src/cpu/x86/vm/cppInterpreter_x86.cpp

Sun, 13 Apr 2008 17:43:42 -0400

author
coleenp
date
Sun, 13 Apr 2008 17:43:42 -0400
changeset 548
ba764ed4b6f2
parent 435
a61af66fc99e
child 739
dc7f315e41f7
permissions
-rw-r--r--

6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Summary: Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold

     1 /*
     2  * Copyright 2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_cppInterpreter_x86.cpp.incl"
    28 #ifdef CC_INTERP
    30 // Routine exists to make tracebacks look decent in debugger
    31 // while we are recursed in the frame manager/c++ interpreter.
    32 // We could use an address in the frame manager but having
    33 // frames look natural in the debugger is a plus.
    34 extern "C" void RecursiveInterpreterActivation(interpreterState istate )
    35 {
    36   //
    37   ShouldNotReachHere();
    38 }
    41 #define __ _masm->
    42 #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
    44 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
    45                                       // c++ interpreter entry point this holds that entry point label.
    47 // NEEDED for JVMTI?
    48 // address AbstractInterpreter::_remove_activation_preserving_args_entry;
    50 static address unctrap_frame_manager_entry  = NULL;
    52 static address deopt_frame_manager_return_atos  = NULL;
    53 static address deopt_frame_manager_return_btos  = NULL;
    54 static address deopt_frame_manager_return_itos  = NULL;
    55 static address deopt_frame_manager_return_ltos  = NULL;
    56 static address deopt_frame_manager_return_ftos  = NULL;
    57 static address deopt_frame_manager_return_dtos  = NULL;
    58 static address deopt_frame_manager_return_vtos  = NULL;
    60 int AbstractInterpreter::BasicType_as_index(BasicType type) {
    61   int i = 0;
    62   switch (type) {
    63     case T_BOOLEAN: i = 0; break;
    64     case T_CHAR   : i = 1; break;
    65     case T_BYTE   : i = 2; break;
    66     case T_SHORT  : i = 3; break;
    67     case T_INT    : i = 4; break;
    68     case T_VOID   : i = 5; break;
    69     case T_FLOAT  : i = 8; break;
    70     case T_LONG   : i = 9; break;
    71     case T_DOUBLE : i = 6; break;
    72     case T_OBJECT : // fall through
    73     case T_ARRAY  : i = 7; break;
    74     default       : ShouldNotReachHere();
    75   }
    76   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
    77   return i;
    78 }
    80 // Is this pc anywhere within code owned by the interpreter?
    81 // This only works for pc that might possibly be exposed to frame
    82 // walkers. It clearly misses all of the actual c++ interpreter
    83 // implementation
    84 bool CppInterpreter::contains(address pc)            {
    85     return (_code->contains(pc) ||
    86             pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
    87 }
    90 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
    91   const Register state   = rsi;                                    // current activation object, valid on entry
    92   address entry = __ pc();
    93   switch (type) {
    94     case T_BOOLEAN: __ c2bool(rax);            break;
    95     case T_CHAR   : __ andl(rax, 0xFFFF);      break;
    96     case T_BYTE   : __ sign_extend_byte (rax); break;
    97     case T_SHORT  : __ sign_extend_short(rax); break;
    98     case T_VOID   : // fall thru
    99     case T_LONG   : // fall thru
   100     case T_INT    : /* nothing to do */        break;
   101     case T_DOUBLE :
   102     case T_FLOAT  :
   103       { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   104         __ popl(t);                            // remove return address first
   105         __ pop_dtos_to_rsp();
   106         // Must return a result for interpreter or compiler. In SSE
   107         // mode, results are returned in xmm0 and the FPU stack must
   108         // be empty.
   109         if (type == T_FLOAT && UseSSE >= 1) {
   110           // Load ST0
   111           __ fld_d(Address(rsp, 0));
   112           // Store as float and empty fpu stack
   113           __ fstp_s(Address(rsp, 0));
   114           // and reload
   115           __ movflt(xmm0, Address(rsp, 0));
   116         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
   117           __ movdbl(xmm0, Address(rsp, 0));
   118         } else {
   119           // restore ST0
   120           __ fld_d(Address(rsp, 0));
   121         }
   122         // and pop the temp
   123         __ addl(rsp, 2 * wordSize);
   124         __ pushl(t);                           // restore return address
   125       }
   126       break;
   127     case T_OBJECT :
   128       // retrieve result from frame
   129       __ movl(rax, STATE(_oop_temp));
   130       // and verify it
   131       __ verify_oop(rax);
   132       break;
   133     default       : ShouldNotReachHere();
   134   }
   135   __ ret(0);                                   // return from result handler
   136   return entry;
   137 }
   139 // tosca based result to c++ interpreter stack based result.
   140 // Result goes to top of native stack.
   142 #undef EXTEND  // SHOULD NOT BE NEEDED
   143 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
   144   // A result is in the tosca (abi result) from either a native method call or compiled
   145   // code. Place this result on the java expression stack so C++ interpreter can use it.
   146   address entry = __ pc();
   148   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   149   __ popl(t);                            // remove return address first
   150   switch (type) {
   151     case T_VOID:
   152        break;
   153     case T_BOOLEAN:
   154 #ifdef EXTEND
   155       __ c2bool(rax);
   156 #endif
   157       __ pushl(rax);
   158       break;
   159     case T_CHAR   :
   160 #ifdef EXTEND
   161       __ andl(rax, 0xFFFF);
   162 #endif
   163       __ pushl(rax);
   164       break;
   165     case T_BYTE   :
   166 #ifdef EXTEND
   167       __ sign_extend_byte (rax);
   168 #endif
   169       __ pushl(rax);
   170       break;
   171     case T_SHORT  :
   172 #ifdef EXTEND
   173       __ sign_extend_short(rax);
   174 #endif
   175       __ pushl(rax);
   176       break;
   177     case T_LONG    :
   178       __ pushl(rdx);
   179       __ pushl(rax);
   180       break;
   181     case T_INT    :
   182       __ pushl(rax);
   183       break;
   184     case T_FLOAT  :
   185       // Result is in ST(0)
   186       if ( UseSSE < 1) {
   187         __ push(ftos);                           // and save it
   188       } else {
   189         __ subl(rsp, wordSize);
   190         __ movflt(Address(rsp, 0), xmm0);
   191       }
   192       break;
   193     case T_DOUBLE  :
   194       if ( UseSSE < 2 ) {
   195         __ push(dtos);                           // put ST0 on java stack
   196       } else {
   197         __ subl(rsp, 2*wordSize);
   198         __ movdbl(Address(rsp, 0), xmm0);
   199       }
   200       break;
   201     case T_OBJECT :
   202       __ verify_oop(rax);                      // verify it
   203       __ pushl(rax);
   204       break;
   205     default       : ShouldNotReachHere();
   206   }
   207   __ jmp(t);                                   // return from result handler
   208   return entry;
   209 }
   211 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
   212   // A result is in the java expression stack of the interpreted method that has just
   213   // returned. Place this result on the java expression stack of the caller.
   214   //
   215   // The current interpreter activation in rsi is for the method just returning its
   216   // result. So we know that the result of this method is on the top of the current
   217   // execution stack (which is pre-pushed) and will be return to the top of the caller
   218   // stack. The top of the callers stack is the bottom of the locals of the current
   219   // activation.
   220   // Because of the way activation are managed by the frame manager the value of rsp is
   221   // below both the stack top of the current activation and naturally the stack top
   222   // of the calling activation. This enable this routine to leave the return address
   223   // to the frame manager on the stack and do a vanilla return.
   224   //
   225   // On entry: rsi - interpreter state of activation returning a (potential) result
   226   // On Return: rsi - unchanged
   227   //            rax - new stack top for caller activation (i.e. activation in _prev_link)
   228   //
   229   // Can destroy rdx, rcx.
   230   //
   232   address entry = __ pc();
   233   const Register state   = rsi;                                    // current activation object, valid on entry
   234   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   235   switch (type) {
   236     case T_VOID:
   237       __ movl(rax, STATE(_locals));                                     // pop parameters get new stack value
   238       __ addl(rax, wordSize);                                           // account for prepush before we return
   239       break;
   240     case T_FLOAT  :
   241     case T_BOOLEAN:
   242     case T_CHAR   :
   243     case T_BYTE   :
   244     case T_SHORT  :
   245     case T_INT    :
   246       // 1 word result
   247       __ movl(rdx, STATE(_stack));
   248       __ movl(rax, STATE(_locals));                                     // address for result
   249       __ movl(rdx, Address(rdx, wordSize));                             // get result
   250       __ movl(Address(rax, 0), rdx);                                    // and store it
   251       break;
   252     case T_LONG    :
   253     case T_DOUBLE  :
   254       // return top two words on current expression stack to caller's expression stack
   255       // The caller's expression stack is adjacent to the current frame manager's intepretState
   256       // except we allocated one extra word for this intepretState so we won't overwrite it
   257       // when we return a two word result.
   259       __ movl(rax, STATE(_locals));                                     // address for result
   260       __ movl(rcx, STATE(_stack));
   261       __ subl(rax, wordSize);                                           // need addition word besides locals[0]
   262       __ movl(rdx, Address(rcx, 2*wordSize));                           // get result word
   263       __ movl(Address(rax, wordSize), rdx);                             // and store it
   264       __ movl(rdx, Address(rcx, wordSize));                             // get result word
   265       __ movl(Address(rax, 0), rdx);                                    // and store it
   266       break;
   267     case T_OBJECT :
   268       __ movl(rdx, STATE(_stack));
   269       __ movl(rax, STATE(_locals));                                     // address for result
   270       __ movl(rdx, Address(rdx, wordSize));                             // get result
   271       __ verify_oop(rdx);                                               // verify it
   272       __ movl(Address(rax, 0), rdx);                                    // and store it
   273       break;
   274     default       : ShouldNotReachHere();
   275   }
   276   __ ret(0);
   277   return entry;
   278 }
   280 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
   281   // A result is in the java expression stack of the interpreted method that has just
   282   // returned. Place this result in the native abi that the caller expects.
   283   //
   284   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
   285   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
   286   // and so rather than return result onto caller's java expression stack we return the
   287   // result in the expected location based on the native abi.
