immediate
  2402       emit_opcode(cbuf, $primary);
  2404   %}
  2406   enc_class OpcSErm(rRegI dst, immI imm)
  2407   %{
  2408     // OpcSEr/m
  2409     int dstenc = $dst$$reg;
  2410     if (dstenc >= 8) {
  2411       emit_opcode(cbuf, Assembler::REX_B);
  2412       dstenc -= 8;
  2414     // Emit primary opcode and set sign-extend bit
  2415     // Check for 8-bit immediate, and set sign extend bit in opcode
  2416     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2417       emit_opcode(cbuf, $primary | 0x02);
  2418     } else {
  2419       // 32-bit immediate
  2420       emit_opcode(cbuf, $primary);
  2422     // Emit r/m byte with secondary opcode, after primary opcode.
  2423     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2424   %}
  2426   enc_class OpcSErm_wide(rRegL dst, immI imm)
  2427   %{
  2428     // OpcSEr/m
  2429     int dstenc = $dst$$reg;
  2430     if (dstenc < 8) {
  2431       emit_opcode(cbuf, Assembler::REX_W);
  2432     } else {
  2433       emit_opcode(cbuf, Assembler::REX_WB);
  2434       dstenc -= 8;
  2436     // Emit primary opcode and set sign-extend bit
  2437     // Check for 8-bit immediate, and set sign extend bit in opcode
  2438     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2439       emit_opcode(cbuf, $primary | 0x02);
  2440     } else {
  2441       // 32-bit immediate
  2442       emit_opcode(cbuf, $primary);
  2444     // Emit r/m byte with secondary opcode, after primary opcode.
  2445     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2446   %}
  2448   enc_class Con8or32(immI imm)
  2449   %{
  2450     // Check for 8-bit immediate, and set sign extend bit in opcode
  2451     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2452       $$$emit8$imm$$constant;
  2453     } else {
  2454       // 32-bit immediate
  2455       $$$emit32$imm$$constant;
  2457   %}
  2459   enc_class Lbl(label labl)
  2460   %{
  2461     // JMP, CALL
  2462     Label* l = $labl$$label;
  2463     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0);
  2464   %}
  2466   enc_class LblShort(label labl)
  2467   %{
  2468     // JMP, CALL
  2469     Label* l = $labl$$label;
  2470     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
  2471     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  2472     emit_d8(cbuf, disp);
  2473   %}
  2475   enc_class opc2_reg(rRegI dst)
  2476   %{
  2477     // BSWAP
  2478     emit_cc(cbuf, $secondary, $dst$$reg);
  2479   %}
  2481   enc_class opc3_reg(rRegI dst)
  2482   %{
  2483     // BSWAP
  2484     emit_cc(cbuf, $tertiary, $dst$$reg);
  2485   %}
  2487   enc_class reg_opc(rRegI div)
  2488   %{
  2489     // INC, DEC, IDIV, IMOD, JMP indirect, ...
  2490     emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
  2491   %}
  2493   enc_class Jcc(cmpOp cop, label labl)
  2494   %{
  2495     // JCC
  2496     Label* l = $labl$$label;
  2497     $$$emit8$primary;
  2498     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  2499     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0);
  2500   %}
  2502   enc_class JccShort (cmpOp cop, label labl)
  2503   %{
  2504   // JCC
  2505     Label *l = $labl$$label;
  2506     emit_cc(cbuf, $primary, $cop$$cmpcode);
  2507     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
  2508     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  2509     emit_d8(cbuf, disp);
  2510   %}
  2512   enc_class enc_cmov(cmpOp cop)
  2513   %{
  2514     // CMOV
  2515     $$$emit8$primary;
  2516     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  2517   %}
  2519   enc_class enc_cmovf_branch(cmpOp cop, regF dst, regF src)
  2520   %{
  2521     // Invert sense of branch from sense of cmov
  2522     emit_cc(cbuf, 0x70, $cop$$cmpcode ^ 1);
  2523     emit_d8(cbuf, ($dst$$reg < 8 && $src$$reg < 8)
  2524                   ? (UseXmmRegToRegMoveAll ? 3 : 4)
  2525                   : (UseXmmRegToRegMoveAll ? 4 : 5) ); // REX
  2526     // UseXmmRegToRegMoveAll ? movaps(dst, src) : movss(dst, src)
  2527     if (!UseXmmRegToRegMoveAll) emit_opcode(cbuf, 0xF3);
  2528     if ($dst$$reg < 8) {
  2529       if ($src$$reg >= 8) {
  2530         emit_opcode(cbuf, Assembler::REX_B);
  2532     } else {
  2533       if ($src$$reg < 8) {
  2534         emit_opcode(cbuf, Assembler::REX_R);
  2535       } else {
  2536         emit_opcode(cbuf, Assembler::REX_RB);
  2539     emit_opcode(cbuf, 0x0F);
  2540     emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  2541     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2542   %}
  2544   enc_class enc_cmovd_branch(cmpOp cop, regD dst, regD src)
  2545   %{
  2546     // Invert sense of branch from sense of cmov
  2547     emit_cc(cbuf, 0x70, $cop$$cmpcode ^ 1);
  2548     emit_d8(cbuf, $dst$$reg < 8 && $src$$reg < 8 ? 4 : 5); // REX
  2550     //  UseXmmRegToRegMoveAll ? movapd(dst, src) : movsd(dst, src)
  2551     emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x66 : 0xF2);
  2552     if ($dst$$reg < 8) {
  2553       if ($src$$reg >= 8) {
  2554         emit_opcode(cbuf, Assembler::REX_B);
  2556     } else {
  2557       if ($src$$reg < 8) {
  2558         emit_opcode(cbuf, Assembler::REX_R);
  2559       } else {
  2560         emit_opcode(cbuf, Assembler::REX_RB);
  2563     emit_opcode(cbuf, 0x0F);
  2564     emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  2565     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2566   %}
  2568   enc_class enc_PartialSubtypeCheck()
  2569   %{
  2570     Register Rrdi = as_Register(RDI_enc); // result register
  2571     Register Rrax = as_Register(RAX_enc); // super class
  2572     Register Rrcx = as_Register(RCX_enc); // killed
  2573     Register Rrsi = as_Register(RSI_enc); // sub class
  2574     Label hit, miss, cmiss;
  2576     MacroAssembler _masm(&cbuf);
  2577     // Compare super with sub directly, since super is not in its own SSA.
  2578     // The compiler used to emit this test, but we fold it in here,
  2579     // to allow platform-specific tweaking on sparc.
  2580     __ cmpq(Rrax, Rrsi);
  2581     __ jcc(Assembler::equal, hit);
  2582 #ifndef PRODUCT
  2583     __ lea(Rrcx, ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
  2584     __ incrementl(Address(Rrcx, 0));
  2585 #endif //PRODUCT
  2586     __ movq(Rrdi, Address(Rrsi,
  2587                           sizeof(oopDesc) +
  2588                           Klass::secondary_supers_offset_in_bytes()));
  2589     __ movl(Rrcx, Address(Rrdi, arrayOopDesc::length_offset_in_bytes()));
  2590     __ addq(Rrdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  2591     if (UseCompressedOops) {
  2592       __ encode_heap_oop(Rrax);
  2593       __ repne_scanl();
  2594       __ jcc(Assembler::notEqual, cmiss);
  2595       __ decode_heap_oop(Rrax);
  2596       __ movq(Address(Rrsi,
  2597                       sizeof(oopDesc) +
  2598                       Klass::secondary_super_cache_offset_in_bytes()),
  2599               Rrax);
  2600       __ jmp(hit);
  2601       __ bind(cmiss);
  2602       __ decode_heap_oop(Rrax);
  2603       __ jmp(miss);
  2604     } else {
  2605       __ repne_scanq();
  2606       __ jcc(Assembler::notEqual, miss);
  2607       __ movq(Address(Rrsi,
  2608                       sizeof(oopDesc) +
  2609                       Klass::secondary_super_cache_offset_in_bytes()),
  2610               Rrax);
  2612     __ bind(hit);
  2613     if ($primary) {
  2614       __ xorq(Rrdi, Rrdi);
  2616     __ bind(miss);
  2617   %}
  2619   enc_class Java_To_Interpreter(method meth)
  2620   %{
  2621     // CALL Java_To_Interpreter
  2622     // This is the instruction starting address for relocation info.
  2623     cbuf.set_inst_mark();
  2624     $$$emit8$primary;
  2625     // CALL directly to the runtime
  2626     emit_d32_reloc(cbuf,
  2627                    (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2628                    runtime_call_Relocation::spec(),
  2629                    RELOC_DISP32);
  2630   %}
  2632   enc_class Java_Static_Call(method meth)
  2633   %{
  2634     // JAVA STATIC CALL
  2635     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
  2636     // determine who we intended to call.
  2637     cbuf.set_inst_mark();
  2638     $$$emit8$primary;
  2640     if (!_method) {
  2641       emit_d32_reloc(cbuf,
  2642                      (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2643                      runtime_call_Relocation::spec(),
  2644                      RELOC_DISP32);
  2645     } else if (_optimized_virtual) {
  2646       emit_d32_reloc(cbuf,
  2647                      (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2648                      opt_virtual_call_Relocation::spec(),
  2649                      RELOC_DISP32);
  2650     } else {
  2651       emit_d32_reloc(cbuf,
  2652                      (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2653                      static_call_Relocation::spec(),
  2654                      RELOC_DISP32);
  2656     if (_method) {
  2657       // Emit stub for static call
  2658       emit_java_to_interp(cbuf);
  2660   %}
  2662   enc_class Java_Dynamic_Call(method meth)
  2663   %{
  2664     // JAVA DYNAMIC CALL
  2665     // !!!!!
  2666     // Generate  "movq rax, -1", placeholder instruction to load oop-info
  2667     // emit_call_dynamic_prologue( cbuf );
  2668     cbuf.set_inst_mark();
  2670     // movq rax, -1
  2671     emit_opcode(cbuf, Assembler::REX_W);
  2672     emit_opcode(cbuf, 0xB8 | RAX_enc);
  2673     emit_d64_reloc(cbuf,
  2674                    (int64_t) Universe::non_oop_word(),
  2675                    oop_Relocation::spec_for_immediate(), RELOC_IMM64);
  2676     address virtual_call_oop_addr = cbuf.inst_mark();
  2677     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2678     // who we intended to call.
  2679     cbuf.set_inst_mark();
  2680     $$$emit8$primary;
  2681     emit_d32_reloc(cbuf,
  2682                    (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2683                    virtual_call_Relocation::spec(virtual_call_oop_addr),
  2684                    RELOC_DISP32);
  2685   %}
  2687   enc_class Java_Compiled_Call(method meth)
  2688   %{
  2689     // JAVA COMPILED CALL
  2690     int disp = in_bytes(methodOopDesc:: from_compiled_offset());
  2692     // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
  2693     // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
  2695     // callq *disp(%rax)
  2696     cbuf.set_inst_mark();
  2697     $$$emit8$primary;
  2698     if (disp < 0x80) {
  2699       emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
  2700       emit_d8(cbuf, disp); // Displacement
  2701     } else {
  2702       emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
  2703       emit_d32(cbuf, disp); // Displacement
  2705   %}
  2707   enc_class reg_opc_imm(rRegI dst, immI8 shift)
  2708   %{
  2709     // SAL, SAR, SHR
  2710     int dstenc = $dst$$reg;
  2711     if (dstenc >= 8) {
  2712       emit_opcode(cbuf, Assembler::REX_B);
  2713       dstenc -= 8;
  2715     $$$emit8$primary;
  2716     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2717     $$$emit8$shift$$constant;
  2718   %}
  2720   enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
  2721   %{
  2722     // SAL, SAR, SHR
  2723     int dstenc = $dst$$reg;
  2724     if (dstenc < 8) {
  2725       emit_opcode(cbuf, Assembler::REX_W);
  2726     } else {
  2727       emit_opcode(cbuf, Assembler::REX_WB);
  2728       dstenc -= 8;
  2730     $$$emit8$primary;
  2731     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2732     $$$emit8$shift$$constant;
  2733   %}
  2735   enc_class load_immI(rRegI dst, immI src)
  2736   %{
  2737     int dstenc = $dst$$reg;
  2738     if (dstenc >= 8) {
  2739       emit_opcode(cbuf, Assembler::REX_B);
  2740       dstenc -= 8;
  2742     emit_opcode(cbuf, 0xB8 | dstenc);
  2743     $$$emit32$src$$constant;
  2744   %}
  2746   enc_class load_immL(rRegL dst, immL src)
  2747   %{
  2748     int dstenc = $dst$$reg;
  2749     if (dstenc < 8) {
  2750       emit_opcode(cbuf, Assembler::REX_W);
  2751     } else {
  2752       emit_opcode(cbuf, Assembler::REX_WB);
  2753       dstenc -= 8;
  2755     emit_opcode(cbuf, 0xB8 | dstenc);
  2756     emit_d64(cbuf, $src$$constant);
  2757   %}
  2759   enc_class load_immUL32(rRegL dst, immUL32 src)
  2760   %{
  2761     // same as load_immI, but this time we care about zeroes in the high word
  2762     int dstenc = $dst$$reg;
  2763     if (dstenc >= 8) {
  2764       emit_opcode(cbuf, Assembler::REX_B);
  2765       dstenc -= 8;
  2767     emit_opcode(cbuf, 0xB8 | dstenc);
  2768     $$$emit32$src$$constant;
  2769   %}
  2771   enc_class load_immL32(rRegL dst, immL32 src)
  2772   %{
  2773     int dstenc = $dst$$reg;
  2774     if (dstenc < 8) {
  2775       emit_opcode(cbuf, Assembler::REX_W);
  2776     } else {
  2777       emit_opcode(cbuf, Assembler::REX_WB);
  2778       dstenc -= 8;
  2780     emit_opcode(cbuf, 0xC7);
  2781     emit_rm(cbuf, 0x03, 0x00, dstenc);
  2782     $$$emit32$src$$constant;
  2783   %}
  2785   enc_class load_immP31(rRegP dst, immP32 src)
  2786   %{
  2787     // same as load_immI, but this time we care about zeroes in the high word
  2788     int dstenc = $dst$$reg;
  2789     if (dstenc >= 8) {
  2790       emit_opcode(cbuf, Assembler::REX_B);
  2791       dstenc -= 8;
  2793     emit_opcode(cbuf, 0xB8 | dstenc);
  2794     $$$emit32$src$$constant;
  2795   %}
  2797   enc_class load_immP(rRegP dst, immP src)
  2798   %{
  2799     int dstenc = $dst$$reg;
  2800     if (dstenc < 8) {
  2801       emit_opcode(cbuf, Assembler::REX_W);
  2802     } else {
  2803       emit_opcode(cbuf, Assembler::REX_WB);
  2804       dstenc -= 8;
  2806     emit_opcode(cbuf, 0xB8 | dstenc);
  2807     // This next line should be generated from ADLC
  2808     if ($src->constant_is_oop()) {
  2809       emit_d64_reloc(cbuf, $src$$constant, relocInfo::oop_type, RELOC_IMM64);
  2810     } else {
  2811       emit_d64(cbuf, $src$$constant);
  2813   %}
  2815   enc_class load_immF(regF dst, immF con)
  2816   %{
  2817     // XXX reg_mem doesn't support RIP-relative addressing yet
  2818     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2819     emit_float_constant(cbuf, $con$$constant);
  2820   %}
  2822   enc_class load_immD(regD dst, immD con)
  2823   %{
  2824     // XXX reg_mem doesn't support RIP-relative addressing yet
  2825     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2826     emit_double_constant(cbuf, $con$$constant);
  2827   %}
  2829   enc_class load_conF (regF dst, immF con) %{    // Load float constant
  2830     emit_opcode(cbuf, 0xF3);
  2831     if ($dst$$reg >= 8) {
  2832       emit_opcode(cbuf, Assembler::REX_R);
  2834     emit_opcode(cbuf, 0x0F);
  2835     emit_opcode(cbuf, 0x10);
  2836     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2837     emit_float_constant(cbuf, $con$$constant);
  2838   %}
  2840   enc_class load_conD (regD dst, immD con) %{    // Load double constant
  2841     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
  2842     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2843     if ($dst$$reg >= 8) {
  2844       emit_opcode(cbuf, Assembler::REX_R);
  2846     emit_opcode(cbuf, 0x0F);
  2847     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2848     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2849     emit_double_constant(cbuf, $con$$constant);
  2850   %}
  2852   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2853   enc_class enc_copy(rRegI dst, rRegI src)
  2854   %{
  2855     encode_copy(cbuf, $dst$$reg, $src$$reg);
  2856   %}
  2858   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  2859   enc_class enc_CopyXD( RegD dst, RegD src ) %{
  2860     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  2861   %}
  2863   enc_class enc_copy_always(rRegI dst, rRegI src)
  2864   %{
  2865     int srcenc = $src$$reg;
  2866     int dstenc = $dst$$reg;
  2868     if (dstenc < 8) {
  2869       if (srcenc >= 8) {
  2870         emit_opcode(cbuf, Assembler::REX_B);
  2871         srcenc -= 8;
  2873     } else {
  2874       if (srcenc < 8) {
  2875         emit_opcode(cbuf, Assembler::REX_R);
  2876       } else {
  2877         emit_opcode(cbuf, Assembler::REX_RB);
  2878         srcenc -= 8;
  2880       dstenc -= 8;
  2883     emit_opcode(cbuf, 0x8B);
  2884     emit_rm(cbuf, 0x3, dstenc, srcenc);
  2885   %}
  2887   enc_class enc_copy_wide(rRegL dst, rRegL src)
  2888   %{
  2889     int srcenc = $src$$reg;
  2890     int dstenc = $dst$$reg;
  2892     if (dstenc != srcenc) {
  2893       if (dstenc < 8) {
  2894         if (srcenc < 8) {
  2895           emit_opcode(cbuf, Assembler::REX_W);
  2896         } else {
  2897           emit_opcode(cbuf, Assembler::REX_WB);
  2898           srcenc -= 8;
  2900       } else {
  2901         if (srcenc < 8) {
  2902           emit_opcode(cbuf, Assembler::REX_WR);
  2903         } else {
  2904           emit_opcode(cbuf, Assembler::REX_WRB);
  2905           srcenc -= 8;
  2907         dstenc -= 8;
  2909       emit_opcode(cbuf, 0x8B);
  2910       emit_rm(cbuf, 0x3, dstenc, srcenc);
  2912   %}
  2914   enc_class Con32(immI src)
  2915   %{
  2916     // Output immediate
  2917     $$$emit32$src$$constant;
  2918   %}
  2920   enc_class Con64(immL src)
  2921   %{
  2922     // Output immediate
  2923     emit_d64($src$$constant);
  2924   %}
  2926   enc_class Con32F_as_bits(immF src)
  2927   %{
  2928     // Output Float immediate bits
  2929     jfloat jf = $src$$constant;
  2930     jint jf_as_bits = jint_cast(jf);
  2931     emit_d32(cbuf, jf_as_bits);
  2932   %}
  2934   enc_class Con16(immI src)
  2935   %{
  2936     // Output immediate
  2937     $$$emit16$src$$constant;
  2938   %}
  2940   // How is this different from Con32??? XXX
  2941   enc_class Con_d32(immI src)
  2942   %{
  2943     emit_d32(cbuf,$src$$constant);
  2944   %}
  2946   enc_class conmemref (rRegP t1) %{    // Con32(storeImmI)
  2947     // Output immediate memory reference
  2948     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2949     emit_d32(cbuf, 0x00);
  2950   %}
  2952   enc_class jump_enc(rRegL switch_val, rRegI dest) %{
  2953     MacroAssembler masm(&cbuf);
  2955     Register switch_reg = as_Register($switch_val$$reg);
  2956     Register dest_reg   = as_Register($dest$$reg);
  2957     address table_base  = masm.address_table_constant(_index2label);
  2959     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
  2960     // to do that and the compiler is using that register as one it can allocate.
  2961     // So we build it all by hand.
  2962     // Address index(noreg, switch_reg, Address::times_1);
  2963     // ArrayAddress dispatch(table, index);
  2965     Address dispatch(dest_reg, switch_reg, Address::times_1);
  2967     masm.lea(dest_reg, InternalAddress(table_base));
  2968     masm.jmp(dispatch);
  2969   %}
  2971   enc_class jump_enc_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
  2972     MacroAssembler masm(&cbuf);
  2974     Register switch_reg = as_Register($switch_val$$reg);
  2975     Register dest_reg   = as_Register($dest$$reg);
  2976     address table_base  = masm.address_table_constant(_index2label);
  2978     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
  2979     // to do that and the compiler is using that register as one it can allocate.
  2980     // So we build it all by hand.
  2981     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant, (int)$offset$$constant);
  2982     // ArrayAddress dispatch(table, index);
  2984     Address dispatch(dest_reg, switch_reg, (Address::ScaleFactor)$shift$$constant, (int)$offset$$constant);
  2986     masm.lea(dest_reg, InternalAddress(table_base));
  2987     masm.jmp(dispatch);
  2988   %}
  2990   enc_class jump_enc_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
  2991     MacroAssembler masm(&cbuf);
  2993     Register switch_reg = as_Register($switch_val$$reg);
  2994     Register dest_reg   = as_Register($dest$$reg);
  2995     address table_base  = masm.address_table_constant(_index2label);
  2997     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
  2998     // to do that and the compiler is using that register as one it can allocate.
  2999     // So we build it all by hand.
  3000     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
  3001     // ArrayAddress dispatch(table, index);
  3003     Address dispatch(dest_reg, switch_reg, (Address::ScaleFactor)$shift$$constant);
  3004     masm.lea(dest_reg, InternalAddress(table_base));
  3005     masm.jmp(dispatch);
  3007   %}
  3009   enc_class lock_prefix()
  3010   %{
  3011     if (os::is_MP()) {
  3012       emit_opcode(cbuf, 0xF0); // lock
  3014   %}
  3016   enc_class REX_mem(memory mem)
  3017   %{
  3018     if ($mem$$base >= 8) {
  3019       if ($mem$$index < 8) {
  3020         emit_opcode(cbuf, Assembler::REX_B);
  3021       } else {
  3022         emit_opcode(cbuf, Assembler::REX_XB);
  3024     } else {
  3025       if ($mem$$index >= 8) {
  3026         emit_opcode(cbuf, Assembler::REX_X);
  3029   %}
  3031   enc_class REX_mem_wide(memory mem)
  3032   %{
  3033     if ($mem$$base >= 8) {
  3034       if ($mem$$index < 8) {
  3035         emit_opcode(cbuf, Assembler::REX_WB);
  3036       } else {
  3037         emit_opcode(cbuf, Assembler::REX_WXB);
  3039     } else {
  3040       if ($mem$$index < 8) {
  3041         emit_opcode(cbuf, Assembler::REX_W);
  3042       } else {
  3043         emit_opcode(cbuf, Assembler::REX_WX);
  3046   %}
  3048   // for byte regs
  3049   enc_class REX_breg(rRegI reg)
  3050   %{
  3051     if ($reg$$reg >= 4) {
  3052       emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
  3054   %}
  3056   // for byte regs
  3057   enc_class REX_reg_breg(rRegI dst, rRegI src)
  3058   %{
  3059     if ($dst$$reg < 8) {
  3060       if ($src$$reg >= 4) {
  3061         emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
  3063     } else {
  3064       if ($src$$reg < 8) {
  3065         emit_opcode(cbuf, Assembler::REX_R);
  3066       } else {
  3067         emit_opcode(cbuf, Assembler::REX_RB);
  3070   %}
  3072   // for byte regs
  3073   enc_class REX_breg_mem(rRegI reg, memory mem)
  3074   %{
  3075     if ($reg$$reg < 8) {
  3076       if ($mem$$base < 8) {
  3077         if ($mem$$index >= 8) {
  3078           emit_opcode(cbuf, Assembler::REX_X);
  3079         } else if ($reg$$reg >= 4) {
  3080           emit_opcode(cbuf, Assembler::REX);
  3082       } else {
  3083         if ($mem$$index < 8) {
  3084           emit_opcode(cbuf, Assembler::REX_B);
  3085         } else {
  3086           emit_opcode(cbuf, Assembler::REX_XB);
  3089     } else {
  3090       if ($mem$$base < 8) {
  3091         if ($mem$$index < 8) {
  3092           emit_opcode(cbuf, Assembler::REX_R);
  3093         } else {
  3094           emit_opcode(cbuf, Assembler::REX_RX);
  3096       } else {
  3097         if ($mem$$index < 8) {
  3098           emit_opcode(cbuf, Assembler::REX_RB);
  3099         } else {
  3100           emit_opcode(cbuf, Assembler::REX_RXB);
  3104   %}
  3106   enc_class REX_reg(rRegI reg)
  3107   %{
  3108     if ($reg$$reg >= 8) {
  3109       emit_opcode(cbuf, Assembler::REX_B);
  3111   %}
  3113   enc_class REX_reg_wide(rRegI reg)
  3114   %{
  3115     if ($reg$$reg < 8) {
  3116       emit_opcode(cbuf, Assembler::REX_W);
  3117     } else {
  3118       emit_opcode(cbuf, Assembler::REX_WB);
  3120   %}
  3122   enc_class REX_reg_reg(rRegI dst, rRegI src)
  3123   %{
  3124     if ($dst$$reg < 8) {
  3125       if ($src$$reg >= 8) {
  3126         emit_opcode(cbuf, Assembler::REX_B);
  3128     } else {
  3129       if ($src$$reg < 8) {
  3130         emit_opcode(cbuf, Assembler::REX_R);
  3131       } else {
  3132         emit_opcode(cbuf, Assembler::REX_RB);
  3135   %}
  3137   enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
  3138   %{
  3139     if ($dst$$reg < 8) {
  3140       if ($src$$reg < 8) {
  3141         emit_opcode(cbuf, Assembler::REX_W);
  3142       } else {
  3143         emit_opcode(cbuf, Assembler::REX_WB);
  3145     } else {
  3146       if ($src$$reg < 8) {
  3147         emit_opcode(cbuf, Assembler::REX_WR);
  3148       } else {
  3149         emit_opcode(cbuf, Assembler::REX_WRB);
  3152   %}
  3154   enc_class REX_reg_mem(rRegI reg, memory mem)
  3155   %{
  3156     if ($reg$$reg < 8) {
  3157       if ($mem$$base < 8) {
  3158         if ($mem$$index >= 8) {
  3159           emit_opcode(cbuf, Assembler::REX_X);
  3161       } else {
  3162         if ($mem$$index < 8) {
  3163           emit_opcode(cbuf, Assembler::REX_B);
  3164         } else {
  3165           emit_opcode(cbuf, Assembler::REX_XB);
  3168     } else {
  3169       if ($mem$$base < 8) {
  3170         if ($mem$$index < 8) {
  3171           emit_opcode(cbuf, Assembler::REX_R);
  3172         } else {
  3173           emit_opcode(cbuf, Assembler::REX_RX);
  3175       } else {
  3176         if ($mem$$index < 8) {
  3177           emit_opcode(cbuf, Assembler::REX_RB);
  3178         } else {
  3179           emit_opcode(cbuf, Assembler::REX_RXB);
  3183   %}
  3185   enc_class REX_reg_mem_wide(rRegL reg, memory mem)
  3186   %{
  3187     if ($reg$$reg < 8) {
  3188       if ($mem$$base < 8) {
  3189         if ($mem$$index < 8) {
  3190           emit_opcode(cbuf, Assembler::REX_W);
  3191         } else {
  3192           emit_opcode(cbuf, Assembler::REX_WX);
  3194       } else {
  3195         if ($mem$$index < 8) {
  3196           emit_opcode(cbuf, Assembler::REX_WB);
  3197         } else {
  3198           emit_opcode(cbuf, Assembler::REX_WXB);
  3201     } else {
  3202       if ($mem$$base < 8) {
  3203         if ($mem$$index < 8) {
  3204           emit_opcode(cbuf, Assembler::REX_WR);
  3205         } else {
  3206           emit_opcode(cbuf, Assembler::REX_WRX);
  3208       } else {
  3209         if ($mem$$index < 8) {
  3210           emit_opcode(cbuf, Assembler::REX_WRB);
  3211         } else {
  3212           emit_opcode(cbuf, Assembler::REX_WRXB);
  3216   %}
  3218   enc_class reg_mem(rRegI ereg, memory mem)
  3219   %{
  3220     // High registers handle in encode_RegMem
  3221     int reg = $ereg$$reg;
  3222     int base = $mem$$base;
  3223     int index = $mem$$index;
  3224     int scale = $mem$$scale;
  3225     int disp = $mem$$disp;
  3226     bool disp_is_oop = $mem->disp_is_oop();
  3228     encode_RegMem(cbuf, reg, base, index, scale, disp, disp_is_oop);
  3229   %}
  3231   enc_class RM_opc_mem(immI rm_opcode, memory mem)
  3232   %{
  3233     int rm_byte_opcode = $rm_opcode$$constant;
  3235     // High registers handle in encode_RegMem
  3236     int base = $mem$$base;
  3237     int index = $mem$$index;
  3238     int scale = $mem$$scale;
  3239     int displace = $mem$$disp;
  3241     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when
  3242                                             // working with static
  3243                                             // globals
  3244     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
  3245                   disp_is_oop);
  3246   %}
  3248   enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
  3249   %{
  3250     int reg_encoding = $dst$$reg;
  3251     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  3252     int index        = 0x04;            // 0x04 indicates no index
  3253     int scale        = 0x00;            // 0x00 indicates no scale
  3254     int displace     = $src1$$constant; // 0x00 indicates no displacement
  3255     bool disp_is_oop = false;
  3256     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
  3257                   disp_is_oop);
  3258   %}
  3260   enc_class neg_reg(rRegI dst)
  3261   %{
  3262     int dstenc = $dst$$reg;
  3263     if (dstenc >= 8) {
  3264       emit_opcode(cbuf, Assembler::REX_B);
  3265       dstenc -= 8;
  3267     // NEG $dst
  3268     emit_opcode(cbuf, 0xF7);
  3269     emit_rm(cbuf, 0x3, 0x03, dstenc);
  3270   %}
  3272   enc_class neg_reg_wide(rRegI dst)
  3273   %{
  3274     int dstenc = $dst$$reg;
  3275     if (dstenc < 8) {
  3276       emit_opcode(cbuf, Assembler::REX_W);
  3277     } else {
  3278       emit_opcode(cbuf, Assembler::REX_WB);
  3279       dstenc -= 8;
  3281     // NEG $dst
  3282     emit_opcode(cbuf, 0xF7);
  3283     emit_rm(cbuf, 0x3, 0x03, dstenc);
  3284   %}
  3286   enc_class setLT_reg(rRegI dst)
  3287   %{
  3288     int dstenc = $dst$$reg;
  3289     if (dstenc >= 8) {
  3290       emit_opcode(cbuf, Assembler::REX_B);
  3291       dstenc -= 8;
  3292     } else if (dstenc >= 4) {
  3293       emit_opcode(cbuf, Assembler::REX);
  3295     // SETLT $dst
  3296     emit_opcode(cbuf, 0x0F);
  3297     emit_opcode(cbuf, 0x9C);
  3298     emit_rm(cbuf, 0x3, 0x0, dstenc);
  3299   %}
  3301   enc_class setNZ_reg(rRegI dst)
  3302   %{
  3303     int dstenc = $dst$$reg;
  3304     if (dstenc >= 8) {
  3305       emit_opcode(cbuf, Assembler::REX_B);
  3306       dstenc -= 8;
  3307     } else if (dstenc >= 4) {
  3308       emit_opcode(cbuf, Assembler::REX);
  3310     // SETNZ $dst
  3311     emit_opcode(cbuf, 0x0F);
  3312     emit_opcode(cbuf, 0x95);
  3313     emit_rm(cbuf, 0x3, 0x0, dstenc);
  3314   %}
  3316   enc_class enc_cmpLTP(no_rcx_RegI p, no_rcx_RegI q, no_rcx_RegI y,
  3317                        rcx_RegI tmp)
  3318   %{
  3319     // cadd_cmpLT
  3321     int tmpReg = $tmp$$reg;
  3323     int penc = $p$$reg;
  3324     int qenc = $q$$reg;
  3325     int yenc = $y$$reg;
  3327     // subl $p,$q
  3328     if (penc < 8) {
  3329       if (qenc >= 8) {
  3330         emit_opcode(cbuf, Assembler::REX_B);
  3332     } else {
  3333       if (qenc < 8) {
  3334         emit_opcode(cbuf, Assembler::REX_R);
  3335       } else {
  3336         emit_opcode(cbuf, Assembler::REX_RB);
  3339     emit_opcode(cbuf, 0x2B);
  3340     emit_rm(cbuf, 0x3, penc & 7, qenc & 7);
  3342     // sbbl $tmp, $tmp
  3343     emit_opcode(cbuf, 0x1B);
  3344     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  3346     // andl $tmp, $y
  3347     if (yenc >= 8) {
  3348       emit_opcode(cbuf, Assembler::REX_B);
  3350     emit_opcode(cbuf, 0x23);
  3351     emit_rm(cbuf, 0x3, tmpReg, yenc & 7);
  3353     // addl $p,$tmp
  3354     if (penc >= 8) {
  3355         emit_opcode(cbuf, Assembler::REX_R);
  3357     emit_opcode(cbuf, 0x03);
  3358     emit_rm(cbuf, 0x3, penc & 7, tmpReg);
  3359   %}
  3361   // Compare the lonogs and set -1, 0, or 1 into dst
  3362   enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
  3363   %{
  3364     int src1enc = $src1$$reg;
  3365     int src2enc = $src2$$reg;
  3366     int dstenc = $dst$$reg;
  3368     // cmpq $src1, $src2
  3369     if (src1enc < 8) {
  3370       if (src2enc < 8) {
  3371         emit_opcode(cbuf, Assembler::REX_W);
  3372       } else {
  3373         emit_opcode(cbuf, Assembler::REX_WB);
  3375     } else {
  3376       if (src2enc < 8) {
  3377         emit_opcode(cbuf, Assembler::REX_WR);
  3378       } else {
  3379         emit_opcode(cbuf, Assembler::REX_WRB);
  3382     emit_opcode(cbuf, 0x3B);
  3383     emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
  3385     // movl $dst, -1
  3386     if (dstenc >= 8) {
  3387       emit_opcode(cbuf, Assembler::REX_B);
  3389     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
  3390     emit_d32(cbuf, -1);
  3392     // jl,s done
  3393     emit_opcode(cbuf, 0x7C);
  3394     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
  3396     // setne $dst
  3397     if (dstenc >= 4) {
  3398       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
  3400     emit_opcode(cbuf, 0x0F);
  3401     emit_opcode(cbuf, 0x95);
  3402     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
  3404     // movzbl $dst, $dst
  3405     if (dstenc >= 4) {
  3406       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
  3408     emit_opcode(cbuf, 0x0F);
  3409     emit_opcode(cbuf, 0xB6);
  3410     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
  3411   %}
  3413   enc_class Push_ResultXD(regD dst) %{
  3414     int dstenc = $dst$$reg;
  3416     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [RSP]
  3418     // UseXmmLoadAndClearUpper ? movsd dst,[rsp] : movlpd dst,[rsp]
  3419     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  3420     if (dstenc >= 8) {
  3421       emit_opcode(cbuf, Assembler::REX_R);
  3423     emit_opcode  (cbuf, 0x0F );
  3424     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12 );
  3425     encode_RegMem(cbuf, dstenc, RSP_enc, 0x4, 0, 0, false);
  3427     // add rsp,8
  3428     emit_opcode(cbuf, Assembler::REX_W);
  3429     emit_opcode(cbuf,0x83);
  3430     emit_rm(cbuf,0x3, 0x0, RSP_enc);
  3431     emit_d8(cbuf,0x08);
  3432   %}
  3434   enc_class Push_SrcXD(regD src) %{
  3435     int srcenc = $src$$reg;
  3437     // subq rsp,#8
  3438     emit_opcode(cbuf, Assembler::REX_W);
  3439     emit_opcode(cbuf, 0x83);
  3440     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  3441     emit_d8(cbuf, 0x8);
  3443     // movsd [rsp],src
  3444     emit_opcode(cbuf, 0xF2);
  3445     if (srcenc >= 8) {
  3446       emit_opcode(cbuf, Assembler::REX_R);
  3448     emit_opcode(cbuf, 0x0F);
  3449     emit_opcode(cbuf, 0x11);
  3450     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false);
  3452     // fldd [rsp]
  3453     emit_opcode(cbuf, 0x66);
  3454     emit_opcode(cbuf, 0xDD);
  3455     encode_RegMem(cbuf, 0x0, RSP_enc, 0x4, 0, 0, false);
  3456   %}
  3459   enc_class movq_ld(regD dst, memory mem) %{
  3460     MacroAssembler _masm(&cbuf);
  3461     Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
  3462     __ movq(as_XMMRegister($dst$$reg), madr);
  3463   %}
  3465   enc_class movq_st(memory mem, regD src) %{
  3466     MacroAssembler _masm(&cbuf);
  3467     Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
  3468     __ movq(madr, as_XMMRegister($src$$reg));
  3469   %}
  3471   enc_class pshufd_8x8(regF dst, regF src) %{
  3472     MacroAssembler _masm(&cbuf);
  3474     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
  3475     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
  3476     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  3477   %}
  3479   enc_class pshufd_4x16(regF dst, regF src) %{
  3480     MacroAssembler _masm(&cbuf);
  3482     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  3483   %}
  3485   enc_class pshufd(regD dst, regD src, int mode) %{
  3486     MacroAssembler _masm(&cbuf);
  3488     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  3489   %}
  3491   enc_class pxor(regD dst, regD src) %{
  3492     MacroAssembler _masm(&cbuf);
  3494     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  3495   %}
  3497   enc_class mov_i2x(regD dst, rRegI src) %{
  3498     MacroAssembler _masm(&cbuf);
  3500     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
  3501   %}
  3503   // obj: object to lock
  3504   // box: box address (header location) -- killed
  3505   // tmp: rax -- killed
  3506   // scr: rbx -- killed
  3507   //
  3508   // What follows is a direct transliteration of fast_lock() and fast_unlock()
  3509   // from i486.ad.  See that file for comments.
  3510   // TODO: where possible switch from movq (r, 0) to movl(r,0) and
  3511   // use the shorter encoding.  (Movl clears the high-order 32-bits).
