src/share/vm/runtime/sharedRuntime.cpp

Fri, 29 Jan 2010 12:13:05 +0100

author
twisti
date
Fri, 29 Jan 2010 12:13:05 +0100
changeset 1635
ba263cfb7611
parent 1622
cf0685d550f1
child 1636
24128c2ffa87
permissions
-rw-r--r--

6917766: JSR 292 needs its own deopt handler
Summary: We need to introduce a new MH deopt handler so we can easily determine if the deopt happened at a MH call site or not.
Reviewed-by: never, jrose

     1 /*
     2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_sharedRuntime.cpp.incl"
    27 #include <math.h>
    29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
    30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
    31                       char*, int, char*, int, char*, int);
    32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
    33                       char*, int, char*, int, char*, int);
    35 // Implementation of SharedRuntime
    37 #ifndef PRODUCT
    38 // For statistics
    39 int SharedRuntime::_ic_miss_ctr = 0;
    40 int SharedRuntime::_wrong_method_ctr = 0;
    41 int SharedRuntime::_resolve_static_ctr = 0;
    42 int SharedRuntime::_resolve_virtual_ctr = 0;
    43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
    44 int SharedRuntime::_implicit_null_throws = 0;
    45 int SharedRuntime::_implicit_div0_throws = 0;
    46 int SharedRuntime::_throw_null_ctr = 0;
    48 int SharedRuntime::_nof_normal_calls = 0;
    49 int SharedRuntime::_nof_optimized_calls = 0;
    50 int SharedRuntime::_nof_inlined_calls = 0;
    51 int SharedRuntime::_nof_megamorphic_calls = 0;
    52 int SharedRuntime::_nof_static_calls = 0;
    53 int SharedRuntime::_nof_inlined_static_calls = 0;
    54 int SharedRuntime::_nof_interface_calls = 0;
    55 int SharedRuntime::_nof_optimized_interface_calls = 0;
    56 int SharedRuntime::_nof_inlined_interface_calls = 0;
    57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
    58 int SharedRuntime::_nof_removable_exceptions = 0;
    60 int SharedRuntime::_new_instance_ctr=0;
    61 int SharedRuntime::_new_array_ctr=0;
    62 int SharedRuntime::_multi1_ctr=0;
    63 int SharedRuntime::_multi2_ctr=0;
    64 int SharedRuntime::_multi3_ctr=0;
    65 int SharedRuntime::_multi4_ctr=0;
    66 int SharedRuntime::_multi5_ctr=0;
    67 int SharedRuntime::_mon_enter_stub_ctr=0;
    68 int SharedRuntime::_mon_exit_stub_ctr=0;
    69 int SharedRuntime::_mon_enter_ctr=0;
    70 int SharedRuntime::_mon_exit_ctr=0;
    71 int SharedRuntime::_partial_subtype_ctr=0;
    72 int SharedRuntime::_jbyte_array_copy_ctr=0;
    73 int SharedRuntime::_jshort_array_copy_ctr=0;
    74 int SharedRuntime::_jint_array_copy_ctr=0;
    75 int SharedRuntime::_jlong_array_copy_ctr=0;
    76 int SharedRuntime::_oop_array_copy_ctr=0;
    77 int SharedRuntime::_checkcast_array_copy_ctr=0;
    78 int SharedRuntime::_unsafe_array_copy_ctr=0;
    79 int SharedRuntime::_generic_array_copy_ctr=0;
    80 int SharedRuntime::_slow_array_copy_ctr=0;
    81 int SharedRuntime::_find_handler_ctr=0;
    82 int SharedRuntime::_rethrow_ctr=0;
    84 int     SharedRuntime::_ICmiss_index                    = 0;
    85 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
    86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
    88 void SharedRuntime::trace_ic_miss(address at) {
    89   for (int i = 0; i < _ICmiss_index; i++) {
    90     if (_ICmiss_at[i] == at) {
    91       _ICmiss_count[i]++;
    92       return;
    93     }
    94   }
    95   int index = _ICmiss_index++;
    96   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
    97   _ICmiss_at[index] = at;
    98   _ICmiss_count[index] = 1;
    99 }
   101 void SharedRuntime::print_ic_miss_histogram() {
   102   if (ICMissHistogram) {
   103     tty->print_cr ("IC Miss Histogram:");
   104     int tot_misses = 0;
   105     for (int i = 0; i < _ICmiss_index; i++) {
   106       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   107       tot_misses += _ICmiss_count[i];
   108     }
   109     tty->print_cr ("Total IC misses: %7d", tot_misses);
   110   }
   111 }
   112 #endif // PRODUCT
   114 #ifndef SERIALGC
   116 // G1 write-barrier pre: executed before a pointer store.
   117 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   118   if (orig == NULL) {
   119     assert(false, "should be optimized out");
   120     return;
   121   }
   122   assert(orig->is_oop(true /* ignore mark word */), "Error");
   123   // store the original value that was in the field reference
   124   thread->satb_mark_queue().enqueue(orig);
   125 JRT_END
   127 // G1 write-barrier post: executed after a pointer store.
   128 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   129   thread->dirty_card_queue().enqueue(card_addr);
   130 JRT_END
   132 #endif // !SERIALGC
   135 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   136   return x * y;
   137 JRT_END
   140 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   141   if (x == min_jlong && y == CONST64(-1)) {
   142     return x;
   143   } else {
   144     return x / y;
   145   }
   146 JRT_END
   149 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   150   if (x == min_jlong && y == CONST64(-1)) {
   151     return 0;
   152   } else {
   153     return x % y;
   154   }
   155 JRT_END
   158 const juint  float_sign_mask  = 0x7FFFFFFF;
   159 const juint  float_infinity   = 0x7F800000;
   160 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   161 const julong double_infinity  = CONST64(0x7FF0000000000000);
   163 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   164 #ifdef _WIN64
   165   // 64-bit Windows on amd64 returns the wrong values for
   166   // infinity operands.
   167   union { jfloat f; juint i; } xbits, ybits;
   168   xbits.f = x;
   169   ybits.f = y;
   170   // x Mod Infinity == x unless x is infinity
   171   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   172        ((ybits.i & float_sign_mask) == float_infinity) ) {
   173     return x;
   174   }
   175 #endif
   176   return ((jfloat)fmod((double)x,(double)y));
   177 JRT_END
   180 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   181 #ifdef _WIN64
   182   union { jdouble d; julong l; } xbits, ybits;
   183   xbits.d = x;
   184   ybits.d = y;
   185   // x Mod Infinity == x unless x is infinity
   186   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   187        ((ybits.l & double_sign_mask) == double_infinity) ) {
   188     return x;
   189   }
   190 #endif
   191   return ((jdouble)fmod((double)x,(double)y));
   192 JRT_END
   195 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   196   if (g_isnan(x))
   197     return 0;
   198   if (x >= (jfloat) max_jint)
   199     return max_jint;
   200   if (x <= (jfloat) min_jint)
   201     return min_jint;
   202   return (jint) x;
   203 JRT_END
   206 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   207   if (g_isnan(x))
   208     return 0;
   209   if (x >= (jfloat) max_jlong)
   210     return max_jlong;
   211   if (x <= (jfloat) min_jlong)
   212     return min_jlong;
   213   return (jlong) x;
   214 JRT_END
   217 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   218   if (g_isnan(x))
   219     return 0;
   220   if (x >= (jdouble) max_jint)
   221     return max_jint;
   222   if (x <= (jdouble) min_jint)
   223     return min_jint;
   224   return (jint) x;
   225 JRT_END
   228 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   229   if (g_isnan(x))
   230     return 0;
   231   if (x >= (jdouble) max_jlong)
   232     return max_jlong;
   233   if (x <= (jdouble) min_jlong)
   234     return min_jlong;
   235   return (jlong) x;
   236 JRT_END
   239 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   240   return (jfloat)x;
   241 JRT_END
   244 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   245   return (jfloat)x;
   246 JRT_END
   249 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   250   return (jdouble)x;
   251 JRT_END
   253 // Exception handling accross interpreter/compiler boundaries
   254 //
   255 // exception_handler_for_return_address(...) returns the continuation address.
   256 // The continuation address is the entry point of the exception handler of the
   257 // previous frame depending on the return address.