   288   // On entry: rsi - interpreter state of activation returning a (potential) result
   289   // On Return: rsi - unchanged
   290   // Other registers changed [rax/rdx/ST(0) as needed for the result returned]
   292   address entry = __ pc();
   293   const Register state   = rsi;                                    // current activation object, valid on entry
   294   switch (type) {
   295     case T_VOID:
   296        break;
   297     case T_BOOLEAN:
   298     case T_CHAR   :
   299     case T_BYTE   :
   300     case T_SHORT  :
   301     case T_INT    :
   302       __ movl(rdx, STATE(_stack));                                      // get top of stack
   303       __ movl(rax, Address(rdx, wordSize));                             // get result word 1
   304       break;
   305     case T_LONG    :
   306       __ movl(rdx, STATE(_stack));                                      // get top of stack
   307       __ movl(rax, Address(rdx, wordSize));                             // get result low word
   308       __ movl(rdx, Address(rdx, 2*wordSize));                           // get result high word
   309       break;
   310       break;
   311     case T_FLOAT  :
   312       __ movl(rdx, STATE(_stack));                                      // get top of stack
   313       if ( UseSSE >= 1) {
   314         __ movflt(xmm0, Address(rdx, wordSize));
   315       } else {
   316         __ fld_s(Address(rdx, wordSize));                               // pushd float result
   317       }
   318       break;
   319     case T_DOUBLE  :
   320       __ movl(rdx, STATE(_stack));                                      // get top of stack
   321       if ( UseSSE > 1) {
   322         __ movdbl(xmm0, Address(rdx, wordSize));
   323       } else {
   324         __ fld_d(Address(rdx, wordSize));                               // push double result
   325       }
   326       break;
   327     case T_OBJECT :
   328       __ movl(rdx, STATE(_stack));                                      // get top of stack
   329       __ movl(rax, Address(rdx, wordSize));                             // get result word 1
   330       __ verify_oop(rax);                                               // verify it
   331       break;
   332     default       : ShouldNotReachHere();
   333   }
   334   __ ret(0);
   335   return entry;
   336 }
   338 address CppInterpreter::return_entry(TosState state, int length) {
   339   // make it look good in the debugger
   340   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
   341 }
   343 address CppInterpreter::deopt_entry(TosState state, int length) {
   344   address ret = NULL;
   345   if (length != 0) {
   346     switch (state) {
   347       case atos: ret = deopt_frame_manager_return_atos; break;
   348       case btos: ret = deopt_frame_manager_return_btos; break;
   349       case ctos:
   350       case stos:
   351       case itos: ret = deopt_frame_manager_return_itos; break;
   352       case ltos: ret = deopt_frame_manager_return_ltos; break;
   353       case ftos: ret = deopt_frame_manager_return_ftos; break;
   354       case dtos: ret = deopt_frame_manager_return_dtos; break;
   355       case vtos: ret = deopt_frame_manager_return_vtos; break;
   356     }
   357   } else {
   358     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
   359   }
   360   assert(ret != NULL, "Not initialized");
   361   return ret;
   362 }
   364 // C++ Interpreter
   365 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
   366                                                                  const Register locals,
   367                                                                  const Register sender_sp,
   368                                                                  bool native) {
   370   // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
   371   // a static method). "state" contains any previous frame manager state which we must save a link
   372   // to in the newly generated state object. On return "state" is a pointer to the newly allocated
   373   // state object. We must allocate and initialize a new interpretState object and the method
   374   // expression stack. Because the returned result (if any) of the method will be placed on the caller's
   375   // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
   376   // be sure to leave space on the caller's stack so that this result will not overwrite values when
   377   // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
   378   // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
   379   // non-product builds and initialize this last local with the previous interpreterState as
   380   // this makes things look real nice in the debugger.
   382   // State on entry
   383   // Assumes locals == &locals[0]
   384   // Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
   385   // Assumes rax = return address
   386   // rcx == senders_sp
   387   // rbx == method
   388   // Modifies rcx, rdx, rax
   389   // Returns:
   390   // state == address of new interpreterState
   391   // rsp == bottom of method's expression stack.
   393   const Address const_offset      (rbx, methodOopDesc::const_offset());
   396   // On entry sp is the sender's sp. This includes the space for the arguments
   397   // that the sender pushed. If the sender pushed no args (a static) and the
   398   // caller returns a long then we need two words on the sender's stack which
   399   // are not present (although when we return a restore full size stack the
   400   // space will be present). If we didn't allocate two words here then when
   401   // we "push" the result of the caller's stack we would overwrite the return
   402   // address and the saved rbp. Not good. So simply allocate 2 words now
   403   // just to be safe. This is the "static long no_params() method" issue.
   404   // See Lo.java for a testcase.
   405   // We don't need this for native calls because they return result in
   406   // register and the stack is expanded in the caller before we store
   407   // the results on the stack.
   409   if (!native) {
   410 #ifdef PRODUCT
   411     __ subl(rsp, 2*wordSize);
   412 #else /* PRODUCT */
   413     __ pushl((int)NULL);
   414     __ pushl(state);                         // make it look like a real argument
   415 #endif /* PRODUCT */
   416   }
   418   // Now that we are assure of space for stack result, setup typical linkage
   420   __ pushl(rax);
   421   __ enter();
   423   __ movl(rax, state);                                 // save current state
   425   __ leal(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
   426   __ movl(state, rsp);
   428   // rsi == state/locals rax == prevstate
   430   // initialize the "shadow" frame so that use since C++ interpreter not directly
   431   // recursive. Simpler to recurse but we can't trim expression stack as we call
   432   // new methods.
   433   __ movl(STATE(_locals), locals);                      // state->_locals = locals()
   434   __ movl(STATE(_self_link), state);                    // point to self
   435   __ movl(STATE(_prev_link), rax);                      // state->_link = state on entry (NULL or previous state)
   436   __ movl(STATE(_sender_sp), sender_sp);                // state->_sender_sp = sender_sp
   437   __ get_thread(rax);                                   // get vm's javathread*
   438   __ movl(STATE(_thread), rax);                         // state->_bcp = codes()
   439   __ movl(rdx, Address(rbx, methodOopDesc::const_offset())); // get constantMethodOop
   440   __ leal(rdx, Address(rdx, constMethodOopDesc::codes_offset())); // get code base
   441   if (native) {
   442     __ movl(STATE(_bcp), (intptr_t)NULL);               // state->_bcp = NULL
   443   } else {
   444     __ movl(STATE(_bcp), rdx);                          // state->_bcp = codes()
   445   }
   446   __ xorl(rdx, rdx);
   447   __ movl(STATE(_oop_temp), rdx);                       // state->_oop_temp = NULL (only really needed for native)
   448   __ movl(STATE(_mdx), rdx);                            // state->_mdx = NULL
   449   __ movl(rdx, Address(rbx, methodOopDesc::constants_offset()));
   450   __ movl(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
   451   __ movl(STATE(_constants), rdx);                      // state->_constants = constants()
   453   __ movl(STATE(_method), rbx);                         // state->_method = method()
   454   __ movl(STATE(_msg), (int) BytecodeInterpreter::method_entry);   // state->_msg = initial method entry
   455   __ movl(STATE(_result._to_call._callee), (int) NULL); // state->_result._to_call._callee_callee = NULL
   458   __ movl(STATE(_monitor_base), rsp);                   // set monitor block bottom (grows down) this would point to entry [0]
   459                                                         // entries run from -1..x where &monitor[x] ==
   461   {
   462     // Must not attempt to lock method until we enter interpreter as gc won't be able to find the
   463     // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
   464     // immediately.
   466     // synchronize method
   467     const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   468     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   469     Label not_synced;
   471     __ movl(rax, access_flags);
   472     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   473     __ jcc(Assembler::zero, not_synced);
   475     // Allocate initial monitor and pre initialize it
   476     // get synchronization object
   478     Label done;
   479     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   480     __ movl(rax, access_flags);
   481     __ testl(rax, JVM_ACC_STATIC);
   482     __ movl(rax, Address(locals, 0));                     // get receiver (assume this is frequent case)
   483     __ jcc(Assembler::zero, done);
   484     __ movl(rax, Address(rbx, methodOopDesc::constants_offset()));
   485     __ movl(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   486     __ movl(rax, Address(rax, mirror_offset));
   487     __ bind(done);
   488     // add space for monitor & lock
   489     __ subl(rsp, entry_size);                                             // add space for a monitor entry
   490     __ movl(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);   // store object
   491     __ bind(not_synced);
   492   }
   494   __ movl(STATE(_stack_base), rsp);                                     // set expression stack base ( == &monitors[-count])
   495   if (native) {
   496     __ movl(STATE(_stack), rsp);                                          // set current expression stack tos
   497     __ movl(STATE(_stack_limit), rsp);
   498   } else {
   499     __ subl(rsp, wordSize);                                               // pre-push stack
   500     __ movl(STATE(_stack), rsp);                                          // set current expression stack tos
   502     // compute full expression stack limit
   504     const Address size_of_stack    (rbx, methodOopDesc::max_stack_offset());
   505     __ load_unsigned_word(rdx, size_of_stack);                            // get size of expression stack in words
   506     __ negl(rdx);                                                         // so we can subtract in next step
   507     // Allocate expression stack
   508     __ leal(rsp, Address(rsp, rdx, Address::times_4));
   509     __ movl(STATE(_stack_limit), rsp);
   510   }
   512 }
   514 // Helpers for commoning out cases in the various type of method entries.
   515 //
   517 // increment invocation count & check for overflow
   518 //
   519 // Note: checking for negative value instead of overflow
   520 //       so we have a 'sticky' overflow test
   521 //
   522 // rbx,: method
   523 // rcx: invocation counter
   524 //
   525 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   527   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
   528   const Address backedge_counter  (rbx, methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset());
   530   if (ProfileInterpreter) { // %%% Merge this into methodDataOop
   531     __ increment(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
   532   }
   533   // Update standard invocation counters
   534   __ movl(rax, backedge_counter);               // load backedge counter
   536   __ increment(rcx, InvocationCounter::count_increment);
   537   __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
   539   __ movl(invocation_counter, rcx);             // save invocation count
   540   __ addl(rcx, rax);                            // add both counters
   542   // profile_method is non-null only for interpreted method so
   543   // profile_method != NULL == !native_call
   544   // BytecodeInterpreter only calls for native so code is elided.
