src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Thu, 10 Jun 2010 08:27:35 -0700

author
jmasa
date
Thu, 10 Jun 2010 08:27:35 -0700
changeset 1949
b9bc732be7c0
parent 1907
c18cbe5936b8
child 1966
215576b54709
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    26 // It uses the "Garbage First" heap organization and algorithm, which
    27 // may combine concurrent marking with parallel, incremental compaction of
    28 // heap subsets that will yield large amounts of garbage.
    30 class HeapRegion;
    31 class HeapRegionSeq;
    32 class PermanentGenerationSpec;
    33 class GenerationSpec;
    34 class OopsInHeapRegionClosure;
    35 class G1ScanHeapEvacClosure;
    36 class ObjectClosure;
    37 class SpaceClosure;
    38 class CompactibleSpaceClosure;
    39 class Space;
    40 class G1CollectorPolicy;
    41 class GenRemSet;
    42 class G1RemSet;
    43 class HeapRegionRemSetIterator;
    44 class ConcurrentMark;
    45 class ConcurrentMarkThread;
    46 class ConcurrentG1Refine;
    47 class ConcurrentZFThread;
    49 // If want to accumulate detailed statistics on work queues
    50 // turn this on.
    51 #define G1_DETAILED_STATS 0
    53 #if G1_DETAILED_STATS
    54 #  define IF_G1_DETAILED_STATS(code) code
    55 #else
    56 #  define IF_G1_DETAILED_STATS(code)
    57 #endif
    59 typedef GenericTaskQueue<StarTask>          RefToScanQueue;
    60 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    62 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    63 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    65 enum G1GCThreadGroups {
    66   G1CRGroup = 0,
    67   G1ZFGroup = 1,
    68   G1CMGroup = 2,
    69   G1CLGroup = 3
    70 };
    72 enum GCAllocPurpose {
    73   GCAllocForTenured,
    74   GCAllocForSurvived,
    75   GCAllocPurposeCount
    76 };
    78 class YoungList : public CHeapObj {
    79 private:
    80   G1CollectedHeap* _g1h;
    82   HeapRegion* _head;
    84   HeapRegion* _survivor_head;
    85   HeapRegion* _survivor_tail;
    87   HeapRegion* _curr;
    89   size_t      _length;
    90   size_t      _survivor_length;
    92   size_t      _last_sampled_rs_lengths;
    93   size_t      _sampled_rs_lengths;
    95   void         empty_list(HeapRegion* list);
    97 public:
    98   YoungList(G1CollectedHeap* g1h);
   100   void         push_region(HeapRegion* hr);
   101   void         add_survivor_region(HeapRegion* hr);
   103   void         empty_list();
   104   bool         is_empty() { return _length == 0; }
   105   size_t       length() { return _length; }
   106   size_t       survivor_length() { return _survivor_length; }
   108   void rs_length_sampling_init();
   109   bool rs_length_sampling_more();
   110   void rs_length_sampling_next();
   112   void reset_sampled_info() {
   113     _last_sampled_rs_lengths =   0;
   114   }
   115   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   117   // for development purposes
   118   void reset_auxilary_lists();
   119   void clear() { _head = NULL; _length = 0; }
   121   void clear_survivors() {
   122     _survivor_head    = NULL;
   123     _survivor_tail    = NULL;
   124     _survivor_length  = 0;
   125   }
   127   HeapRegion* first_region() { return _head; }
   128   HeapRegion* first_survivor_region() { return _survivor_head; }
   129   HeapRegion* last_survivor_region() { return _survivor_tail; }
   131   // debugging
   132   bool          check_list_well_formed();
   133   bool          check_list_empty(bool check_sample = true);
   134   void          print();
   135 };
   137 class RefineCardTableEntryClosure;
   138 class G1CollectedHeap : public SharedHeap {
   139   friend class VM_G1CollectForAllocation;
   140   friend class VM_GenCollectForPermanentAllocation;
   141   friend class VM_G1CollectFull;
   142   friend class VM_G1IncCollectionPause;
   143   friend class VMStructs;
   145   // Closures used in implementation.
   146   friend class G1ParCopyHelper;
   147   friend class G1IsAliveClosure;
   148   friend class G1EvacuateFollowersClosure;
   149   friend class G1ParScanThreadState;
   150   friend class G1ParScanClosureSuper;
   151   friend class G1ParEvacuateFollowersClosure;
   152   friend class G1ParTask;
   153   friend class G1FreeGarbageRegionClosure;
   154   friend class RefineCardTableEntryClosure;
   155   friend class G1PrepareCompactClosure;
   156   friend class RegionSorter;
   157   friend class CountRCClosure;
   158   friend class EvacPopObjClosure;
   159   friend class G1ParCleanupCTTask;
   161   // Other related classes.
   162   friend class G1MarkSweep;
   164 private:
   165   // The one and only G1CollectedHeap, so static functions can find it.
   166   static G1CollectedHeap* _g1h;
   168   static size_t _humongous_object_threshold_in_words;
   170   // Storage for the G1 heap (excludes the permanent generation).
   171   VirtualSpace _g1_storage;
   172   MemRegion    _g1_reserved;
   174   // The part of _g1_storage that is currently committed.
   175   MemRegion _g1_committed;
   177   // The maximum part of _g1_storage that has ever been committed.
   178   MemRegion _g1_max_committed;
   180   // The number of regions that are completely free.
   181   size_t _free_regions;
   183   // The number of regions we could create by expansion.
   184   size_t _expansion_regions;
   186   // Return the number of free regions in the heap (by direct counting.)
   187   size_t count_free_regions();
   188   // Return the number of free regions on the free and unclean lists.
   189   size_t count_free_regions_list();
   191   // The block offset table for the G1 heap.
   192   G1BlockOffsetSharedArray* _bot_shared;
   194   // Move all of the regions off the free lists, then rebuild those free
   195   // lists, before and after full GC.
   196   void tear_down_region_lists();
   197   void rebuild_region_lists();
   198   // This sets all non-empty regions to need zero-fill (which they will if
   199   // they are empty after full collection.)
   200   void set_used_regions_to_need_zero_fill();
   202   // The sequence of all heap regions in the heap.
   203   HeapRegionSeq* _hrs;
   205   // The region from which normal-sized objects are currently being
   206   // allocated.  May be NULL.
   207   HeapRegion* _cur_alloc_region;
   209   // Postcondition: cur_alloc_region == NULL.
   210   void abandon_cur_alloc_region();
   211   void abandon_gc_alloc_regions();
   213   // The to-space memory regions into which objects are being copied during
   214   // a GC.
   215   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
   216   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
   217   // These are the regions, one per GCAllocPurpose, that are half-full
   218   // at the end of a collection and that we want to reuse during the
   219   // next collection.
   220   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
   221   // This specifies whether we will keep the last half-full region at
   222   // the end of a collection so that it can be reused during the next
   223   // collection (this is specified per GCAllocPurpose)
   224   bool _retain_gc_alloc_region[GCAllocPurposeCount];
   226   // A list of the regions that have been set to be alloc regions in the
   227   // current collection.
   228   HeapRegion* _gc_alloc_region_list;
   230   // Determines PLAB size for a particular allocation purpose.
   231   static size_t desired_plab_sz(GCAllocPurpose purpose);
   233   // When called by par thread, require par_alloc_during_gc_lock() to be held.
   234   void push_gc_alloc_region(HeapRegion* hr);
   236   // This should only be called single-threaded.  Undeclares all GC alloc
   237   // regions.
   238   void forget_alloc_region_list();
   240   // Should be used to set an alloc region, because there's other
   241   // associated bookkeeping.
   242   void set_gc_alloc_region(int purpose, HeapRegion* r);
   244   // Check well-formedness of alloc region list.
   245   bool check_gc_alloc_regions();
   247   // Outside of GC pauses, the number of bytes used in all regions other
   248   // than the current allocation region.
   249   size_t _summary_bytes_used;
   251   // This is used for a quick test on whether a reference points into
   252   // the collection set or not. Basically, we have an array, with one
   253   // byte per region, and that byte denotes whether the corresponding
   254   // region is in the collection set or not. The entry corresponding
   255   // the bottom of the heap, i.e., region 0, is pointed to by
   256   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   257   // biased so that it actually points to address 0 of the address
   258   // space, to make the test as fast as possible (we can simply shift
   259   // the address to address into it, instead of having to subtract the
   260   // bottom of the heap from the address before shifting it; basically
   261   // it works in the same way the card table works).