  3514   enc_class Fast_Lock(rRegP obj, rRegP box, rax_RegI tmp, rRegP scr)
  3515   %{
  3516     Register objReg = as_Register((int)$obj$$reg);
  3517     Register boxReg = as_Register((int)$box$$reg);
  3518     Register tmpReg = as_Register($tmp$$reg);
  3519     Register scrReg = as_Register($scr$$reg);
  3520     MacroAssembler masm(&cbuf);
  3522     // Verify uniqueness of register assignments -- necessary but not sufficient
  3523     assert (objReg != boxReg && objReg != tmpReg &&
  3524             objReg != scrReg && tmpReg != scrReg, "invariant") ;
  3526     if (_counters != NULL) {
  3527       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3529     if (EmitSync & 1) {
  3530         masm.movptr (Address(boxReg, 0), intptr_t(markOopDesc::unused_mark())) ;
  3531         masm.cmpq   (rsp, 0) ;
  3532     } else
  3533     if (EmitSync & 2) {
  3534         Label DONE_LABEL;
  3535         if (UseBiasedLocking) {
  3536            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3537           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3539         masm.movl(tmpReg, 0x1);
  3540         masm.orq(tmpReg, Address(objReg, 0));
  3541         masm.movq(Address(boxReg, 0), tmpReg);
  3542         if (os::is_MP()) {
  3543           masm.lock();
  3545         masm.cmpxchgq(boxReg, Address(objReg, 0)); // Updates tmpReg
  3546         masm.jcc(Assembler::equal, DONE_LABEL);
  3548         // Recursive locking
  3549         masm.subq(tmpReg, rsp);
  3550         masm.andq(tmpReg, 7 - os::vm_page_size());
  3551         masm.movq(Address(boxReg, 0), tmpReg);
  3553         masm.bind(DONE_LABEL);
  3554         masm.nop(); // avoid branch to branch
  3555     } else {
  3556         Label DONE_LABEL, IsInflated, Egress;
  3558         masm.movq  (tmpReg, Address(objReg, 0)) ;
  3559         masm.testq (tmpReg, 0x02) ;         // inflated vs stack-locked|neutral|biased
  3560         masm.jcc   (Assembler::notZero, IsInflated) ;
  3562         // it's stack-locked, biased or neutral
  3563         // TODO: optimize markword triage order to reduce the number of
  3564         // conditional branches in the most common cases.
  3565         // Beware -- there's a subtle invariant that fetch of the markword
  3566         // at [FETCH], below, will never observe a biased encoding (*101b).
  3567         // If this invariant is not held we'll suffer exclusion (safety) failure.
  3569         if (UseBiasedLocking) {
  3570           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, true, DONE_LABEL, NULL, _counters);
  3571           masm.movq  (tmpReg, Address(objReg, 0)) ;        // [FETCH]
  3574         masm.orq   (tmpReg, 1) ;
  3575         masm.movq  (Address(boxReg, 0), tmpReg) ;
  3576         if (os::is_MP()) { masm.lock(); }
  3577         masm.cmpxchgq(boxReg, Address(objReg, 0)); // Updates tmpReg
  3578         if (_counters != NULL) {
  3579            masm.cond_inc32(Assembler::equal,
  3580                            ExternalAddress((address) _counters->fast_path_entry_count_addr()));
  3582         masm.jcc   (Assembler::equal, DONE_LABEL);
  3584         // Recursive locking
  3585         masm.subq  (tmpReg, rsp);
  3586         masm.andq  (tmpReg, 7 - os::vm_page_size());
  3587         masm.movq  (Address(boxReg, 0), tmpReg);
  3588         if (_counters != NULL) {
  3589            masm.cond_inc32(Assembler::equal,
  3590                            ExternalAddress((address) _counters->fast_path_entry_count_addr()));
  3592         masm.jmp   (DONE_LABEL) ;
  3594         masm.bind  (IsInflated) ;
  3595         // It's inflated
  3597         // TODO: someday avoid the ST-before-CAS penalty by
  3598         // relocating (deferring) the following ST.
  3599         // We should also think about trying a CAS without having
  3600         // fetched _owner.  If the CAS is successful we may
  3601         // avoid an RTO->RTS upgrade on the $line.
  3602         masm.movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark())) ;
  3604         masm.movq  (boxReg, tmpReg) ;
  3605         masm.movq  (tmpReg, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3606         masm.testq (tmpReg, tmpReg) ;
  3607         masm.jcc   (Assembler::notZero, DONE_LABEL) ;
  3609         // It's inflated and appears unlocked
  3610         if (os::is_MP()) { masm.lock(); }
  3611         masm.cmpxchgq(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3612         // Intentional fall-through into DONE_LABEL ...
  3614         masm.bind  (DONE_LABEL) ;
  3615         masm.nop   () ;                 // avoid jmp to jmp
  3617   %}
  3619   // obj: object to unlock
  3620   // box: box address (displaced header location), killed
  3621   // RBX: killed tmp; cannot be obj nor box
  3622   enc_class Fast_Unlock(rRegP obj, rax_RegP box, rRegP tmp)
  3623   %{
  3625     Register objReg = as_Register($obj$$reg);
  3626     Register boxReg = as_Register($box$$reg);
  3627     Register tmpReg = as_Register($tmp$$reg);
  3628     MacroAssembler masm(&cbuf);
  3630     if (EmitSync & 4) {
  3631        masm.cmpq  (rsp, 0) ;
  3632     } else
  3633     if (EmitSync & 8) {
  3634        Label DONE_LABEL;
  3635        if (UseBiasedLocking) {
  3636          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3639        // Check whether the displaced header is 0
  3640        //(=> recursive unlock)
  3641        masm.movq(tmpReg, Address(boxReg, 0));
  3642        masm.testq(tmpReg, tmpReg);
  3643        masm.jcc(Assembler::zero, DONE_LABEL);
  3645        // If not recursive lock, reset the header to displaced header
  3646        if (os::is_MP()) {
  3647          masm.lock();
  3649        masm.cmpxchgq(tmpReg, Address(objReg, 0)); // Uses RAX which is box
  3650        masm.bind(DONE_LABEL);
  3651        masm.nop(); // avoid branch to branch
  3652     } else {
  3653        Label DONE_LABEL, Stacked, CheckSucc ;
  3655        if (UseBiasedLocking) {
  3656          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3659        masm.movq  (tmpReg, Address(objReg, 0)) ;
  3660        masm.cmpq  (Address(boxReg, 0), (int)NULL_WORD) ;
  3661        masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3662        masm.testq (tmpReg, 0x02) ;
  3663        masm.jcc   (Assembler::zero, Stacked) ;
  3665        // It's inflated
  3666        masm.movq  (boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3667        masm.xorq  (boxReg, r15_thread) ;
  3668        masm.orq   (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3669        masm.jcc   (Assembler::notZero, DONE_LABEL) ;
  3670        masm.movq  (boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
  3671        masm.orq   (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
  3672        masm.jcc   (Assembler::notZero, CheckSucc) ;
  3673        masm.mov64 (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int)NULL_WORD) ;
  3674        masm.jmp   (DONE_LABEL) ;
  3676        if ((EmitSync & 65536) == 0) {
  3677          Label LSuccess, LGoSlowPath ;
  3678          masm.bind  (CheckSucc) ;
  3679          masm.cmpq  (Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int)NULL_WORD) ;
  3680          masm.jcc   (Assembler::zero, LGoSlowPath) ;
  3682          // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
  3683          // the explicit ST;MEMBAR combination, but masm doesn't currently support
  3684          // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
  3685          // are all faster when the write buffer is populated.
  3686          masm.movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int)NULL_WORD) ;
  3687          if (os::is_MP()) {
  3688             masm.lock () ; masm.addq (Address(rsp, 0), 0) ;
  3690          masm.cmpq  (Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int)NULL_WORD) ;
  3691          masm.jcc   (Assembler::notZero, LSuccess) ;
  3693          masm.movptr (boxReg, (int)NULL_WORD) ;                   // box is really EAX
  3694          if (os::is_MP()) { masm.lock(); }
  3695          masm.cmpxchgq (r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3696          masm.jcc   (Assembler::notEqual, LSuccess) ;
  3697          // Intentional fall-through into slow-path
  3699          masm.bind  (LGoSlowPath) ;
  3700          masm.orl   (boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3701          masm.jmp   (DONE_LABEL) ;
  3703          masm.bind  (LSuccess) ;
  3704          masm.testl (boxReg, 0) ;                      // set ICC.ZF=1 to indicate success
  3705          masm.jmp   (DONE_LABEL) ;
  3708        masm.bind  (Stacked) ;
  3709        masm.movq  (tmpReg, Address (boxReg, 0)) ;      // re-fetch
  3710        if (os::is_MP()) { masm.lock(); }
  3711        masm.cmpxchgq(tmpReg, Address(objReg, 0)); // Uses RAX which is box
  3713        if (EmitSync & 65536) {
  3714           masm.bind (CheckSucc) ;
  3716        masm.bind(DONE_LABEL);
  3717        if (EmitSync & 32768) {
  3718           masm.nop();                      // avoid branch to branch
  3721   %}
  3723   enc_class enc_String_Compare()
  3724   %{
  3725     Label RCX_GOOD_LABEL, LENGTH_DIFF_LABEL,
  3726           POP_LABEL, DONE_LABEL, CONT_LABEL,
  3727           WHILE_HEAD_LABEL;
  3728     MacroAssembler masm(&cbuf);
  3730     // Get the first character position in both strings
  3731     //         [8] char array, [12] offset, [16] count
  3732     int value_offset  = java_lang_String::value_offset_in_bytes();
  3733     int offset_offset = java_lang_String::offset_offset_in_bytes();
  3734     int count_offset  = java_lang_String::count_offset_in_bytes();
  3735     int base_offset   = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3737     masm.load_heap_oop(rax, Address(rsi, value_offset));
  3738     masm.movl(rcx, Address(rsi, offset_offset));
  3739     masm.leaq(rax, Address(rax, rcx, Address::times_2, base_offset));
  3740     masm.load_heap_oop(rbx, Address(rdi, value_offset));
  3741     masm.movl(rcx, Address(rdi, offset_offset));
  3742     masm.leaq(rbx, Address(rbx, rcx, Address::times_2, base_offset));
  3744     // Compute the minimum of the string lengths(rsi) and the
  3745     // difference of the string lengths (stack)
  3747     masm.movl(rdi, Address(rdi, count_offset));
  3748     masm.movl(rsi, Address(rsi, count_offset));
  3749     masm.movl(rcx, rdi);
  3750     masm.subl(rdi, rsi);
  3751     masm.pushq(rdi);
  3752     masm.cmovl(Assembler::lessEqual, rsi, rcx);
  3754     // Is the minimum length zero?
  3755     masm.bind(RCX_GOOD_LABEL);
  3756     masm.testl(rsi, rsi);
  3757     masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  3759     // Load first characters
  3760     masm.load_unsigned_word(rcx, Address(rbx, 0));
  3761     masm.load_unsigned_word(rdi, Address(rax, 0));
  3763     // Compare first characters
  3764     masm.subl(rcx, rdi);
  3765     masm.jcc(Assembler::notZero,  POP_LABEL);
  3766     masm.decrementl(rsi);
  3767     masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  3770       // Check after comparing first character to see if strings are equivalent
  3771       Label LSkip2;
  3772       // Check if the strings start at same location
  3773       masm.cmpq(rbx, rax);
  3774       masm.jcc(Assembler::notEqual, LSkip2);
  3776       // Check if the length difference is zero (from stack)
  3777       masm.cmpl(Address(rsp, 0), 0x0);
  3778       masm.jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
  3780       // Strings might not be equivalent
  3781       masm.bind(LSkip2);
  3784     // Shift RAX and RBX to the end of the arrays, negate min
  3785     masm.leaq(rax, Address(rax, rsi, Address::times_2, 2));
  3786     masm.leaq(rbx, Address(rbx, rsi, Address::times_2, 2));
  3787     masm.negq(rsi);
  3789     // Compare the rest of the characters
  3790     masm.bind(WHILE_HEAD_LABEL);
  3791     masm.load_unsigned_word(rcx, Address(rbx, rsi, Address::times_2, 0));
  3792     masm.load_unsigned_word(rdi, Address(rax, rsi, Address::times_2, 0));
  3793     masm.subl(rcx, rdi);
  3794     masm.jcc(Assembler::notZero, POP_LABEL);
  3795     masm.incrementq(rsi);
  3796     masm.jcc(Assembler::notZero, WHILE_HEAD_LABEL);
  3798     // Strings are equal up to min length.  Return the length difference.
  3799     masm.bind(LENGTH_DIFF_LABEL);
  3800     masm.popq(rcx);
  3801     masm.jmp(DONE_LABEL);
  3803     // Discard the stored length difference
  3804     masm.bind(POP_LABEL);
  3805     masm.addq(rsp, 8);
  3807     // That's it
  3808     masm.bind(DONE_LABEL);
  3809   %}
  3811   enc_class enc_rethrow()
  3812   %{
  3813     cbuf.set_inst_mark();
  3814     emit_opcode(cbuf, 0xE9); // jmp entry
  3815     emit_d32_reloc(cbuf,
  3816                    (int) (OptoRuntime::rethrow_stub() - cbuf.code_end() - 4),
  3817                    runtime_call_Relocation::spec(),
  3818                    RELOC_DISP32);
  3819   %}
  3821   enc_class absF_encoding(regF dst)
  3822   %{
  3823     int dstenc = $dst$$reg;
  3824     address signmask_address = (address) StubRoutines::amd64::float_sign_mask();
  3826     cbuf.set_inst_mark();
  3827     if (dstenc >= 8) {
  3828       emit_opcode(cbuf, Assembler::REX_R);
  3829       dstenc -= 8;
  3831     // XXX reg_mem doesn't support RIP-relative addressing yet
  3832     emit_opcode(cbuf, 0x0F);
  3833     emit_opcode(cbuf, 0x54);
  3834     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3835     emit_d32_reloc(cbuf, signmask_address);
  3836   %}
  3838   enc_class absD_encoding(regD dst)
  3839   %{
  3840     int dstenc = $dst$$reg;
  3841     address signmask_address = (address) StubRoutines::amd64::double_sign_mask();
  3843     cbuf.set_inst_mark();
  3844     emit_opcode(cbuf, 0x66);
  3845     if (dstenc >= 8) {
  3846       emit_opcode(cbuf, Assembler::REX_R);
  3847       dstenc -= 8;
  3849     // XXX reg_mem doesn't support RIP-relative addressing yet
  3850     emit_opcode(cbuf, 0x0F);
  3851     emit_opcode(cbuf, 0x54);
  3852     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3853     emit_d32_reloc(cbuf, signmask_address);
  3854   %}
  3856   enc_class negF_encoding(regF dst)
  3857   %{
  3858     int dstenc = $dst$$reg;
  3859     address signflip_address = (address) StubRoutines::amd64::float_sign_flip();
  3861     cbuf.set_inst_mark();
  3862     if (dstenc >= 8) {
  3863       emit_opcode(cbuf, Assembler::REX_R);
  3864       dstenc -= 8;
  3866     // XXX reg_mem doesn't support RIP-relative addressing yet
  3867     emit_opcode(cbuf, 0x0F);
  3868     emit_opcode(cbuf, 0x57);
  3869     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3870     emit_d32_reloc(cbuf, signflip_address);
  3871   %}
  3873   enc_class negD_encoding(regD dst)
  3874   %{
  3875     int dstenc = $dst$$reg;
  3876     address signflip_address = (address) StubRoutines::amd64::double_sign_flip();
  3878     cbuf.set_inst_mark();
  3879     emit_opcode(cbuf, 0x66);
  3880     if (dstenc >= 8) {
  3881       emit_opcode(cbuf, Assembler::REX_R);
  3882       dstenc -= 8;
  3884     // XXX reg_mem doesn't support RIP-relative addressing yet
  3885     emit_opcode(cbuf, 0x0F);
  3886     emit_opcode(cbuf, 0x57);
  3887     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3888     emit_d32_reloc(cbuf, signflip_address);
  3889   %}
  3891   enc_class f2i_fixup(rRegI dst, regF src)
  3892   %{
  3893     int dstenc = $dst$$reg;
  3894     int srcenc = $src$$reg;
  3896     // cmpl $dst, #0x80000000
  3897     if (dstenc >= 8) {
  3898       emit_opcode(cbuf, Assembler::REX_B);
  3900     emit_opcode(cbuf, 0x81);
  3901     emit_rm(cbuf, 0x3, 0x7, dstenc & 7);
  3902     emit_d32(cbuf, 0x80000000);
  3904     // jne,s done
  3905     emit_opcode(cbuf, 0x75);
  3906     if (srcenc < 8 && dstenc < 8) {
  3907       emit_d8(cbuf, 0xF);
  3908     } else if (srcenc >= 8 && dstenc >= 8) {
  3909       emit_d8(cbuf, 0x11);
  3910     } else {
  3911       emit_d8(cbuf, 0x10);
  3914     // subq rsp, #8
  3915     emit_opcode(cbuf, Assembler::REX_W);
  3916     emit_opcode(cbuf, 0x83);
  3917     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  3918     emit_d8(cbuf, 8);
  3920     // movss [rsp], $src
  3921     emit_opcode(cbuf, 0xF3);
  3922     if (srcenc >= 8) {
  3923       emit_opcode(cbuf, Assembler::REX_R);
  3925     emit_opcode(cbuf, 0x0F);
  3926     emit_opcode(cbuf, 0x11);
  3927     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  3929     // call f2i_fixup
  3930     cbuf.set_inst_mark();
  3931     emit_opcode(cbuf, 0xE8);
  3932     emit_d32_reloc(cbuf,
  3933                    (int)
  3934                    (StubRoutines::amd64::f2i_fixup() - cbuf.code_end() - 4),
  3935                    runtime_call_Relocation::spec(),
  3936                    RELOC_DISP32);
  3938     // popq $dst
  3939     if (dstenc >= 8) {
  3940       emit_opcode(cbuf, Assembler::REX_B);
  3942     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  3944     // done:
  3945   %}
  3947   enc_class f2l_fixup(rRegL dst, regF src)
  3948   %{
  3949     int dstenc = $dst$$reg;
  3950     int srcenc = $src$$reg;
  3951     address const_address = (address) StubRoutines::amd64::double_sign_flip();
  3953     // cmpq $dst, [0x8000000000000000]
  3954     cbuf.set_inst_mark();
  3955     emit_opcode(cbuf, dstenc < 8 ? Assembler::REX_W : Assembler::REX_WR);
  3956     emit_opcode(cbuf, 0x39);
  3957     // XXX reg_mem doesn't support RIP-relative addressing yet
  3958     emit_rm(cbuf, 0x0, dstenc & 7, 0x5); // 00 reg 101
  3959     emit_d32_reloc(cbuf, const_address);
  3962     // jne,s done
  3963     emit_opcode(cbuf, 0x75);
  3964     if (srcenc < 8 && dstenc < 8) {
  3965       emit_d8(cbuf, 0xF);
  3966     } else if (srcenc >= 8 && dstenc >= 8) {
  3967       emit_d8(cbuf, 0x11);
  3968     } else {
  3969       emit_d8(cbuf, 0x10);
  3972     // subq rsp, #8
  3973     emit_opcode(cbuf, Assembler::REX_W);
  3974     emit_opcode(cbuf, 0x83);
  3975     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  3976     emit_d8(cbuf, 8);
  3978     // movss [rsp], $src
  3979     emit_opcode(cbuf, 0xF3);
  3980     if (srcenc >= 8) {
  3981       emit_opcode(cbuf, Assembler::REX_R);
  3983     emit_opcode(cbuf, 0x0F);
  3984     emit_opcode(cbuf, 0x11);
  3985     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  3987     // call f2l_fixup
  3988     cbuf.set_inst_mark();
  3989     emit_opcode(cbuf, 0xE8);
  3990     emit_d32_reloc(cbuf,
  3991                    (int)
  3992                    (StubRoutines::amd64::f2l_fixup() - cbuf.code_end() - 4),
  3993                    runtime_call_Relocation::spec(),
  3994                    RELOC_DISP32);
  3996     // popq $dst
  3997     if (dstenc >= 8) {
  3998       emit_opcode(cbuf, Assembler::REX_B);
  4000     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  4002     // done:
  4003   %}
  4005   enc_class d2i_fixup(rRegI dst, regD src)
  4006   %{
  4007     int dstenc = $dst$$reg;
  4008     int srcenc = $src$$reg;
  4010     // cmpl $dst, #0x80000000
  4011     if (dstenc >= 8) {
  4012       emit_opcode(cbuf, Assembler::REX_B);
  4014     emit_opcode(cbuf, 0x81);
  4015     emit_rm(cbuf, 0x3, 0x7, dstenc & 7);
  4016     emit_d32(cbuf, 0x80000000);
  4018     // jne,s done
  4019     emit_opcode(cbuf, 0x75);
  4020     if (srcenc < 8 && dstenc < 8) {
  4021       emit_d8(cbuf, 0xF);
  4022     } else if (srcenc >= 8 && dstenc >= 8) {
  4023       emit_d8(cbuf, 0x11);
  4024     } else {
  4025       emit_d8(cbuf, 0x10);
  4028     // subq rsp, #8
  4029     emit_opcode(cbuf, Assembler::REX_W);
  4030     emit_opcode(cbuf, 0x83);
  4031     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  4032     emit_d8(cbuf, 8);
  4034     // movsd [rsp], $src
  4035     emit_opcode(cbuf, 0xF2);
  4036     if (srcenc >= 8) {
  4037       emit_opcode(cbuf, Assembler::REX_R);
  4039     emit_opcode(cbuf, 0x0F);
  4040     emit_opcode(cbuf, 0x11);
  4041     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  4043     // call d2i_fixup
  4044     cbuf.set_inst_mark();
  4045     emit_opcode(cbuf, 0xE8);
  4046     emit_d32_reloc(cbuf,
  4047                    (int)
  4048                    (StubRoutines::amd64::d2i_fixup() - cbuf.code_end() - 4),
  4049                    runtime_call_Relocation::spec(),
  4050                    RELOC_DISP32);
  4052     // popq $dst
  4053     if (dstenc >= 8) {
  4054       emit_opcode(cbuf, Assembler::REX_B);
  4056     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  4058     // done:
  4059   %}
  4061   enc_class d2l_fixup(rRegL dst, regD src)
  4062   %{
  4063     int dstenc = $dst$$reg;
  4064     int srcenc = $src$$reg;
  4065     address const_address = (address) StubRoutines::amd64::double_sign_flip();
  4067     // cmpq $dst, [0x8000000000000000]
  4068     cbuf.set_inst_mark();
  4069     emit_opcode(cbuf, dstenc < 8 ? Assembler::REX_W : Assembler::REX_WR);
  4070     emit_opcode(cbuf, 0x39);
  4071     // XXX reg_mem doesn't support RIP-relative addressing yet
  4072     emit_rm(cbuf, 0x0, dstenc & 7, 0x5); // 00 reg 101
  4073     emit_d32_reloc(cbuf, const_address);
  4076     // jne,s done
  4077     emit_opcode(cbuf, 0x75);
  4078     if (srcenc < 8 && dstenc < 8) {
  4079       emit_d8(cbuf, 0xF);
  4080     } else if (srcenc >= 8 && dstenc >= 8) {
  4081       emit_d8(cbuf, 0x11);
  4082     } else {
  4083       emit_d8(cbuf, 0x10);
  4086     // subq rsp, #8
  4087     emit_opcode(cbuf, Assembler::REX_W);
  4088     emit_opcode(cbuf, 0x83);
  4089     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  4090     emit_d8(cbuf, 8);
  4092     // movsd [rsp], $src
  4093     emit_opcode(cbuf, 0xF2);
  4094     if (srcenc >= 8) {
  4095       emit_opcode(cbuf, Assembler::REX_R);
  4097     emit_opcode(cbuf, 0x0F);
  4098     emit_opcode(cbuf, 0x11);
  4099     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  4101     // call d2l_fixup
  4102     cbuf.set_inst_mark();
  4103     emit_opcode(cbuf, 0xE8);
  4104     emit_d32_reloc(cbuf,
  4105                    (int)
  4106                    (StubRoutines::amd64::d2l_fixup() - cbuf.code_end() - 4),
  4107                    runtime_call_Relocation::spec(),
  4108                    RELOC_DISP32);
  4110     // popq $dst
  4111     if (dstenc >= 8) {
  4112       emit_opcode(cbuf, Assembler::REX_B);
  4114     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  4116     // done:
  4117   %}
  4119   enc_class enc_membar_acquire
  4120   %{
  4121     // [jk] not needed currently, if you enable this and it really
  4122     // emits code don't forget to the remove the "size(0)" line in
  4123     // membar_acquire()
  4124     // MacroAssembler masm(&cbuf);
  4125     // masm.membar(Assembler::Membar_mask_bits(Assembler::LoadStore |
  4126     //                                         Assembler::LoadLoad));
  4127   %}
  4129   enc_class enc_membar_release
  4130   %{
  4131     // [jk] not needed currently, if you enable this and it really
  4132     // emits code don't forget to the remove the "size(0)" line in
  4133     // membar_release()
  4134     // MacroAssembler masm(&cbuf);
  4135     // masm.membar(Assembler::Membar_mask_bits(Assembler::LoadStore |
  4136     //                                         Assembler::StoreStore));
  4137   %}
  4139   enc_class enc_membar_volatile
  4140   %{
  4141     MacroAssembler masm(&cbuf);
  4142     masm.membar(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  4143                                             Assembler::StoreStore));
  4144   %}
  4146   // Safepoint Poll.  This polls the safepoint page, and causes an
  4147   // exception if it is not readable. Unfortunately, it kills
  4148   // RFLAGS in the process.
  4149   enc_class enc_safepoint_poll
  4150   %{
  4151     // testl %rax, off(%rip) // Opcode + ModRM + Disp32 == 6 bytes
  4152     // XXX reg_mem doesn't support RIP-relative addressing yet
  4153     cbuf.set_inst_mark();
  4154     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0); // XXX
  4155     emit_opcode(cbuf, 0x85); // testl
  4156     emit_rm(cbuf, 0x0, RAX_enc, 0x5); // 00 rax 101 == 0x5
  4157     // cbuf.inst_mark() is beginning of instruction
  4158     emit_d32_reloc(cbuf, os::get_polling_page());
  4159 //                    relocInfo::poll_type,
  4160   %}
  4161 %}
  4165 //----------FRAME--------------------------------------------------------------
  4166 // Definition of frame structure and management information.
  4167 //
  4168 //  S T A C K   L A Y O U T    Allocators stack-slot number
  4169 //                             |   (to get allocators register number
  4170 //  G  Owned by    |        |  v    add OptoReg::stack0())
  4171 //  r   CALLER     |        |
  4172 //  o     |        +--------+      pad to even-align allocators stack-slot
  4173 //  w     V        |  pad0  |        numbers; owned by CALLER
  4174 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  4175 //  h     ^        |   in   |  5
  4176 //        |        |  args  |  4   Holes in incoming args owned by SELF
  4177 //  |     |        |        |  3
  4178 //  |     |        +--------+
  4179 //  V     |        | old out|      Empty on Intel, window on Sparc
  4180 //        |    old |preserve|      Must be even aligned.
  4181 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  4182 //        |        |   in   |  3   area for Intel ret address
  4183 //     Owned by    |preserve|      Empty on Sparc.
  4184 //       SELF      +--------+
  4185 //        |        |  pad2  |  2   pad to align old SP
  4186 //        |        +--------+  1
  4187 //        |        | locks  |  0
  4188 //        |        +--------+----> OptoReg::stack0(), even aligned
  4189 //        |        |  pad1  | 11   pad to align new SP
  4190 //        |        +--------+
  4191 //        |        |        | 10
  4192 //        |        | spills |  9   spills
  4193 //        V        |        |  8   (pad0 slot for callee)
  4194 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  4195 //        ^        |  out   |  7
  4196 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  4197 //     Owned by    +--------+
  4198 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  4199 //        |    new |preserve|      Must be even-aligned.
  4200 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  4201 //        |        |        |
  4202 //
  4203 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  4204 //         known from SELF's arguments and the Java calling convention.
  4205 //         Region 6-7 is determined per call site.
  4206 // Note 2: If the calling convention leaves holes in the incoming argument
  4207 //         area, those holes are owned by SELF.  Holes in the outgoing area
  4208 //         are owned by the CALLEE.  Holes should not be nessecary in the
  4209 //         incoming area, as the Java calling convention is completely under
  4210 //         the control of the AD file.  Doubles can be sorted and packed to
  4211 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  4212 //         varargs C calling conventions.
  4213 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  4214 //         even aligned with pad0 as needed.
  4215 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  4216 //         region 6-11 is even aligned; it may be padded out more so that
  4217 //         the region from SP to FP meets the minimum stack alignment.
  4218 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
  4219 //         alignment.  Region 11, pad1, may be dynamically extended so that
  4220 //         SP meets the minimum alignment.
  4222 frame
  4223 %{
  4224   // What direction does stack grow in (assumed to be same for C & Java)
  4225   stack_direction(TOWARDS_LOW);
  4227   // These three registers define part of the calling convention
  4228   // between compiled code and the interpreter.
  4229   inline_cache_reg(RAX);                // Inline Cache Register
  4230   interpreter_method_oop_reg(RBX);      // Method Oop Register when
  4231                                         // calling interpreter
  4233   // Optional: name the operand used by cisc-spilling to access
  4234   // [stack_pointer + offset]
  4235   cisc_spilling_operand_name(indOffset32);
  4237   // Number of stack slots consumed by locking an object
  4238   sync_stack_slots(2);
  4240   // Compiled code's Frame Pointer
  4241   frame_pointer(RSP);
  4243   // Interpreter stores its frame pointer in a register which is
  4244   // stored to the stack by I2CAdaptors.
  4245   // I2CAdaptors convert from interpreted java to compiled java.
  4246   interpreter_frame_pointer(RBP);
  4248   // Stack alignment requirement
  4249   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
  4251   // Number of stack slots between incoming argument block and the start of
  4252   // a new frame.  The PROLOG must add this many slots to the stack.  The
  4253   // EPILOG must remove this many slots.  amd64 needs two slots for
  4254   // return address.
  4255   in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
  4257   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  4258   // for calls to C.  Supports the var-args backing area for register parms.
  4259   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
  4261   // The after-PROLOG location of the return address.  Location of
  4262   // return address specifies a type (REG or STACK) and a number
  4263   // representing the register number (i.e. - use a register name) or
  4264   // stack slot.
  4265   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  4266   // Otherwise, it is above the locks and verification slot and alignment word
  4267   return_addr(STACK - 2 +
  4268               round_to(2 + 2 * VerifyStackAtCalls +
  4269                        Compile::current()->fixed_slots(),
  4270                        WordsPerLong * 2));
  4272   // Body of function which returns an integer array locating
  4273   // arguments either in registers or in stack slots.  Passed an array
  4274   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4275   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4276   // arguments for a CALLEE.  Incoming stack arguments are
  4277   // automatically biased by the preserve_stack_slots field above.
  4279   calling_convention
  4280   %{
  4281     // No difference between ingoing/outgoing just pass false
  4282     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  4283   %}
  4285   c_calling_convention
  4286   %{
  4287     // This is obviously always outgoing
  4288     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  4289   %}
  4291   // Location of compiled Java return values.  Same as C for now.
  4292   return_value
  4293   %{
  4294     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
  4295            "only return normal values");
  4297     static const int lo[Op_RegL + 1] = {
  4298       0,
  4299       0,
  4300       RAX_num,  // Op_RegN
  4301       RAX_num,  // Op_RegI
  4302       RAX_num,  // Op_RegP
  4303       XMM0_num, // Op_RegF
  4304       XMM0_num, // Op_RegD
  4305       RAX_num   // Op_RegL
  4306     };
  4307     static const int hi[Op_RegL + 1] = {
  4308       0,
  4309       0,
  4310       OptoReg::Bad, // Op_RegN
  4311       OptoReg::Bad, // Op_RegI
  4312       RAX_H_num,    // Op_RegP
  4313       OptoReg::Bad, // Op_RegF
  4314       XMM0_H_num,   // Op_RegD
  4315       RAX_H_num     // Op_RegL
  4316     };
  4317     assert(ARRAY_SIZE(hi) == _last_machine_leaf - 1, "missing type");
  4318     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
  4319   %}
  4320 %}
  4322 //----------ATTRIBUTES---------------------------------------------------------
  4323 //----------Operand Attributes-------------------------------------------------
  4324 op_attrib op_cost(0);        // Required cost attribute
  4326 //----------Instruction Attributes---------------------------------------------
  4327 ins_attrib ins_cost(100);       // Required cost attribute
  4328 ins_attrib ins_size(8);         // Required size attribute (in bits)
  4329 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  4330 ins_attrib ins_short_branch(0); // Required flag: is this instruction
  4331                                 // a non-matching short branch variant
  4332                                 // of some long branch?
  4333 ins_attrib ins_alignment(1);    // Required alignment attribute (must
  4334                                 // be a power of 2) specifies the
  4335                                 // alignment that some part of the
  4336                                 // instruction (not necessarily the
  4337                                 // start) requires.  If > 1, a
  4338                                 // compute_padding() function must be
  4339                                 // provided for the instruction
  4341 //----------OPERANDS-----------------------------------------------------------
  4342 // Operand definitions must precede instruction definitions for correct parsing
  4343 // in the ADLC because operands constitute user defined types which are used in
  4344 // instruction definitions.
  4346 //----------Simple Operands----------------------------------------------------
  4347 // Immediate Operands
  4348 // Integer Immediate
  4349 operand immI()
  4350 %{
  4351   match(ConI);
  4353   op_cost(10);
  4354   format %{ %}
  4355   interface(CONST_INTER);
  4356 %}
  4358 // Constant for test vs zero
  4359 operand immI0()
  4360 %{
  4361   predicate(n->get_int() == 0);
  4362   match(ConI);
  4364   op_cost(0);
  4365   format %{ %}
  4366   interface(CONST_INTER);
  4367 %}
  4369 // Constant for increment
  4370 operand immI1()
  4371 %{
  4372   predicate(n->get_int() == 1);
  4373   match(ConI);
  4375   op_cost(0);
  4376   format %{ %}
  4377   interface(CONST_INTER);
  4378 %}
  4380 // Constant for decrement
  4381 operand immI_M1()
  4382 %{
  4383   predicate(n->get_int() == -1);
  4384   match(ConI);
  4386   op_cost(0);
  4387   format %{ %}
  4388   interface(CONST_INTER);
  4389 %}
  4391 // Valid scale values for addressing modes
  4392 operand immI2()
  4393 %{
  4394   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  4395   match(ConI);
  4397   format %{ %}
  4398   interface(CONST_INTER);
  4399 %}
  4401 operand immI8()
  4402 %{
  4403   predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
  4404   match(ConI);
  4406   op_cost(5);
  4407   format %{ %}
  4408   interface(CONST_INTER);
  4409 %}
  4411 operand immI16()
  4412 %{
  4413   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  4414   match(ConI);
  4416   op_cost(10);
  4417   format %{ %}
  4418   interface(CONST_INTER);
  4419 %}
  4421 // Constant for long shifts
  4422 operand immI_32()
  4423 %{
  4424   predicate( n->get_int() == 32 );
  4425   match(ConI);
  4427   op_cost(0);
  4428   format %{ %}
  4429   interface(CONST_INTER);
  4430 %}
  4432 // Constant for long shifts
  4433 operand immI_64()
  4434 %{
  4435   predicate( n->get_int() == 64 );
  4436   match(ConI);
  4438   op_cost(0);
  4439   format %{ %}
  4440   interface(CONST_INTER);
  4441 %}
  4443 // Pointer Immediate
  4444 operand immP()
  4445 %{
  4446   match(ConP);
  4448   op_cost(10);
  4449   format %{ %}
  4450   interface(CONST_INTER);
  4451 %}
  4453 // NULL Pointer Immediate
  4454 operand immP0()
  4455 %{
  4456   predicate(n->get_ptr() == 0);
  4457   match(ConP);
  4459   op_cost(5);
  4460   format %{ %}
  4461   interface(CONST_INTER);
  4462 %}
  4464 // Pointer Immediate
  4465 operand immN() %{
  4466   match(ConN);
  4468   op_cost(10);
  4469   format %{ %}
  4470   interface(CONST_INTER);
  4471 %}
  4473 // NULL Pointer Immediate
  4474 operand immN0() %{
  4475   predicate(n->get_narrowcon() == 0);
  4476   match(ConN);
  4478   op_cost(5);
  4479   format %{ %}
  4480   interface(CONST_INTER);
  4481 %}
  4483 operand immP31()
  4484 %{
  4485   predicate(!n->as_Type()->type()->isa_oopptr()
  4486             && (n->get_ptr() >> 31) == 0);
  4487   match(ConP);
  4489   op_cost(5);
  4490   format %{ %}
  4491   interface(CONST_INTER);
  4492 %}
  4495 // Long Immediate
  4496 operand immL()
  4497 %{
  4498   match(ConL);
  4500   op_cost(20);
  4501   format %{ %}
  4502   interface(CONST_INTER);
  4503 %}
  4505 // Long Immediate 8-bit
  4506 operand immL8()
  4507 %{
  4508   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
  4509   match(ConL);
  4511   op_cost(5);
  4512   format %{ %}
  4513   interface(CONST_INTER);
  4514 %}
  4516 // Long Immediate 32-bit unsigned
  4517 operand immUL32()
  4518 %{
  4519   predicate(n->get_long() == (unsigned int) (n->get_long()));
  4520   match(ConL);
  4522   op_cost(10);
  4523   format %{ %}
  4524   interface(CONST_INTER);
  4525 %}
  4527 // Long Immediate 32-bit signed
  4528 operand immL32()
  4529 %{
  4530   predicate(n->get_long() == (int) (n->get_long()));
  4531   match(ConL);
  4533   op_cost(15);
  4534   format %{ %}
  4535   interface(CONST_INTER);
  4536 %}
  4538 // Long Immediate zero
  4539 operand immL0()
  4540 %{
  4541   predicate(n->get_long() == 0L);
  4542   match(ConL);
  4544   op_cost(10);
  4545   format %{ %}
  4546   interface(CONST_INTER);
  4547 %}
  4549 // Constant for increment
  4550 operand immL1()
  4551 %{
  4552   predicate(n->get_long() == 1);
  4553   match(ConL);
  4555   format %{ %}
  4556   interface(CONST_INTER);
  4557 %}
  4559 // Constant for decrement
  4560 operand immL_M1()
  4561 %{
  4562   predicate(n->get_long() == -1);
  4563   match(ConL);
  4565   format %{ %}
  4566   interface(CONST_INTER);
  4567 %}
  4569 // Long Immediate: the value 10
  4570 operand immL10()
  4571 %{
  4572   predicate(n->get_long() == 10);
  4573   match(ConL);
  4575   format %{ %}
  4576   interface(CONST_INTER);
  4577 %}
  4579 // Long immediate from 0 to 127.