   546   __ cmp32(rcx,
   547            ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   548   __ jcc(Assembler::aboveEqual, *overflow);
   550 }
   552 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   554   // C++ interpreter on entry
   555   // rsi - new interpreter state pointer
   556   // rbp - interpreter frame pointer
   557   // rbx - method
   559   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   560   // rbx, - method
   561   // rcx - rcvr (assuming there is one)
   562   // top of stack return address of interpreter caller
   563   // rsp - sender_sp
   565   // C++ interpreter only
   566   // rsi - previous interpreter state pointer
   568   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   570   // InterpreterRuntime::frequency_counter_overflow takes one argument
   571   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
   572   // The call returns the address of the verified entry point for the method or NULL
   573   // if the compilation did not complete (either went background or bailed out).
   574   __ movl(rax, (int)false);
   575   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
   577   // for c++ interpreter can rsi really be munged?
   578   __ leal(rsi, Address(rbp, -sizeof(BytecodeInterpreter)));                                // restore state
   579   __ movl(rbx, Address(rsi, byte_offset_of(BytecodeInterpreter, _method)));                // restore method
   580   __ movl(rdi, Address(rsi, byte_offset_of(BytecodeInterpreter, _locals)));                // get locals pointer
   582   // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
   583   // and jump to the interpreted entry.
   584   __ jmp(*do_continue, relocInfo::none);
   586 }
   588 void InterpreterGenerator::generate_stack_overflow_check(void) {
   589   // see if we've got enough room on the stack for locals plus overhead.
   590   // the expression stack grows down incrementally, so the normal guard
   591   // page mechanism will work for that.
   592   //
   593   // Registers live on entry:
   594   //
   595   // Asm interpreter
   596   // rdx: number of additional locals this frame needs (what we must check)
   597   // rbx,: methodOop
   599   // C++ Interpreter
   600   // rsi: previous interpreter frame state object
   601   // rdi: &locals[0]
   602   // rcx: # of locals
   603   // rdx: number of additional locals this frame needs (what we must check)
   604   // rbx: methodOop
   606   // destroyed on exit
   607   // rax,
   609   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   610   // generate_method_entry) so the guard should work for them too.
   611   //
   613   // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
   614   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   616   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
   617   // be sure to change this if you add/subtract anything to/from the overhead area
   618   const int overhead_size = (int)sizeof(BytecodeInterpreter);
   620   const int page_size = os::vm_page_size();
   622   Label after_frame_check;
   624   // compute rsp as if this were going to be the last frame on
   625   // the stack before the red zone
   627   Label after_frame_check_pop;
   629   // save rsi == caller's bytecode ptr (c++ previous interp. state)
   630   // QQQ problem here?? rsi overload????
   631   __ pushl(rsi);
   633   const Register thread = rsi;
   635   __ get_thread(thread);
   637   const Address stack_base(thread, Thread::stack_base_offset());
   638   const Address stack_size(thread, Thread::stack_size_offset());
   640   // locals + overhead, in bytes
   641     const Address size_of_stack    (rbx, methodOopDesc::max_stack_offset());
   642     // Always give one monitor to allow us to start interp if sync method.
   643     // Any additional monitors need a check when moving the expression stack
   644     const one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
   645   __ load_unsigned_word(rax, size_of_stack);                            // get size of expression stack in words
   646   __ leal(rax, Address(noreg, rax, Interpreter::stackElementScale(), one_monitor));
   647   __ leal(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
   649 #ifdef ASSERT
   650   Label stack_base_okay, stack_size_okay;
   651   // verify that thread stack base is non-zero
   652   __ cmpl(stack_base, 0);
   653   __ jcc(Assembler::notEqual, stack_base_okay);
   654   __ stop("stack base is zero");
   655   __ bind(stack_base_okay);
   656   // verify that thread stack size is non-zero
   657   __ cmpl(stack_size, 0);
   658   __ jcc(Assembler::notEqual, stack_size_okay);
   659   __ stop("stack size is zero");
   660   __ bind(stack_size_okay);
   661 #endif
   663   // Add stack base to locals and subtract stack size
   664   __ addl(rax, stack_base);
   665   __ subl(rax, stack_size);
   667   // We should have a magic number here for the size of the c++ interpreter frame.
   668   // We can't actually tell this ahead of time. The debug version size is around 3k
   669   // product is 1k and fastdebug is 4k
   670   const int slop = 6 * K;
   672   // Use the maximum number of pages we might bang.
   673   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   674                                                                               (StackRedPages+StackYellowPages);
   675   // Only need this if we are stack banging which is temporary while
   676   // we're debugging.
   677   __ addl(rax, slop + 2*max_pages * page_size);
   679   // check against the current stack bottom
   680   __ cmpl(rsp, rax);
   681   __ jcc(Assembler::above, after_frame_check_pop);
   683   __ popl(rsi);  // get saved bcp / (c++ prev state ).
   685      // throw exception return address becomes throwing pc
   686   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   688   // all done with frame size check
   689   __ bind(after_frame_check_pop);
   690   __ popl(rsi);
   692   __ bind(after_frame_check);
   693 }
   695 // Find preallocated  monitor and lock method (C++ interpreter)
   696 // rbx - methodOop
   697 //
   698 void InterpreterGenerator::lock_method(void) {
   699   // assumes state == rsi == pointer to current interpreterState
   700   // minimally destroys rax, rdx, rdi
   701   //
   702   // synchronize method
   703   const Register state = rsi;
   704   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   705   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   707   // find initial monitor i.e. monitors[-1]
   708   __ movl(rdx, STATE(_monitor_base));                                   // get monitor bottom limit
   709   __ subl(rdx, entry_size);                                             // point to initial monitor
   711 #ifdef ASSERT
   712   { Label L;
   713     __ movl(rax, access_flags);
   714     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   715     __ jcc(Assembler::notZero, L);
   716     __ stop("method doesn't need synchronization");
   717     __ bind(L);
   718   }
   719 #endif // ASSERT
   720   // get synchronization object
   721   { Label done;
   722     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   723     __ movl(rax, access_flags);
   724     __ movl(rdi, STATE(_locals));                                       // prepare to get receiver (assume common case)
   725     __ testl(rax, JVM_ACC_STATIC);
   726     __ movl(rax, Address(rdi, 0));                                      // get receiver (assume this is frequent case)
   727     __ jcc(Assembler::zero, done);
   728     __ movl(rax, Address(rbx, methodOopDesc::constants_offset()));
   729     __ movl(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   730     __ movl(rax, Address(rax, mirror_offset));
   731     __ bind(done);
   732   }
   733 #ifdef ASSERT
   734   { Label L;
   735     __ cmpl(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // correct object?
   736     __ jcc(Assembler::equal, L);
   737     __ stop("wrong synchronization lobject");
   738     __ bind(L);
   739   }
   740 #endif // ASSERT
   741   // can destroy rax, rdx, rcx, and (via call_VM) rdi!
   742   __ lock_object(rdx);
   743 }
   745 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
   747 address InterpreterGenerator::generate_accessor_entry(void) {
   749   // rbx,: methodOop
   750   // rcx: receiver (preserve for slow entry into asm interpreter)
   752   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   754   Label xreturn_path;
   756   // do fastpath for resolved accessor methods
   757   if (UseFastAccessorMethods) {
   759     address entry_point = __ pc();
   761     Label slow_path;
   762     // If we need a safepoint check, generate full interpreter entry.
   763     ExternalAddress state(SafepointSynchronize::address_of_state());
   764     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   765              SafepointSynchronize::_not_synchronized);
   767     __ jcc(Assembler::notEqual, slow_path);
   768     // ASM/C++ Interpreter
   769     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
   770     // Note: We can only use this code if the getfield has been resolved
   771     //       and if we don't have a null-pointer exception => check for
   772     //       these conditions first and use slow path if necessary.
   773     // rbx,: method
   774     // rcx: receiver
   775     __ movl(rax, Address(rsp, wordSize));
   777     // check if local 0 != NULL and read field
   778     __ testl(rax, rax);
   779     __ jcc(Assembler::zero, slow_path);
   781     __ movl(rdi, Address(rbx, methodOopDesc::constants_offset()));
   782     // read first instruction word and extract bytecode @ 1 and index @ 2
   783     __ movl(rdx, Address(rbx, methodOopDesc::const_offset()));
   784     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
   785     // Shift codes right to get the index on the right.
   786     // The bytecode fetched looks like <index><0xb4><0x2a>
   787     __ shrl(rdx, 2*BitsPerByte);
   788     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   789     __ movl(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
   791     // rax,: local 0
   792     // rbx,: method
   793     // rcx: receiver - do not destroy since it is needed for slow path!
   794     // rcx: scratch
   795     // rdx: constant pool cache index
   796     // rdi: constant pool cache
   797     // rsi: sender sp
   799     // check if getfield has been resolved and read constant pool cache entry
   800     // check the validity of the cache entry by testing whether _indices field
   801     // contains Bytecode::_getfield in b1 byte.
   802     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   803     __ movl(rcx,
   804             Address(rdi,
   805                     rdx,
   806                     Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   807     __ shrl(rcx, 2*BitsPerByte);
   808     __ andl(rcx, 0xFF);
   809     __ cmpl(rcx, Bytecodes::_getfield);
   810     __ jcc(Assembler::notEqual, slow_path);
   812     // Note: constant pool entry is not valid before bytecode is resolved
   813     __ movl(rcx,
   814             Address(rdi,
   815                     rdx,
   816                     Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   817     __ movl(rdx,
   818             Address(rdi,
   819                     rdx,
   820                     Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   822     Label notByte, notShort, notChar;
   823     const Address field_address (rax, rcx, Address::times_1);
   825     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   826     // because they are different sizes.