   259 address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
   260   assert(frame::verify_return_pc(return_address), "must be a return pc");
   262   // the fastest case first
   263   CodeBlob* blob = CodeCache::find_blob(return_address);
   264   if (blob != NULL && blob->is_nmethod()) {
   265     nmethod* code = (nmethod*)blob;
   266     assert(code != NULL, "nmethod must be present");
   267     // native nmethods don't have exception handlers
   268     assert(!code->is_native_method(), "no exception handler");
   269     assert(code->header_begin() != code->exception_begin(), "no exception handler");
   270     if (code->is_deopt_pc(return_address)) {
   271       return SharedRuntime::deopt_blob()->unpack_with_exception();
   272     } else {
   273       return code->exception_begin();
   274     }
   275   }
   277   // Entry code
   278   if (StubRoutines::returns_to_call_stub(return_address)) {
   279     return StubRoutines::catch_exception_entry();
   280   }
   281   // Interpreted code
   282   if (Interpreter::contains(return_address)) {
   283     return Interpreter::rethrow_exception_entry();
   284   }
   286   // Compiled code
   287   if (CodeCache::contains(return_address)) {
   288     CodeBlob* blob = CodeCache::find_blob(return_address);
   289     if (blob->is_nmethod()) {
   290       nmethod* code = (nmethod*)blob;
   291       assert(code != NULL, "nmethod must be present");
   292       assert(code->header_begin() != code->exception_begin(), "no exception handler");
   293       return code->exception_begin();
   294     }
   295     if (blob->is_runtime_stub()) {
   296       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
   297     }
   298   }
   299   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   300 #ifndef PRODUCT
   301   { ResourceMark rm;
   302     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   303     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   304     tty->print_cr("b) other problem");
   305   }
   306 #endif // PRODUCT
   307   ShouldNotReachHere();
   308   return NULL;
   309 }
   312 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
   313   return raw_exception_handler_for_return_address(return_address);
   314 JRT_END
   316 address SharedRuntime::get_poll_stub(address pc) {
   317   address stub;
   318   // Look up the code blob
   319   CodeBlob *cb = CodeCache::find_blob(pc);
   321   // Should be an nmethod
   322   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   324   // Look up the relocation information
   325   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   326     "safepoint polling: type must be poll" );
   328   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   329     "Only polling locations are used for safepoint");
   331   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   332   if (at_poll_return) {
   333     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   334            "polling page return stub not created yet");
   335     stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
   336   } else {
   337     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   338            "polling page safepoint stub not created yet");
   339     stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
   340   }
   341 #ifndef PRODUCT
   342   if( TraceSafepoint ) {
   343     char buf[256];
   344     jio_snprintf(buf, sizeof(buf),
   345                  "... found polling page %s exception at pc = "
   346                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   347                  at_poll_return ? "return" : "loop",
   348                  (intptr_t)pc, (intptr_t)stub);
   349     tty->print_raw_cr(buf);
   350   }
   351 #endif // PRODUCT
   352   return stub;
   353 }
   356 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
   357   assert(caller.is_interpreted_frame(), "");
   358   int args_size = ArgumentSizeComputer(sig).size() + 1;
   359   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   360   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
   361   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   362   return result;
   363 }
   366 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   367   if (JvmtiExport::can_post_exceptions()) {
   368     vframeStream vfst(thread, true);
   369     methodHandle method = methodHandle(thread, vfst.method());
   370     address bcp = method()->bcp_from(vfst.bci());
   371     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   372   }
   373   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   374 }
   376 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
   377   Handle h_exception = Exceptions::new_exception(thread, name, message);
   378   throw_and_post_jvmti_exception(thread, h_exception);
   379 }
   381 // The interpreter code to call this tracing function is only
   382 // called/generated when TraceRedefineClasses has the right bits
   383 // set. Since obsolete methods are never compiled, we don't have
   384 // to modify the compilers to generate calls to this function.
   385 //
   386 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   387     JavaThread* thread, methodOopDesc* method))
   388   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   390   if (method->is_obsolete()) {
   391     // We are calling an obsolete method, but this is not necessarily
   392     // an error. Our method could have been redefined just after we
   393     // fetched the methodOop from the constant pool.
   395     // RC_TRACE macro has an embedded ResourceMark
   396     RC_TRACE_WITH_THREAD(0x00001000, thread,
   397                          ("calling obsolete method '%s'",
   398                           method->name_and_sig_as_C_string()));
   399     if (RC_TRACE_ENABLED(0x00002000)) {
   400       // this option is provided to debug calls to obsolete methods
   401       guarantee(false, "faulting at call to an obsolete method.");
   402     }
   403   }
   404   return 0;
   405 JRT_END
   407 // ret_pc points into caller; we are returning caller's exception handler
   408 // for given exception
   409 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   410                                                     bool force_unwind, bool top_frame_only) {
   411   assert(nm != NULL, "must exist");
   412   ResourceMark rm;
   414   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   415   // determine handler bci, if any
   416   EXCEPTION_MARK;
   418   int handler_bci = -1;
   419   int scope_depth = 0;
   420   if (!force_unwind) {
   421     int bci = sd->bci();
   422     do {
   423       bool skip_scope_increment = false;
   424       // exception handler lookup
   425       KlassHandle ek (THREAD, exception->klass());
   426       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
   427       if (HAS_PENDING_EXCEPTION) {
   428         // We threw an exception while trying to find the exception handler.
   429         // Transfer the new exception to the exception handle which will
   430         // be set into thread local storage, and do another lookup for an
   431         // exception handler for this exception, this time starting at the
   432         // BCI of the exception handler which caused the exception to be
   433         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   434         // argument to ensure that the correct exception is thrown (4870175).
   435         exception = Handle(THREAD, PENDING_EXCEPTION);
   436         CLEAR_PENDING_EXCEPTION;
   437         if (handler_bci >= 0) {
   438           bci = handler_bci;
   439           handler_bci = -1;
   440           skip_scope_increment = true;
   441         }
   442       }
   443       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   444         sd = sd->sender();
   445         if (sd != NULL) {
   446           bci = sd->bci();
   447         }
   448         ++scope_depth;
   449       }
   450     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
   451   }
   453   // found handling method => lookup exception handler
   454   int catch_pco = ret_pc - nm->instructions_begin();
   456   ExceptionHandlerTable table(nm);
   457   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   458   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   459     // Allow abbreviated catch tables.  The idea is to allow a method
   460     // to materialize its exceptions without committing to the exact
   461     // routing of exceptions.  In particular this is needed for adding
   462     // a synthethic handler to unlock monitors when inlining
   463     // synchonized methods since the unlock path isn't represented in
   464     // the bytecodes.
   465     t = table.entry_for(catch_pco, -1, 0);
   466   }
   468 #ifdef COMPILER1
   469   if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
   470     // Exception is not handled by this frame so unwind.  Note that
   471     // this is not the same as how C2 does this.  C2 emits a table
   472     // entry that dispatches to the unwind code in the nmethod.
   473     return NULL;
   474   }
   475 #endif /* COMPILER1 */
   478   if (t == NULL) {
   479     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   480     tty->print_cr("   Exception:");
   481     exception->print();
   482     tty->cr();
   483     tty->print_cr(" Compiled exception table :");
   484     table.print();
   485     nm->print_code();
   486     guarantee(false, "missing exception handler");
   487     return NULL;
   488   }
   490   return nm->instructions_begin() + t->pco();
   491 }
   493 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   494   // These errors occur only at call sites
   495   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   496 JRT_END
   498 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   499   // These errors occur only at call sites
   500   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   501 JRT_END
   503 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   504   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   505 JRT_END
   507 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   508   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   509 JRT_END
   511 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   512   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   513   // cache sites (when the callee activation is not yet set up) so we are at a call site
   514   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   515 JRT_END
   517 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   518   // We avoid using the normal exception construction in this case because
   519   // it performs an upcall to Java, and we're already out of stack space.
   520   klassOop k = SystemDictionary::StackOverflowError_klass();
   521   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
   522   Handle exception (thread, exception_oop);
   523   if (StackTraceInThrowable) {
   524     java_lang_Throwable::fill_in_stack_trace(exception);
   525   }
   526   throw_and_post_jvmti_exception(thread, exception);
   527 JRT_END
   529 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   530                                                            address pc,
   531                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   532 {
   533   address target_pc = NULL;
   535   if (Interpreter::contains(pc)) {
   536 #ifdef CC_INTERP
   537     // C++ interpreter doesn't throw implicit exceptions
   538     ShouldNotReachHere();
   539 #else
   540     switch (exception_kind) {
   541       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   542       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   543       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   544       default:                      ShouldNotReachHere();
   545     }
   546 #endif // !CC_INTERP
   547   } else {
   548     switch (exception_kind) {
   549       case STACK_OVERFLOW: {
   550         // Stack overflow only occurs upon frame setup; the callee is
   551         // going to be unwound. Dispatch to a shared runtime stub
   552         // which will cause the StackOverflowError to be fabricated
   553         // and processed.
   554         // For stack overflow in deoptimization blob, cleanup thread.
   555         if (thread->deopt_mark() != NULL) {
   556           Deoptimization::cleanup_deopt_info(thread, NULL);
   557         }
   558         return StubRoutines::throw_StackOverflowError_entry();
   559       }
   561       case IMPLICIT_NULL: {
   562         if (VtableStubs::contains(pc)) {
   563           // We haven't yet entered the callee frame. Fabricate an
   564           // exception and begin dispatching it in the caller. Since
   565           // the caller was at a call site, it's safe to destroy all
   566           // caller-saved registers, as these entry points do.
   567           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   569           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   570           if (vt_stub == NULL) return NULL;
   572           if (vt_stub->is_abstract_method_error(pc)) {
   573             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   574             return StubRoutines::throw_AbstractMethodError_entry();
   575           } else {
   576             return StubRoutines::throw_NullPointerException_at_call_entry();
   577           }
   578         } else {
   579           CodeBlob* cb = CodeCache::find_blob(pc);
   581           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   582           if (cb == NULL) return NULL;
   584           // Exception happened in CodeCache. Must be either:
   585           // 1. Inline-cache check in C2I handler blob,
   586           // 2. Inline-cache check in nmethod, or
   587           // 3. Implict null exception in nmethod
   589           if (!cb->is_nmethod()) {
   590             guarantee(cb->is_adapter_blob(),
   591                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
   592             // There is no handler here, so we will simply unwind.
   593             return StubRoutines::throw_NullPointerException_at_call_entry();
   594           }
   596           // Otherwise, it's an nmethod.  Consult its exception handlers.
   597           nmethod* nm = (nmethod*)cb;
   598           if (nm->inlinecache_check_contains(pc)) {
   599             // exception happened inside inline-cache check code
   600             // => the nmethod is not yet active (i.e., the frame
   601             // is not set up yet) => use return address pushed by
   602             // caller => don't push another return address
   603             return StubRoutines::throw_NullPointerException_at_call_entry();
   604           }
   606 #ifndef PRODUCT
   607           _implicit_null_throws++;
   608 #endif
   609           target_pc = nm->continuation_for_implicit_exception(pc);
   610           guarantee(target_pc != 0, "must have a continuation point");
   611         }
   613         break; // fall through
   614       }
   617       case IMPLICIT_DIVIDE_BY_ZERO: {
   618         nmethod* nm = CodeCache::find_nmethod(pc);
   619         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   620 #ifndef PRODUCT
   621         _implicit_div0_throws++;
   622 #endif
   623         target_pc = nm->continuation_for_implicit_exception(pc);
   624         guarantee(target_pc != 0, "must have a continuation point");
   625         break; // fall through
   626       }
   628       default: ShouldNotReachHere();
   629     }
   631     guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
   632     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   634     // for AbortVMOnException flag
   635     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   636     if (exception_kind == IMPLICIT_NULL) {
   637       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   638     } else {
   639       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   640     }
   641     return target_pc;
   642   }
   644   ShouldNotReachHere();
   645   return NULL;
   646 }
   649 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
   650 {
   651   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
   652 }
   653 JNI_END
   656 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   657   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   658 }
   661 #ifndef PRODUCT
   662 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   663   const frame f = thread->last_frame();
   664   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   665 #ifndef PRODUCT
   666   methodHandle mh(THREAD, f.interpreter_frame_method());
   667   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   668 #endif // !PRODUCT
   669   return preserve_this_value;
   670 JRT_END
   671 #endif // !PRODUCT
   674 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   675   os::yield_all(attempts);
   676 JRT_END
   679 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   680   assert(obj->is_oop(), "must be a valid oop");
   681   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
   682   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
   683 JRT_END
   686 jlong SharedRuntime::get_java_tid(Thread* thread) {
   687   if (thread != NULL) {
   688     if (thread->is_Java_thread()) {
   689       oop obj = ((JavaThread*)thread)->threadObj();
   690       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   691     }
   692   }
   693   return 0;
   694 }
   696 /**
   697  * This function ought to be a void function, but cannot be because
   698  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   699  * 6254741.  Once that is fixed we can remove the dummy return value.
