src/share/vm/runtime/sharedRuntime.cpp

Mon, 12 Aug 2019 18:30:40 +0300

author
apetushkov
date
Mon, 12 Aug 2019 18:30:40 +0300
changeset 9858
b985cbb00e68
parent 9532
da06fcb19387
child 9572
624a0741915c
permissions
-rw-r--r--

8223147: JFR Backport
8199712: Flight Recorder
8203346: JFR: Inconsistent signature of jfr_add_string_constant
8195817: JFR.stop should require name of recording
8195818: JFR.start should increase autogenerated name by one
8195819: Remove recording=x from jcmd JFR.check output
8203921: JFR thread sampling is missing fixes from JDK-8194552
8203929: Limit amount of data for JFR.dump
8203664: JFR start failure after AppCDS archive created with JFR StartFlightRecording
8003209: JFR events for network utilization
8207392: [PPC64] Implement JFR profiling
8202835: jfr/event/os/TestSystemProcess.java fails on missing events
Summary: Backport JFR from JDK11. Initial integration
Reviewed-by: neugens

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/scopeDesc.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/abstractCompiler.hpp"
    32 #include "compiler/compileBroker.hpp"
    33 #include "compiler/compilerOracle.hpp"
    34 #include "compiler/disassembler.hpp"
    35 #include "interpreter/interpreter.hpp"
    36 #include "interpreter/interpreterRuntime.hpp"
    37 #include "memory/gcLocker.inline.hpp"
    38 #include "memory/universe.inline.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "prims/forte.hpp"
    41 #include "prims/jvmtiExport.hpp"
    42 #include "prims/jvmtiRedefineClassesTrace.hpp"
    43 #include "prims/methodHandles.hpp"
    44 #include "prims/nativeLookup.hpp"
    45 #include "runtime/arguments.hpp"
    46 #include "runtime/biasedLocking.hpp"
    47 #include "runtime/handles.inline.hpp"
    48 #include "runtime/init.hpp"
    49 #include "runtime/interfaceSupport.hpp"
    50 #include "runtime/javaCalls.hpp"
    51 #include "runtime/sharedRuntime.hpp"
    52 #include "runtime/stubRoutines.hpp"
    53 #include "runtime/vframe.hpp"
    54 #include "runtime/vframeArray.hpp"
    55 #include "utilities/copy.hpp"
    56 #include "utilities/dtrace.hpp"
    57 #include "utilities/events.hpp"
    58 #include "utilities/hashtable.inline.hpp"
    59 #include "utilities/macros.hpp"
    60 #include "utilities/xmlstream.hpp"
    61 #ifdef TARGET_ARCH_x86
    62 # include "nativeInst_x86.hpp"
    63 # include "vmreg_x86.inline.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_sparc
    66 # include "nativeInst_sparc.hpp"
    67 # include "vmreg_sparc.inline.hpp"
    68 #endif
    69 #ifdef TARGET_ARCH_zero
    70 # include "nativeInst_zero.hpp"
    71 # include "vmreg_zero.inline.hpp"
    72 #endif
    73 #ifdef TARGET_ARCH_arm
    74 # include "nativeInst_arm.hpp"
    75 # include "vmreg_arm.inline.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_ppc
    78 # include "nativeInst_ppc.hpp"
    79 # include "vmreg_ppc.inline.hpp"
    80 #endif
    81 #ifdef COMPILER1
    82 #include "c1/c1_Runtime1.hpp"
    83 #endif
    85 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    87 // Shared stub locations
    88 RuntimeStub*        SharedRuntime::_wrong_method_blob;
    89 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
    90 RuntimeStub*        SharedRuntime::_ic_miss_blob;
    91 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
    92 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
    93 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
    95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
    96 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
    97 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
    98 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
   100 #ifdef COMPILER2
   101 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
   102 #endif // COMPILER2
   105 //----------------------------generate_stubs-----------------------------------
   106 void SharedRuntime::generate_stubs() {
   107   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
   108   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
   109   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
   110   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
   111   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
   112   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
   114 #ifdef COMPILER2
   115   // Vectors are generated only by C2.
   116   if (is_wide_vector(MaxVectorSize)) {
   117     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
   118   }
   119 #endif // COMPILER2
   120   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
   121   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
   123   generate_deopt_blob();
   125 #ifdef COMPILER2
   126   generate_uncommon_trap_blob();
   127 #endif // COMPILER2
   128 }
   130 #include <math.h>
   132 #ifndef USDT2
   133 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
   134 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
   135                       char*, int, char*, int, char*, int);
   136 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
   137                       char*, int, char*, int, char*, int);
   138 #endif /* !USDT2 */
   140 // Implementation of SharedRuntime
   142 #ifndef PRODUCT
   143 // For statistics
   144 int SharedRuntime::_ic_miss_ctr = 0;
   145 int SharedRuntime::_wrong_method_ctr = 0;
   146 int SharedRuntime::_resolve_static_ctr = 0;
   147 int SharedRuntime::_resolve_virtual_ctr = 0;
   148 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
   149 int SharedRuntime::_implicit_null_throws = 0;
   150 int SharedRuntime::_implicit_div0_throws = 0;
   151 int SharedRuntime::_throw_null_ctr = 0;
   153 int SharedRuntime::_nof_normal_calls = 0;
   154 int SharedRuntime::_nof_optimized_calls = 0;
   155 int SharedRuntime::_nof_inlined_calls = 0;
   156 int SharedRuntime::_nof_megamorphic_calls = 0;
   157 int SharedRuntime::_nof_static_calls = 0;
   158 int SharedRuntime::_nof_inlined_static_calls = 0;
   159 int SharedRuntime::_nof_interface_calls = 0;
   160 int SharedRuntime::_nof_optimized_interface_calls = 0;
   161 int SharedRuntime::_nof_inlined_interface_calls = 0;
   162 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
   163 int SharedRuntime::_nof_removable_exceptions = 0;
   165 int SharedRuntime::_new_instance_ctr=0;
   166 int SharedRuntime::_new_array_ctr=0;
   167 int SharedRuntime::_multi1_ctr=0;
   168 int SharedRuntime::_multi2_ctr=0;
   169 int SharedRuntime::_multi3_ctr=0;
   170 int SharedRuntime::_multi4_ctr=0;
   171 int SharedRuntime::_multi5_ctr=0;
   172 int SharedRuntime::_mon_enter_stub_ctr=0;
   173 int SharedRuntime::_mon_exit_stub_ctr=0;
   174 int SharedRuntime::_mon_enter_ctr=0;
   175 int SharedRuntime::_mon_exit_ctr=0;
   176 int SharedRuntime::_partial_subtype_ctr=0;
   177 int SharedRuntime::_jbyte_array_copy_ctr=0;
   178 int SharedRuntime::_jshort_array_copy_ctr=0;
   179 int SharedRuntime::_jint_array_copy_ctr=0;
   180 int SharedRuntime::_jlong_array_copy_ctr=0;
   181 int SharedRuntime::_oop_array_copy_ctr=0;
   182 int SharedRuntime::_checkcast_array_copy_ctr=0;
   183 int SharedRuntime::_unsafe_array_copy_ctr=0;
   184 int SharedRuntime::_generic_array_copy_ctr=0;
   185 int SharedRuntime::_slow_array_copy_ctr=0;
   186 int SharedRuntime::_find_handler_ctr=0;
   187 int SharedRuntime::_rethrow_ctr=0;
   189 int     SharedRuntime::_ICmiss_index                    = 0;
   190 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
   191 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
   194 void SharedRuntime::trace_ic_miss(address at) {
   195   for (int i = 0; i < _ICmiss_index; i++) {
   196     if (_ICmiss_at[i] == at) {
   197       _ICmiss_count[i]++;
   198       return;
   199     }
   200   }
   201   int index = _ICmiss_index++;
   202   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
   203   _ICmiss_at[index] = at;
   204   _ICmiss_count[index] = 1;
   205 }
   207 void SharedRuntime::print_ic_miss_histogram() {
   208   if (ICMissHistogram) {
   209     tty->print_cr ("IC Miss Histogram:");
   210     int tot_misses = 0;
   211     for (int i = 0; i < _ICmiss_index; i++) {
   212       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   213       tot_misses += _ICmiss_count[i];
   214     }
   215     tty->print_cr ("Total IC misses: %7d", tot_misses);
   216   }
   217 }
   218 #endif // PRODUCT
   220 #if INCLUDE_ALL_GCS
   222 // G1 write-barrier pre: executed before a pointer store.
   223 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   224   if (orig == NULL) {
   225     assert(false, "should be optimized out");
   226     return;
   227   }
   228   assert(orig->is_oop(true /* ignore mark word */), "Error");
   229   // store the original value that was in the field reference
   230   thread->satb_mark_queue().enqueue(orig);
   231 JRT_END
   233 // G1 write-barrier post: executed after a pointer store.
   234 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   235   thread->dirty_card_queue().enqueue(card_addr);
   236 JRT_END
   238 #endif // INCLUDE_ALL_GCS
   241 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   242   return x * y;
   243 JRT_END
   246 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   247   if (x == min_jlong && y == CONST64(-1)) {
   248     return x;
   249   } else {
   250     return x / y;
   251   }
   252 JRT_END
   255 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   256   if (x == min_jlong && y == CONST64(-1)) {
   257     return 0;
   258   } else {
   259     return x % y;
   260   }
   261 JRT_END
   264 const juint  float_sign_mask  = 0x7FFFFFFF;
   265 const juint  float_infinity   = 0x7F800000;
   266 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   267 const julong double_infinity  = CONST64(0x7FF0000000000000);
   269 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   270 #ifdef _WIN64
   271   // 64-bit Windows on amd64 returns the wrong values for
   272   // infinity operands.
   273   union { jfloat f; juint i; } xbits, ybits;
   274   xbits.f = x;
   275   ybits.f = y;
   276   // x Mod Infinity == x unless x is infinity
   277   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   278        ((ybits.i & float_sign_mask) == float_infinity) ) {
   279     return x;
   280   }
   281 #endif
   282   return ((jfloat)fmod((double)x,(double)y));
   283 JRT_END
   286 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   287 #ifdef _WIN64
   288   union { jdouble d; julong l; } xbits, ybits;
   289   xbits.d = x;
   290   ybits.d = y;
   291   // x Mod Infinity == x unless x is infinity
   292   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   293        ((ybits.l & double_sign_mask) == double_infinity) ) {
   294     return x;
   295   }
   296 #endif
   297   return ((jdouble)fmod((double)x,(double)y));
   298 JRT_END
   300 #ifdef __SOFTFP__
   301 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
   302   return x + y;
   303 JRT_END
   305 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
   306   return x - y;
   307 JRT_END
   309 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
   310   return x * y;
   311 JRT_END
   313 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
   314   return x / y;
   315 JRT_END
   317 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
   318   return x + y;
   319 JRT_END
   321 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
   322   return x - y;
   323 JRT_END
   325 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
   326   return x * y;
   327 JRT_END
   329 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
   330   return x / y;
   331 JRT_END
   333 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
   334   return (jfloat)x;
   335 JRT_END
   337 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
   338   return (jdouble)x;
   339 JRT_END
   341 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
   342   return (jdouble)x;
   343 JRT_END
   345 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
   346   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
   347 JRT_END
   349 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
   350   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   351 JRT_END
   353 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
   354   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
   355 JRT_END
   357 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
   358   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   359 JRT_END
   361 // Functions to return the opposite of the aeabi functions for nan.
