src/cpu/sparc/vm/assembler_sparc.cpp

Sun, 13 Apr 2008 17:43:42 -0400

author
coleenp
date
Sun, 13 Apr 2008 17:43:42 -0400
changeset 548
ba764ed4b6f2
parent 435
a61af66fc99e
child 559
b130b98db9cf
permissions
-rw-r--r--

6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Summary: Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_assembler_sparc.cpp.incl"
    28 // Implementation of Address
    30 Address::Address( addr_type t, int which ) {
    31   switch (t) {
    32    case extra_in_argument:
    33    case extra_out_argument:
    34      _base = t == extra_in_argument ? FP : SP;
    35      _hi   = 0;
    36 // Warning:  In LP64 mode, _disp will occupy more than 10 bits.
    37 //           This is inconsistent with the other constructors but op
    38 //           codes such as ld or ldx, only access disp() to get their
    39 //           simm13 argument.
    40      _disp = ((which - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
    41     break;
    42    default:
    43     ShouldNotReachHere();
    44     break;
    45   }
    46 }
    48 static const char* argumentNames[][2] = {
    49   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
    50   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
    51   {"A(n>9)","P(n>9)"}
    52 };
    54 const char* Argument::name() const {
    55   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
    56   int num = number();
    57   if (num >= nofArgs)  num = nofArgs - 1;
    58   return argumentNames[num][is_in() ? 1 : 0];
    59 }
    61 void Assembler::print_instruction(int inst) {
    62   const char* s;
    63   switch (inv_op(inst)) {
    64   default:         s = "????"; break;
    65   case call_op:    s = "call"; break;
    66   case branch_op:
    67     switch (inv_op2(inst)) {
    68       case bpr_op2:    s = "bpr";  break;
    69       case fb_op2:     s = "fb";   break;
    70       case fbp_op2:    s = "fbp";  break;
    71       case br_op2:     s = "br";   break;
    72       case bp_op2:     s = "bp";   break;
    73       case cb_op2:     s = "cb";   break;
    74       default:         s = "????"; break;
    75     }
    76   }
    77   ::tty->print("%s", s);
    78 }
    81 // Patch instruction inst at offset inst_pos to refer to dest_pos
    82 // and return the resulting instruction.
    83 // We should have pcs, not offsets, but since all is relative, it will work out
    84 // OK.
    85 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
    87   int m; // mask for displacement field
    88   int v; // new value for displacement field
    89   const int word_aligned_ones = -4;
    90   switch (inv_op(inst)) {
    91   default: ShouldNotReachHere();
    92   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
    93   case branch_op:
    94     switch (inv_op2(inst)) {
    95       case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
    96       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
    97       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
    98       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
    99       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   100       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   101       default: ShouldNotReachHere();
   102     }
   103   }
   104   return  inst & ~m  |  v;
   105 }
   107 // Return the offset of the branch destionation of instruction inst
   108 // at offset pos.
   109 // Should have pcs, but since all is relative, it works out.
   110 int Assembler::branch_destination(int inst, int pos) {
   111   int r;
   112   switch (inv_op(inst)) {
   113   default: ShouldNotReachHere();
   114   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
   115   case branch_op:
   116     switch (inv_op2(inst)) {
   117       case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
   118       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
   119       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
   120       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   121       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   122       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   123       default: ShouldNotReachHere();
   124     }
   125   }
   126   return r;
   127 }
   129 int AbstractAssembler::code_fill_byte() {
   130   return 0x00;                  // illegal instruction 0x00000000
   131 }
   133 // Generate a bunch 'o stuff (including v9's
   134 #ifndef PRODUCT
   135 void Assembler::test_v9() {
   136   add(    G0, G1, G2 );
   137   add(    G3,  0, G4 );
   139   addcc(  G5, G6, G7 );
   140   addcc(  I0,  1, I1 );
   141   addc(   I2, I3, I4 );
   142   addc(   I5, -1, I6 );
   143   addccc( I7, L0, L1 );
   144   addccc( L2, (1 << 12) - 2, L3 );
   146   Label lbl1, lbl2, lbl3;
   148   bind(lbl1);
   150   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
   151   delayed()->nop();
   152   bpr( rc_lez, false, pt, L5, lbl1);
   153   delayed()->nop();
   155   fb( f_never,     true, pc() + 4,  relocInfo::none);
   156   delayed()->nop();
   157   fb( f_notEqual, false, lbl2 );
   158   delayed()->nop();
   160   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
   161   delayed()->nop();
   162   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
   163   delayed()->nop();
   165   br( equal,  true, pc() + 1024, relocInfo::none);
   166   delayed()->nop();
   167   br( lessEqual, false, lbl1 );
   168   delayed()->nop();
   169   br( never, false, lbl1 );
   170   delayed()->nop();
   172   bp( less,               true, icc, pn, pc(), relocInfo::none);
   173   delayed()->nop();
   174   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
   175   delayed()->nop();
   177   call( pc(), relocInfo::none);
   178   delayed()->nop();
   179   call( lbl3 );
   180   delayed()->nop();
   183   casa(  L6, L7, O0 );
   184   casxa( O1, O2, O3, 0 );
   186   udiv(   O4, O5, O7 );
   187   udiv(   G0, (1 << 12) - 1, G1 );
   188   sdiv(   G1, G2, G3 );
   189   sdiv(   G4, -((1 << 12) - 1), G5 );
   190   udivcc( G6, G7, I0 );
   191   udivcc( I1, -((1 << 12) - 2), I2 );
   192   sdivcc( I3, I4, I5 );
   193   sdivcc( I6, -((1 << 12) - 0), I7 );
   195   done();
   196   retry();
   198   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
   199   fsub( FloatRegisterImpl::D, F34, F0, F62 );
   201   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
   202   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
   204   ftox( FloatRegisterImpl::D, F2, F4 );
   205   ftoi( FloatRegisterImpl::Q, F4, F8 );
   207   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
   209   fxtof( FloatRegisterImpl::S, F4, F5 );
   210   fitof( FloatRegisterImpl::D, F6, F8 );
   212   fmov( FloatRegisterImpl::Q, F16, F20 );
   213   fneg( FloatRegisterImpl::S, F6, F7 );
   214   fabs( FloatRegisterImpl::D, F10, F12 );
   216   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
   217   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
   218   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
   220   fsqrt( FloatRegisterImpl::S, F13, F14 );
   222   flush( L0, L1 );
   223   flush( L2, -1 );
   225   flushw();
   227   illtrap( (1 << 22) - 2);
   229   impdep1( 17, (1 << 19) - 1 );
   230   impdep2( 3,  0 );
   232   jmpl( L3, L4, L5 );
   233   delayed()->nop();
   234   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
   235   delayed()->nop();
   238   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
   239   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
   242   ldfsr(  O3, O4 );
   243   ldfsr(  O5, -1 );
   244   ldxfsr( O6, O7 );
   245   ldxfsr( I0, -1 );
   247   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
   248   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
   250   ldsb(  I4, I5, I6 );
   251   ldsb(  I7, -1, G0 );
   252   ldsh(  G1, G3, G4 );
   253   ldsh(  G5, -1, G6 );
   254   ldsw(  G7, L0, L1 );
   255   ldsw(  L2, -1, L3 );
   256   ldub(  L4, L5, L6 );
   257   ldub(  L7, -1, O0 );
   258   lduh(  O1, O2, O3 );
   259   lduh(  O4, -1, O5 );
   260   lduw(  O6, O7, G0 );
   261   lduw(  G1, -1, G2 );
   262   ldx(   G3, G4, G5 );
   263   ldx(   G6, -1, G7 );
   264   ldd(   I0, I1, I2 );
   265   ldd(   I3, -1, I4 );
   267   ldsba(  I5, I6, 2, I7 );
   268   ldsba(  L0, -1, L1 );
   269   ldsha(  L2, L3, 3, L4 );
   270   ldsha(  L5, -1, L6 );
   271   ldswa(  L7, O0, (1 << 8) - 1, O1 );
   272   ldswa(  O2, -1, O3 );
   273   lduba(  O4, O5, 0, O6 );
   274   lduba(  O7, -1, I0 );
   275   lduha(  I1, I2, 1, I3 );
   276   lduha(  I4, -1, I5 );
   277   lduwa(  I6, I7, 2, L0 );
   278   lduwa(  L1, -1, L2 );
   279   ldxa(   L3, L4, 3, L5 );
   280   ldxa(   L6, -1, L7 );
   281   ldda(   G0, G1, 4, G2 );
   282   ldda(   G3, -1, G4 );
   284   ldstub(  G5, G6, G7 );
   285   ldstub(  O0, -1, O1 );
   287   ldstuba( O2, O3, 5, O4 );
   288   ldstuba( O5, -1, O6 );
   290   and3(    I0, L0, O0 );
   291   and3(    G7, -1, O7 );
   292   andcc(   L2, I2, G2 );
   293   andcc(   L4, -1, G4 );
   294   andn(    I5, I6, I7 );
   295   andn(    I6, -1, I7 );
   296   andncc(  I5, I6, I7 );
   297   andncc(  I7, -1, I6 );
   298   or3(     I5, I6, I7 );
   299   or3(     I7, -1, I6 );
   300   orcc(    I5, I6, I7 );
   301   orcc(    I7, -1, I6 );
   302   orn(     I5, I6, I7 );
   303   orn(     I7, -1, I6 );
   304   orncc(   I5, I6, I7 );
   305   orncc(   I7, -1, I6 );
   306   xor3(    I5, I6, I7 );
   307   xor3(    I7, -1, I6 );
   308   xorcc(   I5, I6, I7 );
   309   xorcc(   I7, -1, I6 );
   310   xnor(    I5, I6, I7 );
   311   xnor(    I7, -1, I6 );
   312   xnorcc(  I5, I6, I7 );
   313   xnorcc(  I7, -1, I6 );
   315   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
   316   membar( StoreStore );
   317   membar( LoadStore );
   318   membar( StoreLoad );
   319   membar( LoadLoad );
   320   membar( Sync );
   321   membar( MemIssue );
   322   membar( Lookaside );
   324   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
   325   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
   327   movcc( overflowClear,  false, icc, I6, L4 );
   328   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
   330   movr( rc_nz, I5, I6, I7 );
   331   movr( rc_gz, L1, -1,  L2 );
   333   mulx(  I5, I6, I7 );
   334   mulx(  I7, -1, I6 );
   335   sdivx( I5, I6, I7 );
   336   sdivx( I7, -1, I6 );
   337   udivx( I5, I6, I7 );
   338   udivx( I7, -1, I6 );
   340   umul(   I5, I6, I7 );
   341   umul(   I7, -1, I6 );
   342   smul(   I5, I6, I7 );
   343   smul(   I7, -1, I6 );
   344   umulcc( I5, I6, I7 );
   345   umulcc( I7, -1, I6 );
   346   smulcc( I5, I6, I7 );
   347   smulcc( I7, -1, I6 );
   349   mulscc(   I5, I6, I7 );
   350   mulscc(   I7, -1, I6 );
   352   nop();
   355   popc( G0,  G1);
   356   popc( -1, G2);
   358   prefetch(   L1, L2,    severalReads );
   359   prefetch(   L3, -1,    oneRead );
   360   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
   361   prefetcha(  G2, -1,    oneWrite );
   363   rett( I7, I7);
   364   delayed()->nop();
   365   rett( G0, -1, relocInfo::none);
   366   delayed()->nop();
   368   save(    I5, I6, I7 );
   369   save(    I7, -1, I6 );
   370   restore( I5, I6, I7 );
   371   restore( I7, -1, I6 );
   373   saved();
   374   restored();
   376   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
   378   sll(  I5, I6, I7 );
   379   sll(  I7, 31, I6 );
   380   srl(  I5, I6, I7 );
   381   srl(  I7,  0, I6 );
   382   sra(  I5, I6, I7 );
   383   sra(  I7, 30, I6 );
   384   sllx( I5, I6, I7 );
   385   sllx( I7, 63, I6 );
   386   srlx( I5, I6, I7 );
   387   srlx( I7,  0, I6 );
   388   srax( I5, I6, I7 );
   389   srax( I7, 62, I6 );
   391   sir( -1 );
   393   stbar();
   395   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
   396   stf(    FloatRegisterImpl::S, F18, I3, -1 );
   398   stfsr(  L1, L2 );
   399   stfsr(  I7, -1 );
   400   stxfsr( I6, I5 );
   401   stxfsr( L4, -1 );
   403   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
   404   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
   406   stb(  L5, O2, I7 );
   407   stb(  I7, I6, -1 );
   408   sth(  L5, O2, I7 );
   409   sth(  I7, I6, -1 );
   410   stw(  L5, O2, I7 );
   411   stw(  I7, I6, -1 );
   412   stx(  L5, O2, I7 );
   413   stx(  I7, I6, -1 );
   414   std(  L5, O2, I7 );
   415   std(  I7, I6, -1 );
   417   stba(  L5, O2, I7, 8 );
   418   stba(  I7, I6, -1    );
   419   stha(  L5, O2, I7, 9 );
   420   stha(  I7, I6, -1    );
   421   stwa(  L5, O2, I7, 0 );
   422   stwa(  I7, I6, -1    );
   423   stxa(  L5, O2, I7, 11 );
   424   stxa(  I7, I6, -1     );
   425   stda(  L5, O2, I7, 12 );
   426   stda(  I7, I6, -1     );
   428   sub(    I5, I6, I7 );
   429   sub(    I7, -1, I6 );
   430   subcc(  I5, I6, I7 );
   431   subcc(  I7, -1, I6 );
   432   subc(   I5, I6, I7 );
   433   subc(   I7, -1, I6 );
   434   subccc( I5, I6, I7 );
   435   subccc( I7, -1, I6 );
   437   swap( I5, I6, I7 );
   438   swap( I7, -1, I6 );
   440   swapa(   G0, G1, 13, G2 );
   441   swapa(   I7, -1,     I6 );
   443   taddcc(    I5, I6, I7 );
   444   taddcc(    I7, -1, I6 );
   445   taddcctv(  I5, I6, I7 );
   446   taddcctv(  I7, -1, I6 );
   448   tsubcc(    I5, I6, I7 );
   449   tsubcc(    I7, -1, I6 );
   450   tsubcctv(  I5, I6, I7 );
   451   tsubcctv(  I7, -1, I6 );
   453   trap( overflowClear, xcc, G0, G1 );
   454   trap( lessEqual,     icc, I7, 17 );
   456   bind(lbl2);
   457   bind(lbl3);
   459   code()->decode();
   460 }
   462 // Generate a bunch 'o stuff unique to V8
   463 void Assembler::test_v8_onlys() {
   464   Label lbl1;
   466   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
   467   delayed()->nop();
   468   cb( cp_never,    true, lbl1);
   469   delayed()->nop();
   471   cpop1(1, 2, 3, 4);
   472   cpop2(5, 6, 7, 8);
   474   ldc( I0, I1, 31);
   475   ldc( I2, -1,  0);
   477   lddc( I4, I4, 30);
   478   lddc( I6,  0, 1 );
   480   ldcsr( L0, L1, 0);
   481   ldcsr( L1, (1 << 12) - 1, 17 );
   483   stc( 31, L4, L5);
   484   stc( 30, L6, -(1 << 12) );
   486   stdc( 0, L7, G0);
   487   stdc( 1, G1, 0 );
   489   stcsr( 16, G2, G3);
   490   stcsr( 17, G4, 1 );
   492   stdcq( 4, G5, G6);
   493   stdcq( 5, G7, -1 );
   495   bind(lbl1);
   497   code()->decode();
   498 }
   499 #endif
   501 // Implementation of MacroAssembler
   503 void MacroAssembler::null_check(Register reg, int offset) {
   504   if (needs_explicit_null_check((intptr_t)offset)) {
   505     // provoke OS NULL exception if reg = NULL by
   506     // accessing M[reg] w/o changing any registers
   507     ld_ptr(reg, 0, G0);
   508   }
   509   else {
   510     // nothing to do, (later) access of M[reg + offset]
   511     // will provoke OS NULL exception if reg = NULL
   512   }
   513 }
   515 // Ring buffer jumps
   517 #ifndef PRODUCT
   518 void MacroAssembler::ret(  bool trace )   { if (trace) {
   519                                                     mov(I7, O7); // traceable register
   520                                                     JMP(O7, 2 * BytesPerInstWord);
   521                                                   } else {
   522                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
   523                                                   }
   524                                                 }
   526 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   527                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   528 #endif /* PRODUCT */
   531 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
   532   assert_not_delayed();
   533   // This can only be traceable if r1 & r2 are visible after a window save
   534   if (TraceJumps) {
   535 #ifndef PRODUCT
   536     save_frame(0);
   537     verify_thread();
   538     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   539     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   540     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   541     add(O2, O1, O1);
   543     add(r1->after_save(), r2->after_save(), O2);
   544     set((intptr_t)file, O3);
   545     set(line, O4);
   546     Label L;
   547     // get nearby pc, store jmp target
   548     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   549     delayed()->st(O2, O1, 0);
   550     bind(L);
   552     // store nearby pc
   553     st(O7, O1, sizeof(intptr_t));
   554     // store file
   555     st(O3, O1, 2*sizeof(intptr_t));
   556     // store line
   557     st(O4, O1, 3*sizeof(intptr_t));
   558     add(O0, 1, O0);
   559     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   560     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   561     restore();
   562 #endif /* PRODUCT */
   563   }
   564   jmpl(r1, r2, G0);
   565 }
   566 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
   567   assert_not_delayed();
   568   // This can only be traceable if r1 is visible after a window save
   569   if (TraceJumps) {
   570 #ifndef PRODUCT
   571     save_frame(0);
   572     verify_thread();
   573     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   574     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   575     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   576     add(O2, O1, O1);
   578     add(r1->after_save(), offset, O2);
   579     set((intptr_t)file, O3);
   580     set(line, O4);
   581     Label L;
   582     // get nearby pc, store jmp target
   583     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   584     delayed()->st(O2, O1, 0);
   585     bind(L);
   587     // store nearby pc
   588     st(O7, O1, sizeof(intptr_t));
   589     // store file
   590     st(O3, O1, 2*sizeof(intptr_t));
   591     // store line
   592     st(O4, O1, 3*sizeof(intptr_t));
   593     add(O0, 1, O0);
   594     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   595     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   596     restore();
   597 #endif /* PRODUCT */
   598   }
   599   jmp(r1, offset);
   600 }
   602 // This code sequence is relocatable to any address, even on LP64.