   700  */
   701 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   702   return dtrace_object_alloc_base(Thread::current(), o);
   703 }
   705 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   706   assert(DTraceAllocProbes, "wrong call");
   707   Klass* klass = o->blueprint();
   708   int size = o->size();
   709   symbolOop name = klass->name();
   710   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   711                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   712   return 0;
   713 }
   715 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   716     JavaThread* thread, methodOopDesc* method))
   717   assert(DTraceMethodProbes, "wrong call");
   718   symbolOop kname = method->klass_name();
   719   symbolOop name = method->name();
   720   symbolOop sig = method->signature();
   721   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   722       kname->bytes(), kname->utf8_length(),
   723       name->bytes(), name->utf8_length(),
   724       sig->bytes(), sig->utf8_length());
   725   return 0;
   726 JRT_END
   728 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   729     JavaThread* thread, methodOopDesc* method))
   730   assert(DTraceMethodProbes, "wrong call");
   731   symbolOop kname = method->klass_name();
   732   symbolOop name = method->name();
   733   symbolOop sig = method->signature();
   734   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
   735       kname->bytes(), kname->utf8_length(),
   736       name->bytes(), name->utf8_length(),
   737       sig->bytes(), sig->utf8_length());
   738   return 0;
   739 JRT_END
   742 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
   743 // for a call current in progress, i.e., arguments has been pushed on stack
   744 // put callee has not been invoked yet.  Used by: resolve virtual/static,
   745 // vtable updates, etc.  Caller frame must be compiled.
   746 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
   747   ResourceMark rm(THREAD);
   749   // last java frame on stack (which includes native call frames)
   750   vframeStream vfst(thread, true);  // Do not skip and javaCalls
   752   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
   753 }
   756 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
   757 // for a call current in progress, i.e., arguments has been pushed on stack
   758 // but callee has not been invoked yet.  Caller frame must be compiled.
   759 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
   760                                               vframeStream& vfst,
   761                                               Bytecodes::Code& bc,
   762                                               CallInfo& callinfo, TRAPS) {
   763   Handle receiver;
   764   Handle nullHandle;  //create a handy null handle for exception returns
   766   assert(!vfst.at_end(), "Java frame must exist");
   768   // Find caller and bci from vframe
   769   methodHandle caller (THREAD, vfst.method());
   770   int          bci    = vfst.bci();
   772   // Find bytecode
   773   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
   774   bc = bytecode->adjusted_invoke_code();
   775   int bytecode_index = bytecode->index();
   777   // Find receiver for non-static call
   778   if (bc != Bytecodes::_invokestatic) {
   779     // This register map must be update since we need to find the receiver for
   780     // compiled frames. The receiver might be in a register.
   781     RegisterMap reg_map2(thread);
   782     frame stubFrame   = thread->last_frame();
   783     // Caller-frame is a compiled frame
   784     frame callerFrame = stubFrame.sender(&reg_map2);
   786     methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
   787     if (callee.is_null()) {
   788       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
   789     }
   790     // Retrieve from a compiled argument list
   791     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
   793     if (receiver.is_null()) {
   794       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
   795     }
   796   }
   798   // Resolve method. This is parameterized by bytecode.
   799   constantPoolHandle constants (THREAD, caller->constants());
   800   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
   801   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
   803 #ifdef ASSERT
   804   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
   805   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
   806     assert(receiver.not_null(), "should have thrown exception");
   807     KlassHandle receiver_klass (THREAD, receiver->klass());
   808     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
   809                             // klass is already loaded
   810     KlassHandle static_receiver_klass (THREAD, rk);
   811     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
   812     if (receiver_klass->oop_is_instance()) {
   813       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
   814         tty->print_cr("ERROR: Klass not yet initialized!!");
   815         receiver_klass.print();
   816       }
   817       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
   818     }
   819   }
   820 #endif
   822   return receiver;
   823 }
   825 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
   826   ResourceMark rm(THREAD);
   827   // We need first to check if any Java activations (compiled, interpreted)
   828   // exist on the stack since last JavaCall.  If not, we need
   829   // to get the target method from the JavaCall wrapper.
   830   vframeStream vfst(thread, true);  // Do not skip any javaCalls
   831   methodHandle callee_method;
   832   if (vfst.at_end()) {
   833     // No Java frames were found on stack since we did the JavaCall.
   834     // Hence the stack can only contain an entry_frame.  We need to
   835     // find the target method from the stub frame.
   836     RegisterMap reg_map(thread, false);
   837     frame fr = thread->last_frame();
   838     assert(fr.is_runtime_frame(), "must be a runtimeStub");
   839     fr = fr.sender(&reg_map);
   840     assert(fr.is_entry_frame(), "must be");
   841     // fr is now pointing to the entry frame.
   842     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
   843     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
   844   } else {
   845     Bytecodes::Code bc;
   846     CallInfo callinfo;
   847     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
   848     callee_method = callinfo.selected_method();
   849   }
   850   assert(callee_method()->is_method(), "must be");
   851   return callee_method;
   852 }
   854 // Resolves a call.
   855 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
   856                                            bool is_virtual,
   857                                            bool is_optimized, TRAPS) {
   858   methodHandle callee_method;
   859   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
   860   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
   861     int retry_count = 0;
   862     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
   863            callee_method->method_holder() != SystemDictionary::Object_klass()) {
   864       // If has a pending exception then there is no need to re-try to
   865       // resolve this method.
   866       // If the method has been redefined, we need to try again.
   867       // Hack: we have no way to update the vtables of arrays, so don't
   868       // require that java.lang.Object has been updated.
   870       // It is very unlikely that method is redefined more than 100 times
   871       // in the middle of resolve. If it is looping here more than 100 times
   872       // means then there could be a bug here.
   873       guarantee((retry_count++ < 100),
   874                 "Could not resolve to latest version of redefined method");
   875       // method is redefined in the middle of resolve so re-try.
   876       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
   877     }
   878   }
   879   return callee_method;
   880 }
   882 // Resolves a call.  The compilers generate code for calls that go here
   883 // and are patched with the real destination of the call.
   884 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
   885                                            bool is_virtual,
   886                                            bool is_optimized, TRAPS) {
   888   ResourceMark rm(thread);
   889   RegisterMap cbl_map(thread, false);
   890   frame caller_frame = thread->last_frame().sender(&cbl_map);
   892   CodeBlob* cb = caller_frame.cb();
   893   guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
   894   // make sure caller is not getting deoptimized
   895   // and removed before we are done with it.
   896   // CLEANUP - with lazy deopt shouldn't need this lock
   897   nmethodLocker caller_lock((nmethod*)cb);
   900   // determine call info & receiver
   901   // note: a) receiver is NULL for static calls
   902   //       b) an exception is thrown if receiver is NULL for non-static calls
   903   CallInfo call_info;
   904   Bytecodes::Code invoke_code = Bytecodes::_illegal;
   905   Handle receiver = find_callee_info(thread, invoke_code,
   906                                      call_info, CHECK_(methodHandle()));
   907   methodHandle callee_method = call_info.selected_method();
   909   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
   910          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
   912 #ifndef PRODUCT
   913   // tracing/debugging/statistics
   914   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
   915                 (is_virtual) ? (&_resolve_virtual_ctr) :
   916                                (&_resolve_static_ctr);
   917   Atomic::inc(addr);
   919   if (TraceCallFixup) {
   920     ResourceMark rm(thread);
   921     tty->print("resolving %s%s (%s) call to",
   922       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
   923       Bytecodes::name(invoke_code));
   924     callee_method->print_short_name(tty);
   925     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
   926   }
   927 #endif
   929   // Compute entry points. This might require generation of C2I converter
   930   // frames, so we cannot be holding any locks here. Furthermore, the
   931   // computation of the entry points is independent of patching the call.  We
   932   // always return the entry-point, but we only patch the stub if the call has
   933   // not been deoptimized.  Return values: For a virtual call this is an
   934   // (cached_oop, destination address) pair. For a static call/optimized
   935   // virtual this is just a destination address.
   937   StaticCallInfo static_call_info;
   938   CompiledICInfo virtual_call_info;
   941   // Make sure the callee nmethod does not get deoptimized and removed before
   942   // we are done patching the code.
   943   nmethod* nm = callee_method->code();
   944   nmethodLocker nl_callee(nm);
   945 #ifdef ASSERT
   946   address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
   947 #endif
   949   if (is_virtual) {
   950     assert(receiver.not_null(), "sanity check");
   951     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
   952     KlassHandle h_klass(THREAD, receiver->klass());
   953     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
   954                      is_optimized, static_bound, virtual_call_info,
   955                      CHECK_(methodHandle()));
   956   } else {
   957     // static call
   958     CompiledStaticCall::compute_entry(callee_method, static_call_info);
   959   }
   961   // grab lock, check for deoptimization and potentially patch caller
   962   {
   963     MutexLocker ml_patch(CompiledIC_lock);
   965     // Now that we are ready to patch if the methodOop was redefined then
   966     // don't update call site and let the caller retry.