   362 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
   363   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   364 JRT_END
   366 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
   367   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   368 JRT_END
   370 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
   371   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   372 JRT_END
   374 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
   375   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   376 JRT_END
   378 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
   379   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   380 JRT_END
   382 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
   383   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   384 JRT_END
   386 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
   387   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   388 JRT_END
   390 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
   391   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   392 JRT_END
   394 // Intrinsics make gcc generate code for these.
   395 float  SharedRuntime::fneg(float f)   {
   396   return -f;
   397 }
   399 double SharedRuntime::dneg(double f)  {
   400   return -f;
   401 }
   403 #endif // __SOFTFP__
   405 #if defined(__SOFTFP__) || defined(E500V2)
   406 // Intrinsics make gcc generate code for these.
   407 double SharedRuntime::dabs(double f)  {
   408   return (f <= (double)0.0) ? (double)0.0 - f : f;
   409 }
   411 #endif
   413 #if defined(__SOFTFP__) || defined(PPC32)
   414 double SharedRuntime::dsqrt(double f) {
   415   return sqrt(f);
   416 }
   417 #endif
   419 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   420   if (g_isnan(x))
   421     return 0;
   422   if (x >= (jfloat) max_jint)
   423     return max_jint;
   424   if (x <= (jfloat) min_jint)
   425     return min_jint;
   426   return (jint) x;
   427 JRT_END
   430 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   431   if (g_isnan(x))
   432     return 0;
   433   if (x >= (jfloat) max_jlong)
   434     return max_jlong;
   435   if (x <= (jfloat) min_jlong)
   436     return min_jlong;
   437   return (jlong) x;
   438 JRT_END
   441 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   442   if (g_isnan(x))
   443     return 0;
   444   if (x >= (jdouble) max_jint)
   445     return max_jint;
   446   if (x <= (jdouble) min_jint)
   447     return min_jint;
   448   return (jint) x;
   449 JRT_END
   452 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   453   if (g_isnan(x))
   454     return 0;
   455   if (x >= (jdouble) max_jlong)
   456     return max_jlong;
   457   if (x <= (jdouble) min_jlong)
   458     return min_jlong;
   459   return (jlong) x;
   460 JRT_END
   463 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   464   return (jfloat)x;
   465 JRT_END
   468 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   469   return (jfloat)x;
   470 JRT_END
   473 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   474   return (jdouble)x;
   475 JRT_END
   477 // Exception handling accross interpreter/compiler boundaries
   478 //
   479 // exception_handler_for_return_address(...) returns the continuation address.
   480 // The continuation address is the entry point of the exception handler of the
   481 // previous frame depending on the return address.
   483 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   484   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
   485   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
   487   // Reset method handle flag.
   488   thread->set_is_method_handle_return(false);
   490   // The fastest case first
   491   CodeBlob* blob = CodeCache::find_blob(return_address);
   492   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
   493   if (nm != NULL) {
   494     // Set flag if return address is a method handle call site.
   495     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
   496     // native nmethods don't have exception handlers
   497     assert(!nm->is_native_method(), "no exception handler");
   498     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
   499     if (nm->is_deopt_pc(return_address)) {
   500       // If we come here because of a stack overflow, the stack may be
   501       // unguarded. Reguard the stack otherwise if we return to the
   502       // deopt blob and the stack bang causes a stack overflow we
   503       // crash.
   504       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   505       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   506       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
   507       return SharedRuntime::deopt_blob()->unpack_with_exception();
   508     } else {
   509       return nm->exception_begin();
   510     }
   511   }
   513   // Entry code
   514   if (StubRoutines::returns_to_call_stub(return_address)) {
   515     return StubRoutines::catch_exception_entry();
   516   }
   517   // Interpreted code
   518   if (Interpreter::contains(return_address)) {
   519     return Interpreter::rethrow_exception_entry();
   520   }
   522   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
   523   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   525 #ifndef PRODUCT
   526   { ResourceMark rm;
   527     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   528     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   529     tty->print_cr("b) other problem");
   530   }
   531 #endif // PRODUCT
   533   ShouldNotReachHere();
   534   return NULL;
   535 }
   538 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   539   return raw_exception_handler_for_return_address(thread, return_address);
   540 JRT_END
   543 address SharedRuntime::get_poll_stub(address pc) {
   544   address stub;
   545   // Look up the code blob
   546   CodeBlob *cb = CodeCache::find_blob(pc);
   548   // Should be an nmethod
   549   guarantee(cb != NULL && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
   551   // Look up the relocation information
   552   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   553     "safepoint polling: type must be poll" );
   555   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   556     "Only polling locations are used for safepoint");
   558   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   559   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
   560   if (at_poll_return) {
   561     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   562            "polling page return stub not created yet");
   563     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
   564   } else if (has_wide_vectors) {
   565     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
   566            "polling page vectors safepoint stub not created yet");
   567     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
   568   } else {
   569     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   570            "polling page safepoint stub not created yet");
   571     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
   572   }
   573 #ifndef PRODUCT
   574   if( TraceSafepoint ) {
   575     char buf[256];
   576     jio_snprintf(buf, sizeof(buf),
   577                  "... found polling page %s exception at pc = "
   578                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   579                  at_poll_return ? "return" : "loop",
   580                  (intptr_t)pc, (intptr_t)stub);
   581     tty->print_raw_cr(buf);
   582   }
   583 #endif // PRODUCT
   584   return stub;
   585 }
   588 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
   589   assert(caller.is_interpreted_frame(), "");
   590   int args_size = ArgumentSizeComputer(sig).size() + 1;
   591   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   592   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
   593   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   594   return result;
   595 }
   598 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   599   if (JvmtiExport::can_post_on_exceptions()) {
   600     vframeStream vfst(thread, true);
   601     methodHandle method = methodHandle(thread, vfst.method());
   602     address bcp = method()->bcp_from(vfst.bci());
   603     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   604   }
   605   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   606 }
   608 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
   609   Handle h_exception = Exceptions::new_exception(thread, name, message);
   610   throw_and_post_jvmti_exception(thread, h_exception);
   611 }
   613 // The interpreter code to call this tracing function is only
   614 // called/generated when TraceRedefineClasses has the right bits
   615 // set. Since obsolete methods are never compiled, we don't have
   616 // to modify the compilers to generate calls to this function.
   617 //
   618 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   619     JavaThread* thread, Method* method))
   620   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   622   if (method->is_obsolete()) {
   623     // We are calling an obsolete method, but this is not necessarily
   624     // an error. Our method could have been redefined just after we
   625     // fetched the Method* from the constant pool.
   627     // RC_TRACE macro has an embedded ResourceMark
   628     RC_TRACE_WITH_THREAD(0x00001000, thread,
   629                          ("calling obsolete method '%s'",
   630                           method->name_and_sig_as_C_string()));
   631     if (RC_TRACE_ENABLED(0x00002000)) {
   632       // this option is provided to debug calls to obsolete methods
   633       guarantee(false, "faulting at call to an obsolete method.");
   634     }
   635   }
   636   return 0;
   637 JRT_END
   639 // ret_pc points into caller; we are returning caller's exception handler
   640 // for given exception
   641 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   642                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
   643   assert(nm != NULL, "must exist");
   644   ResourceMark rm;
   646   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   647   // determine handler bci, if any
   648   EXCEPTION_MARK;
   650   int handler_bci = -1;
   651   int scope_depth = 0;
   652   if (!force_unwind) {
   653     int bci = sd->bci();
   654     bool recursive_exception = false;
   655     do {
   656       bool skip_scope_increment = false;
   657       // exception handler lookup
   658       KlassHandle ek (THREAD, exception->klass());
   659       methodHandle mh(THREAD, sd->method());
   660       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
   661       if (HAS_PENDING_EXCEPTION) {
   662         recursive_exception = true;
   663         // We threw an exception while trying to find the exception handler.
   664         // Transfer the new exception to the exception handle which will
   665         // be set into thread local storage, and do another lookup for an
   666         // exception handler for this exception, this time starting at the
   667         // BCI of the exception handler which caused the exception to be
   668         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   669         // argument to ensure that the correct exception is thrown (4870175).
   670         recursive_exception_occurred = true;
   671         exception = Handle(THREAD, PENDING_EXCEPTION);
   672         CLEAR_PENDING_EXCEPTION;
   673         if (handler_bci >= 0) {
   674           bci = handler_bci;
   675           handler_bci = -1;
   676           skip_scope_increment = true;
   677         }
   678       }
   679       else {
   680         recursive_exception = false;
   681       }
   682       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   683         sd = sd->sender();
   684         if (sd != NULL) {
   685           bci = sd->bci();
   686         }
   687         ++scope_depth;
   688       }
   689     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
   690   }
   692   // found handling method => lookup exception handler
   693   int catch_pco = ret_pc - nm->code_begin();
   695   ExceptionHandlerTable table(nm);
   696   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   697   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   698     // Allow abbreviated catch tables.  The idea is to allow a method
   699     // to materialize its exceptions without committing to the exact
   700     // routing of exceptions.  In particular this is needed for adding
   701     // a synthethic handler to unlock monitors when inlining
   702     // synchonized methods since the unlock path isn't represented in
   703     // the bytecodes.
   704     t = table.entry_for(catch_pco, -1, 0);
   705   }
   707 #ifdef COMPILER1
   708   if (t == NULL && nm->is_compiled_by_c1()) {
   709     assert(nm->unwind_handler_begin() != NULL, "");
   710     return nm->unwind_handler_begin();
   711   }
   712 #endif
   714   if (t == NULL) {
   715     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   716     tty->print_cr("   Exception:");
   717     exception->print();
   718     tty->cr();
   719     tty->print_cr(" Compiled exception table :");
   720     table.print();
   721     nm->print_code();
   722     guarantee(false, "missing exception handler");
   723     return NULL;
   724   }
   726   return nm->code_begin() + t->pco();
   727 }
   729 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   730   // These errors occur only at call sites
   731   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   732 JRT_END
   734 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   735   // These errors occur only at call sites
   736   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   737 JRT_END
   739 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   740   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   741 JRT_END
   743 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   744   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   745 JRT_END
   747 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   748   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   749   // cache sites (when the callee activation is not yet set up) so we are at a call site
   750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   751 JRT_END
   753 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   754   // We avoid using the normal exception construction in this case because
   755   // it performs an upcall to Java, and we're already out of stack space.
   756   Klass* k = SystemDictionary::StackOverflowError_klass();
   757   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
   758   Handle exception (thread, exception_oop);
   759   if (StackTraceInThrowable) {
   760     java_lang_Throwable::fill_in_stack_trace(exception);
   761   }
   762   // Increment counter for hs_err file reporting
   763   Atomic::inc(&Exceptions::_stack_overflow_errors);
   764   throw_and_post_jvmti_exception(thread, exception);
   765 JRT_END
   767 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   768                                                            address pc,
   769                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   770 {
   771   address target_pc = NULL;
   773   if (Interpreter::contains(pc)) {
   774 #ifdef CC_INTERP
   775     // C++ interpreter doesn't throw implicit exceptions
   776     ShouldNotReachHere();
   777 #else
   778     switch (exception_kind) {
   779       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   780       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   781       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   782       default:                      ShouldNotReachHere();
   783     }
   784 #endif // !CC_INTERP
   785   } else {
   786     switch (exception_kind) {
   787       case STACK_OVERFLOW: {
   788         // Stack overflow only occurs upon frame setup; the callee is
   789         // going to be unwound. Dispatch to a shared runtime stub
   790         // which will cause the StackOverflowError to be fabricated
   791         // and processed.