   603 void MacroAssembler::jumpl( Address& a, Register d, int offset, const char* file, int line ) {
   604   assert_not_delayed();
   605   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   606   // variable length instruction streams.
   607   sethi(a, /*ForceRelocatable=*/ true);
   608   if (TraceJumps) {
   609 #ifndef PRODUCT
   610     // Must do the add here so relocation can find the remainder of the
   611     // value to be relocated.
   612     add(a.base(), a.disp() + offset, a.base(), a.rspec(offset));
   613     save_frame(0);
   614     verify_thread();
   615     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   616     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   617     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   618     add(O2, O1, O1);
   620     set((intptr_t)file, O3);
   621     set(line, O4);
   622     Label L;
   624     // get nearby pc, store jmp target
   625     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   626     delayed()->st(a.base()->after_save(), O1, 0);
   627     bind(L);
   629     // store nearby pc
   630     st(O7, O1, sizeof(intptr_t));
   631     // store file
   632     st(O3, O1, 2*sizeof(intptr_t));
   633     // store line
   634     st(O4, O1, 3*sizeof(intptr_t));
   635     add(O0, 1, O0);
   636     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   637     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   638     restore();
   639     jmpl(a.base(), G0, d);
   640 #else
   641     jmpl(a, d, offset);
   642 #endif /* PRODUCT */
   643   } else {
   644     jmpl(a, d, offset);
   645   }
   646 }
   648 void MacroAssembler::jump( Address& a, int offset, const char* file, int line ) {
   649   jumpl( a, G0, offset, file, line );
   650 }
   653 // Convert to C varargs format
   654 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
   655   // spill register-resident args to their memory slots
   656   // (SPARC calling convention requires callers to have already preallocated these)
   657   // Note that the inArg might in fact be an outgoing argument,
   658   // if a leaf routine or stub does some tricky argument shuffling.
   659   // This routine must work even though one of the saved arguments
   660   // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
   661   for (Argument savePtr = inArg;
   662        savePtr.is_register();
   663        savePtr = savePtr.successor()) {
   664     st_ptr(savePtr.as_register(), savePtr.address_in_frame());
   665   }
   666   // return the address of the first memory slot
   667   add(inArg.address_in_frame(), d);
   668 }
   670 // Conditional breakpoint (for assertion checks in assembly code)
   671 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
   672   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
   673 }
   675 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
   676 void MacroAssembler::breakpoint_trap() {
   677   trap(ST_RESERVED_FOR_USER_0);
   678 }
   680 // flush windows (except current) using flushw instruction if avail.
   681 void MacroAssembler::flush_windows() {
   682   if (VM_Version::v9_instructions_work())  flushw();
   683   else                                     flush_windows_trap();
   684 }
   686 // Write serialization page so VM thread can do a pseudo remote membar
   687 // We use the current thread pointer to calculate a thread specific
   688 // offset to write to within the page. This minimizes bus traffic
   689 // due to cache line collision.
   690 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
   691   Address mem_serialize_page(tmp1, os::get_memory_serialize_page());
   692   srl(thread, os::get_serialize_page_shift_count(), tmp2);
   693   if (Assembler::is_simm13(os::vm_page_size())) {
   694     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
   695   }
   696   else {
   697     set((os::vm_page_size() - sizeof(int)), tmp1);
   698     and3(tmp2, tmp1, tmp2);
   699   }
   700   load_address(mem_serialize_page);
   701   st(G0, tmp1, tmp2);
   702 }
   706 void MacroAssembler::enter() {
   707   Unimplemented();
   708 }
   710 void MacroAssembler::leave() {
   711   Unimplemented();
   712 }
   714 void MacroAssembler::mult(Register s1, Register s2, Register d) {
   715   if(VM_Version::v9_instructions_work()) {
   716     mulx (s1, s2, d);
   717   } else {
   718     smul (s1, s2, d);
   719   }
   720 }
   722 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
   723   if(VM_Version::v9_instructions_work()) {
   724     mulx (s1, simm13a, d);
   725   } else {
   726     smul (s1, simm13a, d);
   727   }
   728 }
   731 #ifdef ASSERT
   732 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
   733   const Register s1 = G3_scratch;
   734   const Register s2 = G4_scratch;
   735   Label get_psr_test;
   736   // Get the condition codes the V8 way.
   737   read_ccr_trap(s1);
   738   mov(ccr_save, s2);
   739   // This is a test of V8 which has icc but not xcc
   740   // so mask off the xcc bits
   741   and3(s2, 0xf, s2);
   742   // Compare condition codes from the V8 and V9 ways.
   743   subcc(s2, s1, G0);
   744   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
   745   delayed()->breakpoint_trap();
   746   bind(get_psr_test);
   747 }
   749 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
   750   const Register s1 = G3_scratch;
   751   const Register s2 = G4_scratch;
   752   Label set_psr_test;
   753   // Write out the saved condition codes the V8 way
   754   write_ccr_trap(ccr_save, s1, s2);
   755   // Read back the condition codes using the V9 instruction
   756   rdccr(s1);
   757   mov(ccr_save, s2);
   758   // This is a test of V8 which has icc but not xcc
   759   // so mask off the xcc bits
   760   and3(s2, 0xf, s2);
   761   and3(s1, 0xf, s1);
   762   // Compare the V8 way with the V9 way.
   763   subcc(s2, s1, G0);
   764   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
   765   delayed()->breakpoint_trap();
   766   bind(set_psr_test);
   767 }
   768 #else
   769 #define read_ccr_v8_assert(x)
   770 #define write_ccr_v8_assert(x)
   771 #endif // ASSERT
   773 void MacroAssembler::read_ccr(Register ccr_save) {
   774   if (VM_Version::v9_instructions_work()) {
   775     rdccr(ccr_save);
   776     // Test code sequence used on V8.  Do not move above rdccr.
   777     read_ccr_v8_assert(ccr_save);
   778   } else {
   779     read_ccr_trap(ccr_save);
   780   }
   781 }
   783 void MacroAssembler::write_ccr(Register ccr_save) {
   784   if (VM_Version::v9_instructions_work()) {
   785     // Test code sequence used on V8.  Do not move below wrccr.
   786     write_ccr_v8_assert(ccr_save);
   787     wrccr(ccr_save);
   788   } else {
   789     const Register temp_reg1 = G3_scratch;
   790     const Register temp_reg2 = G4_scratch;
   791     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
   792   }
   793 }
   796 // Calls to C land
   798 #ifdef ASSERT
   799 // a hook for debugging
   800 static Thread* reinitialize_thread() {
   801   return ThreadLocalStorage::thread();
   802 }
   803 #else
   804 #define reinitialize_thread ThreadLocalStorage::thread
   805 #endif
   807 #ifdef ASSERT
   808 address last_get_thread = NULL;
   809 #endif
   811 // call this when G2_thread is not known to be valid
   812 void MacroAssembler::get_thread() {
   813   save_frame(0);                // to avoid clobbering O0
   814   mov(G1, L0);                  // avoid clobbering G1
   815   mov(G5_method, L1);           // avoid clobbering G5
   816   mov(G3, L2);                  // avoid clobbering G3 also
   817   mov(G4, L5);                  // avoid clobbering G4
   818 #ifdef ASSERT
   819   Address last_get_thread_addr(L3, (address)&last_get_thread);
   820   sethi(last_get_thread_addr);
   821   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
   822   st_ptr(L4, last_get_thread_addr);
   823 #endif
   824   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
   825   delayed()->nop();
   826   mov(L0, G1);
   827   mov(L1, G5_method);
   828   mov(L2, G3);
   829   mov(L5, G4);
   830   restore(O0, 0, G2_thread);
   831 }
   833 static Thread* verify_thread_subroutine(Thread* gthread_value) {
   834   Thread* correct_value = ThreadLocalStorage::thread();
   835   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
   836   return correct_value;
   837 }
   839 void MacroAssembler::verify_thread() {
   840   if (VerifyThread) {
   841     // NOTE: this chops off the heads of the 64-bit O registers.
   842 #ifdef CC_INTERP
   843     save_frame(0);
   844 #else
   845     // make sure G2_thread contains the right value
   846     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
   847     mov(G1, L1);                // avoid clobbering G1
   848     // G2 saved below
   849     mov(G3, L3);                // avoid clobbering G3
   850     mov(G4, L4);                // avoid clobbering G4
   851     mov(G5_method, L5);         // avoid clobbering G5_method
   852 #endif /* CC_INTERP */
   853 #if defined(COMPILER2) && !defined(_LP64)
   854     // Save & restore possible 64-bit Long arguments in G-regs
   855     srlx(G1,32,L0);
   856     srlx(G4,32,L6);
   857 #endif
   858     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
   859     delayed()->mov(G2_thread, O0);
   861     mov(L1, G1);                // Restore G1
   862     // G2 restored below
   863     mov(L3, G3);                // restore G3
   864     mov(L4, G4);                // restore G4
   865     mov(L5, G5_method);         // restore G5_method
   866 #if defined(COMPILER2) && !defined(_LP64)
   867     // Save & restore possible 64-bit Long arguments in G-regs
   868     sllx(L0,32,G2);             // Move old high G1 bits high in G2
   869     sllx(G1, 0,G1);             // Clear current high G1 bits
   870     or3 (G1,G2,G1);             // Recover 64-bit G1
   871     sllx(L6,32,G2);             // Move old high G4 bits high in G2
   872     sllx(G4, 0,G4);             // Clear current high G4 bits
   873     or3 (G4,G2,G4);             // Recover 64-bit G4
   874 #endif
   875     restore(O0, 0, G2_thread);
   876   }
   877 }
   880 void MacroAssembler::save_thread(const Register thread_cache) {
   881   verify_thread();
   882   if (thread_cache->is_valid()) {
   883     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   884     mov(G2_thread, thread_cache);
   885   }
   886   if (VerifyThread) {
   887     // smash G2_thread, as if the VM were about to anyway
   888     set(0x67676767, G2_thread);
   889   }
   890 }
   893 void MacroAssembler::restore_thread(const Register thread_cache) {
   894   if (thread_cache->is_valid()) {
   895     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   896     mov(thread_cache, G2_thread);
   897     verify_thread();
   898   } else {
   899     // do it the slow way
   900     get_thread();
   901   }
   902 }
   905 // %%% maybe get rid of [re]set_last_Java_frame
   906 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
   907   assert_not_delayed();
   908   Address flags(G2_thread,
   909                 0,
   910                 in_bytes(JavaThread::frame_anchor_offset()) +
   911                          in_bytes(JavaFrameAnchor::flags_offset()));
   912   Address pc_addr(G2_thread,
   913                   0,
   914                   in_bytes(JavaThread::last_Java_pc_offset()));
   916   // Always set last_Java_pc and flags first because once last_Java_sp is visible
   917   // has_last_Java_frame is true and users will look at the rest of the fields.