  4580 // Used for a shorter form of long mul by 10.
  4581 operand immL_127()
  4582 %{
  4583   predicate(0 <= n->get_long() && n->get_long() < 0x80);
  4584   match(ConL);
  4586   op_cost(10);
  4587   format %{ %}
  4588   interface(CONST_INTER);
  4589 %}
  4591 // Long Immediate: low 32-bit mask
  4592 operand immL_32bits()
  4593 %{
  4594   predicate(n->get_long() == 0xFFFFFFFFL);
  4595   match(ConL);
  4596   op_cost(20);
  4598   format %{ %}
  4599   interface(CONST_INTER);
  4600 %}
  4602 // Float Immediate zero
  4603 operand immF0()
  4604 %{
  4605   predicate(jint_cast(n->getf()) == 0);
  4606   match(ConF);
  4608   op_cost(5);
  4609   format %{ %}
  4610   interface(CONST_INTER);
  4611 %}
  4613 // Float Immediate
  4614 operand immF()
  4615 %{
  4616   match(ConF);
  4618   op_cost(15);
  4619   format %{ %}
  4620   interface(CONST_INTER);
  4621 %}
  4623 // Double Immediate zero
  4624 operand immD0()
  4625 %{
  4626   predicate(jlong_cast(n->getd()) == 0);
  4627   match(ConD);
  4629   op_cost(5);
  4630   format %{ %}
  4631   interface(CONST_INTER);
  4632 %}
  4634 // Double Immediate
  4635 operand immD()
  4636 %{
  4637   match(ConD);
  4639   op_cost(15);
  4640   format %{ %}
  4641   interface(CONST_INTER);
  4642 %}
  4644 // Immediates for special shifts (sign extend)
  4646 // Constants for increment
  4647 operand immI_16()
  4648 %{
  4649   predicate(n->get_int() == 16);
  4650   match(ConI);
  4652   format %{ %}
  4653   interface(CONST_INTER);
  4654 %}
  4656 operand immI_24()
  4657 %{
  4658   predicate(n->get_int() == 24);
  4659   match(ConI);
  4661   format %{ %}
  4662   interface(CONST_INTER);
  4663 %}
  4665 // Constant for byte-wide masking
  4666 operand immI_255()
  4667 %{
  4668   predicate(n->get_int() == 255);
  4669   match(ConI);
  4671   format %{ %}
  4672   interface(CONST_INTER);
  4673 %}
  4675 // Constant for short-wide masking
  4676 operand immI_65535()
  4677 %{
  4678   predicate(n->get_int() == 65535);
  4679   match(ConI);
  4681   format %{ %}
  4682   interface(CONST_INTER);
  4683 %}
  4685 // Constant for byte-wide masking
  4686 operand immL_255()
  4687 %{
  4688   predicate(n->get_long() == 255);
  4689   match(ConL);
  4691   format %{ %}
  4692   interface(CONST_INTER);
  4693 %}
  4695 // Constant for short-wide masking
  4696 operand immL_65535()
  4697 %{
  4698   predicate(n->get_long() == 65535);
  4699   match(ConL);
  4701   format %{ %}
  4702   interface(CONST_INTER);
  4703 %}
  4705 // Register Operands
  4706 // Integer Register
  4707 operand rRegI()
  4708 %{
  4709   constraint(ALLOC_IN_RC(int_reg));
  4710   match(RegI);
  4712   match(rax_RegI);
  4713   match(rbx_RegI);
  4714   match(rcx_RegI);
  4715   match(rdx_RegI);
  4716   match(rdi_RegI);
  4718   format %{ %}
  4719   interface(REG_INTER);
  4720 %}
  4722 // Special Registers
  4723 operand rax_RegI()
  4724 %{
  4725   constraint(ALLOC_IN_RC(int_rax_reg));
  4726   match(RegI);
  4727   match(rRegI);
  4729   format %{ "RAX" %}
  4730   interface(REG_INTER);
  4731 %}
  4733 // Special Registers
  4734 operand rbx_RegI()
  4735 %{
  4736   constraint(ALLOC_IN_RC(int_rbx_reg));
  4737   match(RegI);
  4738   match(rRegI);
  4740   format %{ "RBX" %}
  4741   interface(REG_INTER);
  4742 %}
  4744 operand rcx_RegI()
  4745 %{
  4746   constraint(ALLOC_IN_RC(int_rcx_reg));
  4747   match(RegI);
  4748   match(rRegI);
  4750   format %{ "RCX" %}
  4751   interface(REG_INTER);
  4752 %}
  4754 operand rdx_RegI()
  4755 %{
  4756   constraint(ALLOC_IN_RC(int_rdx_reg));
  4757   match(RegI);
  4758   match(rRegI);
  4760   format %{ "RDX" %}
  4761   interface(REG_INTER);
  4762 %}
  4764 operand rdi_RegI()
  4765 %{
  4766   constraint(ALLOC_IN_RC(int_rdi_reg));
  4767   match(RegI);
  4768   match(rRegI);
  4770   format %{ "RDI" %}
  4771   interface(REG_INTER);
  4772 %}
  4774 operand no_rcx_RegI()
  4775 %{
  4776   constraint(ALLOC_IN_RC(int_no_rcx_reg));
  4777   match(RegI);
  4778   match(rax_RegI);
  4779   match(rbx_RegI);
  4780   match(rdx_RegI);
  4781   match(rdi_RegI);
  4783   format %{ %}
  4784   interface(REG_INTER);
  4785 %}
  4787 operand no_rax_rdx_RegI()
  4788 %{
  4789   constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
  4790   match(RegI);
  4791   match(rbx_RegI);
  4792   match(rcx_RegI);
  4793   match(rdi_RegI);
  4795   format %{ %}
  4796   interface(REG_INTER);
  4797 %}
  4799 // Pointer Register
  4800 operand any_RegP()
  4801 %{
  4802   constraint(ALLOC_IN_RC(any_reg));
  4803   match(RegP);
  4804   match(rax_RegP);
  4805   match(rbx_RegP);
  4806   match(rdi_RegP);
  4807   match(rsi_RegP);
  4808   match(rbp_RegP);
  4809   match(r15_RegP);
  4810   match(rRegP);
  4812   format %{ %}
  4813   interface(REG_INTER);
  4814 %}
  4816 operand rRegP()
  4817 %{
  4818   constraint(ALLOC_IN_RC(ptr_reg));
  4819   match(RegP);
  4820   match(rax_RegP);
  4821   match(rbx_RegP);
  4822   match(rdi_RegP);
  4823   match(rsi_RegP);
  4824   match(rbp_RegP);
  4825   match(r15_RegP);  // See Q&A below about r15_RegP.
  4827   format %{ %}
  4828   interface(REG_INTER);
  4829 %}
  4832 operand r12RegL() %{
  4833   constraint(ALLOC_IN_RC(long_r12_reg));
  4834   match(RegL);
  4836   format %{ %}
  4837   interface(REG_INTER);
  4838 %}
  4840 operand rRegN() %{
  4841   constraint(ALLOC_IN_RC(int_reg));
  4842   match(RegN);
  4844   format %{ %}
  4845   interface(REG_INTER);
  4846 %}
  4848 // Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
  4849 // Answer: Operand match rules govern the DFA as it processes instruction inputs.
  4850 // It's fine for an instruction input which expects rRegP to match a r15_RegP.
  4851 // The output of an instruction is controlled by the allocator, which respects
  4852 // register class masks, not match rules.  Unless an instruction mentions
  4853 // r15_RegP or any_RegP explicitly as its output, r15 will not be considered
  4854 // by the allocator as an input.
  4856 operand no_rax_RegP()
  4857 %{
  4858   constraint(ALLOC_IN_RC(ptr_no_rax_reg));
  4859   match(RegP);
  4860   match(rbx_RegP);
  4861   match(rsi_RegP);
  4862   match(rdi_RegP);
  4864   format %{ %}
  4865   interface(REG_INTER);
  4866 %}
  4868 operand no_rbp_RegP()
  4869 %{
  4870   constraint(ALLOC_IN_RC(ptr_no_rbp_reg));
  4871   match(RegP);
  4872   match(rbx_RegP);
  4873   match(rsi_RegP);
  4874   match(rdi_RegP);
  4876   format %{ %}
  4877   interface(REG_INTER);
  4878 %}
  4880 operand no_rax_rbx_RegP()
  4881 %{
  4882   constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
  4883   match(RegP);
  4884   match(rsi_RegP);
  4885   match(rdi_RegP);
  4887   format %{ %}
  4888   interface(REG_INTER);
  4889 %}
  4891 // Special Registers
  4892 // Return a pointer value
  4893 operand rax_RegP()
  4894 %{
  4895   constraint(ALLOC_IN_RC(ptr_rax_reg));
  4896   match(RegP);
  4897   match(rRegP);
  4899   format %{ %}
  4900   interface(REG_INTER);
  4901 %}
  4903 // Special Registers
  4904 // Return a compressed pointer value
  4905 operand rax_RegN()
  4906 %{
  4907   constraint(ALLOC_IN_RC(int_rax_reg));
  4908   match(RegN);
  4909   match(rRegN);
  4911   format %{ %}
  4912   interface(REG_INTER);
  4913 %}
  4915 // Used in AtomicAdd
  4916 operand rbx_RegP()
  4917 %{
  4918   constraint(ALLOC_IN_RC(ptr_rbx_reg));
  4919   match(RegP);
  4920   match(rRegP);
  4922   format %{ %}
  4923   interface(REG_INTER);
  4924 %}
  4926 operand rsi_RegP()
  4927 %{
  4928   constraint(ALLOC_IN_RC(ptr_rsi_reg));
  4929   match(RegP);
  4930   match(rRegP);
  4932   format %{ %}
  4933   interface(REG_INTER);
  4934 %}
  4936 // Used in rep stosq
  4937 operand rdi_RegP()
  4938 %{
  4939   constraint(ALLOC_IN_RC(ptr_rdi_reg));
  4940   match(RegP);
  4941   match(rRegP);
  4943   format %{ %}
  4944   interface(REG_INTER);
  4945 %}
  4947 operand rbp_RegP()
  4948 %{
  4949   constraint(ALLOC_IN_RC(ptr_rbp_reg));
  4950   match(RegP);
  4951   match(rRegP);
  4953   format %{ %}
  4954   interface(REG_INTER);
  4955 %}
  4957 operand r15_RegP()
  4958 %{
  4959   constraint(ALLOC_IN_RC(ptr_r15_reg));
  4960   match(RegP);
  4961   match(rRegP);
  4963   format %{ %}
  4964   interface(REG_INTER);
  4965 %}
  4967 operand rRegL()
  4968 %{
  4969   constraint(ALLOC_IN_RC(long_reg));
  4970   match(RegL);
  4971   match(rax_RegL);
  4972   match(rdx_RegL);
  4974   format %{ %}
  4975   interface(REG_INTER);
  4976 %}
  4978 // Special Registers
  4979 operand no_rax_rdx_RegL()
  4980 %{
  4981   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
  4982   match(RegL);
  4983   match(rRegL);
  4985   format %{ %}
  4986   interface(REG_INTER);
  4987 %}
  4989 operand no_rax_RegL()
  4990 %{
  4991   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
  4992   match(RegL);
  4993   match(rRegL);
  4994   match(rdx_RegL);
  4996   format %{ %}
  4997   interface(REG_INTER);
  4998 %}
  5000 operand no_rcx_RegL()
  5001 %{
  5002   constraint(ALLOC_IN_RC(long_no_rcx_reg));
  5003   match(RegL);
  5004   match(rRegL);
  5006   format %{ %}
  5007   interface(REG_INTER);
  5008 %}
  5010 operand rax_RegL()
  5011 %{
  5012   constraint(ALLOC_IN_RC(long_rax_reg));
  5013   match(RegL);
  5014   match(rRegL);
  5016   format %{ "RAX" %}
  5017   interface(REG_INTER);
  5018 %}
  5020 operand rcx_RegL()
  5021 %{
  5022   constraint(ALLOC_IN_RC(long_rcx_reg));
  5023   match(RegL);
  5024   match(rRegL);
  5026   format %{ %}
  5027   interface(REG_INTER);
  5028 %}
  5030 operand rdx_RegL()
  5031 %{
  5032   constraint(ALLOC_IN_RC(long_rdx_reg));
  5033   match(RegL);
  5034   match(rRegL);
  5036   format %{ %}
  5037   interface(REG_INTER);
  5038 %}
  5040 // Flags register, used as output of compare instructions
  5041 operand rFlagsReg()
  5042 %{
  5043   constraint(ALLOC_IN_RC(int_flags));
  5044   match(RegFlags);
  5046   format %{ "RFLAGS" %}
  5047   interface(REG_INTER);
  5048 %}
  5050 // Flags register, used as output of FLOATING POINT compare instructions
  5051 operand rFlagsRegU()
  5052 %{
  5053   constraint(ALLOC_IN_RC(int_flags));
  5054   match(RegFlags);
  5056   format %{ "RFLAGS_U" %}
  5057   interface(REG_INTER);
  5058 %}
  5060 // Float register operands
  5061 operand regF()
  5062 %{
  5063   constraint(ALLOC_IN_RC(float_reg));
  5064   match(RegF);
  5066   format %{ %}
  5067   interface(REG_INTER);
  5068 %}
  5070 // Double register operands
  5071 operand regD()
  5072 %{
  5073   constraint(ALLOC_IN_RC(double_reg));
  5074   match(RegD);
  5076   format %{ %}
  5077   interface(REG_INTER);
  5078 %}
  5081 //----------Memory Operands----------------------------------------------------
  5082 // Direct Memory Operand
  5083 // operand direct(immP addr)
  5084 // %{
  5085 //   match(addr);
  5087 //   format %{ "[$addr]" %}
  5088 //   interface(MEMORY_INTER) %{
  5089 //     base(0xFFFFFFFF);
  5090 //     index(0x4);
  5091 //     scale(0x0);
  5092 //     disp($addr);
  5093 //   %}
  5094 // %}
  5096 // Indirect Memory Operand
  5097 operand indirect(any_RegP reg)
  5098 %{
  5099   constraint(ALLOC_IN_RC(ptr_reg));
  5100   match(reg);
  5102   format %{ "[$reg]" %}
  5103   interface(MEMORY_INTER) %{
  5104     base($reg);
  5105     index(0x4);
  5106     scale(0x0);
  5107     disp(0x0);
  5108   %}
  5109 %}
  5111 // Indirect Memory Plus Short Offset Operand
  5112 operand indOffset8(any_RegP reg, immL8 off)
  5113 %{
  5114   constraint(ALLOC_IN_RC(ptr_reg));
  5115   match(AddP reg off);
  5117   format %{ "[$reg + $off (8-bit)]" %}
  5118   interface(MEMORY_INTER) %{
  5119     base($reg);
  5120     index(0x4);
  5121     scale(0x0);
  5122     disp($off);
  5123   %}
  5124 %}
  5126 // Indirect Memory Plus Long Offset Operand
  5127 operand indOffset32(any_RegP reg, immL32 off)
  5128 %{
  5129   constraint(ALLOC_IN_RC(ptr_reg));
  5130   match(AddP reg off);
  5132   format %{ "[$reg + $off (32-bit)]" %}
  5133   interface(MEMORY_INTER) %{
  5134     base($reg);
  5135     index(0x4);
  5136     scale(0x0);
  5137     disp($off);
  5138   %}
  5139 %}
  5141 // Indirect Memory Plus Index Register Plus Offset Operand
  5142 operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
  5143 %{
  5144   constraint(ALLOC_IN_RC(ptr_reg));
  5145   match(AddP (AddP reg lreg) off);
  5147   op_cost(10);
  5148   format %{"[$reg + $off + $lreg]" %}
  5149   interface(MEMORY_INTER) %{
  5150     base($reg);
  5151     index($lreg);
  5152     scale(0x0);
  5153     disp($off);
  5154   %}
  5155 %}
  5157 // Indirect Memory Plus Index Register Plus Offset Operand
  5158 operand indIndex(any_RegP reg, rRegL lreg)
  5159 %{
  5160   constraint(ALLOC_IN_RC(ptr_reg));
  5161   match(AddP reg lreg);
  5163   op_cost(10);
  5164   format %{"[$reg + $lreg]" %}
  5165   interface(MEMORY_INTER) %{
  5166     base($reg);
  5167     index($lreg);
  5168     scale(0x0);
  5169     disp(0x0);
  5170   %}
  5171 %}
  5173 // Indirect Memory Times Scale Plus Index Register
  5174 operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
  5175 %{
  5176   constraint(ALLOC_IN_RC(ptr_reg));
  5177   match(AddP reg (LShiftL lreg scale));
  5179   op_cost(10);
  5180   format %{"[$reg + $lreg << $scale]" %}
  5181   interface(MEMORY_INTER) %{
  5182     base($reg);
  5183     index($lreg);
  5184     scale($scale);
  5185     disp(0x0);
  5186   %}
  5187 %}
  5189 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5190 operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
  5191 %{
  5192   constraint(ALLOC_IN_RC(ptr_reg));
  5193   match(AddP (AddP reg (LShiftL lreg scale)) off);
  5195   op_cost(10);
  5196   format %{"[$reg + $off + $lreg << $scale]" %}
  5197   interface(MEMORY_INTER) %{
  5198     base($reg);
  5199     index($lreg);
  5200     scale($scale);
  5201     disp($off);
  5202   %}
  5203 %}
  5205 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5206 operand indIndexScaleOffsetComp(rRegN src, immL32 off, r12RegL base) %{
  5207   constraint(ALLOC_IN_RC(ptr_reg));
  5208   match(AddP (DecodeN src base) off);
  5210   op_cost(10);
  5211   format %{"[$base + $src << 3 + $off] (compressed)" %}
  5212   interface(MEMORY_INTER) %{
  5213     base($base);
  5214     index($src);
  5215     scale(0x3);
  5216     disp($off);
  5217   %}
  5218 %}
  5220 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
  5221 operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
  5222 %{
  5223   constraint(ALLOC_IN_RC(ptr_reg));
  5224   predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5225   match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
  5227   op_cost(10);
  5228   format %{"[$reg + $off + $idx << $scale]" %}
  5229   interface(MEMORY_INTER) %{
  5230     base($reg);
  5231     index($idx);
  5232     scale($scale);
  5233     disp($off);
  5234   %}
  5235 %}
  5237 //----------Special Memory Operands--------------------------------------------
  5238 // Stack Slot Operand - This operand is used for loading and storing temporary
  5239 //                      values on the stack where a match requires a value to
  5240 //                      flow through memory.
  5241 operand stackSlotP(sRegP reg)
  5242 %{
  5243   constraint(ALLOC_IN_RC(stack_slots));
  5244   // No match rule because this operand is only generated in matching
  5246   format %{ "[$reg]" %}
  5247   interface(MEMORY_INTER) %{
  5248     base(0x4);   // RSP
  5249     index(0x4);  // No Index
  5250     scale(0x0);  // No Scale
  5251     disp($reg);  // Stack Offset
  5252   %}
  5253 %}
  5255 operand stackSlotI(sRegI reg)
  5256 %{
  5257   constraint(ALLOC_IN_RC(stack_slots));
  5258   // No match rule because this operand is only generated in matching
  5260   format %{ "[$reg]" %}
  5261   interface(MEMORY_INTER) %{
  5262     base(0x4);   // RSP
  5263     index(0x4);  // No Index
  5264     scale(0x0);  // No Scale
  5265     disp($reg);  // Stack Offset
  5266   %}
  5267 %}
  5269 operand stackSlotF(sRegF reg)
  5270 %{
  5271   constraint(ALLOC_IN_RC(stack_slots));
  5272   // No match rule because this operand is only generated in matching
  5274   format %{ "[$reg]" %}
  5275   interface(MEMORY_INTER) %{
  5276     base(0x4);   // RSP
  5277     index(0x4);  // No Index
  5278     scale(0x0);  // No Scale
  5279     disp($reg);  // Stack Offset
  5280   %}
  5281 %}
  5283 operand stackSlotD(sRegD reg)
  5284 %{
  5285   constraint(ALLOC_IN_RC(stack_slots));
  5286   // No match rule because this operand is only generated in matching
  5288   format %{ "[$reg]" %}
  5289   interface(MEMORY_INTER) %{
  5290     base(0x4);   // RSP
  5291     index(0x4);  // No Index
  5292     scale(0x0);  // No Scale
  5293     disp($reg);  // Stack Offset
  5294   %}
  5295 %}
  5296 operand stackSlotL(sRegL reg)
  5297 %{
  5298   constraint(ALLOC_IN_RC(stack_slots));
  5299   // No match rule because this operand is only generated in matching
  5301   format %{ "[$reg]" %}
  5302   interface(MEMORY_INTER) %{
  5303     base(0x4);   // RSP
  5304     index(0x4);  // No Index
  5305     scale(0x0);  // No Scale
  5306     disp($reg);  // Stack Offset
  5307   %}
  5308 %}
  5310 //----------Conditional Branch Operands----------------------------------------
  5311 // Comparison Op  - This is the operation of the comparison, and is limited to
  5312 //                  the following set of codes:
  5313 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5314 //
  5315 // Other attributes of the comparison, such as unsignedness, are specified
  5316 // by the comparison instruction that sets a condition code flags register.
  5317 // That result is represented by a flags operand whose subtype is appropriate
  5318 // to the unsignedness (etc.) of the comparison.
  5319 //
  5320 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5321 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5322 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5324 // Comparision Code
  5325 operand cmpOp()
  5326 %{
  5327   match(Bool);
  5329   format %{ "" %}
  5330   interface(COND_INTER) %{
  5331     equal(0x4);
  5332     not_equal(0x5);
  5333     less(0xC);
  5334     greater_equal(0xD);
  5335     less_equal(0xE);
  5336     greater(0xF);
  5337   %}
  5338 %}
  5340 // Comparison Code, unsigned compare.  Used by FP also, with
  5341 // C2 (unordered) turned into GT or LT already.  The other bits
  5342 // C0 and C3 are turned into Carry & Zero flags.
  5343 operand cmpOpU()
  5344 %{
  5345   match(Bool);
  5347   format %{ "" %}
  5348   interface(COND_INTER) %{
  5349     equal(0x4);
  5350     not_equal(0x5);
  5351     less(0x2);
  5352     greater_equal(0x3);
  5353     less_equal(0x6);
  5354     greater(0x7);
  5355   %}
  5356 %}
  5359 //----------OPERAND CLASSES----------------------------------------------------
  5360 // Operand Classes are groups of operands that are used as to simplify
  5361 // instruction definitions by not requiring the AD writer to specify seperate
  5362 // instructions for every form of operand when the instruction accepts
  5363 // multiple operand types with the same basic encoding and format.  The classic
  5364 // case of this is memory operands.
  5366 opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
  5367                indIndexScale, indIndexScaleOffset, indPosIndexScaleOffset,
  5368                indIndexScaleOffsetComp);
  5370 //----------PIPELINE-----------------------------------------------------------
  5371 // Rules which define the behavior of the target architectures pipeline.
  5372 pipeline %{
  5374 //----------ATTRIBUTES---------------------------------------------------------
  5375 attributes %{
  5376   variable_size_instructions;        // Fixed size instructions
  5377   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5378   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5379   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5380   instruction_fetch_units = 1;       // of 16 bytes
  5382   // List of nop instructions
  5383   nops( MachNop );
  5384 %}
  5386 //----------RESOURCES----------------------------------------------------------
  5387 // Resources are the functional units available to the machine
  5389 // Generic P2/P3 pipeline
  5390 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5391 // 3 instructions decoded per cycle.
  5392 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5393 // 3 ALU op, only ALU0 handles mul instructions.
  5394 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5395            MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
  5396            BR, FPU,
  5397            ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
  5399 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5400 // Pipeline Description specifies the stages in the machine's pipeline
  5402 // Generic P2/P3 pipeline
  5403 pipe_desc(S0, S1, S2, S3, S4, S5);
  5405 //----------PIPELINE CLASSES---------------------------------------------------
  5406 // Pipeline Classes describe the stages in which input and output are
  5407 // referenced by the hardware pipeline.
  5409 // Naming convention: ialu or fpu
  5410 // Then: _reg
  5411 // Then: _reg if there is a 2nd register
  5412 // Then: _long if it's a pair of instructions implementing a long
  5413 // Then: _fat if it requires the big decoder
  5414 //   Or: _mem if it requires the big decoder and a memory unit.
  5416 // Integer ALU reg operation
  5417 pipe_class ialu_reg(rRegI dst)
  5418 %{
  5419     single_instruction;
  5420     dst    : S4(write);
  5421     dst    : S3(read);
  5422     DECODE : S0;        // any decoder
  5423     ALU    : S3;        // any alu
  5424 %}
  5426 // Long ALU reg operation
  5427 pipe_class ialu_reg_long(rRegL dst)
  5428 %{
  5429     instruction_count(2);
  5430     dst    : S4(write);
  5431     dst    : S3(read);
  5432     DECODE : S0(2);     // any 2 decoders
  5433     ALU    : S3(2);     // both alus
  5434 %}
  5436 // Integer ALU reg operation using big decoder
  5437 pipe_class ialu_reg_fat(rRegI dst)
  5438 %{
  5439     single_instruction;
  5440     dst    : S4(write);
  5441     dst    : S3(read);
  5442     D0     : S0;        // big decoder only
  5443     ALU    : S3;        // any alu
  5444 %}
  5446 // Long ALU reg operation using big decoder
  5447 pipe_class ialu_reg_long_fat(rRegL dst)
  5448 %{
  5449     instruction_count(2);
  5450     dst    : S4(write);
  5451     dst    : S3(read);
  5452     D0     : S0(2);     // big decoder only; twice
  5453     ALU    : S3(2);     // any 2 alus
  5454 %}
  5456 // Integer ALU reg-reg operation
  5457 pipe_class ialu_reg_reg(rRegI dst, rRegI src)
  5458 %{
  5459     single_instruction;
  5460     dst    : S4(write);
  5461     src    : S3(read);
  5462     DECODE : S0;        // any decoder
  5463     ALU    : S3;        // any alu
  5464 %}
  5466 // Long ALU reg-reg operation
  5467 pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
  5468 %{
  5469     instruction_count(2);
  5470     dst    : S4(write);
  5471     src    : S3(read);
  5472     DECODE : S0(2);     // any 2 decoders
  5473     ALU    : S3(2);     // both alus
  5474 %}
  5476 // Integer ALU reg-reg operation
  5477 pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
  5478 %{
  5479     single_instruction;
  5480     dst    : S4(write);
  5481     src    : S3(read);
  5482     D0     : S0;        // big decoder only
  5483     ALU    : S3;        // any alu
  5484 %}
  5486 // Long ALU reg-reg operation
  5487 pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
  5488 %{
  5489     instruction_count(2);
  5490     dst    : S4(write);
  5491     src    : S3(read);
  5492     D0     : S0(2);     // big decoder only; twice
  5493     ALU    : S3(2);     // both alus
  5494 %}
  5496 // Integer ALU reg-mem operation
  5497 pipe_class ialu_reg_mem(rRegI dst, memory mem)
  5498 %{
  5499     single_instruction;
  5500     dst    : S5(write);
  5501     mem    : S3(read);
  5502     D0     : S0;        // big decoder only
  5503     ALU    : S4;        // any alu
  5504     MEM    : S3;        // any mem
  5505 %}
  5507 // Integer mem operation (prefetch)
  5508 pipe_class ialu_mem(memory mem)
  5509 %{
  5510     single_instruction;
  5511     mem    : S3(read);
  5512     D0     : S0;        // big decoder only
  5513     MEM    : S3;        // any mem
  5514 %}
  5516 // Integer Store to Memory
  5517 pipe_class ialu_mem_reg(memory mem, rRegI src)
  5518 %{
  5519     single_instruction;
  5520     mem    : S3(read);
  5521     src    : S5(read);
  5522     D0     : S0;        // big decoder only
  5523     ALU    : S4;        // any alu
  5524     MEM    : S3;
  5525 %}
  5527 // // Long Store to Memory
  5528 // pipe_class ialu_mem_long_reg(memory mem, rRegL src)
  5529 // %{
  5530 //     instruction_count(2);
  5531 //     mem    : S3(read);
  5532 //     src    : S5(read);
  5533 //     D0     : S0(2);          // big decoder only; twice
  5534 //     ALU    : S4(2);     // any 2 alus
  5535 //     MEM    : S3(2);  // Both mems
  5536 // %}
  5538 // Integer Store to Memory
  5539 pipe_class ialu_mem_imm(memory mem)
  5540 %{
  5541     single_instruction;
  5542     mem    : S3(read);
  5543     D0     : S0;        // big decoder only
  5544     ALU    : S4;        // any alu
  5545     MEM    : S3;
  5546 %}
  5548 // Integer ALU0 reg-reg operation
  5549 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
  5550 %{
  5551     single_instruction;
  5552     dst    : S4(write);
  5553     src    : S3(read);
  5554     D0     : S0;        // Big decoder only
  5555     ALU0   : S3;        // only alu0
  5556 %}
  5558 // Integer ALU0 reg-mem operation
  5559 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
  5560 %{
  5561     single_instruction;
  5562     dst    : S5(write);
  5563     mem    : S3(read);
  5564     D0     : S0;        // big decoder only
  5565     ALU0   : S4;        // ALU0 only
  5566     MEM    : S3;        // any mem
  5567 %}
  5569 // Integer ALU reg-reg operation
  5570 pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
  5571 %{
  5572     single_instruction;
  5573     cr     : S4(write);
  5574     src1   : S3(read);
  5575     src2   : S3(read);
  5576     DECODE : S0;        // any decoder
  5577     ALU    : S3;        // any alu
  5578 %}
  5580 // Integer ALU reg-imm operation
  5581 pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
  5582 %{
  5583     single_instruction;
  5584     cr     : S4(write);
  5585     src1   : S3(read);
  5586     DECODE : S0;        // any decoder
  5587     ALU    : S3;        // any alu
  5588 %}
  5590 // Integer ALU reg-mem operation
  5591 pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
  5592 %{
  5593     single_instruction;
  5594     cr     : S4(write);
  5595     src1   : S3(read);
  5596     src2   : S3(read);
  5597     D0     : S0;        // big decoder only
  5598     ALU    : S4;        // any alu
  5599     MEM    : S3;
  5600 %}
  5602 // Conditional move reg-reg
  5603 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
  5604 %{
  5605     instruction_count(4);
  5606     y      : S4(read);
  5607     q      : S3(read);
  5608     p      : S3(read);
  5609     DECODE : S0(4);     // any decoder
  5610 %}
  5612 // Conditional move reg-reg
  5613 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
  5614 %{
  5615     single_instruction;
  5616     dst    : S4(write);
  5617     src    : S3(read);
  5618     cr     : S3(read);
  5619     DECODE : S0;        // any decoder
  5620 %}
  5622 // Conditional move reg-mem
  5623 pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
  5624 %{
  5625     single_instruction;
  5626     dst    : S4(write);
  5627     src    : S3(read);
  5628     cr     : S3(read);
  5629     DECODE : S0;        // any decoder
  5630     MEM    : S3;
  5631 %}
  5633 // Conditional move reg-reg long
  5634 pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
  5635 %{
  5636     single_instruction;
  5637     dst    : S4(write);
  5638     src    : S3(read);
  5639     cr     : S3(read);
  5640     DECODE : S0(2);     // any 2 decoders
  5641 %}
  5643 // XXX
  5644 // // Conditional move double reg-reg
  5645 // pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
  5646 // %{
  5647 //     single_instruction;
  5648 //     dst    : S4(write);
  5649 //     src    : S3(read);
  5650 //     cr     : S3(read);
  5651 //     DECODE : S0;     // any decoder
  5652 // %}
  5654 // Float reg-reg operation
  5655 pipe_class fpu_reg(regD dst)
  5656 %{
  5657     instruction_count(2);
  5658     dst    : S3(read);
  5659     DECODE : S0(2);     // any 2 decoders
  5660     FPU    : S3;
  5661 %}
  5663 // Float reg-reg operation
  5664 pipe_class fpu_reg_reg(regD dst, regD src)
  5665 %{
  5666     instruction_count(2);
  5667     dst    : S4(write);
  5668     src    : S3(read);
  5669     DECODE : S0(2);     // any 2 decoders
  5670     FPU    : S3;
  5671 %}
  5673 // Float reg-reg operation
  5674 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
  5675 %{
  5676     instruction_count(3);
  5677     dst    : S4(write);
  5678     src1   : S3(read);
  5679     src2   : S3(read);
  5680     DECODE : S0(3);     // any 3 decoders
  5681     FPU    : S3(2);
  5682 %}
  5684 // Float reg-reg operation
  5685 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
  5686 %{
  5687     instruction_count(4);
  5688     dst    : S4(write);
  5689     src1   : S3(read);
  5690     src2   : S3(read);
  5691     src3   : S3(read);
  5692     DECODE : S0(4);     // any 3 decoders
  5693     FPU    : S3(2);
  5694 %}
  5696 // Float reg-reg operation
  5697 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
  5698 %{
  5699     instruction_count(4);
  5700     dst    : S4(write);
  5701     src1   : S3(read);
  5702     src2   : S3(read);
  5703     src3   : S3(read);
  5704     DECODE : S1(3);     // any 3 decoders
  5705     D0     : S0;        // Big decoder only
  5706     FPU    : S3(2);
  5707     MEM    : S3;
  5708 %}
  5710 // Float reg-mem operation
  5711 pipe_class fpu_reg_mem(regD dst, memory mem)
  5712 %{
  5713     instruction_count(2);
  5714     dst    : S5(write);
  5715     mem    : S3(read);
  5716     D0     : S0;        // big decoder only
  5717     DECODE : S1;        // any decoder for FPU POP
  5718     FPU    : S4;
  5719     MEM    : S3;        // any mem
  5720 %}
  5722 // Float reg-mem operation
  5723 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
  5724 %{
  5725     instruction_count(3);
  5726     dst    : S5(write);
  5727     src1   : S3(read);
  5728     mem    : S3(read);
  5729     D0     : S0;        // big decoder only
  5730     DECODE : S1(2);     // any decoder for FPU POP
  5731     FPU    : S4;
  5732     MEM    : S3;        // any mem
  5733 %}
  5735 // Float mem-reg operation
  5736 pipe_class fpu_mem_reg(memory mem, regD src)
  5737 %{
  5738     instruction_count(2);
  5739     src    : S5(read);
  5740     mem    : S3(read);
  5741     DECODE : S0;        // any decoder for FPU PUSH
  5742     D0     : S1;        // big decoder only
  5743     FPU    : S4;
  5744     MEM    : S3;        // any mem
  5745 %}
  5747 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
  5748 %{
  5749     instruction_count(3);
  5750     src1   : S3(read);
  5751     src2   : S3(read);
  5752     mem    : S3(read);
  5753     DECODE : S0(2);     // any decoder for FPU PUSH
  5754     D0     : S1;        // big decoder only
  5755     FPU    : S4;
  5756     MEM    : S3;        // any mem
  5757 %}
  5759 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
  5760 %{
  5761     instruction_count(3);
  5762     src1   : S3(read);
  5763     src2   : S3(read);
  5764     mem    : S4(read);
  5765     DECODE : S0;        // any decoder for FPU PUSH
  5766     D0     : S0(2);     // big decoder only
  5767     FPU    : S4;
  5768     MEM    : S3(2);     // any mem
  5769 %}
  5771 pipe_class fpu_mem_mem(memory dst, memory src1)
  5772 %{
  5773     instruction_count(2);
  5774     src1   : S3(read);
  5775     dst    : S4(read);
  5776     D0     : S0(2);     // big decoder only
  5777     MEM    : S3(2);     // any mem
  5778 %}
  5780 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
  5781 %{
  5782     instruction_count(3);
  5783     src1   : S3(read);
  5784     src2   : S3(read);
  5785     dst    : S4(read);
  5786     D0     : S0(3);     // big decoder only
  5787     FPU    : S4;
  5788     MEM    : S3(3);     // any mem
  5789 %}
  5791 pipe_class fpu_mem_reg_con(memory mem, regD src1)
  5792 %{
  5793     instruction_count(3);
  5794     src1   : S4(read);
  5795     mem    : S4(read);
  5796     DECODE : S0;        // any decoder for FPU PUSH
  5797     D0     : S0(2);     // big decoder only
  5798     FPU    : S4;
  5799     MEM    : S3(2);     // any mem
  5800 %}
  5802 // Float load constant
  5803 pipe_class fpu_reg_con(regD dst)
  5804 %{
  5805     instruction_count(2);
  5806     dst    : S5(write);
  5807     D0     : S0;        // big decoder only for the load
  5808     DECODE : S1;        // any decoder for FPU POP
  5809     FPU    : S4;
  5810     MEM    : S3;        // any mem
  5811 %}
  5813 // Float load constant
  5814 pipe_class fpu_reg_reg_con(regD dst, regD src)
  5815 %{
  5816     instruction_count(3);
  5817     dst    : S5(write);
  5818     src    : S3(read);
  5819     D0     : S0;        // big decoder only for the load
  5820     DECODE : S1(2);     // any decoder for FPU POP
  5821     FPU    : S4;
  5822     MEM    : S3;        // any mem
  5823 %}
  5825 // UnConditional branch
  5826 pipe_class pipe_jmp(label labl)
  5827 %{
  5828     single_instruction;
  5829     BR   : S3;
  5830 %}
  5832 // Conditional branch
  5833 pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
  5834 %{
  5835     single_instruction;
  5836     cr    : S1(read);
  5837     BR    : S3;
  5838 %}
  5840 // Allocation idiom
  5841 pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
  5842 %{
  5843     instruction_count(1); force_serialization;
  5844     fixed_latency(6);
  5845     heap_ptr : S3(read);
  5846     DECODE   : S0(3);
  5847     D0       : S2;
  5848     MEM      : S3;
  5849     ALU      : S3(2);
  5850     dst      : S5(write);
  5851     BR       : S5;
  5852 %}
  5854 // Generic big/slow expanded idiom
  5855 pipe_class pipe_slow()
  5856 %{
  5857     instruction_count(10); multiple_bundles; force_serialization;
  5858     fixed_latency(100);
  5859     D0  : S0(2);
  5860     MEM : S3(2);
  5861 %}
  5863 // The real do-nothing guy
  5864 pipe_class empty()
  5865 %{
  5866     instruction_count(0);
  5867 %}
  5869 // Define the class for the Nop node
  5870 define
  5871 %{
  5872    MachNop = empty;
  5873 %}
  5875 %}
  5877 //----------INSTRUCTIONS-------------------------------------------------------
  5878 //
  5879 // match      -- States which machine-independent subtree may be replaced
  5880 //               by this instruction.