   827     // Use the type from the constant pool cache
   828     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
   829     // Make sure we don't need to mask rdx for tosBits after the above shift
   830     ConstantPoolCacheEntry::verify_tosBits();
   831     __ cmpl(rdx, btos);
   832     __ jcc(Assembler::notEqual, notByte);
   833     __ load_signed_byte(rax, field_address);
   834     __ jmp(xreturn_path);
   836     __ bind(notByte);
   837     __ cmpl(rdx, stos);
   838     __ jcc(Assembler::notEqual, notShort);
   839     __ load_signed_word(rax, field_address);
   840     __ jmp(xreturn_path);
   842     __ bind(notShort);
   843     __ cmpl(rdx, ctos);
   844     __ jcc(Assembler::notEqual, notChar);
   845     __ load_unsigned_word(rax, field_address);
   846     __ jmp(xreturn_path);
   848     __ bind(notChar);
   849 #ifdef ASSERT
   850     Label okay;
   851     __ cmpl(rdx, atos);
   852     __ jcc(Assembler::equal, okay);
   853     __ cmpl(rdx, itos);
   854     __ jcc(Assembler::equal, okay);
   855     __ stop("what type is this?");
   856     __ bind(okay);
   857 #endif // ASSERT
   858     // All the rest are a 32 bit wordsize
   859     __ movl(rax, field_address);
   861     __ bind(xreturn_path);
   863     // _ireturn/_areturn
   864     __ popl(rdi);                              // get return address
   865     __ movl(rsp, rsi);                         // set sp to sender sp
   866     __ jmp(rdi);
   868     // generate a vanilla interpreter entry as the slow path
   869     __ bind(slow_path);
   870     // We will enter c++ interpreter looking like it was
   871     // called by the call_stub this will cause it to return
   872     // a tosca result to the invoker which might have been
   873     // the c++ interpreter itself.
   875     __ jmp(fast_accessor_slow_entry_path);
   876     return entry_point;
   878   } else {
   879     return NULL;
   880   }
   882 }
   884 //
   885 // C++ Interpreter stub for calling a native method.
   886 // This sets up a somewhat different looking stack for calling the native method
   887 // than the typical interpreter frame setup but still has the pointer to
   888 // an interpreter state.
   889 //
   891 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   892   // determine code generation flags
   893   bool inc_counter  = UseCompiler || CountCompiledCalls;
   895   // rbx: methodOop
   896   // rcx: receiver (unused)
   897   // rsi: previous interpreter state (if called from C++ interpreter) must preserve
   898   //      in any case. If called via c1/c2/call_stub rsi is junk (to use) but harmless
   899   //      to save/restore.
   900   address entry_point = __ pc();
   902   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   903   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
   904   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
   905   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   907   // rsi == state/locals rdi == prevstate
   908   const Register state = rsi;
   909   const Register locals = rdi;
   911   // get parameter size (always needed)
   912   __ load_unsigned_word(rcx, size_of_parameters);
   914   // rbx: methodOop
   915   // rcx: size of parameters
   916   __ popl(rax);                                       // get return address
   917   // for natives the size of locals is zero
   919   // compute beginning of parameters /locals
   920   __ leal(locals, Address(rsp, rcx, Address::times_4, -wordSize));
   922   // initialize fixed part of activation frame
   924   // Assumes rax = return address
   926   // allocate and initialize new interpreterState and method expression stack
   927   // IN(locals) ->  locals
   928   // IN(state) -> previous frame manager state (NULL from stub/c1/c2)
   929   // destroys rax, rcx, rdx
   930   // OUT (state) -> new interpreterState
   931   // OUT(rsp) -> bottom of methods expression stack
   933   // save sender_sp
   934   __ movl(rcx, rsi);
   935   // start with NULL previous state
   936   __ movl(state, 0);
   937   generate_compute_interpreter_state(state, locals, rcx, true);
   939 #ifdef ASSERT
   940   { Label L;
   941     __ movl(rax, STATE(_stack_base));
   942     __ cmpl(rax, rsp);
   943     __ jcc(Assembler::equal, L);
   944     __ stop("broken stack frame setup in interpreter");
   945     __ bind(L);
   946   }
   947 #endif
   949   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
   951   __ movl(rax, STATE(_thread));                       // get thread
   952   // Since at this point in the method invocation the exception handler
   953   // would try to exit the monitor of synchronized methods which hasn't
   954   // been entered yet, we set the thread local variable
   955   // _do_not_unlock_if_synchronized to true. The remove_activation will
   956   // check this flag.
   958   const Address do_not_unlock_if_synchronized(rax,
   959         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   960   __ movbool(do_not_unlock_if_synchronized, true);
   962   // make sure method is native & not abstract
   963 #ifdef ASSERT
   964   __ movl(rax, access_flags);
   965   {
   966     Label L;
   967     __ testl(rax, JVM_ACC_NATIVE);
   968     __ jcc(Assembler::notZero, L);
   969     __ stop("tried to execute non-native method as native");
   970     __ bind(L);
   971   }
   972   { Label L;
   973     __ testl(rax, JVM_ACC_ABSTRACT);
   974     __ jcc(Assembler::zero, L);
   975     __ stop("tried to execute abstract method in interpreter");
   976     __ bind(L);
   977   }
   978 #endif
   981   // increment invocation count & check for overflow
   982   Label invocation_counter_overflow;
   983   if (inc_counter) {
   984     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   985   }
   987   Label continue_after_compile;
   989   __ bind(continue_after_compile);
   991   bang_stack_shadow_pages(true);
   993   // reset the _do_not_unlock_if_synchronized flag
   994   __ movl(rax, STATE(_thread));                       // get thread
   995   __ movbool(do_not_unlock_if_synchronized, false);
   998   // check for synchronized native methods
   999   //
  1000   // Note: This must happen *after* invocation counter check, since
  1001   //       when overflow happens, the method should not be locked.
  1002   if (synchronized) {
  1003     // potentially kills rax, rcx, rdx, rdi
  1004     lock_method();
  1005   } else {
  1006     // no synchronization necessary
  1007 #ifdef ASSERT
  1008       { Label L;
  1009         __ movl(rax, access_flags);
  1010         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1011         __ jcc(Assembler::zero, L);
  1012         __ stop("method needs synchronization");
  1013         __ bind(L);
  1015 #endif
  1018   // start execution
  1020   // jvmti support
  1021   __ notify_method_entry();
  1023   // work registers
  1024   const Register method = rbx;
  1025   const Register thread = rdi;
  1026   const Register t      = rcx;
  1028   // allocate space for parameters
  1029   __ movl(method, STATE(_method));
  1030   __ verify_oop(method);
  1031   __ load_unsigned_word(t, Address(method, methodOopDesc::size_of_parameters_offset()));
  1032   __ shll(t, 2);
  1033   __ addl(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
  1034   __ subl(rsp, t);
  1035   __ andl(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
  1037   // get signature handler
  1038     Label pending_exception_present;
  1040   { Label L;
  1041     __ movl(t, Address(method, methodOopDesc::signature_handler_offset()));
  1042     __ testl(t, t);
  1043     __ jcc(Assembler::notZero, L);
  1044     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
  1045     __ movl(method, STATE(_method));
  1046     __ cmpl(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
  1047     __ jcc(Assembler::notEqual, pending_exception_present);
  1048     __ verify_oop(method);
  1049     __ movl(t, Address(method, methodOopDesc::signature_handler_offset()));
  1050     __ bind(L);
  1052 #ifdef ASSERT
  1054     Label L;
  1055     __ pushl(t);
  1056     __ get_thread(t);                                   // get vm's javathread*
  1057     __ cmpl(t, STATE(_thread));
  1058     __ jcc(Assembler::equal, L);
  1059     __ int3();
  1060     __ bind(L);
  1061     __ popl(t);
  1063 #endif //
  1065   // call signature handler
  1066   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
  1067   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
  1068   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
  1069   // The generated handlers do not touch RBX (the method oop).
  1070   // However, large signatures cannot be cached and are generated
  1071   // each time here.  The slow-path generator will blow RBX
  1072   // sometime, so we must reload it after the call.
  1073   __ movl(rdi, STATE(_locals));  // get the from pointer
  1074   __ call(t);
  1075   __ movl(method, STATE(_method));
  1076   __ verify_oop(method);
  1078   // result handler is in rax
  1079   // set result handler
  1080   __ movl(STATE(_result_handler), rax);
  1082   // pass mirror handle if static call
  1083   { Label L;
  1084     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
  1085     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1086     __ testl(t, JVM_ACC_STATIC);
  1087     __ jcc(Assembler::zero, L);
  1088     // get mirror
  1089     __ movl(t, Address(method, methodOopDesc:: constants_offset()));
  1090     __ movl(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
  1091     __ movl(t, Address(t, mirror_offset));
  1092     // copy mirror into activation object
  1093     __ movl(STATE(_oop_temp), t);
  1094     // pass handle to mirror
  1095     __ leal(t, STATE(_oop_temp));
  1096     __ movl(Address(rsp, wordSize), t);
  1097     __ bind(L);
  1099 #ifdef ASSERT
  1101     Label L;
  1102     __ pushl(t);
  1103     __ get_thread(t);                                   // get vm's javathread*
  1104     __ cmpl(t, STATE(_thread));
  1105     __ jcc(Assembler::equal, L);
  1106     __ int3();
  1107     __ bind(L);
  1108     __ popl(t);
  1110 #endif //
  1112   // get native function entry point
  1113   { Label L;
  1114     __ movl(rax, Address(method, methodOopDesc::native_function_offset()));
  1115     __ testl(rax, rax);
  1116     __ jcc(Assembler::notZero, L);
  1117     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1118     __ movl(method, STATE(_method));
  1119     __ verify_oop(method);
  1120     __ movl(rax, Address(method, methodOopDesc::native_function_offset()));
  1121     __ bind(L);
  1124   // pass JNIEnv
  1125   __ movl(thread, STATE(_thread));                       // get thread
  1126   __ leal(t, Address(thread, JavaThread::jni_environment_offset()));
  1127   __ movl(Address(rsp, 0), t);
  1128 #ifdef ASSERT
  1130     Label L;
  1131     __ pushl(t);
  1132     __ get_thread(t);                                   // get vm's javathread*
  1133     __ cmpl(t, STATE(_thread));
  1134     __ jcc(Assembler::equal, L);
  1135     __ int3();
  1136     __ bind(L);
  1137     __ popl(t);
  1139 #endif //
  1141 #ifdef ASSERT
  1142   { Label L;
  1143     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
  1144     __ cmpl(t, _thread_in_Java);
  1145     __ jcc(Assembler::equal, L);
  1146     __ stop("Wrong thread state in native stub");
  1147     __ bind(L);
  1149 #endif
  1151   // Change state to native (we save the return address in the thread, since it might not
  1152   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1153   // points into the right code segment. It does not have to be the correct return pc.
  1155   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1157   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1159   __ call(rax);
  1161   // result potentially in rdx:rax or ST0
  1162   __ movl(method, STATE(_method));
  1163   __ movl(thread, STATE(_thread));                       // get thread
  1165   // The potential result is in ST(0) & rdx:rax
  1166   // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
  1167   // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
  1168   // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
  1169   // be destroyed.