   918   // (Note: flags should always be zero before we get here so doesn't need to be set.)
   920 #ifdef ASSERT
   921   // Verify that flags was zeroed on return to Java
   922   Label PcOk;
   923   save_frame(0);                // to avoid clobbering O0
   924   ld_ptr(pc_addr, L0);
   925   tst(L0);
   926 #ifdef _LP64
   927   brx(Assembler::zero, false, Assembler::pt, PcOk);
   928 #else
   929   br(Assembler::zero, false, Assembler::pt, PcOk);
   930 #endif // _LP64
   931   delayed() -> nop();
   932   stop("last_Java_pc not zeroed before leaving Java");
   933   bind(PcOk);
   935   // Verify that flags was zeroed on return to Java
   936   Label FlagsOk;
   937   ld(flags, L0);
   938   tst(L0);
   939   br(Assembler::zero, false, Assembler::pt, FlagsOk);
   940   delayed() -> restore();
   941   stop("flags not zeroed before leaving Java");
   942   bind(FlagsOk);
   943 #endif /* ASSERT */
   944   //
   945   // When returning from calling out from Java mode the frame anchor's last_Java_pc
   946   // will always be set to NULL. It is set here so that if we are doing a call to
   947   // native (not VM) that we capture the known pc and don't have to rely on the
   948   // native call having a standard frame linkage where we can find the pc.
   950   if (last_Java_pc->is_valid()) {
   951     st_ptr(last_Java_pc, pc_addr);
   952   }
   954 #ifdef _LP64
   955 #ifdef ASSERT
   956   // Make sure that we have an odd stack
   957   Label StackOk;
   958   andcc(last_java_sp, 0x01, G0);
   959   br(Assembler::notZero, false, Assembler::pt, StackOk);
   960   delayed() -> nop();
   961   stop("Stack Not Biased in set_last_Java_frame");
   962   bind(StackOk);
   963 #endif // ASSERT
   964   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
   965   add( last_java_sp, STACK_BIAS, G4_scratch );
   966   st_ptr(G4_scratch,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
   967 #else
   968   st_ptr(last_java_sp,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
   969 #endif // _LP64
   970 }
   972 void MacroAssembler::reset_last_Java_frame(void) {
   973   assert_not_delayed();
   975   Address sp_addr(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset()));
   976   Address pc_addr(G2_thread,
   977                   0,
   978                   in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::last_Java_pc_offset()));
   979   Address flags(G2_thread,
   980                 0,
   981                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
   983 #ifdef ASSERT
   984   // check that it WAS previously set
   985 #ifdef CC_INTERP
   986     save_frame(0);
   987 #else
   988     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
   989 #endif /* CC_INTERP */
   990     ld_ptr(sp_addr, L0);
   991     tst(L0);
   992     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
   993     restore();
   994 #endif // ASSERT
   996   st_ptr(G0, sp_addr);
   997   // Always return last_Java_pc to zero
   998   st_ptr(G0, pc_addr);
   999   // Always null flags after return to Java
  1000   st(G0, flags);
  1004 void MacroAssembler::call_VM_base(
  1005   Register        oop_result,
  1006   Register        thread_cache,
  1007   Register        last_java_sp,
  1008   address         entry_point,
  1009   int             number_of_arguments,
  1010   bool            check_exceptions)
  1012   assert_not_delayed();
  1014   // determine last_java_sp register
  1015   if (!last_java_sp->is_valid()) {
  1016     last_java_sp = SP;
  1018   // debugging support
  1019   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1021   // 64-bit last_java_sp is biased!
  1022   set_last_Java_frame(last_java_sp, noreg);
  1023   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
  1024   save_thread(thread_cache);
  1025   // do the call
  1026   call(entry_point, relocInfo::runtime_call_type);
  1027   if (!VerifyThread)
  1028     delayed()->mov(G2_thread, O0);  // pass thread as first argument
  1029   else
  1030     delayed()->nop();             // (thread already passed)
  1031   restore_thread(thread_cache);
  1032   reset_last_Java_frame();
  1034   // check for pending exceptions. use Gtemp as scratch register.
  1035   if (check_exceptions) {
  1036     check_and_forward_exception(Gtemp);
  1039   // get oop result if there is one and reset the value in the thread
  1040   if (oop_result->is_valid()) {
  1041     get_vm_result(oop_result);
  1045 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
  1047   Label L;
  1049   check_and_handle_popframe(scratch_reg);
  1050   check_and_handle_earlyret(scratch_reg);
  1052   Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
  1053   ld_ptr(exception_addr, scratch_reg);
  1054   br_null(scratch_reg,false,pt,L);
  1055   delayed()->nop();
  1056   // we use O7 linkage so that forward_exception_entry has the issuing PC
  1057   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1058   delayed()->nop();
  1059   bind(L);
  1063 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
  1067 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
  1071 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1072   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
  1076 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  1077   // O0 is reserved for the thread
  1078   mov(arg_1, O1);
  1079   call_VM(oop_result, entry_point, 1, check_exceptions);
  1083 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1084   // O0 is reserved for the thread
  1085   mov(arg_1, O1);
  1086   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1087   call_VM(oop_result, entry_point, 2, check_exceptions);
  1091 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1092   // O0 is reserved for the thread
  1093   mov(arg_1, O1);
  1094   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1095   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1096   call_VM(oop_result, entry_point, 3, check_exceptions);
  1101 // Note: The following call_VM overloadings are useful when a "save"
  1102 // has already been performed by a stub, and the last Java frame is
  1103 // the previous one.  In that case, last_java_sp must be passed as FP
  1104 // instead of SP.
  1107 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
  1108   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1112 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
  1113   // O0 is reserved for the thread
  1114   mov(arg_1, O1);
  1115   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1119 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1120   // O0 is reserved for the thread
  1121   mov(arg_1, O1);
  1122   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1123   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1127 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1128   // O0 is reserved for the thread
  1129   mov(arg_1, O1);
  1130   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1131   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1132   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1137 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
  1138   assert_not_delayed();
  1139   save_thread(thread_cache);
  1140   // do the call
  1141   call(entry_point, relocInfo::runtime_call_type);
  1142   delayed()->nop();
  1143   restore_thread(thread_cache);
  1147 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
  1148   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
  1152 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
  1153   mov(arg_1, O0);
  1154   call_VM_leaf(thread_cache, entry_point, 1);
  1158 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
  1159   mov(arg_1, O0);
  1160   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
  1161   call_VM_leaf(thread_cache, entry_point, 2);
  1165 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  1166   mov(arg_1, O0);
  1167   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
  1168   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
  1169   call_VM_leaf(thread_cache, entry_point, 3);
  1173 void MacroAssembler::get_vm_result(Register oop_result) {
  1174   verify_thread();
  1175   Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
  1176   ld_ptr(    vm_result_addr, oop_result);
  1177   st_ptr(G0, vm_result_addr);
  1178   verify_oop(oop_result);
  1182 void MacroAssembler::get_vm_result_2(Register oop_result) {
  1183   verify_thread();
  1184   Address vm_result_addr_2(G2_thread, 0, in_bytes(JavaThread::vm_result_2_offset()));
  1185   ld_ptr(vm_result_addr_2, oop_result);
  1186   st_ptr(G0, vm_result_addr_2);
  1187   verify_oop(oop_result);
  1191 // We require that C code which does not return a value in vm_result will
  1192 // leave it undisturbed.
  1193 void MacroAssembler::set_vm_result(Register oop_result) {
  1194   verify_thread();
  1195   Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
  1196   verify_oop(oop_result);
  1198 # ifdef ASSERT
  1199     // Check that we are not overwriting any other oop.
  1200 #ifdef CC_INTERP
  1201     save_frame(0);
  1202 #else
  1203     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
  1204 #endif /* CC_INTERP */
  1205     ld_ptr(vm_result_addr, L0);
  1206     tst(L0);
  1207     restore();
  1208     breakpoint_trap(notZero, Assembler::ptr_cc);
  1209     // }
  1210 # endif
  1212   st_ptr(oop_result, vm_result_addr);
  1216 void MacroAssembler::store_check(Register tmp, Register obj) {
  1217   // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
  1219   /* $$$ This stuff needs to go into one of the BarrierSet generator
  1220      functions.  (The particular barrier sets will have to be friends of
  1221      MacroAssembler, I guess.) */
  1222   BarrierSet* bs = Universe::heap()->barrier_set();
  1223   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  1224   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1225   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1226 #ifdef _LP64
  1227   srlx(obj, CardTableModRefBS::card_shift, obj);
  1228 #else
  1229   srl(obj, CardTableModRefBS::card_shift, obj);
  1230 #endif
  1231   assert( tmp != obj, "need separate temp reg");
  1232   Address rs(tmp, (address)ct->byte_map_base);
  1233   load_address(rs);
  1234   stb(G0, rs.base(), obj);
  1237 void MacroAssembler::store_check(Register tmp, Register obj, Register offset) {
  1238   store_check(tmp, obj);
  1241 // %%% Note:  The following six instructions have been moved,
  1242 //            unchanged, from assembler_sparc.inline.hpp.
  1243 //            They will be refactored at a later date.
  1245 void MacroAssembler::sethi(intptr_t imm22a,
  1246                             Register d,
  1247                             bool ForceRelocatable,
  1248                             RelocationHolder const& rspec) {
  1249   Address adr( d, (address)imm22a, rspec );
  1250   MacroAssembler::sethi( adr, ForceRelocatable );
  1254 void MacroAssembler::sethi(Address& a, bool ForceRelocatable) {
  1255   address save_pc;
  1256   int shiftcnt;
  1257   // if addr of local, do not need to load it
  1258   assert(a.base() != FP  &&  a.base() != SP, "just use ld or st for locals");
  1259 #ifdef _LP64
  1260 # ifdef CHECK_DELAY
  1261   assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
  1262 # endif
  1263   v9_dep();
  1264 //  ForceRelocatable = 1;
  1265   save_pc = pc();
  1266   if (a.hi32() == 0 && a.low32() >= 0) {
  1267     Assembler::sethi(a.low32(), a.base(), a.rspec());
  1269   else if (a.hi32() == -1) {
  1270     Assembler::sethi(~a.low32(), a.base(), a.rspec());
  1271     xor3(a.base(), ~low10(~0), a.base());
  1273   else {
  1274     Assembler::sethi(a.hi32(), a.base(), a.rspec() );   // 22
  1275     if ( a.hi32() & 0x3ff )                     // Any bits?
  1276       or3( a.base(), a.hi32() & 0x3ff ,a.base() ); // High 32 bits are now in low 32
  1277     if ( a.low32() & 0xFFFFFC00 ) {             // done?
  1278       if( (a.low32() >> 20) & 0xfff ) {         // Any bits set?
  1279         sllx(a.base(), 12, a.base());           // Make room for next 12 bits
  1280         or3( a.base(), (a.low32() >> 20) & 0xfff,a.base() ); // Or in next 12
  1281         shiftcnt = 0;                           // We already shifted
  1283       else
  1284         shiftcnt = 12;
  1285       if( (a.low32() >> 10) & 0x3ff ) {
  1286         sllx(a.base(), shiftcnt+10, a.base());// Make room for last 10 bits
  1287         or3( a.base(), (a.low32() >> 10) & 0x3ff,a.base() ); // Or in next 10
  1288         shiftcnt = 0;
  1290       else
  1291         shiftcnt = 10;
  1292       sllx(a.base(), shiftcnt+10 , a.base());           // Shift leaving disp field 0'd
  1294     else
  1295       sllx( a.base(), 32, a.base() );
  1297   // Pad out the instruction sequence so it can be
  1298   // patched later.
  1299   if ( ForceRelocatable || (a.rtype() != relocInfo::none &&
  1300                             a.rtype() != relocInfo::runtime_call_type) ) {
  1301     while ( pc() < (save_pc + (7 * BytesPerInstWord )) )
  1302       nop();
  1304 #else
  1305   Assembler::sethi(a.hi(), a.base(), a.rspec());
  1306 #endif
  1310 int MacroAssembler::size_of_sethi(address a, bool worst_case) {
  1311 #ifdef _LP64
  1312   if (worst_case) return 7;
  1313   intptr_t iaddr = (intptr_t)a;
  1314   int hi32 = (int)(iaddr >> 32);
  1315   int lo32 = (int)(iaddr);
  1316   int inst_count;
  1317   if (hi32 == 0 && lo32 >= 0)
  1318     inst_count = 1;
  1319   else if (hi32 == -1)
  1320     inst_count = 2;
  1321   else {
  1322     inst_count = 2;
  1323     if ( hi32 & 0x3ff )
  1324       inst_count++;
  1325     if ( lo32 & 0xFFFFFC00 ) {
  1326       if( (lo32 >> 20) & 0xfff ) inst_count += 2;
  1327       if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
  1330   return BytesPerInstWord * inst_count;
  1331 #else
  1332   return BytesPerInstWord;
  1333 #endif
  1336 int MacroAssembler::worst_case_size_of_set() {
  1337   return size_of_sethi(NULL, true) + 1;
  1340 void MacroAssembler::set(intptr_t value, Register d,
  1341                          RelocationHolder const& rspec) {
  1342   Address val( d, (address)value, rspec);
  1344   if ( rspec.type() == relocInfo::none ) {
  1345     // can optimize
  1346     if (-4096 <= value  &&  value <= 4095) {
  1347       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
  1348       return;
  1350     if (inv_hi22(hi22(value)) == value) {
  1351       sethi(val);
  1352       return;
  1355   assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
  1356   sethi( val );
  1357   if (rspec.type() != relocInfo::none || (value & 0x3ff) != 0) {
  1358     add( d, value &  0x3ff, d, rspec);
  1362 void MacroAssembler::setsw(int value, Register d,
  1363                            RelocationHolder const& rspec) {
  1364   Address val( d, (address)value, rspec);
  1365   if ( rspec.type() == relocInfo::none ) {
  1366     // can optimize
  1367     if (-4096 <= value  &&  value <= 4095) {
  1368       or3(G0, value, d);
  1369       return;
  1371     if (inv_hi22(hi22(value)) == value) {
  1372       sethi( val );
  1373 #ifndef _LP64
  1374       if ( value < 0 ) {
  1375         assert_not_delayed();
  1376         sra (d, G0, d);
  1378 #endif
  1379       return;
  1382   assert_not_delayed();
  1383   sethi( val );
  1384   add( d, value &  0x3ff, d, rspec);
  1386   // (A negative value could be loaded in 2 insns with sethi/xor,
  1387   // but it would take a more complex relocation.)
