src/share/vm/c1/c1_IR.cpp

Tue, 09 Oct 2012 10:09:34 -0700

author
mikael
date
Tue, 09 Oct 2012 10:09:34 -0700
changeset 4153
b9a9ed0f8eeb
parent 3592
701a83c86f28
child 4860
46f6f063b272
permissions
-rw-r--r--

7197424: update copyright year to match last edit in jdk8 hotspot repository
Summary: Update copyright year to 2012 for relevant files
Reviewed-by: dholmes, coleenp

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_GraphBuilder.hpp"
    29 #include "c1/c1_IR.hpp"
    30 #include "c1/c1_InstructionPrinter.hpp"
    31 #include "c1/c1_Optimizer.hpp"
    32 #include "utilities/bitMap.inline.hpp"
    35 // Implementation of XHandlers
    36 //
    37 // Note: This code could eventually go away if we are
    38 //       just using the ciExceptionHandlerStream.
    40 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
    41   ciExceptionHandlerStream s(method);
    42   while (!s.is_done()) {
    43     _list.append(new XHandler(s.handler()));
    44     s.next();
    45   }
    46   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
    47 }
    49 // deep copy of all XHandler contained in list
    50 XHandlers::XHandlers(XHandlers* other) :
    51   _list(other->length())
    52 {
    53   for (int i = 0; i < other->length(); i++) {
    54     _list.append(new XHandler(other->handler_at(i)));
    55   }
    56 }
    58 // Returns whether a particular exception type can be caught.  Also
    59 // returns true if klass is unloaded or any exception handler
    60 // classes are unloaded.  type_is_exact indicates whether the throw
    61 // is known to be exactly that class or it might throw a subtype.
    62 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
    63   // the type is unknown so be conservative
    64   if (!klass->is_loaded()) {
    65     return true;
    66   }
    68   for (int i = 0; i < length(); i++) {
    69     XHandler* handler = handler_at(i);
    70     if (handler->is_catch_all()) {
    71       // catch of ANY
    72       return true;
    73     }
    74     ciInstanceKlass* handler_klass = handler->catch_klass();
    75     // if it's unknown it might be catchable
    76     if (!handler_klass->is_loaded()) {
    77       return true;
    78     }
    79     // if the throw type is definitely a subtype of the catch type
    80     // then it can be caught.
    81     if (klass->is_subtype_of(handler_klass)) {
    82       return true;
    83     }
    84     if (!type_is_exact) {
    85       // If the type isn't exactly known then it can also be caught by
    86       // catch statements where the inexact type is a subtype of the
    87       // catch type.
    88       // given: foo extends bar extends Exception
    89       // throw bar can be caught by catch foo, catch bar, and catch
    90       // Exception, however it can't be caught by any handlers without
    91       // bar in its type hierarchy.
    92       if (handler_klass->is_subtype_of(klass)) {
    93         return true;
    94       }
    95     }
    96   }
    98   return false;
    99 }
   102 bool XHandlers::equals(XHandlers* others) const {
   103   if (others == NULL) return false;
   104   if (length() != others->length()) return false;
   106   for (int i = 0; i < length(); i++) {
   107     if (!handler_at(i)->equals(others->handler_at(i))) return false;
   108   }
   109   return true;
   110 }
   112 bool XHandler::equals(XHandler* other) const {
   113   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
   115   if (entry_pco() != other->entry_pco()) return false;
   116   if (scope_count() != other->scope_count()) return false;
   117   if (_desc != other->_desc) return false;
   119   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
   120   return true;
   121 }
   124 // Implementation of IRScope
   125 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
   126   GraphBuilder gm(compilation, this);
   127   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
   128   if (compilation->bailed_out()) return NULL;
   129   return gm.start();
   130 }
   133 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
   134 : _callees(2)
   135 , _compilation(compilation)
   136 , _requires_phi_function(method->max_locals())
   137 {
   138   _caller             = caller;
   139   _level              = caller == NULL ?  0 : caller->level() + 1;
   140   _method             = method;
   141   _xhandlers          = new XHandlers(method);
   142   _number_of_locks    = 0;
   143   _monitor_pairing_ok = method->has_balanced_monitors();
   144   _wrote_final        = false;
   145   _start              = NULL;
   147   if (osr_bci == -1) {
   148     _requires_phi_function.clear();
   149   } else {
   150         // selective creation of phi functions is not possibel in osr-methods
   151     _requires_phi_function.set_range(0, method->max_locals());
   152   }
   154   assert(method->holder()->is_loaded() , "method holder must be loaded");
   156   // build graph if monitor pairing is ok
   157   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
   158 }
   161 int IRScope::max_stack() const {
   162   int my_max = method()->max_stack();
   163   int callee_max = 0;
   164   for (int i = 0; i < number_of_callees(); i++) {
   165     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
   166   }
   167   return my_max + callee_max;
   168 }
   171 bool IRScopeDebugInfo::should_reexecute() {
   172   ciMethod* cur_method = scope()->method();
   173   int       cur_bci    = bci();
   174   if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
   175     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
   176     return Interpreter::bytecode_should_reexecute(code);
   177   } else