  1170   // It is safe to do these pushes because state is _thread_in_native and return address will be found
  1171   // via _last_native_pc and not via _last_jave_sp
  1173     // Must save the value of ST(0) since it could be destroyed before we get to result handler
  1174     { Label Lpush, Lskip;
  1175       ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
  1176       ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
  1177       __ cmpptr(STATE(_result_handler), float_handler.addr());
  1178       __ jcc(Assembler::equal, Lpush);
  1179       __ cmpptr(STATE(_result_handler), double_handler.addr());
  1180       __ jcc(Assembler::notEqual, Lskip);
  1181       __ bind(Lpush);
  1182       __ push(dtos);
  1183       __ bind(Lskip);
  1186   __ push(ltos);           // save rax:rdx for potential use by result handler.
  1188   // Either restore the MXCSR register after returning from the JNI Call
  1189   // or verify that it wasn't changed.
  1190   if (VM_Version::supports_sse()) {
  1191     if (RestoreMXCSROnJNICalls) {
  1192       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
  1194     else if (CheckJNICalls ) {
  1195       __ call(RuntimeAddress(StubRoutines::i486::verify_mxcsr_entry()));
  1199   // Either restore the x87 floating pointer control word after returning
  1200   // from the JNI call or verify that it wasn't changed.
  1201   if (CheckJNICalls) {
  1202     __ call(RuntimeAddress(StubRoutines::i486::verify_fpu_cntrl_wrd_entry()));
  1206   // change thread state
  1207   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1208   if(os::is_MP()) {
  1209     // Write serialization page so VM thread can do a pseudo remote membar.
  1210     // We use the current thread pointer to calculate a thread specific
  1211     // offset to write to within the page. This minimizes bus traffic
  1212     // due to cache line collision.
  1213     __ serialize_memory(thread, rcx);
  1216   // check for safepoint operation in progress and/or pending suspend requests
  1217   { Label Continue;
  1219     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1220              SafepointSynchronize::_not_synchronized);
  1222     // threads running native code and they are expected to self-suspend
  1223     // when leaving the _thread_in_native state. We need to check for
  1224     // pending suspend requests here.
  1225     Label L;
  1226     __ jcc(Assembler::notEqual, L);
  1227     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1228     __ jcc(Assembler::equal, Continue);
  1229     __ bind(L);
  1231     // Don't use call_VM as it will see a possible pending exception and forward it
  1232     // and never return here preventing us from clearing _last_native_pc down below.
  1233     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1234     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1235     // by hand.
  1236     //
  1237     __ pushl(thread);
  1238     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1239                                             JavaThread::check_special_condition_for_native_trans)));
  1240     __ increment(rsp, wordSize);
  1242     __ movl(method, STATE(_method));
  1243     __ verify_oop(method);
  1244     __ movl(thread, STATE(_thread));                       // get thread
  1246     __ bind(Continue);
  1249   // change thread state
  1250   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1252   __ reset_last_Java_frame(thread, true, true);
  1254   // reset handle block
  1255   __ movl(t, Address(thread, JavaThread::active_handles_offset()));
  1256   __ movl(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  1258   // If result was an oop then unbox and save it in the frame
  1259   { Label L;
  1260     Label no_oop, store_result;
  1261       ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
  1262     __ cmpptr(STATE(_result_handler), oop_handler.addr());
  1263     __ jcc(Assembler::notEqual, no_oop);
  1264     __ pop(ltos);
  1265     __ testl(rax, rax);
  1266     __ jcc(Assembler::zero, store_result);
  1267     // unbox
  1268     __ movl(rax, Address(rax, 0));
  1269     __ bind(store_result);
  1270     __ movl(STATE(_oop_temp), rax);
  1271     // keep stack depth as expected by pushing oop which will eventually be discarded
  1272     __ push(ltos);
  1273     __ bind(no_oop);
  1277      Label no_reguard;
  1278      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1279      __ jcc(Assembler::notEqual, no_reguard);
  1281      __ pushad();
  1282      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1283      __ popad();
  1285      __ bind(no_reguard);
  1289   // QQQ Seems like for native methods we simply return and the caller will see the pending
  1290   // exception and do the right thing. Certainly the interpreter will, don't know about
  1291   // compiled methods.
  1292   // Seems that the answer to above is no this is wrong. The old code would see the exception
  1293   // and forward it before doing the unlocking and notifying jvmdi that method has exited.
  1294   // This seems wrong need to investigate the spec.
  1296   // handle exceptions (exception handling will handle unlocking!)
  1297   { Label L;
  1298     __ cmpl(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
  1299     __ jcc(Assembler::zero, L);
  1300     __ bind(pending_exception_present);
  1302     // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
  1303     // return and let caller deal with exception. This skips the unlocking here which
  1304     // seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
  1305     // Note: must preverve method in rbx
  1306     //
  1308     // remove activation
  1310     __ movl(t, STATE(_sender_sp));
  1311     __ leave();                                  // remove frame anchor
  1312     __ popl(rdi);                                // get return address
  1313     __ movl(state, STATE(_prev_link));           // get previous state for return
  1314     __ movl(rsp, t);                             // set sp to sender sp
  1315     __ pushl(rdi);                               // [ush throwing pc
  1316     // The skips unlocking!! This seems to be what asm interpreter does but seems
  1317     // very wrong. Not clear if this violates the spec.
  1318     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1319     __ bind(L);
  1322   // do unlocking if necessary
  1323   { Label L;
  1324     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1325     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1326     __ jcc(Assembler::zero, L);
  1327     // the code below should be shared with interpreter macro assembler implementation
  1328     { Label unlock;
  1329       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1330       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1331       __ movl(rdx, STATE(_monitor_base));
  1332       __ subl(rdx, frame::interpreter_frame_monitor_size() * wordSize);  // address of initial monitor
  1334       __ movl(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
  1335       __ testl(t, t);
  1336       __ jcc(Assembler::notZero, unlock);
  1338       // Entry already unlocked, need to throw exception
  1339       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1340       __ should_not_reach_here();
  1342       __ bind(unlock);
  1343       __ unlock_object(rdx);
  1344       // unlock can blow rbx so restore it for path that needs it below
  1345       __ movl(method, STATE(_method));
  1347     __ bind(L);
  1350   // jvmti support
  1351   // Note: This must happen _after_ handling/throwing any exceptions since
  1352   //       the exception handler code notifies the runtime of method exits
  1353   //       too. If this happens before, method entry/exit notifications are
  1354   //       not properly paired (was bug - gri 11/22/99).
  1355   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1357   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
  1358   __ pop(ltos);                               // restore rax/rdx floating result if present still on stack
  1359   __ movl(t, STATE(_result_handler));         // get result handler
  1360   __ call(t);                                 // call result handler to convert to tosca form
  1362   // remove activation
  1364   __ movl(t, STATE(_sender_sp));
  1366   __ leave();                                  // remove frame anchor
  1367   __ popl(rdi);                                // get return address
  1368   __ movl(state, STATE(_prev_link));           // get previous state for return (if c++ interpreter was caller)
  1369   __ movl(rsp, t);                             // set sp to sender sp
  1370   __ jmp(rdi);
  1372   // invocation counter overflow
  1373   if (inc_counter) {
  1374     // Handle overflow of counter and compile method
  1375     __ bind(invocation_counter_overflow);
  1376     generate_counter_overflow(&continue_after_compile);
  1379   return entry_point;
  1382 // Generate entries that will put a result type index into rcx
  1383 void CppInterpreterGenerator::generate_deopt_handling() {
  1385   const Register state = rsi;
  1386   Label return_from_deopt_common;
  1388   // Generate entries that will put a result type index into rcx
  1389   // deopt needs to jump to here to enter the interpreter (return a result)
  1390   deopt_frame_manager_return_atos  = __ pc();
  1392   // rax is live here
  1393   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT));    // Result stub address array index
  1394   __ jmp(return_from_deopt_common);
  1397   // deopt needs to jump to here to enter the interpreter (return a result)
  1398   deopt_frame_manager_return_btos  = __ pc();
  1400   // rax is live here
  1401   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN));    // Result stub address array index
  1402   __ jmp(return_from_deopt_common);
  1404   // deopt needs to jump to here to enter the interpreter (return a result)
  1405   deopt_frame_manager_return_itos  = __ pc();
  1407   // rax is live here
  1408   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT));    // Result stub address array index
  1409   __ jmp(return_from_deopt_common);
  1411   // deopt needs to jump to here to enter the interpreter (return a result)
  1413   deopt_frame_manager_return_ltos  = __ pc();
  1414   // rax,rdx are live here
  1415   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG));    // Result stub address array index
  1416   __ jmp(return_from_deopt_common);
  1418   // deopt needs to jump to here to enter the interpreter (return a result)
  1420   deopt_frame_manager_return_ftos  = __ pc();
  1421   // st(0) is live here
  1422   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
  1423   __ jmp(return_from_deopt_common);
  1425   // deopt needs to jump to here to enter the interpreter (return a result)
  1426   deopt_frame_manager_return_dtos  = __ pc();
  1428   // st(0) is live here
  1429   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
  1430   __ jmp(return_from_deopt_common);
  1432   // deopt needs to jump to here to enter the interpreter (return a result)
  1433   deopt_frame_manager_return_vtos  = __ pc();
  1435   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
  1437   // Deopt return common
  1438   // an index is present in rcx that lets us move any possible result being
  1439   // return to the interpreter's stack
  1440   //
  1441   // Because we have a full sized interpreter frame on the youngest
  1442   // activation the stack is pushed too deep to share the tosca to
  1443   // stack converters directly. We shrink the stack to the desired
  1444   // amount and then push result and then re-extend the stack.
  1445   // We could have the code in size_activation layout a short
  1446   // frame for the top activation but that would look different
  1447   // than say sparc (which needs a full size activation because
  1448   // the windows are in the way. Really it could be short? QQQ
  1449   //
  1450   __ bind(return_from_deopt_common);
  1452   __ leal(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
  1454   // setup rsp so we can push the "result" as needed.