   968     if (!callee_method->is_old()) {
   969 #ifdef ASSERT
   970       // We must not try to patch to jump to an already unloaded method.
   971       if (dest_entry_point != 0) {
   972         assert(CodeCache::find_blob(dest_entry_point) != NULL,
   973                "should not unload nmethod while locked");
   974       }
   975 #endif
   976       if (is_virtual) {
   977         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
   978         if (inline_cache->is_clean()) {
   979           inline_cache->set_to_monomorphic(virtual_call_info);
   980         }
   981       } else {
   982         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
   983         if (ssc->is_clean()) ssc->set(static_call_info);
   984       }
   985     }
   987   } // unlock CompiledIC_lock
   989   return callee_method;
   990 }
   993 // Inline caches exist only in compiled code
   994 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
   995 #ifdef ASSERT
   996   RegisterMap reg_map(thread, false);
   997   frame stub_frame = thread->last_frame();
   998   assert(stub_frame.is_runtime_frame(), "sanity check");
   999   frame caller_frame = stub_frame.sender(&reg_map);
  1000   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1001 #endif /* ASSERT */
  1003   methodHandle callee_method;
  1004   JRT_BLOCK
  1005     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1006     // Return methodOop through TLS
  1007     thread->set_vm_result(callee_method());
  1008   JRT_BLOCK_END
  1009   // return compiled code entry point after potential safepoints
  1010   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1011   return callee_method->verified_code_entry();
  1012 JRT_END
  1015 // Handle call site that has been made non-entrant
  1016 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1017   // 6243940 We might end up in here if the callee is deoptimized
  1018   // as we race to call it.  We don't want to take a safepoint if
  1019   // the caller was interpreted because the caller frame will look
  1020   // interpreted to the stack walkers and arguments are now
  1021   // "compiled" so it is much better to make this transition
  1022   // invisible to the stack walking code. The i2c path will
  1023   // place the callee method in the callee_target. It is stashed
  1024   // there because if we try and find the callee by normal means a
  1025   // safepoint is possible and have trouble gc'ing the compiled args.
  1026   RegisterMap reg_map(thread, false);
  1027   frame stub_frame = thread->last_frame();
  1028   assert(stub_frame.is_runtime_frame(), "sanity check");
  1029   frame caller_frame = stub_frame.sender(&reg_map);
  1031   // MethodHandle invokes don't have a CompiledIC and should always
  1032   // simply redispatch to the callee_target.
  1033   address   sender_pc = caller_frame.pc();
  1034   CodeBlob* sender_cb = caller_frame.cb();
  1035   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
  1036   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
  1037   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
  1038     // If the callee_target is set, then we have come here via an i2c
  1039     // adapter.
  1040     methodOop callee = thread->callee_target();
  1041     if (callee != NULL) {
  1042       assert(callee->is_method(), "sanity");
  1043       is_mh_invoke_via_adapter = true;
  1047   if (caller_frame.is_interpreted_frame() ||
  1048       caller_frame.is_entry_frame()       ||
  1049       is_mh_invoke_via_adapter) {
  1050     methodOop callee = thread->callee_target();
  1051     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1052     thread->set_vm_result(callee);
  1053     thread->set_callee_target(NULL);
  1054     return callee->get_c2i_entry();
  1057   // Must be compiled to compiled path which is safe to stackwalk
  1058   methodHandle callee_method;
  1059   JRT_BLOCK
  1060     // Force resolving of caller (if we called from compiled frame)
  1061     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1062     thread->set_vm_result(callee_method());
  1063   JRT_BLOCK_END
  1064   // return compiled code entry point after potential safepoints
  1065   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1066   return callee_method->verified_code_entry();
  1067 JRT_END
  1070 // resolve a static call and patch code
  1071 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1072   methodHandle callee_method;
  1073   JRT_BLOCK
  1074     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1075     thread->set_vm_result(callee_method());
  1076   JRT_BLOCK_END
  1077   // return compiled code entry point after potential safepoints
  1078   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1079   return callee_method->verified_code_entry();
  1080 JRT_END
  1083 // resolve virtual call and update inline cache to monomorphic
  1084 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1085   methodHandle callee_method;
  1086   JRT_BLOCK
  1087     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1088     thread->set_vm_result(callee_method());
  1089   JRT_BLOCK_END
  1090   // return compiled code entry point after potential safepoints
  1091   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1092   return callee_method->verified_code_entry();
  1093 JRT_END
  1096 // Resolve a virtual call that can be statically bound (e.g., always
  1097 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1098 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1099   methodHandle callee_method;
  1100   JRT_BLOCK
  1101     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1102     thread->set_vm_result(callee_method());
  1103   JRT_BLOCK_END
  1104   // return compiled code entry point after potential safepoints
  1105   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1106   return callee_method->verified_code_entry();
  1107 JRT_END
  1113 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1114   ResourceMark rm(thread);
  1115   CallInfo call_info;
  1116   Bytecodes::Code bc;
  1118   // receiver is NULL for static calls. An exception is thrown for NULL
  1119   // receivers for non-static calls
  1120   Handle receiver = find_callee_info(thread, bc, call_info,
  1121                                      CHECK_(methodHandle()));
  1122   // Compiler1 can produce virtual call sites that can actually be statically bound
  1123   // If we fell thru to below we would think that the site was going megamorphic
  1124   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1125   // we'd try and do a vtable dispatch however methods that can be statically bound
  1126   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1127   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1128   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1129   // never to miss again. I don't believe C2 will produce code like this but if it
  1130   // did this would still be the correct thing to do for it too, hence no ifdef.
  1131   //
  1132   if (call_info.resolved_method()->can_be_statically_bound()) {
  1133     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1134     if (TraceCallFixup) {
  1135       RegisterMap reg_map(thread, false);
  1136       frame caller_frame = thread->last_frame().sender(&reg_map);
  1137       ResourceMark rm(thread);
  1138       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1139       callee_method->print_short_name(tty);
  1140       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1141       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1143     return callee_method;
  1146   methodHandle callee_method = call_info.selected_method();
  1148   bool should_be_mono = false;
  1150 #ifndef PRODUCT
  1151   Atomic::inc(&_ic_miss_ctr);
  1153   // Statistics & Tracing
  1154   if (TraceCallFixup) {
  1155     ResourceMark rm(thread);
  1156     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1157     callee_method->print_short_name(tty);
  1158     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1161   if (ICMissHistogram) {
  1162     MutexLocker m(VMStatistic_lock);
  1163     RegisterMap reg_map(thread, false);
  1164     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1165     // produce statistics under the lock
  1166     trace_ic_miss(f.pc());
  1168 #endif
  1170   // install an event collector so that when a vtable stub is created the
  1171   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1172   // event can't be posted when the stub is created as locks are held
  1173   // - instead the event will be deferred until the event collector goes
  1174   // out of scope.
  1175   JvmtiDynamicCodeEventCollector event_collector;
  1177   // Update inline cache to megamorphic. Skip update if caller has been
  1178   // made non-entrant or we are called from interpreted.
  1179   { MutexLocker ml_patch (CompiledIC_lock);
  1180     RegisterMap reg_map(thread, false);
  1181     frame caller_frame = thread->last_frame().sender(&reg_map);
  1182     CodeBlob* cb = caller_frame.cb();
  1183     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1184       // Not a non-entrant nmethod, so find inline_cache
  1185       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1186       bool should_be_mono = false;
  1187       if (inline_cache->is_optimized()) {
  1188         if (TraceCallFixup) {
  1189           ResourceMark rm(thread);
  1190           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1191           callee_method->print_short_name(tty);
  1192           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1194         should_be_mono = true;
  1195       } else {
  1196         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
  1197         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
  1199           if (receiver()->klass() == ic_oop->holder_klass()) {
  1200             // This isn't a real miss. We must have seen that compiled code
  1201             // is now available and we want the call site converted to a
  1202             // monomorphic compiled call site.
  1203             // We can't assert for callee_method->code() != NULL because it
  1204             // could have been deoptimized in the meantime
  1205             if (TraceCallFixup) {
  1206               ResourceMark rm(thread);
  1207               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1208               callee_method->print_short_name(tty);
  1209               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1211             should_be_mono = true;
  1216       if (should_be_mono) {
  1218         // We have a path that was monomorphic but was going interpreted
  1219         // and now we have (or had) a compiled entry. We correct the IC
  1220         // by using a new icBuffer.
  1221         CompiledICInfo info;
  1222         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1223         inline_cache->compute_monomorphic_entry(callee_method,
  1224                                                 receiver_klass,
  1225                                                 inline_cache->is_optimized(),
  1226                                                 false,
  1227                                                 info, CHECK_(methodHandle()));
  1228         inline_cache->set_to_monomorphic(info);
  1229       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1230         // Change to megamorphic
  1231         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1232       } else {
  1233         // Either clean or megamorphic
  1236   } // Release CompiledIC_lock
  1238   return callee_method;
  1241 //
  1242 // Resets a call-site in compiled code so it will get resolved again.
  1243 // This routines handles both virtual call sites, optimized virtual call
  1244 // sites, and static call sites. Typically used to change a call sites
  1245 // destination from compiled to interpreted.
  1246 //
  1247 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1248   ResourceMark rm(thread);
  1249   RegisterMap reg_map(thread, false);
  1250   frame stub_frame = thread->last_frame();
  1251   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1252   frame caller = stub_frame.sender(&reg_map);
  1254   // Do nothing if the frame isn't a live compiled frame.
  1255   // nmethod could be deoptimized by the time we get here
  1256   // so no update to the caller is needed.
  1258   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1260     address pc = caller.pc();
  1261     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
  1263     // Default call_addr is the location of the "basic" call.
  1264     // Determine the address of the call we a reresolving. With
  1265     // Inline Caches we will always find a recognizable call.