   178     return false;
   179 }
   182 // Implementation of CodeEmitInfo
   184 // Stack must be NON-null
   185 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers)
   186   : _scope(stack->scope())
   187   , _scope_debug_info(NULL)
   188   , _oop_map(NULL)
   189   , _stack(stack)
   190   , _exception_handlers(exception_handlers)
   191   , _is_method_handle_invoke(false) {
   192   assert(_stack != NULL, "must be non null");
   193 }
   196 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
   197   : _scope(info->_scope)
   198   , _exception_handlers(NULL)
   199   , _scope_debug_info(NULL)
   200   , _oop_map(NULL)
   201   , _stack(stack == NULL ? info->_stack : stack)
   202   , _is_method_handle_invoke(info->_is_method_handle_invoke) {
   204   // deep copy of exception handlers
   205   if (info->_exception_handlers != NULL) {
   206     _exception_handlers = new XHandlers(info->_exception_handlers);
   207   }
   208 }
   211 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
   212   // record the safepoint before recording the debug info for enclosing scopes
   213   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
   214   _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
   215   recorder->end_safepoint(pc_offset);
   216 }
   219 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
   220   assert(_oop_map != NULL, "oop map must already exist");
   221   assert(opr->is_single_cpu(), "should not call otherwise");
   223   VMReg name = frame_map()->regname(opr);
   224   _oop_map->set_oop(name);
   225 }
   230 // Implementation of IR
   232 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
   233     _locals_size(in_WordSize(-1))
   234   , _num_loops(0) {
   235   // setup IR fields
   236   _compilation = compilation;
   237   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
   238   _code        = NULL;
   239 }
   242 void IR::optimize() {
   243   Optimizer opt(this);
   244   if (!compilation()->profile_branches()) {
   245     if (DoCEE) {
   246       opt.eliminate_conditional_expressions();
   247 #ifndef PRODUCT
   248       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
   249       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
   250 #endif
   251     }
   252     if (EliminateBlocks) {
   253       opt.eliminate_blocks();
   254 #ifndef PRODUCT
   255       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
   256       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
   257 #endif
   258     }
   259   }
   260   if (EliminateNullChecks) {
   261     opt.eliminate_null_checks();
   262 #ifndef PRODUCT
   263     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
   264     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
   265 #endif
   266   }
   267 }
   270 static int sort_pairs(BlockPair** a, BlockPair** b) {
   271   if ((*a)->from() == (*b)->from()) {
   272     return (*a)->to()->block_id() - (*b)->to()->block_id();
   273   } else {
   274     return (*a)->from()->block_id() - (*b)->from()->block_id();
   275   }
   276 }
   279 class CriticalEdgeFinder: public BlockClosure {
   280   BlockPairList blocks;
   281   IR*       _ir;
   283  public:
   284   CriticalEdgeFinder(IR* ir): _ir(ir) {}
   285   void block_do(BlockBegin* bb) {
   286     BlockEnd* be = bb->end();
   287     int nos = be->number_of_sux();
   288     if (nos >= 2) {
   289       for (int i = 0; i < nos; i++) {
   290         BlockBegin* sux = be->sux_at(i);
   291         if (sux->number_of_preds() >= 2) {
   292           blocks.append(new BlockPair(bb, sux));
   293         }
   294       }
   295     }
   296   }
   298   void split_edges() {
   299     BlockPair* last_pair = NULL;
   300     blocks.sort(sort_pairs);
   301     for (int i = 0; i < blocks.length(); i++) {
   302       BlockPair* pair = blocks.at(i);
   303       if (last_pair != NULL && pair->is_same(last_pair)) continue;
   304       BlockBegin* from = pair->from();
   305       BlockBegin* to = pair->to();
   306       BlockBegin* split = from->insert_block_between(to);
   307 #ifndef PRODUCT
   308       if ((PrintIR || PrintIR1) && Verbose) {
   309         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
   310                       from->block_id(), to->block_id(), split->block_id());
   311       }
   312 #endif
   313       last_pair = pair;
   314     }
   315   }
   316 };
   318 void IR::split_critical_edges() {
   319   CriticalEdgeFinder cef(this);
   321   iterate_preorder(&cef);
   322   cef.split_edges();
   323 }
   326 class UseCountComputer: public ValueVisitor, BlockClosure {
   327  private:
   328   void visit(Value* n) {
   329     // Local instructions and Phis for expression stack values at the
   330     // start of basic blocks are not added to the instruction list
   331     if (!(*n)->is_linked() && (*n)->can_be_linked()) {
   332       assert(false, "a node was not appended to the graph");
   333       Compilation::current()->bailout("a node was not appended to the graph");
   334     }
   335     // use n's input if not visited before
   336     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
   337       // note: a) if the instruction is pinned, it will be handled by compute_use_count
   338       //       b) if the instruction has uses, it was touched before
   339       //       => in both cases we don't need to update n's values
   340       uses_do(n);
   341     }
   342     // use n
   343     (*n)->_use_count++;
   344   }
   346   Values* worklist;
   347   int depth;
   348   enum {
   349     max_recurse_depth = 20
   350   };
   352   void uses_do(Value* n) {
   353     depth++;
   354     if (depth > max_recurse_depth) {