  1388 #ifndef _LP64
  1389   if ( value < 0)
  1390     sra(d, G0, d);
  1391 #endif
  1394 // %%% End of moved six set instructions.
  1397 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
  1398   assert_not_delayed();
  1399   v9_dep();
  1401   int hi = (int)(value >> 32);
  1402   int lo = (int)(value & ~0);
  1403   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1404   if (Assembler::is_simm13(lo) && value == lo) {
  1405     or3(G0, lo, d);
  1406   } else if (hi == 0) {
  1407     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
  1408     if (low10(lo) != 0)
  1409       or3(d, low10(lo), d);
  1411   else if (hi == -1) {
  1412     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
  1413     xor3(d, low10(lo) ^ ~low10(~0), d);
  1415   else if (lo == 0) {
  1416     if (Assembler::is_simm13(hi)) {
  1417       or3(G0, hi, d);
  1418     } else {
  1419       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
  1420       if (low10(hi) != 0)
  1421         or3(d, low10(hi), d);
  1423     sllx(d, 32, d);
  1425   else {
  1426     Assembler::sethi(hi, tmp);
  1427     Assembler::sethi(lo,   d); // macro assembler version sign-extends
  1428     if (low10(hi) != 0)
  1429       or3 (tmp, low10(hi), tmp);
  1430     if (low10(lo) != 0)
  1431       or3 (  d, low10(lo),   d);
  1432     sllx(tmp, 32, tmp);
  1433     or3 (d, tmp, d);
  1437 // compute size in bytes of sparc frame, given
  1438 // number of extraWords
  1439 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
  1441   int nWords = frame::memory_parameter_word_sp_offset;
  1443   nWords += extraWords;
  1445   if (nWords & 1) ++nWords; // round up to double-word
  1447   return nWords * BytesPerWord;
  1451 // save_frame: given number of "extra" words in frame,
  1452 // issue approp. save instruction (p 200, v8 manual)
  1454 void MacroAssembler::save_frame(int extraWords = 0) {
  1455   int delta = -total_frame_size_in_bytes(extraWords);
  1456   if (is_simm13(delta)) {
  1457     save(SP, delta, SP);
  1458   } else {
  1459     set(delta, G3_scratch);
  1460     save(SP, G3_scratch, SP);
  1465 void MacroAssembler::save_frame_c1(int size_in_bytes) {
  1466   if (is_simm13(-size_in_bytes)) {
  1467     save(SP, -size_in_bytes, SP);
  1468   } else {
  1469     set(-size_in_bytes, G3_scratch);
  1470     save(SP, G3_scratch, SP);
  1475 void MacroAssembler::save_frame_and_mov(int extraWords,
  1476                                         Register s1, Register d1,
  1477                                         Register s2, Register d2) {
  1478   assert_not_delayed();
  1480   // The trick here is to use precisely the same memory word
  1481   // that trap handlers also use to save the register.
  1482   // This word cannot be used for any other purpose, but
  1483   // it works fine to save the register's value, whether or not
  1484   // an interrupt flushes register windows at any given moment!
  1485   Address s1_addr;
  1486   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
  1487     s1_addr = s1->address_in_saved_window();
  1488     st_ptr(s1, s1_addr);
  1491   Address s2_addr;
  1492   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
  1493     s2_addr = s2->address_in_saved_window();
  1494     st_ptr(s2, s2_addr);
  1497   save_frame(extraWords);
  1499   if (s1_addr.base() == SP) {
  1500     ld_ptr(s1_addr.after_save(), d1);
  1501   } else if (s1->is_valid()) {
  1502     mov(s1->after_save(), d1);
  1505   if (s2_addr.base() == SP) {
  1506     ld_ptr(s2_addr.after_save(), d2);
  1507   } else if (s2->is_valid()) {
  1508     mov(s2->after_save(), d2);
  1513 Address MacroAssembler::allocate_oop_address(jobject obj, Register d) {
  1514   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1515   int oop_index = oop_recorder()->allocate_index(obj);
  1516   return Address(d, address(obj), oop_Relocation::spec(oop_index));
  1520 Address MacroAssembler::constant_oop_address(jobject obj, Register d) {
  1521   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1522   int oop_index = oop_recorder()->find_index(obj);
  1523   return Address(d, address(obj), oop_Relocation::spec(oop_index));
  1527 void MacroAssembler::align(int modulus) {
  1528   while (offset() % modulus != 0) nop();
  1532 void MacroAssembler::safepoint() {
  1533   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
  1537 void RegistersForDebugging::print(outputStream* s) {
  1538   int j;
  1539   for ( j = 0;  j < 8;  ++j )
  1540     if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
  1541     else          s->print_cr( "fp = 0x%.16lx",    i[j]);
  1542   s->cr();
  1544   for ( j = 0;  j < 8;  ++j )
  1545     s->print_cr("l%d = 0x%.16lx", j, l[j]);
  1546   s->cr();
  1548   for ( j = 0;  j < 8;  ++j )
  1549     if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
  1550     else          s->print_cr( "sp = 0x%.16lx",    o[j]);
  1551   s->cr();
  1553   for ( j = 0;  j < 8;  ++j )
  1554     s->print_cr("g%d = 0x%.16lx", j, g[j]);
  1555   s->cr();
  1557   // print out floats with compression
  1558   for (j = 0; j < 32; ) {
  1559     jfloat val = f[j];
  1560     int last = j;
  1561     for ( ;  last+1 < 32;  ++last ) {
  1562       char b1[1024], b2[1024];
  1563       sprintf(b1, "%f", val);
  1564       sprintf(b2, "%f", f[last+1]);
  1565       if (strcmp(b1, b2))
  1566         break;
  1568     s->print("f%d", j);
  1569     if ( j != last )  s->print(" - f%d", last);
  1570     s->print(" = %f", val);
  1571     s->fill_to(25);
  1572     s->print_cr(" (0x%x)", val);
  1573     j = last + 1;
  1575   s->cr();
  1577   // and doubles (evens only)
  1578   for (j = 0; j < 32; ) {
  1579     jdouble val = d[j];
  1580     int last = j;
  1581     for ( ;  last+1 < 32;  ++last ) {
  1582       char b1[1024], b2[1024];
  1583       sprintf(b1, "%f", val);
  1584       sprintf(b2, "%f", d[last+1]);
  1585       if (strcmp(b1, b2))
  1586         break;
  1588     s->print("d%d", 2 * j);
  1589     if ( j != last )  s->print(" - d%d", last);
  1590     s->print(" = %f", val);
  1591     s->fill_to(30);
  1592     s->print("(0x%x)", *(int*)&val);
  1593     s->fill_to(42);
  1594     s->print_cr("(0x%x)", *(1 + (int*)&val));
  1595     j = last + 1;
  1597   s->cr();
  1600 void RegistersForDebugging::save_registers(MacroAssembler* a) {
  1601   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  1602   a->flush_windows();
  1603   int i;
  1604   for (i = 0; i < 8; ++i) {
  1605     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
  1606     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
  1607     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
  1608     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  1610   for (i = 0;  i < 32; ++i) {
  1611     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  1613   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
  1614     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  1618 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  1619   for (int i = 1; i < 8;  ++i) {
  1620     a->ld_ptr(r, g_offset(i), as_gRegister(i));
  1622   for (int j = 0; j < 32; ++j) {
  1623     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  1625   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
  1626     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  1631 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1632 void MacroAssembler::push_fTOS() {
  1633   // %%%%%% need to implement this
  1636 // pops double TOS element from CPU stack and pushes on FPU stack
  1637 void MacroAssembler::pop_fTOS() {
  1638   // %%%%%% need to implement this
  1641 void MacroAssembler::empty_FPU_stack() {
  1642   // %%%%%% need to implement this
  1645 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  1646   // plausibility check for oops
  1647   if (!VerifyOops) return;
  1649   if (reg == G0)  return;       // always NULL, which is always an oop
  1651   char buffer[16];
  1652   sprintf(buffer, "%d", line);
  1653   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  1654   char * real_msg = new char[len];
  1655   sprintf(real_msg, "%s (%s:%d)", msg, file, line);
  1657   // Call indirectly to solve generation ordering problem
  1658   Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
  1660   // Make some space on stack above the current register window.
  1661   // Enough to hold 8 64-bit registers.
  1662   add(SP,-8*8,SP);
  1664   // Save some 64-bit registers; a normal 'save' chops the heads off
  1665   // of 64-bit longs in the 32-bit build.
  1666   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1667   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1668   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  1669   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1671   set((intptr_t)real_msg, O1);
  1672   // Load address to call to into O7
  1673   load_ptr_contents(a, O7);
  1674   // Register call to verify_oop_subroutine
  1675   callr(O7, G0);
  1676   delayed()->nop();
  1677   // recover frame size
  1678   add(SP, 8*8,SP);
  1681 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  1682   // plausibility check for oops
  1683   if (!VerifyOops) return;
  1685   char buffer[64];
  1686   sprintf(buffer, "%d", line);
  1687   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  1688   sprintf(buffer, " at SP+%d ", addr.disp());
  1689   len += strlen(buffer);
  1690   char * real_msg = new char[len];
  1691   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
  1693   // Call indirectly to solve generation ordering problem
  1694   Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
  1696   // Make some space on stack above the current register window.
  1697   // Enough to hold 8 64-bit registers.
  1698   add(SP,-8*8,SP);
  1700   // Save some 64-bit registers; a normal 'save' chops the heads off
  1701   // of 64-bit longs in the 32-bit build.
  1702   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1703   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1704   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  1705   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1707   set((intptr_t)real_msg, O1);
  1708   // Load address to call to into O7
  1709   load_ptr_contents(a, O7);
  1710   // Register call to verify_oop_subroutine
  1711   callr(O7, G0);
  1712   delayed()->nop();
  1713   // recover frame size
  1714   add(SP, 8*8,SP);
  1717 // side-door communication with signalHandler in os_solaris.cpp
  1718 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
  1720 // This macro is expanded just once; it creates shared code.  Contract:
  1721 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
  1722 // registers, including flags.  May not use a register 'save', as this blows
  1723 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
  1724 // call.
  1725 void MacroAssembler::verify_oop_subroutine() {
  1726   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
  1728   // Leaf call; no frame.
  1729   Label succeed, fail, null_or_fail;
  1731   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  1732   // O0 is now the oop to be checked.  O7 is the return address.
  1733   Register O0_obj = O0;
  1735   // Save some more registers for temps.
  1736   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  1737   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  1738   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  1739   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
  1741   // Save flags
  1742   Register O5_save_flags = O5;
  1743   rdccr( O5_save_flags );
  1745   { // count number of verifies
  1746     Register O2_adr   = O2;
  1747     Register O3_accum = O3;
  1748     Address count_addr( O2_adr, (address) StubRoutines::verify_oop_count_addr() );
  1749     sethi(count_addr);
  1750     ld(count_addr, O3_accum);
  1751     inc(O3_accum);
  1752     st(O3_accum, count_addr);
  1755   Register O2_mask = O2;
  1756   Register O3_bits = O3;
  1757   Register O4_temp = O4;
  1759   // mark lower end of faulting range
  1760   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  1761   _verify_oop_implicit_branch[0] = pc();
  1763   // We can't check the mark oop because it could be in the process of
  1764   // locking or unlocking while this is running.
  1765   set(Universe::verify_oop_mask (), O2_mask);
  1766   set(Universe::verify_oop_bits (), O3_bits);
  1768   // assert((obj & oop_mask) == oop_bits);
  1769   and3(O0_obj, O2_mask, O4_temp);
  1770   cmp(O4_temp, O3_bits);
  1771   brx(notEqual, false, pn, null_or_fail);
  1772   delayed()->nop();
  1774   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
  1775     // the null_or_fail case is useless; must test for null separately
  1776     br_null(O0_obj, false, pn, succeed);
  1777     delayed()->nop();
  1780   // Check the klassOop of this object for being in the right area of memory.
  1781   // Cannot do the load in the delay above slot in case O0 is null
  1782   load_klass(O0_obj, O0_obj);
  1783   // assert((klass & klass_mask) == klass_bits);
  1784   if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
  1785     set(Universe::verify_klass_mask(), O2_mask);
  1786   if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
  1787     set(Universe::verify_klass_bits(), O3_bits);
  1788   and3(O0_obj, O2_mask, O4_temp);
  1789   cmp(O4_temp, O3_bits);
  1790   brx(notEqual, false, pn, fail);
  1791   delayed()->nop();
  1792   // Check the klass's klass
  1793   load_klass(O0_obj, O0_obj);
  1794   and3(O0_obj, O2_mask, O4_temp);
  1795   cmp(O4_temp, O3_bits);
  1796   brx(notEqual, false, pn, fail);
  1797   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1799   // mark upper end of faulting range
  1800   _verify_oop_implicit_branch[1] = pc();
  1802   //-----------------------
  1803   // all tests pass
  1804   bind(succeed);
  1806   // Restore prior 64-bit registers
  1807   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  1808   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  1809   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  1810   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  1811   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  1812   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
  1814   retl();                       // Leaf return; restore prior O7 in delay slot
  1815   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
  1817   //-----------------------
  1818   bind(null_or_fail);           // nulls are less common but OK
  1819   br_null(O0_obj, false, pt, succeed);
  1820   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1822   //-----------------------
  1823   // report failure:
  1824   bind(fail);
  1825   _verify_oop_implicit_branch[2] = pc();
  1827   wrccr( O5_save_flags ); // Restore CCR's
  1829   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1831   // stop_subroutine expects message pointer in I1.
  1832   mov(I1, O1);
  1834   // Restore prior 64-bit registers
  1835   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  1836   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  1837   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  1838   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  1839   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  1840   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
  1842   // factor long stop-sequence into subroutine to save space
  1843   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1845   // call indirectly to solve generation ordering problem
  1846   Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
  1847   load_ptr_contents(a, O5);
  1848   jmpl(O5, 0, O7);
  1849   delayed()->nop();
  1853 void MacroAssembler::stop(const char* msg) {
  1854   // save frame first to get O7 for return address
  1855   // add one word to size in case struct is odd number of words long
  1856   // It must be doubleword-aligned for storing doubles into it.
  1858     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1860     // stop_subroutine expects message pointer in I1.