  5881 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5882 //               selection to identify a minimum cost tree of machine
  5883 //               instructions that matches a tree of machine-independent
  5884 //               instructions.
  5885 // format     -- A string providing the disassembly for this instruction.
  5886 //               The value of an instruction's operand may be inserted
  5887 //               by referring to it with a '$' prefix.
  5888 // opcode     -- Three instruction opcodes may be provided.  These are referred
  5889 //               to within an encode class as $primary, $secondary, and $tertiary
  5890 //               rrspectively.  The primary opcode is commonly used to
  5891 //               indicate the type of machine instruction, while secondary
  5892 //               and tertiary are often used for prefix options or addressing
  5893 //               modes.
  5894 // ins_encode -- A list of encode classes with parameters. The encode class
  5895 //               name must have been defined in an 'enc_class' specification
  5896 //               in the encode section of the architecture description.
  5899 //----------Load/Store/Move Instructions---------------------------------------
  5900 //----------Load Instructions--------------------------------------------------
  5902 // Load Byte (8 bit signed)
  5903 instruct loadB(rRegI dst, memory mem)
  5904 %{
  5905   match(Set dst (LoadB mem));
  5907   ins_cost(125);
  5908   format %{ "movsbl  $dst, $mem\t# byte" %}
  5909   opcode(0x0F, 0xBE);
  5910   ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
  5911   ins_pipe(ialu_reg_mem);
  5912 %}
  5914 // Load Byte (8 bit signed) into long
  5915 // instruct loadB2L(rRegL dst, memory mem)
  5916 // %{
  5917 //   match(Set dst (ConvI2L (LoadB mem)));
  5919 //   ins_cost(125);
  5920 //   format %{ "movsbq  $dst, $mem\t# byte -> long" %}
  5921 //   opcode(0x0F, 0xBE);
  5922 //   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
  5923 //   ins_pipe(ialu_reg_mem);
  5924 // %}
  5926 // Load Byte (8 bit UNsigned)
  5927 instruct loadUB(rRegI dst, memory mem, immI_255 bytemask)
  5928 %{
  5929   match(Set dst (AndI (LoadB mem) bytemask));
  5931   ins_cost(125);
  5932   format %{ "movzbl  $dst, $mem\t# ubyte" %}
  5933   opcode(0x0F, 0xB6);
  5934   ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
  5935   ins_pipe(ialu_reg_mem);
  5936 %}
  5938 // Load Byte (8 bit UNsigned) into long
  5939 // instruct loadUB2L(rRegL dst, memory mem, immI_255 bytemask)
  5940 // %{
  5941 //   match(Set dst (ConvI2L (AndI (LoadB mem) bytemask)));
  5943 //   ins_cost(125);
  5944 //   format %{ "movzbl  $dst, $mem\t# ubyte -> long" %}
  5945 //   opcode(0x0F, 0xB6);
  5946 //   ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
  5947 //   ins_pipe(ialu_reg_mem);
  5948 // %}
  5950 // Load Short (16 bit signed)
  5951 instruct loadS(rRegI dst, memory mem)
  5952 %{
  5953   match(Set dst (LoadS mem));
  5955   ins_cost(125); // XXX
  5956   format %{ "movswl $dst, $mem\t# short" %}
  5957   opcode(0x0F, 0xBF);
  5958   ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
  5959   ins_pipe(ialu_reg_mem);
  5960 %}
  5962 // Load Short (16 bit signed) into long
  5963 // instruct loadS2L(rRegL dst, memory mem)
  5964 // %{
  5965 //   match(Set dst (ConvI2L (LoadS mem)));
  5967 //   ins_cost(125); // XXX
  5968 //   format %{ "movswq $dst, $mem\t# short -> long" %}
  5969 //   opcode(0x0F, 0xBF);
  5970 //   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
  5971 //   ins_pipe(ialu_reg_mem);
  5972 // %}
  5974 // Load Char (16 bit UNsigned)
  5975 instruct loadC(rRegI dst, memory mem)
  5976 %{
  5977   match(Set dst (LoadC mem));
  5979   ins_cost(125);
  5980   format %{ "movzwl  $dst, $mem\t# char" %}
  5981   opcode(0x0F, 0xB7);
  5982   ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
  5983   ins_pipe(ialu_reg_mem);
  5984 %}
  5986 // Load Char (16 bit UNsigned) into long
  5987 // instruct loadC2L(rRegL dst, memory mem)
  5988 // %{
  5989 //   match(Set dst (ConvI2L (LoadC mem)));
  5991 //   ins_cost(125);
  5992 //   format %{ "movzwl  $dst, $mem\t# char -> long" %}
  5993 //   opcode(0x0F, 0xB7);
  5994 //   ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
  5995 //   ins_pipe(ialu_reg_mem);
  5996 // %}
  5998 // Load Integer
  5999 instruct loadI(rRegI dst, memory mem)
  6000 %{
  6001   match(Set dst (LoadI mem));
  6003   ins_cost(125); // XXX
  6004   format %{ "movl    $dst, $mem\t# int" %}
  6005   opcode(0x8B);
  6006   ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
  6007   ins_pipe(ialu_reg_mem);
  6008 %}
  6010 // Load Long
  6011 instruct loadL(rRegL dst, memory mem)
  6012 %{
  6013   match(Set dst (LoadL mem));
  6015   ins_cost(125); // XXX
  6016   format %{ "movq    $dst, $mem\t# long" %}
  6017   opcode(0x8B);
  6018   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6019   ins_pipe(ialu_reg_mem); // XXX
  6020 %}
  6022 // Load Range
  6023 instruct loadRange(rRegI dst, memory mem)
  6024 %{
  6025   match(Set dst (LoadRange mem));
  6027   ins_cost(125); // XXX
  6028   format %{ "movl    $dst, $mem\t# range" %}
  6029   opcode(0x8B);
  6030   ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
  6031   ins_pipe(ialu_reg_mem);
  6032 %}
  6034 // Load Pointer
  6035 instruct loadP(rRegP dst, memory mem)
  6036 %{
  6037   match(Set dst (LoadP mem));
  6039   ins_cost(125); // XXX
  6040   format %{ "movq    $dst, $mem\t# ptr" %}
  6041   opcode(0x8B);
  6042   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6043   ins_pipe(ialu_reg_mem); // XXX
  6044 %}
  6046 // Load Compressed Pointer
  6047 instruct loadN(rRegN dst, memory mem, rFlagsReg cr)
  6048 %{
  6049    match(Set dst (LoadN mem));
  6050    effect(KILL cr);
  6052    ins_cost(125); // XXX
  6053    format %{ "movl    $dst, $mem\t# compressed ptr" %}
  6054    ins_encode %{
  6055      Address addr = build_address($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
  6056      Register dst = as_Register($dst$$reg);
  6057      __ movl(dst, addr);
  6058    %}
  6059    ins_pipe(ialu_reg_mem); // XXX
  6060 %}
  6063 // Load Klass Pointer
  6064 instruct loadKlass(rRegP dst, memory mem)
  6065 %{
  6066   match(Set dst (LoadKlass mem));
  6067   predicate(!n->in(MemNode::Address)->bottom_type()->is_narrow());
  6069   ins_cost(125); // XXX
  6070   format %{ "movq    $dst, $mem\t# class" %}
  6071   opcode(0x8B);
  6072   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6073   ins_pipe(ialu_reg_mem); // XXX
  6074 %}
  6076 // Load Klass Pointer
  6077 instruct loadKlassComp(rRegP dst, memory mem)
  6078 %{
  6079   match(Set dst (LoadKlass mem));
  6080   predicate(n->in(MemNode::Address)->bottom_type()->is_narrow());
  6082   ins_cost(125); // XXX
  6083   format %{ "movl    $dst, $mem\t# compressed class" %}
  6084   ins_encode %{
  6085     Address addr = build_address($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
  6086     Register dst = as_Register($dst$$reg);
  6087     __ movl(dst, addr);
  6088     // klass is never null in the header but this is generated for all
  6089     // klass loads not just the _klass field in the header.
  6090     __ decode_heap_oop(dst);
  6091   %}
  6092   ins_pipe(ialu_reg_mem); // XXX
  6093 %}
  6095 // Load Float
  6096 instruct loadF(regF dst, memory mem)
  6097 %{
  6098   match(Set dst (LoadF mem));
  6100   ins_cost(145); // XXX
  6101   format %{ "movss   $dst, $mem\t# float" %}
  6102   opcode(0xF3, 0x0F, 0x10);
  6103   ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
  6104   ins_pipe(pipe_slow); // XXX
  6105 %}
  6107 // Load Double
  6108 instruct loadD_partial(regD dst, memory mem)
  6109 %{
  6110   predicate(!UseXmmLoadAndClearUpper);
  6111   match(Set dst (LoadD mem));
  6113   ins_cost(145); // XXX
  6114   format %{ "movlpd  $dst, $mem\t# double" %}
  6115   opcode(0x66, 0x0F, 0x12);
  6116   ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
  6117   ins_pipe(pipe_slow); // XXX
  6118 %}
  6120 instruct loadD(regD dst, memory mem)
  6121 %{
  6122   predicate(UseXmmLoadAndClearUpper);
  6123   match(Set dst (LoadD mem));
  6125   ins_cost(145); // XXX
  6126   format %{ "movsd   $dst, $mem\t# double" %}
  6127   opcode(0xF2, 0x0F, 0x10);
  6128   ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
  6129   ins_pipe(pipe_slow); // XXX
  6130 %}
  6132 // Load Aligned Packed Byte to XMM register
  6133 instruct loadA8B(regD dst, memory mem) %{
  6134   match(Set dst (Load8B mem));
  6135   ins_cost(125);
  6136   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  6137   ins_encode( movq_ld(dst, mem));
  6138   ins_pipe( pipe_slow );
  6139 %}
  6141 // Load Aligned Packed Short to XMM register
  6142 instruct loadA4S(regD dst, memory mem) %{
  6143   match(Set dst (Load4S mem));
  6144   ins_cost(125);
  6145   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  6146   ins_encode( movq_ld(dst, mem));
  6147   ins_pipe( pipe_slow );
  6148 %}
  6150 // Load Aligned Packed Char to XMM register
  6151 instruct loadA4C(regD dst, memory mem) %{
  6152   match(Set dst (Load4C mem));
  6153   ins_cost(125);
  6154   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  6155   ins_encode( movq_ld(dst, mem));
  6156   ins_pipe( pipe_slow );
  6157 %}
  6159 // Load Aligned Packed Integer to XMM register
  6160 instruct load2IU(regD dst, memory mem) %{
  6161   match(Set dst (Load2I mem));
  6162   ins_cost(125);
  6163   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  6164   ins_encode( movq_ld(dst, mem));
  6165   ins_pipe( pipe_slow );
  6166 %}
  6168 // Load Aligned Packed Single to XMM
  6169 instruct loadA2F(regD dst, memory mem) %{
  6170   match(Set dst (Load2F mem));
  6171   ins_cost(145);
  6172   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  6173   ins_encode( movq_ld(dst, mem));
  6174   ins_pipe( pipe_slow );
  6175 %}
  6177 // Load Effective Address
  6178 instruct leaP8(rRegP dst, indOffset8 mem)
  6179 %{
  6180   match(Set dst mem);
  6182   ins_cost(110); // XXX
  6183   format %{ "leaq    $dst, $mem\t# ptr 8" %}
  6184   opcode(0x8D);
  6185   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6186   ins_pipe(ialu_reg_reg_fat);
  6187 %}
  6189 instruct leaP32(rRegP dst, indOffset32 mem)
  6190 %{
  6191   match(Set dst mem);
  6193   ins_cost(110);
  6194   format %{ "leaq    $dst, $mem\t# ptr 32" %}
  6195   opcode(0x8D);
  6196   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6197   ins_pipe(ialu_reg_reg_fat);
  6198 %}
  6200 // instruct leaPIdx(rRegP dst, indIndex mem)
  6201 // %{
  6202 //   match(Set dst mem);
  6204 //   ins_cost(110);
  6205 //   format %{ "leaq    $dst, $mem\t# ptr idx" %}
  6206 //   opcode(0x8D);
  6207 //   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6208 //   ins_pipe(ialu_reg_reg_fat);
  6209 // %}
  6211 instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
  6212 %{
  6213   match(Set dst mem);
  6215   ins_cost(110);
  6216   format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
  6217   opcode(0x8D);
  6218   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6219   ins_pipe(ialu_reg_reg_fat);
  6220 %}
  6222 instruct leaPIdxScale(rRegP dst, indIndexScale mem)
  6223 %{
  6224   match(Set dst mem);
  6226   ins_cost(110);
  6227   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
  6228   opcode(0x8D);
  6229   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6230   ins_pipe(ialu_reg_reg_fat);
  6231 %}
  6233 instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
  6234 %{
  6235   match(Set dst mem);
  6237   ins_cost(110);
  6238   format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
  6239   opcode(0x8D);
  6240   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6241   ins_pipe(ialu_reg_reg_fat);
  6242 %}
  6244 instruct loadConI(rRegI dst, immI src)
  6245 %{
  6246   match(Set dst src);
  6248   format %{ "movl    $dst, $src\t# int" %}
  6249   ins_encode(load_immI(dst, src));
  6250   ins_pipe(ialu_reg_fat); // XXX
  6251 %}
  6253 instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
  6254 %{
  6255   match(Set dst src);
  6256   effect(KILL cr);
  6258   ins_cost(50);
  6259   format %{ "xorl    $dst, $dst\t# int" %}
  6260   opcode(0x33); /* + rd */
  6261   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
  6262   ins_pipe(ialu_reg);
  6263 %}
  6265 instruct loadConL(rRegL dst, immL src)
  6266 %{
  6267   match(Set dst src);
  6269   ins_cost(150);
  6270   format %{ "movq    $dst, $src\t# long" %}
  6271   ins_encode(load_immL(dst, src));
  6272   ins_pipe(ialu_reg);
  6273 %}
  6275 instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
  6276 %{
  6277   match(Set dst src);
  6278   effect(KILL cr);
  6280   ins_cost(50);
  6281   format %{ "xorl    $dst, $dst\t# long" %}
  6282   opcode(0x33); /* + rd */
  6283   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
  6284   ins_pipe(ialu_reg); // XXX
  6285 %}
  6287 instruct loadConUL32(rRegL dst, immUL32 src)
  6288 %{
  6289   match(Set dst src);
  6291   ins_cost(60);
  6292   format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
  6293   ins_encode(load_immUL32(dst, src));
  6294   ins_pipe(ialu_reg);
  6295 %}
  6297 instruct loadConL32(rRegL dst, immL32 src)
  6298 %{
  6299   match(Set dst src);
  6301   ins_cost(70);
  6302   format %{ "movq    $dst, $src\t# long (32-bit)" %}
  6303   ins_encode(load_immL32(dst, src));
  6304   ins_pipe(ialu_reg);
  6305 %}
  6307 instruct loadConP(rRegP dst, immP src)
  6308 %{
  6309   match(Set dst src);
  6311   format %{ "movq    $dst, $src\t# ptr" %}
  6312   ins_encode(load_immP(dst, src));
  6313   ins_pipe(ialu_reg_fat); // XXX
  6314 %}
  6316 instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
  6317 %{
  6318   match(Set dst src);
  6319   effect(KILL cr);
  6321   ins_cost(50);
  6322   format %{ "xorl    $dst, $dst\t# ptr" %}
  6323   opcode(0x33); /* + rd */
  6324   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
  6325   ins_pipe(ialu_reg);
  6326 %}
  6328 instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
  6329 %{
  6330   match(Set dst src);
  6331   effect(KILL cr);
  6333   ins_cost(60);
  6334   format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
  6335   ins_encode(load_immP31(dst, src));
  6336   ins_pipe(ialu_reg);
  6337 %}
  6339 instruct loadConF(regF dst, immF src)
  6340 %{
  6341   match(Set dst src);
  6342   ins_cost(125);
  6344   format %{ "movss   $dst, [$src]" %}
  6345   ins_encode(load_conF(dst, src));
  6346   ins_pipe(pipe_slow);
  6347 %}
  6349 instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
  6350   match(Set dst src);
  6351   effect(KILL cr);
  6352   format %{ "xorq    $dst, $src\t# compressed ptr" %}
  6353   ins_encode %{
  6354     Register dst = $dst$$Register;
  6355     __ xorq(dst, dst);
  6356   %}
  6357   ins_pipe(ialu_reg);
  6358 %}
  6360 instruct loadConN(rRegN dst, immN src) %{
  6361   match(Set dst src);
  6363   ins_cost(125);
  6364   format %{ "movl    $dst, $src\t# compressed ptr" %}
  6365   ins_encode %{
  6366     address con = (address)$src$$constant;
  6367     Register dst = $dst$$Register;
  6368     if (con == NULL) {
  6369       ShouldNotReachHere();
  6370     } else {
  6371       __ movoop(dst, (jobject)$src$$constant);
  6372       __ encode_heap_oop_not_null(dst);
  6374   %}
  6375   ins_pipe(ialu_reg_fat); // XXX
  6376 %}
  6378 instruct loadConF0(regF dst, immF0 src)
  6379 %{
  6380   match(Set dst src);
  6381   ins_cost(100);
  6383   format %{ "xorps   $dst, $dst\t# float 0.0" %}
  6384   opcode(0x0F, 0x57);
  6385   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  6386   ins_pipe(pipe_slow);
  6387 %}
  6389 // Use the same format since predicate() can not be used here.
  6390 instruct loadConD(regD dst, immD src)
  6391 %{
  6392   match(Set dst src);
  6393   ins_cost(125);
  6395   format %{ "movsd   $dst, [$src]" %}
  6396   ins_encode(load_conD(dst, src));
  6397   ins_pipe(pipe_slow);
  6398 %}
  6400 instruct loadConD0(regD dst, immD0 src)
  6401 %{
  6402   match(Set dst src);
  6403   ins_cost(100);
  6405   format %{ "xorpd   $dst, $dst\t# double 0.0" %}
  6406   opcode(0x66, 0x0F, 0x57);
  6407   ins_encode(OpcP, REX_reg_reg(dst, dst), OpcS, OpcT, reg_reg(dst, dst));
  6408   ins_pipe(pipe_slow);
  6409 %}
  6411 instruct loadSSI(rRegI dst, stackSlotI src)
  6412 %{
  6413   match(Set dst src);
  6415   ins_cost(125);
  6416   format %{ "movl    $dst, $src\t# int stk" %}
  6417   opcode(0x8B);
  6418   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  6419   ins_pipe(ialu_reg_mem);
  6420 %}
  6422 instruct loadSSL(rRegL dst, stackSlotL src)
  6423 %{
  6424   match(Set dst src);
  6426   ins_cost(125);
  6427   format %{ "movq    $dst, $src\t# long stk" %}
  6428   opcode(0x8B);
  6429   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  6430   ins_pipe(ialu_reg_mem);
  6431 %}
  6433 instruct loadSSP(rRegP dst, stackSlotP src)
  6434 %{
  6435   match(Set dst src);
  6437   ins_cost(125);
  6438   format %{ "movq    $dst, $src\t# ptr stk" %}
  6439   opcode(0x8B);
  6440   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  6441   ins_pipe(ialu_reg_mem);
  6442 %}
  6444 instruct loadSSF(regF dst, stackSlotF src)
  6445 %{
  6446   match(Set dst src);
  6448   ins_cost(125);
  6449   format %{ "movss   $dst, $src\t# float stk" %}
  6450   opcode(0xF3, 0x0F, 0x10);
  6451   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
  6452   ins_pipe(pipe_slow); // XXX
  6453 %}
  6455 // Use the same format since predicate() can not be used here.
  6456 instruct loadSSD(regD dst, stackSlotD src)
  6457 %{
  6458   match(Set dst src);
  6460   ins_cost(125);
  6461   format %{ "movsd   $dst, $src\t# double stk" %}
  6462   ins_encode  %{
  6463     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
  6464   %}
  6465   ins_pipe(pipe_slow); // XXX
  6466 %}
  6468 // Prefetch instructions.
  6469 // Must be safe to execute with invalid address (cannot fault).
  6471 instruct prefetchr( memory mem ) %{
  6472   predicate(ReadPrefetchInstr==3);
  6473   match(PrefetchRead mem);
  6474   ins_cost(125);
  6476   format %{ "PREFETCHR $mem\t# Prefetch into level 1 cache" %}
  6477   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /0 */
  6478   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
  6479   ins_pipe(ialu_mem);
  6480 %}
  6482 instruct prefetchrNTA( memory mem ) %{
  6483   predicate(ReadPrefetchInstr==0);
  6484   match(PrefetchRead mem);
  6485   ins_cost(125);
  6487   format %{ "PREFETCHNTA $mem\t# Prefetch into non-temporal cache for read" %}
  6488   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  6489   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
  6490   ins_pipe(ialu_mem);
  6491 %}
  6493 instruct prefetchrT0( memory mem ) %{
  6494   predicate(ReadPrefetchInstr==1);
  6495   match(PrefetchRead mem);
  6496   ins_cost(125);
  6498   format %{ "PREFETCHT0 $mem\t# prefetch into L1 and L2 caches for read" %}
  6499   opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */
  6500   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
  6501   ins_pipe(ialu_mem);
  6502 %}
  6504 instruct prefetchrT2( memory mem ) %{
  6505   predicate(ReadPrefetchInstr==2);
  6506   match(PrefetchRead mem);
  6507   ins_cost(125);
  6509   format %{ "PREFETCHT2 $mem\t# prefetch into L2 caches for read" %}
  6510   opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */
  6511   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x03, mem));
  6512   ins_pipe(ialu_mem);
  6513 %}
  6515 instruct prefetchw( memory mem ) %{
  6516   predicate(AllocatePrefetchInstr==3);
  6517   match(PrefetchWrite mem);
  6518   ins_cost(125);
  6520   format %{ "PREFETCHW $mem\t# Prefetch into level 1 cache and mark modified" %}
  6521   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  6522   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
  6523   ins_pipe(ialu_mem);
  6524 %}
  6526 instruct prefetchwNTA( memory mem ) %{
  6527   predicate(AllocatePrefetchInstr==0);
  6528   match(PrefetchWrite mem);
  6529   ins_cost(125);
  6531   format %{ "PREFETCHNTA $mem\t# Prefetch to non-temporal cache for write" %}
  6532   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  6533   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
  6534   ins_pipe(ialu_mem);
  6535 %}
  6537 instruct prefetchwT0( memory mem ) %{
  6538   predicate(AllocatePrefetchInstr==1);
  6539   match(PrefetchWrite mem);
  6540   ins_cost(125);
  6542   format %{ "PREFETCHT0 $mem\t# Prefetch to level 1 and 2 caches for write" %}
  6543   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  6544   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
  6545   ins_pipe(ialu_mem);
  6546 %}
  6548 instruct prefetchwT2( memory mem ) %{
  6549   predicate(AllocatePrefetchInstr==2);
  6550   match(PrefetchWrite mem);
  6551   ins_cost(125);
  6553   format %{ "PREFETCHT2 $mem\t# Prefetch to level 2 cache for write" %}
  6554   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  6555   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x03, mem));
  6556   ins_pipe(ialu_mem);
  6557 %}
  6559 //----------Store Instructions-------------------------------------------------
  6561 // Store Byte
  6562 instruct storeB(memory mem, rRegI src)
  6563 %{
  6564   match(Set mem (StoreB mem src));
  6566   ins_cost(125); // XXX
  6567   format %{ "movb    $mem, $src\t# byte" %}
  6568   opcode(0x88);
  6569   ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
  6570   ins_pipe(ialu_mem_reg);
  6571 %}
  6573 // Store Char/Short
  6574 instruct storeC(memory mem, rRegI src)
  6575 %{
  6576   match(Set mem (StoreC mem src));
  6578   ins_cost(125); // XXX
  6579   format %{ "movw    $mem, $src\t# char/short" %}
  6580   opcode(0x89);
  6581   ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
  6582   ins_pipe(ialu_mem_reg);
  6583 %}
  6585 // Store Integer
  6586 instruct storeI(memory mem, rRegI src)
  6587 %{
  6588   match(Set mem (StoreI mem src));
  6590   ins_cost(125); // XXX
  6591   format %{ "movl    $mem, $src\t# int" %}
  6592   opcode(0x89);
  6593   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
  6594   ins_pipe(ialu_mem_reg);
  6595 %}
  6597 // Store Long
  6598 instruct storeL(memory mem, rRegL src)
  6599 %{
  6600   match(Set mem (StoreL mem src));
  6602   ins_cost(125); // XXX
  6603   format %{ "movq    $mem, $src\t# long" %}
  6604   opcode(0x89);
  6605   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
  6606   ins_pipe(ialu_mem_reg); // XXX
  6607 %}
  6609 // Store Pointer
  6610 instruct storeP(memory mem, any_RegP src)
  6611 %{
  6612   match(Set mem (StoreP mem src));
  6614   ins_cost(125); // XXX
  6615   format %{ "movq    $mem, $src\t# ptr" %}
  6616   opcode(0x89);
  6617   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
  6618   ins_pipe(ialu_mem_reg);
  6619 %}
  6621 // Store NULL Pointer, mark word, or other simple pointer constant.
  6622 instruct storeImmP(memory mem, immP31 src)
  6623 %{
  6624   match(Set mem (StoreP mem src));
  6626   ins_cost(125); // XXX
  6627   format %{ "movq    $mem, $src\t# ptr" %}
  6628   opcode(0xC7); /* C7 /0 */
  6629   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
  6630   ins_pipe(ialu_mem_imm);
  6631 %}
  6633 // Store Compressed Pointer
  6634 instruct storeN(memory mem, rRegN src, rFlagsReg cr)
  6635 %{
  6636   match(Set mem (StoreN mem src));
  6637   effect(KILL cr);
  6639   ins_cost(125); // XXX
  6640   format %{ "movl    $mem, $src\t# ptr" %}
  6641   ins_encode %{
  6642     Address addr = build_address($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
  6643     Register src = as_Register($src$$reg);
  6644     __ movl(addr, src);
  6645   %}
  6646   ins_pipe(ialu_mem_reg);
  6647 %}
  6649 // Store Integer Immediate
  6650 instruct storeImmI(memory mem, immI src)
  6651 %{
  6652   match(Set mem (StoreI mem src));
  6654   ins_cost(150);
  6655   format %{ "movl    $mem, $src\t# int" %}
  6656   opcode(0xC7); /* C7 /0 */
  6657   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
  6658   ins_pipe(ialu_mem_imm);
  6659 %}
  6661 // Store Long Immediate
  6662 instruct storeImmL(memory mem, immL32 src)
  6663 %{
  6664   match(Set mem (StoreL mem src));
  6666   ins_cost(150);
  6667   format %{ "movq    $mem, $src\t# long" %}
  6668   opcode(0xC7); /* C7 /0 */
  6669   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
  6670   ins_pipe(ialu_mem_imm);
  6671 %}
  6673 // Store Short/Char Immediate
  6674 instruct storeImmI16(memory mem, immI16 src)
  6675 %{
  6676   predicate(UseStoreImmI16);
  6677   match(Set mem (StoreC mem src));
  6679   ins_cost(150);
  6680   format %{ "movw    $mem, $src\t# short/char" %}
  6681   opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
  6682   ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
  6683   ins_pipe(ialu_mem_imm);
  6684 %}
  6686 // Store Byte Immediate
  6687 instruct storeImmB(memory mem, immI8 src)
  6688 %{
  6689   match(Set mem (StoreB mem src));
  6691   ins_cost(150); // XXX
  6692   format %{ "movb    $mem, $src\t# byte" %}
  6693   opcode(0xC6); /* C6 /0 */
  6694   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
  6695   ins_pipe(ialu_mem_imm);
  6696 %}
  6698 // Store Aligned Packed Byte XMM register to memory
  6699 instruct storeA8B(memory mem, regD src) %{
  6700   match(Set mem (Store8B mem src));
  6701   ins_cost(145);
  6702   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  6703   ins_encode( movq_st(mem, src));
  6704   ins_pipe( pipe_slow );
  6705 %}
  6707 // Store Aligned Packed Char/Short XMM register to memory
  6708 instruct storeA4C(memory mem, regD src) %{
  6709   match(Set mem (Store4C mem src));
  6710   ins_cost(145);
  6711   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  6712   ins_encode( movq_st(mem, src));
  6713   ins_pipe( pipe_slow );
  6714 %}
  6716 // Store Aligned Packed Integer XMM register to memory
  6717 instruct storeA2I(memory mem, regD src) %{
  6718   match(Set mem (Store2I mem src));
  6719   ins_cost(145);
  6720   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  6721   ins_encode( movq_st(mem, src));
  6722   ins_pipe( pipe_slow );
  6723 %}
  6725 // Store CMS card-mark Immediate
  6726 instruct storeImmCM0(memory mem, immI0 src)
  6727 %{
  6728   match(Set mem (StoreCM mem src));
  6730   ins_cost(150); // XXX
  6731   format %{ "movb    $mem, $src\t# CMS card-mark byte 0" %}
  6732   opcode(0xC6); /* C6 /0 */
  6733   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
  6734   ins_pipe(ialu_mem_imm);
  6735 %}
  6737 // Store Aligned Packed Single Float XMM register to memory
  6738 instruct storeA2F(memory mem, regD src) %{
  6739   match(Set mem (Store2F mem src));
  6740   ins_cost(145);
  6741   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  6742   ins_encode( movq_st(mem, src));
  6743   ins_pipe( pipe_slow );
  6744 %}
  6746 // Store Float
  6747 instruct storeF(memory mem, regF src)
  6748 %{
  6749   match(Set mem (StoreF mem src));
  6751   ins_cost(95); // XXX
  6752   format %{ "movss   $mem, $src\t# float" %}
  6753   opcode(0xF3, 0x0F, 0x11);
  6754   ins_encode(OpcP, REX_reg_mem(src, mem), OpcS, OpcT, reg_mem(src, mem));
  6755   ins_pipe(pipe_slow); // XXX
  6756 %}
  6758 // Store immediate Float value (it is faster than store from XMM register)
  6759 instruct storeF_imm(memory mem, immF src)
  6760 %{
  6761   match(Set mem (StoreF mem src));
  6763   ins_cost(50);
  6764   format %{ "movl    $mem, $src\t# float" %}
  6765   opcode(0xC7); /* C7 /0 */
  6766   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
  6767   ins_pipe(ialu_mem_imm);
  6768 %}
  6770 // Store Double
  6771 instruct storeD(memory mem, regD src)
  6772 %{
  6773   match(Set mem (StoreD mem src));
  6775   ins_cost(95); // XXX
  6776   format %{ "movsd   $mem, $src\t# double" %}
  6777   opcode(0xF2, 0x0F, 0x11);
  6778   ins_encode(OpcP, REX_reg_mem(src, mem), OpcS, OpcT, reg_mem(src, mem));
  6779   ins_pipe(pipe_slow); // XXX
  6780 %}
  6782 // Store immediate double 0.0 (it is faster than store from XMM register)
  6783 instruct storeD0_imm(memory mem, immD0 src)
  6784 %{
  6785   match(Set mem (StoreD mem src));
  6787   ins_cost(50);
  6788   format %{ "movq    $mem, $src\t# double 0." %}
  6789   opcode(0xC7); /* C7 /0 */
  6790   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
  6791   ins_pipe(ialu_mem_imm);
  6792 %}
  6794 instruct storeSSI(stackSlotI dst, rRegI src)
  6795 %{
  6796   match(Set dst src);
  6798   ins_cost(100);
  6799   format %{ "movl    $dst, $src\t# int stk" %}
  6800   opcode(0x89);
  6801   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  6802   ins_pipe( ialu_mem_reg );
  6803 %}
  6805 instruct storeSSL(stackSlotL dst, rRegL src)
  6806 %{
  6807   match(Set dst src);
  6809   ins_cost(100);
  6810   format %{ "movq    $dst, $src\t# long stk" %}
  6811   opcode(0x89);
  6812   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  6813   ins_pipe(ialu_mem_reg);
  6814 %}
  6816 instruct storeSSP(stackSlotP dst, rRegP src)
  6817 %{
  6818   match(Set dst src);
  6820   ins_cost(100);
  6821   format %{ "movq    $dst, $src\t# ptr stk" %}
  6822   opcode(0x89);
  6823   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  6824   ins_pipe(ialu_mem_reg);
  6825 %}
  6827 instruct storeSSF(stackSlotF dst, regF src)
  6828 %{
  6829   match(Set dst src);
  6831   ins_cost(95); // XXX
  6832   format %{ "movss   $dst, $src\t# float stk" %}
  6833   opcode(0xF3, 0x0F, 0x11);
  6834   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
  6835   ins_pipe(pipe_slow); // XXX
  6836 %}
  6838 instruct storeSSD(stackSlotD dst, regD src)
  6839 %{
  6840   match(Set dst src);
  6842   ins_cost(95); // XXX
  6843   format %{ "movsd   $dst, $src\t# double stk" %}
  6844   opcode(0xF2, 0x0F, 0x11);
  6845   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
  6846   ins_pipe(pipe_slow); // XXX
  6847 %}
  6849 //----------BSWAP Instructions-------------------------------------------------
  6850 instruct bytes_reverse_int(rRegI dst) %{
  6851   match(Set dst (ReverseBytesI dst));
  6853   format %{ "bswapl  $dst" %}
  6854   opcode(0x0F, 0xC8);  /*Opcode 0F /C8 */
  6855   ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
  6856   ins_pipe( ialu_reg );
  6857 %}
  6859 instruct bytes_reverse_long(rRegL dst) %{
  6860   match(Set dst (ReverseBytesL dst));
  6862   format %{ "bswapq  $dst" %}
  6864   opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
  6865   ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
  6866   ins_pipe( ialu_reg);
  6867 %}
  6869 instruct loadI_reversed(rRegI dst, memory src) %{
  6870   match(Set dst (ReverseBytesI (LoadI src)));
  6872   format %{ "bswap_movl $dst, $src" %}
  6873   opcode(0x8B, 0x0F, 0xC8); /* Opcode 8B 0F C8 */
  6874   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src), REX_reg(dst), OpcS, opc3_reg(dst));
  6875   ins_pipe( ialu_reg_mem );
  6876 %}
  6878 instruct loadL_reversed(rRegL dst, memory src) %{
  6879   match(Set dst (ReverseBytesL (LoadL src)));
  6881   format %{ "bswap_movq $dst, $src" %}
  6882   opcode(0x8B, 0x0F, 0xC8); /* Opcode 8B 0F C8 */
  6883   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src), REX_reg_wide(dst), OpcS, opc3_reg(dst));
  6884   ins_pipe( ialu_reg_mem );
  6885 %}
  6887 instruct storeI_reversed(memory dst, rRegI src) %{
  6888   match(Set dst (StoreI dst (ReverseBytesI  src)));
  6890   format %{ "movl_bswap $dst, $src" %}
  6891   opcode(0x0F, 0xC8, 0x89); /* Opcode 0F C8 89 */
  6892   ins_encode( REX_reg(src), OpcP, opc2_reg(src), REX_reg_mem(src, dst), OpcT, reg_mem(src, dst) );
  6893   ins_pipe( ialu_mem_reg );
  6894 %}
  6896 instruct storeL_reversed(memory dst, rRegL src) %{
  6897   match(Set dst (StoreL dst (ReverseBytesL  src)));
  6899   format %{ "movq_bswap $dst, $src" %}
  6900   opcode(0x0F, 0xC8, 0x89); /* Opcode 0F C8 89 */
  6901   ins_encode( REX_reg_wide(src), OpcP, opc2_reg(src), REX_reg_mem_wide(src, dst), OpcT, reg_mem(src, dst) );
  6902   ins_pipe( ialu_mem_reg );
  6903 %}
  6905 //----------MemBar Instructions-----------------------------------------------
  6906 // Memory barrier flavors
  6908 instruct membar_acquire()
  6909 %{
  6910   match(MemBarAcquire);
  6911   ins_cost(0);
  6913   size(0);
  6914   format %{ "MEMBAR-acquire" %}
  6915   ins_encode();
  6916   ins_pipe(empty);
  6917 %}
  6919 instruct membar_acquire_lock()
  6920 %{
  6921   match(MemBarAcquire);
  6922   predicate(Matcher::prior_fast_lock(n));
  6923   ins_cost(0);
  6925   size(0);
  6926   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  6927   ins_encode();
  6928   ins_pipe(empty);
  6929 %}
  6931 instruct membar_release()
  6932 %{
  6933   match(MemBarRelease);
  6934   ins_cost(0);
  6936   size(0);
  6937   format %{ "MEMBAR-release" %}
  6938   ins_encode();
  6939   ins_pipe(empty);
  6940 %}
  6942 instruct membar_release_lock()
  6943 %{
  6944   match(MemBarRelease);
  6945   predicate(Matcher::post_fast_unlock(n));
  6946   ins_cost(0);
  6948   size(0);
  6949   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  6950   ins_encode();
  6951   ins_pipe(empty);
  6952 %}
  6954 instruct membar_volatile()
  6955 %{
  6956   match(MemBarVolatile);
  6957   ins_cost(400);
  6959   format %{ "MEMBAR-volatile" %}
  6960   ins_encode(enc_membar_volatile);
  6961   ins_pipe(pipe_slow);
  6962 %}
  6964 instruct unnecessary_membar_volatile()
  6965 %{
  6966   match(MemBarVolatile);
  6967   predicate(Matcher::post_store_load_barrier(n));
  6968   ins_cost(0);
  6970   size(0);
  6971   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  6972   ins_encode();
  6973   ins_pipe(empty);
  6974 %}
  6976 //----------Move Instructions--------------------------------------------------
  6978 instruct castX2P(rRegP dst, rRegL src)
  6979 %{
  6980   match(Set dst (CastX2P src));
  6982   format %{ "movq    $dst, $src\t# long->ptr" %}
  6983   ins_encode(enc_copy_wide(dst, src));
  6984   ins_pipe(ialu_reg_reg); // XXX
  6985 %}
  6987 instruct castP2X(rRegL dst, rRegP src)
  6988 %{
  6989   match(Set dst (CastP2X src));
  6991   format %{ "movq    $dst, $src\t# ptr -> long" %}
  6992   ins_encode(enc_copy_wide(dst, src));
  6993   ins_pipe(ialu_reg_reg); // XXX
  6994 %}
  6997 // Convert oop pointer into compressed form
  6998 instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
  6999   match(Set dst (EncodeP src));
  7000   effect(KILL cr);
  7001   format %{ "encode_heap_oop $dst,$src" %}
  7002   ins_encode %{
  7003     Register s = $src$$Register;
  7004     Register d = $dst$$Register;
  7005     if (s != d) {
  7006       __ movq(d, s);
  7008     __ encode_heap_oop(d);
  7009   %}
  7010   ins_pipe(ialu_reg_long);
  7011 %}
  7013 instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
  7014   match(Set dst (DecodeN src));
  7015   effect(KILL cr);
  7016   format %{ "decode_heap_oop $dst,$src" %}
  7017   ins_encode %{
  7018     Register s = $src$$Register;
  7019     Register d = $dst$$Register;
  7020     if (s != d) {
  7021       __ movq(d, s);
  7023     __ decode_heap_oop(d);
  7024   %}
  7025   ins_pipe(ialu_reg_long);
  7026 %}
  7029 //----------Conditional Move---------------------------------------------------
  7030 // Jump
  7031 // dummy instruction for generating temp registers
  7032 instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
  7033   match(Jump (LShiftL switch_val shift));
  7034   ins_cost(350);
  7035   predicate(false);
  7036   effect(TEMP dest);
  7038   format %{ "leaq    $dest, table_base\n\t"
  7039             "jmp     [$dest + $switch_val << $shift]\n\t" %}
  7040   ins_encode(jump_enc_offset(switch_val, shift, dest));
  7041   ins_pipe(pipe_jmp);
  7042   ins_pc_relative(1);
  7043 %}
  7045 instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
  7046   match(Jump (AddL (LShiftL switch_val shift) offset));
  7047   ins_cost(350);
  7048   effect(TEMP dest);
  7050   format %{ "leaq    $dest, table_base\n\t"
  7051             "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
  7052   ins_encode(jump_enc_addr(switch_val, shift, offset, dest));
  7053   ins_pipe(pipe_jmp);
  7054   ins_pc_relative(1);
  7055 %}
  7057 instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
  7058   match(Jump switch_val);
  7059   ins_cost(350);
  7060   effect(TEMP dest);
  7062   format %{ "leaq    $dest, table_base\n\t"
  7063             "jmp     [$dest + $switch_val]\n\t" %}
  7064   ins_encode(jump_enc(switch_val, dest));
  7065   ins_pipe(pipe_jmp);
  7066   ins_pc_relative(1);
  7067 %}
  7069 // Conditional move
  7070 instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
  7071 %{
  7072   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7074   ins_cost(200); // XXX
  7075   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
  7076   opcode(0x0F, 0x40);
  7077   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7078   ins_pipe(pipe_cmov_reg);
  7079 %}
  7081 instruct cmovI_regU(rRegI dst, rRegI src, rFlagsRegU cr, cmpOpU cop)
  7082 %{
  7083   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7085   ins_cost(200); // XXX
  7086   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
  7087   opcode(0x0F, 0x40);
  7088   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7089   ins_pipe(pipe_cmov_reg);
  7090 %}
  7092 // Conditional move
  7093 instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src)
  7094 %{
  7095   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7097   ins_cost(250); // XXX
  7098   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
  7099   opcode(0x0F, 0x40);
  7100   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7101   ins_pipe(pipe_cmov_mem);
  7102 %}
  7104 // Conditional move
  7105 instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
  7106 %{
  7107   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7109   ins_cost(250); // XXX
  7110   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
  7111   opcode(0x0F, 0x40);
  7112   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7113   ins_pipe(pipe_cmov_mem);
  7114 %}
  7116 // Conditional move
  7117 instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
  7118 %{
  7119   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7121   ins_cost(200); // XXX
  7122   format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
  7123   opcode(0x0F, 0x40);
  7124   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7125   ins_pipe(pipe_cmov_reg);  // XXX
  7126 %}
  7128 // Conditional move
  7129 instruct cmovP_regU(rRegP dst, rRegP src, rFlagsRegU cr, cmpOpU cop)
  7130 %{
  7131   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7133   ins_cost(200); // XXX
  7134   format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
  7135   opcode(0x0F, 0x40);
  7136   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7137   ins_pipe(pipe_cmov_reg); // XXX
  7138 %}
  7140 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7141 // correctly meets the two pointer arguments; one is an incoming
  7142 // register but the other is a memory operand.  ALSO appears to
  7143 // be buggy with implicit null checks.