   792         // Stack overflow should never occur during deoptimization:
   793         // the compiled method bangs the stack by as much as the
   794         // interpreter would need in case of a deoptimization. The
   795         // deoptimization blob and uncommon trap blob bang the stack
   796         // in a debug VM to verify the correctness of the compiled
   797         // method stack banging.
   798         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
   799         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
   800         return StubRoutines::throw_StackOverflowError_entry();
   801       }
   803       case IMPLICIT_NULL: {
   804         if (VtableStubs::contains(pc)) {
   805           // We haven't yet entered the callee frame. Fabricate an
   806           // exception and begin dispatching it in the caller. Since
   807           // the caller was at a call site, it's safe to destroy all
   808           // caller-saved registers, as these entry points do.
   809           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   811           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   812           if (vt_stub == NULL) return NULL;
   814           if (vt_stub->is_abstract_method_error(pc)) {
   815             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   816             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
   817             return StubRoutines::throw_AbstractMethodError_entry();
   818           } else {
   819             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
   820             return StubRoutines::throw_NullPointerException_at_call_entry();
   821           }
   822         } else {
   823           CodeBlob* cb = CodeCache::find_blob(pc);
   825           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   826           if (cb == NULL) return NULL;
   828           // Exception happened in CodeCache. Must be either:
   829           // 1. Inline-cache check in C2I handler blob,
   830           // 2. Inline-cache check in nmethod, or
   831           // 3. Implict null exception in nmethod
   833           if (!cb->is_nmethod()) {
   834             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
   835             if (!is_in_blob) {
   836               cb->print();
   837               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
   838             }
   839             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
   840             // There is no handler here, so we will simply unwind.
   841             return StubRoutines::throw_NullPointerException_at_call_entry();
   842           }
   844           // Otherwise, it's an nmethod.  Consult its exception handlers.
   845           nmethod* nm = (nmethod*)cb;
   846           if (nm->inlinecache_check_contains(pc)) {
   847             // exception happened inside inline-cache check code
   848             // => the nmethod is not yet active (i.e., the frame
   849             // is not set up yet) => use return address pushed by
   850             // caller => don't push another return address
   851             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
   852             return StubRoutines::throw_NullPointerException_at_call_entry();
   853           }
   855           if (nm->method()->is_method_handle_intrinsic()) {
   856             // exception happened inside MH dispatch code, similar to a vtable stub
   857             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
   858             return StubRoutines::throw_NullPointerException_at_call_entry();
   859           }
   861 #ifndef PRODUCT
   862           _implicit_null_throws++;
   863 #endif
   864           target_pc = nm->continuation_for_implicit_exception(pc);
   865           // If there's an unexpected fault, target_pc might be NULL,
   866           // in which case we want to fall through into the normal
   867           // error handling code.
   868         }
   870         break; // fall through
   871       }
   874       case IMPLICIT_DIVIDE_BY_ZERO: {
   875         nmethod* nm = CodeCache::find_nmethod(pc);
   876         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   877 #ifndef PRODUCT
   878         _implicit_div0_throws++;
   879 #endif
   880         target_pc = nm->continuation_for_implicit_exception(pc);
   881         // If there's an unexpected fault, target_pc might be NULL,
   882         // in which case we want to fall through into the normal
   883         // error handling code.
   884         break; // fall through
   885       }
   887       default: ShouldNotReachHere();
   888     }
   890     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   892     // for AbortVMOnException flag
   893     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   894     if (exception_kind == IMPLICIT_NULL) {
   895       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   896     } else {
   897       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   898     }
   899     return target_pc;
   900   }
   902   ShouldNotReachHere();
   903   return NULL;
   904 }
   907 /**
   908  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
   909  * installed in the native function entry of all native Java methods before
   910  * they get linked to their actual native methods.
   911  *
   912  * \note
   913  * This method actually never gets called!  The reason is because
   914  * the interpreter's native entries call NativeLookup::lookup() which
   915  * throws the exception when the lookup fails.  The exception is then
   916  * caught and forwarded on the return from NativeLookup::lookup() call
   917  * before the call to the native function.  This might change in the future.
   918  */
   919 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
   920 {
   921   // We return a bad value here to make sure that the exception is
   922   // forwarded before we look at the return value.
   923   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
   924 }
   925 JNI_END
   927 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   928   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   929 }
   932 #ifndef PRODUCT
   933 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   934   const frame f = thread->last_frame();
   935   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   936 #ifndef PRODUCT
   937   methodHandle mh(THREAD, f.interpreter_frame_method());
   938   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   939 #endif // !PRODUCT
   940   return preserve_this_value;
   941 JRT_END
   942 #endif // !PRODUCT
   945 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   946   os::yield_all(attempts);
   947 JRT_END
   950 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   951   assert(obj->is_oop(), "must be a valid oop");
   952   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
   953   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
   954 JRT_END
   957 jlong SharedRuntime::get_java_tid(Thread* thread) {
   958   if (thread != NULL) {
   959     if (thread->is_Java_thread()) {
   960       oop obj = ((JavaThread*)thread)->threadObj();
   961       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   962     }
   963   }
   964   return 0;
   965 }
   967 /**
   968  * This function ought to be a void function, but cannot be because
   969  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   970  * 6254741.  Once that is fixed we can remove the dummy return value.
   971  */
   972 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
   973   return dtrace_object_alloc_base(Thread::current(), o, size);
   974 }
   976 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
   977   assert(DTraceAllocProbes, "wrong call");
   978   Klass* klass = o->klass();
   979   Symbol* name = klass->name();
   980 #ifndef USDT2
   981   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   982                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   983 #else /* USDT2 */
   984   HOTSPOT_OBJECT_ALLOC(
   985                    get_java_tid(thread),
   986                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
   987 #endif /* USDT2 */
   988   return 0;
   989 }
   991 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   992     JavaThread* thread, Method* method))
   993   assert(DTraceMethodProbes, "wrong call");
   994   Symbol* kname = method->klass_name();
   995   Symbol* name = method->name();
   996   Symbol* sig = method->signature();
   997 #ifndef USDT2
   998   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   999       kname->bytes(), kname->utf8_length(),
  1000       name->bytes(), name->utf8_length(),
  1001       sig->bytes(), sig->utf8_length());
  1002 #else /* USDT2 */
  1003   HOTSPOT_METHOD_ENTRY(
  1004       get_java_tid(thread),
  1005       (char *) kname->bytes(), kname->utf8_length(),
  1006       (char *) name->bytes(), name->utf8_length(),
  1007       (char *) sig->bytes(), sig->utf8_length());
  1008 #endif /* USDT2 */
  1009   return 0;
  1010 JRT_END
  1012 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
  1013     JavaThread* thread, Method* method))
  1014   assert(DTraceMethodProbes, "wrong call");
  1015   Symbol* kname = method->klass_name();
  1016   Symbol* name = method->name();
  1017   Symbol* sig = method->signature();
  1018 #ifndef USDT2
  1019   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
  1020       kname->bytes(), kname->utf8_length(),
  1021       name->bytes(), name->utf8_length(),
  1022       sig->bytes(), sig->utf8_length());
  1023 #else /* USDT2 */
  1024   HOTSPOT_METHOD_RETURN(
  1025       get_java_tid(thread),
  1026       (char *) kname->bytes(), kname->utf8_length(),
  1027       (char *) name->bytes(), name->utf8_length(),
  1028       (char *) sig->bytes(), sig->utf8_length());
  1029 #endif /* USDT2 */
  1030   return 0;
  1031 JRT_END
  1034 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
  1035 // for a call current in progress, i.e., arguments has been pushed on stack
  1036 // put callee has not been invoked yet.  Used by: resolve virtual/static,
  1037 // vtable updates, etc.  Caller frame must be compiled.
  1038 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
  1039   ResourceMark rm(THREAD);
  1041   // last java frame on stack (which includes native call frames)
  1042   vframeStream vfst(thread, true);  // Do not skip and javaCalls
  1044   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
  1048 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
  1049 // for a call current in progress, i.e., arguments has been pushed on stack
  1050 // but callee has not been invoked yet.  Caller frame must be compiled.
  1051 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
  1052                                               vframeStream& vfst,
  1053                                               Bytecodes::Code& bc,
  1054                                               CallInfo& callinfo, TRAPS) {
  1055   Handle receiver;
  1056   Handle nullHandle;  //create a handy null handle for exception returns
  1058   assert(!vfst.at_end(), "Java frame must exist");
  1060   // Find caller and bci from vframe
  1061   methodHandle caller(THREAD, vfst.method());
  1062   int          bci   = vfst.bci();
  1064   // Find bytecode
  1065   Bytecode_invoke bytecode(caller, bci);
  1066   bc = bytecode.invoke_code();
  1067   int bytecode_index = bytecode.index();
  1069   // Find receiver for non-static call
  1070   if (bc != Bytecodes::_invokestatic &&
  1071       bc != Bytecodes::_invokedynamic &&
  1072       bc != Bytecodes::_invokehandle) {
  1073     // This register map must be update since we need to find the receiver for
  1074     // compiled frames. The receiver might be in a register.
  1075     RegisterMap reg_map2(thread);
  1076     frame stubFrame   = thread->last_frame();
  1077     // Caller-frame is a compiled frame
  1078     frame callerFrame = stubFrame.sender(&reg_map2);
  1080     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
  1081     if (callee.is_null()) {
  1082       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
  1084     // Retrieve from a compiled argument list
  1085     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
  1087     if (receiver.is_null()) {
  1088       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
  1092   // Resolve method. This is parameterized by bytecode.
  1093   constantPoolHandle constants(THREAD, caller->constants());
  1094   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
  1095   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
  1097 #ifdef ASSERT
  1098   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
  1099   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
  1100     assert(receiver.not_null(), "should have thrown exception");
  1101     KlassHandle receiver_klass(THREAD, receiver->klass());
  1102     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
  1103                             // klass is already loaded
  1104     KlassHandle static_receiver_klass(THREAD, rk);
  1105     // Method handle invokes might have been optimized to a direct call
  1106     // so don't check for the receiver class.
  1107     // FIXME this weakens the assert too much
  1108     methodHandle callee = callinfo.selected_method();
  1109     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
  1110            callee->is_method_handle_intrinsic() ||
  1111            callee->is_compiled_lambda_form(),
  1112            "actual receiver must be subclass of static receiver klass");
  1113     if (receiver_klass->oop_is_instance()) {
  1114       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
  1115         tty->print_cr("ERROR: Klass not yet initialized!!");
  1116         receiver_klass()->print();
  1118       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
  1121 #endif
  1123   return receiver;
  1126 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
  1127   ResourceMark rm(THREAD);
  1128   // We need first to check if any Java activations (compiled, interpreted)
  1129   // exist on the stack since last JavaCall.  If not, we need
  1130   // to get the target method from the JavaCall wrapper.
  1131   vframeStream vfst(thread, true);  // Do not skip any javaCalls
  1132   methodHandle callee_method;
  1133   if (vfst.at_end()) {
  1134     // No Java frames were found on stack since we did the JavaCall.
  1135     // Hence the stack can only contain an entry_frame.  We need to
  1136     // find the target method from the stub frame.
  1137     RegisterMap reg_map(thread, false);
  1138     frame fr = thread->last_frame();
  1139     assert(fr.is_runtime_frame(), "must be a runtimeStub");
  1140     fr = fr.sender(&reg_map);
  1141     assert(fr.is_entry_frame(), "must be");
  1142     // fr is now pointing to the entry frame.