  1861     set((intptr_t)msg, O1);
  1863     // factor long stop-sequence into subroutine to save space
  1864     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1866     // call indirectly to solve generation ordering problem
  1867     Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
  1868     load_ptr_contents(a, O5);
  1869     jmpl(O5, 0, O7);
  1870     delayed()->nop();
  1872     breakpoint_trap();   // make stop actually stop rather than writing
  1873                          // unnoticeable results in the output files.
  1875     // restore(); done in callee to save space!
  1879 void MacroAssembler::warn(const char* msg) {
  1880   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1881   RegistersForDebugging::save_registers(this);
  1882   mov(O0, L0);
  1883   set((intptr_t)msg, O0);
  1884   call( CAST_FROM_FN_PTR(address, warning) );
  1885   delayed()->nop();
  1886 //  ret();
  1887 //  delayed()->restore();
  1888   RegistersForDebugging::restore_registers(this, L0);
  1889   restore();
  1893 void MacroAssembler::untested(const char* what) {
  1894   // We must be able to turn interactive prompting off
  1895   // in order to run automated test scripts on the VM
  1896   // Use the flag ShowMessageBoxOnError
  1898   char* b = new char[1024];
  1899   sprintf(b, "untested: %s", what);
  1901   if ( ShowMessageBoxOnError )   stop(b);
  1902   else                           warn(b);
  1906 void MacroAssembler::stop_subroutine() {
  1907   RegistersForDebugging::save_registers(this);
  1909   // for the sake of the debugger, stick a PC on the current frame
  1910   // (this assumes that the caller has performed an extra "save")
  1911   mov(I7, L7);
  1912   add(O7, -7 * BytesPerInt, I7);
  1914   save_frame(); // one more save to free up another O7 register
  1915   mov(I0, O1); // addr of reg save area
  1917   // We expect pointer to message in I1. Caller must set it up in O1
  1918   mov(I1, O0); // get msg
  1919   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  1920   delayed()->nop();
  1922   restore();
  1924   RegistersForDebugging::restore_registers(this, O0);
  1926   save_frame(0);
  1927   call(CAST_FROM_FN_PTR(address,breakpoint));
  1928   delayed()->nop();
  1929   restore();
  1931   mov(L7, I7);
  1932   retl();
  1933   delayed()->restore(); // see stop above
  1937 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  1938   if ( ShowMessageBoxOnError ) {
  1939       JavaThreadState saved_state = JavaThread::current()->thread_state();
  1940       JavaThread::current()->set_thread_state(_thread_in_vm);
  1942         // In order to get locks work, we need to fake a in_VM state
  1943         ttyLocker ttyl;
  1944         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
  1945         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  1946           ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
  1948         if (os::message_box(msg, "Execution stopped, print registers?"))
  1949           regs->print(::tty);
  1951       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  1953   else
  1954      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  1955   assert(false, "error");
  1959 #ifndef PRODUCT
  1960 void MacroAssembler::test() {
  1961   ResourceMark rm;
  1963   CodeBuffer cb("test", 10000, 10000);
  1964   MacroAssembler* a = new MacroAssembler(&cb);
  1965   VM_Version::allow_all();
  1966   a->test_v9();
  1967   a->test_v8_onlys();
  1968   VM_Version::revert();
  1970   StubRoutines::Sparc::test_stop_entry()();
  1972 #endif
  1975 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  1976   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  1977   Label no_extras;
  1978   br( negative, true, pt, no_extras ); // if neg, clear reg
  1979   delayed()->set( 0, Rresult);         // annuled, so only if taken
  1980   bind( no_extras );
  1984 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
  1985 #ifdef _LP64
  1986   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
  1987 #else
  1988   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
  1989 #endif
  1990   bclr(1, Rresult);
  1991   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
  1995 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  1996   calc_frame_size(Rextra_words, Rresult);
  1997   neg(Rresult);
  1998   save(SP, Rresult, SP);
  2002 // ---------------------------------------------------------
  2003 Assembler::RCondition cond2rcond(Assembler::Condition c) {
  2004   switch (c) {
  2005     /*case zero: */
  2006     case Assembler::equal:        return Assembler::rc_z;
  2007     case Assembler::lessEqual:    return Assembler::rc_lez;
  2008     case Assembler::less:         return Assembler::rc_lz;
  2009     /*case notZero:*/
  2010     case Assembler::notEqual:     return Assembler::rc_nz;
  2011     case Assembler::greater:      return Assembler::rc_gz;
  2012     case Assembler::greaterEqual: return Assembler::rc_gez;
  2014   ShouldNotReachHere();
  2015   return Assembler::rc_z;
  2018 // compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
  2019 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
  2020   tst(s1);
  2021   br (c, a, p, L);
  2025 // Compares a pointer register with zero and branches on null.
  2026 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  2027 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  2028   assert_not_delayed();
  2029 #ifdef _LP64
  2030   bpr( rc_z, a, p, s1, L );
  2031 #else
  2032   tst(s1);
  2033   br ( zero, a, p, L );
  2034 #endif
  2037 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  2038   assert_not_delayed();
  2039 #ifdef _LP64
  2040   bpr( rc_nz, a, p, s1, L );
  2041 #else
  2042   tst(s1);
  2043   br ( notZero, a, p, L );
  2044 #endif
  2048 // instruction sequences factored across compiler & interpreter
  2051 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
  2052                            Register Rb_hi, Register Rb_low,
  2053                            Register Rresult) {
  2055   Label check_low_parts, done;
  2057   cmp(Ra_hi, Rb_hi );  // compare hi parts
  2058   br(equal, true, pt, check_low_parts);
  2059   delayed()->cmp(Ra_low, Rb_low); // test low parts
  2061   // And, with an unsigned comparison, it does not matter if the numbers
  2062   // are negative or not.
  2063   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  2064   // The second one is bigger (unsignedly).
  2066   // Other notes:  The first move in each triplet can be unconditional
  2067   // (and therefore probably prefetchable).
  2068   // And the equals case for the high part does not need testing,
  2069   // since that triplet is reached only after finding the high halves differ.
  2071   if (VM_Version::v9_instructions_work()) {
  2073                                     mov  (                     -1, Rresult);
  2074     ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
  2076   else {
  2077     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
  2078     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
  2081   bind( check_low_parts );
  2083   if (VM_Version::v9_instructions_work()) {
  2084     mov(                               -1, Rresult);
  2085     movcc(equal,           false, icc,  0, Rresult);
  2086     movcc(greaterUnsigned, false, icc,  1, Rresult);
  2088   else {
  2089                                                     set(-1, Rresult);
  2090     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
  2091     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
  2093   bind( done );
  2096 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  2097   subcc(  G0, Rlow, Rlow );
  2098   subc(   G0, Rhi,  Rhi  );
  2101 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
  2102                            Register Rcount,
  2103                            Register Rout_high, Register Rout_low,
  2104                            Register Rtemp ) {
  2107   Register Ralt_count = Rtemp;
  2108   Register Rxfer_bits = Rtemp;
  2110   assert( Ralt_count != Rin_high
  2111       &&  Ralt_count != Rin_low
  2112       &&  Ralt_count != Rcount
  2113       &&  Rxfer_bits != Rin_low
  2114       &&  Rxfer_bits != Rin_high
  2115       &&  Rxfer_bits != Rcount
  2116       &&  Rxfer_bits != Rout_low
  2117       &&  Rout_low   != Rin_high,
  2118         "register alias checks");
  2120   Label big_shift, done;
  2122   // This code can be optimized to use the 64 bit shifts in V9.
  2123   // Here we use the 32 bit shifts.
  2125   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2126   subcc(Rcount,         31,             Ralt_count);
  2127   br(greater, true, pn, big_shift);
  2128   delayed()->
  2129   dec(Ralt_count);
  2131   // shift < 32 bits, Ralt_count = Rcount-31
  2133   // We get the transfer bits by shifting right by 32-count the low
  2134   // register. This is done by shifting right by 31-count and then by one
  2135   // more to take care of the special (rare) case where count is zero
  2136   // (shifting by 32 would not work).
  2138   neg(  Ralt_count                                 );
  2140   // The order of the next two instructions is critical in the case where
  2141   // Rin and Rout are the same and should not be reversed.
  2143   srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
  2144   if (Rcount != Rout_low) {
  2145     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2147   sll(  Rin_high,       Rcount,         Rout_high  );
  2148   if (Rcount == Rout_low) {
  2149     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2151   srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
  2152   ba (false, done);
  2153   delayed()->
  2154   or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low
  2156   // shift >= 32 bits, Ralt_count = Rcount-32
  2157   bind(big_shift);
  2158   sll(  Rin_low,        Ralt_count,     Rout_high  );
  2159   clr(  Rout_low                                   );
  2161   bind(done);
  2165 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
  2166                            Register Rcount,
  2167                            Register Rout_high, Register Rout_low,
  2168                            Register Rtemp ) {
  2170   Register Ralt_count = Rtemp;
  2171   Register Rxfer_bits = Rtemp;
  2173   assert( Ralt_count != Rin_high
  2174       &&  Ralt_count != Rin_low
  2175       &&  Ralt_count != Rcount
  2176       &&  Rxfer_bits != Rin_low
  2177       &&  Rxfer_bits != Rin_high
  2178       &&  Rxfer_bits != Rcount
  2179       &&  Rxfer_bits != Rout_high
  2180       &&  Rout_high  != Rin_low,
  2181         "register alias checks");
  2183   Label big_shift, done;
  2185   // This code can be optimized to use the 64 bit shifts in V9.
  2186   // Here we use the 32 bit shifts.
  2188   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2189   subcc(Rcount,         31,             Ralt_count);
  2190   br(greater, true, pn, big_shift);
  2191   delayed()->dec(Ralt_count);
  2193   // shift < 32 bits, Ralt_count = Rcount-31
  2195   // We get the transfer bits by shifting left by 32-count the high
  2196   // register. This is done by shifting left by 31-count and then by one
  2197   // more to take care of the special (rare) case where count is zero
  2198   // (shifting by 32 would not work).
  2200   neg(  Ralt_count                                  );
  2201   if (Rcount != Rout_low) {
  2202     srl(        Rin_low,        Rcount,         Rout_low    );
  2205   // The order of the next two instructions is critical in the case where
  2206   // Rin and Rout are the same and should not be reversed.
  2208   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2209   sra(  Rin_high,       Rcount,         Rout_high   ); // high half
  2210   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2211   if (Rcount == Rout_low) {
  2212     srl(        Rin_low,        Rcount,         Rout_low    );
  2214   ba (false, done);
  2215   delayed()->
  2216   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2218   // shift >= 32 bits, Ralt_count = Rcount-32
  2219   bind(big_shift);
  2221   sra(  Rin_high,       Ralt_count,     Rout_low    );
  2222   sra(  Rin_high,       31,             Rout_high   ); // sign into hi
  2224   bind( done );
  2229 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
  2230                             Register Rcount,
  2231                             Register Rout_high, Register Rout_low,
  2232                             Register Rtemp ) {
  2234   Register Ralt_count = Rtemp;
  2235   Register Rxfer_bits = Rtemp;
  2237   assert( Ralt_count != Rin_high
  2238       &&  Ralt_count != Rin_low
  2239       &&  Ralt_count != Rcount
  2240       &&  Rxfer_bits != Rin_low
  2241       &&  Rxfer_bits != Rin_high
  2242       &&  Rxfer_bits != Rcount
  2243       &&  Rxfer_bits != Rout_high
  2244       &&  Rout_high  != Rin_low,
  2245         "register alias checks");
  2247   Label big_shift, done;
  2249   // This code can be optimized to use the 64 bit shifts in V9.
  2250   // Here we use the 32 bit shifts.
  2252   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2253   subcc(Rcount,         31,             Ralt_count);
  2254   br(greater, true, pn, big_shift);
  2255   delayed()->dec(Ralt_count);
  2257   // shift < 32 bits, Ralt_count = Rcount-31
  2259   // We get the transfer bits by shifting left by 32-count the high
  2260   // register. This is done by shifting left by 31-count and then by one
  2261   // more to take care of the special (rare) case where count is zero
  2262   // (shifting by 32 would not work).
  2264   neg(  Ralt_count                                  );
  2265   if (Rcount != Rout_low) {
  2266     srl(        Rin_low,        Rcount,         Rout_low    );
  2269   // The order of the next two instructions is critical in the case where
  2270   // Rin and Rout are the same and should not be reversed.
  2272   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2273   srl(  Rin_high,       Rcount,         Rout_high   ); // high half
  2274   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2275   if (Rcount == Rout_low) {
  2276     srl(        Rin_low,        Rcount,         Rout_low    );
  2278   ba (false, done);
  2279   delayed()->
  2280   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2282   // shift >= 32 bits, Ralt_count = Rcount-32
  2283   bind(big_shift);
  2285   srl(  Rin_high,       Ralt_count,     Rout_low    );
  2286   clr(  Rout_high                                   );
  2288   bind( done );
  2291 #ifdef _LP64
  2292 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  2293   cmp(Ra, Rb);
  2294   mov(                       -1, Rresult);
  2295   movcc(equal,   false, xcc,  0, Rresult);
  2296   movcc(greater, false, xcc,  1, Rresult);
  2298 #endif
  2301 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
  2302                                 FloatRegister Fa, FloatRegister Fb,
  2303                                 Register Rresult) {
  2305   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
  2307   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
  2308   Condition eq =                          f_equal;
  2309   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
  2311   if (VM_Version::v9_instructions_work()) {
  2313     mov(                   -1, Rresult );
  2314     movcc( eq, true, fcc0,  0, Rresult );
  2315     movcc( gt, true, fcc0,  1, Rresult );
  2317   } else {
  2318     Label done;
  2320                                          set( -1, Rresult );
  2321     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
  2322     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
  2323     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
  2325     bind (done);
  2330 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2332   if (VM_Version::v9_instructions_work()) {
  2333     Assembler::fneg(w, s, d);
  2334   } else {
  2335     if (w == FloatRegisterImpl::S) {
  2336       Assembler::fneg(w, s, d);
  2337     } else if (w == FloatRegisterImpl::D) {
  2338       // number() does a sanity check on the alignment.
  2339       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2340         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2342       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2343       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2344     } else {
  2345       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2347       // number() does a sanity check on the alignment.
  2348       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2349         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2351       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2352       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2353       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2354       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2359 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2361   if (VM_Version::v9_instructions_work()) {
  2362     Assembler::fmov(w, s, d);
  2363   } else {
  2364     if (w == FloatRegisterImpl::S) {
  2365       Assembler::fmov(w, s, d);
  2366     } else if (w == FloatRegisterImpl::D) {
  2367       // number() does a sanity check on the alignment.