  1455   __ movl(rsp, STATE(_stack));                                     // trim stack (is prepushed)
  1456   __ addl(rsp, wordSize);                                          // undo prepush
  1458   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
  1459   // Address index(noreg, rcx, Address::times_4);
  1460   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_4)));
  1461   // __ movl(rcx, Address(noreg, rcx, Address::times_4, int(AbstractInterpreter::_tosca_to_stack)));
  1462   __ call(rcx);                                                   // call result converter
  1464   __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
  1465   __ leal(rsp, Address(rsp, -wordSize));                           // prepush stack (result if any already present)
  1466   __ movl(STATE(_stack), rsp);                                     // inform interpreter of new stack depth (parameters removed,
  1467                                                                    // result if any on stack already )
  1468   __ movl(rsp, STATE(_stack_limit));                               // restore expression stack to full depth
  1471 // Generate the code to handle a more_monitors message from the c++ interpreter
  1472 void CppInterpreterGenerator::generate_more_monitors() {
  1474   const Register state = rsi;
  1476   Label entry, loop;
  1477   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  1478   // 1. compute new pointers                   // rsp: old expression stack top
  1479   __ movl(rdx, STATE(_stack_base));            // rdx: old expression stack bottom
  1480   __ subl(rsp, entry_size);                    // move expression stack top limit
  1481   __ subl(STATE(_stack), entry_size);          // update interpreter stack top
  1482   __ movl(STATE(_stack_limit), rsp);           // inform interpreter
  1483   __ subl(rdx, entry_size);                    // move expression stack bottom
  1484   __ movl(STATE(_stack_base), rdx);            // inform interpreter
  1485   __ movl(rcx, STATE(_stack));                 // set start value for copy loop
  1486   __ jmp(entry);
  1487   // 2. move expression stack contents
  1488   __ bind(loop);
  1489   __ movl(rbx, Address(rcx, entry_size));      // load expression stack word from old location
  1490   __ movl(Address(rcx, 0), rbx);               // and store it at new location
  1491   __ addl(rcx, wordSize);                      // advance to next word
  1492   __ bind(entry);
  1493   __ cmpl(rcx, rdx);                           // check if bottom reached
  1494   __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
  1495   // now zero the slot so we can find it.
  1496   __ movl(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int) NULL);
  1497   __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
  1501 // Initial entry to C++ interpreter from the call_stub.
  1502 // This entry point is called the frame manager since it handles the generation
  1503 // of interpreter activation frames via requests directly from the vm (via call_stub)
  1504 // and via requests from the interpreter. The requests from the call_stub happen
  1505 // directly thru the entry point. Requests from the interpreter happen via returning
  1506 // from the interpreter and examining the message the interpreter has returned to
  1507 // the frame manager. The frame manager can take the following requests:
  1509 // NO_REQUEST - error, should never happen.
  1510 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
  1511 //                 allocate a new monitor.
  1512 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
  1513 //               happens during entry during the entry via the call stub.
  1514 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
  1515 //
  1516 // Arguments:
  1517 //
  1518 // rbx: methodOop
  1519 // rcx: receiver - unused (retrieved from stack as needed)
  1520 // rsi: previous frame manager state (NULL from the call_stub/c1/c2)
  1521 //
  1522 //
  1523 // Stack layout at entry
  1524 //
  1525 // [ return address     ] <--- rsp
  1526 // [ parameter n        ]
  1527 //   ...
  1528 // [ parameter 1        ]
  1529 // [ expression stack   ]
  1530 //
  1531 //
  1532 // We are free to blow any registers we like because the call_stub which brought us here
  1533 // initially has preserved the callee save registers already.
  1534 //
  1535 //
  1537 static address interpreter_frame_manager = NULL;
  1539 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1541   // rbx: methodOop
  1542   // rsi: sender sp
  1544   // Because we redispatch "recursive" interpreter entries thru this same entry point
  1545   // the "input" register usage is a little strange and not what you expect coming
  1546   // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
  1547   // state are NULL but on "recursive" dispatches they are what you'd expect.
  1548   // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
  1551   // A single frame manager is plenty as we don't specialize for synchronized. We could and
  1552   // the code is pretty much ready. Would need to change the test below and for good measure
  1553   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
  1554   // routines. Not clear this is worth it yet.
  1556   if (interpreter_frame_manager) return interpreter_frame_manager;
  1558   address entry_point = __ pc();
  1560   // Fast accessor methods share this entry point.
  1561   // This works because frame manager is in the same codelet
  1562   if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
  1564   Label dispatch_entry_2;
  1565   __ movl(rcx, rsi);
  1566   __ movl(rsi, 0);                                                 // no current activation
  1568   __ jmp(dispatch_entry_2);
  1570   const Register state   = rsi;                                    // current activation object, valid on entry
  1571   const Register locals  = rdi;
  1573   Label re_dispatch;
  1575   __ bind(re_dispatch);
  1577   // save sender sp (doesn't include return address
  1578   __ leal(rcx, Address(rsp, wordSize));
  1580   __ bind(dispatch_entry_2);
  1582   // save sender sp
  1583   __ pushl(rcx);
  1585   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
  1586   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
  1587   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
  1589   // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1590   // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  1591   // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1593   // get parameter size (always needed)
  1594   __ load_unsigned_word(rcx, size_of_parameters);
  1596   // rbx: methodOop
  1597   // rcx: size of parameters
  1598   __ load_unsigned_word(rdx, size_of_locals);                      // get size of locals in words
  1600   __ subl(rdx, rcx);                                               // rdx = no. of additional locals
  1602   // see if we've got enough room on the stack for locals plus overhead.
  1603   generate_stack_overflow_check();                                 // C++
  1605   // c++ interpreter does not use stack banging or any implicit exceptions
  1606   // leave for now to verify that check is proper.
  1607   bang_stack_shadow_pages(false);
  1611   // compute beginning of parameters (rdi)
  1612   __ leal(locals, Address(rsp, rcx, Address::times_4, wordSize));
  1614   // save sender's sp
  1615   // __ movl(rcx, rsp);
  1617   // get sender's sp
  1618   __ popl(rcx);
  1620   // get return address
  1621   __ popl(rax);
  1623   // rdx - # of additional locals
  1624   // allocate space for locals
  1625   // explicitly initialize locals
  1627     Label exit, loop;
  1628     __ testl(rdx, rdx);
  1629     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
  1630     __ bind(loop);
  1631     __ pushl((int)NULL);                              // initialize local variables
  1632     __ decrement(rdx);                                // until everything initialized
  1633     __ jcc(Assembler::greater, loop);
  1634     __ bind(exit);
  1638   // Assumes rax = return address
  1640   // allocate and initialize new interpreterState and method expression stack
  1641   // IN(locals) ->  locals
  1642   // IN(state) -> any current interpreter activation
  1643   // destroys rax, rcx, rdx, rdi
  1644   // OUT (state) -> new interpreterState
  1645   // OUT(rsp) -> bottom of methods expression stack
  1647   generate_compute_interpreter_state(state, locals, rcx, false);
  1649   // Call interpreter
  1651   Label call_interpreter;
  1652   __ bind(call_interpreter);
  1654   // c++ interpreter does not use stack banging or any implicit exceptions
  1655   // leave for now to verify that check is proper.
  1656   bang_stack_shadow_pages(false);
  1659   // Call interpreter enter here if message is
  1660   // set and we know stack size is valid
  1662   Label call_interpreter_2;
  1664   __ bind(call_interpreter_2);
  1667     const Register thread  = rcx;
  1669     __ pushl(state);                                                 // push arg to interpreter
  1670     __ movl(thread, STATE(_thread));
  1672     // We can setup the frame anchor with everything we want at this point
  1673     // as we are thread_in_Java and no safepoints can occur until we go to
  1674     // vm mode. We do have to clear flags on return from vm but that is it
  1675     //
  1676     __ movl(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
  1677     __ movl(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
  1679     // Call the interpreter
  1681     RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
  1682     RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
  1684     __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
  1685     __ popl(rax);                                                  // discard parameter to run
  1686     //
  1687     // state is preserved since it is callee saved
  1688     //
  1690     // reset_last_Java_frame
  1692     __ movl(thread, STATE(_thread));
  1693     __ reset_last_Java_frame(thread, true, true);
  1696   // examine msg from interpreter to determine next action
  1698   __ movl(rdx, STATE(_msg));                                       // Get new message
  1700   Label call_method;
  1701   Label return_from_interpreted_method;
  1702   Label throw_exception;
  1703   Label bad_msg;
  1704   Label do_OSR;
  1706   __ cmpl(rdx, (int)BytecodeInterpreter::call_method);
  1707   __ jcc(Assembler::equal, call_method);
  1708   __ cmpl(rdx, (int)BytecodeInterpreter::return_from_method);
  1709   __ jcc(Assembler::equal, return_from_interpreted_method);
  1710   __ cmpl(rdx, (int)BytecodeInterpreter::do_osr);
  1711   __ jcc(Assembler::equal, do_OSR);
  1712   __ cmpl(rdx, (int)BytecodeInterpreter::throwing_exception);
  1713   __ jcc(Assembler::equal, throw_exception);
  1714   __ cmpl(rdx, (int)BytecodeInterpreter::more_monitors);
  1715   __ jcc(Assembler::notEqual, bad_msg);
  1717   // Allocate more monitor space, shuffle expression stack....
  1719   generate_more_monitors();
  1721   __ jmp(call_interpreter);
  1723   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
  1724   unctrap_frame_manager_entry  = __ pc();
  1725   //
  1726   // Load the registers we need.
  1727   __ leal(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
  1728   __ movl(rsp, STATE(_stack_limit));                               // restore expression stack to full depth
  1729   __ jmp(call_interpreter_2);
  1733   //=============================================================================
  1734   // Returning from a compiled method into a deopted method. The bytecode at the
  1735   // bcp has completed. The result of the bytecode is in the native abi (the tosca
  1736   // for the template based interpreter). Any stack space that was used by the
  1737   // bytecode that has completed has been removed (e.g. parameters for an invoke)
  1738   // so all that we have to do is place any pending result on the expression stack
  1739   // and resume execution on the next bytecode.
  1742   generate_deopt_handling();
  1743   __ jmp(call_interpreter);
  1746   // Current frame has caught an exception we need to dispatch to the
  1747   // handler. We can get here because a native interpreter frame caught
  1748   // an exception in which case there is no handler and we must rethrow
  1749   // If it is a vanilla interpreted frame the we simply drop into the
  1750   // interpreter and let it do the lookup.