  1143     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
  1144     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  1145   } else {
  1146     Bytecodes::Code bc;
  1147     CallInfo callinfo;
  1148     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
  1149     callee_method = callinfo.selected_method();
  1151   assert(callee_method()->is_method(), "must be");
  1152   return callee_method;
  1155 // Resolves a call.
  1156 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
  1157                                            bool is_virtual,
  1158                                            bool is_optimized, TRAPS) {
  1159   methodHandle callee_method;
  1160   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1161   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
  1162     int retry_count = 0;
  1163     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
  1164            callee_method->method_holder() != SystemDictionary::Object_klass()) {
  1165       // If has a pending exception then there is no need to re-try to
  1166       // resolve this method.
  1167       // If the method has been redefined, we need to try again.
  1168       // Hack: we have no way to update the vtables of arrays, so don't
  1169       // require that java.lang.Object has been updated.
  1171       // It is very unlikely that method is redefined more than 100 times
  1172       // in the middle of resolve. If it is looping here more than 100 times
  1173       // means then there could be a bug here.
  1174       guarantee((retry_count++ < 100),
  1175                 "Could not resolve to latest version of redefined method");
  1176       // method is redefined in the middle of resolve so re-try.
  1177       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1180   return callee_method;
  1183 // Resolves a call.  The compilers generate code for calls that go here
  1184 // and are patched with the real destination of the call.
  1185 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
  1186                                            bool is_virtual,
  1187                                            bool is_optimized, TRAPS) {
  1189   ResourceMark rm(thread);
  1190   RegisterMap cbl_map(thread, false);
  1191   frame caller_frame = thread->last_frame().sender(&cbl_map);
  1193   CodeBlob* caller_cb = caller_frame.cb();
  1194   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
  1195   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
  1197   // make sure caller is not getting deoptimized
  1198   // and removed before we are done with it.
  1199   // CLEANUP - with lazy deopt shouldn't need this lock
  1200   nmethodLocker caller_lock(caller_nm);
  1202   // determine call info & receiver
  1203   // note: a) receiver is NULL for static calls
  1204   //       b) an exception is thrown if receiver is NULL for non-static calls
  1205   CallInfo call_info;
  1206   Bytecodes::Code invoke_code = Bytecodes::_illegal;
  1207   Handle receiver = find_callee_info(thread, invoke_code,
  1208                                      call_info, CHECK_(methodHandle()));
  1209   methodHandle callee_method = call_info.selected_method();
  1211   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
  1212          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
  1213          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
  1214          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
  1216   assert(caller_nm->is_alive(), "It should be alive");
  1218 #ifndef PRODUCT
  1219   // tracing/debugging/statistics
  1220   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
  1221                 (is_virtual) ? (&_resolve_virtual_ctr) :
  1222                                (&_resolve_static_ctr);
  1223   Atomic::inc(addr);
  1225   if (TraceCallFixup) {
  1226     ResourceMark rm(thread);
  1227     tty->print("resolving %s%s (%s) call to",
  1228       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
  1229       Bytecodes::name(invoke_code));
  1230     callee_method->print_short_name(tty);
  1231     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
  1233 #endif
  1235   // Do not patch call site for static call when the class is not
  1236   // fully initialized.
  1237   if (invoke_code == Bytecodes::_invokestatic &&
  1238       !callee_method->method_holder()->is_initialized()) {
  1239     assert(callee_method->method_holder()->is_linked(), "must be");
  1240     return callee_method;
  1243   // JSR 292 key invariant:
  1244   // If the resolved method is a MethodHandle invoke target, the call
  1245   // site must be a MethodHandle call site, because the lambda form might tail-call
  1246   // leaving the stack in a state unknown to either caller or callee
  1247   // TODO detune for now but we might need it again
  1248 //  assert(!callee_method->is_compiled_lambda_form() ||
  1249 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
  1251   // Compute entry points. This might require generation of C2I converter
  1252   // frames, so we cannot be holding any locks here. Furthermore, the
  1253   // computation of the entry points is independent of patching the call.  We
  1254   // always return the entry-point, but we only patch the stub if the call has
  1255   // not been deoptimized.  Return values: For a virtual call this is an
  1256   // (cached_oop, destination address) pair. For a static call/optimized
  1257   // virtual this is just a destination address.
  1259   StaticCallInfo static_call_info;
  1260   CompiledICInfo virtual_call_info;
  1262   // Make sure the callee nmethod does not get deoptimized and removed before
  1263   // we are done patching the code.
  1264   nmethod* callee_nm = callee_method->code();
  1265   if (callee_nm != NULL && !callee_nm->is_in_use()) {
  1266     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
  1267     callee_nm = NULL;
  1269   nmethodLocker nl_callee(callee_nm);
  1270 #ifdef ASSERT
  1271   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
  1272 #endif
  1274   if (is_virtual) {
  1275     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
  1276     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
  1277     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
  1278     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
  1279                      is_optimized, static_bound, virtual_call_info,
  1280                      CHECK_(methodHandle()));
  1281   } else {
  1282     // static call
  1283     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1286   // grab lock, check for deoptimization and potentially patch caller
  1288     MutexLocker ml_patch(CompiledIC_lock);
  1290     // Lock blocks for safepoint during which both nmethods can change state.
  1292     // Now that we are ready to patch if the Method* was redefined then
  1293     // don't update call site and let the caller retry.
  1294     // Don't update call site if callee nmethod was unloaded or deoptimized.
  1295     // Don't update call site if callee nmethod was replaced by an other nmethod
  1296     // which may happen when multiply alive nmethod (tiered compilation)
  1297     // will be supported.
  1298     if (!callee_method->is_old() &&
  1299         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
  1300 #ifdef ASSERT
  1301       // We must not try to patch to jump to an already unloaded method.
  1302       if (dest_entry_point != 0) {
  1303         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
  1304         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
  1305                "should not call unloaded nmethod");
  1307 #endif
  1308       if (is_virtual) {
  1309         nmethod* nm = callee_nm;
  1310         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
  1311         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
  1312         if (inline_cache->is_clean()) {
  1313           inline_cache->set_to_monomorphic(virtual_call_info);
  1315       } else {
  1316         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1317         if (ssc->is_clean()) ssc->set(static_call_info);
  1321   } // unlock CompiledIC_lock
  1323   return callee_method;
  1327 // Inline caches exist only in compiled code
  1328 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1329 #ifdef ASSERT
  1330   RegisterMap reg_map(thread, false);
  1331   frame stub_frame = thread->last_frame();
  1332   assert(stub_frame.is_runtime_frame(), "sanity check");
  1333   frame caller_frame = stub_frame.sender(&reg_map);
  1334   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1335 #endif /* ASSERT */
  1337   methodHandle callee_method;
  1338   JRT_BLOCK
  1339     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1340     // Return Method* through TLS
  1341     thread->set_vm_result_2(callee_method());
  1342   JRT_BLOCK_END
  1343   // return compiled code entry point after potential safepoints
  1344   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1345   return callee_method->verified_code_entry();
  1346 JRT_END
  1349 // Handle call site that has been made non-entrant
  1350 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1351   // 6243940 We might end up in here if the callee is deoptimized
  1352   // as we race to call it.  We don't want to take a safepoint if
  1353   // the caller was interpreted because the caller frame will look
  1354   // interpreted to the stack walkers and arguments are now
  1355   // "compiled" so it is much better to make this transition
  1356   // invisible to the stack walking code. The i2c path will
  1357   // place the callee method in the callee_target. It is stashed
  1358   // there because if we try and find the callee by normal means a
  1359   // safepoint is possible and have trouble gc'ing the compiled args.
  1360   RegisterMap reg_map(thread, false);
  1361   frame stub_frame = thread->last_frame();
  1362   assert(stub_frame.is_runtime_frame(), "sanity check");
  1363   frame caller_frame = stub_frame.sender(&reg_map);
  1365   if (caller_frame.is_interpreted_frame() ||
  1366       caller_frame.is_entry_frame()) {
  1367     Method* callee = thread->callee_target();
  1368     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1369     thread->set_vm_result_2(callee);
  1370     thread->set_callee_target(NULL);
  1371     return callee->get_c2i_entry();
  1374   // Must be compiled to compiled path which is safe to stackwalk
  1375   methodHandle callee_method;
  1376   JRT_BLOCK
  1377     // Force resolving of caller (if we called from compiled frame)
  1378     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1379     thread->set_vm_result_2(callee_method());
  1380   JRT_BLOCK_END
  1381   // return compiled code entry point after potential safepoints
  1382   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1383   return callee_method->verified_code_entry();
  1384 JRT_END
  1386 // Handle abstract method call
  1387 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
  1388   return StubRoutines::throw_AbstractMethodError_entry();
  1389 JRT_END
  1392 // resolve a static call and patch code
  1393 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1394   methodHandle callee_method;
  1395   JRT_BLOCK
  1396     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1397     thread->set_vm_result_2(callee_method());
  1398   JRT_BLOCK_END
  1399   // return compiled code entry point after potential safepoints
  1400   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1401   return callee_method->verified_code_entry();
  1402 JRT_END
  1405 // resolve virtual call and update inline cache to monomorphic
  1406 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1407   methodHandle callee_method;
  1408   JRT_BLOCK
  1409     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1410     thread->set_vm_result_2(callee_method());
  1411   JRT_BLOCK_END
  1412   // return compiled code entry point after potential safepoints
  1413   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1414   return callee_method->verified_code_entry();
  1415 JRT_END
  1418 // Resolve a virtual call that can be statically bound (e.g., always
  1419 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1420 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1421   methodHandle callee_method;
  1422   JRT_BLOCK
  1423     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1424     thread->set_vm_result_2(callee_method());
  1425   JRT_BLOCK_END
  1426   // return compiled code entry point after potential safepoints
  1427   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1428   return callee_method->verified_code_entry();
  1429 JRT_END
  1435 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1436   ResourceMark rm(thread);
  1437   CallInfo call_info;
  1438   Bytecodes::Code bc;
  1440   // receiver is NULL for static calls. An exception is thrown for NULL
  1441   // receivers for non-static calls
  1442   Handle receiver = find_callee_info(thread, bc, call_info,
  1443                                      CHECK_(methodHandle()));
  1444   // Compiler1 can produce virtual call sites that can actually be statically bound
  1445   // If we fell thru to below we would think that the site was going megamorphic
  1446   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1447   // we'd try and do a vtable dispatch however methods that can be statically bound
  1448   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1449   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1450   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1451   // never to miss again. I don't believe C2 will produce code like this but if it
  1452   // did this would still be the correct thing to do for it too, hence no ifdef.
  1453   //
  1454   if (call_info.resolved_method()->can_be_statically_bound()) {
  1455     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1456     if (TraceCallFixup) {
  1457       RegisterMap reg_map(thread, false);
  1458       frame caller_frame = thread->last_frame().sender(&reg_map);
  1459       ResourceMark rm(thread);
  1460       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1461       callee_method->print_short_name(tty);
  1462       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1463       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1465     return callee_method;
  1468   methodHandle callee_method = call_info.selected_method();
  1470   bool should_be_mono = false;
  1472 #ifndef PRODUCT
  1473   Atomic::inc(&_ic_miss_ctr);
  1475   // Statistics & Tracing
  1476   if (TraceCallFixup) {
  1477     ResourceMark rm(thread);
  1478     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1479     callee_method->print_short_name(tty);
  1480     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1483   if (ICMissHistogram) {
  1484     MutexLocker m(VMStatistic_lock);
  1485     RegisterMap reg_map(thread, false);
  1486     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1487     // produce statistics under the lock
  1488     trace_ic_miss(f.pc());
  1490 #endif
  1492   // install an event collector so that when a vtable stub is created the
  1493   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1494   // event can't be posted when the stub is created as locks are held
  1495   // - instead the event will be deferred until the event collector goes
  1496   // out of scope.