   355       // don't allow the traversal to recurse too deeply
   356       worklist->push(*n);
   357     } else {
   358       (*n)->input_values_do(this);
   359       // special handling for some instructions
   360       if ((*n)->as_BlockEnd() != NULL) {
   361         // note on BlockEnd:
   362         //   must 'use' the stack only if the method doesn't
   363         //   terminate, however, in those cases stack is empty
   364         (*n)->state_values_do(this);
   365       }
   366     }
   367     depth--;
   368   }
   370   void block_do(BlockBegin* b) {
   371     depth = 0;
   372     // process all pinned nodes as the roots of expression trees
   373     for (Instruction* n = b; n != NULL; n = n->next()) {
   374       if (n->is_pinned()) uses_do(&n);
   375     }
   376     assert(depth == 0, "should have counted back down");
   378     // now process any unpinned nodes which recursed too deeply
   379     while (worklist->length() > 0) {
   380       Value t = worklist->pop();
   381       if (!t->is_pinned()) {
   382         // compute the use count
   383         uses_do(&t);
   385         // pin the instruction so that LIRGenerator doesn't recurse
   386         // too deeply during it's evaluation.
   387         t->pin();
   388       }
   389     }
   390     assert(depth == 0, "should have counted back down");
   391   }
   393   UseCountComputer() {
   394     worklist = new Values();
   395     depth = 0;
   396   }
   398  public:
   399   static void compute(BlockList* blocks) {
   400     UseCountComputer ucc;
   401     blocks->iterate_backward(&ucc);
   402   }
   403 };
   406 // helper macro for short definition of trace-output inside code
   407 #ifndef PRODUCT
   408   #define TRACE_LINEAR_SCAN(level, code)       \
   409     if (TraceLinearScanLevel >= level) {       \
   410       code;                                    \
   411     }
   412 #else
   413   #define TRACE_LINEAR_SCAN(level, code)
   414 #endif
   416 class ComputeLinearScanOrder : public StackObj {
   417  private:
   418   int        _max_block_id;        // the highest block_id of a block
   419   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
   420   int        _num_loops;           // total number of loops
   421   bool       _iterative_dominators;// method requires iterative computation of dominatiors
   423   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
   425   BitMap     _visited_blocks;      // used for recursive processing of blocks
   426   BitMap     _active_blocks;       // used for recursive processing of blocks
   427   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
   428   intArray   _forward_branches;    // number of incoming forward branches for each block
   429   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
   430   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
   431   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
   433   Compilation* _compilation;
   435   // accessors for _visited_blocks and _active_blocks
   436   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
   437   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
   438   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
   439   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
   440   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
   441   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
   443   // accessors for _forward_branches
   444   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
   445   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
   447   // accessors for _loop_map
   448   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
   449   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
   450   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
   452   // count edges between blocks
   453   void count_edges(BlockBegin* cur, BlockBegin* parent);
   455   // loop detection
   456   void mark_loops();
   457   void clear_non_natural_loops(BlockBegin* start_block);
   458   void assign_loop_depth(BlockBegin* start_block);
   460   // computation of final block order
   461   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
   462   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
   463   int  compute_weight(BlockBegin* cur);
   464   bool ready_for_processing(BlockBegin* cur);
   465   void sort_into_work_list(BlockBegin* b);
   466   void append_block(BlockBegin* cur);
   467   void compute_order(BlockBegin* start_block);
   469   // fixup of dominators for non-natural loops
   470   bool compute_dominators_iter();
   471   void compute_dominators();
   473   // debug functions
   474   NOT_PRODUCT(void print_blocks();)
   475   DEBUG_ONLY(void verify();)
   477   Compilation* compilation() const { return _compilation; }
   478  public:
   479   ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
   481   // accessors for final result
   482   BlockList* linear_scan_order() const    { return _linear_scan_order; }
   483   int        num_loops() const            { return _num_loops; }
   484 };
   487 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
   488   _max_block_id(BlockBegin::number_of_blocks()),
   489   _num_blocks(0),
   490   _num_loops(0),
   491   _iterative_dominators(false),
   492   _visited_blocks(_max_block_id),
   493   _active_blocks(_max_block_id),
   494   _dominator_blocks(_max_block_id),
   495   _forward_branches(_max_block_id, 0),
   496   _loop_end_blocks(8),
   497   _work_list(8),
   498   _linear_scan_order(NULL), // initialized later with correct size
   499   _loop_map(0, 0),          // initialized later with correct size
   500   _compilation(c)
   501 {