  2368       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2369         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2371       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2372       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2373     } else {
  2374       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2376       // number() does a sanity check on the alignment.
  2377       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2378         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2380       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2381       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2382       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2383       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2388 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2390   if (VM_Version::v9_instructions_work()) {
  2391     Assembler::fabs(w, s, d);
  2392   } else {
  2393     if (w == FloatRegisterImpl::S) {
  2394       Assembler::fabs(w, s, d);
  2395     } else if (w == FloatRegisterImpl::D) {
  2396       // number() does a sanity check on the alignment.
  2397       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2398         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2400       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2401       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2402     } else {
  2403       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2405       // number() does a sanity check on the alignment.
  2406       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2407        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2409       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2410       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2411       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2412       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2417 void MacroAssembler::save_all_globals_into_locals() {
  2418   mov(G1,L1);
  2419   mov(G2,L2);
  2420   mov(G3,L3);
  2421   mov(G4,L4);
  2422   mov(G5,L5);
  2423   mov(G6,L6);
  2424   mov(G7,L7);
  2427 void MacroAssembler::restore_globals_from_locals() {
  2428   mov(L1,G1);
  2429   mov(L2,G2);
  2430   mov(L3,G3);
  2431   mov(L4,G4);
  2432   mov(L5,G5);
  2433   mov(L6,G6);
  2434   mov(L7,G7);
  2437 // Use for 64 bit operation.
  2438 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2440   // store ptr_reg as the new top value
  2441 #ifdef _LP64
  2442   casx(top_ptr_reg, top_reg, ptr_reg);
  2443 #else
  2444   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
  2445 #endif // _LP64
  2448 // [RGV] This routine does not handle 64 bit operations.
  2449 //       use casx_under_lock() or casx directly!!!
  2450 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2452   // store ptr_reg as the new top value
  2453   if (VM_Version::v9_instructions_work()) {
  2454     cas(top_ptr_reg, top_reg, ptr_reg);
  2455   } else {
  2457     // If the register is not an out nor global, it is not visible
  2458     // after the save.  Allocate a register for it, save its
  2459     // value in the register save area (the save may not flush
  2460     // registers to the save area).
  2462     Register top_ptr_reg_after_save;
  2463     Register top_reg_after_save;
  2464     Register ptr_reg_after_save;
  2466     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
  2467       top_ptr_reg_after_save = top_ptr_reg->after_save();
  2468     } else {
  2469       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
  2470       top_ptr_reg_after_save = L0;
  2471       st(top_ptr_reg, reg_save_addr);
  2474     if (top_reg->is_out() || top_reg->is_global()) {
  2475       top_reg_after_save = top_reg->after_save();
  2476     } else {
  2477       Address reg_save_addr = top_reg->address_in_saved_window();
  2478       top_reg_after_save = L1;
  2479       st(top_reg, reg_save_addr);
  2482     if (ptr_reg->is_out() || ptr_reg->is_global()) {
  2483       ptr_reg_after_save = ptr_reg->after_save();
  2484     } else {
  2485       Address reg_save_addr = ptr_reg->address_in_saved_window();
  2486       ptr_reg_after_save = L2;
  2487       st(ptr_reg, reg_save_addr);
  2490     const Register& lock_reg = L3;
  2491     const Register& lock_ptr_reg = L4;
  2492     const Register& value_reg = L5;
  2493     const Register& yield_reg = L6;
  2494     const Register& yieldall_reg = L7;
  2496     save_frame();
  2498     if (top_ptr_reg_after_save == L0) {
  2499       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
  2502     if (top_reg_after_save == L1) {
  2503       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
  2506     if (ptr_reg_after_save == L2) {
  2507       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
  2510     Label(retry_get_lock);
  2511     Label(not_same);
  2512     Label(dont_yield);
  2514     assert(lock_addr, "lock_address should be non null for v8");
  2515     set((intptr_t)lock_addr, lock_ptr_reg);
  2516     // Initialize yield counter
  2517     mov(G0,yield_reg);
  2518     mov(G0, yieldall_reg);
  2519     set(StubRoutines::Sparc::locked, lock_reg);
  2521     bind(retry_get_lock);
  2522     cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
  2523     br(Assembler::less, false, Assembler::pt, dont_yield);
  2524     delayed()->nop();
  2526     if(use_call_vm) {
  2527       Untested("Need to verify global reg consistancy");
  2528       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
  2529     } else {
  2530       // Save the regs and make space for a C call
  2531       save(SP, -96, SP);
  2532       save_all_globals_into_locals();
  2533       call(CAST_FROM_FN_PTR(address,os::yield_all));
  2534       delayed()->mov(yieldall_reg, O0);
  2535       restore_globals_from_locals();
  2536       restore();
  2539     // reset the counter
  2540     mov(G0,yield_reg);
  2541     add(yieldall_reg, 1, yieldall_reg);
  2543     bind(dont_yield);
  2544     // try to get lock
  2545     swap(lock_ptr_reg, 0, lock_reg);
  2547     // did we get the lock?
  2548     cmp(lock_reg, StubRoutines::Sparc::unlocked);
  2549     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
  2550     delayed()->add(yield_reg,1,yield_reg);
  2552     // yes, got lock.  do we have the same top?
  2553     ld(top_ptr_reg_after_save, 0, value_reg);
  2554     cmp(value_reg, top_reg_after_save);
  2555     br(Assembler::notEqual, false, Assembler::pn, not_same);
  2556     delayed()->nop();
  2558     // yes, same top.
  2559     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
  2560     membar(Assembler::StoreStore);
  2562     bind(not_same);
  2563     mov(value_reg, ptr_reg_after_save);
  2564     st(lock_reg, lock_ptr_reg, 0); // unlock
  2566     restore();
  2570 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
  2571                                           Label& done, Label* slow_case,
  2572                                           BiasedLockingCounters* counters) {
  2573   assert(UseBiasedLocking, "why call this otherwise?");
  2575   if (PrintBiasedLockingStatistics) {
  2576     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
  2577     if (counters == NULL)
  2578       counters = BiasedLocking::counters();
  2581   Label cas_label;
  2583   // Biased locking
  2584   // See whether the lock is currently biased toward our thread and
  2585   // whether the epoch is still valid
  2586   // Note that the runtime guarantees sufficient alignment of JavaThread
  2587   // pointers to allow age to be placed into low bits
  2588   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  2589   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  2590   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  2591   brx(Assembler::notEqual, false, Assembler::pn, cas_label);
  2592   delayed()->nop();
  2594   load_klass(obj_reg, temp_reg);
  2595   ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  2596   or3(G2_thread, temp_reg, temp_reg);
  2597   xor3(mark_reg, temp_reg, temp_reg);
  2598   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  2599   if (counters != NULL) {
  2600     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
  2601     // Reload mark_reg as we may need it later
  2602     ld_ptr(Address(obj_reg, 0, oopDesc::mark_offset_in_bytes()), mark_reg);
  2604   brx(Assembler::equal, true, Assembler::pt, done);
  2605   delayed()->nop();
  2607   Label try_revoke_bias;
  2608   Label try_rebias;
  2609   Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
  2610   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  2612   // At this point we know that the header has the bias pattern and
  2613   // that we are not the bias owner in the current epoch. We need to
  2614   // figure out more details about the state of the header in order to
  2615   // know what operations can be legally performed on the object's
  2616   // header.
  2618   // If the low three bits in the xor result aren't clear, that means
  2619   // the prototype header is no longer biased and we have to revoke
  2620   // the bias on this object.
  2621   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  2622   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
  2624   // Biasing is still enabled for this data type. See whether the
  2625   // epoch of the current bias is still valid, meaning that the epoch
  2626   // bits of the mark word are equal to the epoch bits of the
  2627   // prototype header. (Note that the prototype header's epoch bits
  2628   // only change at a safepoint.) If not, attempt to rebias the object
  2629   // toward the current thread. Note that we must be absolutely sure
  2630   // that the current epoch is invalid in order to do this because
  2631   // otherwise the manipulations it performs on the mark word are
  2632   // illegal.
  2633   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  2634   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
  2636   // The epoch of the current bias is still valid but we know nothing
  2637   // about the owner; it might be set or it might be clear. Try to
  2638   // acquire the bias of the object using an atomic operation. If this
  2639   // fails we will go in to the runtime to revoke the object's bias.
  2640   // Note that we first construct the presumed unbiased header so we
  2641   // don't accidentally blow away another thread's valid bias.
  2642   delayed()->and3(mark_reg,
  2643                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
  2644                   mark_reg);
  2645   or3(G2_thread, mark_reg, temp_reg);
  2646   casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  2647                   (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2648   // If the biasing toward our thread failed, this means that
  2649   // another thread succeeded in biasing it toward itself and we
  2650   // need to revoke that bias. The revocation will occur in the
  2651   // interpreter runtime in the slow case.
  2652   cmp(mark_reg, temp_reg);
  2653   if (counters != NULL) {
  2654     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  2656   if (slow_case != NULL) {
  2657     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  2658     delayed()->nop();
  2660   br(Assembler::always, false, Assembler::pt, done);
  2661   delayed()->nop();
  2663   bind(try_rebias);
  2664   // At this point we know the epoch has expired, meaning that the
  2665   // current "bias owner", if any, is actually invalid. Under these
  2666   // circumstances _only_, we are allowed to use the current header's
  2667   // value as the comparison value when doing the cas to acquire the
  2668   // bias in the current epoch. In other words, we allow transfer of
  2669   // the bias from one thread to another directly in this situation.
  2670   //
  2671   // FIXME: due to a lack of registers we currently blow away the age
  2672   // bits in this situation. Should attempt to preserve them.
  2673   load_klass(obj_reg, temp_reg);
  2674   ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  2675   or3(G2_thread, temp_reg, temp_reg);
  2676   casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  2677                   (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2678   // If the biasing toward our thread failed, this means that
  2679   // another thread succeeded in biasing it toward itself and we
  2680   // need to revoke that bias. The revocation will occur in the
  2681   // interpreter runtime in the slow case.
  2682   cmp(mark_reg, temp_reg);
  2683   if (counters != NULL) {
  2684     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  2686   if (slow_case != NULL) {
  2687     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  2688     delayed()->nop();
  2690   br(Assembler::always, false, Assembler::pt, done);
  2691   delayed()->nop();
  2693   bind(try_revoke_bias);
  2694   // The prototype mark in the klass doesn't have the bias bit set any
  2695   // more, indicating that objects of this data type are not supposed
  2696   // to be biased any more. We are going to try to reset the mark of
  2697   // this object to the prototype value and fall through to the
  2698   // CAS-based locking scheme. Note that if our CAS fails, it means
  2699   // that another thread raced us for the privilege of revoking the
  2700   // bias of this particular object, so it's okay to continue in the
  2701   // normal locking code.
  2702   //
  2703   // FIXME: due to a lack of registers we currently blow away the age
  2704   // bits in this situation. Should attempt to preserve them.
  2705   load_klass(obj_reg, temp_reg);
  2706   ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  2707   casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  2708                   (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2709   // Fall through to the normal CAS-based lock, because no matter what
  2710   // the result of the above CAS, some thread must have succeeded in
  2711   // removing the bias bit from the object's header.
  2712   if (counters != NULL) {
  2713     cmp(mark_reg, temp_reg);
  2714     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  2717   bind(cas_label);
  2720 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
  2721                                           bool allow_delay_slot_filling) {
  2722   // Check for biased locking unlock case, which is a no-op
  2723   // Note: we do not have to check the thread ID for two reasons.
  2724   // First, the interpreter checks for IllegalMonitorStateException at
  2725   // a higher level. Second, if the bias was revoked while we held the
  2726   // lock, the object could not be rebiased toward another thread, so
  2727   // the bias bit would be clear.
  2728   ld_ptr(mark_addr, temp_reg);
  2729   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  2730   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  2731   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  2732   delayed();
  2733   if (!allow_delay_slot_filling) {
  2734     nop();
  2739 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
  2740 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
  2742 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
  2743   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
  2748 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
  2749 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
  2750 // The code could be tightened up considerably.
  2751 //
  2752 // box->dhw disposition - post-conditions at DONE_LABEL.
  2753 // -   Successful inflated lock:  box->dhw != 0.
  2754 //     Any non-zero value suffices.
  2755 //     Consider G2_thread, rsp, boxReg, or unused_mark()
  2756 // -   Successful Stack-lock: box->dhw == mark.
  2757 //     box->dhw must contain the displaced mark word value
  2758 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
  2759 //     The slow-path fast_enter() and slow_enter() operators
  2760 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
  2761 // -   Biased: box->dhw is undefined
  2762 //
  2763 // SPARC refworkload performance - specifically jetstream and scimark - are
  2764 // extremely sensitive to the size of the code emitted by compiler_lock_object
  2765 // and compiler_unlock_object.  Critically, the key factor is code size, not path
  2766 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
  2767 // effect).
  2770 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
  2771                                           BiasedLockingCounters* counters) {
  2772    Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
  2774    verify_oop(Roop);
  2775    Label done ;
  2777    if (counters != NULL) {
  2778      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
  2781    if (EmitSync & 1) {
  2782      mov    (3, Rscratch) ;
  2783      st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2784      cmp    (SP, G0) ;
  2785      return ;
  2788    if (EmitSync & 2) {
  2790      // Fetch object's markword
  2791      ld_ptr(mark_addr, Rmark);
  2793      if (UseBiasedLocking) {
  2794         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2797      // Save Rbox in Rscratch to be used for the cas operation
  2798      mov(Rbox, Rscratch);
  2800      // set Rmark to markOop | markOopDesc::unlocked_value
  2801      or3(Rmark, markOopDesc::unlocked_value, Rmark);
  2803      // Initialize the box.  (Must happen before we update the object mark!)
  2804      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2806      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
  2807      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  2808      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
  2809         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2811      // if compare/exchange succeeded we found an unlocked object and we now have locked it
  2812      // hence we are done
  2813      cmp(Rmark, Rscratch);
  2814 #ifdef _LP64
  2815      sub(Rscratch, STACK_BIAS, Rscratch);
  2816 #endif
  2817      brx(Assembler::equal, false, Assembler::pt, done);
  2818      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
  2820      // we did not find an unlocked object so see if this is a recursive case
  2821      // sub(Rscratch, SP, Rscratch);
  2822      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  2823      andcc(Rscratch, 0xfffff003, Rscratch);
  2824      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2825      bind (done) ;
  2826      return ;
  2829    Label Egress ;
  2831    if (EmitSync & 256) {
  2832       Label IsInflated ;
  2834       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  2835       // Triage: biased, stack-locked, neutral, inflated
  2836       if (UseBiasedLocking) {
  2837         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2838         // Invariant: if control reaches this point in the emitted stream
  2839         // then Rmark has not been modified.