  1266     // With Inline Caches disabled we may or may not find a
  1267     // recognizable call. We will always find a call for static
  1268     // calls and for optimized virtual calls. For vanilla virtual
  1269     // calls it depends on the state of the UseInlineCaches switch.
  1270     //
  1271     // With Inline Caches disabled we can get here for a virtual call
  1272     // for two reasons:
  1273     //   1 - calling an abstract method. The vtable for abstract methods
  1274     //       will run us thru handle_wrong_method and we will eventually
  1275     //       end up in the interpreter to throw the ame.
  1276     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1277     //       call and between the time we fetch the entry address and
  1278     //       we jump to it the target gets deoptimized. Similar to 1
  1279     //       we will wind up in the interprter (thru a c2i with c2).
  1280     //
  1281     address call_addr = NULL;
  1283       // Get call instruction under lock because another thread may be
  1284       // busy patching it.
  1285       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1286       // Location of call instruction
  1287       if (NativeCall::is_call_before(pc)) {
  1288         NativeCall *ncall = nativeCall_before(pc);
  1289         call_addr = ncall->instruction_address();
  1293     // Check for static or virtual call
  1294     bool is_static_call = false;
  1295     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1296     // Make sure nmethod doesn't get deoptimized and removed until
  1297     // this is done with it.
  1298     // CLEANUP - with lazy deopt shouldn't need this lock
  1299     nmethodLocker nmlock(caller_nm);
  1301     if (call_addr != NULL) {
  1302       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1303       int ret = iter.next(); // Get item
  1304       if (ret) {
  1305         assert(iter.addr() == call_addr, "must find call");
  1306         if (iter.type() == relocInfo::static_call_type) {
  1307           is_static_call = true;
  1308         } else {
  1309           assert(iter.type() == relocInfo::virtual_call_type ||
  1310                  iter.type() == relocInfo::opt_virtual_call_type
  1311                 , "unexpected relocInfo. type");
  1313       } else {
  1314         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1317       // Cleaning the inline cache will force a new resolve. This is more robust
  1318       // than directly setting it to the new destination, since resolving of calls
  1319       // is always done through the same code path. (experience shows that it
  1320       // leads to very hard to track down bugs, if an inline cache gets updated
  1321       // to a wrong method). It should not be performance critical, since the
  1322       // resolve is only done once.
  1324       MutexLocker ml(CompiledIC_lock);
  1325       //
  1326       // We do not patch the call site if the nmethod has been made non-entrant
  1327       // as it is a waste of time
  1328       //
  1329       if (caller_nm->is_in_use()) {
  1330         if (is_static_call) {
  1331           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1332           ssc->set_to_clean();
  1333         } else {
  1334           // compiled, dispatched call (which used to call an interpreted method)
  1335           CompiledIC* inline_cache = CompiledIC_at(call_addr);
  1336           inline_cache->set_to_clean();
  1343   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1346 #ifndef PRODUCT
  1347   Atomic::inc(&_wrong_method_ctr);
  1349   if (TraceCallFixup) {
  1350     ResourceMark rm(thread);
  1351     tty->print("handle_wrong_method reresolving call to");
  1352     callee_method->print_short_name(tty);
  1353     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1355 #endif
  1357   return callee_method;
  1360 // ---------------------------------------------------------------------------
  1361 // We are calling the interpreter via a c2i. Normally this would mean that
  1362 // we were called by a compiled method. However we could have lost a race
  1363 // where we went int -> i2c -> c2i and so the caller could in fact be
  1364 // interpreted. If the caller is compiled we attampt to patch the caller
  1365 // so he no longer calls into the interpreter.
  1366 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
  1367   methodOop moop(method);
  1369   address entry_point = moop->from_compiled_entry();
  1371   // It's possible that deoptimization can occur at a call site which hasn't
  1372   // been resolved yet, in which case this function will be called from
  1373   // an nmethod that has been patched for deopt and we can ignore the
  1374   // request for a fixup.
  1375   // Also it is possible that we lost a race in that from_compiled_entry
  1376   // is now back to the i2c in that case we don't need to patch and if
  1377   // we did we'd leap into space because the callsite needs to use
  1378   // "to interpreter" stub in order to load up the methodOop. Don't
  1379   // ask me how I know this...
  1380   //
  1382   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1383   if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1384     return;
  1387   // There is a benign race here. We could be attempting to patch to a compiled
  1388   // entry point at the same time the callee is being deoptimized. If that is
  1389   // the case then entry_point may in fact point to a c2i and we'd patch the
  1390   // call site with the same old data. clear_code will set code() to NULL
  1391   // at the end of it. If we happen to see that NULL then we can skip trying
  1392   // to patch. If we hit the window where the callee has a c2i in the
  1393   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1394   // and patch the code with the same old data. Asi es la vida.
  1396   if (moop->code() == NULL) return;
  1398   if (((nmethod*)cb)->is_in_use()) {
  1400     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1401     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1402     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
  1403       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
  1404       //
  1405       // bug 6281185. We might get here after resolving a call site to a vanilla
  1406       // virtual call. Because the resolvee uses the verified entry it may then
  1407       // see compiled code and attempt to patch the site by calling us. This would
  1408       // then incorrectly convert the call site to optimized and its downhill from
  1409       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1410       // just made a call site that could be megamorphic into a monomorphic site
  1411       // for the rest of its life! Just another racing bug in the life of
  1412       // fixup_callers_callsite ...
  1413       //
  1414       RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
  1415       iter.next();
  1416       assert(iter.has_current(), "must have a reloc at java call site");
  1417       relocInfo::relocType typ = iter.reloc()->type();
  1418       if ( typ != relocInfo::static_call_type &&
  1419            typ != relocInfo::opt_virtual_call_type &&
  1420            typ != relocInfo::static_stub_type) {
  1421         return;
  1423       address destination = call->destination();
  1424       if (destination != entry_point) {
  1425         CodeBlob* callee = CodeCache::find_blob(destination);
  1426         // callee == cb seems weird. It means calling interpreter thru stub.
  1427         if (callee == cb || callee->is_adapter_blob()) {
  1428           // static call or optimized virtual
  1429           if (TraceCallFixup) {
  1430             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1431             moop->print_short_name(tty);
  1432             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1434           call->set_destination_mt_safe(entry_point);
  1435         } else {
  1436           if (TraceCallFixup) {
  1437             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1438             moop->print_short_name(tty);
  1439             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1441           // assert is too strong could also be resolve destinations.
  1442           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1444       } else {
  1445           if (TraceCallFixup) {
  1446             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1447             moop->print_short_name(tty);
  1448             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1454 IRT_END
  1457 // same as JVM_Arraycopy, but called directly from compiled code
  1458 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1459                                                 oopDesc* dest, jint dest_pos,
  1460                                                 jint length,
  1461                                                 JavaThread* thread)) {
  1462 #ifndef PRODUCT
  1463   _slow_array_copy_ctr++;
  1464 #endif
  1465   // Check if we have null pointers
  1466   if (src == NULL || dest == NULL) {
  1467     THROW(vmSymbols::java_lang_NullPointerException());
  1469   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1470   // even though the copy_array API also performs dynamic checks to ensure
  1471   // that src and dest are truly arrays (and are conformable).
  1472   // The copy_array mechanism is awkward and could be removed, but
  1473   // the compilers don't call this function except as a last resort,
  1474   // so it probably doesn't matter.
  1475   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
  1476                                         (arrayOopDesc*)dest, dest_pos,
  1477                                         length, thread);
  1479 JRT_END
  1481 char* SharedRuntime::generate_class_cast_message(
  1482     JavaThread* thread, const char* objName) {
  1484   // Get target class name from the checkcast instruction
  1485   vframeStream vfst(thread, true);
  1486   assert(!vfst.at_end(), "Java frame must exist");
  1487   Bytecode_checkcast* cc = Bytecode_checkcast_at(
  1488     vfst.method()->bcp_from(vfst.bci()));
  1489   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
  1490     cc->index(), thread));
  1491   return generate_class_cast_message(objName, targetKlass->external_name());
  1494 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
  1495                                                         oopDesc* required,
  1496                                                         oopDesc* actual) {
  1497   assert(EnableMethodHandles, "");
  1498   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
  1499   if (singleKlass != NULL) {
  1500     const char* objName = "argument or return value";
  1501     if (actual != NULL) {
  1502       // be flexible about the junk passed in:
  1503       klassOop ak = (actual->is_klass()
  1504                      ? (klassOop)actual
  1505                      : actual->klass());
  1506       objName = Klass::cast(ak)->external_name();
  1508     Klass* targetKlass = Klass::cast(required->is_klass()
  1509                                      ? (klassOop)required
  1510                                      : java_lang_Class::as_klassOop(required));
  1511     return generate_class_cast_message(objName, targetKlass->external_name());
  1512   } else {
  1513     // %%% need to get the MethodType string, without messing around too much
  1514     // Get a signature from the invoke instruction
  1515     const char* mhName = "method handle";
  1516     const char* targetType = "the required signature";
  1517     vframeStream vfst(thread, true);
  1518     if (!vfst.at_end()) {
  1519       Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
  1520       methodHandle target;
  1522         EXCEPTION_MARK;
  1523         target = call->static_target(THREAD);
  1524         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
  1526       if (target.not_null()
  1527           && target->is_method_handle_invoke()
  1528           && required == target->method_handle_type()) {
  1529         targetType = target->signature()->as_C_string();
  1532     klassOop kignore; int fignore;
  1533     methodOop actual_method = MethodHandles::decode_method(actual,
  1534                                                           kignore, fignore);
  1535     if (actual_method != NULL) {
  1536       if (actual_method->name() == vmSymbols::invoke_name())
  1537         mhName = "$";
  1538       else
  1539         mhName = actual_method->signature()->as_C_string();
  1540       if (mhName[0] == '$')
  1541         mhName = actual_method->signature()->as_C_string();
  1543     return generate_class_cast_message(mhName, targetType,
  1544                                        " cannot be called as ");
  1548 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
  1549                                                             oopDesc* required) {
  1550   if (required == NULL)  return NULL;
  1551   if (required->klass() == SystemDictionary::Class_klass())
  1552     return required;
  1553   if (required->is_klass())
  1554     return Klass::cast(klassOop(required))->java_mirror();
  1555   return NULL;
  1559 char* SharedRuntime::generate_class_cast_message(
  1560     const char* objName, const char* targetKlassName, const char* desc) {
  1561   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1563   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1564   if (NULL == message) {
  1565     // Shouldn't happen, but don't cause even more problems if it does
  1566     message = const_cast<char*>(objName);
  1567   } else {
  1568     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1570   return message;
  1573 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1574   (void) JavaThread::current()->reguard_stack();
  1575 JRT_END
  1578 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1579 #ifndef PRODUCT
  1580 int SharedRuntime::_monitor_enter_ctr=0;
  1581 #endif
  1582 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1583   oop obj(_obj);
  1584 #ifndef PRODUCT
  1585   _monitor_enter_ctr++;             // monitor enter slow
  1586 #endif
  1587   if (PrintBiasedLockingStatistics) {
  1588     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1590   Handle h_obj(THREAD, obj);
  1591   if (UseBiasedLocking) {
  1592     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1593     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1594   } else {
  1595     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1597   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1598 JRT_END
  1600 #ifndef PRODUCT
  1601 int SharedRuntime::_monitor_exit_ctr=0;
  1602 #endif
  1603 // Handles the uncommon cases of monitor unlocking in compiled code
  1604 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1605    oop obj(_obj);
  1606 #ifndef PRODUCT
  1607   _monitor_exit_ctr++;              // monitor exit slow
  1608 #endif
  1609   Thread* THREAD = JavaThread::current();
  1610   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1611   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1612   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1613 #undef MIGHT_HAVE_PENDING
  1614 #ifdef MIGHT_HAVE_PENDING
  1615   // Save and restore any pending_exception around the exception mark.