   502   TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
   504   init_visited();
   505   count_edges(start_block, NULL);
   507   if (compilation()->is_profiling()) {
   508     ciMethod *method = compilation()->method();
   509     if (!method->is_accessor()) {
   510       ciMethodData* md = method->method_data_or_null();
   511       assert(md != NULL, "Sanity");
   512       md->set_compilation_stats(_num_loops, _num_blocks);
   513     }
   514   }
   516   if (_num_loops > 0) {
   517     mark_loops();
   518     clear_non_natural_loops(start_block);
   519     assign_loop_depth(start_block);
   520   }
   522   compute_order(start_block);
   523   compute_dominators();
   525   NOT_PRODUCT(print_blocks());
   526   DEBUG_ONLY(verify());
   527 }
   530 // Traverse the CFG:
   531 // * count total number of blocks
   532 // * count all incoming edges and backward incoming edges
   533 // * number loop header blocks
   534 // * create a list with all loop end blocks
   535 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
   536   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
   537   assert(cur->dominator() == NULL, "dominator already initialized");
   539   if (is_active(cur)) {
   540     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
   541     assert(is_visited(cur), "block must be visisted when block is active");
   542     assert(parent != NULL, "must have parent");
   544     cur->set(BlockBegin::linear_scan_loop_header_flag);
   545     cur->set(BlockBegin::backward_branch_target_flag);
   547     parent->set(BlockBegin::linear_scan_loop_end_flag);
   549     // When a loop header is also the start of an exception handler, then the backward branch is
   550     // an exception edge. Because such edges are usually critical edges which cannot be split, the
   551     // loop must be excluded here from processing.
   552     if (cur->is_set(BlockBegin::exception_entry_flag)) {
   553       // Make sure that dominators are correct in this weird situation
   554       _iterative_dominators = true;
   555       return;
   556     }
   557     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
   558            "loop end blocks must have one successor (critical edges are split)");
   560     _loop_end_blocks.append(parent);
   561     return;
   562   }
   564   // increment number of incoming forward branches
   565   inc_forward_branches(cur);
   567   if (is_visited(cur)) {
   568     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
   569     return;
   570   }
   572   _num_blocks++;
   573   set_visited(cur);
   574   set_active(cur);
   576   // recursive call for all successors
   577   int i;
   578   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   579     count_edges(cur->sux_at(i), cur);
   580   }
   581   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   582     count_edges(cur->exception_handler_at(i), cur);
   583   }
   585   clear_active(cur);
   587   // Each loop has a unique number.
   588   // When multiple loops are nested, assign_loop_depth assumes that the
   589   // innermost loop has the lowest number. This is guaranteed by setting
   590   // the loop number after the recursive calls for the successors above
   591   // have returned.
   592   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
   593     assert(cur->loop_index() == -1, "cannot set loop-index twice");
   594     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
   596     cur->set_loop_index(_num_loops);
   597     _num_loops++;
   598   }
   600   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
   601 }
   604 void ComputeLinearScanOrder::mark_loops() {
   605   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
   607   _loop_map = BitMap2D(_num_loops, _max_block_id);
   608   _loop_map.clear();
   610   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
   611     BlockBegin* loop_end   = _loop_end_blocks.at(i);
   612     BlockBegin* loop_start = loop_end->sux_at(0);
   613     int         loop_idx   = loop_start->loop_index();
   615     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
   616     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
   617     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
   618     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
   619     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
   620     assert(_work_list.is_empty(), "work list must be empty before processing");
   622     // add the end-block of the loop to the working list
   623     _work_list.push(loop_end);
   624     set_block_in_loop(loop_idx, loop_end);
   625     do {
   626       BlockBegin* cur = _work_list.pop();
   628       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
   629       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
   631       // recursive processing of all predecessors ends when start block of loop is reached
   632       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
   633         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
   634           BlockBegin* pred = cur->pred_at(j);
   636           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
   637             // this predecessor has not been processed yet, so add it to work list
   638             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
   639             _work_list.push(pred);
   640             set_block_in_loop(loop_idx, pred);
   641           }
   642         }
   643       }
   644     } while (!_work_list.is_empty());
   645   }
   646 }
   649 // check for non-natural loops (loops where the loop header does not dominate
   650 // all other loop blocks = loops with mulitple entries).