  1497   JvmtiDynamicCodeEventCollector event_collector;
  1499   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
  1500   { MutexLocker ml_patch (CompiledIC_lock);
  1501     RegisterMap reg_map(thread, false);
  1502     frame caller_frame = thread->last_frame().sender(&reg_map);
  1503     CodeBlob* cb = caller_frame.cb();
  1504     if (cb->is_nmethod()) {
  1505       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
  1506       bool should_be_mono = false;
  1507       if (inline_cache->is_optimized()) {
  1508         if (TraceCallFixup) {
  1509           ResourceMark rm(thread);
  1510           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1511           callee_method->print_short_name(tty);
  1512           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1514         should_be_mono = true;
  1515       } else if (inline_cache->is_icholder_call()) {
  1516         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
  1517         if ( ic_oop != NULL) {
  1519           if (receiver()->klass() == ic_oop->holder_klass()) {
  1520             // This isn't a real miss. We must have seen that compiled code
  1521             // is now available and we want the call site converted to a
  1522             // monomorphic compiled call site.
  1523             // We can't assert for callee_method->code() != NULL because it
  1524             // could have been deoptimized in the meantime
  1525             if (TraceCallFixup) {
  1526               ResourceMark rm(thread);
  1527               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1528               callee_method->print_short_name(tty);
  1529               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1531             should_be_mono = true;
  1536       if (should_be_mono) {
  1538         // We have a path that was monomorphic but was going interpreted
  1539         // and now we have (or had) a compiled entry. We correct the IC
  1540         // by using a new icBuffer.
  1541         CompiledICInfo info;
  1542         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1543         inline_cache->compute_monomorphic_entry(callee_method,
  1544                                                 receiver_klass,
  1545                                                 inline_cache->is_optimized(),
  1546                                                 false,
  1547                                                 info, CHECK_(methodHandle()));
  1548         inline_cache->set_to_monomorphic(info);
  1549       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1550         // Potential change to megamorphic
  1551         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1552         if (!successful) {
  1553           inline_cache->set_to_clean();
  1555       } else {
  1556         // Either clean or megamorphic
  1559   } // Release CompiledIC_lock
  1561   return callee_method;
  1564 //
  1565 // Resets a call-site in compiled code so it will get resolved again.
  1566 // This routines handles both virtual call sites, optimized virtual call
  1567 // sites, and static call sites. Typically used to change a call sites
  1568 // destination from compiled to interpreted.
  1569 //
  1570 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1571   ResourceMark rm(thread);
  1572   RegisterMap reg_map(thread, false);
  1573   frame stub_frame = thread->last_frame();
  1574   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1575   frame caller = stub_frame.sender(&reg_map);
  1577   // Do nothing if the frame isn't a live compiled frame.
  1578   // nmethod could be deoptimized by the time we get here
  1579   // so no update to the caller is needed.
  1581   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1583     address pc = caller.pc();
  1585     // Default call_addr is the location of the "basic" call.
  1586     // Determine the address of the call we a reresolving. With
  1587     // Inline Caches we will always find a recognizable call.
  1588     // With Inline Caches disabled we may or may not find a
  1589     // recognizable call. We will always find a call for static
  1590     // calls and for optimized virtual calls. For vanilla virtual
  1591     // calls it depends on the state of the UseInlineCaches switch.
  1592     //
  1593     // With Inline Caches disabled we can get here for a virtual call
  1594     // for two reasons:
  1595     //   1 - calling an abstract method. The vtable for abstract methods
  1596     //       will run us thru handle_wrong_method and we will eventually
  1597     //       end up in the interpreter to throw the ame.
  1598     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1599     //       call and between the time we fetch the entry address and
  1600     //       we jump to it the target gets deoptimized. Similar to 1
  1601     //       we will wind up in the interprter (thru a c2i with c2).
  1602     //
  1603     address call_addr = NULL;
  1605       // Get call instruction under lock because another thread may be
  1606       // busy patching it.
  1607       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1608       // Location of call instruction
  1609       if (NativeCall::is_call_before(pc)) {
  1610         NativeCall *ncall = nativeCall_before(pc);
  1611         call_addr = ncall->instruction_address();
  1615     // Check for static or virtual call
  1616     bool is_static_call = false;
  1617     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1618     // Make sure nmethod doesn't get deoptimized and removed until
  1619     // this is done with it.
  1620     // CLEANUP - with lazy deopt shouldn't need this lock
  1621     nmethodLocker nmlock(caller_nm);
  1623     if (call_addr != NULL) {
  1624       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1625       int ret = iter.next(); // Get item
  1626       if (ret) {
  1627         assert(iter.addr() == call_addr, "must find call");
  1628         if (iter.type() == relocInfo::static_call_type) {
  1629           is_static_call = true;
  1630         } else {
  1631           assert(iter.type() == relocInfo::virtual_call_type ||
  1632                  iter.type() == relocInfo::opt_virtual_call_type
  1633                 , "unexpected relocInfo. type");
  1635       } else {
  1636         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1639       // Cleaning the inline cache will force a new resolve. This is more robust
  1640       // than directly setting it to the new destination, since resolving of calls
  1641       // is always done through the same code path. (experience shows that it
  1642       // leads to very hard to track down bugs, if an inline cache gets updated
  1643       // to a wrong method). It should not be performance critical, since the
  1644       // resolve is only done once.
  1646       MutexLocker ml(CompiledIC_lock);
  1647       if (is_static_call) {
  1648         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1649         ssc->set_to_clean();
  1650       } else {
  1651         // compiled, dispatched call (which used to call an interpreted method)
  1652         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
  1653         inline_cache->set_to_clean();
  1659   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1662 #ifndef PRODUCT
  1663   Atomic::inc(&_wrong_method_ctr);
  1665   if (TraceCallFixup) {
  1666     ResourceMark rm(thread);
  1667     tty->print("handle_wrong_method reresolving call to");
  1668     callee_method->print_short_name(tty);
  1669     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1671 #endif
  1673   return callee_method;
  1676 #ifdef ASSERT
  1677 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
  1678                                                                 const BasicType* sig_bt,
  1679                                                                 const VMRegPair* regs) {
  1680   ResourceMark rm;
  1681   const int total_args_passed = method->size_of_parameters();
  1682   const VMRegPair*    regs_with_member_name = regs;
  1683         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
  1685   const int member_arg_pos = total_args_passed - 1;
  1686   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
  1687   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
  1689   const bool is_outgoing = method->is_method_handle_intrinsic();
  1690   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
  1692   for (int i = 0; i < member_arg_pos; i++) {
  1693     VMReg a =    regs_with_member_name[i].first();
  1694     VMReg b = regs_without_member_name[i].first();
  1695     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
  1697   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
  1699 #endif
  1701 // ---------------------------------------------------------------------------
  1702 // We are calling the interpreter via a c2i. Normally this would mean that
  1703 // we were called by a compiled method. However we could have lost a race
  1704 // where we went int -> i2c -> c2i and so the caller could in fact be
  1705 // interpreted. If the caller is compiled we attempt to patch the caller
  1706 // so he no longer calls into the interpreter.
  1707 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
  1708   Method* moop(method);
  1710   address entry_point = moop->from_compiled_entry();
  1712   // It's possible that deoptimization can occur at a call site which hasn't
  1713   // been resolved yet, in which case this function will be called from
  1714   // an nmethod that has been patched for deopt and we can ignore the
  1715   // request for a fixup.
  1716   // Also it is possible that we lost a race in that from_compiled_entry
  1717   // is now back to the i2c in that case we don't need to patch and if
  1718   // we did we'd leap into space because the callsite needs to use
  1719   // "to interpreter" stub in order to load up the Method*. Don't
  1720   // ask me how I know this...
  1722   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1723   if (cb == NULL || !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1724     return;
  1727   // The check above makes sure this is a nmethod.
  1728   nmethod* nm = cb->as_nmethod_or_null();
  1729   assert(nm, "must be");
  1731   // Get the return PC for the passed caller PC.
  1732   address return_pc = caller_pc + frame::pc_return_offset;
  1734   // There is a benign race here. We could be attempting to patch to a compiled
  1735   // entry point at the same time the callee is being deoptimized. If that is
  1736   // the case then entry_point may in fact point to a c2i and we'd patch the
  1737   // call site with the same old data. clear_code will set code() to NULL
  1738   // at the end of it. If we happen to see that NULL then we can skip trying
  1739   // to patch. If we hit the window where the callee has a c2i in the
  1740   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1741   // and patch the code with the same old data. Asi es la vida.
  1743   if (moop->code() == NULL) return;
  1745   if (nm->is_in_use()) {
  1747     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1748     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1749     if (NativeCall::is_call_before(return_pc)) {
  1750       NativeCall *call = nativeCall_before(return_pc);
  1751       //
  1752       // bug 6281185. We might get here after resolving a call site to a vanilla
  1753       // virtual call. Because the resolvee uses the verified entry it may then
  1754       // see compiled code and attempt to patch the site by calling us. This would
  1755       // then incorrectly convert the call site to optimized and its downhill from
  1756       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1757       // just made a call site that could be megamorphic into a monomorphic site
  1758       // for the rest of its life! Just another racing bug in the life of
  1759       // fixup_callers_callsite ...
  1760       //
  1761       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
  1762       iter.next();
  1763       assert(iter.has_current(), "must have a reloc at java call site");
  1764       relocInfo::relocType typ = iter.reloc()->type();
  1765       if ( typ != relocInfo::static_call_type &&
  1766            typ != relocInfo::opt_virtual_call_type &&
  1767            typ != relocInfo::static_stub_type) {
  1768         return;
  1770       address destination = call->destination();
  1771       if (destination != entry_point) {
  1772         CodeBlob* callee = CodeCache::find_blob(destination);
  1773         // callee == cb seems weird. It means calling interpreter thru stub.
  1774         if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
  1775           // static call or optimized virtual
  1776           if (TraceCallFixup) {
  1777             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1778             moop->print_short_name(tty);
  1779             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1781           call->set_destination_mt_safe(entry_point);
  1782         } else {
  1783           if (TraceCallFixup) {
  1784             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1785             moop->print_short_name(tty);
  1786             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1788           // assert is too strong could also be resolve destinations.
  1789           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1791       } else {
  1792           if (TraceCallFixup) {
  1793             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1794             moop->print_short_name(tty);
  1795             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1800 IRT_END
  1803 // same as JVM_Arraycopy, but called directly from compiled code
  1804 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1805                                                 oopDesc* dest, jint dest_pos,
  1806                                                 jint length,
  1807                                                 JavaThread* thread)) {
  1808 #ifndef PRODUCT
  1809   _slow_array_copy_ctr++;
  1810 #endif
  1811   // Check if we have null pointers
  1812   if (src == NULL || dest == NULL) {
  1813     THROW(vmSymbols::java_lang_NullPointerException());
  1815   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1816   // even though the copy_array API also performs dynamic checks to ensure
  1817   // that src and dest are truly arrays (and are conformable).
  1818   // The copy_array mechanism is awkward and could be removed, but
  1819   // the compilers don't call this function except as a last resort,
  1820   // so it probably doesn't matter.