   262   bool* _in_cset_fast_test;
   264   // The allocated array used for the fast test on whether a reference
   265   // points into the collection set or not. This field is also used to
   266   // free the array.
   267   bool* _in_cset_fast_test_base;
   269   // The length of the _in_cset_fast_test_base array.
   270   size_t _in_cset_fast_test_length;
   272   volatile unsigned _gc_time_stamp;
   274   size_t* _surviving_young_words;
   276   void setup_surviving_young_words();
   277   void update_surviving_young_words(size_t* surv_young_words);
   278   void cleanup_surviving_young_words();
   280 protected:
   282   // Returns "true" iff none of the gc alloc regions have any allocations
   283   // since the last call to "save_marks".
   284   bool all_alloc_regions_no_allocs_since_save_marks();
   285   // Perform finalization stuff on all allocation regions.
   286   void retire_all_alloc_regions();
   288   // The number of regions allocated to hold humongous objects.
   289   int         _num_humongous_regions;
   290   YoungList*  _young_list;
   292   // The current policy object for the collector.
   293   G1CollectorPolicy* _g1_policy;
   295   // Parallel allocation lock to protect the current allocation region.
   296   Mutex  _par_alloc_during_gc_lock;
   297   Mutex* par_alloc_during_gc_lock() { return &_par_alloc_during_gc_lock; }
   299   // If possible/desirable, allocate a new HeapRegion for normal object
   300   // allocation sufficient for an allocation of the given "word_size".
   301   // If "do_expand" is true, will attempt to expand the heap if necessary
   302   // to to satisfy the request.  If "zero_filled" is true, requires a
   303   // zero-filled region.
   304   // (Returning NULL will trigger a GC.)
   305   virtual HeapRegion* newAllocRegion_work(size_t word_size,
   306                                           bool do_expand,
   307                                           bool zero_filled);
   309   virtual HeapRegion* newAllocRegion(size_t word_size,
   310                                      bool zero_filled = true) {
   311     return newAllocRegion_work(word_size, false, zero_filled);
   312   }
   313   virtual HeapRegion* newAllocRegionWithExpansion(int purpose,
   314                                                   size_t word_size,
   315                                                   bool zero_filled = true);
   317   // Attempt to allocate an object of the given (very large) "word_size".
   318   // Returns "NULL" on failure.
   319   virtual HeapWord* humongousObjAllocate(size_t word_size);
   321   // If possible, allocate a block of the given word_size, else return "NULL".
   322   // Returning NULL will trigger GC or heap expansion.
   323   // These two methods have rather awkward pre- and
   324   // post-conditions. If they are called outside a safepoint, then
   325   // they assume that the caller is holding the heap lock. Upon return
   326   // they release the heap lock, if they are returning a non-NULL
   327   // value. attempt_allocation_slow() also dirties the cards of a
   328   // newly-allocated young region after it releases the heap
   329   // lock. This change in interface was the neatest way to achieve
   330   // this card dirtying without affecting mem_allocate(), which is a
   331   // more frequently called method. We tried two or three different
   332   // approaches, but they were even more hacky.
   333   HeapWord* attempt_allocation(size_t word_size,
   334                                bool permit_collection_pause = true);
   336   HeapWord* attempt_allocation_slow(size_t word_size,
   337                                     bool permit_collection_pause = true);
   339   // Allocate blocks during garbage collection. Will ensure an
   340   // allocation region, either by picking one or expanding the
   341   // heap, and then allocate a block of the given size. The block
   342   // may not be a humongous - it must fit into a single heap region.
   343   HeapWord* allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   344   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   346   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   347                                     HeapRegion*    alloc_region,
   348                                     bool           par,
   349                                     size_t         word_size);
   351   // Ensure that no further allocations can happen in "r", bearing in mind
   352   // that parallel threads might be attempting allocations.
   353   void par_allocate_remaining_space(HeapRegion* r);
   355   // Retires an allocation region when it is full or at the end of a
   356   // GC pause.
   357   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
   359   // Helper function for two callbacks below.
   360   // "full", if true, indicates that the GC is for a System.gc() request,
   361   // and should collect the entire heap.  If "clear_all_soft_refs" is true,
   362   // all soft references are cleared during the GC.  If "full" is false,
   363   // "word_size" describes the allocation that the GC should
   364   // attempt (at least) to satisfy.
   365   void do_collection(bool full, bool clear_all_soft_refs,
   366                      size_t word_size);
   368   // Callback from VM_G1CollectFull operation.
   369   // Perform a full collection.
   370   void do_full_collection(bool clear_all_soft_refs);
   372   // Resize the heap if necessary after a full collection.  If this is
   373   // after a collect-for allocation, "word_size" is the allocation size,
   374   // and will be considered part of the used portion of the heap.
   375   void resize_if_necessary_after_full_collection(size_t word_size);
   377   // Callback from VM_G1CollectForAllocation operation.
   378   // This function does everything necessary/possible to satisfy a
   379   // failed allocation request (including collection, expansion, etc.)
   380   HeapWord* satisfy_failed_allocation(size_t word_size);
   382   // Attempting to expand the heap sufficiently
   383   // to support an allocation of the given "word_size".  If
   384   // successful, perform the allocation and return the address of the
   385   // allocated block, or else "NULL".
   386   virtual HeapWord* expand_and_allocate(size_t word_size);
   388 public:
   389   // Expand the garbage-first heap by at least the given size (in bytes!).
   390   // (Rounds up to a HeapRegion boundary.)
   391   virtual void expand(size_t expand_bytes);
   393   // Do anything common to GC's.
   394   virtual void gc_prologue(bool full);
   395   virtual void gc_epilogue(bool full);
   397   // We register a region with the fast "in collection set" test. We
   398   // simply set to true the array slot corresponding to this region.
   399   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   400     assert(_in_cset_fast_test_base != NULL, "sanity");
   401     assert(r->in_collection_set(), "invariant");
   402     int index = r->hrs_index();
   403     assert(0 <= index && (size_t) index < _in_cset_fast_test_length, "invariant");
   404     assert(!_in_cset_fast_test_base[index], "invariant");
   405     _in_cset_fast_test_base[index] = true;
   406   }
   408   // This is a fast test on whether a reference points into the
   409   // collection set or not. It does not assume that the reference
   410   // points into the heap; if it doesn't, it will return false.
   411   bool in_cset_fast_test(oop obj) {
   412     assert(_in_cset_fast_test != NULL, "sanity");
   413     if (_g1_committed.contains((HeapWord*) obj)) {
   414       // no need to subtract the bottom of the heap from obj,
   415       // _in_cset_fast_test is biased
   416       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   417       bool ret = _in_cset_fast_test[index];
   418       // let's make sure the result is consistent with what the slower
   419       // test returns
   420       assert( ret || !obj_in_cs(obj), "sanity");
   421       assert(!ret ||  obj_in_cs(obj), "sanity");
   422       return ret;
   423     } else {
   424       return false;
   425     }
   426   }
   428   void clear_cset_fast_test() {
   429     assert(_in_cset_fast_test_base != NULL, "sanity");
   430     memset(_in_cset_fast_test_base, false,
   431         _in_cset_fast_test_length * sizeof(bool));
   432   }
   434 protected:
   436   // Shrink the garbage-first heap by at most the given size (in bytes!).
   437   // (Rounds down to a HeapRegion boundary.)
   438   virtual void shrink(size_t expand_bytes);
   439   void shrink_helper(size_t expand_bytes);
   441   // Do an incremental collection: identify a collection set, and evacuate
   442   // its live objects elsewhere.
   443   virtual void do_collection_pause();
   445   // The guts of the incremental collection pause, executed by the vm
   446   // thread.
   447   virtual void do_collection_pause_at_safepoint();
   449   // Actually do the work of evacuating the collection set.
   450   virtual void evacuate_collection_set();
   452   // If this is an appropriate right time, do a collection pause.
   453   // The "word_size" argument, if non-zero, indicates the size of an
   454   // allocation request that is prompting this query.