   651 // such loops are ignored
   652 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
   653   for (int i = _num_loops - 1; i >= 0; i--) {
   654     if (is_block_in_loop(i, start_block)) {
   655       // loop i contains the entry block of the method
   656       // -> this is not a natural loop, so ignore it
   657       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
   659       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
   660         clear_block_in_loop(i, block_id);
   661       }
   662       _iterative_dominators = true;
   663     }
   664   }
   665 }
   667 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
   668   TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
   669   init_visited();
   671   assert(_work_list.is_empty(), "work list must be empty before processing");
   672   _work_list.append(start_block);
   674   do {
   675     BlockBegin* cur = _work_list.pop();
   677     if (!is_visited(cur)) {
   678       set_visited(cur);
   679       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
   681       // compute loop-depth and loop-index for the block
   682       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
   683       int i;
   684       int loop_depth = 0;
   685       int min_loop_idx = -1;
   686       for (i = _num_loops - 1; i >= 0; i--) {
   687         if (is_block_in_loop(i, cur)) {
   688           loop_depth++;
   689           min_loop_idx = i;
   690         }
   691       }
   692       cur->set_loop_depth(loop_depth);
   693       cur->set_loop_index(min_loop_idx);
   695       // append all unvisited successors to work list
   696       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   697         _work_list.append(cur->sux_at(i));
   698       }
   699       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   700         _work_list.append(cur->exception_handler_at(i));
   701       }
   702     }
   703   } while (!_work_list.is_empty());
   704 }
   707 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
   708   assert(a != NULL && b != NULL, "must have input blocks");
   710   _dominator_blocks.clear();
   711   while (a != NULL) {
   712     _dominator_blocks.set_bit(a->block_id());
   713     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
   714     a = a->dominator();
   715   }
   716   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
   717     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
   718     b = b->dominator();
   719   }
   721   assert(b != NULL, "could not find dominator");
   722   return b;
   723 }
   725 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
   726   if (cur->dominator() == NULL) {
   727     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
   728     cur->set_dominator(parent);
   730   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
   731     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
   732     assert(cur->number_of_preds() > 1, "");
   733     cur->set_dominator(common_dominator(cur->dominator(), parent));
   734   }
   735 }
   738 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
   739   BlockBegin* single_sux = NULL;
   740   if (cur->number_of_sux() == 1) {
   741     single_sux = cur->sux_at(0);
   742   }
   744   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
   745   int weight = (cur->loop_depth() & 0x7FFF) << 16;
   747   // general macro for short definition of weight flags
   748   // the first instance of INC_WEIGHT_IF has the highest priority
   749   int cur_bit = 15;
   750   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
   752   // this is necessery for the (very rare) case that two successing blocks have
   753   // the same loop depth, but a different loop index (can happen for endless loops
   754   // with exception handlers)
   755   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
   757   // loop end blocks (blocks that end with a backward branch) are added
   758   // after all other blocks of the loop.
   759   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
   761   // critical edge split blocks are prefered because than they have a bigger
   762   // proability to be completely empty
   763   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
   765   // exceptions should not be thrown in normal control flow, so these blocks
   766   // are added as late as possible
   767   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
   768   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
   770   // exceptions handlers are added as late as possible
   771   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
   773   // guarantee that weight is > 0
   774   weight |= 1;
   776   #undef INC_WEIGHT_IF
   777   assert(cur_bit >= 0, "too many flags");
   778   assert(weight > 0, "weight cannot become negative");
   780   return weight;
   781 }
   783 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
   784   // Discount the edge just traveled.
   785   // When the number drops to zero, all forward branches were processed
   786   if (dec_forward_branches(cur) != 0) {
   787     return false;
   788   }
   790   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
   791   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
   792   return true;
   793 }
   795 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
   796   assert(_work_list.index_of(cur) == -1, "block already in work list");
   798   int cur_weight = compute_weight(cur);
   800   // the linear_scan_number is used to cache the weight of a block
   801   cur->set_linear_scan_number(cur_weight);
   803 #ifndef PRODUCT
   804   if (StressLinearScan) {
   805     _work_list.insert_before(0, cur);
   806     return;
   807   }
   808 #endif
   810   _work_list.append(NULL); // provide space for new element
   812   int insert_idx = _work_list.length() - 1;
   813   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
   814     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
   815     insert_idx--;
   816   }
   817   _work_list.at_put(insert_idx, cur);
   819   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
   820   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
   822 #ifdef ASSERT
   823   for (int i = 0; i < _work_list.length(); i++) {
   824     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
   825     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
   826   }
   827 #endif
   828 }
   830 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
   831   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
   832   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
   834   // currently, the linear scan order and code emit order are equal.