  7144 //
  7145 //// Conditional move
  7146 //instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
  7147 //%{
  7148 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7149 //  ins_cost(250);
  7150 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7151 //  opcode(0x0F,0x40);
  7152 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
  7153 //  ins_pipe( pipe_cmov_mem );
  7154 //%}
  7155 //
  7156 //// Conditional move
  7157 //instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
  7158 //%{
  7159 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7160 //  ins_cost(250);
  7161 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7162 //  opcode(0x0F,0x40);
  7163 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
  7164 //  ins_pipe( pipe_cmov_mem );
  7165 //%}
  7167 instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
  7168 %{
  7169   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7171   ins_cost(200); // XXX
  7172   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
  7173   opcode(0x0F, 0x40);
  7174   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7175   ins_pipe(pipe_cmov_reg);  // XXX
  7176 %}
  7178 instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
  7179 %{
  7180   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
  7182   ins_cost(200); // XXX
  7183   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
  7184   opcode(0x0F, 0x40);
  7185   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7186   ins_pipe(pipe_cmov_mem);  // XXX
  7187 %}
  7189 instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
  7190 %{
  7191   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7193   ins_cost(200); // XXX
  7194   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
  7195   opcode(0x0F, 0x40);
  7196   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7197   ins_pipe(pipe_cmov_reg); // XXX
  7198 %}
  7200 instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
  7201 %{
  7202   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
  7204   ins_cost(200); // XXX
  7205   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
  7206   opcode(0x0F, 0x40);
  7207   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7208   ins_pipe(pipe_cmov_mem); // XXX
  7209 %}
  7211 instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
  7212 %{
  7213   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7215   ins_cost(200); // XXX
  7216   format %{ "jn$cop    skip\t# signed cmove float\n\t"
  7217             "movss     $dst, $src\n"
  7218     "skip:" %}
  7219   ins_encode(enc_cmovf_branch(cop, dst, src));
  7220   ins_pipe(pipe_slow);
  7221 %}
  7223 // instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
  7224 // %{
  7225 //   match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
  7227 //   ins_cost(200); // XXX
  7228 //   format %{ "jn$cop    skip\t# signed cmove float\n\t"
  7229 //             "movss     $dst, $src\n"
  7230 //     "skip:" %}
  7231 //   ins_encode(enc_cmovf_mem_branch(cop, dst, src));
  7232 //   ins_pipe(pipe_slow);
  7233 // %}
  7235 instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
  7236 %{
  7237   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7239   ins_cost(200); // XXX
  7240   format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
  7241             "movss     $dst, $src\n"
  7242     "skip:" %}
  7243   ins_encode(enc_cmovf_branch(cop, dst, src));
  7244   ins_pipe(pipe_slow);
  7245 %}
  7247 instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
  7248 %{
  7249   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7251   ins_cost(200); // XXX
  7252   format %{ "jn$cop    skip\t# signed cmove double\n\t"
  7253             "movsd     $dst, $src\n"
  7254     "skip:" %}
  7255   ins_encode(enc_cmovd_branch(cop, dst, src));
  7256   ins_pipe(pipe_slow);
  7257 %}
  7259 instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
  7260 %{
  7261   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7263   ins_cost(200); // XXX
  7264   format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
  7265             "movsd     $dst, $src\n"
  7266     "skip:" %}
  7267   ins_encode(enc_cmovd_branch(cop, dst, src));
  7268   ins_pipe(pipe_slow);
  7269 %}
  7271 //----------Arithmetic Instructions--------------------------------------------
  7272 //----------Addition Instructions----------------------------------------------
  7274 instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  7275 %{
  7276   match(Set dst (AddI dst src));
  7277   effect(KILL cr);
  7279   format %{ "addl    $dst, $src\t# int" %}
  7280   opcode(0x03);
  7281   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  7282   ins_pipe(ialu_reg_reg);
  7283 %}
  7285 instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  7286 %{
  7287   match(Set dst (AddI dst src));
  7288   effect(KILL cr);
  7290   format %{ "addl    $dst, $src\t# int" %}
  7291   opcode(0x81, 0x00); /* /0 id */
  7292   ins_encode(OpcSErm(dst, src), Con8or32(src));
  7293   ins_pipe( ialu_reg );
  7294 %}
  7296 instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  7297 %{
  7298   match(Set dst (AddI dst (LoadI src)));
  7299   effect(KILL cr);
  7301   ins_cost(125); // XXX
  7302   format %{ "addl    $dst, $src\t# int" %}
  7303   opcode(0x03);
  7304   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  7305   ins_pipe(ialu_reg_mem);
  7306 %}
  7308 instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  7309 %{
  7310   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7311   effect(KILL cr);
  7313   ins_cost(150); // XXX
  7314   format %{ "addl    $dst, $src\t# int" %}
  7315   opcode(0x01); /* Opcode 01 /r */
  7316   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  7317   ins_pipe(ialu_mem_reg);
  7318 %}
  7320 instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
  7321 %{
  7322   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7323   effect(KILL cr);
  7325   ins_cost(125); // XXX
  7326   format %{ "addl    $dst, $src\t# int" %}
  7327   opcode(0x81); /* Opcode 81 /0 id */
  7328   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
  7329   ins_pipe(ialu_mem_imm);
  7330 %}
  7332 instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
  7333 %{
  7334   predicate(UseIncDec);
  7335   match(Set dst (AddI dst src));
  7336   effect(KILL cr);
  7338   format %{ "incl    $dst\t# int" %}
  7339   opcode(0xFF, 0x00); // FF /0
  7340   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  7341   ins_pipe(ialu_reg);
  7342 %}
  7344 instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
  7345 %{
  7346   predicate(UseIncDec);
  7347   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7348   effect(KILL cr);
  7350   ins_cost(125); // XXX
  7351   format %{ "incl    $dst\t# int" %}
  7352   opcode(0xFF); /* Opcode FF /0 */
  7353   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
  7354   ins_pipe(ialu_mem_imm);
  7355 %}
  7357 // XXX why does that use AddI
  7358 instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
  7359 %{
  7360   predicate(UseIncDec);
  7361   match(Set dst (AddI dst src));
  7362   effect(KILL cr);
  7364   format %{ "decl    $dst\t# int" %}
  7365   opcode(0xFF, 0x01); // FF /1
  7366   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  7367   ins_pipe(ialu_reg);
  7368 %}
  7370 // XXX why does that use AddI
  7371 instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
  7372 %{
  7373   predicate(UseIncDec);
  7374   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7375   effect(KILL cr);
  7377   ins_cost(125); // XXX
  7378   format %{ "decl    $dst\t# int" %}
  7379   opcode(0xFF); /* Opcode FF /1 */
  7380   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
  7381   ins_pipe(ialu_mem_imm);
  7382 %}
  7384 instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
  7385 %{
  7386   match(Set dst (AddI src0 src1));
  7388   ins_cost(110);
  7389   format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
  7390   opcode(0x8D); /* 0x8D /r */
  7391   ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
  7392   ins_pipe(ialu_reg_reg);
  7393 %}
  7395 instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  7396 %{
  7397   match(Set dst (AddL dst src));
  7398   effect(KILL cr);
  7400   format %{ "addq    $dst, $src\t# long" %}
  7401   opcode(0x03);
  7402   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  7403   ins_pipe(ialu_reg_reg);
  7404 %}
  7406 instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
  7407 %{
  7408   match(Set dst (AddL dst src));
  7409   effect(KILL cr);
  7411   format %{ "addq    $dst, $src\t# long" %}
  7412   opcode(0x81, 0x00); /* /0 id */
  7413   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  7414   ins_pipe( ialu_reg );
  7415 %}
  7417 instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  7418 %{
  7419   match(Set dst (AddL dst (LoadL src)));
  7420   effect(KILL cr);
  7422   ins_cost(125); // XXX
  7423   format %{ "addq    $dst, $src\t# long" %}
  7424   opcode(0x03);
  7425   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  7426   ins_pipe(ialu_reg_mem);
  7427 %}
  7429 instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  7430 %{
  7431   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  7432   effect(KILL cr);
  7434   ins_cost(150); // XXX
  7435   format %{ "addq    $dst, $src\t# long" %}
  7436   opcode(0x01); /* Opcode 01 /r */
  7437   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  7438   ins_pipe(ialu_mem_reg);
  7439 %}
  7441 instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  7442 %{
  7443   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  7444   effect(KILL cr);
  7446   ins_cost(125); // XXX
  7447   format %{ "addq    $dst, $src\t# long" %}
  7448   opcode(0x81); /* Opcode 81 /0 id */
  7449   ins_encode(REX_mem_wide(dst),
  7450              OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
  7451   ins_pipe(ialu_mem_imm);
  7452 %}
  7454 instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
  7455 %{
  7456   predicate(UseIncDec);
  7457   match(Set dst (AddL dst src));
  7458   effect(KILL cr);
  7460   format %{ "incq    $dst\t# long" %}
  7461   opcode(0xFF, 0x00); // FF /0
  7462   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  7463   ins_pipe(ialu_reg);
  7464 %}
  7466 instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
  7467 %{
  7468   predicate(UseIncDec);
  7469   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  7470   effect(KILL cr);
  7472   ins_cost(125); // XXX
  7473   format %{ "incq    $dst\t# long" %}
  7474   opcode(0xFF); /* Opcode FF /0 */
  7475   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
  7476   ins_pipe(ialu_mem_imm);
  7477 %}
  7479 // XXX why does that use AddL
  7480 instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
  7481 %{
  7482   predicate(UseIncDec);
  7483   match(Set dst (AddL dst src));
  7484   effect(KILL cr);
  7486   format %{ "decq    $dst\t# long" %}
  7487   opcode(0xFF, 0x01); // FF /1
  7488   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  7489   ins_pipe(ialu_reg);
  7490 %}
  7492 // XXX why does that use AddL
  7493 instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
  7494 %{
  7495   predicate(UseIncDec);
  7496   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  7497   effect(KILL cr);
  7499   ins_cost(125); // XXX
  7500   format %{ "decq    $dst\t# long" %}
  7501   opcode(0xFF); /* Opcode FF /1 */
  7502   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
  7503   ins_pipe(ialu_mem_imm);
  7504 %}
  7506 instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
  7507 %{
  7508   match(Set dst (AddL src0 src1));
  7510   ins_cost(110);
  7511   format %{ "leaq    $dst, [$src0 + $src1]\t# long" %}
  7512   opcode(0x8D); /* 0x8D /r */
  7513   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
  7514   ins_pipe(ialu_reg_reg);
  7515 %}
  7517 instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
  7518 %{
  7519   match(Set dst (AddP dst src));
  7520   effect(KILL cr);
  7522   format %{ "addq    $dst, $src\t# ptr" %}
  7523   opcode(0x03);
  7524   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  7525   ins_pipe(ialu_reg_reg);
  7526 %}
  7528 instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
  7529 %{
  7530   match(Set dst (AddP dst src));
  7531   effect(KILL cr);
  7533   format %{ "addq    $dst, $src\t# ptr" %}
  7534   opcode(0x81, 0x00); /* /0 id */
  7535   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  7536   ins_pipe( ialu_reg );
  7537 %}
  7539 // XXX addP mem ops ????
  7541 instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
  7542 %{
  7543   match(Set dst (AddP src0 src1));
  7545   ins_cost(110);
  7546   format %{ "leaq    $dst, [$src0 + $src1]\t# ptr" %}
  7547   opcode(0x8D); /* 0x8D /r */
  7548   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
  7549   ins_pipe(ialu_reg_reg);
  7550 %}
  7552 instruct checkCastPP(rRegP dst)
  7553 %{
  7554   match(Set dst (CheckCastPP dst));
  7556   size(0);
  7557   format %{ "# checkcastPP of $dst" %}
  7558   ins_encode(/* empty encoding */);
  7559   ins_pipe(empty);
  7560 %}
  7562 instruct castPP(rRegP dst)
  7563 %{
  7564   match(Set dst (CastPP dst));
  7566   size(0);
  7567   format %{ "# castPP of $dst" %}
  7568   ins_encode(/* empty encoding */);
  7569   ins_pipe(empty);
  7570 %}
  7572 instruct castII(rRegI dst)
  7573 %{
  7574   match(Set dst (CastII dst));
  7576   size(0);
  7577   format %{ "# castII of $dst" %}
  7578   ins_encode(/* empty encoding */);
  7579   ins_cost(0);
  7580   ins_pipe(empty);
  7581 %}
  7583 // LoadP-locked same as a regular LoadP when used with compare-swap
  7584 instruct loadPLocked(rRegP dst, memory mem)
  7585 %{
  7586   match(Set dst (LoadPLocked mem));
  7588   ins_cost(125); // XXX
  7589   format %{ "movq    $dst, $mem\t# ptr locked" %}
  7590   opcode(0x8B);
  7591   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  7592   ins_pipe(ialu_reg_mem); // XXX
  7593 %}
  7595 // LoadL-locked - same as a regular LoadL when used with compare-swap
  7596 instruct loadLLocked(rRegL dst, memory mem)
  7597 %{
  7598   match(Set dst (LoadLLocked mem));
  7600   ins_cost(125); // XXX
  7601   format %{ "movq    $dst, $mem\t# long locked" %}
  7602   opcode(0x8B);
  7603   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  7604   ins_pipe(ialu_reg_mem); // XXX
  7605 %}
  7607 // Conditional-store of the updated heap-top.
  7608 // Used during allocation of the shared heap.
  7609 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  7611 instruct storePConditional(memory heap_top_ptr,
  7612                            rax_RegP oldval, rRegP newval,
  7613                            rFlagsReg cr)
  7614 %{
  7615   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  7617   format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
  7618             "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
  7619   opcode(0x0F, 0xB1);
  7620   ins_encode(lock_prefix,
  7621              REX_reg_mem_wide(newval, heap_top_ptr),
  7622              OpcP, OpcS,
  7623              reg_mem(newval, heap_top_ptr));
  7624   ins_pipe(pipe_cmpxchg);
  7625 %}
  7627 // Conditional-store of a long value
  7628 // Returns a boolean value (0/1) on success.  Implemented with a
  7629 // CMPXCHG8 on Intel.  mem_ptr can actually be in either RSI or RDI
  7631 instruct storeLConditional(rRegI res,
  7632                            memory mem_ptr,
  7633                            rax_RegL oldval, rRegL newval,
  7634                            rFlagsReg cr)
  7635 %{
  7636   match(Set res (StoreLConditional mem_ptr (Binary oldval newval)));
  7637   effect(KILL cr);
  7639   format %{ "cmpxchgq $mem_ptr, $newval\t# (long) "
  7640             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  7641             "sete    $res\n\t"
  7642             "movzbl  $res, $res" %}
  7643   opcode(0x0F, 0xB1);
  7644   ins_encode(lock_prefix,
  7645              REX_reg_mem_wide(newval, mem_ptr),
  7646              OpcP, OpcS,
  7647              reg_mem(newval, mem_ptr),
  7648              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  7649              REX_reg_breg(res, res), // movzbl
  7650              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  7651   ins_pipe(pipe_cmpxchg);
  7652 %}
  7654 // Conditional-store of a long value
  7655 // ZF flag is set on success, reset otherwise. Implemented with a
  7656 // CMPXCHG8 on Intel.  mem_ptr can actually be in either RSI or RDI
  7657 instruct storeLConditional_flags(memory mem_ptr,
  7658                                  rax_RegL oldval, rRegL newval,
  7659                                  rFlagsReg cr,
  7660                                  immI0 zero)
  7661 %{
  7662   match(Set cr (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero));
  7664   format %{ "cmpxchgq $mem_ptr, $newval\t# (long) "
  7665             "If rax == $mem_ptr then store $newval into $mem_ptr" %}
  7666   opcode(0x0F, 0xB1);
  7667   ins_encode(lock_prefix,
  7668              REX_reg_mem_wide(newval, mem_ptr),
  7669              OpcP, OpcS,
  7670              reg_mem(newval, mem_ptr));
  7671   ins_pipe(pipe_cmpxchg);
  7672 %}
  7674 instruct compareAndSwapP(rRegI res,
  7675                          memory mem_ptr,
  7676                          rax_RegP oldval, rRegP newval,
  7677                          rFlagsReg cr)
  7678 %{
  7679   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7680   effect(KILL cr, KILL oldval);
  7682   format %{ "cmpxchgq $mem_ptr,$newval\t# "
  7683             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  7684             "sete    $res\n\t"
  7685             "movzbl  $res, $res" %}
  7686   opcode(0x0F, 0xB1);
  7687   ins_encode(lock_prefix,
  7688              REX_reg_mem_wide(newval, mem_ptr),
  7689              OpcP, OpcS,
  7690              reg_mem(newval, mem_ptr),
  7691              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  7692              REX_reg_breg(res, res), // movzbl
  7693              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  7694   ins_pipe( pipe_cmpxchg );
  7695 %}
  7697 // XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7698 instruct compareAndSwapL(rRegI res,
  7699                          memory mem_ptr,
  7700                          rax_RegL oldval, rRegL newval,
  7701                          rFlagsReg cr)
  7702 %{
  7703   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7704   effect(KILL cr, KILL oldval);
  7706   format %{ "cmpxchgq $mem_ptr,$newval\t# "
  7707             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  7708             "sete    $res\n\t"
  7709             "movzbl  $res, $res" %}
  7710   opcode(0x0F, 0xB1);
  7711   ins_encode(lock_prefix,
  7712              REX_reg_mem_wide(newval, mem_ptr),
  7713              OpcP, OpcS,
  7714              reg_mem(newval, mem_ptr),
  7715              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  7716              REX_reg_breg(res, res), // movzbl
  7717              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  7718   ins_pipe( pipe_cmpxchg );
  7719 %}
  7721 instruct compareAndSwapI(rRegI res,
  7722                          memory mem_ptr,
  7723                          rax_RegI oldval, rRegI newval,
  7724                          rFlagsReg cr)
  7725 %{
  7726   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7727   effect(KILL cr, KILL oldval);
  7729   format %{ "cmpxchgl $mem_ptr,$newval\t# "
  7730             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  7731             "sete    $res\n\t"
  7732             "movzbl  $res, $res" %}
  7733   opcode(0x0F, 0xB1);
  7734   ins_encode(lock_prefix,
  7735              REX_reg_mem(newval, mem_ptr),
  7736              OpcP, OpcS,
  7737              reg_mem(newval, mem_ptr),
  7738              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  7739              REX_reg_breg(res, res), // movzbl
  7740              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  7741   ins_pipe( pipe_cmpxchg );
  7742 %}
  7745 instruct compareAndSwapN(rRegI res,
  7746                           memory mem_ptr,
  7747                           rax_RegN oldval, rRegN newval,
  7748                           rFlagsReg cr) %{
  7749   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7750   effect(KILL cr, KILL oldval);
  7752   format %{ "cmpxchgl $mem_ptr,$newval\t# "
  7753             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  7754             "sete    $res\n\t"
  7755             "movzbl  $res, $res" %}
  7756   opcode(0x0F, 0xB1);
  7757   ins_encode(lock_prefix,
  7758              REX_reg_mem(newval, mem_ptr),
  7759              OpcP, OpcS,
  7760              reg_mem(newval, mem_ptr),
  7761              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  7762              REX_reg_breg(res, res), // movzbl
  7763              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  7764   ins_pipe( pipe_cmpxchg );
  7765 %}
  7767 //----------Subtraction Instructions-------------------------------------------
  7769 // Integer Subtraction Instructions
  7770 instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  7771 %{
  7772   match(Set dst (SubI dst src));
  7773   effect(KILL cr);
  7775   format %{ "subl    $dst, $src\t# int" %}
  7776   opcode(0x2B);
  7777   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  7778   ins_pipe(ialu_reg_reg);
  7779 %}
  7781 instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  7782 %{
  7783   match(Set dst (SubI dst src));
  7784   effect(KILL cr);
  7786   format %{ "subl    $dst, $src\t# int" %}
  7787   opcode(0x81, 0x05);  /* Opcode 81 /5 */
  7788   ins_encode(OpcSErm(dst, src), Con8or32(src));
  7789   ins_pipe(ialu_reg);
  7790 %}
  7792 instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  7793 %{
  7794   match(Set dst (SubI dst (LoadI src)));
  7795   effect(KILL cr);
  7797   ins_cost(125);
  7798   format %{ "subl    $dst, $src\t# int" %}
  7799   opcode(0x2B);
  7800   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  7801   ins_pipe(ialu_reg_mem);
  7802 %}
  7804 instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  7805 %{
  7806   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  7807   effect(KILL cr);
  7809   ins_cost(150);
  7810   format %{ "subl    $dst, $src\t# int" %}
  7811   opcode(0x29); /* Opcode 29 /r */
  7812   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  7813   ins_pipe(ialu_mem_reg);
  7814 %}
  7816 instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
  7817 %{
  7818   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  7819   effect(KILL cr);
  7821   ins_cost(125); // XXX
  7822   format %{ "subl    $dst, $src\t# int" %}
  7823   opcode(0x81); /* Opcode 81 /5 id */
  7824   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
  7825   ins_pipe(ialu_mem_imm);
  7826 %}
  7828 instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  7829 %{
  7830   match(Set dst (SubL dst src));
  7831   effect(KILL cr);
  7833   format %{ "subq    $dst, $src\t# long" %}
  7834   opcode(0x2B);
  7835   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  7836   ins_pipe(ialu_reg_reg);
  7837 %}
  7839 instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
  7840 %{
  7841   match(Set dst (SubL dst src));
  7842   effect(KILL cr);
  7844   format %{ "subq    $dst, $src\t# long" %}
  7845   opcode(0x81, 0x05);  /* Opcode 81 /5 */
  7846   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  7847   ins_pipe(ialu_reg);
  7848 %}
  7850 instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  7851 %{
  7852   match(Set dst (SubL dst (LoadL src)));
  7853   effect(KILL cr);
  7855   ins_cost(125);
  7856   format %{ "subq    $dst, $src\t# long" %}
  7857   opcode(0x2B);
  7858   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  7859   ins_pipe(ialu_reg_mem);
  7860 %}
  7862 instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  7863 %{
  7864   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
  7865   effect(KILL cr);
  7867   ins_cost(150);
  7868   format %{ "subq    $dst, $src\t# long" %}
  7869   opcode(0x29); /* Opcode 29 /r */
  7870   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  7871   ins_pipe(ialu_mem_reg);
  7872 %}
  7874 instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  7875 %{
  7876   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
  7877   effect(KILL cr);
  7879   ins_cost(125); // XXX
  7880   format %{ "subq    $dst, $src\t# long" %}
  7881   opcode(0x81); /* Opcode 81 /5 id */
  7882   ins_encode(REX_mem_wide(dst),
  7883              OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
  7884   ins_pipe(ialu_mem_imm);
  7885 %}
  7887 // Subtract from a pointer
  7888 // XXX hmpf???