   455   void do_collection_pause_if_appropriate(size_t word_size);
   457   // The g1 remembered set of the heap.
   458   G1RemSet* _g1_rem_set;
   459   // And it's mod ref barrier set, used to track updates for the above.
   460   ModRefBarrierSet* _mr_bs;
   462   // A set of cards that cover the objects for which the Rsets should be updated
   463   // concurrently after the collection.
   464   DirtyCardQueueSet _dirty_card_queue_set;
   466   // The Heap Region Rem Set Iterator.
   467   HeapRegionRemSetIterator** _rem_set_iterator;
   469   // The closure used to refine a single card.
   470   RefineCardTableEntryClosure* _refine_cte_cl;
   472   // A function to check the consistency of dirty card logs.
   473   void check_ct_logs_at_safepoint();
   475   // After a collection pause, make the regions in the CS into free
   476   // regions.
   477   void free_collection_set(HeapRegion* cs_head);
   479   // Abandon the current collection set without recording policy
   480   // statistics or updating free lists.
   481   void abandon_collection_set(HeapRegion* cs_head);
   483   // Applies "scan_non_heap_roots" to roots outside the heap,
   484   // "scan_rs" to roots inside the heap (having done "set_region" to
   485   // indicate the region in which the root resides), and does "scan_perm"
   486   // (setting the generation to the perm generation.)  If "scan_rs" is
   487   // NULL, then this step is skipped.  The "worker_i"
   488   // param is for use with parallel roots processing, and should be
   489   // the "i" of the calling parallel worker thread's work(i) function.
   490   // In the sequential case this param will be ignored.
   491   void g1_process_strong_roots(bool collecting_perm_gen,
   492                                SharedHeap::ScanningOption so,
   493                                OopClosure* scan_non_heap_roots,
   494                                OopsInHeapRegionClosure* scan_rs,
   495                                OopsInGenClosure* scan_perm,
   496                                int worker_i);
   498   // Apply "blk" to all the weak roots of the system.  These include
   499   // JNI weak roots, the code cache, system dictionary, symbol table,
   500   // string table, and referents of reachable weak refs.
   501   void g1_process_weak_roots(OopClosure* root_closure,
   502                              OopClosure* non_root_closure);
   504   // Invoke "save_marks" on all heap regions.
   505   void save_marks();
   507   // Free a heap region.
   508   void free_region(HeapRegion* hr);
   509   // A component of "free_region", exposed for 'batching'.
   510   // All the params after "hr" are out params: the used bytes of the freed
   511   // region(s), the number of H regions cleared, the number of regions
   512   // freed, and pointers to the head and tail of a list of freed contig
   513   // regions, linked throught the "next_on_unclean_list" field.
   514   void free_region_work(HeapRegion* hr,
   515                         size_t& pre_used,
   516                         size_t& cleared_h,
   517                         size_t& freed_regions,
   518                         UncleanRegionList* list,
   519                         bool par = false);
   522   // The concurrent marker (and the thread it runs in.)
   523   ConcurrentMark* _cm;
   524   ConcurrentMarkThread* _cmThread;
   525   bool _mark_in_progress;
   527   // The concurrent refiner.
   528   ConcurrentG1Refine* _cg1r;
   530   // The concurrent zero-fill thread.
   531   ConcurrentZFThread* _czft;
   533   // The parallel task queues
   534   RefToScanQueueSet *_task_queues;
   536   // True iff a evacuation has failed in the current collection.
   537   bool _evacuation_failed;
   539   // Set the attribute indicating whether evacuation has failed in the
   540   // current collection.
   541   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   543   // Failed evacuations cause some logical from-space objects to have
   544   // forwarding pointers to themselves.  Reset them.
   545   void remove_self_forwarding_pointers();
   547   // When one is non-null, so is the other.  Together, they each pair is
   548   // an object with a preserved mark, and its mark value.
   549   GrowableArray<oop>*     _objs_with_preserved_marks;
   550   GrowableArray<markOop>* _preserved_marks_of_objs;
   552   // Preserve the mark of "obj", if necessary, in preparation for its mark
   553   // word being overwritten with a self-forwarding-pointer.
   554   void preserve_mark_if_necessary(oop obj, markOop m);
   556   // The stack of evac-failure objects left to be scanned.
   557   GrowableArray<oop>*    _evac_failure_scan_stack;
   558   // The closure to apply to evac-failure objects.
   560   OopsInHeapRegionClosure* _evac_failure_closure;
   561   // Set the field above.
   562   void
   563   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   564     _evac_failure_closure = evac_failure_closure;
   565   }
   567   // Push "obj" on the scan stack.
   568   void push_on_evac_failure_scan_stack(oop obj);
   569   // Process scan stack entries until the stack is empty.
   570   void drain_evac_failure_scan_stack();
   571   // True iff an invocation of "drain_scan_stack" is in progress; to
   572   // prevent unnecessary recursion.
   573   bool _drain_in_progress;
   575   // Do any necessary initialization for evacuation-failure handling.
   576   // "cl" is the closure that will be used to process evac-failure
   577   // objects.
   578   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   579   // Do any necessary cleanup for evacuation-failure handling data
   580   // structures.
   581   void finalize_for_evac_failure();
   583   // An attempt to evacuate "obj" has failed; take necessary steps.
   584   void handle_evacuation_failure(oop obj);
   585   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   586   void handle_evacuation_failure_common(oop obj, markOop m);
   589   // Ensure that the relevant gc_alloc regions are set.
   590   void get_gc_alloc_regions();
   591   // We're done with GC alloc regions. We are going to tear down the
   592   // gc alloc list and remove the gc alloc tag from all the regions on
   593   // that list. However, we will also retain the last (i.e., the one
   594   // that is half-full) GC alloc region, per GCAllocPurpose, for
   595   // possible reuse during the next collection, provided
   596   // _retain_gc_alloc_region[] indicates that it should be the
   597   // case. Said regions are kept in the _retained_gc_alloc_regions[]
   598   // array. If the parameter totally is set, we will not retain any
   599   // regions, irrespective of what _retain_gc_alloc_region[]
   600   // indicates.
   601   void release_gc_alloc_regions(bool totally);
   602 #ifndef PRODUCT
   603   // Useful for debugging.
   604   void print_gc_alloc_regions();
   605 #endif // !PRODUCT
   607   // ("Weak") Reference processing support
   608   ReferenceProcessor* _ref_processor;
   610   enum G1H_process_strong_roots_tasks {
   611     G1H_PS_mark_stack_oops_do,
   612     G1H_PS_refProcessor_oops_do,
   613     // Leave this one last.
   614     G1H_PS_NumElements
   615   };
   617   SubTasksDone* _process_strong_tasks;
   619   // List of regions which require zero filling.
   620   UncleanRegionList _unclean_region_list;
   621   bool _unclean_regions_coming;
   623 public:
   624   void set_refine_cte_cl_concurrency(bool concurrent);
   626   RefToScanQueue *task_queue(int i);
   628   // A set of cards where updates happened during the GC
   629   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   631   // Create a G1CollectedHeap with the specified policy.
   632   // Must call the initialize method afterwards.
   633   // May not return if something goes wrong.
   634   G1CollectedHeap(G1CollectorPolicy* policy);
   636   // Initialize the G1CollectedHeap to have the initial and
   637   // maximum sizes, permanent generation, and remembered and barrier sets
   638   // specified by the policy object.
   639   jint initialize();
   641   void ref_processing_init();
   643   void set_par_threads(int t) {
   644     SharedHeap::set_par_threads(t);
   645     _process_strong_tasks->set_par_threads(t);
   646   }
   648   virtual CollectedHeap::Name kind() const {
   649     return CollectedHeap::G1CollectedHeap;
   650   }
   652   // The current policy object for the collector.
   653   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   655   // Adaptive size policy.  No such thing for g1.
   656   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   658   // The rem set and barrier set.
   659   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   660   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   662   // The rem set iterator.
   663   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   664     return _rem_set_iterator[i];
   665   }
   667   HeapRegionRemSetIterator* rem_set_iterator() {
   668     return _rem_set_iterator[0];
   669   }
   671   unsigned get_gc_time_stamp() {
   672     return _gc_time_stamp;
   673   }
   675   void reset_gc_time_stamp() {
   676     _gc_time_stamp = 0;
   677     OrderAccess::fence();
   678   }
   680   void increment_gc_time_stamp() {
   681     ++_gc_time_stamp;
   682     OrderAccess::fence();
   683   }
   685   void iterate_dirty_card_closure(bool concurrent, int worker_i);
   687   // The shared block offset table array.