  1821   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
  1822                                         (arrayOopDesc*)dest, dest_pos,
  1823                                         length, thread);
  1825 JRT_END
  1827 char* SharedRuntime::generate_class_cast_message(
  1828     JavaThread* thread, const char* objName) {
  1830   // Get target class name from the checkcast instruction
  1831   vframeStream vfst(thread, true);
  1832   assert(!vfst.at_end(), "Java frame must exist");
  1833   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
  1834   Klass* targetKlass = vfst.method()->constants()->klass_at(
  1835     cc.index(), thread);
  1836   return generate_class_cast_message(objName, targetKlass->external_name());
  1839 char* SharedRuntime::generate_class_cast_message(
  1840     const char* objName, const char* targetKlassName, const char* desc) {
  1841   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1843   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1844   if (NULL == message) {
  1845     // Shouldn't happen, but don't cause even more problems if it does
  1846     message = const_cast<char*>(objName);
  1847   } else {
  1848     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1850   return message;
  1853 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1854   (void) JavaThread::current()->reguard_stack();
  1855 JRT_END
  1858 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1859 #ifndef PRODUCT
  1860 int SharedRuntime::_monitor_enter_ctr=0;
  1861 #endif
  1862 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1863   oop obj(_obj);
  1864 #ifndef PRODUCT
  1865   _monitor_enter_ctr++;             // monitor enter slow
  1866 #endif
  1867   if (PrintBiasedLockingStatistics) {
  1868     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1870   Handle h_obj(THREAD, obj);
  1871   if (UseBiasedLocking) {
  1872     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1873     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1874   } else {
  1875     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1877   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1878 JRT_END
  1880 #ifndef PRODUCT
  1881 int SharedRuntime::_monitor_exit_ctr=0;
  1882 #endif
  1883 // Handles the uncommon cases of monitor unlocking in compiled code
  1884 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1885    oop obj(_obj);
  1886 #ifndef PRODUCT
  1887   _monitor_exit_ctr++;              // monitor exit slow
  1888 #endif
  1889   Thread* THREAD = JavaThread::current();
  1890   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1891   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1892   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1893 #undef MIGHT_HAVE_PENDING
  1894 #ifdef MIGHT_HAVE_PENDING
  1895   // Save and restore any pending_exception around the exception mark.
  1896   // While the slow_exit must not throw an exception, we could come into
  1897   // this routine with one set.
  1898   oop pending_excep = NULL;
  1899   const char* pending_file;
  1900   int pending_line;
  1901   if (HAS_PENDING_EXCEPTION) {
  1902     pending_excep = PENDING_EXCEPTION;
  1903     pending_file  = THREAD->exception_file();
  1904     pending_line  = THREAD->exception_line();
  1905     CLEAR_PENDING_EXCEPTION;
  1907 #endif /* MIGHT_HAVE_PENDING */
  1910     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1911     EXCEPTION_MARK;
  1912     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1915 #ifdef MIGHT_HAVE_PENDING
  1916   if (pending_excep != NULL) {
  1917     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1919 #endif /* MIGHT_HAVE_PENDING */
  1920 JRT_END
  1922 #ifndef PRODUCT
  1924 void SharedRuntime::print_statistics() {
  1925   ttyLocker ttyl;
  1926   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1928   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1929   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1930   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1932   SharedRuntime::print_ic_miss_histogram();
  1934   if (CountRemovableExceptions) {
  1935     if (_nof_removable_exceptions > 0) {
  1936       Unimplemented(); // this counter is not yet incremented
  1937       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1941   // Dump the JRT_ENTRY counters
  1942   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1943   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1944   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1945   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1946   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1947   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1948   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1950   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1951   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1952   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1953   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1954   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1956   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1957   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1958   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1959   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1960   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1961   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1962   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1963   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1964   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1965   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1966   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1967   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1968   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1969   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1970   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1971   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1973   AdapterHandlerLibrary::print_statistics();
  1975   if (xtty != NULL)  xtty->tail("statistics");
  1978 inline double percent(int x, int y) {
  1979   return 100.0 * x / MAX2(y, 1);
  1982 class MethodArityHistogram {
  1983  public:
  1984   enum { MAX_ARITY = 256 };
  1985  private:
  1986   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1987   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1988   static int _max_arity;                      // max. arity seen
  1989   static int _max_size;                       // max. arg size seen
  1991   static void add_method_to_histogram(nmethod* nm) {
  1992     Method* m = nm->method();
  1993     ArgumentCount args(m->signature());
  1994     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1995     int argsize = m->size_of_parameters();
  1996     arity   = MIN2(arity, MAX_ARITY-1);
  1997     argsize = MIN2(argsize, MAX_ARITY-1);
  1998     int count = nm->method()->compiled_invocation_count();
  1999     _arity_histogram[arity]  += count;
  2000     _size_histogram[argsize] += count;
  2001     _max_arity = MAX2(_max_arity, arity);
  2002     _max_size  = MAX2(_max_size, argsize);
  2005   void print_histogram_helper(int n, int* histo, const char* name) {
  2006     const int N = MIN2(5, n);
  2007     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  2008     double sum = 0;
  2009     double weighted_sum = 0;
  2010     int i;
  2011     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  2012     double rest = sum;
  2013     double percent = sum / 100;
  2014     for (i = 0; i <= N; i++) {
  2015       rest -= histo[i];
  2016       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  2018     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  2019     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  2022   void print_histogram() {
  2023     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  2024     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  2025     tty->print_cr("\nSame for parameter size (in words):");
  2026     print_histogram_helper(_max_size, _size_histogram, "size");
  2027     tty->cr();
  2030  public:
  2031   MethodArityHistogram() {
  2032     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  2033     _max_arity = _max_size = 0;
  2034     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  2035     CodeCache::nmethods_do(add_method_to_histogram);
  2036     print_histogram();
  2038 };
  2040 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  2041 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  2042 int MethodArityHistogram::_max_arity;
  2043 int MethodArityHistogram::_max_size;
  2045 void SharedRuntime::print_call_statistics(int comp_total) {
  2046   tty->print_cr("Calls from compiled code:");
  2047   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  2048   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  2049   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  2050   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  2051   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  2052   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  2053   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  2054   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  2055   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  2056   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  2057   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  2058   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  2059   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  2060   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  2061   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  2062   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  2063   tty->cr();
  2064   tty->print_cr("Note 1: counter updates are not MT-safe.");
  2065   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  2066   tty->print_cr("        %% in nested categories are relative to their category");
  2067   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  2068   tty->cr();
  2070   MethodArityHistogram h;
  2072 #endif
  2075 // A simple wrapper class around the calling convention information
  2076 // that allows sharing of adapters for the same calling convention.
  2077 class AdapterFingerPrint : public CHeapObj<mtCode> {
  2078  private:
  2079   enum {
  2080     _basic_type_bits = 4,
  2081     _basic_type_mask = right_n_bits(_basic_type_bits),
  2082     _basic_types_per_int = BitsPerInt / _basic_type_bits,
  2083     _compact_int_count = 3
  2084   };
  2085   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
  2086   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
  2088   union {
  2089     int  _compact[_compact_int_count];
  2090     int* _fingerprint;
  2091   } _value;
  2092   int _length; // A negative length indicates the fingerprint is in the compact form,
  2093                // Otherwise _value._fingerprint is the array.
  2095   // Remap BasicTypes that are handled equivalently by the adapters.
  2096   // These are correct for the current system but someday it might be
  2097   // necessary to make this mapping platform dependent.
  2098   static int adapter_encoding(BasicType in) {
  2099     switch(in) {
  2100       case T_BOOLEAN:
  2101       case T_BYTE:
  2102       case T_SHORT:
  2103       case T_CHAR:
  2104         // There are all promoted to T_INT in the calling convention
  2105         return T_INT;
  2107       case T_OBJECT:
  2108       case T_ARRAY:
  2109         // In other words, we assume that any register good enough for
  2110         // an int or long is good enough for a managed pointer.
  2111 #ifdef _LP64
  2112         return T_LONG;
  2113 #else
  2114         return T_INT;
  2115 #endif
  2117       case T_INT:
  2118       case T_LONG:
  2119       case T_FLOAT:
  2120       case T_DOUBLE:
  2121       case T_VOID:
  2122         return in;
  2124       default:
  2125         ShouldNotReachHere();
  2126         return T_CONFLICT;
  2130  public:
  2131   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  2132     // The fingerprint is based on the BasicType signature encoded
  2133     // into an array of ints with eight entries per int.
  2134     int* ptr;
  2135     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
  2136     if (len <= _compact_int_count) {
  2137       assert(_compact_int_count == 3, "else change next line");
  2138       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  2139       // Storing the signature encoded as signed chars hits about 98%
  2140       // of the time.