  1752   Interpreter::_rethrow_exception_entry = __ pc();
  1753   // rax: exception
  1754   // rdx: return address/pc that threw exception
  1756   Label return_with_exception;
  1757   Label unwind_and_forward;
  1759   // restore state pointer.
  1760   __ leal(state, Address(rbp,  -sizeof(BytecodeInterpreter)));
  1762   __ movl(rbx, STATE(_method));                       // get method
  1763   __ movl(rcx, STATE(_thread));                       // get thread
  1765   // Store exception with interpreter will expect it
  1766   __ movl(Address(rcx, Thread::pending_exception_offset()), rax);
  1768   // is current frame vanilla or native?
  1770   __ movl(rdx, access_flags);
  1771   __ testl(rdx, JVM_ACC_NATIVE);
  1772   __ jcc(Assembler::zero, return_with_exception);     // vanilla interpreted frame, handle directly
  1774   // We drop thru to unwind a native interpreted frame with a pending exception
  1775   // We jump here for the initial interpreter frame with exception pending
  1776   // We unwind the current acivation and forward it to our caller.
  1778   __ bind(unwind_and_forward);
  1780   // unwind rbp, return stack to unextended value and re-push return address
  1782   __ movl(rcx, STATE(_sender_sp));
  1783   __ leave();
  1784   __ popl(rdx);
  1785   __ movl(rsp, rcx);
  1786   __ pushl(rdx);
  1787   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1789   // Return point from a call which returns a result in the native abi
  1790   // (c1/c2/jni-native). This result must be processed onto the java
  1791   // expression stack.
  1792   //
  1793   // A pending exception may be present in which case there is no result present
  1795   Label resume_interpreter;
  1796   Label do_float;
  1797   Label do_double;
  1798   Label done_conv;
  1800   address compiled_entry = __ pc();
  1802   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
  1803   if (UseSSE < 2) {
  1804     __ leal(state, Address(rbp,  -sizeof(BytecodeInterpreter)));
  1805     __ movl(rbx, STATE(_result._to_call._callee));                     // get method just executed
  1806     __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
  1807     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
  1808     __ jcc(Assembler::equal, do_float);
  1809     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
  1810     __ jcc(Assembler::equal, do_double);
  1811 #ifdef COMPILER2
  1812     __ empty_FPU_stack();
  1813 #endif // COMPILER2
  1814     __ jmp(done_conv);
  1816     __ bind(do_float);
  1817 #ifdef COMPILER2
  1818     for (int i = 1; i < 8; i++) {
  1819       __ ffree(i);
  1821 #endif // COMPILER2
  1822     __ jmp(done_conv);
  1823     __ bind(do_double);
  1824 #ifdef COMPILER2
  1825     for (int i = 1; i < 8; i++) {
  1826       __ ffree(i);
  1828 #endif // COMPILER2
  1829     __ jmp(done_conv);
  1830   } else {
  1831     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
  1832     __ jmp(done_conv);
  1835   // emit a sentinel we can test for when converting an interpreter
  1836   // entry point to a compiled entry point.
  1837   __ a_long(Interpreter::return_sentinel);
  1838   __ a_long((int)compiled_entry);
  1840   // Return point to interpreter from compiled/native method
  1842   InternalAddress return_from_native_method(__ pc());
  1844   __ bind(done_conv);
  1847   // Result if any is in tosca. The java expression stack is in the state that the
  1848   // calling convention left it (i.e. params may or may not be present)
  1849   // Copy the result from tosca and place it on java expression stack.
  1851   // Restore rsi as compiled code may not preserve it
  1853   __ leal(state, Address(rbp,  -sizeof(BytecodeInterpreter)));
  1855   // restore stack to what we had when we left (in case i2c extended it)
  1857   __ movl(rsp, STATE(_stack));
  1858   __ leal(rsp, Address(rsp, wordSize));
  1860   // If there is a pending exception then we don't really have a result to process
  1862   __ movl(rcx, STATE(_thread));                       // get thread
  1863   __ cmpl(Address(rcx, Thread::pending_exception_offset()), (int)NULL);
  1864   __ jcc(Assembler::notZero, return_with_exception);
  1866   // get method just executed
  1867   __ movl(rbx, STATE(_result._to_call._callee));
  1869   // callee left args on top of expression stack, remove them
  1870   __ load_unsigned_word(rcx, Address(rbx, methodOopDesc::size_of_parameters_offset()));
  1871   __ leal(rsp, Address(rsp, rcx, Address::times_4));
  1873   __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
  1874   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
  1875   // Address index(noreg, rax, Address::times_4);
  1876   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_4)));
  1877   // __ movl(rcx, Address(noreg, rcx, Address::times_4, int(AbstractInterpreter::_tosca_to_stack)));
  1878   __ call(rcx);                                               // call result converter
  1879   __ jmp(resume_interpreter);
  1881   // An exception is being caught on return to a vanilla interpreter frame.
  1882   // Empty the stack and resume interpreter
  1884   __ bind(return_with_exception);
  1886   // Exception present, empty stack
  1887   __ movl(rsp, STATE(_stack_base));
  1888   __ jmp(resume_interpreter);
  1890   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
  1891   // interpreter call, or native) and unwind this interpreter activation.
  1892   // All monitors should be unlocked.
  1894   __ bind(return_from_interpreted_method);
  1896   Label return_to_initial_caller;
  1898   __ movl(rbx, STATE(_method));                                     // get method just executed
  1899   __ cmpl(STATE(_prev_link), (int)NULL);                            // returning from "recursive" interpreter call?
  1900   __ movl(rax, Address(rbx, methodOopDesc::result_index_offset())); // get result type index
  1901   __ jcc(Assembler::equal, return_to_initial_caller);               // back to native code (call_stub/c1/c2)
  1903   // Copy result to callers java stack
  1904   ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
  1905   // Address index(noreg, rax, Address::times_4);
  1907   __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_4)));
  1908   // __ movl(rax, Address(noreg, rax, Address::times_4, int(AbstractInterpreter::_stack_to_stack)));
  1909   __ call(rax);                                                     // call result converter
  1911   Label unwind_recursive_activation;
  1912   __ bind(unwind_recursive_activation);
  1914   // returning to interpreter method from "recursive" interpreter call
  1915   // result converter left rax pointing to top of the java stack for method we are returning
  1916   // to. Now all we must do is unwind the state from the completed call
  1918   __ movl(state, STATE(_prev_link));                                // unwind state
  1919   __ leave();                                                       // pop the frame
  1920   __ movl(rsp, rax);                                                // unwind stack to remove args
  1922   // Resume the interpreter. The current frame contains the current interpreter
  1923   // state object.
  1924   //
  1926   __ bind(resume_interpreter);
  1928   // state == interpreterState object for method we are resuming
  1930   __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
  1931   __ leal(rsp, Address(rsp, -wordSize));                           // prepush stack (result if any already present)
  1932   __ movl(STATE(_stack), rsp);                                     // inform interpreter of new stack depth (parameters removed,
  1933                                                                    // result if any on stack already )
  1934   __ movl(rsp, STATE(_stack_limit));                               // restore expression stack to full depth
  1935   __ jmp(call_interpreter_2);                                      // No need to bang
  1937   // interpreter returning to native code (call_stub/c1/c2)
  1938   // convert result and unwind initial activation
  1939   // rax - result index
  1941   __ bind(return_to_initial_caller);
  1942   ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
  1943   // Address index(noreg, rax, Address::times_4);
  1945   __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_4)));
  1946   __ call(rax);                                                    // call result converter
  1948   Label unwind_initial_activation;
  1949   __ bind(unwind_initial_activation);
  1951   // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
  1953   /* Current stack picture
  1955         [ incoming parameters ]
  1956         [ extra locals ]
  1957         [ return address to CALL_STUB/C1/C2]
  1958   fp -> [ CALL_STUB/C1/C2 fp ]
  1959         BytecodeInterpreter object
  1960         expression stack
  1961   sp ->
  1963   */
  1965   // return restoring the stack to the original sender_sp value
  1967   __ movl(rcx, STATE(_sender_sp));
  1968   __ leave();
  1969   __ popl(rdi);                                                     // get return address
  1970   // set stack to sender's sp
  1971   __ movl(rsp, rcx);
  1972   __ jmp(rdi);                                                        // return to call_stub
  1974   // OSR request, adjust return address to make current frame into adapter frame
  1975   // and enter OSR nmethod
  1977   __ bind(do_OSR);
  1979   Label remove_initial_frame;
  1981   // We are going to pop this frame. Is there another interpreter frame underneath
  1982   // it or is it callstub/compiled?
  1984   // Move buffer to the expected parameter location
  1985   __ movl(rcx, STATE(_result._osr._osr_buf));
  1987   __ movl(rax, STATE(_result._osr._osr_entry));
  1989   __ cmpl(STATE(_prev_link), (int)NULL);                       // returning from "recursive" interpreter call?
  1990   __ jcc(Assembler::equal, remove_initial_frame);              // back to native code (call_stub/c1/c2)
  1992   // __ movl(state, STATE(_prev_link));                           // unwind state
  1993   __ movl(rsi, STATE(_sender_sp));                             // get sender's sp in expected register
  1994   __ leave();                                                  // pop the frame
  1995   __ movl(rsp, rsi);                                           // trim any stack expansion
  1998   // We know we are calling compiled so push specialized return
  1999   // method uses specialized entry, push a return so we look like call stub setup
  2000   // this path will handle fact that result is returned in registers and not
  2001   // on the java stack.
  2003   __ pushptr(return_from_native_method.addr());
  2005   __ jmp(rax);
  2007   __ bind(remove_initial_frame);
  2009   __ movl(rdx, STATE(_sender_sp));
  2010   __ leave();
  2011   // get real return
  2012   __ popl(rsi);
  2013   // set stack to sender's sp
  2014   __ movl(rsp, rdx);
  2015   // repush real return
  2016   __ pushl(rsi);
  2017   // Enter OSR nmethod
  2018   __ jmp(rax);
  2023   // Call a new method. All we do is (temporarily) trim the expression stack
  2024   // push a return address to bring us back to here and leap to the new entry.