   688   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   690   // Reference Processing accessor
   691   ReferenceProcessor* ref_processor() { return _ref_processor; }
   693   // Reserved (g1 only; super method includes perm), capacity and the used
   694   // portion in bytes.
   695   size_t g1_reserved_obj_bytes() const { return _g1_reserved.byte_size(); }
   696   virtual size_t capacity() const;
   697   virtual size_t used() const;
   698   // This should be called when we're not holding the heap lock. The
   699   // result might be a bit inaccurate.
   700   size_t used_unlocked() const;
   701   size_t recalculate_used() const;
   702 #ifndef PRODUCT
   703   size_t recalculate_used_regions() const;
   704 #endif // PRODUCT
   706   // These virtual functions do the actual allocation.
   707   virtual HeapWord* mem_allocate(size_t word_size,
   708                                  bool   is_noref,
   709                                  bool   is_tlab,
   710                                  bool* gc_overhead_limit_was_exceeded);
   712   // Some heaps may offer a contiguous region for shared non-blocking
   713   // allocation, via inlined code (by exporting the address of the top and
   714   // end fields defining the extent of the contiguous allocation region.)
   715   // But G1CollectedHeap doesn't yet support this.
   717   // Return an estimate of the maximum allocation that could be performed
   718   // without triggering any collection or expansion activity.  In a
   719   // generational collector, for example, this is probably the largest
   720   // allocation that could be supported (without expansion) in the youngest
   721   // generation.  It is "unsafe" because no locks are taken; the result
   722   // should be treated as an approximation, not a guarantee, for use in
   723   // heuristic resizing decisions.
   724   virtual size_t unsafe_max_alloc();
   726   virtual bool is_maximal_no_gc() const {
   727     return _g1_storage.uncommitted_size() == 0;
   728   }
   730   // The total number of regions in the heap.
   731   size_t n_regions();
   733   // The number of regions that are completely free.
   734   size_t max_regions();
   736   // The number of regions that are completely free.
   737   size_t free_regions();
   739   // The number of regions that are not completely free.
   740   size_t used_regions() { return n_regions() - free_regions(); }
   742   // True iff the ZF thread should run.
   743   bool should_zf();
   745   // The number of regions available for "regular" expansion.
   746   size_t expansion_regions() { return _expansion_regions; }
   748 #ifndef PRODUCT
   749   bool regions_accounted_for();
   750   bool print_region_accounting_info();
   751   void print_region_counts();
   752 #endif
   754   HeapRegion* alloc_region_from_unclean_list(bool zero_filled);
   755   HeapRegion* alloc_region_from_unclean_list_locked(bool zero_filled);
   757   void put_region_on_unclean_list(HeapRegion* r);
   758   void put_region_on_unclean_list_locked(HeapRegion* r);
   760   void prepend_region_list_on_unclean_list(UncleanRegionList* list);
   761   void prepend_region_list_on_unclean_list_locked(UncleanRegionList* list);
   763   void set_unclean_regions_coming(bool b);
   764   void set_unclean_regions_coming_locked(bool b);
   765   // Wait for cleanup to be complete.
   766   void wait_for_cleanup_complete();
   767   // Like above, but assumes that the calling thread owns the Heap_lock.
   768   void wait_for_cleanup_complete_locked();
   770   // Return the head of the unclean list.
   771   HeapRegion* peek_unclean_region_list_locked();
   772   // Remove and return the head of the unclean list.
   773   HeapRegion* pop_unclean_region_list_locked();
   775   // List of regions which are zero filled and ready for allocation.
   776   HeapRegion* _free_region_list;
   777   // Number of elements on the free list.
   778   size_t _free_region_list_size;
   780   // If the head of the unclean list is ZeroFilled, move it to the free
   781   // list.
   782   bool move_cleaned_region_to_free_list_locked();
   783   bool move_cleaned_region_to_free_list();
   785   void put_free_region_on_list_locked(HeapRegion* r);
   786   void put_free_region_on_list(HeapRegion* r);
   788   // Remove and return the head element of the free list.
   789   HeapRegion* pop_free_region_list_locked();
   791   // If "zero_filled" is true, we first try the free list, then we try the
   792   // unclean list, zero-filling the result.  If "zero_filled" is false, we
   793   // first try the unclean list, then the zero-filled list.
   794   HeapRegion* alloc_free_region_from_lists(bool zero_filled);
   796   // Verify the integrity of the region lists.
   797   void remove_allocated_regions_from_lists();
   798   bool verify_region_lists();
   799   bool verify_region_lists_locked();
   800   size_t unclean_region_list_length();
   801   size_t free_region_list_length();
   803   // Perform a collection of the heap; intended for use in implementing
   804   // "System.gc".  This probably implies as full a collection as the
   805   // "CollectedHeap" supports.
   806   virtual void collect(GCCause::Cause cause);
   808   // The same as above but assume that the caller holds the Heap_lock.
   809   void collect_locked(GCCause::Cause cause);
   811   // This interface assumes that it's being called by the
   812   // vm thread. It collects the heap assuming that the
   813   // heap lock is already held and that we are executing in
   814   // the context of the vm thread.
   815   virtual void collect_as_vm_thread(GCCause::Cause cause);
   817   // True iff a evacuation has failed in the most-recent collection.
   818   bool evacuation_failed() { return _evacuation_failed; }
   820   // Free a region if it is totally full of garbage.  Returns the number of
   821   // bytes freed (0 ==> didn't free it).
   822   size_t free_region_if_totally_empty(HeapRegion *hr);
   823   void free_region_if_totally_empty_work(HeapRegion *hr,
   824                                          size_t& pre_used,
   825                                          size_t& cleared_h_regions,
   826                                          size_t& freed_regions,
   827                                          UncleanRegionList* list,
   828                                          bool par = false);
   830   // If we've done free region work that yields the given changes, update
   831   // the relevant global variables.
   832   void finish_free_region_work(size_t pre_used,
   833                                size_t cleared_h_regions,
   834                                size_t freed_regions,
   835                                UncleanRegionList* list);
   838   // Returns "TRUE" iff "p" points into the allocated area of the heap.
   839   virtual bool is_in(const void* p) const;
   841   // Return "TRUE" iff the given object address is within the collection
   842   // set.
   843   inline bool obj_in_cs(oop obj);
   845   // Return "TRUE" iff the given object address is in the reserved
   846   // region of g1 (excluding the permanent generation).
   847   bool is_in_g1_reserved(const void* p) const {
   848     return _g1_reserved.contains(p);
   849   }
   851   // Returns a MemRegion that corresponds to the space that  has been
   852   // committed in the heap
   853   MemRegion g1_committed() {
   854     return _g1_committed;
   855   }
   857   NOT_PRODUCT(bool is_in_closed_subset(const void* p) const;)
   859   // Dirty card table entries covering a list of young regions.
   860   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
   862   // This resets the card table to all zeros.  It is used after
   863   // a collection pause which used the card table to claim cards.
   864   void cleanUpCardTable();
   866   // Iteration functions.
   868   // Iterate over all the ref-containing fields of all objects, calling
   869   // "cl.do_oop" on each.
   870   virtual void oop_iterate(OopClosure* cl) {
   871     oop_iterate(cl, true);
   872   }
   873   void oop_iterate(OopClosure* cl, bool do_perm);
   875   // Same as above, restricted to a memory region.
   876   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
   877     oop_iterate(mr, cl, true);
   878   }
   879   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
   881   // Iterate over all objects, calling "cl.do_object" on each.
   882   virtual void object_iterate(ObjectClosure* cl) {
   883     object_iterate(cl, true);
   884   }
   885   virtual void safe_object_iterate(ObjectClosure* cl) {
   886     object_iterate(cl, true);
   887   }
   888   void object_iterate(ObjectClosure* cl, bool do_perm);
   890   // Iterate over all objects allocated since the last collection, calling
   891   // "cl.do_object" on each.  The heap must have been initialized properly
   892   // to support this function, or else this call will fail.