  2141       _length = -len;
  2142       ptr = _value._compact;
  2143     } else {
  2144       _length = len;
  2145       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
  2146       ptr = _value._fingerprint;
  2149     // Now pack the BasicTypes with 8 per int
  2150     int sig_index = 0;
  2151     for (int index = 0; index < len; index++) {
  2152       int value = 0;
  2153       for (int byte = 0; byte < _basic_types_per_int; byte++) {
  2154         int bt = ((sig_index < total_args_passed)
  2155                   ? adapter_encoding(sig_bt[sig_index++])
  2156                   : 0);
  2157         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
  2158         value = (value << _basic_type_bits) | bt;
  2160       ptr[index] = value;
  2164   ~AdapterFingerPrint() {
  2165     if (_length > 0) {
  2166       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
  2170   int value(int index) {
  2171     if (_length < 0) {
  2172       return _value._compact[index];
  2174     return _value._fingerprint[index];
  2176   int length() {
  2177     if (_length < 0) return -_length;
  2178     return _length;
  2181   bool is_compact() {
  2182     return _length <= 0;
  2185   unsigned int compute_hash() {
  2186     int hash = 0;
  2187     for (int i = 0; i < length(); i++) {
  2188       int v = value(i);
  2189       hash = (hash << 8) ^ v ^ (hash >> 5);
  2191     return (unsigned int)hash;
  2194   const char* as_string() {
  2195     stringStream st;
  2196     st.print("0x");
  2197     for (int i = 0; i < length(); i++) {
  2198       st.print("%08x", value(i));
  2200     return st.as_string();
  2203   bool equals(AdapterFingerPrint* other) {
  2204     if (other->_length != _length) {
  2205       return false;
  2207     if (_length < 0) {
  2208       assert(_compact_int_count == 3, "else change next line");
  2209       return _value._compact[0] == other->_value._compact[0] &&
  2210              _value._compact[1] == other->_value._compact[1] &&
  2211              _value._compact[2] == other->_value._compact[2];
  2212     } else {
  2213       for (int i = 0; i < _length; i++) {
  2214         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  2215           return false;
  2219     return true;
  2221 };
  2224 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  2225 class AdapterHandlerTable : public BasicHashtable<mtCode> {
  2226   friend class AdapterHandlerTableIterator;
  2228  private:
  2230 #ifndef PRODUCT
  2231   static int _lookups; // number of calls to lookup
  2232   static int _buckets; // number of buckets checked
  2233   static int _equals;  // number of buckets checked with matching hash
  2234   static int _hits;    // number of successful lookups
  2235   static int _compact; // number of equals calls with compact signature
  2236 #endif
  2238   AdapterHandlerEntry* bucket(int i) {
  2239     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
  2242  public:
  2243   AdapterHandlerTable()
  2244     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
  2246   // Create a new entry suitable for insertion in the table
  2247   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  2248     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
  2249     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2250     return entry;
  2253   // Insert an entry into the table
  2254   void add(AdapterHandlerEntry* entry) {
  2255     int index = hash_to_index(entry->hash());
  2256     add_entry(index, entry);
  2259   void free_entry(AdapterHandlerEntry* entry) {
  2260     entry->deallocate();
  2261     BasicHashtable<mtCode>::free_entry(entry);
  2264   // Find a entry with the same fingerprint if it exists
  2265   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  2266     NOT_PRODUCT(_lookups++);
  2267     AdapterFingerPrint fp(total_args_passed, sig_bt);
  2268     unsigned int hash = fp.compute_hash();
  2269     int index = hash_to_index(hash);
  2270     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2271       NOT_PRODUCT(_buckets++);
  2272       if (e->hash() == hash) {
  2273         NOT_PRODUCT(_equals++);
  2274         if (fp.equals(e->fingerprint())) {
  2275 #ifndef PRODUCT
  2276           if (fp.is_compact()) _compact++;
  2277           _hits++;
  2278 #endif
  2279           return e;
  2283     return NULL;
  2286 #ifndef PRODUCT
  2287   void print_statistics() {
  2288     ResourceMark rm;
  2289     int longest = 0;
  2290     int empty = 0;
  2291     int total = 0;
  2292     int nonempty = 0;
  2293     for (int index = 0; index < table_size(); index++) {
  2294       int count = 0;
  2295       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2296         count++;
  2298       if (count != 0) nonempty++;
  2299       if (count == 0) empty++;
  2300       if (count > longest) longest = count;
  2301       total += count;
  2303     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2304                   empty, longest, total, total / (double)nonempty);
  2305     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2306                   _lookups, _buckets, _equals, _hits, _compact);
  2308 #endif
  2309 };
  2312 #ifndef PRODUCT
  2314 int AdapterHandlerTable::_lookups;
  2315 int AdapterHandlerTable::_buckets;
  2316 int AdapterHandlerTable::_equals;
  2317 int AdapterHandlerTable::_hits;
  2318 int AdapterHandlerTable::_compact;
  2320 #endif
  2322 class AdapterHandlerTableIterator : public StackObj {
  2323  private:
  2324   AdapterHandlerTable* _table;
  2325   int _index;
  2326   AdapterHandlerEntry* _current;
  2328   void scan() {
  2329     while (_index < _table->table_size()) {
  2330       AdapterHandlerEntry* a = _table->bucket(_index);
  2331       _index++;
  2332       if (a != NULL) {
  2333         _current = a;
  2334         return;
  2339  public:
  2340   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2341     scan();
  2343   bool has_next() {
  2344     return _current != NULL;
  2346   AdapterHandlerEntry* next() {
  2347     if (_current != NULL) {
  2348       AdapterHandlerEntry* result = _current;
  2349       _current = _current->next();
  2350       if (_current == NULL) scan();
  2351       return result;
  2352     } else {
  2353       return NULL;
  2356 };
  2359 // ---------------------------------------------------------------------------
  2360 // Implementation of AdapterHandlerLibrary
  2361 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2362 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2363 const int AdapterHandlerLibrary_size = 16*K;
  2364 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2366 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2367   // Should be called only when AdapterHandlerLibrary_lock is active.
  2368   if (_buffer == NULL) // Initialize lazily
  2369       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2370   return _buffer;
  2373 void AdapterHandlerLibrary::initialize() {
  2374   if (_adapters != NULL) return;
  2375   _adapters = new AdapterHandlerTable();
  2377   // Create a special handler for abstract methods.  Abstract methods
  2378   // are never compiled so an i2c entry is somewhat meaningless, but
  2379   // throw AbstractMethodError just in case.
  2380   // Pass wrong_method_abstract for the c2i transitions to return
  2381   // AbstractMethodError for invalid invocations.
  2382   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
  2383   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2384                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2385                                                               wrong_method_abstract, wrong_method_abstract);
  2388 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2389                                                       address i2c_entry,
  2390                                                       address c2i_entry,
  2391                                                       address c2i_unverified_entry) {
  2392   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2395 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2396   // Use customized signature handler.  Need to lock around updates to
  2397   // the AdapterHandlerTable (it is not safe for concurrent readers
  2398   // and a single writer: this could be fixed if it becomes a
  2399   // problem).
  2401   // Get the address of the ic_miss handlers before we grab the
  2402   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2403   // was caused by the initialization of the stubs happening
  2404   // while we held the lock and then notifying jvmti while
  2405   // holding it. This just forces the initialization to be a little
  2406   // earlier.
  2407   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2408   assert(ic_miss != NULL, "must have handler");
  2410   ResourceMark rm;
  2412   NOT_PRODUCT(int insts_size);
  2413   AdapterBlob* new_adapter = NULL;
  2414   AdapterHandlerEntry* entry = NULL;
  2415   AdapterFingerPrint* fingerprint = NULL;
  2417     MutexLocker mu(AdapterHandlerLibrary_lock);
  2418     // make sure data structure is initialized
  2419     initialize();
  2421     if (method->is_abstract()) {
  2422       return _abstract_method_handler;
  2425     // Fill in the signature array, for the calling-convention call.
  2426     int total_args_passed = method->size_of_parameters(); // All args on stack
  2428     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2429     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2430     int i = 0;
  2431     if (!method->is_static())  // Pass in receiver first
  2432       sig_bt[i++] = T_OBJECT;
  2433     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2434       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2435       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2436         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2438     assert(i == total_args_passed, "");
  2440     // Lookup method signature's fingerprint
  2441     entry = _adapters->lookup(total_args_passed, sig_bt);
  2443 #ifdef ASSERT
  2444     AdapterHandlerEntry* shared_entry = NULL;
  2445     // Start adapter sharing verification only after the VM is booted.
  2446     if (VerifyAdapterSharing && (entry != NULL)) {
  2447       shared_entry = entry;
  2448       entry = NULL;
  2450 #endif
  2452     if (entry != NULL) {
  2453       return entry;
  2456     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2457     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2459     // Make a C heap allocated version of the fingerprint to store in the adapter
  2460     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2462     // StubRoutines::code2() is initialized after this function can be called. As a result,
  2463     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
  2464     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
  2465     // stub that ensure that an I2C stub is called from an interpreter frame.
  2466     bool contains_all_checks = StubRoutines::code2() != NULL;
  2468     // Create I2C & C2I handlers
  2469     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2470     if (buf != NULL) {
  2471       CodeBuffer buffer(buf);
  2472       short buffer_locs[20];
  2473       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2474                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2476       MacroAssembler _masm(&buffer);
  2477       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2478                                                      total_args_passed,
  2479                                                      comp_args_on_stack,
  2480                                                      sig_bt,
  2481                                                      regs,
  2482                                                      fingerprint);
  2483 #ifdef ASSERT
  2484       if (VerifyAdapterSharing) {
  2485         if (shared_entry != NULL) {
  2486           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
  2487           // Release the one just created and return the original
  2488           _adapters->free_entry(entry);
  2489           return shared_entry;
  2490         } else  {
  2491           entry->save_code(buf->code_begin(), buffer.insts_size());
  2494 #endif
  2496       new_adapter = AdapterBlob::create(&buffer);
  2497       NOT_PRODUCT(insts_size = buffer.insts_size());
  2499     if (new_adapter == NULL) {
  2500       // CodeCache is full, disable compilation
  2501       // Ought to log this but compile log is only per compile thread
  2502       // and we're some non descript Java thread.
  2503       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2504       CompileBroker::handle_full_code_cache();
  2505       return NULL; // Out of CodeCache space
  2507     entry->relocate(new_adapter->content_begin());
  2508 #ifndef PRODUCT
  2509     // debugging suppport
  2510     if (PrintAdapterHandlers || PrintStubCode) {
  2511       ttyLocker ttyl;
  2512       entry->print_adapter_on(tty);
  2513       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
  2514                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2515                     method->signature()->as_C_string(), insts_size);
  2516       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2517       if (Verbose || PrintStubCode) {
  2518         address first_pc = entry->base_address();
  2519         if (first_pc != NULL) {
  2520           Disassembler::decode(first_pc, first_pc + insts_size);
  2521           tty->cr();
  2525 #endif
  2526     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
  2527     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
  2528     if (contains_all_checks || !VerifyAdapterCalls) {
  2529       _adapters->add(entry);
  2532   // Outside of the lock
  2533   if (new_adapter != NULL) {
  2534     char blob_id[256];
  2535     jio_snprintf(blob_id,
  2536                  sizeof(blob_id),
  2537                  "%s(%s)@" PTR_FORMAT,
  2538                  new_adapter->name(),
  2539                  fingerprint->as_string(),
  2540                  new_adapter->content_begin());
  2541     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
  2543     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2544       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
  2547   return entry;
  2550 address AdapterHandlerEntry::base_address() {
  2551   address base = _i2c_entry;
  2552   if (base == NULL)  base = _c2i_entry;
  2553   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
  2554   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
  2555   return base;
  2558 void AdapterHandlerEntry::relocate(address new_base) {
  2559   address old_base = base_address();
  2560   assert(old_base != NULL, "");
  2561   ptrdiff_t delta = new_base - old_base;
  2562   if (_i2c_entry != NULL)
  2563     _i2c_entry += delta;
  2564   if (_c2i_entry != NULL)
  2565     _c2i_entry += delta;
  2566   if (_c2i_unverified_entry != NULL)
  2567     _c2i_unverified_entry += delta;
  2568   assert(base_address() == new_base, "");
  2572 void AdapterHandlerEntry::deallocate() {
  2573   delete _fingerprint;
  2574 #ifdef ASSERT
  2575   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
  2576 #endif
  2580 #ifdef ASSERT
  2581 // Capture the code before relocation so that it can be compared
  2582 // against other versions.  If the code is captured after relocation
  2583 // then relative instructions won't be equivalent.
  2584 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
  2585   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
  2586   _saved_code_length = length;
  2587   memcpy(_saved_code, buffer, length);
  2591 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
  2592   if (length != _saved_code_length) {
  2593     return false;
  2596   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
  2598 #endif
  2601 /**
  2602  * Create a native wrapper for this native method.  The wrapper converts the
  2603  * Java-compiled calling convention to the native convention, handles
  2604  * arguments, and transitions to native.  On return from the native we transition
  2605  * back to java blocking if a safepoint is in progress.
  2606  */
  2607 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
  2608   ResourceMark rm;
  2609   nmethod* nm = NULL;
  2611   assert(method->is_native(), "must be native");
  2612   assert(method->is_method_handle_intrinsic() ||
  2613          method->has_native_function(), "must have something valid to call!");
  2616     // Perform the work while holding the lock, but perform any printing outside the lock
  2617     MutexLocker mu(AdapterHandlerLibrary_lock);
  2618     // See if somebody beat us to it
  2619     nm = method->code();
  2620     if (nm != NULL) {
  2621       return;
  2624     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
  2625     assert(compile_id > 0, "Must generate native wrapper");
  2628     ResourceMark rm;
  2629     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2630     if (buf != NULL) {
  2631       CodeBuffer buffer(buf);
  2632       double locs_buf[20];
  2633       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2634       MacroAssembler _masm(&buffer);
  2636       // Fill in the signature array, for the calling-convention call.
  2637       const int total_args_passed = method->size_of_parameters();
  2639       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2640       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2641       int i=0;
  2642       if( !method->is_static() )  // Pass in receiver first
  2643         sig_bt[i++] = T_OBJECT;
  2644       SignatureStream ss(method->signature());
  2645       for( ; !ss.at_return_type(); ss.next()) {
  2646         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2647         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2648           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2650       assert(i == total_args_passed, "");
  2651       BasicType ret_type = ss.type();
  2653       // Now get the compiled-Java layout as input (or output) arguments.