   835   // therefore the linear_scan_number and the weight of a block must also
   836   // be equal.
   837   cur->set_linear_scan_number(_linear_scan_order->length());
   838   _linear_scan_order->append(cur);
   839 }
   841 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
   842   TRACE_LINEAR_SCAN(3, "----- computing final block order");
   844   // the start block is always the first block in the linear scan order
   845   _linear_scan_order = new BlockList(_num_blocks);
   846   append_block(start_block);
   848   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
   849   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
   850   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
   852   BlockBegin* sux_of_osr_entry = NULL;
   853   if (osr_entry != NULL) {
   854     // special handling for osr entry:
   855     // ignore the edge between the osr entry and its successor for processing
   856     // the osr entry block is added manually below
   857     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
   858     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
   860     sux_of_osr_entry = osr_entry->sux_at(0);
   861     dec_forward_branches(sux_of_osr_entry);
   863     compute_dominator(osr_entry, start_block);
   864     _iterative_dominators = true;
   865   }
   866   compute_dominator(std_entry, start_block);
   868   // start processing with standard entry block
   869   assert(_work_list.is_empty(), "list must be empty before processing");
   871   if (ready_for_processing(std_entry)) {
   872     sort_into_work_list(std_entry);
   873   } else {
   874     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
   875   }
   877   do {
   878     BlockBegin* cur = _work_list.pop();
   880     if (cur == sux_of_osr_entry) {
   881       // the osr entry block is ignored in normal processing, it is never added to the
   882       // work list. Instead, it is added as late as possible manually here.
   883       append_block(osr_entry);
   884       compute_dominator(cur, osr_entry);
   885     }
   886     append_block(cur);
   888     int i;
   889     int num_sux = cur->number_of_sux();
   890     // changed loop order to get "intuitive" order of if- and else-blocks
   891     for (i = 0; i < num_sux; i++) {
   892       BlockBegin* sux = cur->sux_at(i);
   893       compute_dominator(sux, cur);
   894       if (ready_for_processing(sux)) {
   895         sort_into_work_list(sux);
   896       }
   897     }
   898     num_sux = cur->number_of_exception_handlers();
   899     for (i = 0; i < num_sux; i++) {
   900       BlockBegin* sux = cur->exception_handler_at(i);
   901       compute_dominator(sux, cur);
   902       if (ready_for_processing(sux)) {
   903         sort_into_work_list(sux);
   904       }
   905     }
   906   } while (_work_list.length() > 0);
   907 }
   910 bool ComputeLinearScanOrder::compute_dominators_iter() {
   911   bool changed = false;
   912   int num_blocks = _linear_scan_order->length();
   914   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
   915   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
   916   for (int i = 1; i < num_blocks; i++) {
   917     BlockBegin* block = _linear_scan_order->at(i);
   919     BlockBegin* dominator = block->pred_at(0);
   920     int num_preds = block->number_of_preds();
   921     for (int i = 1; i < num_preds; i++) {
   922       dominator = common_dominator(dominator, block->pred_at(i));
   923     }
   925     if (dominator != block->dominator()) {
   926       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
   928       block->set_dominator(dominator);
   929       changed = true;
   930     }
   931   }
   932   return changed;
   933 }
   935 void ComputeLinearScanOrder::compute_dominators() {
   936   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
   938   // iterative computation of dominators is only required for methods with non-natural loops
   939   // and OSR-methods. For all other methods, the dominators computed when generating the
   940   // linear scan block order are correct.