   893   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
   895   // Iterate over all spaces in use in the heap, in ascending address order.
   896   virtual void space_iterate(SpaceClosure* cl);
   898   // Iterate over heap regions, in address order, terminating the
   899   // iteration early if the "doHeapRegion" method returns "true".
   900   void heap_region_iterate(HeapRegionClosure* blk);
   902   // Iterate over heap regions starting with r (or the first region if "r"
   903   // is NULL), in address order, terminating early if the "doHeapRegion"
   904   // method returns "true".
   905   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
   907   // As above but starting from the region at index idx.
   908   void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
   910   HeapRegion* region_at(size_t idx);
   912   // Divide the heap region sequence into "chunks" of some size (the number
   913   // of regions divided by the number of parallel threads times some
   914   // overpartition factor, currently 4).  Assumes that this will be called
   915   // in parallel by ParallelGCThreads worker threads with discinct worker
   916   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
   917   // calls will use the same "claim_value", and that that claim value is
   918   // different from the claim_value of any heap region before the start of
   919   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
   920   // attempting to claim the first region in each chunk, and, if
   921   // successful, applying the closure to each region in the chunk (and
   922   // setting the claim value of the second and subsequent regions of the
   923   // chunk.)  For now requires that "doHeapRegion" always returns "false",
   924   // i.e., that a closure never attempt to abort a traversal.
   925   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
   926                                        int worker,
   927                                        jint claim_value);
   929   // It resets all the region claim values to the default.
   930   void reset_heap_region_claim_values();
   932 #ifdef ASSERT
   933   bool check_heap_region_claim_values(jint claim_value);
   934 #endif // ASSERT
   936   // Iterate over the regions (if any) in the current collection set.
   937   void collection_set_iterate(HeapRegionClosure* blk);
   939   // As above but starting from region r
   940   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
   942   // Returns the first (lowest address) compactible space in the heap.
   943   virtual CompactibleSpace* first_compactible_space();
   945   // A CollectedHeap will contain some number of spaces.  This finds the
   946   // space containing a given address, or else returns NULL.
   947   virtual Space* space_containing(const void* addr) const;
   949   // A G1CollectedHeap will contain some number of heap regions.  This
   950   // finds the region containing a given address, or else returns NULL.
   951   HeapRegion* heap_region_containing(const void* addr) const;
   953   // Like the above, but requires "addr" to be in the heap (to avoid a
   954   // null-check), and unlike the above, may return an continuing humongous
   955   // region.
   956   HeapRegion* heap_region_containing_raw(const void* addr) const;
   958   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   959   // each address in the (reserved) heap is a member of exactly
   960   // one block.  The defining characteristic of a block is that it is
   961   // possible to find its size, and thus to progress forward to the next
   962   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   963   // represent Java objects, or they might be free blocks in a
   964   // free-list-based heap (or subheap), as long as the two kinds are
   965   // distinguishable and the size of each is determinable.
   967   // Returns the address of the start of the "block" that contains the
   968   // address "addr".  We say "blocks" instead of "object" since some heaps
   969   // may not pack objects densely; a chunk may either be an object or a
   970   // non-object.
   971   virtual HeapWord* block_start(const void* addr) const;
   973   // Requires "addr" to be the start of a chunk, and returns its size.
   974   // "addr + size" is required to be the start of a new chunk, or the end
   975   // of the active area of the heap.
   976   virtual size_t block_size(const HeapWord* addr) const;
   978   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   979   // the block is an object.
   980   virtual bool block_is_obj(const HeapWord* addr) const;
   982   // Does this heap support heap inspection? (+PrintClassHistogram)
   983   virtual bool supports_heap_inspection() const { return true; }
   985   // Section on thread-local allocation buffers (TLABs)
   986   // See CollectedHeap for semantics.
   988   virtual bool supports_tlab_allocation() const;
   989   virtual size_t tlab_capacity(Thread* thr) const;
   990   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
   991   virtual HeapWord* allocate_new_tlab(size_t size);
   993   // Can a compiler initialize a new object without store barriers?
   994   // This permission only extends from the creation of a new object
   995   // via a TLAB up to the first subsequent safepoint. If such permission
   996   // is granted for this heap type, the compiler promises to call
   997   // defer_store_barrier() below on any slow path allocation of
   998   // a new object for which such initializing store barriers will
   999   // have been elided. G1, like CMS, allows this, but should be
  1000   // ready to provide a compensating write barrier as necessary
  1001   // if that storage came out of a non-young region. The efficiency
  1002   // of this implementation depends crucially on being able to
  1003   // answer very efficiently in constant time whether a piece of
  1004   // storage in the heap comes from a young region or not.
  1005   // See ReduceInitialCardMarks.
  1006   virtual bool can_elide_tlab_store_barriers() const {
  1007     // 6920090: Temporarily disabled, because of lingering
  1008     // instabilities related to RICM with G1. In the
  1009     // interim, the option ReduceInitialCardMarksForG1
  1010     // below is left solely as a debugging device at least
  1011     // until 6920109 fixes the instabilities.
  1012     return ReduceInitialCardMarksForG1;
  1015   virtual bool card_mark_must_follow_store() const {
  1016     return true;
  1019   bool is_in_young(oop obj) {
  1020     HeapRegion* hr = heap_region_containing(obj);
  1021     return hr != NULL && hr->is_young();
  1024   // We don't need barriers for initializing stores to objects
  1025   // in the young gen: for the SATB pre-barrier, there is no
  1026   // pre-value that needs to be remembered; for the remembered-set
  1027   // update logging post-barrier, we don't maintain remembered set
  1028   // information for young gen objects. Note that non-generational
  1029   // G1 does not have any "young" objects, should not elide
  1030   // the rs logging barrier and so should always answer false below.
  1031   // However, non-generational G1 (-XX:-G1Gen) appears to have
  1032   // bit-rotted so was not tested below.
  1033   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1034     // Re 6920090, 6920109 above.
  1035     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
  1036     assert(G1Gen || !is_in_young(new_obj),
  1037            "Non-generational G1 should never return true below");
  1038     return is_in_young(new_obj);
  1041   // Can a compiler elide a store barrier when it writes
  1042   // a permanent oop into the heap?  Applies when the compiler
  1043   // is storing x to the heap, where x->is_perm() is true.
  1044   virtual bool can_elide_permanent_oop_store_barriers() const {
  1045     // At least until perm gen collection is also G1-ified, at
  1046     // which point this should return false.
  1047     return true;
  1050   virtual bool allocs_are_zero_filled();
  1052   // The boundary between a "large" and "small" array of primitives, in
  1053   // words.
  1054   virtual size_t large_typearray_limit();
  1056   // Returns "true" iff the given word_size is "very large".
  1057   static bool isHumongous(size_t word_size) {
  1058     // Note this has to be strictly greater-than as the TLABs
  1059     // are capped at the humongous thresold and we want to
  1060     // ensure that we don't try to allocate a TLAB as
  1061     // humongous and that we don't allocate a humongous
  1062     // object in a TLAB.
  1063     return word_size > _humongous_object_threshold_in_words;
  1066   // Update mod union table with the set of dirty cards.
  1067   void updateModUnion();
  1069   // Set the mod union bits corresponding to the given memRegion.  Note
  1070   // that this is always a safe operation, since it doesn't clear any
  1071   // bits.
  1072   void markModUnionRange(MemRegion mr);
  1074   // Records the fact that a marking phase is no longer in progress.
  1075   void set_marking_complete() {
  1076     _mark_in_progress = false;
  1078   void set_marking_started() {
  1079     _mark_in_progress = true;
  1081   bool mark_in_progress() {
  1082     return _mark_in_progress;
  1085   // Print the maximum heap capacity.
  1086   virtual size_t max_capacity() const;
  1088   virtual jlong millis_since_last_gc();
  1090   // Perform any cleanup actions necessary before allowing a verification.
  1091   virtual void prepare_for_verify();
  1093   // Perform verification.
  1095   // use_prev_marking == true  -> use "prev" marking information,
  1096   // use_prev_marking == false -> use "next" marking information
  1097   // NOTE: Only the "prev" marking information is guaranteed to be
  1098   // consistent most of the time, so most calls to this should use
  1099   // use_prev_marking == true. Currently, there is only one case where
  1100   // this is called with use_prev_marking == false, which is to verify
  1101   // the "next" marking information at the end of remark.