  2026   __ bind(call_method);
  2028   // stack points to next free location and not top element on expression stack
  2029   // method expects sp to be pointing to topmost element
  2031   __ movl(rsp, STATE(_stack));                                       // pop args to c++ interpreter, set sp to java stack top
  2032   __ leal(rsp, Address(rsp, wordSize));
  2034   __ movl(rbx, STATE(_result._to_call._callee));                     // get method to execute
  2036   // don't need a return address if reinvoking interpreter
  2038   // Make it look like call_stub calling conventions
  2040   // Get (potential) receiver
  2041   __ load_unsigned_word(rcx, size_of_parameters);                     // get size of parameters in words
  2043   ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
  2044   __ pushptr(recursive.addr());                                      // make it look good in the debugger
  2046   InternalAddress entry(entry_point);
  2047   __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
  2048   __ jcc(Assembler::equal, re_dispatch);                             // yes
  2050   __ popl(rax);                                                      // pop dummy address
  2053   // get specialized entry
  2054   __ movl(rax, STATE(_result._to_call._callee_entry_point));
  2055   // set sender SP
  2056   __ movl(rsi, rsp);
  2058   // method uses specialized entry, push a return so we look like call stub setup
  2059   // this path will handle fact that result is returned in registers and not
  2060   // on the java stack.
  2062   __ pushptr(return_from_native_method.addr());
  2064   __ jmp(rax);
  2066   __ bind(bad_msg);
  2067   __ stop("Bad message from interpreter");
  2069   // Interpreted method "returned" with an exception pass it on...
  2070   // Pass result, unwind activation and continue/return to interpreter/call_stub
  2071   // We handle result (if any) differently based on return to interpreter or call_stub
  2073   Label unwind_initial_with_pending_exception;
  2075   __ bind(throw_exception);
  2076   __ cmpl(STATE(_prev_link), (int)NULL);                            // returning from recursive interpreter call?
  2077   __ jcc(Assembler::equal, unwind_initial_with_pending_exception);  // no, back to native code (call_stub/c1/c2)
  2078   __ movl(rax, STATE(_locals));                                     // pop parameters get new stack value
  2079   __ addl(rax, wordSize);                                           // account for prepush before we return
  2080   __ jmp(unwind_recursive_activation);
  2082   __ bind(unwind_initial_with_pending_exception);
  2084   // We will unwind the current (initial) interpreter frame and forward
  2085   // the exception to the caller. We must put the exception in the
  2086   // expected register and clear pending exception and then forward.
  2088   __ jmp(unwind_and_forward);
  2090   interpreter_frame_manager = entry_point;
  2091   return entry_point;
  2094 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  2095   // determine code generation flags
  2096   bool synchronized = false;
  2097   address entry_point = NULL;
  2099   switch (kind) {
  2100     case Interpreter::zerolocals             :                                                                             break;
  2101     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  2102     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
  2103     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
  2104     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
  2105     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
  2106     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
  2108     case Interpreter::java_lang_math_sin     : // fall thru
  2109     case Interpreter::java_lang_math_cos     : // fall thru
  2110     case Interpreter::java_lang_math_tan     : // fall thru
  2111     case Interpreter::java_lang_math_abs     : // fall thru
  2112     case Interpreter::java_lang_math_log     : // fall thru
  2113     case Interpreter::java_lang_math_log10   : // fall thru
  2114     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
  2115     default                                  : ShouldNotReachHere();                                                       break;
  2118   if (entry_point) return entry_point;
  2120   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
  2124 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2125  : CppInterpreterGenerator(code) {
  2126    generate_all(); // down here so it can be "virtual"
  2129 // Deoptimization helpers for C++ interpreter
  2131 // How much stack a method activation needs in words.
  2132 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  2134   const int stub_code = 4;  // see generate_call_stub
  2135   // Save space for one monitor to get into the interpreted method in case
  2136   // the method is synchronized
  2137   int monitor_size    = method->is_synchronized() ?
  2138                                 1*frame::interpreter_frame_monitor_size() : 0;
  2140   // total static overhead size. Account for interpreter state object, return
  2141   // address, saved rbp and 2 words for a "static long no_params() method" issue.
  2143   const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
  2144     ( frame::sender_sp_offset - frame::link_offset) + 2;
  2146   const int method_stack = (method->max_locals() + method->max_stack()) *
  2147                            Interpreter::stackElementWords();
  2148   return overhead_size + method_stack + stub_code;
  2151 // returns the activation size.
  2152 static int size_activation_helper(int extra_locals_size, int monitor_size) {
  2153   return (extra_locals_size +                  // the addition space for locals
  2154           2*BytesPerWord +                     // return address and saved rbp
  2155           2*BytesPerWord +                     // "static long no_params() method" issue
  2156           sizeof(BytecodeInterpreter) +               // interpreterState
  2157           monitor_size);                       // monitors
  2160 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
  2161                                            frame* caller,
  2162                                            frame* current,
  2163                                            methodOop method,
  2164                                            intptr_t* locals,
  2165                                            intptr_t* stack,
  2166                                            intptr_t* stack_base,
  2167                                            intptr_t* monitor_base,
  2168                                            intptr_t* frame_bottom,
  2169                                            bool is_top_frame
  2172   // What about any vtable?
  2173   //
  2174   to_fill->_thread = JavaThread::current();
  2175   // This gets filled in later but make it something recognizable for now
  2176   to_fill->_bcp = method->code_base();
  2177   to_fill->_locals = locals;
  2178   to_fill->_constants = method->constants()->cache();
  2179   to_fill->_method = method;
  2180   to_fill->_mdx = NULL;
  2181   to_fill->_stack = stack;
  2182   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
  2183     to_fill->_msg = deopt_resume2;
  2184   } else {
  2185     to_fill->_msg = method_resume;
  2187   to_fill->_result._to_call._bcp_advance = 0;
  2188   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
  2189   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
  2190   to_fill->_prev_link = NULL;
  2192   to_fill->_sender_sp = caller->unextended_sp();
  2194   if (caller->is_interpreted_frame()) {
  2195     interpreterState prev  = caller->get_interpreterState();
  2196     to_fill->_prev_link = prev;
  2197     // *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
  2198     // Make the prev callee look proper
  2199     prev->_result._to_call._callee = method;
  2200     if (*prev->_bcp == Bytecodes::_invokeinterface) {
  2201       prev->_result._to_call._bcp_advance = 5;
  2202     } else {
  2203       prev->_result._to_call._bcp_advance = 3;
  2206   to_fill->_oop_temp = NULL;
  2207   to_fill->_stack_base = stack_base;
  2208   // Need +1 here because stack_base points to the word just above the first expr stack entry
  2209   // and stack_limit is supposed to point to the word just below the last expr stack entry.
  2210   // See generate_compute_interpreter_state.
  2211   to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
  2212   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
  2214   to_fill->_self_link = to_fill;
  2215   assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
  2216          "Stack top out of range");
  2219 int AbstractInterpreter::layout_activation(methodOop method,
  2220                                                 int tempcount,  //
  2221                                                 int popframe_extra_args,
  2222                                                 int moncount,
  2223                                                 int callee_param_count,
  2224                                                 int callee_locals,
  2225                                                 frame* caller,
  2226                                                 frame* interpreter_frame,
  2227                                                 bool is_top_frame) {
  2229   assert(popframe_extra_args == 0, "FIX ME");
  2230   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
  2231   // does as far as allocating an interpreter frame.
  2232   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  2233   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  2234   // as determined by a previous call to this method.
  2235   // It is also guaranteed to be walkable even though it is in a skeletal state
  2236   // NOTE: return size is in words not bytes
  2237   // NOTE: tempcount is the current size of the java expression stack. For top most
  2238   //       frames we will allocate a full sized expression stack and not the curback
  2239   //       version that non-top frames have.
  2241   // Calculate the amount our frame will be adjust by the callee. For top frame
  2242   // this is zero.
  2244   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
  2245   // calculates the extra locals based on itself. Not what the callee does
  2246   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
  2247   // as getting sender_sp correct.
  2249   int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
  2250   int monitor_size = sizeof(BasicObjectLock) * moncount;
  2252   // First calculate the frame size without any java expression stack
  2253   int short_frame_size = size_activation_helper(extra_locals_size,
  2254                                                 monitor_size);
  2256   // Now with full size expression stack
  2257   int full_frame_size = short_frame_size + method->max_stack() * BytesPerWord;
  2259   // and now with only live portion of the expression stack
  2260   short_frame_size = short_frame_size + tempcount * BytesPerWord;
  2262   // the size the activation is right now. Only top frame is full size
  2263   int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
  2265   if (interpreter_frame != NULL) {
  2266 #ifdef ASSERT
  2267     assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  2268 #endif
  2270     // MUCHO HACK
  2272     intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
  2274     /* Now fillin the interpreterState object */
  2276     // The state object is the first thing on the frame and easily located
  2278     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
  2281     // Find the locals pointer. This is rather simple on x86 because there is no
  2282     // confusing rounding at the callee to account for. We can trivially locate
  2283     // our locals based on the current fp().
  2284     // Note: the + 2 is for handling the "static long no_params() method" issue.
  2285     // (too bad I don't really remember that issue well...)
  2287     intptr_t* locals;
  2288     // If the caller is interpreted we need to make sure that locals points to the first
  2289     // argument that the caller passed and not in an area where the stack might have been extended.
  2290     // because the stack to stack to converter needs a proper locals value in order to remove the
  2291     // arguments from the caller and place the result in the proper location. Hmm maybe it'd be
  2292     // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
  2293     // adjust the stack?? HMMM QQQ
  2294     //
  2295     if (caller->is_interpreted_frame()) {
  2296       // locals must agree with the caller because it will be used to set the
  2297       // caller's tos when we return.
  2298       interpreterState prev  = caller->get_interpreterState();
  2299       // stack() is prepushed.
  2300       locals = prev->stack() + method->size_of_parameters();
  2301       // locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
  2302       if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
  2303         // os::breakpoint();
  2305     } else {
  2306       // this is where a c2i would have placed locals (except for the +2)
  2307       locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
  2310     intptr_t* monitor_base = (intptr_t*) cur_state;
  2311     intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
  2312     /* +1 because stack is always prepushed */
  2313     intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
  2316     BytecodeInterpreter::layout_interpreterState(cur_state,
  2317                                           caller,
  2318                                           interpreter_frame,
  2319                                           method,
  2320                                           locals,
  2321                                           stack,
  2322                                           stack_base,
  2323                                           monitor_base,
  2324                                           frame_bottom,
  2325                                           is_top_frame);
  2327     // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
  2329   return frame_size/BytesPerWord;
  2332 #endif // CC_INTERP (all)

mercurial