   941   if (_iterative_dominators) {
   942     do {
   943       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
   944     } while (compute_dominators_iter());
   945   }
   947   // check that dominators are correct
   948   assert(!compute_dominators_iter(), "fix point not reached");
   949 }
   952 #ifndef PRODUCT
   953 void ComputeLinearScanOrder::print_blocks() {
   954   if (TraceLinearScanLevel >= 2) {
   955     tty->print_cr("----- loop information:");
   956     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
   957       BlockBegin* cur = _linear_scan_order->at(block_idx);
   959       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
   960       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
   961         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
   962       }
   963       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
   964     }
   965   }
   967   if (TraceLinearScanLevel >= 1) {
   968     tty->print_cr("----- linear-scan block order:");
   969     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
   970       BlockBegin* cur = _linear_scan_order->at(block_idx);
   971       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
   973       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
   974       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
   975       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
   976       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
   978       if (cur->dominator() != NULL) {
   979         tty->print("    dom: B%d ", cur->dominator()->block_id());
   980       } else {
   981         tty->print("    dom: NULL ");
   982       }
   984       if (cur->number_of_preds() > 0) {
   985         tty->print("    preds: ");
   986         for (int j = 0; j < cur->number_of_preds(); j++) {
   987           BlockBegin* pred = cur->pred_at(j);
   988           tty->print("B%d ", pred->block_id());
   989         }
   990       }
   991       if (cur->number_of_sux() > 0) {
   992         tty->print("    sux: ");
   993         for (int j = 0; j < cur->number_of_sux(); j++) {
   994           BlockBegin* sux = cur->sux_at(j);
   995           tty->print("B%d ", sux->block_id());
   996         }
   997       }
   998       if (cur->number_of_exception_handlers() > 0) {
   999         tty->print("    ex: ");
  1000         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
  1001           BlockBegin* ex = cur->exception_handler_at(j);
  1002           tty->print("B%d ", ex->block_id());
  1005       tty->cr();
  1009 #endif
  1011 #ifdef ASSERT
  1012 void ComputeLinearScanOrder::verify() {
  1013   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
  1015   if (StressLinearScan) {
  1016     // blocks are scrambled when StressLinearScan is used
  1017     return;
  1020   // check that all successors of a block have a higher linear-scan-number
  1021   // and that all predecessors of a block have a lower linear-scan-number
  1022   // (only backward branches of loops are ignored)
  1023   int i;
  1024   for (i = 0; i < _linear_scan_order->length(); i++) {
  1025     BlockBegin* cur = _linear_scan_order->at(i);
  1027     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
  1028     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
  1030     int j;
  1031     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
  1032       BlockBegin* sux = cur->sux_at(j);
  1034       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
  1035       if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
  1036         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
  1038       if (cur->loop_depth() == sux->loop_depth()) {
  1039         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1043     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
  1044       BlockBegin* pred = cur->pred_at(j);
  1046       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
  1047       if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
  1048         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
  1050       if (cur->loop_depth() == pred->loop_depth()) {
  1051         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1054       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
  1057     // check dominator
  1058     if (i == 0) {
  1059       assert(cur->dominator() == NULL, "first block has no dominator");
  1060     } else {
  1061       assert(cur->dominator() != NULL, "all but first block must have dominator");
  1063     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
  1066   // check that all loops are continuous
  1067   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
  1068     int block_idx = 0;
  1069     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
  1071     // skip blocks before the loop
  1072     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1073       block_idx++;
  1075     // skip blocks of loop
  1076     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1077       block_idx++;
  1079     // after the first non-loop block, there must not be another loop-block
  1080     while (block_idx < _num_blocks) {
  1081       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
  1082       block_idx++;
  1086 #endif
  1089 void IR::compute_code() {
  1090   assert(is_valid(), "IR must be valid");
  1092   ComputeLinearScanOrder compute_order(compilation(), start());
  1093   _num_loops = compute_order.num_loops();
  1094   _code = compute_order.linear_scan_order();
  1098 void IR::compute_use_counts() {
  1099   // make sure all values coming out of this block get evaluated.