  1102   void verify(bool allow_dirty, bool silent, bool use_prev_marking);
  1104   // Override; it uses the "prev" marking information
  1105   virtual void verify(bool allow_dirty, bool silent);
  1106   // Default behavior by calling print(tty);
  1107   virtual void print() const;
  1108   // This calls print_on(st, PrintHeapAtGCExtended).
  1109   virtual void print_on(outputStream* st) const;
  1110   // If extended is true, it will print out information for all
  1111   // regions in the heap by calling print_on_extended(st).
  1112   virtual void print_on(outputStream* st, bool extended) const;
  1113   virtual void print_on_extended(outputStream* st) const;
  1115   virtual void print_gc_threads_on(outputStream* st) const;
  1116   virtual void gc_threads_do(ThreadClosure* tc) const;
  1118   // Override
  1119   void print_tracing_info() const;
  1121   // If "addr" is a pointer into the (reserved?) heap, returns a positive
  1122   // number indicating the "arena" within the heap in which "addr" falls.
  1123   // Or else returns 0.
  1124   virtual int addr_to_arena_id(void* addr) const;
  1126   // Convenience function to be used in situations where the heap type can be
  1127   // asserted to be this type.
  1128   static G1CollectedHeap* heap();
  1130   void empty_young_list();
  1131   bool should_set_young_locked();
  1133   void set_region_short_lived_locked(HeapRegion* hr);
  1134   // add appropriate methods for any other surv rate groups
  1136   YoungList* young_list() { return _young_list; }
  1138   // debugging
  1139   bool check_young_list_well_formed() {
  1140     return _young_list->check_list_well_formed();
  1143   bool check_young_list_empty(bool check_heap,
  1144                               bool check_sample = true);
  1146   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1147   // many of these need to be public.
  1149   // The functions below are helper functions that a subclass of
  1150   // "CollectedHeap" can use in the implementation of its virtual
  1151   // functions.
  1152   // This performs a concurrent marking of the live objects in a
  1153   // bitmap off to the side.
  1154   void doConcurrentMark();
  1156   // This is called from the marksweep collector which then does
  1157   // a concurrent mark and verifies that the results agree with
  1158   // the stop the world marking.
  1159   void checkConcurrentMark();
  1160   void do_sync_mark();
  1162   bool isMarkedPrev(oop obj) const;
  1163   bool isMarkedNext(oop obj) const;
  1165   // use_prev_marking == true  -> use "prev" marking information,
  1166   // use_prev_marking == false -> use "next" marking information
  1167   bool is_obj_dead_cond(const oop obj,
  1168                         const HeapRegion* hr,
  1169                         const bool use_prev_marking) const {
  1170     if (use_prev_marking) {
  1171       return is_obj_dead(obj, hr);
  1172     } else {
  1173       return is_obj_ill(obj, hr);
  1177   // Determine if an object is dead, given the object and also
  1178   // the region to which the object belongs. An object is dead
  1179   // iff a) it was not allocated since the last mark and b) it
  1180   // is not marked.
  1182   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1183     return
  1184       !hr->obj_allocated_since_prev_marking(obj) &&
  1185       !isMarkedPrev(obj);
  1188   // This is used when copying an object to survivor space.
  1189   // If the object is marked live, then we mark the copy live.
  1190   // If the object is allocated since the start of this mark
  1191   // cycle, then we mark the copy live.
  1192   // If the object has been around since the previous mark
  1193   // phase, and hasn't been marked yet during this phase,
  1194   // then we don't mark it, we just wait for the
  1195   // current marking cycle to get to it.
  1197   // This function returns true when an object has been
  1198   // around since the previous marking and hasn't yet
  1199   // been marked during this marking.
  1201   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1202     return
  1203       !hr->obj_allocated_since_next_marking(obj) &&
  1204       !isMarkedNext(obj);
  1207   // Determine if an object is dead, given only the object itself.
  1208   // This will find the region to which the object belongs and
  1209   // then call the region version of the same function.
  1211   // Added if it is in permanent gen it isn't dead.
  1212   // Added if it is NULL it isn't dead.
  1214   // use_prev_marking == true  -> use "prev" marking information,
  1215   // use_prev_marking == false -> use "next" marking information
  1216   bool is_obj_dead_cond(const oop obj,
  1217                         const bool use_prev_marking) {
  1218     if (use_prev_marking) {
  1219       return is_obj_dead(obj);
  1220     } else {
  1221       return is_obj_ill(obj);
  1225   bool is_obj_dead(const oop obj) {
  1226     const HeapRegion* hr = heap_region_containing(obj);
  1227     if (hr == NULL) {
  1228       if (Universe::heap()->is_in_permanent(obj))
  1229         return false;
  1230       else if (obj == NULL) return false;
  1231       else return true;
  1233     else return is_obj_dead(obj, hr);
  1236   bool is_obj_ill(const oop obj) {
  1237     const HeapRegion* hr = heap_region_containing(obj);
  1238     if (hr == NULL) {
  1239       if (Universe::heap()->is_in_permanent(obj))
  1240         return false;
  1241       else if (obj == NULL) return false;
  1242       else return true;
  1244     else return is_obj_ill(obj, hr);
  1247   // The following is just to alert the verification code
  1248   // that a full collection has occurred and that the
  1249   // remembered sets are no longer up to date.
  1250   bool _full_collection;
  1251   void set_full_collection() { _full_collection = true;}
  1252   void clear_full_collection() {_full_collection = false;}
  1253   bool full_collection() {return _full_collection;}
  1255   ConcurrentMark* concurrent_mark() const { return _cm; }
  1256   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1258   // The dirty cards region list is used to record a subset of regions
  1259   // whose cards need clearing. The list if populated during the
  1260   // remembered set scanning and drained during the card table
  1261   // cleanup. Although the methods are reentrant, population/draining
  1262   // phases must not overlap. For synchronization purposes the last
  1263   // element on the list points to itself.
  1264   HeapRegion* _dirty_cards_region_list;
  1265   void push_dirty_cards_region(HeapRegion* hr);
  1266   HeapRegion* pop_dirty_cards_region();
  1268 public:
  1269   void stop_conc_gc_threads();
  1271   // <NEW PREDICTION>
  1273   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1274   void check_if_region_is_too_expensive(double predicted_time_ms);
  1275   size_t pending_card_num();
  1276   size_t max_pending_card_num();
  1277   size_t cards_scanned();
  1279   // </NEW PREDICTION>
  1281 protected:
  1282   size_t _max_heap_capacity;
  1284 //  debug_only(static void check_for_valid_allocation_state();)
  1286 public:
  1287   // Temporary: call to mark things unimplemented for the G1 heap (e.g.,
  1288   // MemoryService).  In productization, we can make this assert false
  1289   // to catch such places (as well as searching for calls to this...)
  1290   static void g1_unimplemented();
  1292 };
  1294 #define use_local_bitmaps         1
  1295 #define verify_local_bitmaps      0
  1296 #define oop_buffer_length       256
  1298 #ifndef PRODUCT
  1299 class GCLabBitMap;
  1300 class GCLabBitMapClosure: public BitMapClosure {
  1301 private:
  1302   ConcurrentMark* _cm;
  1303   GCLabBitMap*    _bitmap;
  1305 public:
  1306   GCLabBitMapClosure(ConcurrentMark* cm,
  1307                      GCLabBitMap* bitmap) {
  1308     _cm     = cm;
  1309     _bitmap = bitmap;
  1312   virtual bool do_bit(size_t offset);
  1313 };
  1314 #endif // !PRODUCT
  1316 class GCLabBitMap: public BitMap {
  1317 private:
  1318   ConcurrentMark* _cm;
  1320   int       _shifter;
  1321   size_t    _bitmap_word_covers_words;
  1323   // beginning of the heap
  1324   HeapWord* _heap_start;
  1326   // this is the actual start of the GCLab
  1327   HeapWord* _real_start_word;
  1329   // this is the actual end of the GCLab
  1330   HeapWord* _real_end_word;
  1332   // this is the first word, possibly located before the actual start
  1333   // of the GCLab, that corresponds to the first bit of the bitmap
  1334   HeapWord* _start_word;
  1336   // size of a GCLab in words
  1337   size_t _gclab_word_size;
  1339   static int shifter() {
  1340     return MinObjAlignment - 1;
  1343   // how many heap words does a single bitmap word corresponds to?