  7889 instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
  7890 %{
  7891   match(Set dst (AddP dst (SubI zero src)));
  7892   effect(KILL cr);
  7894   format %{ "subq    $dst, $src\t# ptr - int" %}
  7895   opcode(0x2B);
  7896   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  7897   ins_pipe(ialu_reg_reg);
  7898 %}
  7900 instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
  7901 %{
  7902   match(Set dst (SubI zero dst));
  7903   effect(KILL cr);
  7905   format %{ "negl    $dst\t# int" %}
  7906   opcode(0xF7, 0x03);  // Opcode F7 /3
  7907   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  7908   ins_pipe(ialu_reg);
  7909 %}
  7911 instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
  7912 %{
  7913   match(Set dst (StoreI dst (SubI zero (LoadI dst))));
  7914   effect(KILL cr);
  7916   format %{ "negl    $dst\t# int" %}
  7917   opcode(0xF7, 0x03);  // Opcode F7 /3
  7918   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  7919   ins_pipe(ialu_reg);
  7920 %}
  7922 instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
  7923 %{
  7924   match(Set dst (SubL zero dst));
  7925   effect(KILL cr);
  7927   format %{ "negq    $dst\t# long" %}
  7928   opcode(0xF7, 0x03);  // Opcode F7 /3
  7929   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  7930   ins_pipe(ialu_reg);
  7931 %}
  7933 instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
  7934 %{
  7935   match(Set dst (StoreL dst (SubL zero (LoadL dst))));
  7936   effect(KILL cr);
  7938   format %{ "negq    $dst\t# long" %}
  7939   opcode(0xF7, 0x03);  // Opcode F7 /3
  7940   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  7941   ins_pipe(ialu_reg);
  7942 %}
  7945 //----------Multiplication/Division Instructions-------------------------------
  7946 // Integer Multiplication Instructions
  7947 // Multiply Register
  7949 instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  7950 %{
  7951   match(Set dst (MulI dst src));
  7952   effect(KILL cr);
  7954   ins_cost(300);
  7955   format %{ "imull   $dst, $src\t# int" %}
  7956   opcode(0x0F, 0xAF);
  7957   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  7958   ins_pipe(ialu_reg_reg_alu0);
  7959 %}
  7961 instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
  7962 %{
  7963   match(Set dst (MulI src imm));
  7964   effect(KILL cr);
  7966   ins_cost(300);
  7967   format %{ "imull   $dst, $src, $imm\t# int" %}
  7968   opcode(0x69); /* 69 /r id */
  7969   ins_encode(REX_reg_reg(dst, src),
  7970              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
  7971   ins_pipe(ialu_reg_reg_alu0);
  7972 %}
  7974 instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
  7975 %{
  7976   match(Set dst (MulI dst (LoadI src)));
  7977   effect(KILL cr);
  7979   ins_cost(350);
  7980   format %{ "imull   $dst, $src\t# int" %}
  7981   opcode(0x0F, 0xAF);
  7982   ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
  7983   ins_pipe(ialu_reg_mem_alu0);
  7984 %}
  7986 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
  7987 %{
  7988   match(Set dst (MulI (LoadI src) imm));
  7989   effect(KILL cr);
  7991   ins_cost(300);
  7992   format %{ "imull   $dst, $src, $imm\t# int" %}
  7993   opcode(0x69); /* 69 /r id */
  7994   ins_encode(REX_reg_mem(dst, src),
  7995              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
  7996   ins_pipe(ialu_reg_mem_alu0);
  7997 %}
  7999 instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  8000 %{
  8001   match(Set dst (MulL dst src));
  8002   effect(KILL cr);
  8004   ins_cost(300);
  8005   format %{ "imulq   $dst, $src\t# long" %}
  8006   opcode(0x0F, 0xAF);
  8007   ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
  8008   ins_pipe(ialu_reg_reg_alu0);
  8009 %}
  8011 instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
  8012 %{
  8013   match(Set dst (MulL src imm));
  8014   effect(KILL cr);
  8016   ins_cost(300);
  8017   format %{ "imulq   $dst, $src, $imm\t# long" %}
  8018   opcode(0x69); /* 69 /r id */
  8019   ins_encode(REX_reg_reg_wide(dst, src),
  8020              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
  8021   ins_pipe(ialu_reg_reg_alu0);
  8022 %}
  8024 instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
  8025 %{
  8026   match(Set dst (MulL dst (LoadL src)));
  8027   effect(KILL cr);
  8029   ins_cost(350);
  8030   format %{ "imulq   $dst, $src\t# long" %}
  8031   opcode(0x0F, 0xAF);
  8032   ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
  8033   ins_pipe(ialu_reg_mem_alu0);
  8034 %}
  8036 instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
  8037 %{
  8038   match(Set dst (MulL (LoadL src) imm));
  8039   effect(KILL cr);
  8041   ins_cost(300);
  8042   format %{ "imulq   $dst, $src, $imm\t# long" %}
  8043   opcode(0x69); /* 69 /r id */
  8044   ins_encode(REX_reg_mem_wide(dst, src),
  8045              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
  8046   ins_pipe(ialu_reg_mem_alu0);
  8047 %}
  8049 instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
  8050                    rFlagsReg cr)
  8051 %{
  8052   match(Set rax (DivI rax div));
  8053   effect(KILL rdx, KILL cr);
  8055   ins_cost(30*100+10*100); // XXX
  8056   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
  8057             "jne,s   normal\n\t"
  8058             "xorl    rdx, rdx\n\t"
  8059             "cmpl    $div, -1\n\t"
  8060             "je,s    done\n"
  8061     "normal: cdql\n\t"
  8062             "idivl   $div\n"
  8063     "done:"        %}
  8064   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8065   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
  8066   ins_pipe(ialu_reg_reg_alu0);
  8067 %}
  8069 instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
  8070                    rFlagsReg cr)
  8071 %{
  8072   match(Set rax (DivL rax div));
  8073   effect(KILL rdx, KILL cr);
  8075   ins_cost(30*100+10*100); // XXX
  8076   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
  8077             "cmpq    rax, rdx\n\t"
  8078             "jne,s   normal\n\t"
  8079             "xorl    rdx, rdx\n\t"
  8080             "cmpq    $div, -1\n\t"
  8081             "je,s    done\n"
  8082     "normal: cdqq\n\t"
  8083             "idivq   $div\n"
  8084     "done:"        %}
  8085   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8086   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
  8087   ins_pipe(ialu_reg_reg_alu0);
  8088 %}
  8090 // Integer DIVMOD with Register, both quotient and mod results
  8091 instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
  8092                              rFlagsReg cr)
  8093 %{
  8094   match(DivModI rax div);
  8095   effect(KILL cr);
  8097   ins_cost(30*100+10*100); // XXX
  8098   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
  8099             "jne,s   normal\n\t"
  8100             "xorl    rdx, rdx\n\t"
  8101             "cmpl    $div, -1\n\t"
  8102             "je,s    done\n"
  8103     "normal: cdql\n\t"
  8104             "idivl   $div\n"
  8105     "done:"        %}
  8106   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8107   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
  8108   ins_pipe(pipe_slow);
  8109 %}
  8111 // Long DIVMOD with Register, both quotient and mod results
  8112 instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
  8113                              rFlagsReg cr)
  8114 %{
  8115   match(DivModL rax div);
  8116   effect(KILL cr);
  8118   ins_cost(30*100+10*100); // XXX
  8119   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
  8120             "cmpq    rax, rdx\n\t"
  8121             "jne,s   normal\n\t"
  8122             "xorl    rdx, rdx\n\t"
  8123             "cmpq    $div, -1\n\t"
  8124             "je,s    done\n"
  8125     "normal: cdqq\n\t"
  8126             "idivq   $div\n"
  8127     "done:"        %}
  8128   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8129   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
  8130   ins_pipe(pipe_slow);
  8131 %}
  8133 //----------- DivL-By-Constant-Expansions--------------------------------------
  8134 // DivI cases are handled by the compiler
  8136 // Magic constant, reciprical of 10
  8137 instruct loadConL_0x6666666666666667(rRegL dst)
  8138 %{
  8139   effect(DEF dst);
  8141   format %{ "movq    $dst, #0x666666666666667\t# Used in div-by-10" %}
  8142   ins_encode(load_immL(dst, 0x6666666666666667));
  8143   ins_pipe(ialu_reg);
  8144 %}
  8146 instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
  8147 %{
  8148   effect(DEF dst, USE src, USE_KILL rax, KILL cr);
  8150   format %{ "imulq   rdx:rax, rax, $src\t# Used in div-by-10" %}
  8151   opcode(0xF7, 0x5); /* Opcode F7 /5 */
  8152   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
  8153   ins_pipe(ialu_reg_reg_alu0);
  8154 %}
  8156 instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
  8157 %{
  8158   effect(USE_DEF dst, KILL cr);
  8160   format %{ "sarq    $dst, #63\t# Used in div-by-10" %}
  8161   opcode(0xC1, 0x7); /* C1 /7 ib */
  8162   ins_encode(reg_opc_imm_wide(dst, 0x3F));
  8163   ins_pipe(ialu_reg);
  8164 %}
  8166 instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
  8167 %{
  8168   effect(USE_DEF dst, KILL cr);
  8170   format %{ "sarq    $dst, #2\t# Used in div-by-10" %}
  8171   opcode(0xC1, 0x7); /* C1 /7 ib */
  8172   ins_encode(reg_opc_imm_wide(dst, 0x2));
  8173   ins_pipe(ialu_reg);
  8174 %}
  8176 instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
  8177 %{
  8178   match(Set dst (DivL src div));
  8180   ins_cost((5+8)*100);
  8181   expand %{
  8182     rax_RegL rax;                     // Killed temp
  8183     rFlagsReg cr;                     // Killed
  8184     loadConL_0x6666666666666667(rax); // movq  rax, 0x6666666666666667
  8185     mul_hi(dst, src, rax, cr);        // mulq  rdx:rax <= rax * $src
  8186     sarL_rReg_63(src, cr);            // sarq  src, 63
  8187     sarL_rReg_2(dst, cr);             // sarq  rdx, 2
  8188     subL_rReg(dst, src, cr);          // subl  rdx, src
  8189   %}
  8190 %}
  8192 //-----------------------------------------------------------------------------
  8194 instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
  8195                    rFlagsReg cr)
  8196 %{
  8197   match(Set rdx (ModI rax div));
  8198   effect(KILL rax, KILL cr);
  8200   ins_cost(300); // XXX
  8201   format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
  8202             "jne,s   normal\n\t"
  8203             "xorl    rdx, rdx\n\t"
  8204             "cmpl    $div, -1\n\t"
  8205             "je,s    done\n"
  8206     "normal: cdql\n\t"
  8207             "idivl   $div\n"
  8208     "done:"        %}
  8209   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8210   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
  8211   ins_pipe(ialu_reg_reg_alu0);
  8212 %}
  8214 instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
  8215                    rFlagsReg cr)
  8216 %{
  8217   match(Set rdx (ModL rax div));
  8218   effect(KILL rax, KILL cr);
  8220   ins_cost(300); // XXX
  8221   format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
  8222             "cmpq    rax, rdx\n\t"
  8223             "jne,s   normal\n\t"
  8224             "xorl    rdx, rdx\n\t"
  8225             "cmpq    $div, -1\n\t"
  8226             "je,s    done\n"
  8227     "normal: cdqq\n\t"
  8228             "idivq   $div\n"
  8229     "done:"        %}
  8230   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8231   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
  8232   ins_pipe(ialu_reg_reg_alu0);
  8233 %}
  8235 // Integer Shift Instructions
  8236 // Shift Left by one
  8237 instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
  8238 %{
  8239   match(Set dst (LShiftI dst shift));
  8240   effect(KILL cr);
  8242   format %{ "sall    $dst, $shift" %}
  8243   opcode(0xD1, 0x4); /* D1 /4 */
  8244   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8245   ins_pipe(ialu_reg);
  8246 %}
  8248 // Shift Left by one
  8249 instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  8250 %{
  8251   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
  8252   effect(KILL cr);
  8254   format %{ "sall    $dst, $shift\t" %}
  8255   opcode(0xD1, 0x4); /* D1 /4 */
  8256   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8257   ins_pipe(ialu_mem_imm);
  8258 %}
  8260 // Shift Left by 8-bit immediate
  8261 instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
  8262 %{
  8263   match(Set dst (LShiftI dst shift));
  8264   effect(KILL cr);
  8266   format %{ "sall    $dst, $shift" %}
  8267   opcode(0xC1, 0x4); /* C1 /4 ib */
  8268   ins_encode(reg_opc_imm(dst, shift));
  8269   ins_pipe(ialu_reg);
  8270 %}
  8272 // Shift Left by 8-bit immediate
  8273 instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  8274 %{
  8275   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
  8276   effect(KILL cr);
  8278   format %{ "sall    $dst, $shift" %}
  8279   opcode(0xC1, 0x4); /* C1 /4 ib */
  8280   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
  8281   ins_pipe(ialu_mem_imm);
  8282 %}
  8284 // Shift Left by variable
  8285 instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
  8286 %{
  8287   match(Set dst (LShiftI dst shift));
  8288   effect(KILL cr);
  8290   format %{ "sall    $dst, $shift" %}
  8291   opcode(0xD3, 0x4); /* D3 /4 */
  8292   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8293   ins_pipe(ialu_reg_reg);
  8294 %}
  8296 // Shift Left by variable
  8297 instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  8298 %{
  8299   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
  8300   effect(KILL cr);
  8302   format %{ "sall    $dst, $shift" %}
  8303   opcode(0xD3, 0x4); /* D3 /4 */
  8304   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8305   ins_pipe(ialu_mem_reg);
  8306 %}
  8308 // Arithmetic shift right by one
  8309 instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
  8310 %{
  8311   match(Set dst (RShiftI dst shift));
  8312   effect(KILL cr);
  8314   format %{ "sarl    $dst, $shift" %}
  8315   opcode(0xD1, 0x7); /* D1 /7 */
  8316   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8317   ins_pipe(ialu_reg);
  8318 %}
  8320 // Arithmetic shift right by one
  8321 instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  8322 %{
  8323   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8324   effect(KILL cr);
  8326   format %{ "sarl    $dst, $shift" %}
  8327   opcode(0xD1, 0x7); /* D1 /7 */
  8328   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8329   ins_pipe(ialu_mem_imm);
  8330 %}
  8332 // Arithmetic Shift Right by 8-bit immediate
  8333 instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
  8334 %{
  8335   match(Set dst (RShiftI dst shift));
  8336   effect(KILL cr);
  8338   format %{ "sarl    $dst, $shift" %}
  8339   opcode(0xC1, 0x7); /* C1 /7 ib */
  8340   ins_encode(reg_opc_imm(dst, shift));
  8341   ins_pipe(ialu_mem_imm);
  8342 %}
  8344 // Arithmetic Shift Right by 8-bit immediate
  8345 instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  8346 %{
  8347   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8348   effect(KILL cr);
  8350   format %{ "sarl    $dst, $shift" %}
  8351   opcode(0xC1, 0x7); /* C1 /7 ib */
  8352   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
  8353   ins_pipe(ialu_mem_imm);
  8354 %}
  8356 // Arithmetic Shift Right by variable
  8357 instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
  8358 %{
  8359   match(Set dst (RShiftI dst shift));
  8360   effect(KILL cr);
  8362   format %{ "sarl    $dst, $shift" %}
  8363   opcode(0xD3, 0x7); /* D3 /7 */
  8364   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8365   ins_pipe(ialu_reg_reg);
  8366 %}
  8368 // Arithmetic Shift Right by variable
  8369 instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  8370 %{
  8371   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8372   effect(KILL cr);
  8374   format %{ "sarl    $dst, $shift" %}
  8375   opcode(0xD3, 0x7); /* D3 /7 */
  8376   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8377   ins_pipe(ialu_mem_reg);
  8378 %}
  8380 // Logical shift right by one
  8381 instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
  8382 %{
  8383   match(Set dst (URShiftI dst shift));
  8384   effect(KILL cr);
  8386   format %{ "shrl    $dst, $shift" %}
  8387   opcode(0xD1, 0x5); /* D1 /5 */
  8388   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8389   ins_pipe(ialu_reg);
  8390 %}
  8392 // Logical shift right by one
  8393 instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  8394 %{
  8395   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
  8396   effect(KILL cr);
  8398   format %{ "shrl    $dst, $shift" %}
  8399   opcode(0xD1, 0x5); /* D1 /5 */
  8400   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8401   ins_pipe(ialu_mem_imm);
  8402 %}
  8404 // Logical Shift Right by 8-bit immediate
  8405 instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
  8406 %{
  8407   match(Set dst (URShiftI dst shift));
  8408   effect(KILL cr);
  8410   format %{ "shrl    $dst, $shift" %}
  8411   opcode(0xC1, 0x5); /* C1 /5 ib */
  8412   ins_encode(reg_opc_imm(dst, shift));
  8413   ins_pipe(ialu_reg);
  8414 %}
  8416 // Logical Shift Right by 8-bit immediate
  8417 instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  8418 %{
  8419   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
  8420   effect(KILL cr);
  8422   format %{ "shrl    $dst, $shift" %}
  8423   opcode(0xC1, 0x5); /* C1 /5 ib */
  8424   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
  8425   ins_pipe(ialu_mem_imm);
  8426 %}
  8428 // Logical Shift Right by variable
  8429 instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
  8430 %{
  8431   match(Set dst (URShiftI dst shift));
  8432   effect(KILL cr);
  8434   format %{ "shrl    $dst, $shift" %}
  8435   opcode(0xD3, 0x5); /* D3 /5 */
  8436   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8437   ins_pipe(ialu_reg_reg);
  8438 %}
  8440 // Logical Shift Right by variable
  8441 instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  8442 %{
  8443   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
  8444   effect(KILL cr);
  8446   format %{ "shrl    $dst, $shift" %}
  8447   opcode(0xD3, 0x5); /* D3 /5 */
  8448   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8449   ins_pipe(ialu_mem_reg);
  8450 %}
  8452 // Long Shift Instructions
  8453 // Shift Left by one
  8454 instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
  8455 %{
  8456   match(Set dst (LShiftL dst shift));
  8457   effect(KILL cr);
  8459   format %{ "salq    $dst, $shift" %}
  8460   opcode(0xD1, 0x4); /* D1 /4 */
  8461   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8462   ins_pipe(ialu_reg);
  8463 %}
  8465 // Shift Left by one
  8466 instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  8467 %{
  8468   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
  8469   effect(KILL cr);
  8471   format %{ "salq    $dst, $shift" %}
  8472   opcode(0xD1, 0x4); /* D1 /4 */
  8473   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8474   ins_pipe(ialu_mem_imm);
  8475 %}
  8477 // Shift Left by 8-bit immediate
  8478 instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
  8479 %{
  8480   match(Set dst (LShiftL dst shift));
  8481   effect(KILL cr);
  8483   format %{ "salq    $dst, $shift" %}
  8484   opcode(0xC1, 0x4); /* C1 /4 ib */
  8485   ins_encode(reg_opc_imm_wide(dst, shift));
  8486   ins_pipe(ialu_reg);
  8487 %}
  8489 // Shift Left by 8-bit immediate
  8490 instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  8491 %{
  8492   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
  8493   effect(KILL cr);
  8495   format %{ "salq    $dst, $shift" %}
  8496   opcode(0xC1, 0x4); /* C1 /4 ib */
  8497   ins_encode(REX_mem_wide(dst), OpcP,
  8498              RM_opc_mem(secondary, dst), Con8or32(shift));
  8499   ins_pipe(ialu_mem_imm);
  8500 %}
  8502 // Shift Left by variable
  8503 instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
  8504 %{
  8505   match(Set dst (LShiftL dst shift));
  8506   effect(KILL cr);
  8508   format %{ "salq    $dst, $shift" %}
  8509   opcode(0xD3, 0x4); /* D3 /4 */
  8510   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8511   ins_pipe(ialu_reg_reg);
  8512 %}
  8514 // Shift Left by variable
  8515 instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  8516 %{
  8517   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
  8518   effect(KILL cr);
  8520   format %{ "salq    $dst, $shift" %}
  8521   opcode(0xD3, 0x4); /* D3 /4 */
  8522   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8523   ins_pipe(ialu_mem_reg);
  8524 %}
  8526 // Arithmetic shift right by one
  8527 instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
  8528 %{
  8529   match(Set dst (RShiftL dst shift));
  8530   effect(KILL cr);
  8532   format %{ "sarq    $dst, $shift" %}
  8533   opcode(0xD1, 0x7); /* D1 /7 */
  8534   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8535   ins_pipe(ialu_reg);
  8536 %}
  8538 // Arithmetic shift right by one
  8539 instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  8540 %{
  8541   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
  8542   effect(KILL cr);
  8544   format %{ "sarq    $dst, $shift" %}
  8545   opcode(0xD1, 0x7); /* D1 /7 */
  8546   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8547   ins_pipe(ialu_mem_imm);
  8548 %}
  8550 // Arithmetic Shift Right by 8-bit immediate
  8551 instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
  8552 %{
  8553   match(Set dst (RShiftL dst shift));
  8554   effect(KILL cr);
  8556   format %{ "sarq    $dst, $shift" %}
  8557   opcode(0xC1, 0x7); /* C1 /7 ib */
  8558   ins_encode(reg_opc_imm_wide(dst, shift));
  8559   ins_pipe(ialu_mem_imm);
  8560 %}
  8562 // Arithmetic Shift Right by 8-bit immediate
  8563 instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  8564 %{
  8565   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
  8566   effect(KILL cr);
  8568   format %{ "sarq    $dst, $shift" %}
  8569   opcode(0xC1, 0x7); /* C1 /7 ib */
  8570   ins_encode(REX_mem_wide(dst), OpcP,
  8571              RM_opc_mem(secondary, dst), Con8or32(shift));
  8572   ins_pipe(ialu_mem_imm);
  8573 %}
  8575 // Arithmetic Shift Right by variable
  8576 instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
  8577 %{
  8578   match(Set dst (RShiftL dst shift));
  8579   effect(KILL cr);
  8581   format %{ "sarq    $dst, $shift" %}
  8582   opcode(0xD3, 0x7); /* D3 /7 */
  8583   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8584   ins_pipe(ialu_reg_reg);
  8585 %}
  8587 // Arithmetic Shift Right by variable
  8588 instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  8589 %{
  8590   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
  8591   effect(KILL cr);
  8593   format %{ "sarq    $dst, $shift" %}
  8594   opcode(0xD3, 0x7); /* D3 /7 */
  8595   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8596   ins_pipe(ialu_mem_reg);
  8597 %}
  8599 // Logical shift right by one
  8600 instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
  8601 %{
  8602   match(Set dst (URShiftL dst shift));
  8603   effect(KILL cr);
  8605   format %{ "shrq    $dst, $shift" %}
  8606   opcode(0xD1, 0x5); /* D1 /5 */
  8607   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
  8608   ins_pipe(ialu_reg);
  8609 %}
  8611 // Logical shift right by one
  8612 instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  8613 %{
  8614   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
  8615   effect(KILL cr);
  8617   format %{ "shrq    $dst, $shift" %}
  8618   opcode(0xD1, 0x5); /* D1 /5 */
  8619   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8620   ins_pipe(ialu_mem_imm);
  8621 %}
  8623 // Logical Shift Right by 8-bit immediate
  8624 instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
  8625 %{
  8626   match(Set dst (URShiftL dst shift));
  8627   effect(KILL cr);
  8629   format %{ "shrq    $dst, $shift" %}
  8630   opcode(0xC1, 0x5); /* C1 /5 ib */
  8631   ins_encode(reg_opc_imm_wide(dst, shift));
  8632   ins_pipe(ialu_reg);
  8633 %}
  8635 // Logical Shift Right by 8-bit immediate
  8636 instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  8637 %{
  8638   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
  8639   effect(KILL cr);
  8641   format %{ "shrq    $dst, $shift" %}
  8642   opcode(0xC1, 0x5); /* C1 /5 ib */
  8643   ins_encode(REX_mem_wide(dst), OpcP,
  8644              RM_opc_mem(secondary, dst), Con8or32(shift));
  8645   ins_pipe(ialu_mem_imm);
  8646 %}
  8648 // Logical Shift Right by variable
  8649 instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
  8650 %{
  8651   match(Set dst (URShiftL dst shift));
  8652   effect(KILL cr);
  8654   format %{ "shrq    $dst, $shift" %}
  8655   opcode(0xD3, 0x5); /* D3 /5 */
  8656   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8657   ins_pipe(ialu_reg_reg);
  8658 %}
  8660 // Logical Shift Right by variable
  8661 instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  8662 %{
  8663   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
  8664   effect(KILL cr);
  8666   format %{ "shrq    $dst, $shift" %}
  8667   opcode(0xD3, 0x5); /* D3 /5 */
  8668   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8669   ins_pipe(ialu_mem_reg);
  8670 %}
  8672 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8673 // This idiom is used by the compiler for the i2b bytecode.
  8674 instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
  8675 %{
  8676   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8678   format %{ "movsbl  $dst, $src\t# i2b" %}
  8679   opcode(0x0F, 0xBE);
  8680   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  8681   ins_pipe(ialu_reg_reg);
  8682 %}
  8684 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8685 // This idiom is used by the compiler the i2s bytecode.
  8686 instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
  8687 %{
  8688   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8690   format %{ "movswl  $dst, $src\t# i2s" %}
  8691   opcode(0x0F, 0xBF);
  8692   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  8693   ins_pipe(ialu_reg_reg);
  8694 %}
  8696 // ROL/ROR instructions
  8698 // ROL expand
  8699 instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
  8700   effect(KILL cr, USE_DEF dst);
  8702   format %{ "roll    $dst" %}
  8703   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
  8704   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8705   ins_pipe(ialu_reg);
  8706 %}
  8708 instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
  8709   effect(USE_DEF dst, USE shift, KILL cr);
  8711   format %{ "roll    $dst, $shift" %}
  8712   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
  8713   ins_encode( reg_opc_imm(dst, shift) );
  8714   ins_pipe(ialu_reg);
  8715 %}
  8717 instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
  8718 %{
  8719   effect(USE_DEF dst, USE shift, KILL cr);
  8721   format %{ "roll    $dst, $shift" %}
  8722   opcode(0xD3, 0x0); /* Opcode D3 /0 */
  8723   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8724   ins_pipe(ialu_reg_reg);
  8725 %}
  8726 // end of ROL expand
  8728 // Rotate Left by one
  8729 instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
  8730 %{
  8731   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8733   expand %{
  8734     rolI_rReg_imm1(dst, cr);
  8735   %}
  8736 %}
  8738 // Rotate Left by 8-bit immediate
  8739 instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
  8740 %{
  8741   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8742   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8744   expand %{
  8745     rolI_rReg_imm8(dst, lshift, cr);
  8746   %}
  8747 %}
  8749 // Rotate Left by variable
  8750 instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  8751 %{
  8752   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8754   expand %{
  8755     rolI_rReg_CL(dst, shift, cr);
  8756   %}
  8757 %}
  8759 // Rotate Left by variable
  8760 instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
  8761 %{
  8762   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8764   expand %{
  8765     rolI_rReg_CL(dst, shift, cr);
  8766   %}
  8767 %}
  8769 // ROR expand
  8770 instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
  8771 %{
  8772   effect(USE_DEF dst, KILL cr);
  8774   format %{ "rorl    $dst" %}
  8775   opcode(0xD1, 0x1); /* D1 /1 */
  8776   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8777   ins_pipe(ialu_reg);
  8778 %}
  8780 instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
  8781 %{
  8782   effect(USE_DEF dst, USE shift, KILL cr);
  8784   format %{ "rorl    $dst, $shift" %}
  8785   opcode(0xC1, 0x1); /* C1 /1 ib */
  8786   ins_encode(reg_opc_imm(dst, shift));
  8787   ins_pipe(ialu_reg);
  8788 %}
  8790 instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
  8791 %{
  8792   effect(USE_DEF dst, USE shift, KILL cr);
  8794   format %{ "rorl    $dst, $shift" %}
  8795   opcode(0xD3, 0x1); /* D3 /1 */
  8796   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8797   ins_pipe(ialu_reg_reg);
  8798 %}
  8799 // end of ROR expand
  8801 // Rotate Right by one
  8802 instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
  8803 %{
  8804   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8806   expand %{
  8807     rorI_rReg_imm1(dst, cr);
  8808   %}
  8809 %}
  8811 // Rotate Right by 8-bit immediate
  8812 instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
  8813 %{
  8814   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8815   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8817   expand %{
  8818     rorI_rReg_imm8(dst, rshift, cr);
  8819   %}
  8820 %}
  8822 // Rotate Right by variable
  8823 instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  8824 %{
  8825   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8827   expand %{
  8828     rorI_rReg_CL(dst, shift, cr);
  8829   %}
  8830 %}
  8832 // Rotate Right by variable
  8833 instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
  8834 %{
  8835   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8837   expand %{
  8838     rorI_rReg_CL(dst, shift, cr);
  8839   %}
  8840 %}
  8842 // for long rotate
  8843 // ROL expand
  8844 instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
  8845   effect(USE_DEF dst, KILL cr);
  8847   format %{ "rolq    $dst" %}
  8848   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
  8849   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8850   ins_pipe(ialu_reg);
  8851 %}
  8853 instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
  8854   effect(USE_DEF dst, USE shift, KILL cr);
  8856   format %{ "rolq    $dst, $shift" %}
  8857   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
  8858   ins_encode( reg_opc_imm_wide(dst, shift) );
  8859   ins_pipe(ialu_reg);
  8860 %}
  8862 instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
  8863 %{
  8864   effect(USE_DEF dst, USE shift, KILL cr);
  8866   format %{ "rolq    $dst, $shift" %}
  8867   opcode(0xD3, 0x0); /* Opcode D3 /0 */
  8868   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8869   ins_pipe(ialu_reg_reg);
  8870 %}
  8871 // end of ROL expand
  8873 // Rotate Left by one
  8874 instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
  8875 %{
  8876   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
  8878   expand %{
  8879     rolL_rReg_imm1(dst, cr);
  8880   %}
  8881 %}
  8883 // Rotate Left by 8-bit immediate
  8884 instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
  8885 %{
  8886   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
  8887   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
  8889   expand %{
  8890     rolL_rReg_imm8(dst, lshift, cr);
  8891   %}
  8892 %}
  8894 // Rotate Left by variable
  8895 instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  8896 %{
  8897   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
  8899   expand %{
  8900     rolL_rReg_CL(dst, shift, cr);
  8901   %}
  8902 %}
  8904 // Rotate Left by variable
  8905 instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
  8906 %{
  8907   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
  8909   expand %{
  8910     rolL_rReg_CL(dst, shift, cr);
  8911   %}
  8912 %}
  8914 // ROR expand
  8915 instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
  8916 %{
  8917   effect(USE_DEF dst, KILL cr);
  8919   format %{ "rorq    $dst" %}
  8920   opcode(0xD1, 0x1); /* D1 /1 */
  8921   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8922   ins_pipe(ialu_reg);
  8923 %}
  8925 instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
  8926 %{
  8927   effect(USE_DEF dst, USE shift, KILL cr);
  8929   format %{ "rorq    $dst, $shift" %}
  8930   opcode(0xC1, 0x1); /* C1 /1 ib */
  8931   ins_encode(reg_opc_imm_wide(dst, shift));
  8932   ins_pipe(ialu_reg);
  8933 %}
  8935 instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
  8936 %{
  8937   effect(USE_DEF dst, USE shift, KILL cr);
  8939   format %{ "rorq    $dst, $shift" %}
  8940   opcode(0xD3, 0x1); /* D3 /1 */
  8941   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8942   ins_pipe(ialu_reg_reg);
  8943 %}
  8944 // end of ROR expand
  8946 // Rotate Right by one
  8947 instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
  8948 %{
  8949   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
  8951   expand %{
  8952     rorL_rReg_imm1(dst, cr);
  8953   %}
  8954 %}
  8956 // Rotate Right by 8-bit immediate
  8957 instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
  8958 %{
  8959   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
  8960   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
  8962   expand %{
  8963     rorL_rReg_imm8(dst, rshift, cr);
  8964   %}
  8965 %}
  8967 // Rotate Right by variable
  8968 instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  8969 %{
  8970   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
  8972   expand %{
  8973     rorL_rReg_CL(dst, shift, cr);
  8974   %}
  8975 %}
  8977 // Rotate Right by variable
  8978 instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
  8979 %{
  8980   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
  8982   expand %{
  8983     rorL_rReg_CL(dst, shift, cr);
  8984   %}
  8985 %}
  8987 // Logical Instructions
  8989 // Integer Logical Instructions
  8991 // And Instructions
  8992 // And Register with Register
  8993 instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  8994 %{
  8995   match(Set dst (AndI dst src));
  8996   effect(KILL cr);
  8998   format %{ "andl    $dst, $src\t# int" %}
  8999   opcode(0x23);
  9000   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  9001   ins_pipe(ialu_reg_reg);
  9002 %}
  9004 // And Register with Immediate 255
  9005 instruct andI_rReg_imm255(rRegI dst, immI_255 src)
  9006 %{
  9007   match(Set dst (AndI dst src));
  9009   format %{ "movzbl  $dst, $dst\t# int & 0xFF" %}
  9010   opcode(0x0F, 0xB6);
  9011   ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  9012   ins_pipe(ialu_reg);
  9013 %}
  9015 // And Register with Immediate 255 and promote to long
  9016 instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
  9017 %{
  9018   match(Set dst (ConvI2L (AndI src mask)));
  9020   format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
  9021   opcode(0x0F, 0xB6);
  9022   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  9023   ins_pipe(ialu_reg);
  9024 %}
  9026 // And Register with Immediate 65535
  9027 instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
  9028 %{
  9029   match(Set dst (AndI dst src));
  9031   format %{ "movzwl  $dst, $dst\t# int & 0xFFFF" %}
  9032   opcode(0x0F, 0xB7);
  9033   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  9034   ins_pipe(ialu_reg);
  9035 %}
  9037 // And Register with Immediate 65535 and promote to long
  9038 instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
  9039 %{
  9040   match(Set dst (ConvI2L (AndI src mask)));
  9042   format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
  9043   opcode(0x0F, 0xB7);
  9044   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  9045   ins_pipe(ialu_reg);
  9046 %}
  9048 // And Register with Immediate
  9049 instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  9050 %{
  9051   match(Set dst (AndI dst src));
  9052   effect(KILL cr);
  9054   format %{ "andl    $dst, $src\t# int" %}
  9055   opcode(0x81, 0x04); /* Opcode 81 /4 */
  9056   ins_encode(OpcSErm(dst, src), Con8or32(src));
  9057   ins_pipe(ialu_reg);
  9058 %}
  9060 // And Register with Memory
  9061 instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  9062 %{
  9063   match(Set dst (AndI dst (LoadI src)));
  9064   effect(KILL cr);
  9066   ins_cost(125);
  9067   format %{ "andl    $dst, $src\t# int" %}
  9068   opcode(0x23);
  9069   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  9070   ins_pipe(ialu_reg_mem);
  9071 %}
  9073 // And Memory with Register
  9074 instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  9075 %{
  9076   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9077   effect(KILL cr);
  9079   ins_cost(150);
  9080   format %{ "andl    $dst, $src\t# int" %}
  9081   opcode(0x21); /* Opcode 21 /r */
  9082   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  9083   ins_pipe(ialu_mem_reg);
  9084 %}
  9086 // And Memory with Immediate
  9087 instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
  9088 %{
  9089   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9090   effect(KILL cr);
  9092   ins_cost(125);
  9093   format %{ "andl    $dst, $src\t# int" %}
  9094   opcode(0x81, 0x4); /* Opcode 81 /4 id */
  9095   ins_encode(REX_mem(dst), OpcSE(src),
  9096              RM_opc_mem(secondary, dst), Con8or32(src));
  9097   ins_pipe(ialu_mem_imm);
  9098 %}
  9100 // Or Instructions
  9101 // Or Register with Register
  9102 instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  9103 %{
  9104   match(Set dst (OrI dst src));
  9105   effect(KILL cr);
  9107   format %{ "orl     $dst, $src\t# int" %}
  9108   opcode(0x0B);
  9109   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  9110   ins_pipe(ialu_reg_reg);
  9111 %}
  9113 // Or Register with Immediate
  9114 instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  9115 %{
  9116   match(Set dst (OrI dst src));
  9117   effect(KILL cr);
  9119   format %{ "orl     $dst, $src\t# int" %}
  9120   opcode(0x81, 0x01); /* Opcode 81 /1 id */
  9121   ins_encode(OpcSErm(dst, src), Con8or32(src));
  9122   ins_pipe(ialu_reg);
  9123 %}
  9125 // Or Register with Memory
  9126 instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  9127 %{
  9128   match(Set dst (OrI dst (LoadI src)));
  9129   effect(KILL cr);
  9131   ins_cost(125);
  9132   format %{ "orl     $dst, $src\t# int" %}
  9133   opcode(0x0B);
  9134   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  9135   ins_pipe(ialu_reg_mem);
  9136 %}
  9138 // Or Memory with Register
  9139 instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  9140 %{
  9141   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9142   effect(KILL cr);
  9144   ins_cost(150);
  9145   format %{ "orl     $dst, $src\t# int" %}
  9146   opcode(0x09); /* Opcode 09 /r */
  9147   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  9148   ins_pipe(ialu_mem_reg);
  9149 %}
  9151 // Or Memory with Immediate
  9152 instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
  9153 %{
  9154   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9155   effect(KILL cr);
  9157   ins_cost(125);
  9158   format %{ "orl     $dst, $src\t# int" %}
  9159   opcode(0x81, 0x1); /* Opcode 81 /1 id */
  9160   ins_encode(REX_mem(dst), OpcSE(src),
  9161              RM_opc_mem(secondary, dst), Con8or32(src));
  9162   ins_pipe(ialu_mem_imm);
  9163 %}
  9165 // Xor Instructions
  9166 // Xor Register with Register
  9167 instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  9168 %{
  9169   match(Set dst (XorI dst src));
  9170   effect(KILL cr);
  9172   format %{ "xorl    $dst, $src\t# int" %}
  9173   opcode(0x33);
  9174   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  9175   ins_pipe(ialu_reg_reg);
  9176 %}
  9178 // Xor Register with Immediate
  9179 instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  9180 %{
  9181   match(Set dst (XorI dst src));
  9182   effect(KILL cr);
  9184   format %{ "xorl    $dst, $src\t# int" %}
  9185   opcode(0x81, 0x06); /* Opcode 81 /6 id */
  9186   ins_encode(OpcSErm(dst, src), Con8or32(src));
  9187   ins_pipe(ialu_reg);
  9188 %}
  9190 // Xor Register with Memory
  9191 instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  9192 %{
  9193   match(Set dst (XorI dst (LoadI src)));
  9194   effect(KILL cr);
  9196   ins_cost(125);
  9197   format %{ "xorl    $dst, $src\t# int" %}
  9198   opcode(0x33);
  9199   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  9200   ins_pipe(ialu_reg_mem);
  9201 %}
  9203 // Xor Memory with Register
  9204 instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  9205 %{
  9206   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9207   effect(KILL cr);
  9209   ins_cost(150);
  9210   format %{ "xorl    $dst, $src\t# int" %}
  9211   opcode(0x31); /* Opcode 31 /r */
  9212   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  9213   ins_pipe(ialu_mem_reg);
  9214 %}
  9216 // Xor Memory with Immediate
  9217 instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
  9218 %{
  9219   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9220   effect(KILL cr);
  9222   ins_cost(125);
  9223   format %{ "xorl    $dst, $src\t# int" %}
  9224   opcode(0x81, 0x6); /* Opcode 81 /6 id */
  9225   ins_encode(REX_mem(dst), OpcSE(src),
  9226              RM_opc_mem(secondary, dst), Con8or32(src));
  9227   ins_pipe(ialu_mem_imm);
  9228 %}
  9231 // Long Logical Instructions
  9233 // And Instructions
  9234 // And Register with Register
  9235 instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  9236 %{
  9237   match(Set dst (AndL dst src));
  9238   effect(KILL cr);
  9240   format %{ "andq    $dst, $src\t# long" %}
  9241   opcode(0x23);
  9242   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  9243   ins_pipe(ialu_reg_reg);
  9244 %}
  9246 // And Register with Immediate 255
  9247 instruct andL_rReg_imm255(rRegL dst, immL_255 src)
  9248 %{
  9249   match(Set dst (AndL dst src));
  9251   format %{ "movzbq  $dst, $src\t# long & 0xFF" %}
  9252   opcode(0x0F, 0xB6);
  9253   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  9254   ins_pipe(ialu_reg);
  9255 %}
  9257 // And Register with Immediate 65535
  9258 instruct andL_rReg_imm65535(rRegI dst, immL_65535 src)
  9259 %{
  9260   match(Set dst (AndL dst src));
  9262   format %{ "movzwq  $dst, $dst\t# long & 0xFFFF" %}
  9263   opcode(0x0F, 0xB7);
  9264   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  9265   ins_pipe(ialu_reg);
  9266 %}
  9268 // And Register with Immediate
  9269 instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
  9270 %{
  9271   match(Set dst (AndL dst src));
  9272   effect(KILL cr);
  9274   format %{ "andq    $dst, $src\t# long" %}
  9275   opcode(0x81, 0x04); /* Opcode 81 /4 */
  9276   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  9277   ins_pipe(ialu_reg);
  9278 %}
  9280 // And Register with Memory
  9281 instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  9282 %{
  9283   match(Set dst (AndL dst (LoadL src)));
  9284   effect(KILL cr);
  9286   ins_cost(125);
  9287   format %{ "andq    $dst, $src\t# long" %}
  9288   opcode(0x23);
  9289   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  9290   ins_pipe(ialu_reg_mem);
  9291 %}
  9293 // And Memory with Register
  9294 instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  9295 %{
  9296   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
  9297   effect(KILL cr);
  9299   ins_cost(150);
  9300   format %{ "andq    $dst, $src\t# long" %}
  9301   opcode(0x21); /* Opcode 21 /r */
  9302   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  9303   ins_pipe(ialu_mem_reg);
  9304 %}
  9306 // And Memory with Immediate
  9307 instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  9308 %{
  9309   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
  9310   effect(KILL cr);
  9312   ins_cost(125);
  9313   format %{ "andq    $dst, $src\t# long" %}
  9314   opcode(0x81, 0x4); /* Opcode 81 /4 id */
  9315   ins_encode(REX_mem_wide(dst), OpcSE(src),
  9316              RM_opc_mem(secondary, dst), Con8or32(src));
  9317   ins_pipe(ialu_mem_imm);
  9318 %}
  9320 // Or Instructions
  9321 // Or Register with Register
  9322 instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  9323 %{
  9324   match(Set dst (OrL dst src));
  9325   effect(KILL cr);
  9327   format %{ "orq     $dst, $src\t# long" %}
  9328   opcode(0x0B);
  9329   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  9330   ins_pipe(ialu_reg_reg);
  9331 %}
  9333 // Or Register with Immediate
  9334 instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
  9335 %{
  9336   match(Set dst (OrL dst src));
  9337   effect(KILL cr);
  9339   format %{ "orq     $dst, $src\t# long" %}
  9340   opcode(0x81, 0x01); /* Opcode 81 /1 id */
  9341   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  9342   ins_pipe(ialu_reg);
  9343 %}
  9345 // Or Register with Memory
  9346 instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  9347 %{
  9348   match(Set dst (OrL dst (LoadL src)));
  9349   effect(KILL cr);
  9351   ins_cost(125);
  9352   format %{ "orq     $dst, $src\t# long" %}
  9353   opcode(0x0B);
  9354   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  9355   ins_pipe(ialu_reg_mem);
  9356 %}
  9358 // Or Memory with Register
  9359 instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  9360 %{
  9361   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
  9362   effect(KILL cr);
  9364   ins_cost(150);
  9365   format %{ "orq     $dst, $src\t# long" %}
  9366   opcode(0x09); /* Opcode 09 /r */
  9367   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  9368   ins_pipe(ialu_mem_reg);
  9369 %}
  9371 // Or Memory with Immediate
  9372 instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  9373 %{
  9374   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
  9375   effect(KILL cr);
  9377   ins_cost(125);
  9378   format %{ "orq     $dst, $src\t# long" %}
  9379   opcode(0x81, 0x1); /* Opcode 81 /1 id */
  9380   ins_encode(REX_mem_wide(dst), OpcSE(src),
  9381              RM_opc_mem(secondary, dst), Con8or32(src));
  9382   ins_pipe(ialu_mem_imm);
  9383 %}
  9385 // Xor Instructions
  9386 // Xor Register with Register
  9387 instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  9388 %{
  9389   match(Set dst (XorL dst src));
  9390   effect(KILL cr);
  9392   format %{ "xorq    $dst, $src\t# long" %}
  9393   opcode(0x33);
  9394   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  9395   ins_pipe(ialu_reg_reg);
  9396 %}
  9398 // Xor Register with Immediate
  9399 instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
  9400 %{
  9401   match(Set dst (XorL dst src));
  9402   effect(KILL cr);
  9404   format %{ "xorq    $dst, $src\t# long" %}
  9405   opcode(0x81, 0x06); /* Opcode 81 /6 id */
  9406   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  9407   ins_pipe(ialu_reg);
  9408 %}
  9410 // Xor Register with Memory
  9411 instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  9412 %{
  9413   match(Set dst (XorL dst (LoadL src)));
  9414   effect(KILL cr);
  9416   ins_cost(125);
  9417   format %{ "xorq    $dst, $src\t# long" %}
  9418   opcode(0x33);
  9419   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  9420   ins_pipe(ialu_reg_mem);
  9421 %}
  9423 // Xor Memory with Register
  9424 instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  9425 %{
  9426   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
  9427   effect(KILL cr);
  9429   ins_cost(150);
  9430   format %{ "xorq    $dst, $src\t# long" %}
  9431   opcode(0x31); /* Opcode 31 /r */
  9432   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  9433   ins_pipe(ialu_mem_reg);
  9434 %}
  9436 // Xor Memory with Immediate
  9437 instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  9438 %{
  9439   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
  9440   effect(KILL cr);
  9442   ins_cost(125);
  9443   format %{ "xorq    $dst, $src\t# long" %}
  9444   opcode(0x81, 0x6); /* Opcode 81 /6 id */
  9445   ins_encode(REX_mem_wide(dst), OpcSE(src),
  9446              RM_opc_mem(secondary, dst), Con8or32(src));
  9447   ins_pipe(ialu_mem_imm);
  9448 %}
  9450 // Convert Int to Boolean
  9451 instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
  9452 %{
  9453   match(Set dst (Conv2B src));
  9454   effect(KILL cr);
  9456   format %{ "testl   $src, $src\t# ci2b\n\t"
  9457             "setnz   $dst\n\t"
  9458             "movzbl  $dst, $dst" %}
  9459   ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
  9460              setNZ_reg(dst),
  9461              REX_reg_breg(dst, dst), // movzbl
  9462              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
  9463   ins_pipe(pipe_slow); // XXX
  9464 %}
  9466 // Convert Pointer to Boolean
  9467 instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
  9468 %{
  9469   match(Set dst (Conv2B src));
  9470   effect(KILL cr);
  9472   format %{ "testq   $src, $src\t# cp2b\n\t"
  9473             "setnz   $dst\n\t"
  9474             "movzbl  $dst, $dst" %}
  9475   ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
  9476              setNZ_reg(dst),
  9477              REX_reg_breg(dst, dst), // movzbl
  9478              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
  9479   ins_pipe(pipe_slow); // XXX
  9480 %}
  9482 instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
  9483 %{
  9484   match(Set dst (CmpLTMask p q));
  9485   effect(KILL cr);
  9487   ins_cost(400); // XXX
  9488   format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
  9489             "setlt   $dst\n\t"
  9490             "movzbl  $dst, $dst\n\t"
  9491             "negl    $dst" %}
  9492   ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
  9493              setLT_reg(dst),
  9494              REX_reg_breg(dst, dst), // movzbl
  9495              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
  9496              neg_reg(dst));
  9497   ins_pipe(pipe_slow);
  9498 %}
  9500 instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
  9501 %{
  9502   match(Set dst (CmpLTMask dst zero));
  9503   effect(KILL cr);
  9505   ins_cost(100); // XXX
  9506   format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
  9507   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9508   ins_encode(reg_opc_imm(dst, 0x1F));
  9509   ins_pipe(ialu_reg);
  9510 %}
  9513 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y,
  9514                          rRegI tmp,
  9515                          rFlagsReg cr)
  9516 %{
  9517   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9518   effect(TEMP tmp, KILL cr);
  9520   ins_cost(400); // XXX
  9521   format %{ "subl    $p, $q\t# cadd_cmpLTMask1\n\t"
  9522             "sbbl    $tmp, $tmp\n\t"
  9523             "andl    $tmp, $y\n\t"
  9524             "addl    $p, $tmp" %}
  9525   ins_encode(enc_cmpLTP(p, q, y, tmp));
  9526   ins_pipe(pipe_cmplt);
  9527 %}
  9529 /* If I enable this, I encourage spilling in the inner loop of compress.