  2654       // NOTE: Stubs for compiled entry points of method handle intrinsics
  2655       // are just trampolines so the argument registers must be outgoing ones.
  2656       const bool is_outgoing = method->is_method_handle_intrinsic();
  2657       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
  2659       // Generate the compiled-to-native wrapper code
  2660       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
  2662       if (nm != NULL) {
  2663         method->set_code(method, nm);
  2666   } // Unlock AdapterHandlerLibrary_lock
  2669   // Install the generated code.
  2670   if (nm != NULL) {
  2671     if (PrintCompilation) {
  2672       ttyLocker ttyl;
  2673       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
  2675     nm->post_compiled_method_load_event();
  2676   } else {
  2677     // CodeCache is full, disable compilation
  2678     CompileBroker::handle_full_code_cache();
  2682 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
  2683   assert(thread == JavaThread::current(), "must be");
  2684   // The code is about to enter a JNI lazy critical native method and
  2685   // _needs_gc is true, so if this thread is already in a critical
  2686   // section then just return, otherwise this thread should block
  2687   // until needs_gc has been cleared.
  2688   if (thread->in_critical()) {
  2689     return;
  2691   // Lock and unlock a critical section to give the system a chance to block
  2692   GC_locker::lock_critical(thread);
  2693   GC_locker::unlock_critical(thread);
  2694 JRT_END
  2696 #ifdef HAVE_DTRACE_H
  2697 /**
  2698  * Create a dtrace nmethod for this method.  The wrapper converts the
  2699  * Java-compiled calling convention to the native convention, makes a dummy call
  2700  * (actually nops for the size of the call instruction, which become a trap if
  2701  * probe is enabled), and finally returns to the caller. Since this all looks like a
  2702  * leaf, no thread transition is needed.
  2703  */
  2704 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2705   ResourceMark rm;
  2706   nmethod* nm = NULL;
  2708   if (PrintCompilation) {
  2709     ttyLocker ttyl;
  2710     tty->print("---   n  ");
  2711     method->print_short_name(tty);
  2712     if (method->is_static()) {
  2713       tty->print(" (static)");
  2715     tty->cr();
  2719     // perform the work while holding the lock, but perform any printing
  2720     // outside the lock
  2721     MutexLocker mu(AdapterHandlerLibrary_lock);
  2722     // See if somebody beat us to it
  2723     nm = method->code();
  2724     if (nm) {
  2725       return nm;
  2728     ResourceMark rm;
  2730     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2731     if (buf != NULL) {
  2732       CodeBuffer buffer(buf);
  2733       // Need a few relocation entries
  2734       double locs_buf[20];
  2735       buffer.insts()->initialize_shared_locs(
  2736         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2737       MacroAssembler _masm(&buffer);
  2739       // Generate the compiled-to-native wrapper code
  2740       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2743   return nm;
  2746 // the dtrace method needs to convert java lang string to utf8 string.
  2747 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2748   typeArrayOop jlsValue  = java_lang_String::value(src);
  2749   int          jlsOffset = java_lang_String::offset(src);
  2750   int          jlsLen    = java_lang_String::length(src);
  2751   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2752                                            jlsValue->char_at_addr(jlsOffset);
  2753   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
  2754   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2756 #endif // ndef HAVE_DTRACE_H
  2758 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
  2759   int argcnt = in_args_count;
  2760   if (CCallingConventionRequiresIntsAsLongs) {
  2761     for (int in = 0; in < in_args_count; in++) {
  2762       BasicType bt = in_sig_bt[in];
  2763       switch (bt) {
  2764         case T_BOOLEAN:
  2765         case T_CHAR:
  2766         case T_BYTE:
  2767         case T_SHORT:
  2768         case T_INT:
  2769           argcnt++;
  2770           break;
  2771         default:
  2772           break;
  2775   } else {
  2776     assert(0, "This should not be needed on this platform");
  2779   return argcnt;
  2782 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
  2783                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
  2784   if (CCallingConventionRequiresIntsAsLongs) {
  2785     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
  2786     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
  2788     int argcnt = 0;
  2789     for (int in = 0; in < in_args_count; in++, argcnt++) {
  2790       BasicType bt  = in_sig_bt[in];
  2791       VMRegPair reg = in_regs[in];
  2792       switch (bt) {
  2793         case T_BOOLEAN:
  2794         case T_CHAR:
  2795         case T_BYTE:
  2796         case T_SHORT:
  2797         case T_INT:
  2798           // Convert (bt) to (T_LONG,bt).
  2799           new_in_sig_bt[argcnt  ] = T_LONG;
  2800           new_in_sig_bt[argcnt+1] = bt;
  2801           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
  2802           new_in_regs[argcnt  ].set2(reg.first());
  2803           new_in_regs[argcnt+1].set_bad();
  2804           argcnt++;
  2805           break;
  2806         default:
  2807           // No conversion needed.
  2808           new_in_sig_bt[argcnt] = bt;
  2809           new_in_regs[argcnt]   = reg;
  2810           break;
  2813     assert(argcnt == i2l_argcnt, "must match");
  2815     in_regs = new_in_regs;
  2816     in_sig_bt = new_in_sig_bt;
  2817     in_args_count = i2l_argcnt;
  2818   } else {
  2819     assert(0, "This should not be needed on this platform");
  2823 // -------------------------------------------------------------------------
  2824 // Java-Java calling convention
  2825 // (what you use when Java calls Java)
  2827 //------------------------------name_for_receiver----------------------------------
  2828 // For a given signature, return the VMReg for parameter 0.
  2829 VMReg SharedRuntime::name_for_receiver() {
  2830   VMRegPair regs;
  2831   BasicType sig_bt = T_OBJECT;
  2832   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2833   // Return argument 0 register.  In the LP64 build pointers
  2834   // take 2 registers, but the VM wants only the 'main' name.
  2835   return regs.first();
  2838 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
  2839   // This method is returning a data structure allocating as a
  2840   // ResourceObject, so do not put any ResourceMarks in here.
  2841   char *s = sig->as_C_string();
  2842   int len = (int)strlen(s);
  2843   s++; len--;                   // Skip opening paren
  2845   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2846   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2847   int cnt = 0;
  2848   if (has_receiver) {
  2849     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2852   while( *s != ')' ) {          // Find closing right paren
  2853     switch( *s++ ) {            // Switch on signature character
  2854     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2855     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2856     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2857     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2858     case 'I': sig_bt[cnt++] = T_INT;     break;
  2859     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2860     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2861     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2862     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2863     case 'L':                   // Oop
  2864       while( *s++ != ';'  ) ;   // Skip signature
  2865       sig_bt[cnt++] = T_OBJECT;
  2866       break;
  2867     case '[': {                 // Array
  2868       do {                      // Skip optional size
  2869         while( *s >= '0' && *s <= '9' ) s++;
  2870       } while( *s++ == '[' );   // Nested arrays?
  2871       // Skip element type
  2872       if( s[-1] == 'L' )
  2873         while( *s++ != ';'  ) ; // Skip signature
  2874       sig_bt[cnt++] = T_ARRAY;
  2875       break;
  2877     default : ShouldNotReachHere();
  2881   if (has_appendix) {
  2882     sig_bt[cnt++] = T_OBJECT;
  2885   assert( cnt < 256, "grow table size" );
  2887   int comp_args_on_stack;
  2888   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2890   // the calling convention doesn't count out_preserve_stack_slots so
  2891   // we must add that in to get "true" stack offsets.
  2893   if (comp_args_on_stack) {
  2894     for (int i = 0; i < cnt; i++) {
  2895       VMReg reg1 = regs[i].first();
  2896       if( reg1->is_stack()) {
  2897         // Yuck
  2898         reg1 = reg1->bias(out_preserve_stack_slots());
  2900       VMReg reg2 = regs[i].second();
  2901       if( reg2->is_stack()) {
  2902         // Yuck
  2903         reg2 = reg2->bias(out_preserve_stack_slots());
  2905       regs[i].set_pair(reg2, reg1);
  2909   // results
  2910   *arg_size = cnt;
  2911   return regs;
  2914 // OSR Migration Code
  2915 //
  2916 // This code is used convert interpreter frames into compiled frames.  It is
  2917 // called from very start of a compiled OSR nmethod.  A temp array is
  2918 // allocated to hold the interesting bits of the interpreter frame.  All
  2919 // active locks are inflated to allow them to move.  The displaced headers and
  2920 // active interpeter locals are copied into the temp buffer.  Then we return
  2921 // back to the compiled code.  The compiled code then pops the current
  2922 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2923 // copies the interpreter locals and displaced headers where it wants.
  2924 // Finally it calls back to free the temp buffer.
  2925 //
  2926 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2928 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2930   //
  2931   // This code is dependent on the memory layout of the interpreter local
  2932   // array and the monitors. On all of our platforms the layout is identical
  2933   // so this code is shared. If some platform lays the their arrays out
  2934   // differently then this code could move to platform specific code or
  2935   // the code here could be modified to copy items one at a time using
  2936   // frame accessor methods and be platform independent.
  2938   frame fr = thread->last_frame();
  2939   assert( fr.is_interpreted_frame(), "" );
  2940   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2942   // Figure out how many monitors are active.
  2943   int active_monitor_count = 0;
  2944   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2945        kptr < fr.interpreter_frame_monitor_begin();
  2946        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2947     if( kptr->obj() != NULL ) active_monitor_count++;
  2950   // QQQ we could place number of active monitors in the array so that compiled code
  2951   // could double check it.
  2953   Method* moop = fr.interpreter_frame_method();
  2954   int max_locals = moop->max_locals();
  2955   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2956   int buf_size_words = max_locals + active_monitor_count*2;
  2957   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
  2959   // Copy the locals.  Order is preserved so that loading of longs works.
  2960   // Since there's no GC I can copy the oops blindly.
  2961   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2962   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2963                        (HeapWord*)&buf[0],
  2964                        max_locals);
  2966   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2967   int i = max_locals;
  2968   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2969        kptr2 < fr.interpreter_frame_monitor_begin();
  2970        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2971     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2972       BasicLock *lock = kptr2->lock();
  2973       // Inflate so the displaced header becomes position-independent
  2974       if (lock->displaced_header()->is_unlocked())
  2975         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2976       // Now the displaced header is free to move
  2977       buf[i++] = (intptr_t)lock->displaced_header();
  2978       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
  2981   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2983   return buf;
  2984 JRT_END
  2986 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2987   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
  2988 JRT_END
  2990 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2991   AdapterHandlerTableIterator iter(_adapters);
  2992   while (iter.has_next()) {
  2993     AdapterHandlerEntry* a = iter.next();
  2994     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2996   return false;
  2999 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
  3000   AdapterHandlerTableIterator iter(_adapters);
  3001   while (iter.has_next()) {
  3002     AdapterHandlerEntry* a = iter.next();
  3003     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
  3004       st->print("Adapter for signature: ");
  3005       a->print_adapter_on(tty);
  3006       return;
  3009   assert(false, "Should have found handler");
  3012 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
  3013   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  3014                (intptr_t) this, fingerprint()->as_string(),
  3015                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
  3019 #ifndef PRODUCT
  3021 void AdapterHandlerLibrary::print_statistics() {
  3022   _adapters->print_statistics();
  3025 #endif /* PRODUCT */

mercurial