  1616   // While the slow_exit must not throw an exception, we could come into
  1617   // this routine with one set.
  1618   oop pending_excep = NULL;
  1619   const char* pending_file;
  1620   int pending_line;
  1621   if (HAS_PENDING_EXCEPTION) {
  1622     pending_excep = PENDING_EXCEPTION;
  1623     pending_file  = THREAD->exception_file();
  1624     pending_line  = THREAD->exception_line();
  1625     CLEAR_PENDING_EXCEPTION;
  1627 #endif /* MIGHT_HAVE_PENDING */
  1630     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1631     EXCEPTION_MARK;
  1632     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1635 #ifdef MIGHT_HAVE_PENDING
  1636   if (pending_excep != NULL) {
  1637     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1639 #endif /* MIGHT_HAVE_PENDING */
  1640 JRT_END
  1642 #ifndef PRODUCT
  1644 void SharedRuntime::print_statistics() {
  1645   ttyLocker ttyl;
  1646   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1648   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1649   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1650   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1652   SharedRuntime::print_ic_miss_histogram();
  1654   if (CountRemovableExceptions) {
  1655     if (_nof_removable_exceptions > 0) {
  1656       Unimplemented(); // this counter is not yet incremented
  1657       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1661   // Dump the JRT_ENTRY counters
  1662   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1663   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1664   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1665   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1666   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1667   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1668   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1670   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1671   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1672   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1673   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1674   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1676   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1677   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1678   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1679   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1680   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1681   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1682   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1683   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1684   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1685   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1686   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1687   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1688   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1689   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1690   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1691   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1693   AdapterHandlerLibrary::print_statistics();
  1695   if (xtty != NULL)  xtty->tail("statistics");
  1698 inline double percent(int x, int y) {
  1699   return 100.0 * x / MAX2(y, 1);
  1702 class MethodArityHistogram {
  1703  public:
  1704   enum { MAX_ARITY = 256 };
  1705  private:
  1706   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1707   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1708   static int _max_arity;                      // max. arity seen
  1709   static int _max_size;                       // max. arg size seen
  1711   static void add_method_to_histogram(nmethod* nm) {
  1712     methodOop m = nm->method();
  1713     ArgumentCount args(m->signature());
  1714     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1715     int argsize = m->size_of_parameters();
  1716     arity   = MIN2(arity, MAX_ARITY-1);
  1717     argsize = MIN2(argsize, MAX_ARITY-1);
  1718     int count = nm->method()->compiled_invocation_count();
  1719     _arity_histogram[arity]  += count;
  1720     _size_histogram[argsize] += count;
  1721     _max_arity = MAX2(_max_arity, arity);
  1722     _max_size  = MAX2(_max_size, argsize);
  1725   void print_histogram_helper(int n, int* histo, const char* name) {
  1726     const int N = MIN2(5, n);
  1727     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1728     double sum = 0;
  1729     double weighted_sum = 0;
  1730     int i;
  1731     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  1732     double rest = sum;
  1733     double percent = sum / 100;
  1734     for (i = 0; i <= N; i++) {
  1735       rest -= histo[i];
  1736       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  1738     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  1739     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  1742   void print_histogram() {
  1743     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1744     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  1745     tty->print_cr("\nSame for parameter size (in words):");
  1746     print_histogram_helper(_max_size, _size_histogram, "size");
  1747     tty->cr();
  1750  public:
  1751   MethodArityHistogram() {
  1752     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1753     _max_arity = _max_size = 0;
  1754     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  1755     CodeCache::nmethods_do(add_method_to_histogram);
  1756     print_histogram();
  1758 };
  1760 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  1761 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  1762 int MethodArityHistogram::_max_arity;
  1763 int MethodArityHistogram::_max_size;
  1765 void SharedRuntime::print_call_statistics(int comp_total) {
  1766   tty->print_cr("Calls from compiled code:");
  1767   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  1768   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  1769   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  1770   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  1771   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  1772   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  1773   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  1774   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  1775   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  1776   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  1777   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  1778   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  1779   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  1780   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  1781   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  1782   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  1783   tty->cr();
  1784   tty->print_cr("Note 1: counter updates are not MT-safe.");
  1785   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  1786   tty->print_cr("        %% in nested categories are relative to their category");
  1787   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  1788   tty->cr();
  1790   MethodArityHistogram h;
  1792 #endif
  1795 // A simple wrapper class around the calling convention information
  1796 // that allows sharing of adapters for the same calling convention.
  1797 class AdapterFingerPrint : public CHeapObj {
  1798  private:
  1799   union {
  1800     signed char  _compact[12];
  1801     int          _compact_int[3];
  1802     intptr_t*    _fingerprint;
  1803   } _value;
  1804   int _length; // A negative length indicates that _value._fingerprint is the array.
  1805                // Otherwise it's in the compact form.
  1807  public:
  1808   AdapterFingerPrint(int total_args_passed, VMRegPair* regs) {
  1809     assert(sizeof(_value._compact) == sizeof(_value._compact_int), "must match");
  1810     _length = total_args_passed * 2;
  1811     if (_length < (int)sizeof(_value._compact)) {
  1812       _value._compact_int[0] = _value._compact_int[1] = _value._compact_int[2] = 0;
  1813       // Storing the signature encoded as signed chars hits about 98%
  1814       // of the time.