  1344   static size_t bitmap_word_covers_words() {
  1345     return BitsPerWord << shifter();
  1348   size_t gclab_word_size() const {
  1349     return _gclab_word_size;
  1352   // Calculates actual GCLab size in words
  1353   size_t gclab_real_word_size() const {
  1354     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1355            / BitsPerWord;
  1358   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1359     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1360     // We are going to ensure that the beginning of a word in this
  1361     // bitmap also corresponds to the beginning of a word in the
  1362     // global marking bitmap. To handle the case where a GCLab
  1363     // starts from the middle of the bitmap, we need to add enough
  1364     // space (i.e. up to a bitmap word) to ensure that we have
  1365     // enough bits in the bitmap.
  1366     return bits_in_bitmap + BitsPerWord - 1;
  1368 public:
  1369   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1370     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1371       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1372       _shifter(shifter()),
  1373       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1374       _heap_start(heap_start),
  1375       _gclab_word_size(gclab_word_size),
  1376       _real_start_word(NULL),
  1377       _real_end_word(NULL),
  1378       _start_word(NULL)
  1380     guarantee( size_in_words() >= bitmap_size_in_words(),
  1381                "just making sure");
  1384   inline unsigned heapWordToOffset(HeapWord* addr) {
  1385     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1386     assert(offset < size(), "offset should be within bounds");
  1387     return offset;
  1390   inline HeapWord* offsetToHeapWord(size_t offset) {
  1391     HeapWord* addr =  _start_word + (offset << _shifter);
  1392     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1393     return addr;
  1396   bool fields_well_formed() {
  1397     bool ret1 = (_real_start_word == NULL) &&
  1398                 (_real_end_word == NULL) &&
  1399                 (_start_word == NULL);
  1400     if (ret1)
  1401       return true;
  1403     bool ret2 = _real_start_word >= _start_word &&
  1404       _start_word < _real_end_word &&
  1405       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1406       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1407                                                               > _real_end_word;
  1408     return ret2;
  1411   inline bool mark(HeapWord* addr) {
  1412     guarantee(use_local_bitmaps, "invariant");
  1413     assert(fields_well_formed(), "invariant");
  1415     if (addr >= _real_start_word && addr < _real_end_word) {
  1416       assert(!isMarked(addr), "should not have already been marked");
  1418       // first mark it on the bitmap
  1419       at_put(heapWordToOffset(addr), true);
  1421       return true;
  1422     } else {
  1423       return false;
  1427   inline bool isMarked(HeapWord* addr) {
  1428     guarantee(use_local_bitmaps, "invariant");
  1429     assert(fields_well_formed(), "invariant");
  1431     return at(heapWordToOffset(addr));
  1434   void set_buffer(HeapWord* start) {
  1435     guarantee(use_local_bitmaps, "invariant");
  1436     clear();
  1438     assert(start != NULL, "invariant");
  1439     _real_start_word = start;
  1440     _real_end_word   = start + _gclab_word_size;
  1442     size_t diff =
  1443       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1444     _start_word = start - diff;
  1446     assert(fields_well_formed(), "invariant");
  1449 #ifndef PRODUCT
  1450   void verify() {
  1451     // verify that the marks have been propagated
  1452     GCLabBitMapClosure cl(_cm, this);
  1453     iterate(&cl);
  1455 #endif // PRODUCT
  1457   void retire() {
  1458     guarantee(use_local_bitmaps, "invariant");
  1459     assert(fields_well_formed(), "invariant");
  1461     if (_start_word != NULL) {
  1462       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1464       // this means that the bitmap was set up for the GCLab
  1465       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1467       mark_bitmap->mostly_disjoint_range_union(this,
  1468                                 0, // always start from the start of the bitmap
  1469                                 _start_word,
  1470                                 gclab_real_word_size());
  1471       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1473 #ifndef PRODUCT
  1474       if (use_local_bitmaps && verify_local_bitmaps)
  1475         verify();
  1476 #endif // PRODUCT
  1477     } else {
  1478       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1482   size_t bitmap_size_in_words() const {
  1483     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1486 };
  1488 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1489 private:
  1490   bool        _retired;
  1491   bool        _during_marking;
  1492   GCLabBitMap _bitmap;
  1494 public:
  1495   G1ParGCAllocBuffer(size_t gclab_word_size) :
  1496     ParGCAllocBuffer(gclab_word_size),
  1497     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  1498     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  1499     _retired(false)
  1500   { }
  1502   inline bool mark(HeapWord* addr) {
  1503     guarantee(use_local_bitmaps, "invariant");
  1504     assert(_during_marking, "invariant");
  1505     return _bitmap.mark(addr);
  1508   inline void set_buf(HeapWord* buf) {
  1509     if (use_local_bitmaps && _during_marking)
  1510       _bitmap.set_buffer(buf);
  1511     ParGCAllocBuffer::set_buf(buf);
  1512     _retired = false;
  1515   inline void retire(bool end_of_gc, bool retain) {
  1516     if (_retired)
  1517       return;
  1518     if (use_local_bitmaps && _during_marking) {
  1519       _bitmap.retire();
  1521     ParGCAllocBuffer::retire(end_of_gc, retain);
  1522     _retired = true;
  1524 };
  1526 class G1ParScanThreadState : public StackObj {
  1527 protected:
  1528   G1CollectedHeap* _g1h;
  1529   RefToScanQueue*  _refs;
  1530   DirtyCardQueue   _dcq;
  1531   CardTableModRefBS* _ct_bs;
  1532   G1RemSet* _g1_rem;
  1534   typedef GrowableArray<StarTask> OverflowQueue;
  1535   OverflowQueue* _overflowed_refs;
  1537   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1538   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1539   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1540   ageTable            _age_table;
  1542   size_t           _alloc_buffer_waste;
  1543   size_t           _undo_waste;
  1545   OopsInHeapRegionClosure*      _evac_failure_cl;
  1546   G1ParScanHeapEvacClosure*     _evac_cl;
  1547   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1549   int _hash_seed;
  1550   int _queue_num;
  1552   int _term_attempts;
  1553 #if G1_DETAILED_STATS
  1554   int _pushes, _pops, _steals, _steal_attempts;
  1555   int _overflow_pushes;
  1556 #endif
  1558   double _start;
  1559   double _start_strong_roots;
  1560   double _strong_roots_time;
  1561   double _start_term;
  1562   double _term_time;
  1564   // Map from young-age-index (0 == not young, 1 is youngest) to
  1565   // surviving words. base is what we get back from the malloc call
  1566   size_t* _surviving_young_words_base;
  1567   // this points into the array, as we use the first few entries for padding
  1568   size_t* _surviving_young_words;
  1570 #define PADDING_ELEM_NUM (64 / sizeof(size_t))
  1572   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1574   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1576   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1577   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1579   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1580     if (!from->is_survivor()) {
  1581       _g1_rem->par_write_ref(from, p, tid);
  1585   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1586     // If the new value of the field points to the same region or
  1587     // is the to-space, we don't need to include it in the Rset updates.
  1588     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1589       size_t card_index = ctbs()->index_for(p);
  1590       // If the card hasn't been added to the buffer, do it.