  2842       // Store mark into displaced mark field in the on-stack basic-lock "box"
  2843       // Critically, this must happen before the CAS
  2844       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
  2845       st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2846       andcc  (Rmark, 2, G0) ;
  2847       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  2848       delayed() ->
  2850       // Try stack-lock acquisition.
  2851       // Beware: the 1st instruction is in a delay slot
  2852       mov    (Rbox,  Rscratch);
  2853       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  2854       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  2855       casn   (mark_addr.base(), Rmark, Rscratch) ;
  2856       cmp    (Rmark, Rscratch);
  2857       brx    (Assembler::equal, false, Assembler::pt, done);
  2858       delayed()->sub(Rscratch, SP, Rscratch);
  2860       // Stack-lock attempt failed - check for recursive stack-lock.
  2861       // See the comments below about how we might remove this case.
  2862 #ifdef _LP64
  2863       sub    (Rscratch, STACK_BIAS, Rscratch);
  2864 #endif
  2865       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  2866       andcc  (Rscratch, 0xfffff003, Rscratch);
  2867       br     (Assembler::always, false, Assembler::pt, done) ;
  2868       delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2870       bind   (IsInflated) ;
  2871       if (EmitSync & 64) {
  2872          // If m->owner != null goto IsLocked
  2873          // Pessimistic form: Test-and-CAS vs CAS
  2874          // The optimistic form avoids RTS->RTO cache line upgrades.
  2875          ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
  2876          andcc  (Rscratch, Rscratch, G0) ;
  2877          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  2878          delayed()->nop() ;
  2879          // m->owner == null : it's unlocked.
  2882       // Try to CAS m->owner from null to Self
  2883       // Invariant: if we acquire the lock then _recursions should be 0.
  2884       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  2885       mov    (G2_thread, Rscratch) ;
  2886       casn   (Rmark, G0, Rscratch) ;
  2887       cmp    (Rscratch, G0) ;
  2888       // Intentional fall-through into done
  2889    } else {
  2890       // Aggressively avoid the Store-before-CAS penalty
  2891       // Defer the store into box->dhw until after the CAS
  2892       Label IsInflated, Recursive ;
  2894 // Anticipate CAS -- Avoid RTS->RTO upgrade
  2895 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  2897       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  2898       // Triage: biased, stack-locked, neutral, inflated
  2900       if (UseBiasedLocking) {
  2901         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2902         // Invariant: if control reaches this point in the emitted stream
  2903         // then Rmark has not been modified.
  2905       andcc  (Rmark, 2, G0) ;
  2906       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  2907       delayed()->                         // Beware - dangling delay-slot
  2909       // Try stack-lock acquisition.
  2910       // Transiently install BUSY (0) encoding in the mark word.
  2911       // if the CAS of 0 into the mark was successful then we execute:
  2912       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
  2913       //   ST obj->mark = box    -- overwrite transient 0 value
  2914       // This presumes TSO, of course.
  2916       mov    (0, Rscratch) ;
  2917       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  2918       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  2919       casn   (mark_addr.base(), Rmark, Rscratch) ;
  2920 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  2921       cmp    (Rscratch, Rmark) ;
  2922       brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
  2923       delayed() ->
  2924         st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2925       if (counters != NULL) {
  2926         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  2928       br     (Assembler::always, false, Assembler::pt, done);
  2929       delayed() ->
  2930         st_ptr (Rbox, mark_addr) ;
  2932       bind   (Recursive) ;
  2933       // Stack-lock attempt failed - check for recursive stack-lock.
  2934       // Tests show that we can remove the recursive case with no impact
  2935       // on refworkload 0.83.  If we need to reduce the size of the code
  2936       // emitted by compiler_lock_object() the recursive case is perfect
  2937       // candidate.
  2938       //
  2939       // A more extreme idea is to always inflate on stack-lock recursion.
  2940       // This lets us eliminate the recursive checks in compiler_lock_object
  2941       // and compiler_unlock_object and the (box->dhw == 0) encoding.
  2942       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
  2943       // and showed a performance *increase*.  In the same experiment I eliminated
  2944       // the fast-path stack-lock code from the interpreter and always passed
  2945       // control to the "slow" operators in synchronizer.cpp.
  2947       // RScratch contains the fetched obj->mark value from the failed CASN.
  2948 #ifdef _LP64
  2949       sub    (Rscratch, STACK_BIAS, Rscratch);
  2950 #endif
  2951       sub(Rscratch, SP, Rscratch);
  2952       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  2953       andcc  (Rscratch, 0xfffff003, Rscratch);
  2954       if (counters != NULL) {
  2955         // Accounting needs the Rscratch register
  2956         st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2957         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  2958         br     (Assembler::always, false, Assembler::pt, done) ;
  2959         delayed()->nop() ;
  2960       } else {
  2961         br     (Assembler::always, false, Assembler::pt, done) ;
  2962         delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2965       bind   (IsInflated) ;
  2966       if (EmitSync & 64) {
  2967          // If m->owner != null goto IsLocked
  2968          // Test-and-CAS vs CAS
  2969          // Pessimistic form avoids futile (doomed) CAS attempts
  2970          // The optimistic form avoids RTS->RTO cache line upgrades.
  2971          ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
  2972          andcc  (Rscratch, Rscratch, G0) ;
  2973          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  2974          delayed()->nop() ;
  2975          // m->owner == null : it's unlocked.
  2978       // Try to CAS m->owner from null to Self
  2979       // Invariant: if we acquire the lock then _recursions should be 0.
  2980       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  2981       mov    (G2_thread, Rscratch) ;
  2982       casn   (Rmark, G0, Rscratch) ;
  2983       cmp    (Rscratch, G0) ;
  2984       // ST box->displaced_header = NonZero.
  2985       // Any non-zero value suffices:
  2986       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
  2987       st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2988       // Intentional fall-through into done
  2991    bind   (done) ;
  2994 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch) {
  2995    Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
  2997    Label done ;
  2999    if (EmitSync & 4) {
  3000      cmp  (SP, G0) ;
  3001      return ;
  3004    if (EmitSync & 8) {
  3005      if (UseBiasedLocking) {
  3006         biased_locking_exit(mark_addr, Rscratch, done);
  3009      // Test first if it is a fast recursive unlock
  3010      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
  3011      cmp(Rmark, G0);
  3012      brx(Assembler::equal, false, Assembler::pt, done);
  3013      delayed()->nop();
  3015      // Check if it is still a light weight lock, this is is true if we see
  3016      // the stack address of the basicLock in the markOop of the object
  3017      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3018      casx_under_lock(mark_addr.base(), Rbox, Rmark,
  3019        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3020      br (Assembler::always, false, Assembler::pt, done);
  3021      delayed()->cmp(Rbox, Rmark);
  3022      bind (done) ;
  3023      return ;
  3026    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
  3027    // is too large performance rolls abruptly off a cliff.
  3028    // This could be related to inlining policies, code cache management, or
  3029    // I$ effects.
  3030    Label LStacked ;
  3032    if (UseBiasedLocking) {
  3033       // TODO: eliminate redundant LDs of obj->mark
  3034       biased_locking_exit(mark_addr, Rscratch, done);
  3037    ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
  3038    ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
  3039    andcc  (Rscratch, Rscratch, G0);
  3040    brx    (Assembler::zero, false, Assembler::pn, done);
  3041    delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
  3042    andcc  (Rmark, 2, G0) ;
  3043    brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
  3044    delayed()-> nop() ;
  3046    // It's inflated
  3047    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
  3048    // the ST of 0 into _owner which releases the lock.  This prevents loads
  3049    // and stores within the critical section from reordering (floating)
  3050    // past the store that releases the lock.  But TSO is a strong memory model
  3051    // and that particular flavor of barrier is a noop, so we can safely elide it.
  3052    // Note that we use 1-0 locking by default for the inflated case.  We
  3053    // close the resultant (and rare) race by having contented threads in
  3054    // monitorenter periodically poll _owner.
  3055    ld_ptr (Address(Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
  3056    ld_ptr (Address(Rmark, 0, ObjectMonitor::recursions_offset_in_bytes()-2), Rbox) ;
  3057    xor3   (Rscratch, G2_thread, Rscratch) ;
  3058    orcc   (Rbox, Rscratch, Rbox) ;
  3059    brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3060    delayed()->
  3061    ld_ptr (Address (Rmark, 0, ObjectMonitor::EntryList_offset_in_bytes()-2), Rscratch) ;
  3062    ld_ptr (Address (Rmark, 0, ObjectMonitor::cxq_offset_in_bytes()-2), Rbox) ;
  3063    orcc   (Rbox, Rscratch, G0) ;
  3064    if (EmitSync & 65536) {
  3065       Label LSucc ;
  3066       brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
  3067       delayed()->nop() ;
  3068       br     (Assembler::always, false, Assembler::pt, done) ;
  3069       delayed()->
  3070       st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3072       bind   (LSucc) ;
  3073       st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3074       if (os::is_MP()) { membar (StoreLoad) ; }
  3075       ld_ptr (Address (Rmark, 0, ObjectMonitor::succ_offset_in_bytes()-2), Rscratch) ;
  3076       andcc  (Rscratch, Rscratch, G0) ;
  3077       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3078       delayed()-> andcc (G0, G0, G0) ;
  3079       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3080       mov    (G2_thread, Rscratch) ;
  3081       casn   (Rmark, G0, Rscratch) ;
  3082       cmp    (Rscratch, G0) ;
  3083       // invert icc.zf and goto done
  3084       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3085       delayed() -> cmp (G0, G0) ;
  3086       br     (Assembler::always, false, Assembler::pt, done);
  3087       delayed() -> cmp (G0, 1) ;
  3088    } else {
  3089       brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3090       delayed()->nop() ;
  3091       br     (Assembler::always, false, Assembler::pt, done) ;
  3092       delayed()->
  3093       st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3096    bind   (LStacked) ;
  3097    // Consider: we could replace the expensive CAS in the exit
  3098    // path with a simple ST of the displaced mark value fetched from
  3099    // the on-stack basiclock box.  That admits a race where a thread T2
  3100    // in the slow lock path -- inflating with monitor M -- could race a
  3101    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
  3102    // More precisely T1 in the stack-lock unlock path could "stomp" the
  3103    // inflated mark value M installed by T2, resulting in an orphan
  3104    // object monitor M and T2 becoming stranded.  We can remedy that situation
  3105    // by having T2 periodically poll the object's mark word using timed wait
  3106    // operations.  If T2 discovers that a stomp has occurred it vacates
  3107    // the monitor M and wakes any other threads stranded on the now-orphan M.
  3108    // In addition the monitor scavenger, which performs deflation,
  3109    // would also need to check for orpan monitors and stranded threads.
  3110    //
  3111    // Finally, inflation is also used when T2 needs to assign a hashCode
  3112    // to O and O is stack-locked by T1.  The "stomp" race could cause
  3113    // an assigned hashCode value to be lost.  We can avoid that condition
  3114    // and provide the necessary hashCode stability invariants by ensuring
  3115    // that hashCode generation is idempotent between copying GCs.
  3116    // For example we could compute the hashCode of an object O as
  3117    // O's heap address XOR some high quality RNG value that is refreshed
  3118    // at GC-time.  The monitor scavenger would install the hashCode
  3119    // found in any orphan monitors.  Again, the mechanism admits a
  3120    // lost-update "stomp" WAW race but detects and recovers as needed.
  3121    //
  3122    // A prototype implementation showed excellent results, although
  3123    // the scavenger and timeout code was rather involved.
  3125    casn   (mark_addr.base(), Rbox, Rscratch) ;
  3126    cmp    (Rbox, Rscratch);
  3127    // Intentional fall through into done ...
  3129    bind   (done) ;
  3134 void MacroAssembler::print_CPU_state() {
  3135   // %%%%% need to implement this
  3138 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3139   // %%%%% need to implement this
  3142 void MacroAssembler::push_IU_state() {
  3143   // %%%%% need to implement this
  3147 void MacroAssembler::pop_IU_state() {
  3148   // %%%%% need to implement this
  3152 void MacroAssembler::push_FPU_state() {
  3153   // %%%%% need to implement this
  3157 void MacroAssembler::pop_FPU_state() {
  3158   // %%%%% need to implement this
  3162 void MacroAssembler::push_CPU_state() {
  3163   // %%%%% need to implement this
  3167 void MacroAssembler::pop_CPU_state() {
  3168   // %%%%% need to implement this
  3173 void MacroAssembler::verify_tlab() {
  3174 #ifdef ASSERT
  3175   if (UseTLAB && VerifyOops) {
  3176     Label next, next2, ok;
  3177     Register t1 = L0;
  3178     Register t2 = L1;
  3179     Register t3 = L2;
  3181     save_frame(0);
  3182     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3183     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
  3184     or3(t1, t2, t3);
  3185     cmp(t1, t2);
  3186     br(Assembler::greaterEqual, false, Assembler::pn, next);
  3187     delayed()->nop();
  3188     stop("assert(top >= start)");
  3189     should_not_reach_here();
  3191     bind(next);
  3192     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3193     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
  3194     or3(t3, t2, t3);
  3195     cmp(t1, t2);
  3196     br(Assembler::lessEqual, false, Assembler::pn, next2);
  3197     delayed()->nop();
  3198     stop("assert(top <= end)");
  3199     should_not_reach_here();
  3201     bind(next2);
  3202     and3(t3, MinObjAlignmentInBytesMask, t3);
  3203     cmp(t3, 0);
  3204     br(Assembler::lessEqual, false, Assembler::pn, ok);
  3205     delayed()->nop();
  3206     stop("assert(aligned)");
  3207     should_not_reach_here();
  3209     bind(ok);
  3210     restore();
  3212 #endif
  3216 void MacroAssembler::eden_allocate(
  3217   Register obj,                        // result: pointer to object after successful allocation
  3218   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3219   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3220   Register t1,                         // temp register
  3221   Register t2,                         // temp register
  3222   Label&   slow_case                   // continuation point if fast allocation fails
  3223 ){
  3224   // make sure arguments make sense
  3225   assert_different_registers(obj, var_size_in_bytes, t1, t2);
  3226   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  3227   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3229   // get eden boundaries
  3230   // note: we need both top & top_addr!