  9530 instruct cadd_cmpLTMask_mem( rRegI p, rRegI q, memory y, rRegI tmp, rFlagsReg cr )
  9531 %{
  9532   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9533   effect( TEMP tmp, KILL cr );
  9534   ins_cost(400);
  9536   format %{ "SUB    $p,$q\n\t"
  9537             "SBB    RCX,RCX\n\t"
  9538             "AND    RCX,$y\n\t"
  9539             "ADD    $p,RCX" %}
  9540   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9541 %}
  9542 */
  9544 //---------- FP Instructions------------------------------------------------
  9546 instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
  9547 %{
  9548   match(Set cr (CmpF src1 src2));
  9550   ins_cost(145);
  9551   format %{ "ucomiss $src1, $src2\n\t"
  9552             "jnp,s   exit\n\t"
  9553             "pushfq\t# saw NaN, set CF\n\t"
  9554             "andq    [rsp], #0xffffff2b\n\t"
  9555             "popfq\n"
  9556     "exit:   nop\t# avoid branch to branch" %}
  9557   opcode(0x0F, 0x2E);
  9558   ins_encode(REX_reg_reg(src1, src2), OpcP, OpcS, reg_reg(src1, src2),
  9559              cmpfp_fixup);
  9560   ins_pipe(pipe_slow);
  9561 %}
  9563 instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
  9564 %{
  9565   match(Set cr (CmpF src1 (LoadF src2)));
  9567   ins_cost(145);
  9568   format %{ "ucomiss $src1, $src2\n\t"
  9569             "jnp,s   exit\n\t"
  9570             "pushfq\t# saw NaN, set CF\n\t"
  9571             "andq    [rsp], #0xffffff2b\n\t"
  9572             "popfq\n"
  9573     "exit:   nop\t# avoid branch to branch" %}
  9574   opcode(0x0F, 0x2E);
  9575   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2),
  9576              cmpfp_fixup);
  9577   ins_pipe(pipe_slow);
  9578 %}
  9580 instruct cmpF_cc_imm(rFlagsRegU cr, regF src1, immF src2)
  9581 %{
  9582   match(Set cr (CmpF src1 src2));
  9584   ins_cost(145);
  9585   format %{ "ucomiss $src1, $src2\n\t"
  9586             "jnp,s   exit\n\t"
  9587             "pushfq\t# saw NaN, set CF\n\t"
  9588             "andq    [rsp], #0xffffff2b\n\t"
  9589             "popfq\n"
  9590     "exit:   nop\t# avoid branch to branch" %}
  9591   opcode(0x0F, 0x2E);
  9592   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2),
  9593              cmpfp_fixup);
  9594   ins_pipe(pipe_slow);
  9595 %}
  9597 instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
  9598 %{
  9599   match(Set cr (CmpD src1 src2));
  9601   ins_cost(145);
  9602   format %{ "ucomisd $src1, $src2\n\t"
  9603             "jnp,s   exit\n\t"
  9604             "pushfq\t# saw NaN, set CF\n\t"
  9605             "andq    [rsp], #0xffffff2b\n\t"
  9606             "popfq\n"
  9607     "exit:   nop\t# avoid branch to branch" %}
  9608   opcode(0x66, 0x0F, 0x2E);
  9609   ins_encode(OpcP, REX_reg_reg(src1, src2), OpcS, OpcT, reg_reg(src1, src2),
  9610              cmpfp_fixup);
  9611   ins_pipe(pipe_slow);
  9612 %}
  9614 instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
  9615 %{
  9616   match(Set cr (CmpD src1 (LoadD src2)));
  9618   ins_cost(145);
  9619   format %{ "ucomisd $src1, $src2\n\t"
  9620             "jnp,s   exit\n\t"
  9621             "pushfq\t# saw NaN, set CF\n\t"
  9622             "andq    [rsp], #0xffffff2b\n\t"
  9623             "popfq\n"
  9624     "exit:   nop\t# avoid branch to branch" %}
  9625   opcode(0x66, 0x0F, 0x2E);
  9626   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2),
  9627              cmpfp_fixup);
  9628   ins_pipe(pipe_slow);
  9629 %}
  9631 instruct cmpD_cc_imm(rFlagsRegU cr, regD src1, immD src2)
  9632 %{
  9633   match(Set cr (CmpD src1 src2));
  9635   ins_cost(145);
  9636   format %{ "ucomisd $src1, [$src2]\n\t"
  9637             "jnp,s   exit\n\t"
  9638             "pushfq\t# saw NaN, set CF\n\t"
  9639             "andq    [rsp], #0xffffff2b\n\t"
  9640             "popfq\n"
  9641     "exit:   nop\t# avoid branch to branch" %}
  9642   opcode(0x66, 0x0F, 0x2E);
  9643   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2),
  9644              cmpfp_fixup);
  9645   ins_pipe(pipe_slow);
  9646 %}
  9648 // Compare into -1,0,1
  9649 instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
  9650 %{
  9651   match(Set dst (CmpF3 src1 src2));
  9652   effect(KILL cr);
  9654   ins_cost(275);
  9655   format %{ "ucomiss $src1, $src2\n\t"
  9656             "movl    $dst, #-1\n\t"
  9657             "jp,s    done\n\t"
  9658             "jb,s    done\n\t"
  9659             "setne   $dst\n\t"
  9660             "movzbl  $dst, $dst\n"
  9661     "done:" %}
  9663   opcode(0x0F, 0x2E);
  9664   ins_encode(REX_reg_reg(src1, src2), OpcP, OpcS, reg_reg(src1, src2),
  9665              cmpfp3(dst));
  9666   ins_pipe(pipe_slow);
  9667 %}
  9669 // Compare into -1,0,1
  9670 instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
  9671 %{
  9672   match(Set dst (CmpF3 src1 (LoadF src2)));
  9673   effect(KILL cr);
  9675   ins_cost(275);
  9676   format %{ "ucomiss $src1, $src2\n\t"
  9677             "movl    $dst, #-1\n\t"
  9678             "jp,s    done\n\t"
  9679             "jb,s    done\n\t"
  9680             "setne   $dst\n\t"
  9681             "movzbl  $dst, $dst\n"
  9682     "done:" %}
  9684   opcode(0x0F, 0x2E);
  9685   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2),
  9686              cmpfp3(dst));
  9687   ins_pipe(pipe_slow);
  9688 %}
  9690 // Compare into -1,0,1
  9691 instruct cmpF_imm(rRegI dst, regF src1, immF src2, rFlagsReg cr)
  9692 %{
  9693   match(Set dst (CmpF3 src1 src2));
  9694   effect(KILL cr);
  9696   ins_cost(275);
  9697   format %{ "ucomiss $src1, [$src2]\n\t"
  9698             "movl    $dst, #-1\n\t"
  9699             "jp,s    done\n\t"
  9700             "jb,s    done\n\t"
  9701             "setne   $dst\n\t"
  9702             "movzbl  $dst, $dst\n"
  9703     "done:" %}
  9705   opcode(0x0F, 0x2E);
  9706   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2),
  9707              cmpfp3(dst));
  9708   ins_pipe(pipe_slow);
  9709 %}
  9711 // Compare into -1,0,1
  9712 instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
  9713 %{
  9714   match(Set dst (CmpD3 src1 src2));
  9715   effect(KILL cr);
  9717   ins_cost(275);
  9718   format %{ "ucomisd $src1, $src2\n\t"
  9719             "movl    $dst, #-1\n\t"
  9720             "jp,s    done\n\t"
  9721             "jb,s    done\n\t"
  9722             "setne   $dst\n\t"
  9723             "movzbl  $dst, $dst\n"
  9724     "done:" %}
  9726   opcode(0x66, 0x0F, 0x2E);
  9727   ins_encode(OpcP, REX_reg_reg(src1, src2), OpcS, OpcT, reg_reg(src1, src2),
  9728              cmpfp3(dst));
  9729   ins_pipe(pipe_slow);
  9730 %}
  9732 // Compare into -1,0,1
  9733 instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
  9734 %{
  9735   match(Set dst (CmpD3 src1 (LoadD src2)));
  9736   effect(KILL cr);
  9738   ins_cost(275);
  9739   format %{ "ucomisd $src1, $src2\n\t"
  9740             "movl    $dst, #-1\n\t"
  9741             "jp,s    done\n\t"
  9742             "jb,s    done\n\t"
  9743             "setne   $dst\n\t"
  9744             "movzbl  $dst, $dst\n"
  9745     "done:" %}
  9747   opcode(0x66, 0x0F, 0x2E);
  9748   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2),
  9749              cmpfp3(dst));
  9750   ins_pipe(pipe_slow);
  9751 %}
  9753 // Compare into -1,0,1
  9754 instruct cmpD_imm(rRegI dst, regD src1, immD src2, rFlagsReg cr)
  9755 %{
  9756   match(Set dst (CmpD3 src1 src2));
  9757   effect(KILL cr);
  9759   ins_cost(275);
  9760   format %{ "ucomisd $src1, [$src2]\n\t"
  9761             "movl    $dst, #-1\n\t"
  9762             "jp,s    done\n\t"
  9763             "jb,s    done\n\t"
  9764             "setne   $dst\n\t"
  9765             "movzbl  $dst, $dst\n"
  9766     "done:" %}
  9768   opcode(0x66, 0x0F, 0x2E);
  9769   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2),
  9770              cmpfp3(dst));
  9771   ins_pipe(pipe_slow);
  9772 %}
  9774 instruct addF_reg(regF dst, regF src)
  9775 %{
  9776   match(Set dst (AddF dst src));
  9778   format %{ "addss   $dst, $src" %}
  9779   ins_cost(150); // XXX
  9780   opcode(0xF3, 0x0F, 0x58);
  9781   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
  9782   ins_pipe(pipe_slow);
  9783 %}
  9785 instruct addF_mem(regF dst, memory src)
  9786 %{
  9787   match(Set dst (AddF dst (LoadF src)));
  9789   format %{ "addss   $dst, $src" %}
  9790   ins_cost(150); // XXX
  9791   opcode(0xF3, 0x0F, 0x58);
  9792   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
  9793   ins_pipe(pipe_slow);
  9794 %}
  9796 instruct addF_imm(regF dst, immF src)
  9797 %{
  9798   match(Set dst (AddF dst src));
  9800   format %{ "addss   $dst, [$src]" %}
  9801   ins_cost(150); // XXX
  9802   opcode(0xF3, 0x0F, 0x58);
  9803   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
  9804   ins_pipe(pipe_slow);
  9805 %}
  9807 instruct addD_reg(regD dst, regD src)
  9808 %{
  9809   match(Set dst (AddD dst src));
  9811   format %{ "addsd   $dst, $src" %}
  9812   ins_cost(150); // XXX
  9813   opcode(0xF2, 0x0F, 0x58);
  9814   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
  9815   ins_pipe(pipe_slow);
  9816 %}
  9818 instruct addD_mem(regD dst, memory src)
  9819 %{
  9820   match(Set dst (AddD dst (LoadD src)));
  9822   format %{ "addsd   $dst, $src" %}
  9823   ins_cost(150); // XXX
  9824   opcode(0xF2, 0x0F, 0x58);
  9825   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
  9826   ins_pipe(pipe_slow);
  9827 %}
  9829 instruct addD_imm(regD dst, immD src)
  9830 %{
  9831   match(Set dst (AddD dst src));
  9833   format %{ "addsd   $dst, [$src]" %}
  9834   ins_cost(150); // XXX
  9835   opcode(0xF2, 0x0F, 0x58);
  9836   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
  9837   ins_pipe(pipe_slow);
  9838 %}
  9840 instruct subF_reg(regF dst, regF src)
  9841 %{
  9842   match(Set dst (SubF dst src));
  9844   format %{ "subss   $dst, $src" %}
  9845   ins_cost(150); // XXX
  9846   opcode(0xF3, 0x0F, 0x5C);
  9847   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
  9848   ins_pipe(pipe_slow);
  9849 %}
  9851 instruct subF_mem(regF dst, memory src)
  9852 %{
  9853   match(Set dst (SubF dst (LoadF src)));
  9855   format %{ "subss   $dst, $src" %}
  9856   ins_cost(150); // XXX
  9857   opcode(0xF3, 0x0F, 0x5C);
  9858   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
  9859   ins_pipe(pipe_slow);
  9860 %}
  9862 instruct subF_imm(regF dst, immF src)
  9863 %{
  9864   match(Set dst (SubF dst src));
  9866   format %{ "subss   $dst, [$src]" %}
  9867   ins_cost(150); // XXX
  9868   opcode(0xF3, 0x0F, 0x5C);
  9869   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
  9870   ins_pipe(pipe_slow);
  9871 %}
  9873 instruct subD_reg(regD dst, regD src)
  9874 %{
  9875   match(Set dst (SubD dst src));
  9877   format %{ "subsd   $dst, $src" %}
  9878   ins_cost(150); // XXX
  9879   opcode(0xF2, 0x0F, 0x5C);
  9880   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
  9881   ins_pipe(pipe_slow);
  9882 %}
  9884 instruct subD_mem(regD dst, memory src)
  9885 %{
  9886   match(Set dst (SubD dst (LoadD src)));
  9888   format %{ "subsd   $dst, $src" %}
  9889   ins_cost(150); // XXX
  9890   opcode(0xF2, 0x0F, 0x5C);
  9891   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
  9892   ins_pipe(pipe_slow);
  9893 %}
  9895 instruct subD_imm(regD dst, immD src)
  9896 %{
  9897   match(Set dst (SubD dst src));
  9899   format %{ "subsd   $dst, [$src]" %}
  9900   ins_cost(150); // XXX
  9901   opcode(0xF2, 0x0F, 0x5C);
  9902   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
  9903   ins_pipe(pipe_slow);
  9904 %}
  9906 instruct mulF_reg(regF dst, regF src)
  9907 %{
  9908   match(Set dst (MulF dst src));
  9910   format %{ "mulss   $dst, $src" %}
  9911   ins_cost(150); // XXX
  9912   opcode(0xF3, 0x0F, 0x59);
  9913   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
  9914   ins_pipe(pipe_slow);
  9915 %}
  9917 instruct mulF_mem(regF dst, memory src)
  9918 %{
  9919   match(Set dst (MulF dst (LoadF src)));
  9921   format %{ "mulss   $dst, $src" %}
  9922   ins_cost(150); // XXX
  9923   opcode(0xF3, 0x0F, 0x59);
  9924   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
  9925   ins_pipe(pipe_slow);
  9926 %}
  9928 instruct mulF_imm(regF dst, immF src)
  9929 %{
  9930   match(Set dst (MulF dst src));
  9932   format %{ "mulss   $dst, [$src]" %}
  9933   ins_cost(150); // XXX
  9934   opcode(0xF3, 0x0F, 0x59);
  9935   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
  9936   ins_pipe(pipe_slow);
  9937 %}
  9939 instruct mulD_reg(regD dst, regD src)
  9940 %{
  9941   match(Set dst (MulD dst src));
  9943   format %{ "mulsd   $dst, $src" %}
  9944   ins_cost(150); // XXX
  9945   opcode(0xF2, 0x0F, 0x59);
  9946   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
  9947   ins_pipe(pipe_slow);
  9948 %}
  9950 instruct mulD_mem(regD dst, memory src)
  9951 %{
  9952   match(Set dst (MulD dst (LoadD src)));
  9954   format %{ "mulsd   $dst, $src" %}
  9955   ins_cost(150); // XXX
  9956   opcode(0xF2, 0x0F, 0x59);
  9957   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
  9958   ins_pipe(pipe_slow);
  9959 %}
  9961 instruct mulD_imm(regD dst, immD src)
  9962 %{
  9963   match(Set dst (MulD dst src));
  9965   format %{ "mulsd   $dst, [$src]" %}
  9966   ins_cost(150); // XXX
  9967   opcode(0xF2, 0x0F, 0x59);
  9968   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
  9969   ins_pipe(pipe_slow);
  9970 %}
  9972 instruct divF_reg(regF dst, regF src)
  9973 %{
  9974   match(Set dst (DivF dst src));
  9976   format %{ "divss   $dst, $src" %}
  9977   ins_cost(150); // XXX
  9978   opcode(0xF3, 0x0F, 0x5E);
  9979   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
  9980   ins_pipe(pipe_slow);
  9981 %}
  9983 instruct divF_mem(regF dst, memory src)
  9984 %{
  9985   match(Set dst (DivF dst (LoadF src)));
  9987   format %{ "divss   $dst, $src" %}
  9988   ins_cost(150); // XXX
  9989   opcode(0xF3, 0x0F, 0x5E);
  9990   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
  9991   ins_pipe(pipe_slow);
  9992 %}
  9994 instruct divF_imm(regF dst, immF src)
  9995 %{
  9996   match(Set dst (DivF dst src));
  9998   format %{ "divss   $dst, [$src]" %}
  9999   ins_cost(150); // XXX
 10000   opcode(0xF3, 0x0F, 0x5E);
 10001   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10002   ins_pipe(pipe_slow);
 10003 %}
 10005 instruct divD_reg(regD dst, regD src)
 10006 %{
 10007   match(Set dst (DivD dst src));
 10009   format %{ "divsd   $dst, $src" %}
 10010   ins_cost(150); // XXX
 10011   opcode(0xF2, 0x0F, 0x5E);
 10012   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10013   ins_pipe(pipe_slow);
 10014 %}
 10016 instruct divD_mem(regD dst, memory src)
 10017 %{
 10018   match(Set dst (DivD dst (LoadD src)));
 10020   format %{ "divsd   $dst, $src" %}
 10021   ins_cost(150); // XXX
 10022   opcode(0xF2, 0x0F, 0x5E);
 10023   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10024   ins_pipe(pipe_slow);
 10025 %}
 10027 instruct divD_imm(regD dst, immD src)
 10028 %{
 10029   match(Set dst (DivD dst src));
 10031   format %{ "divsd   $dst, [$src]" %}
 10032   ins_cost(150); // XXX
 10033   opcode(0xF2, 0x0F, 0x5E);
 10034   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10035   ins_pipe(pipe_slow);
 10036 %}
 10038 instruct sqrtF_reg(regF dst, regF src)
 10039 %{
 10040   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10042   format %{ "sqrtss  $dst, $src" %}
 10043   ins_cost(150); // XXX
 10044   opcode(0xF3, 0x0F, 0x51);
 10045   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10046   ins_pipe(pipe_slow);
 10047 %}
 10049 instruct sqrtF_mem(regF dst, memory src)
 10050 %{
 10051   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF src)))));
 10053   format %{ "sqrtss  $dst, $src" %}
 10054   ins_cost(150); // XXX
 10055   opcode(0xF3, 0x0F, 0x51);
 10056   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10057   ins_pipe(pipe_slow);
 10058 %}
 10060 instruct sqrtF_imm(regF dst, immF src)
 10061 %{
 10062   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10064   format %{ "sqrtss  $dst, [$src]" %}
 10065   ins_cost(150); // XXX
 10066   opcode(0xF3, 0x0F, 0x51);
 10067   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10068   ins_pipe(pipe_slow);
 10069 %}
 10071 instruct sqrtD_reg(regD dst, regD src)
 10072 %{
 10073   match(Set dst (SqrtD src));
 10075   format %{ "sqrtsd  $dst, $src" %}
 10076   ins_cost(150); // XXX
 10077   opcode(0xF2, 0x0F, 0x51);
 10078   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10079   ins_pipe(pipe_slow);
 10080 %}
 10082 instruct sqrtD_mem(regD dst, memory src)
 10083 %{
 10084   match(Set dst (SqrtD (LoadD src)));
 10086   format %{ "sqrtsd  $dst, $src" %}
 10087   ins_cost(150); // XXX
 10088   opcode(0xF2, 0x0F, 0x51);
 10089   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10090   ins_pipe(pipe_slow);
 10091 %}
 10093 instruct sqrtD_imm(regD dst, immD src)
 10094 %{
 10095   match(Set dst (SqrtD src));
 10097   format %{ "sqrtsd  $dst, [$src]" %}
 10098   ins_cost(150); // XXX
 10099   opcode(0xF2, 0x0F, 0x51);
 10100   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10101   ins_pipe(pipe_slow);
 10102 %}
 10104 instruct absF_reg(regF dst)
 10105 %{
 10106   match(Set dst (AbsF dst));
 10108   format %{ "andps   $dst, [0x7fffffff]\t# abs float by sign masking" %}
 10109   ins_encode(absF_encoding(dst));
 10110   ins_pipe(pipe_slow);
 10111 %}
 10113 instruct absD_reg(regD dst)
 10114 %{
 10115   match(Set dst (AbsD dst));
 10117   format %{ "andpd   $dst, [0x7fffffffffffffff]\t"
 10118             "# abs double by sign masking" %}
 10119   ins_encode(absD_encoding(dst));
 10120   ins_pipe(pipe_slow);
 10121 %}
 10123 instruct negF_reg(regF dst)
 10124 %{
 10125   match(Set dst (NegF dst));
 10127   format %{ "xorps   $dst, [0x80000000]\t# neg float by sign flipping" %}
 10128   ins_encode(negF_encoding(dst));
 10129   ins_pipe(pipe_slow);
 10130 %}
 10132 instruct negD_reg(regD dst)
 10133 %{
 10134   match(Set dst (NegD dst));
 10136   format %{ "xorpd   $dst, [0x8000000000000000]\t"
 10137             "# neg double by sign flipping" %}
 10138   ins_encode(negD_encoding(dst));
 10139   ins_pipe(pipe_slow);
 10140 %}
 10142 // -----------Trig and Trancendental Instructions------------------------------
 10143 instruct cosD_reg(regD dst) %{
 10144   match(Set dst (CosD dst));
 10146   format %{ "dcos   $dst\n\t" %}
 10147   opcode(0xD9, 0xFF);
 10148   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10149   ins_pipe( pipe_slow );
 10150 %}
 10152 instruct sinD_reg(regD dst) %{
 10153   match(Set dst (SinD dst));
 10155   format %{ "dsin   $dst\n\t" %}
 10156   opcode(0xD9, 0xFE);
 10157   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10158   ins_pipe( pipe_slow );
 10159 %}
 10161 instruct tanD_reg(regD dst) %{
 10162   match(Set dst (TanD dst));
 10164   format %{ "dtan   $dst\n\t" %}
 10165   ins_encode( Push_SrcXD(dst),
 10166               Opcode(0xD9), Opcode(0xF2),   //fptan
 10167               Opcode(0xDD), Opcode(0xD8),   //fstp st
 10168               Push_ResultXD(dst) );
 10169   ins_pipe( pipe_slow );
 10170 %}
 10172 instruct log10D_reg(regD dst) %{
 10173   // The source and result Double operands in XMM registers
 10174   match(Set dst (Log10D dst));
 10175   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10176   // fyl2x        ; compute log_10(2) * log_2(x)
 10177   format %{ "fldlg2\t\t\t#Log10\n\t"
 10178             "fyl2x\t\t\t# Q=Log10*Log_2(x)\n\t"
 10179          %}
 10180    ins_encode(Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10181               Push_SrcXD(dst),
 10182               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10183               Push_ResultXD(dst));
 10185   ins_pipe( pipe_slow );
 10186 %}
 10188 instruct logD_reg(regD dst) %{
 10189   // The source and result Double operands in XMM registers
 10190   match(Set dst (LogD dst));
 10191   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10192   // fyl2x        ; compute log_e(2) * log_2(x)
 10193   format %{ "fldln2\t\t\t#Log_e\n\t"
 10194             "fyl2x\t\t\t# Q=Log_e*Log_2(x)\n\t"
 10195          %}
 10196   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10197               Push_SrcXD(dst),
 10198               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10199               Push_ResultXD(dst));
 10200   ins_pipe( pipe_slow );
 10201 %}
 10205 //----------Arithmetic Conversion Instructions---------------------------------
 10207 instruct roundFloat_nop(regF dst)
 10208 %{
 10209   match(Set dst (RoundFloat dst));
 10211   ins_cost(0);
 10212   ins_encode();
 10213   ins_pipe(empty);
 10214 %}
 10216 instruct roundDouble_nop(regD dst)
 10217 %{
 10218   match(Set dst (RoundDouble dst));
 10220   ins_cost(0);
 10221   ins_encode();
 10222   ins_pipe(empty);
 10223 %}
 10225 instruct convF2D_reg_reg(regD dst, regF src)
 10226 %{
 10227   match(Set dst (ConvF2D src));
 10229   format %{ "cvtss2sd $dst, $src" %}
 10230   opcode(0xF3, 0x0F, 0x5A);
 10231   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10232   ins_pipe(pipe_slow); // XXX
 10233 %}
 10235 instruct convF2D_reg_mem(regD dst, memory src)
 10236 %{
 10237   match(Set dst (ConvF2D (LoadF src)));
 10239   format %{ "cvtss2sd $dst, $src" %}
 10240   opcode(0xF3, 0x0F, 0x5A);
 10241   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10242   ins_pipe(pipe_slow); // XXX
 10243 %}
 10245 instruct convD2F_reg_reg(regF dst, regD src)
 10246 %{
 10247   match(Set dst (ConvD2F src));
 10249   format %{ "cvtsd2ss $dst, $src" %}
 10250   opcode(0xF2, 0x0F, 0x5A);
 10251   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10252   ins_pipe(pipe_slow); // XXX
 10253 %}
 10255 instruct convD2F_reg_mem(regF dst, memory src)
 10256 %{
 10257   match(Set dst (ConvD2F (LoadD src)));
 10259   format %{ "cvtsd2ss $dst, $src" %}
 10260   opcode(0xF2, 0x0F, 0x5A);
 10261   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10262   ins_pipe(pipe_slow); // XXX
 10263 %}
 10265 // XXX do mem variants
 10266 instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
 10267 %{
 10268   match(Set dst (ConvF2I src));
 10269   effect(KILL cr);
 10271   format %{ "cvttss2sil $dst, $src\t# f2i\n\t"
 10272             "cmpl    $dst, #0x80000000\n\t"
 10273             "jne,s   done\n\t"
 10274             "subq    rsp, #8\n\t"
 10275             "movss   [rsp], $src\n\t"
 10276             "call    f2i_fixup\n\t"
 10277             "popq    $dst\n"
 10278     "done:   "%}
 10279   opcode(0xF3, 0x0F, 0x2C);
 10280   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src),
 10281              f2i_fixup(dst, src));
 10282   ins_pipe(pipe_slow);
 10283 %}
 10285 instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
 10286 %{
 10287   match(Set dst (ConvF2L src));
 10288   effect(KILL cr);
 10290   format %{ "cvttss2siq $dst, $src\t# f2l\n\t"
 10291             "cmpq    $dst, [0x8000000000000000]\n\t"
 10292             "jne,s   done\n\t"
 10293             "subq    rsp, #8\n\t"
 10294             "movss   [rsp], $src\n\t"
 10295             "call    f2l_fixup\n\t"
 10296             "popq    $dst\n"
 10297     "done:   "%}
 10298   opcode(0xF3, 0x0F, 0x2C);
 10299   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src),
 10300              f2l_fixup(dst, src));
 10301   ins_pipe(pipe_slow);
 10302 %}
 10304 instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
 10305 %{
 10306   match(Set dst (ConvD2I src));
 10307   effect(KILL cr);
 10309   format %{ "cvttsd2sil $dst, $src\t# d2i\n\t"
 10310             "cmpl    $dst, #0x80000000\n\t"
 10311             "jne,s   done\n\t"
 10312             "subq    rsp, #8\n\t"
 10313             "movsd   [rsp], $src\n\t"
 10314             "call    d2i_fixup\n\t"
 10315             "popq    $dst\n"
 10316     "done:   "%}
 10317   opcode(0xF2, 0x0F, 0x2C);
 10318   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src),
 10319              d2i_fixup(dst, src));
 10320   ins_pipe(pipe_slow);
 10321 %}
 10323 instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
 10324 %{
 10325   match(Set dst (ConvD2L src));
 10326   effect(KILL cr);
 10328   format %{ "cvttsd2siq $dst, $src\t# d2l\n\t"
 10329             "cmpq    $dst, [0x8000000000000000]\n\t"
 10330             "jne,s   done\n\t"
 10331             "subq    rsp, #8\n\t"
 10332             "movsd   [rsp], $src\n\t"
 10333             "call    d2l_fixup\n\t"
 10334             "popq    $dst\n"
 10335     "done:   "%}
 10336   opcode(0xF2, 0x0F, 0x2C);
 10337   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src),
 10338              d2l_fixup(dst, src));
 10339   ins_pipe(pipe_slow);
 10340 %}
 10342 instruct convI2F_reg_reg(regF dst, rRegI src)
 10343 %{
 10344   predicate(!UseXmmI2F);
 10345   match(Set dst (ConvI2F src));
 10347   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
 10348   opcode(0xF3, 0x0F, 0x2A);
 10349   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10350   ins_pipe(pipe_slow); // XXX
 10351 %}
 10353 instruct convI2F_reg_mem(regF dst, memory src)
 10354 %{
 10355   match(Set dst (ConvI2F (LoadI src)));
 10357   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
 10358   opcode(0xF3, 0x0F, 0x2A);
 10359   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10360   ins_pipe(pipe_slow); // XXX
 10361 %}
 10363 instruct convI2D_reg_reg(regD dst, rRegI src)
 10364 %{
 10365   predicate(!UseXmmI2D);
 10366   match(Set dst (ConvI2D src));
 10368   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
 10369   opcode(0xF2, 0x0F, 0x2A);
 10370   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10371   ins_pipe(pipe_slow); // XXX
 10372 %}
 10374 instruct convI2D_reg_mem(regD dst, memory src)
 10375 %{
 10376   match(Set dst (ConvI2D (LoadI src)));
 10378   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
 10379   opcode(0xF2, 0x0F, 0x2A);
 10380   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10381   ins_pipe(pipe_slow); // XXX
 10382 %}
 10384 instruct convXI2F_reg(regF dst, rRegI src)
 10385 %{
 10386   predicate(UseXmmI2F);
 10387   match(Set dst (ConvI2F src));
 10389   format %{ "movdl $dst, $src\n\t"
 10390             "cvtdq2psl $dst, $dst\t# i2f" %}
 10391   ins_encode %{
 10392     __ movdl($dst$$XMMRegister, $src$$Register);
 10393     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 10394   %}
 10395   ins_pipe(pipe_slow); // XXX
 10396 %}
 10398 instruct convXI2D_reg(regD dst, rRegI src)
 10399 %{
 10400   predicate(UseXmmI2D);
 10401   match(Set dst (ConvI2D src));
 10403   format %{ "movdl $dst, $src\n\t"
 10404             "cvtdq2pdl $dst, $dst\t# i2d" %}
 10405   ins_encode %{
 10406     __ movdl($dst$$XMMRegister, $src$$Register);
 10407     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 10408   %}
 10409   ins_pipe(pipe_slow); // XXX
 10410 %}
 10412 instruct convL2F_reg_reg(regF dst, rRegL src)
 10413 %{
 10414   match(Set dst (ConvL2F src));
 10416   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
 10417   opcode(0xF3, 0x0F, 0x2A);
 10418   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10419   ins_pipe(pipe_slow); // XXX
 10420 %}
 10422 instruct convL2F_reg_mem(regF dst, memory src)
 10423 %{
 10424   match(Set dst (ConvL2F (LoadL src)));
 10426   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
 10427   opcode(0xF3, 0x0F, 0x2A);
 10428   ins_encode(OpcP, REX_reg_mem_wide(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10429   ins_pipe(pipe_slow); // XXX
 10430 %}
 10432 instruct convL2D_reg_reg(regD dst, rRegL src)
 10433 %{
 10434   match(Set dst (ConvL2D src));
 10436   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
 10437   opcode(0xF2, 0x0F, 0x2A);
 10438   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10439   ins_pipe(pipe_slow); // XXX
 10440 %}
 10442 instruct convL2D_reg_mem(regD dst, memory src)
 10443 %{
 10444   match(Set dst (ConvL2D (LoadL src)));
 10446   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
 10447   opcode(0xF2, 0x0F, 0x2A);
 10448   ins_encode(OpcP, REX_reg_mem_wide(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10449   ins_pipe(pipe_slow); // XXX
 10450 %}
 10452 instruct convI2L_reg_reg(rRegL dst, rRegI src)
 10453 %{
 10454   match(Set dst (ConvI2L src));
 10456   ins_cost(125);
 10457   format %{ "movslq  $dst, $src\t# i2l" %}
 10458   opcode(0x63); // needs REX.W
 10459   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
 10460   ins_pipe(ialu_reg_reg);
 10461 %}
 10463 // instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
 10464 // %{
 10465 //   match(Set dst (ConvI2L src));
 10466 // //   predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
 10467 // //             _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
 10468 //   predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
 10469 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
 10470 //             ((const TypeNode*) n)->type()->is_long()->_lo ==
 10471 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
 10473 //   format %{ "movl    $dst, $src\t# unsigned i2l" %}
 10474 //   ins_encode(enc_copy(dst, src));
 10475 // //   opcode(0x63); // needs REX.W
 10476 // //   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
 10477 //   ins_pipe(ialu_reg_reg);
 10478 // %}
 10480 instruct convI2L_reg_mem(rRegL dst, memory src)
 10481 %{
 10482   match(Set dst (ConvI2L (LoadI src)));
 10484   format %{ "movslq  $dst, $src\t# i2l" %}
 10485   opcode(0x63); // needs REX.W
 10486   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst,src));
 10487   ins_pipe(ialu_reg_mem);
 10488 %}
 10490 // Zero-extend convert int to long
 10491 instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
 10492 %{
 10493   match(Set dst (AndL (ConvI2L src) mask));
 10495   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
 10496   ins_encode(enc_copy(dst, src));
 10497   ins_pipe(ialu_reg_reg);
 10498 %}
 10500 // Zero-extend convert int to long
 10501 instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
 10502 %{
 10503   match(Set dst (AndL (ConvI2L (LoadI src)) mask));
 10505   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
 10506   opcode(0x8B);
 10507   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
 10508   ins_pipe(ialu_reg_mem);
 10509 %}
 10511 instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
 10512 %{
 10513   match(Set dst (AndL src mask));
 10515   format %{ "movl    $dst, $src\t# zero-extend long" %}
 10516   ins_encode(enc_copy_always(dst, src));
 10517   ins_pipe(ialu_reg_reg);
 10518 %}
 10520 instruct convL2I_reg_reg(rRegI dst, rRegL src)
 10521 %{
 10522   match(Set dst (ConvL2I src));
 10524   format %{ "movl    $dst, $src\t# l2i" %}
 10525   ins_encode(enc_copy_always(dst, src));
 10526   ins_pipe(ialu_reg_reg);
 10527 %}
 10530 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
 10531   match(Set dst (MoveF2I src));
 10532   effect(DEF dst, USE src);
 10534   ins_cost(125);
 10535   format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
 10536   opcode(0x8B);
 10537   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
 10538   ins_pipe(ialu_reg_mem);
 10539 %}
 10541 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
 10542   match(Set dst (MoveI2F src));
 10543   effect(DEF dst, USE src);
 10545   ins_cost(125);
 10546   format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
 10547   opcode(0xF3, 0x0F, 0x10);
 10548   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10549   ins_pipe(pipe_slow);
 10550 %}
 10552 instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
 10553   match(Set dst (MoveD2L src));
 10554   effect(DEF dst, USE src);
 10556   ins_cost(125);
 10557   format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
 10558   opcode(0x8B);
 10559   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
 10560   ins_pipe(ialu_reg_mem);
 10561 %}
 10563 instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
 10564   predicate(!UseXmmLoadAndClearUpper);
 10565   match(Set dst (MoveL2D src));
 10566   effect(DEF dst, USE src);
 10568   ins_cost(125);
 10569   format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
 10570   opcode(0x66, 0x0F, 0x12);
 10571   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10572   ins_pipe(pipe_slow);
 10573 %}
 10575 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
 10576   predicate(UseXmmLoadAndClearUpper);
 10577   match(Set dst (MoveL2D src));
 10578   effect(DEF dst, USE src);
 10580   ins_cost(125);
 10581   format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
 10582   opcode(0xF2, 0x0F, 0x10);
 10583   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10584   ins_pipe(pipe_slow);
 10585 %}
 10588 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
 10589   match(Set dst (MoveF2I src));
 10590   effect(DEF dst, USE src);
 10592   ins_cost(95); // XXX
 10593   format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
 10594   opcode(0xF3, 0x0F, 0x11);
 10595   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
 10596   ins_pipe(pipe_slow);
 10597 %}
 10599 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
 10600   match(Set dst (MoveI2F src));
 10601   effect(DEF dst, USE src);
 10603   ins_cost(100);
 10604   format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
 10605   opcode(0x89);
 10606   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
 10607   ins_pipe( ialu_mem_reg );
 10608 %}
 10610 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
 10611   match(Set dst (MoveD2L src));
 10612   effect(DEF dst, USE src);
 10614   ins_cost(95); // XXX
 10615   format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
 10616   opcode(0xF2, 0x0F, 0x11);
 10617   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
 10618   ins_pipe(pipe_slow);
 10619 %}
 10621 instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
 10622   match(Set dst (MoveL2D src));
 10623   effect(DEF dst, USE src);
 10625   ins_cost(100);
 10626   format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
 10627   opcode(0x89);
 10628   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
 10629   ins_pipe(ialu_mem_reg);
 10630 %}
 10632 instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
 10633   match(Set dst (MoveF2I src));
 10634   effect(DEF dst, USE src);
 10635   ins_cost(85);
 10636   format %{ "movd    $dst,$src\t# MoveF2I" %}
 10637   ins_encode %{ __ movdl($dst$$Register, $src$$XMMRegister); %}
 10638   ins_pipe( pipe_slow );
 10639 %}
 10641 instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
 10642   match(Set dst (MoveD2L src));
 10643   effect(DEF dst, USE src);
 10644   ins_cost(85);
 10645   format %{ "movd    $dst,$src\t# MoveD2L" %}
 10646   ins_encode %{ __ movdq($dst$$Register, $src$$XMMRegister); %}
 10647   ins_pipe( pipe_slow );
 10648 %}
 10650 // The next instructions have long latency and use Int unit. Set high cost.