  1591       if (ctbs()->mark_card_deferred(card_index)) {
  1592         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1597 public:
  1598   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1600   ~G1ParScanThreadState() {
  1601     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1604   RefToScanQueue*   refs()            { return _refs;             }
  1605   OverflowQueue*    overflowed_refs() { return _overflowed_refs;  }
  1606   ageTable*         age_table()       { return &_age_table;       }
  1608   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1609     return _alloc_buffers[purpose];
  1612   size_t alloc_buffer_waste()                    { return _alloc_buffer_waste; }
  1613   size_t undo_waste()                            { return _undo_waste; }
  1615   template <class T> void push_on_queue(T* ref) {
  1616     assert(ref != NULL, "invariant");
  1617     assert(has_partial_array_mask(ref) ||
  1618            _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(ref)), "invariant");
  1619 #ifdef ASSERT
  1620     if (has_partial_array_mask(ref)) {
  1621       oop p = clear_partial_array_mask(ref);
  1622       // Verify that we point into the CS
  1623       assert(_g1h->obj_in_cs(p), "Should be in CS");
  1625 #endif
  1626     if (!refs()->push(ref)) {
  1627       overflowed_refs()->push(ref);
  1628       IF_G1_DETAILED_STATS(note_overflow_push());
  1629     } else {
  1630       IF_G1_DETAILED_STATS(note_push());
  1634   void pop_from_queue(StarTask& ref) {
  1635     if (refs()->pop_local(ref)) {
  1636       assert((oop*)ref != NULL, "pop_local() returned true");
  1637       assert(UseCompressedOops || !ref.is_narrow(), "Error");
  1638       assert(has_partial_array_mask((oop*)ref) ||
  1639              _g1h->is_in_g1_reserved(ref.is_narrow() ? oopDesc::load_decode_heap_oop((narrowOop*)ref)
  1640                                                      : oopDesc::load_decode_heap_oop((oop*)ref)),
  1641               "invariant");
  1642       IF_G1_DETAILED_STATS(note_pop());
  1643     } else {
  1644       StarTask null_task;
  1645       ref = null_task;
  1649   void pop_from_overflow_queue(StarTask& ref) {
  1650     StarTask new_ref = overflowed_refs()->pop();
  1651     assert((oop*)new_ref != NULL, "pop() from a local non-empty stack");
  1652     assert(UseCompressedOops || !new_ref.is_narrow(), "Error");
  1653     assert(has_partial_array_mask((oop*)new_ref) ||
  1654            _g1h->is_in_g1_reserved(new_ref.is_narrow() ? oopDesc::load_decode_heap_oop((narrowOop*)new_ref)
  1655                                                        : oopDesc::load_decode_heap_oop((oop*)new_ref)),
  1656            "invariant");
  1657     ref = new_ref;
  1660   int refs_to_scan()                             { return refs()->size();                 }
  1661   int overflowed_refs_to_scan()                  { return overflowed_refs()->length();    }
  1663   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1664     if (G1DeferredRSUpdate) {
  1665       deferred_rs_update(from, p, tid);
  1666     } else {
  1667       immediate_rs_update(from, p, tid);
  1671   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1673     HeapWord* obj = NULL;
  1674     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1675     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1676       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1677       assert(gclab_word_size == alloc_buf->word_sz(),
  1678              "dynamic resizing is not supported");
  1679       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1680       alloc_buf->retire(false, false);
  1682       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1683       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1684       // Otherwise.
  1685       alloc_buf->set_buf(buf);
  1687       obj = alloc_buf->allocate(word_sz);
  1688       assert(obj != NULL, "buffer was definitely big enough...");
  1689     } else {
  1690       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1692     return obj;
  1695   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1696     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1697     if (obj != NULL) return obj;
  1698     return allocate_slow(purpose, word_sz);
  1701   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1702     if (alloc_buffer(purpose)->contains(obj)) {
  1703       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1704              "should contain whole object");
  1705       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1706     } else {
  1707       CollectedHeap::fill_with_object(obj, word_sz);
  1708       add_to_undo_waste(word_sz);
  1712   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1713     _evac_failure_cl = evac_failure_cl;
  1715   OopsInHeapRegionClosure* evac_failure_closure() {
  1716     return _evac_failure_cl;
  1719   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1720     _evac_cl = evac_cl;
  1723   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1724     _partial_scan_cl = partial_scan_cl;
  1727   int* hash_seed() { return &_hash_seed; }
  1728   int  queue_num() { return _queue_num; }
  1730   int term_attempts()   { return _term_attempts; }
  1731   void note_term_attempt()  { _term_attempts++; }
  1733 #if G1_DETAILED_STATS
  1734   int pushes()          { return _pushes; }
  1735   int pops()            { return _pops; }
  1736   int steals()          { return _steals; }
  1737   int steal_attempts()  { return _steal_attempts; }
  1738   int overflow_pushes() { return _overflow_pushes; }
  1740   void note_push()          { _pushes++; }
  1741   void note_pop()           { _pops++; }
  1742   void note_steal()         { _steals++; }
  1743   void note_steal_attempt() { _steal_attempts++; }
  1744   void note_overflow_push() { _overflow_pushes++; }
  1745 #endif
  1747   void start_strong_roots() {
  1748     _start_strong_roots = os::elapsedTime();
  1750   void end_strong_roots() {
  1751     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1753   double strong_roots_time() { return _strong_roots_time; }
  1755   void start_term_time() {
  1756     note_term_attempt();
  1757     _start_term = os::elapsedTime();
  1759   void end_term_time() {
  1760     _term_time += (os::elapsedTime() - _start_term);
  1762   double term_time() { return _term_time; }
  1764   double elapsed() {
  1765     return os::elapsedTime() - _start;
  1768   size_t* surviving_young_words() {
  1769     // We add on to hide entry 0 which accumulates surviving words for
  1770     // age -1 regions (i.e. non-young ones)
  1771     return _surviving_young_words;
  1774   void retire_alloc_buffers() {
  1775     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1776       size_t waste = _alloc_buffers[ap]->words_remaining();
  1777       add_to_alloc_buffer_waste(waste);
  1778       _alloc_buffers[ap]->retire(true, false);
  1782 private:
  1783   template <class T> void deal_with_reference(T* ref_to_scan) {
  1784     if (has_partial_array_mask(ref_to_scan)) {
  1785       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1786     } else {
  1787       // Note: we can use "raw" versions of "region_containing" because
  1788       // "obj_to_scan" is definitely in the heap, and is not in a
  1789       // humongous region.
  1790       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1791       _evac_cl->set_region(r);
  1792       _evac_cl->do_oop_nv(ref_to_scan);
  1796 public:
  1797   void trim_queue() {
  1798     // I've replicated the loop twice, first to drain the overflow
  1799     // queue, second to drain the task queue. This is better than
  1800     // having a single loop, which checks both conditions and, inside
  1801     // it, either pops the overflow queue or the task queue, as each
  1802     // loop is tighter. Also, the decision to drain the overflow queue
  1803     // first is not arbitrary, as the overflow queue is not visible
  1804     // to the other workers, whereas the task queue is. So, we want to
  1805     // drain the "invisible" entries first, while allowing the other
  1806     // workers to potentially steal the "visible" entries.
  1808     while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
  1809       while (overflowed_refs_to_scan() > 0) {
  1810         StarTask ref_to_scan;
  1811         assert((oop*)ref_to_scan == NULL, "Constructed above");
  1812         pop_from_overflow_queue(ref_to_scan);
  1813         // We shouldn't have pushed it on the queue if it was not
  1814         // pointing into the CSet.
  1815         assert((oop*)ref_to_scan != NULL, "Follows from inner loop invariant");
  1816         if (ref_to_scan.is_narrow()) {
  1817           assert(UseCompressedOops, "Error");
  1818           narrowOop* p = (narrowOop*)ref_to_scan;
  1819           assert(!has_partial_array_mask(p) &&
  1820                  _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity");
  1821           deal_with_reference(p);
  1822         } else {
  1823           oop* p = (oop*)ref_to_scan;
  1824           assert((has_partial_array_mask(p) && _g1h->is_in_g1_reserved(clear_partial_array_mask(p))) ||
  1825                  _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity");
  1826           deal_with_reference(p);
  1830       while (refs_to_scan() > 0) {
  1831         StarTask ref_to_scan;
  1832         assert((oop*)ref_to_scan == NULL, "Constructed above");
  1833         pop_from_queue(ref_to_scan);
  1834         if ((oop*)ref_to_scan != NULL) {
  1835           if (ref_to_scan.is_narrow()) {
  1836             assert(UseCompressedOops, "Error");
  1837             narrowOop* p = (narrowOop*)ref_to_scan;
  1838             assert(!has_partial_array_mask(p) &&
  1839                     _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity");
  1840             deal_with_reference(p);
  1841           } else {
  1842             oop* p = (oop*)ref_to_scan;
  1843             assert((has_partial_array_mask(p) && _g1h->obj_in_cs(clear_partial_array_mask(p))) ||
  1844                    _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity");
  1845             deal_with_reference(p);
  1851 };

mercurial