  3231   const Register top_addr = t1;
  3232   const Register end      = t2;
  3234   CollectedHeap* ch = Universe::heap();
  3235   set((intx)ch->top_addr(), top_addr);
  3236   intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
  3237   ld_ptr(top_addr, delta, end);
  3238   ld_ptr(top_addr, 0, obj);
  3240   // try to allocate
  3241   Label retry;
  3242   bind(retry);
  3243 #ifdef ASSERT
  3244   // make sure eden top is properly aligned
  3246     Label L;
  3247     btst(MinObjAlignmentInBytesMask, obj);
  3248     br(Assembler::zero, false, Assembler::pt, L);
  3249     delayed()->nop();
  3250     stop("eden top is not properly aligned");
  3251     bind(L);
  3253 #endif // ASSERT
  3254   const Register free = end;
  3255   sub(end, obj, free);                                   // compute amount of free space
  3256   if (var_size_in_bytes->is_valid()) {
  3257     // size is unknown at compile time
  3258     cmp(free, var_size_in_bytes);
  3259     br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3260     delayed()->add(obj, var_size_in_bytes, end);
  3261   } else {
  3262     // size is known at compile time
  3263     cmp(free, con_size_in_bytes);
  3264     br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3265     delayed()->add(obj, con_size_in_bytes, end);
  3267   // Compare obj with the value at top_addr; if still equal, swap the value of
  3268   // end with the value at top_addr. If not equal, read the value at top_addr
  3269   // into end.
  3270   casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3271   // if someone beat us on the allocation, try again, otherwise continue
  3272   cmp(obj, end);
  3273   brx(Assembler::notEqual, false, Assembler::pn, retry);
  3274   delayed()->mov(end, obj);                              // nop if successfull since obj == end
  3276 #ifdef ASSERT
  3277   // make sure eden top is properly aligned
  3279     Label L;
  3280     const Register top_addr = t1;
  3282     set((intx)ch->top_addr(), top_addr);
  3283     ld_ptr(top_addr, 0, top_addr);
  3284     btst(MinObjAlignmentInBytesMask, top_addr);
  3285     br(Assembler::zero, false, Assembler::pt, L);
  3286     delayed()->nop();
  3287     stop("eden top is not properly aligned");
  3288     bind(L);
  3290 #endif // ASSERT
  3294 void MacroAssembler::tlab_allocate(
  3295   Register obj,                        // result: pointer to object after successful allocation
  3296   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3297   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3298   Register t1,                         // temp register
  3299   Label&   slow_case                   // continuation point if fast allocation fails
  3300 ){
  3301   // make sure arguments make sense
  3302   assert_different_registers(obj, var_size_in_bytes, t1);
  3303   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  3304   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3306   const Register free  = t1;
  3308   verify_tlab();
  3310   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
  3312   // calculate amount of free space
  3313   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  3314   sub(free, obj, free);
  3316   Label done;
  3317   if (var_size_in_bytes == noreg) {
  3318     cmp(free, con_size_in_bytes);
  3319   } else {
  3320     cmp(free, var_size_in_bytes);
  3322   br(Assembler::less, false, Assembler::pn, slow_case);
  3323   // calculate the new top pointer
  3324   if (var_size_in_bytes == noreg) {
  3325     delayed()->add(obj, con_size_in_bytes, free);
  3326   } else {
  3327     delayed()->add(obj, var_size_in_bytes, free);
  3330   bind(done);
  3332 #ifdef ASSERT
  3333   // make sure new free pointer is properly aligned
  3335     Label L;
  3336     btst(MinObjAlignmentInBytesMask, free);
  3337     br(Assembler::zero, false, Assembler::pt, L);
  3338     delayed()->nop();
  3339     stop("updated TLAB free is not properly aligned");
  3340     bind(L);
  3342 #endif // ASSERT
  3344   // update the tlab top pointer
  3345   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3346   verify_tlab();
  3350 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  3351   Register top = O0;
  3352   Register t1 = G1;
  3353   Register t2 = G3;
  3354   Register t3 = O1;
  3355   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  3356   Label do_refill, discard_tlab;
  3358   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3359     // No allocation in the shared eden.
  3360     br(Assembler::always, false, Assembler::pt, slow_case);
  3361     delayed()->nop();
  3364   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  3365   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  3366   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
  3368   // calculate amount of free space
  3369   sub(t1, top, t1);
  3370   srl_ptr(t1, LogHeapWordSize, t1);
  3372   // Retain tlab and allocate object in shared space if
  3373   // the amount free in the tlab is too large to discard.
  3374   cmp(t1, t2);
  3375   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
  3377   // increment waste limit to prevent getting stuck on this slow path
  3378   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  3379   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3380   if (TLABStats) {
  3381     // increment number of slow_allocations
  3382     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
  3383     add(t2, 1, t2);
  3384     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  3386   br(Assembler::always, false, Assembler::pt, try_eden);
  3387   delayed()->nop();
  3389   bind(discard_tlab);
  3390   if (TLABStats) {
  3391     // increment number of refills
  3392     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
  3393     add(t2, 1, t2);
  3394     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  3395     // accumulate wastage
  3396     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
  3397     add(t2, t1, t2);
  3398     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  3401   // if tlab is currently allocated (top or end != null) then
  3402   // fill [top, end + alignment_reserve) with array object
  3403   br_null(top, false, Assembler::pn, do_refill);
  3404   delayed()->nop();
  3406   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  3407   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  3408   // set klass to intArrayKlass
  3409   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  3410   ld_ptr(t2, 0, t2);
  3411   store_klass(t2, top);
  3412   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  3413   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  3414   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  3415   st(t1, top, arrayOopDesc::length_offset_in_bytes());
  3416   verify_oop(top);
  3418   // refill the tlab with an eden allocation
  3419   bind(do_refill);
  3420   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  3421   sll_ptr(t1, LogHeapWordSize, t1);
  3422   // add object_size ??
  3423   eden_allocate(top, t1, 0, t2, t3, slow_case);
  3425   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  3426   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3427 #ifdef ASSERT
  3428   // check that tlab_size (t1) is still valid
  3430     Label ok;
  3431     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
  3432     sll_ptr(t2, LogHeapWordSize, t2);
  3433     cmp(t1, t2);
  3434     br(Assembler::equal, false, Assembler::pt, ok);
  3435     delayed()->nop();
  3436     stop("assert(t1 == tlab_size)");
  3437     should_not_reach_here();
  3439     bind(ok);
  3441 #endif // ASSERT
  3442   add(top, t1, top); // t1 is tlab_size
  3443   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  3444   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  3445   verify_tlab();
  3446   br(Assembler::always, false, Assembler::pt, retry);
  3447   delayed()->nop();
  3450 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  3451   switch (cond) {
  3452     // Note some conditions are synonyms for others
  3453     case Assembler::never:                return Assembler::always;
  3454     case Assembler::zero:                 return Assembler::notZero;
  3455     case Assembler::lessEqual:            return Assembler::greater;
  3456     case Assembler::less:                 return Assembler::greaterEqual;
  3457     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
  3458     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
  3459     case Assembler::negative:             return Assembler::positive;
  3460     case Assembler::overflowSet:          return Assembler::overflowClear;
  3461     case Assembler::always:               return Assembler::never;
  3462     case Assembler::notZero:              return Assembler::zero;
  3463     case Assembler::greater:              return Assembler::lessEqual;
  3464     case Assembler::greaterEqual:         return Assembler::less;
  3465     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
  3466     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
  3467     case Assembler::positive:             return Assembler::negative;
  3468     case Assembler::overflowClear:        return Assembler::overflowSet;
  3471   ShouldNotReachHere(); return Assembler::overflowClear;
  3474 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
  3475                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  3476   Condition negated_cond = negate_condition(cond);
  3477   Label L;
  3478   brx(negated_cond, false, Assembler::pt, L);
  3479   delayed()->nop();
  3480   inc_counter(counter_ptr, Rtmp1, Rtmp2);
  3481   bind(L);
  3484 void MacroAssembler::inc_counter(address counter_ptr, Register Rtmp1, Register Rtmp2) {
  3485   Address counter_addr(Rtmp1, counter_ptr);
  3486   load_contents(counter_addr, Rtmp2);
  3487   inc(Rtmp2);
  3488   store_contents(Rtmp2, counter_addr);
  3491 SkipIfEqual::SkipIfEqual(
  3492     MacroAssembler* masm, Register temp, const bool* flag_addr,
  3493     Assembler::Condition condition) {
  3494   _masm = masm;
  3495   Address flag(temp, (address)flag_addr, relocInfo::none);
  3496   _masm->sethi(flag);
  3497   _masm->ldub(flag, temp);
  3498   _masm->tst(temp);
  3499   _masm->br(condition, false, Assembler::pt, _label);
  3500   _masm->delayed()->nop();
  3503 SkipIfEqual::~SkipIfEqual() {
  3504   _masm->bind(_label);
  3508 // Writes to stack successive pages until offset reached to check for
  3509 // stack overflow + shadow pages.  This clobbers tsp and scratch.
  3510 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
  3511                                      Register Rscratch) {
  3512   // Use stack pointer in temp stack pointer
  3513   mov(SP, Rtsp);
  3515   // Bang stack for total size given plus stack shadow page size.
  3516   // Bang one page at a time because a large size can overflow yellow and
  3517   // red zones (the bang will fail but stack overflow handling can't tell that
  3518   // it was a stack overflow bang vs a regular segv).
  3519   int offset = os::vm_page_size();
  3520   Register Roffset = Rscratch;
  3522   Label loop;
  3523   bind(loop);
  3524   set((-offset)+STACK_BIAS, Rscratch);
  3525   st(G0, Rtsp, Rscratch);
  3526   set(offset, Roffset);
  3527   sub(Rsize, Roffset, Rsize);
  3528   cmp(Rsize, G0);
  3529   br(Assembler::greater, false, Assembler::pn, loop);
  3530   delayed()->sub(Rtsp, Roffset, Rtsp);
  3532   // Bang down shadow pages too.
  3533   // The -1 because we already subtracted 1 page.
  3534   for (int i = 0; i< StackShadowPages-1; i++) {
  3535     set((-i*offset)+STACK_BIAS, Rscratch);
  3536     st(G0, Rtsp, Rscratch);
  3540 void MacroAssembler::load_klass(Register s, Register d) {
  3541   // The number of bytes in this code is used by
  3542   // MachCallDynamicJavaNode::ret_addr_offset()
  3543   // if this changes, change that.
  3544   if (UseCompressedOops) {
  3545     lduw(s, oopDesc::klass_offset_in_bytes(), d);
  3546     decode_heap_oop_not_null(d);
  3547   } else {
  3548     ld_ptr(s, oopDesc::klass_offset_in_bytes(), d);
  3552 // ??? figure out src vs. dst!
  3553 void MacroAssembler::store_klass(Register d, Register s1) {
  3554   if (UseCompressedOops) {
  3555     assert(s1 != d, "not enough registers");
  3556     encode_heap_oop_not_null(d);
  3557     // Zero out entire klass field first.
  3558     st_ptr(G0, s1, oopDesc::klass_offset_in_bytes());
  3559     st(d, s1, oopDesc::klass_offset_in_bytes());
  3560   } else {
  3561     st_ptr(d, s1, oopDesc::klass_offset_in_bytes());
  3565 void MacroAssembler::load_heap_oop(const Address& s, Register d, int offset) {
  3566   if (UseCompressedOops) {
  3567     lduw(s, d, offset);
  3568     decode_heap_oop(d);
  3569   } else {
  3570     ld_ptr(s, d, offset);
  3574 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
  3575    if (UseCompressedOops) {
  3576     lduw(s1, s2, d);
  3577     decode_heap_oop(d, d);
  3578   } else {
  3579     ld_ptr(s1, s2, d);
  3583 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
  3584    if (UseCompressedOops) {
  3585     lduw(s1, simm13a, d);
  3586     decode_heap_oop(d, d);
  3587   } else {
  3588     ld_ptr(s1, simm13a, d);
  3592 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  3593   if (UseCompressedOops) {
  3594     assert(s1 != d && s2 != d, "not enough registers");
  3595     encode_heap_oop(d);
  3596     st(d, s1, s2);
  3597   } else {
  3598     st_ptr(d, s1, s2);
  3602 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  3603   if (UseCompressedOops) {
  3604     assert(s1 != d, "not enough registers");
  3605     encode_heap_oop(d);
  3606     st(d, s1, simm13a);
  3607   } else {
  3608     st_ptr(d, s1, simm13a);
  3612 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  3613   if (UseCompressedOops) {
  3614     assert(a.base() != d, "not enough registers");
  3615     encode_heap_oop(d);
  3616     st(d, a, offset);
  3617   } else {
  3618     st_ptr(d, a, offset);
  3623 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  3624   assert (UseCompressedOops, "must be compressed");
  3625   Label done;
  3626   if (src == dst) {
  3627     // optimize for frequent case src == dst
  3628     bpr(rc_nz, true, Assembler::pt, src, done);
  3629     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
  3630     bind(done);
  3631     srlx(src, LogMinObjAlignmentInBytes, dst);
  3632   } else {
  3633     bpr(rc_z, false, Assembler::pn, src, done);
  3634     delayed() -> mov(G0, dst);
  3635     // could be moved before branch, and annulate delay,
  3636     // but may add some unneeded work decoding null
  3637     sub(src, G6_heapbase, dst);
  3638     srlx(dst, LogMinObjAlignmentInBytes, dst);
  3639     bind(done);
  3644 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  3645   assert (UseCompressedOops, "must be compressed");
  3646   sub(r, G6_heapbase, r);
  3647   srlx(r, LogMinObjAlignmentInBytes, r);
  3650 // Same algorithm as oops.inline.hpp decode_heap_oop.
  3651 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  3652   assert (UseCompressedOops, "must be compressed");
  3653   Label done;
  3654   sllx(src, LogMinObjAlignmentInBytes, dst);
  3655   bpr(rc_nz, true, Assembler::pt, dst, done);
  3656   delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
  3657   bind(done);
  3660 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  3661   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  3662   // pd_code_size_limit.
  3663   assert (UseCompressedOops, "must be compressed");
  3664   sllx(r, LogMinObjAlignmentInBytes, r);
  3665   add(r, G6_heapbase, r);
  3668 void MacroAssembler::reinit_heapbase() {
  3669   if (UseCompressedOops) {
  3670     // call indirectly to solve generation ordering problem
  3671     Address base(G6_heapbase, (address)Universe::heap_base_addr());
  3672     load_ptr_contents(base, G6_heapbase);

mercurial