 10651 instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
 10652   match(Set dst (MoveI2F src));
 10653   effect(DEF dst, USE src);
 10654   ins_cost(300);
 10655   format %{ "movd    $dst,$src\t# MoveI2F" %}
 10656   ins_encode %{ __ movdl($dst$$XMMRegister, $src$$Register); %}
 10657   ins_pipe( pipe_slow );
 10658 %}
 10660 instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
 10661   match(Set dst (MoveL2D src));
 10662   effect(DEF dst, USE src);
 10663   ins_cost(300);
 10664   format %{ "movd    $dst,$src\t# MoveL2D" %}
 10665   ins_encode %{ __ movdq($dst$$XMMRegister, $src$$Register); %}
 10666   ins_pipe( pipe_slow );
 10667 %}
 10669 // Replicate scalar to packed byte (1 byte) values in xmm
 10670 instruct Repl8B_reg(regD dst, regD src) %{
 10671   match(Set dst (Replicate8B src));
 10672   format %{ "MOVDQA  $dst,$src\n\t"
 10673             "PUNPCKLBW $dst,$dst\n\t"
 10674             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 10675   ins_encode( pshufd_8x8(dst, src));
 10676   ins_pipe( pipe_slow );
 10677 %}
 10679 // Replicate scalar to packed byte (1 byte) values in xmm
 10680 instruct Repl8B_rRegI(regD dst, rRegI src) %{
 10681   match(Set dst (Replicate8B src));
 10682   format %{ "MOVD    $dst,$src\n\t"
 10683             "PUNPCKLBW $dst,$dst\n\t"
 10684             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 10685   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
 10686   ins_pipe( pipe_slow );
 10687 %}
 10689 // Replicate scalar zero to packed byte (1 byte) values in xmm
 10690 instruct Repl8B_immI0(regD dst, immI0 zero) %{
 10691   match(Set dst (Replicate8B zero));
 10692   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 10693   ins_encode( pxor(dst, dst));
 10694   ins_pipe( fpu_reg_reg );
 10695 %}
 10697 // Replicate scalar to packed shore (2 byte) values in xmm
 10698 instruct Repl4S_reg(regD dst, regD src) %{
 10699   match(Set dst (Replicate4S src));
 10700   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 10701   ins_encode( pshufd_4x16(dst, src));
 10702   ins_pipe( fpu_reg_reg );
 10703 %}
 10705 // Replicate scalar to packed shore (2 byte) values in xmm
 10706 instruct Repl4S_rRegI(regD dst, rRegI src) %{
 10707   match(Set dst (Replicate4S src));
 10708   format %{ "MOVD    $dst,$src\n\t"
 10709             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 10710   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 10711   ins_pipe( fpu_reg_reg );
 10712 %}
 10714 // Replicate scalar zero to packed short (2 byte) values in xmm
 10715 instruct Repl4S_immI0(regD dst, immI0 zero) %{
 10716   match(Set dst (Replicate4S zero));
 10717   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 10718   ins_encode( pxor(dst, dst));
 10719   ins_pipe( fpu_reg_reg );
 10720 %}
 10722 // Replicate scalar to packed char (2 byte) values in xmm
 10723 instruct Repl4C_reg(regD dst, regD src) %{
 10724   match(Set dst (Replicate4C src));
 10725   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 10726   ins_encode( pshufd_4x16(dst, src));
 10727   ins_pipe( fpu_reg_reg );
 10728 %}
 10730 // Replicate scalar to packed char (2 byte) values in xmm
 10731 instruct Repl4C_rRegI(regD dst, rRegI src) %{
 10732   match(Set dst (Replicate4C src));
 10733   format %{ "MOVD    $dst,$src\n\t"
 10734             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 10735   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 10736   ins_pipe( fpu_reg_reg );
 10737 %}
 10739 // Replicate scalar zero to packed char (2 byte) values in xmm
 10740 instruct Repl4C_immI0(regD dst, immI0 zero) %{
 10741   match(Set dst (Replicate4C zero));
 10742   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 10743   ins_encode( pxor(dst, dst));
 10744   ins_pipe( fpu_reg_reg );
 10745 %}
 10747 // Replicate scalar to packed integer (4 byte) values in xmm
 10748 instruct Repl2I_reg(regD dst, regD src) %{
 10749   match(Set dst (Replicate2I src));
 10750   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 10751   ins_encode( pshufd(dst, src, 0x00));
 10752   ins_pipe( fpu_reg_reg );
 10753 %}
 10755 // Replicate scalar to packed integer (4 byte) values in xmm
 10756 instruct Repl2I_rRegI(regD dst, rRegI src) %{
 10757   match(Set dst (Replicate2I src));
 10758   format %{ "MOVD   $dst,$src\n\t"
 10759             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 10760   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
 10761   ins_pipe( fpu_reg_reg );
 10762 %}
 10764 // Replicate scalar zero to packed integer (2 byte) values in xmm
 10765 instruct Repl2I_immI0(regD dst, immI0 zero) %{
 10766   match(Set dst (Replicate2I zero));
 10767   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 10768   ins_encode( pxor(dst, dst));
 10769   ins_pipe( fpu_reg_reg );
 10770 %}
 10772 // Replicate scalar to packed single precision floating point values in xmm
 10773 instruct Repl2F_reg(regD dst, regD src) %{
 10774   match(Set dst (Replicate2F src));
 10775   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 10776   ins_encode( pshufd(dst, src, 0xe0));
 10777   ins_pipe( fpu_reg_reg );
 10778 %}
 10780 // Replicate scalar to packed single precision floating point values in xmm
 10781 instruct Repl2F_regF(regD dst, regF src) %{
 10782   match(Set dst (Replicate2F src));
 10783   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 10784   ins_encode( pshufd(dst, src, 0xe0));
 10785   ins_pipe( fpu_reg_reg );
 10786 %}
 10788 // Replicate scalar to packed single precision floating point values in xmm
 10789 instruct Repl2F_immF0(regD dst, immF0 zero) %{
 10790   match(Set dst (Replicate2F zero));
 10791   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 10792   ins_encode( pxor(dst, dst));
 10793   ins_pipe( fpu_reg_reg );
 10794 %}
 10797 // =======================================================================
 10798 // fast clearing of an array
 10799 instruct rep_stos(rcx_RegL cnt, rdi_RegP base, rax_RegI zero, Universe dummy,
 10800                   rFlagsReg cr)
 10801 %{
 10802   match(Set dummy (ClearArray cnt base));
 10803   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 10805   format %{ "xorl    rax, rax\t# ClearArray:\n\t"
 10806             "rep stosq\t# Store rax to *rdi++ while rcx--" %}
 10807   ins_encode(opc_reg_reg(0x33, RAX, RAX), // xorl %eax, %eax
 10808              Opcode(0xF3), Opcode(0x48), Opcode(0xAB)); // rep REX_W stos
 10809   ins_pipe(pipe_slow);
 10810 %}
 10812 instruct string_compare(rdi_RegP str1, rsi_RegP str2, rax_RegI tmp1,
 10813                         rbx_RegI tmp2, rcx_RegI result, rFlagsReg cr)
 10814 %{
 10815   match(Set result (StrComp str1 str2));
 10816   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL cr);
 10817   //ins_cost(300);
 10819   format %{ "String Compare $str1, $str2 -> $result    // XXX KILL RAX, RBX" %}
 10820   ins_encode( enc_String_Compare() );
 10821   ins_pipe( pipe_slow );
 10822 %}
 10824 //----------Control Flow Instructions------------------------------------------
 10825 // Signed compare Instructions
 10827 // XXX more variants!!
 10828 instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
 10829 %{
 10830   match(Set cr (CmpI op1 op2));
 10831   effect(DEF cr, USE op1, USE op2);
 10833   format %{ "cmpl    $op1, $op2" %}
 10834   opcode(0x3B);  /* Opcode 3B /r */
 10835   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
 10836   ins_pipe(ialu_cr_reg_reg);
 10837 %}
 10839 instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
 10840 %{
 10841   match(Set cr (CmpI op1 op2));
 10843   format %{ "cmpl    $op1, $op2" %}
 10844   opcode(0x81, 0x07); /* Opcode 81 /7 */
 10845   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
 10846   ins_pipe(ialu_cr_reg_imm);
 10847 %}
 10849 instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
 10850 %{
 10851   match(Set cr (CmpI op1 (LoadI op2)));
 10853   ins_cost(500); // XXX
 10854   format %{ "cmpl    $op1, $op2" %}
 10855   opcode(0x3B); /* Opcode 3B /r */
 10856   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
 10857   ins_pipe(ialu_cr_reg_mem);
 10858 %}
 10860 instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
 10861 %{
 10862   match(Set cr (CmpI src zero));
 10864   format %{ "testl   $src, $src" %}
 10865   opcode(0x85);
 10866   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
 10867   ins_pipe(ialu_cr_reg_imm);
 10868 %}
 10870 instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
 10871 %{
 10872   match(Set cr (CmpI (AndI src con) zero));
 10874   format %{ "testl   $src, $con" %}
 10875   opcode(0xF7, 0x00);
 10876   ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
 10877   ins_pipe(ialu_cr_reg_imm);
 10878 %}
 10880 instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
 10881 %{
 10882   match(Set cr (CmpI (AndI src (LoadI mem)) zero));
 10884   format %{ "testl   $src, $mem" %}
 10885   opcode(0x85);
 10886   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
 10887   ins_pipe(ialu_cr_reg_mem);
 10888 %}
 10890 // Unsigned compare Instructions; really, same as signed except they
 10891 // produce an rFlagsRegU instead of rFlagsReg.
 10892 instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
 10893 %{
 10894   match(Set cr (CmpU op1 op2));
 10896   format %{ "cmpl    $op1, $op2\t# unsigned" %}
 10897   opcode(0x3B); /* Opcode 3B /r */
 10898   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
 10899   ins_pipe(ialu_cr_reg_reg);
 10900 %}
 10902 instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
 10903 %{
 10904   match(Set cr (CmpU op1 op2));
 10906   format %{ "cmpl    $op1, $op2\t# unsigned" %}
 10907   opcode(0x81,0x07); /* Opcode 81 /7 */
 10908   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
 10909   ins_pipe(ialu_cr_reg_imm);
 10910 %}
 10912 instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
 10913 %{
 10914   match(Set cr (CmpU op1 (LoadI op2)));
 10916   ins_cost(500); // XXX
 10917   format %{ "cmpl    $op1, $op2\t# unsigned" %}
 10918   opcode(0x3B); /* Opcode 3B /r */
 10919   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
 10920   ins_pipe(ialu_cr_reg_mem);
 10921 %}
 10923 // // // Cisc-spilled version of cmpU_rReg
 10924 // //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
 10925 // //%{
 10926 // //  match(Set cr (CmpU (LoadI op1) op2));
 10927 // //
 10928 // //  format %{ "CMPu   $op1,$op2" %}
 10929 // //  ins_cost(500);
 10930 // //  opcode(0x39);  /* Opcode 39 /r */
 10931 // //  ins_encode( OpcP, reg_mem( op1, op2) );
 10932 // //%}
 10934 instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
 10935 %{
 10936   match(Set cr (CmpU src zero));
 10938   format %{ "testl  $src, $src\t# unsigned" %}
 10939   opcode(0x85);
 10940   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
 10941   ins_pipe(ialu_cr_reg_imm);
 10942 %}
 10944 instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
 10945 %{
 10946   match(Set cr (CmpP op1 op2));
 10948   format %{ "cmpq    $op1, $op2\t# ptr" %}
 10949   opcode(0x3B); /* Opcode 3B /r */
 10950   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
 10951   ins_pipe(ialu_cr_reg_reg);
 10952 %}
 10954 instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
 10955 %{
 10956   match(Set cr (CmpP op1 (LoadP op2)));
 10958   ins_cost(500); // XXX
 10959   format %{ "cmpq    $op1, $op2\t# ptr" %}
 10960   opcode(0x3B); /* Opcode 3B /r */
 10961   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
 10962   ins_pipe(ialu_cr_reg_mem);
 10963 %}
 10965 // // // Cisc-spilled version of cmpP_rReg
 10966 // //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
 10967 // //%{
 10968 // //  match(Set cr (CmpP (LoadP op1) op2));
 10969 // //
 10970 // //  format %{ "CMPu   $op1,$op2" %}
 10971 // //  ins_cost(500);
 10972 // //  opcode(0x39);  /* Opcode 39 /r */
 10973 // //  ins_encode( OpcP, reg_mem( op1, op2) );
 10974 // //%}
 10976 // XXX this is generalized by compP_rReg_mem???
 10977 // Compare raw pointer (used in out-of-heap check).
 10978 // Only works because non-oop pointers must be raw pointers
 10979 // and raw pointers have no anti-dependencies.
 10980 instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
 10981 %{
 10982   predicate(!n->in(2)->in(2)->bottom_type()->isa_oop_ptr());
 10983   match(Set cr (CmpP op1 (LoadP op2)));
 10985   format %{ "cmpq    $op1, $op2\t# raw ptr" %}
 10986   opcode(0x3B); /* Opcode 3B /r */
 10987   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
 10988   ins_pipe(ialu_cr_reg_mem);
 10989 %}
 10991 // This will generate a signed flags result. This should be OK since
 10992 // any compare to a zero should be eq/neq.
 10993 instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
 10994 %{
 10995   match(Set cr (CmpP src zero));
 10997   format %{ "testq   $src, $src\t# ptr" %}
 10998   opcode(0x85);
 10999   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
 11000   ins_pipe(ialu_cr_reg_imm);
 11001 %}
 11003 // This will generate a signed flags result. This should be OK since
 11004 // any compare to a zero should be eq/neq.
 11005 instruct testP_reg_mem(rFlagsReg cr, memory op, immP0 zero)
 11006 %{
 11007   match(Set cr (CmpP (LoadP op) zero));
 11009   ins_cost(500); // XXX
 11010   format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
 11011   opcode(0xF7); /* Opcode F7 /0 */
 11012   ins_encode(REX_mem_wide(op),
 11013              OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
 11014   ins_pipe(ialu_cr_reg_imm);
 11015 %}
 11017 instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
 11018   match(Set cr (CmpN src zero));
 11020   format %{ "testl   $src, $src" %}
 11021   ins_encode %{ __ testl($src$$Register, $src$$Register); %}
 11022   ins_pipe(ialu_cr_reg_imm);
 11023 %}
 11025 // Yanked all unsigned pointer compare operations.
 11026 // Pointer compares are done with CmpP which is already unsigned.
 11028 instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
 11029 %{
 11030   match(Set cr (CmpL op1 op2));
 11032   format %{ "cmpq    $op1, $op2" %}
 11033   opcode(0x3B);  /* Opcode 3B /r */
 11034   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
 11035   ins_pipe(ialu_cr_reg_reg);
 11036 %}
 11038 instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
 11039 %{
 11040   match(Set cr (CmpL op1 op2));
 11042   format %{ "cmpq    $op1, $op2" %}
 11043   opcode(0x81, 0x07); /* Opcode 81 /7 */
 11044   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
 11045   ins_pipe(ialu_cr_reg_imm);
 11046 %}
 11048 instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
 11049 %{
 11050   match(Set cr (CmpL op1 (LoadL op2)));
 11052   ins_cost(500); // XXX
 11053   format %{ "cmpq    $op1, $op2" %}
 11054   opcode(0x3B); /* Opcode 3B /r */
 11055   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
 11056   ins_pipe(ialu_cr_reg_mem);
 11057 %}
 11059 instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
 11060 %{
 11061   match(Set cr (CmpL src zero));
 11063   format %{ "testq   $src, $src" %}
 11064   opcode(0x85);
 11065   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
 11066   ins_pipe(ialu_cr_reg_imm);
 11067 %}
 11069 instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
 11070 %{
 11071   match(Set cr (CmpL (AndL src con) zero));
 11073   format %{ "testq   $src, $con\t# long" %}
 11074   opcode(0xF7, 0x00);
 11075   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
 11076   ins_pipe(ialu_cr_reg_imm);
 11077 %}
 11079 instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
 11080 %{
 11081   match(Set cr (CmpL (AndL src (LoadL mem)) zero));
 11083   format %{ "testq   $src, $mem" %}
 11084   opcode(0x85);
 11085   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
 11086   ins_pipe(ialu_cr_reg_mem);
 11087 %}
 11089 // Manifest a CmpL result in an integer register.  Very painful.
 11090 // This is the test to avoid.
 11091 instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
 11092 %{
 11093   match(Set dst (CmpL3 src1 src2));
 11094   effect(KILL flags);
 11096   ins_cost(275); // XXX
 11097   format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
 11098             "movl    $dst, -1\n\t"
 11099             "jl,s    done\n\t"
 11100             "setne   $dst\n\t"
 11101             "movzbl  $dst, $dst\n\t"
 11102     "done:" %}
 11103   ins_encode(cmpl3_flag(src1, src2, dst));
 11104   ins_pipe(pipe_slow);
 11105 %}
 11107 //----------Max and Min--------------------------------------------------------
 11108 // Min Instructions
 11110 instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
 11111 %{
 11112   effect(USE_DEF dst, USE src, USE cr);
 11114   format %{ "cmovlgt $dst, $src\t# min" %}
 11115   opcode(0x0F, 0x4F);
 11116   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
 11117   ins_pipe(pipe_cmov_reg);
 11118 %}
 11121 instruct minI_rReg(rRegI dst, rRegI src)
 11122 %{
 11123   match(Set dst (MinI dst src));
 11125   ins_cost(200);
 11126   expand %{
 11127     rFlagsReg cr;
 11128     compI_rReg(cr, dst, src);
 11129     cmovI_reg_g(dst, src, cr);
 11130   %}
 11131 %}
 11133 instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
 11134 %{
 11135   effect(USE_DEF dst, USE src, USE cr);
 11137   format %{ "cmovllt $dst, $src\t# max" %}
 11138   opcode(0x0F, 0x4C);
 11139   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
 11140   ins_pipe(pipe_cmov_reg);
 11141 %}
 11144 instruct maxI_rReg(rRegI dst, rRegI src)
 11145 %{
 11146   match(Set dst (MaxI dst src));
 11148   ins_cost(200);
 11149   expand %{
 11150     rFlagsReg cr;
 11151     compI_rReg(cr, dst, src);
 11152     cmovI_reg_l(dst, src, cr);
 11153   %}
 11154 %}
 11156 // ============================================================================
 11157 // Branch Instructions
 11159 // Jump Direct - Label defines a relative address from JMP+1
 11160 instruct jmpDir(label labl)
 11161 %{
 11162   match(Goto);
 11163   effect(USE labl);
 11165   ins_cost(300);
 11166   format %{ "jmp     $labl" %}
 11167   size(5);
 11168   opcode(0xE9);
 11169   ins_encode(OpcP, Lbl(labl));
 11170   ins_pipe(pipe_jmp);
 11171   ins_pc_relative(1);
 11172 %}
 11174 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11175 instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
 11176 %{
 11177   match(If cop cr);
 11178   effect(USE labl);
 11180   ins_cost(300);
 11181   format %{ "j$cop     $labl" %}
 11182   size(6);
 11183   opcode(0x0F, 0x80);
 11184   ins_encode(Jcc(cop, labl));
 11185   ins_pipe(pipe_jcc);
 11186   ins_pc_relative(1);
 11187 %}
 11189 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11190 instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
 11191 %{
 11192   match(CountedLoopEnd cop cr);
 11193   effect(USE labl);
 11195   ins_cost(300);
 11196   format %{ "j$cop     $labl\t# loop end" %}
 11197   size(6);
 11198   opcode(0x0F, 0x80);
 11199   ins_encode(Jcc(cop, labl));
 11200   ins_pipe(pipe_jcc);
 11201   ins_pc_relative(1);
 11202 %}
 11204 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11205 instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl)
 11206 %{
 11207   match(CountedLoopEnd cop cmp);
 11208   effect(USE labl);
 11210   ins_cost(300);
 11211   format %{ "j$cop,u   $labl\t# loop end" %}
 11212   size(6);
 11213   opcode(0x0F, 0x80);
 11214   ins_encode(Jcc(cop, labl));
 11215   ins_pipe(pipe_jcc);
 11216   ins_pc_relative(1);
 11217 %}
 11219 // Jump Direct Conditional - using unsigned comparison
 11220 instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl)
 11221 %{
 11222   match(If cop cmp);
 11223   effect(USE labl);
 11225   ins_cost(300);
 11226   format %{ "j$cop,u   $labl" %}
 11227   size(6);
 11228   opcode(0x0F, 0x80);
 11229   ins_encode(Jcc(cop, labl));
 11230   ins_pipe(pipe_jcc);
 11231   ins_pc_relative(1);
 11232 %}
 11234 // ============================================================================
 11235 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
 11236 // superklass array for an instance of the superklass.  Set a hidden
 11237 // internal cache on a hit (cache is checked with exposed code in
 11238 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
 11239 // encoding ALSO sets flags.
 11241 instruct partialSubtypeCheck(rdi_RegP result,
 11242                              rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
 11243                              rFlagsReg cr)
 11244 %{
 11245   match(Set result (PartialSubtypeCheck sub super));
 11246   effect(KILL rcx, KILL cr);
 11248   ins_cost(1100);  // slightly larger than the next version
 11249   format %{ "cmpq    rax, rsi\n\t"
 11250             "jeq,s   hit\n\t"
 11251             "movq    rdi, [$sub + (sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())]\n\t"
 11252             "movl    rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
 11253             "addq    rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
 11254             "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
 11255             "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
 11256             "movq    [$sub + (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())], $super\t# Hit: update cache\n\t"
 11257     "hit:\n\t"
 11258             "xorq    $result, $result\t\t Hit: rdi zero\n\t"
 11259     "miss:\t" %}
 11261   opcode(0x1); // Force a XOR of RDI
 11262   ins_encode(enc_PartialSubtypeCheck());
 11263   ins_pipe(pipe_slow);
 11264 %}
 11266 instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
 11267                                      rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
 11268                                      immP0 zero,
 11269                                      rdi_RegP result)
 11270 %{
 11271   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 11272   predicate(!UseCompressedOops); // decoding oop kills condition codes
 11273   effect(KILL rcx, KILL result);
 11275   ins_cost(1000);
 11276   format %{ "cmpq    rax, rsi\n\t"
 11277             "jeq,s   miss\t# Actually a hit; we are done.\n\t"
 11278             "movq    rdi, [$sub + (sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())]\n\t"
 11279             "movl    rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
 11280             "addq    rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
 11281             "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
 11282             "jne,s   miss\t\t# Missed: flags nz\n\t"
 11283             "movq    [$sub + (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())], $super\t# Hit: update cache\n\t"
 11284     "miss:\t" %}
 11286   opcode(0x0); // No need to XOR RDI
 11287   ins_encode(enc_PartialSubtypeCheck());
 11288   ins_pipe(pipe_slow);
 11289 %}
 11291 // ============================================================================
 11292 // Branch Instructions -- short offset versions
 11293 //
 11294 // These instructions are used to replace jumps of a long offset (the default
 11295 // match) with jumps of a shorter offset.  These instructions are all tagged
 11296 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 11297 // match rules in general matching.  Instead, the ADLC generates a conversion
 11298 // method in the MachNode which can be used to do in-place replacement of the
 11299 // long variant with the shorter variant.  The compiler will determine if a
 11300 // branch can be taken by the is_short_branch_offset() predicate in the machine
 11301 // specific code section of the file.
 11303 // Jump Direct - Label defines a relative address from JMP+1
 11304 instruct jmpDir_short(label labl)
 11305 %{
 11306   match(Goto);
 11307   effect(USE labl);
 11309   ins_cost(300);
 11310   format %{ "jmp,s   $labl" %}
 11311   size(2);
 11312   opcode(0xEB);
 11313   ins_encode(OpcP, LblShort(labl));
 11314   ins_pipe(pipe_jmp);
 11315   ins_pc_relative(1);
 11316   ins_short_branch(1);
 11317 %}
 11319 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11320 instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl)
 11321 %{
 11322   match(If cop cr);
 11323   effect(USE labl);
 11325   ins_cost(300);
 11326   format %{ "j$cop,s   $labl" %}
 11327   size(2);
 11328   opcode(0x70);
 11329   ins_encode(JccShort(cop, labl));
 11330   ins_pipe(pipe_jcc);
 11331   ins_pc_relative(1);
 11332   ins_short_branch(1);
 11333 %}
 11335 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11336 instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl)
 11337 %{
 11338   match(CountedLoopEnd cop cr);
 11339   effect(USE labl);
 11341   ins_cost(300);
 11342   format %{ "j$cop,s   $labl" %}
 11343   size(2);
 11344   opcode(0x70);
 11345   ins_encode(JccShort(cop, labl));
 11346   ins_pipe(pipe_jcc);
 11347   ins_pc_relative(1);
 11348   ins_short_branch(1);
 11349 %}
 11351 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11352 instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl)
 11353 %{
 11354   match(CountedLoopEnd cop cmp);
 11355   effect(USE labl);
 11357   ins_cost(300);
 11358   format %{ "j$cop,us  $labl" %}
 11359   size(2);
 11360   opcode(0x70);
 11361   ins_encode(JccShort(cop, labl));
 11362   ins_pipe(pipe_jcc);
 11363   ins_pc_relative(1);
 11364   ins_short_branch(1);
 11365 %}
 11367 // Jump Direct Conditional - using unsigned comparison
 11368 instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl)
 11369 %{
 11370   match(If cop cmp);
 11371   effect(USE labl);
 11373   ins_cost(300);
 11374   format %{ "j$cop,us  $labl" %}
 11375   size(2);
 11376   opcode(0x70);
 11377   ins_encode(JccShort(cop, labl));
 11378   ins_pipe(pipe_jcc);
 11379   ins_pc_relative(1);
 11380   ins_short_branch(1);
 11381 %}
 11383 // ============================================================================
 11384 // inlined locking and unlocking
 11386 instruct cmpFastLock(rFlagsReg cr,
 11387                      rRegP object, rRegP box, rax_RegI tmp, rRegP scr)
 11388 %{
 11389   match(Set cr (FastLock object box));
 11390   effect(TEMP tmp, TEMP scr);
 11392   ins_cost(300);
 11393   format %{ "fastlock $object,$box,$tmp,$scr" %}
 11394   ins_encode(Fast_Lock(object, box, tmp, scr));
 11395   ins_pipe(pipe_slow);
 11396   ins_pc_relative(1);
 11397 %}
 11399 instruct cmpFastUnlock(rFlagsReg cr,
 11400                        rRegP object, rax_RegP box, rRegP tmp)
 11401 %{
 11402   match(Set cr (FastUnlock object box));
 11403   effect(TEMP tmp);
 11405   ins_cost(300);
 11406   format %{ "fastunlock $object, $box, $tmp" %}
 11407   ins_encode(Fast_Unlock(object, box, tmp));
 11408   ins_pipe(pipe_slow);
 11409   ins_pc_relative(1);
 11410 %}
 11413 // ============================================================================
 11414 // Safepoint Instructions
 11415 instruct safePoint_poll(rFlagsReg cr)
 11416 %{
 11417   match(SafePoint);
 11418   effect(KILL cr);
 11420   format %{ "testl   rax, [rip + #offset_to_poll_page]\t"
 11421             "# Safepoint: poll for GC" %}
 11422   size(6); // Opcode + ModRM + Disp32 == 6 bytes
 11423   ins_cost(125);
 11424   ins_encode(enc_safepoint_poll);
 11425   ins_pipe(ialu_reg_mem);
 11426 %}
 11428 // ============================================================================
 11429 // Procedure Call/Return Instructions
 11430 // Call Java Static Instruction
 11431 // Note: If this code changes, the corresponding ret_addr_offset() and
 11432 //       compute_padding() functions will have to be adjusted.
 11433 instruct CallStaticJavaDirect(method meth)
 11434 %{
 11435   match(CallStaticJava);
 11436   effect(USE meth);
 11438   ins_cost(300);
 11439   format %{ "call,static " %}
 11440   opcode(0xE8); /* E8 cd */
 11441   ins_encode(Java_Static_Call(meth), call_epilog);
 11442   ins_pipe(pipe_slow);
 11443   ins_pc_relative(1);
 11444   ins_alignment(4);
 11445 %}
 11447 // Call Java Dynamic Instruction
 11448 // Note: If this code changes, the corresponding ret_addr_offset() and
 11449 //       compute_padding() functions will have to be adjusted.
 11450 instruct CallDynamicJavaDirect(method meth)
 11451 %{
 11452   match(CallDynamicJava);
 11453   effect(USE meth);
 11455   ins_cost(300);
 11456   format %{ "movq    rax, #Universe::non_oop_word()\n\t"
 11457             "call,dynamic " %}
 11458   opcode(0xE8); /* E8 cd */
 11459   ins_encode(Java_Dynamic_Call(meth), call_epilog);
 11460   ins_pipe(pipe_slow);
 11461   ins_pc_relative(1);
 11462   ins_alignment(4);
 11463 %}
 11465 // Call Runtime Instruction
 11466 instruct CallRuntimeDirect(method meth)
 11467 %{
 11468   match(CallRuntime);
 11469   effect(USE meth);
 11471   ins_cost(300);
 11472   format %{ "call,runtime " %}
 11473   opcode(0xE8); /* E8 cd */
 11474   ins_encode(Java_To_Runtime(meth));
 11475   ins_pipe(pipe_slow);
 11476   ins_pc_relative(1);
 11477 %}
 11479 // Call runtime without safepoint
 11480 instruct CallLeafDirect(method meth)
 11481 %{
 11482   match(CallLeaf);
 11483   effect(USE meth);
 11485   ins_cost(300);
 11486   format %{ "call_leaf,runtime " %}
 11487   opcode(0xE8); /* E8 cd */
 11488   ins_encode(Java_To_Runtime(meth));
 11489   ins_pipe(pipe_slow);
 11490   ins_pc_relative(1);
 11491 %}
 11493 // Call runtime without safepoint
 11494 instruct CallLeafNoFPDirect(method meth)
 11495 %{
 11496   match(CallLeafNoFP);
 11497   effect(USE meth);
 11499   ins_cost(300);
 11500   format %{ "call_leaf_nofp,runtime " %}
 11501   opcode(0xE8); /* E8 cd */
 11502   ins_encode(Java_To_Runtime(meth));
 11503   ins_pipe(pipe_slow);
 11504   ins_pc_relative(1);
 11505 %}
 11507 // Return Instruction
 11508 // Remove the return address & jump to it.
 11509 // Notice: We always emit a nop after a ret to make sure there is room
 11510 // for safepoint patching
 11511 instruct Ret()
 11512 %{
 11513   match(Return);
 11515   format %{ "ret" %}
 11516   opcode(0xC3);
 11517   ins_encode(OpcP);
 11518   ins_pipe(pipe_jmp);
 11519 %}
 11521 // Tail Call; Jump from runtime stub to Java code.
 11522 // Also known as an 'interprocedural jump'.
 11523 // Target of jump will eventually return to caller.
 11524 // TailJump below removes the return address.
 11525 instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
 11526 %{
 11527   match(TailCall jump_target method_oop);
 11529   ins_cost(300);
 11530   format %{ "jmp     $jump_target\t# rbx holds method oop" %}
 11531   opcode(0xFF, 0x4); /* Opcode FF /4 */
 11532   ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
 11533   ins_pipe(pipe_jmp);
 11534 %}
 11536 // Tail Jump; remove the return address; jump to target.
 11537 // TailCall above leaves the return address around.
 11538 instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
 11539 %{
 11540   match(TailJump jump_target ex_oop);
 11542   ins_cost(300);
 11543   format %{ "popq    rdx\t# pop return address\n\t"
 11544             "jmp     $jump_target" %}
 11545   opcode(0xFF, 0x4); /* Opcode FF /4 */
 11546   ins_encode(Opcode(0x5a), // popq rdx
 11547              REX_reg(jump_target), OpcP, reg_opc(jump_target));
 11548   ins_pipe(pipe_jmp);
 11549 %}
 11551 // Create exception oop: created by stack-crawling runtime code.
 11552 // Created exception is now available to this handler, and is setup
 11553 // just prior to jumping to this handler.  No code emitted.
 11554 instruct CreateException(rax_RegP ex_oop)
 11555 %{
 11556   match(Set ex_oop (CreateEx));
 11558   size(0);
 11559   // use the following format syntax
 11560   format %{ "# exception oop is in rax; no code emitted" %}
 11561   ins_encode();
 11562   ins_pipe(empty);
 11563 %}
 11565 // Rethrow exception:
 11566 // The exception oop will come in the first argument position.
 11567 // Then JUMP (not call) to the rethrow stub code.
 11568 instruct RethrowException()
 11569 %{
 11570   match(Rethrow);
 11572   // use the following format syntax
 11573   format %{ "jmp     rethrow_stub" %}
 11574   ins_encode(enc_rethrow);
 11575   ins_pipe(pipe_jmp);
 11576 %}
 11579 //----------PEEPHOLE RULES-----------------------------------------------------
 11580 // These must follow all instruction definitions as they use the names
 11581 // defined in the instructions definitions.
 11582 //
 11583 // peepmatch ( root_instr_name [precerding_instruction]* );
 11584 //
 11585 // peepconstraint %{
 11586 // (instruction_number.operand_name relational_op instruction_number.operand_name
 11587 //  [, ...] );
 11588 // // instruction numbers are zero-based using left to right order in peepmatch
 11589 //
 11590 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 11591 // // provide an instruction_number.operand_name for each operand that appears
 11592 // // in the replacement instruction's match rule
 11593 //
 11594 // ---------VM FLAGS---------------------------------------------------------
 11595 //
 11596 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 11597 //
 11598 // Each peephole rule is given an identifying number starting with zero and
 11599 // increasing by one in the order seen by the parser.  An individual peephole
 11600 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 11601 // on the command-line.
 11602 //
 11603 // ---------CURRENT LIMITATIONS----------------------------------------------
 11604 //
 11605 // Only match adjacent instructions in same basic block
 11606 // Only equality constraints
 11607 // Only constraints between operands, not (0.dest_reg == RAX_enc)
 11608 // Only one replacement instruction
 11609 //
 11610 // ---------EXAMPLE----------------------------------------------------------
 11611 //
 11612 // // pertinent parts of existing instructions in architecture description
 11613 // instruct movI(rRegI dst, rRegI src)
 11614 // %{
 11615 //   match(Set dst (CopyI src));
 11616 // %}
 11617 //
 11618 // instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
 11619 // %{
 11620 //   match(Set dst (AddI dst src));
 11621 //   effect(KILL cr);
 11622 // %}
 11623 //
 11624 // // Change (inc mov) to lea
 11625 // peephole %{
 11626 //   // increment preceeded by register-register move
 11627 //   peepmatch ( incI_rReg movI );
 11628 //   // require that the destination register of the increment
 11629 //   // match the destination register of the move
 11630 //   peepconstraint ( 0.dst == 1.dst );
 11631 //   // construct a replacement instruction that sets
 11632 //   // the destination to ( move's source register + one )
 11633 //   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
 11634 // %}
 11635 //
 11637 // Implementation no longer uses movX instructions since
 11638 // machine-independent system no longer uses CopyX nodes.
 11639 //
 11640 // peephole
 11641 // %{
 11642 //   peepmatch (incI_rReg movI);
 11643 //   peepconstraint (0.dst == 1.dst);
 11644 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
 11645 // %}
 11647 // peephole
 11648 // %{
 11649 //   peepmatch (decI_rReg movI);
 11650 //   peepconstraint (0.dst == 1.dst);
 11651 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
 11652 // %}
 11654 // peephole
 11655 // %{
 11656 //   peepmatch (addI_rReg_imm movI);
 11657 //   peepconstraint (0.dst == 1.dst);
 11658 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
 11659 // %}
 11661 // peephole
 11662 // %{
 11663 //   peepmatch (incL_rReg movL);
 11664 //   peepconstraint (0.dst == 1.dst);
 11665 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
 11666 // %}
 11668 // peephole
 11669 // %{
 11670 //   peepmatch (decL_rReg movL);
 11671 //   peepconstraint (0.dst == 1.dst);
 11672 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
 11673 // %}
 11675 // peephole
 11676 // %{
 11677 //   peepmatch (addL_rReg_imm movL);
 11678 //   peepconstraint (0.dst == 1.dst);
 11679 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
 11680 // %}
 11682 // peephole
 11683 // %{
 11684 //   peepmatch (addP_rReg_imm movP);
 11685 //   peepconstraint (0.dst == 1.dst);
 11686 //   peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
 11687 // %}
 11689 // // Change load of spilled value to only a spill
 11690 // instruct storeI(memory mem, rRegI src)
 11691 // %{
 11692 //   match(Set mem (StoreI mem src));
 11693 // %}
 11694 //
 11695 // instruct loadI(rRegI dst, memory mem)
 11696 // %{
 11697 //   match(Set dst (LoadI mem));
 11698 // %}
 11699 //
 11701 peephole
 11702 %{
 11703   peepmatch (loadI storeI);
 11704   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
 11705   peepreplace (storeI(1.mem 1.mem 1.src));
 11706 %}
 11708 peephole
 11709 %{
 11710   peepmatch (loadL storeL);
 11711   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
 11712   peepreplace (storeL(1.mem 1.mem 1.src));
 11713 %}
 11715 //----------SMARTSPILL RULES---------------------------------------------------
 11716 // These must follow all instruction definitions as they use the names
 11717 // defined in the instructions definitions.

mercurial