  1815       signed char* ptr = _value._compact;
  1816       int o = 0;
  1817       for (int i = 0; i < total_args_passed; i++) {
  1818         VMRegPair pair = regs[i];
  1819         intptr_t v1 = pair.first()->value();
  1820         intptr_t v2 = pair.second()->value();
  1821         if (v1 == (signed char) v1 &&
  1822             v2 == (signed char) v2) {
  1823           _value._compact[o++] = v1;
  1824           _value._compact[o++] = v2;
  1825         } else {
  1826           goto big;
  1829       _length = -_length;
  1830       return;
  1832   big:
  1833     _value._fingerprint = NEW_C_HEAP_ARRAY(intptr_t, _length);
  1834     int o = 0;
  1835     for (int i = 0; i < total_args_passed; i++) {
  1836       VMRegPair pair = regs[i];
  1837       intptr_t v1 = pair.first()->value();
  1838       intptr_t v2 = pair.second()->value();
  1839       _value._fingerprint[o++] = v1;
  1840       _value._fingerprint[o++] = v2;
  1844   AdapterFingerPrint(AdapterFingerPrint* orig) {
  1845     _length = orig->_length;
  1846     _value = orig->_value;
  1847     // take ownership of any storage by destroying the length
  1848     orig->_length = 0;
  1851   ~AdapterFingerPrint() {
  1852     if (_length > 0) {
  1853       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
  1857   AdapterFingerPrint* allocate() {
  1858     return new AdapterFingerPrint(this);
  1861   intptr_t value(int index) {
  1862     if (_length < 0) {
  1863       return _value._compact[index];
  1865     return _value._fingerprint[index];
  1867   int length() {
  1868     if (_length < 0) return -_length;
  1869     return _length;
  1872   bool is_compact() {
  1873     return _length <= 0;
  1876   unsigned int compute_hash() {
  1877     intptr_t hash = 0;
  1878     for (int i = 0; i < length(); i++) {
  1879       intptr_t v = value(i);
  1880       hash = (hash << 8) ^ v ^ (hash >> 5);
  1882     return (unsigned int)hash;
  1885   const char* as_string() {
  1886     stringStream st;
  1887     for (int i = 0; i < length(); i++) {
  1888       st.print(PTR_FORMAT, value(i));
  1890     return st.as_string();
  1893   bool equals(AdapterFingerPrint* other) {
  1894     if (other->_length != _length) {
  1895       return false;
  1897     if (_length < 0) {
  1898       return _value._compact_int[0] == other->_value._compact_int[0] &&
  1899              _value._compact_int[1] == other->_value._compact_int[1] &&
  1900              _value._compact_int[2] == other->_value._compact_int[2];
  1901     } else {
  1902       for (int i = 0; i < _length; i++) {
  1903         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  1904           return false;
  1908     return true;
  1910 };
  1913 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  1914 class AdapterHandlerTable : public BasicHashtable {
  1915   friend class AdapterHandlerTableIterator;
  1917  private:
  1919 #ifdef ASSERT
  1920   static int _lookups; // number of calls to lookup
  1921   static int _buckets; // number of buckets checked
  1922   static int _equals;  // number of buckets checked with matching hash
  1923   static int _hits;    // number of successful lookups
  1924   static int _compact; // number of equals calls with compact signature
  1925 #endif
  1927   AdapterHandlerEntry* bucket(int i) {
  1928     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
  1931  public:
  1932   AdapterHandlerTable()
  1933     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
  1935   // Create a new entry suitable for insertion in the table
  1936   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  1937     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
  1938     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  1939     return entry;
  1942   // Insert an entry into the table
  1943   void add(AdapterHandlerEntry* entry) {
  1944     int index = hash_to_index(entry->hash());
  1945     add_entry(index, entry);
  1948   // Find a entry with the same fingerprint if it exists
  1949   AdapterHandlerEntry* lookup(int total_args_passed, VMRegPair* regs) {
  1950     debug_only(_lookups++);
  1951     AdapterFingerPrint fp(total_args_passed, regs);
  1952     unsigned int hash = fp.compute_hash();
  1953     int index = hash_to_index(hash);
  1954     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  1955       debug_only(_buckets++);
  1956       if (e->hash() == hash) {
  1957         debug_only(_equals++);
  1958         if (fp.equals(e->fingerprint())) {
  1959 #ifdef ASSERT
  1960           if (fp.is_compact()) _compact++;
  1961           _hits++;
  1962 #endif
  1963           return e;
  1967     return NULL;
  1970   void print_statistics() {
  1971     ResourceMark rm;
  1972     int longest = 0;
  1973     int empty = 0;
  1974     int total = 0;
  1975     int nonempty = 0;
  1976     for (int index = 0; index < table_size(); index++) {
  1977       int count = 0;
  1978       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  1979         count++;
  1981       if (count != 0) nonempty++;
  1982       if (count == 0) empty++;
  1983       if (count > longest) longest = count;
  1984       total += count;
  1986     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  1987                   empty, longest, total, total / (double)nonempty);
  1988 #ifdef ASSERT
  1989     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  1990                   _lookups, _buckets, _equals, _hits, _compact);
  1991 #endif
  1993 };
  1996 #ifdef ASSERT
  1998 int AdapterHandlerTable::_lookups;
  1999 int AdapterHandlerTable::_buckets;
  2000 int AdapterHandlerTable::_equals;
  2001 int AdapterHandlerTable::_hits;
  2002 int AdapterHandlerTable::_compact;
  2004 class AdapterHandlerTableIterator : public StackObj {
  2005  private:
  2006   AdapterHandlerTable* _table;
  2007   int _index;
  2008   AdapterHandlerEntry* _current;
  2010   void scan() {
  2011     while (_index < _table->table_size()) {
  2012       AdapterHandlerEntry* a = _table->bucket(_index);
  2013       if (a != NULL) {
  2014         _current = a;
  2015         return;
  2017       _index++;
  2021  public:
  2022   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2023     scan();
  2025   bool has_next() {
  2026     return _current != NULL;
  2028   AdapterHandlerEntry* next() {
  2029     if (_current != NULL) {
  2030       AdapterHandlerEntry* result = _current;
  2031       _current = _current->next();
  2032       if (_current == NULL) scan();
  2033       return result;
  2034     } else {
  2035       return NULL;
  2038 };
  2039 #endif
  2042 // ---------------------------------------------------------------------------
  2043 // Implementation of AdapterHandlerLibrary
  2044 const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
  2045 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2046 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2047 const int AdapterHandlerLibrary_size = 16*K;
  2048 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2050 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2051   // Should be called only when AdapterHandlerLibrary_lock is active.
  2052   if (_buffer == NULL) // Initialize lazily
  2053       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2054   return _buffer;
  2057 void AdapterHandlerLibrary::initialize() {
  2058   if (_adapters != NULL) return;
  2059   _adapters = new AdapterHandlerTable();
  2061   // Create a special handler for abstract methods.  Abstract methods
  2062   // are never compiled so an i2c entry is somewhat meaningless, but
  2063   // fill it in with something appropriate just in case.  Pass handle
  2064   // wrong method for the c2i transitions.
  2065   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  2066   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2067                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2068                                                               wrong_method, wrong_method);
  2071 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2072                                                       address i2c_entry,
  2073                                                       address c2i_entry,
  2074                                                       address c2i_unverified_entry) {
  2075   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2078 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2079   // Use customized signature handler.  Need to lock around updates to
  2080   // the AdapterHandlerTable (it is not safe for concurrent readers
  2081   // and a single writer: this could be fixed if it becomes a
  2082   // problem).
  2084   // Get the address of the ic_miss handlers before we grab the
  2085   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2086   // was caused by the initialization of the stubs happening
  2087   // while we held the lock and then notifying jvmti while
  2088   // holding it. This just forces the initialization to be a little
  2089   // earlier.
  2090   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2091   assert(ic_miss != NULL, "must have handler");
  2093   ResourceMark rm;
  2095   NOT_PRODUCT(int code_size);
  2096   BufferBlob *B = NULL;
  2097   AdapterHandlerEntry* entry = NULL;
  2098   AdapterFingerPrint* fingerprint = NULL;
  2100     MutexLocker mu(AdapterHandlerLibrary_lock);
  2101     // make sure data structure is initialized
  2102     initialize();
  2104     if (method->is_abstract()) {
  2105       return _abstract_method_handler;
  2108     // Fill in the signature array, for the calling-convention call.
  2109     int total_args_passed = method->size_of_parameters(); // All args on stack
  2111     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2112     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2113     int i = 0;
  2114     if (!method->is_static())  // Pass in receiver first
  2115       sig_bt[i++] = T_OBJECT;
  2116     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2117       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2118       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2119         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2121     assert(i == total_args_passed, "");
  2123     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2124     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2126     // Lookup method signature's fingerprint
  2127     entry = _adapters->lookup(total_args_passed, regs);
  2128     if (entry != NULL) {
  2129       return entry;
  2132     // Make a C heap allocated version of the fingerprint to store in the adapter
  2133     fingerprint = new AdapterFingerPrint(total_args_passed, regs);
  2135     // Create I2C & C2I handlers
  2137     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2138     if (buf != NULL) {
  2139       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
  2140       short buffer_locs[20];
  2141       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2142                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2143       MacroAssembler _masm(&buffer);
  2145       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2146                                                      total_args_passed,
  2147                                                      comp_args_on_stack,
  2148                                                      sig_bt,
  2149                                                      regs,
  2150                                                      fingerprint);
  2152       B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
  2153       NOT_PRODUCT(code_size = buffer.code_size());
  2155     if (B == NULL) {
  2156       // CodeCache is full, disable compilation
  2157       // Ought to log this but compile log is only per compile thread
  2158       // and we're some non descript Java thread.
  2159       UseInterpreter = true;
  2160       if (UseCompiler || AlwaysCompileLoopMethods ) {
  2161 #ifndef PRODUCT
  2162         warning("CodeCache is full. Compiler has been disabled");
  2163         if (CompileTheWorld || ExitOnFullCodeCache) {
  2164           before_exit(JavaThread::current());
  2165           exit_globals(); // will delete tty
  2166           vm_direct_exit(CompileTheWorld ? 0 : 1);
  2168 #endif
  2169         UseCompiler               = false;
  2170         AlwaysCompileLoopMethods  = false;
  2172       return NULL; // Out of CodeCache space
  2174     entry->relocate(B->instructions_begin());
  2175 #ifndef PRODUCT
  2176     // debugging suppport
  2177     if (PrintAdapterHandlers) {
  2178       tty->cr();
  2179       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
  2180                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2181                     method->signature()->as_C_string(), fingerprint->as_string(), code_size );
  2182       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2183       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + code_size);
  2185 #endif
  2187     _adapters->add(entry);
  2189   // Outside of the lock
  2190   if (B != NULL) {
  2191     char blob_id[256];
  2192     jio_snprintf(blob_id,
  2193                  sizeof(blob_id),
  2194                  "%s(%s)@" PTR_FORMAT,
  2195                  AdapterHandlerEntry::name,
  2196                  fingerprint->as_string(),
  2197                  B->instructions_begin());
  2198     VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
  2199     Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
  2201     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2202       JvmtiExport::post_dynamic_code_generated(blob_id,
  2203                                                B->instructions_begin(),
  2204                                                B->instructions_end());
  2207   return entry;
  2210 void AdapterHandlerEntry::relocate(address new_base) {
  2211     ptrdiff_t delta = new_base - _i2c_entry;
  2212     _i2c_entry += delta;
  2213     _c2i_entry += delta;
  2214     _c2i_unverified_entry += delta;
  2217 // Create a native wrapper for this native method.  The wrapper converts the
  2218 // java compiled calling convention to the native convention, handlizes
  2219 // arguments, and transitions to native.  On return from the native we transition
  2220 // back to java blocking if a safepoint is in progress.
  2221 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
  2222   ResourceMark rm;
  2223   nmethod* nm = NULL;
  2225   if (PrintCompilation) {
  2226     ttyLocker ttyl;
  2227     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
  2228     method->print_short_name(tty);
  2229     if (method->is_static()) {
  2230       tty->print(" (static)");
  2232     tty->cr();
  2235   assert(method->has_native_function(), "must have something valid to call!");
  2238     // perform the work while holding the lock, but perform any printing outside the lock
  2239     MutexLocker mu(AdapterHandlerLibrary_lock);
  2240     // See if somebody beat us to it
  2241     nm = method->code();
  2242     if (nm) {
  2243       return nm;
  2246     ResourceMark rm;
  2248     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2249     if (buf != NULL) {
  2250       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
  2251       double locs_buf[20];
  2252       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2253       MacroAssembler _masm(&buffer);
  2255       // Fill in the signature array, for the calling-convention call.