  1100   int num_blocks = _code->length();
  1101   for (int i = 0; i < num_blocks; i++) {
  1102     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
  1105   // compute use counts
  1106   UseCountComputer::compute(_code);
  1110 void IR::iterate_preorder(BlockClosure* closure) {
  1111   assert(is_valid(), "IR must be valid");
  1112   start()->iterate_preorder(closure);
  1116 void IR::iterate_postorder(BlockClosure* closure) {
  1117   assert(is_valid(), "IR must be valid");
  1118   start()->iterate_postorder(closure);
  1121 void IR::iterate_linear_scan_order(BlockClosure* closure) {
  1122   linear_scan_order()->iterate_forward(closure);
  1126 #ifndef PRODUCT
  1127 class BlockPrinter: public BlockClosure {
  1128  private:
  1129   InstructionPrinter* _ip;
  1130   bool                _cfg_only;
  1131   bool                _live_only;
  1133  public:
  1134   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
  1135     _ip       = ip;
  1136     _cfg_only = cfg_only;
  1137     _live_only = live_only;
  1140   virtual void block_do(BlockBegin* block) {
  1141     if (_cfg_only) {
  1142       _ip->print_instr(block); tty->cr();
  1143     } else {
  1144       block->print_block(*_ip, _live_only);
  1147 };
  1150 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
  1151   ttyLocker ttyl;
  1152   InstructionPrinter ip(!cfg_only);
  1153   BlockPrinter bp(&ip, cfg_only, live_only);
  1154   start->iterate_preorder(&bp);
  1155   tty->cr();
  1158 void IR::print(bool cfg_only, bool live_only) {
  1159   if (is_valid()) {
  1160     print(start(), cfg_only, live_only);
  1161   } else {
  1162     tty->print_cr("invalid IR");
  1167 define_array(BlockListArray, BlockList*)
  1168 define_stack(BlockListList, BlockListArray)
  1170 class PredecessorValidator : public BlockClosure {
  1171  private:
  1172   BlockListList* _predecessors;
  1173   BlockList*     _blocks;
  1175   static int cmp(BlockBegin** a, BlockBegin** b) {
  1176     return (*a)->block_id() - (*b)->block_id();
  1179  public:
  1180   PredecessorValidator(IR* hir) {
  1181     ResourceMark rm;
  1182     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
  1183     _blocks = new BlockList();
  1185     int i;
  1186     hir->start()->iterate_preorder(this);
  1187     if (hir->code() != NULL) {
  1188       assert(hir->code()->length() == _blocks->length(), "must match");
  1189       for (i = 0; i < _blocks->length(); i++) {
  1190         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
  1194     for (i = 0; i < _blocks->length(); i++) {
  1195       BlockBegin* block = _blocks->at(i);
  1196       BlockList* preds = _predecessors->at(block->block_id());
  1197       if (preds == NULL) {
  1198         assert(block->number_of_preds() == 0, "should be the same");
  1199         continue;
  1202       // clone the pred list so we can mutate it
  1203       BlockList* pred_copy = new BlockList();
  1204       int j;
  1205       for (j = 0; j < block->number_of_preds(); j++) {
  1206         pred_copy->append(block->pred_at(j));
  1208       // sort them in the same order
  1209       preds->sort(cmp);
  1210       pred_copy->sort(cmp);
  1211       int length = MIN2(preds->length(), block->number_of_preds());
  1212       for (j = 0; j < block->number_of_preds(); j++) {
  1213         assert(preds->at(j) == pred_copy->at(j), "must match");
  1216       assert(preds->length() == block->number_of_preds(), "should be the same");
  1220   virtual void block_do(BlockBegin* block) {
  1221     _blocks->append(block);
  1222     BlockEnd* be = block->end();
  1223     int n = be->number_of_sux();
  1224     int i;
  1225     for (i = 0; i < n; i++) {
  1226       BlockBegin* sux = be->sux_at(i);
  1227       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
  1229       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1230       if (preds == NULL) {
  1231         preds = new BlockList();
  1232         _predecessors->at_put(sux->block_id(), preds);
  1234       preds->append(block);
  1237     n = block->number_of_exception_handlers();
  1238     for (i = 0; i < n; i++) {
  1239       BlockBegin* sux = block->exception_handler_at(i);
  1240       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
  1242       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1243       if (preds == NULL) {
  1244         preds = new BlockList();
  1245         _predecessors->at_put(sux->block_id(), preds);
  1247       preds->append(block);
  1250 };
  1252 void IR::verify() {
  1253 #ifdef ASSERT
  1254   PredecessorValidator pv(this);
  1255 #endif
  1258 #endif // PRODUCT
  1260 void SubstitutionResolver::visit(Value* v) {
  1261   Value v0 = *v;
  1262   if (v0) {
  1263     Value vs = v0->subst();
  1264     if (vs != v0) {
  1265       *v = v0->subst();
  1270 #ifdef ASSERT
  1271 class SubstitutionChecker: public ValueVisitor {
  1272   void visit(Value* v) {
  1273     Value v0 = *v;
  1274     if (v0) {
  1275       Value vs = v0->subst();
  1276       assert(vs == v0, "missed substitution");
  1279 };
  1280 #endif
  1283 void SubstitutionResolver::block_do(BlockBegin* block) {
  1284   Instruction* last = NULL;
  1285   for (Instruction* n = block; n != NULL;) {
  1286     n->values_do(this);
  1287     // need to remove this instruction from the instruction stream
  1288     if (n->subst() != n) {
  1289       assert(last != NULL, "must have last");
  1290       last->set_next(n->next());
  1291     } else {
  1292       last = n;
  1294     n = last->next();
  1297 #ifdef ASSERT
  1298   SubstitutionChecker check_substitute;
  1299   if (block->state()) block->state()->values_do(&check_substitute);
  1300   block->block_values_do(&check_substitute);
  1301   if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
  1302 #endif

mercurial