  2256       int total_args_passed = method->size_of_parameters();
  2258       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  2259       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
  2260       int i=0;
  2261       if( !method->is_static() )  // Pass in receiver first
  2262         sig_bt[i++] = T_OBJECT;
  2263       SignatureStream ss(method->signature());
  2264       for( ; !ss.at_return_type(); ss.next()) {
  2265         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2266         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2267           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2269       assert( i==total_args_passed, "" );
  2270       BasicType ret_type = ss.type();
  2272       // Now get the compiled-Java layout as input arguments
  2273       int comp_args_on_stack;
  2274       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2276       // Generate the compiled-to-native wrapper code
  2277       nm = SharedRuntime::generate_native_wrapper(&_masm,
  2278                                                   method,
  2279                                                   total_args_passed,
  2280                                                   comp_args_on_stack,
  2281                                                   sig_bt,regs,
  2282                                                   ret_type);
  2286   // Must unlock before calling set_code
  2287   // Install the generated code.
  2288   if (nm != NULL) {
  2289     method->set_code(method, nm);
  2290     nm->post_compiled_method_load_event();
  2291   } else {
  2292     // CodeCache is full, disable compilation
  2293     // Ought to log this but compile log is only per compile thread
  2294     // and we're some non descript Java thread.
  2295     UseInterpreter = true;
  2296     if (UseCompiler || AlwaysCompileLoopMethods ) {
  2297 #ifndef PRODUCT
  2298       warning("CodeCache is full. Compiler has been disabled");
  2299       if (CompileTheWorld || ExitOnFullCodeCache) {
  2300         before_exit(JavaThread::current());
  2301         exit_globals(); // will delete tty
  2302         vm_direct_exit(CompileTheWorld ? 0 : 1);
  2304 #endif
  2305       UseCompiler               = false;
  2306       AlwaysCompileLoopMethods  = false;
  2309   return nm;
  2312 #ifdef HAVE_DTRACE_H
  2313 // Create a dtrace nmethod for this method.  The wrapper converts the
  2314 // java compiled calling convention to the native convention, makes a dummy call
  2315 // (actually nops for the size of the call instruction, which become a trap if
  2316 // probe is enabled). The returns to the caller. Since this all looks like a
  2317 // leaf no thread transition is needed.
  2319 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2320   ResourceMark rm;
  2321   nmethod* nm = NULL;
  2323   if (PrintCompilation) {
  2324     ttyLocker ttyl;
  2325     tty->print("---   n%s  ");
  2326     method->print_short_name(tty);
  2327     if (method->is_static()) {
  2328       tty->print(" (static)");
  2330     tty->cr();
  2334     // perform the work while holding the lock, but perform any printing
  2335     // outside the lock
  2336     MutexLocker mu(AdapterHandlerLibrary_lock);
  2337     // See if somebody beat us to it
  2338     nm = method->code();
  2339     if (nm) {
  2340       return nm;
  2343     ResourceMark rm;
  2345     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2346     if (buf != NULL) {
  2347       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
  2348       // Need a few relocation entries
  2349       double locs_buf[20];
  2350       buffer.insts()->initialize_shared_locs(
  2351         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2352       MacroAssembler _masm(&buffer);
  2354       // Generate the compiled-to-native wrapper code
  2355       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2358   return nm;
  2361 // the dtrace method needs to convert java lang string to utf8 string.
  2362 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2363   typeArrayOop jlsValue  = java_lang_String::value(src);
  2364   int          jlsOffset = java_lang_String::offset(src);
  2365   int          jlsLen    = java_lang_String::length(src);
  2366   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2367                                            jlsValue->char_at_addr(jlsOffset);
  2368   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2370 #endif // ndef HAVE_DTRACE_H
  2372 // -------------------------------------------------------------------------
  2373 // Java-Java calling convention
  2374 // (what you use when Java calls Java)
  2376 //------------------------------name_for_receiver----------------------------------
  2377 // For a given signature, return the VMReg for parameter 0.
  2378 VMReg SharedRuntime::name_for_receiver() {
  2379   VMRegPair regs;
  2380   BasicType sig_bt = T_OBJECT;
  2381   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2382   // Return argument 0 register.  In the LP64 build pointers
  2383   // take 2 registers, but the VM wants only the 'main' name.
  2384   return regs.first();
  2387 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool has_receiver, int* arg_size) {
  2388   // This method is returning a data structure allocating as a
  2389   // ResourceObject, so do not put any ResourceMarks in here.
  2390   char *s = sig->as_C_string();
  2391   int len = (int)strlen(s);
  2392   *s++; len--;                  // Skip opening paren
  2393   char *t = s+len;
  2394   while( *(--t) != ')' ) ;      // Find close paren
  2396   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2397   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2398   int cnt = 0;
  2399   if (has_receiver) {
  2400     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2403   while( s < t ) {
  2404     switch( *s++ ) {            // Switch on signature character
  2405     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2406     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2407     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2408     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2409     case 'I': sig_bt[cnt++] = T_INT;     break;
  2410     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2411     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2412     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2413     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2414     case 'L':                   // Oop
  2415       while( *s++ != ';'  ) ;   // Skip signature
  2416       sig_bt[cnt++] = T_OBJECT;
  2417       break;
  2418     case '[': {                 // Array
  2419       do {                      // Skip optional size
  2420         while( *s >= '0' && *s <= '9' ) s++;
  2421       } while( *s++ == '[' );   // Nested arrays?
  2422       // Skip element type
  2423       if( s[-1] == 'L' )
  2424         while( *s++ != ';'  ) ; // Skip signature
  2425       sig_bt[cnt++] = T_ARRAY;
  2426       break;
  2428     default : ShouldNotReachHere();
  2431   assert( cnt < 256, "grow table size" );
  2433   int comp_args_on_stack;
  2434   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2436   // the calling convention doesn't count out_preserve_stack_slots so
  2437   // we must add that in to get "true" stack offsets.
  2439   if (comp_args_on_stack) {
  2440     for (int i = 0; i < cnt; i++) {
  2441       VMReg reg1 = regs[i].first();
  2442       if( reg1->is_stack()) {
  2443         // Yuck
  2444         reg1 = reg1->bias(out_preserve_stack_slots());
  2446       VMReg reg2 = regs[i].second();
  2447       if( reg2->is_stack()) {
  2448         // Yuck
  2449         reg2 = reg2->bias(out_preserve_stack_slots());
  2451       regs[i].set_pair(reg2, reg1);
  2455   // results
  2456   *arg_size = cnt;
  2457   return regs;
  2460 // OSR Migration Code
  2461 //
  2462 // This code is used convert interpreter frames into compiled frames.  It is
  2463 // called from very start of a compiled OSR nmethod.  A temp array is
  2464 // allocated to hold the interesting bits of the interpreter frame.  All
  2465 // active locks are inflated to allow them to move.  The displaced headers and
  2466 // active interpeter locals are copied into the temp buffer.  Then we return
  2467 // back to the compiled code.  The compiled code then pops the current
  2468 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2469 // copies the interpreter locals and displaced headers where it wants.
  2470 // Finally it calls back to free the temp buffer.
  2471 //
  2472 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2474 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2476 #ifdef IA64
  2477   ShouldNotReachHere(); // NYI
  2478 #endif /* IA64 */
  2480   //
  2481   // This code is dependent on the memory layout of the interpreter local
  2482   // array and the monitors. On all of our platforms the layout is identical
  2483   // so this code is shared. If some platform lays the their arrays out
  2484   // differently then this code could move to platform specific code or
  2485   // the code here could be modified to copy items one at a time using
  2486   // frame accessor methods and be platform independent.
  2488   frame fr = thread->last_frame();
  2489   assert( fr.is_interpreted_frame(), "" );
  2490   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2492   // Figure out how many monitors are active.
  2493   int active_monitor_count = 0;
  2494   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2495        kptr < fr.interpreter_frame_monitor_begin();
  2496        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2497     if( kptr->obj() != NULL ) active_monitor_count++;
  2500   // QQQ we could place number of active monitors in the array so that compiled code
  2501   // could double check it.
  2503   methodOop moop = fr.interpreter_frame_method();
  2504   int max_locals = moop->max_locals();
  2505   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2506   int buf_size_words = max_locals + active_monitor_count*2;
  2507   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
  2509   // Copy the locals.  Order is preserved so that loading of longs works.
  2510   // Since there's no GC I can copy the oops blindly.
  2511   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2512   if (TaggedStackInterpreter) {
  2513     for (int i = 0; i < max_locals; i++) {
  2514       // copy only each local separately to the buffer avoiding the tag
  2515       buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
  2517   } else {
  2518     Copy::disjoint_words(
  2519                        (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2520                        (HeapWord*)&buf[0],
  2521                        max_locals);
  2524   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2525   int i = max_locals;
  2526   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2527        kptr2 < fr.interpreter_frame_monitor_begin();
  2528        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2529     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2530       BasicLock *lock = kptr2->lock();
  2531       // Inflate so the displaced header becomes position-independent
  2532       if (lock->displaced_header()->is_unlocked())
  2533         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2534       // Now the displaced header is free to move
  2535       buf[i++] = (intptr_t)lock->displaced_header();
  2536       buf[i++] = (intptr_t)kptr2->obj();
  2539   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2541   return buf;
  2542 JRT_END
  2544 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2545   FREE_C_HEAP_ARRAY(intptr_t,buf);
  2546 JRT_END
  2548 #ifndef PRODUCT
  2549 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2550   AdapterHandlerTableIterator iter(_adapters);
  2551   while (iter.has_next()) {
  2552     AdapterHandlerEntry* a = iter.next();
  2553     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2555   return false;
  2558 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
  2559   AdapterHandlerTableIterator iter(_adapters);
  2560   while (iter.has_next()) {
  2561     AdapterHandlerEntry* a = iter.next();
  2562     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
  2563       tty->print("Adapter for signature: ");
  2564       tty->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2565                     a->fingerprint()->as_string(),
  2566                     a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
  2567       return;
  2570   assert(false, "Should have found handler");
  2573 void AdapterHandlerLibrary::print_statistics() {
  2574   _adapters->print_statistics();
  2577 #endif /* PRODUCT */

mercurial