src/share/vm/gc_implementation/parallelScavenge/cardTableExtension.cpp

Mon, 12 Aug 2019 18:30:40 +0300

author
apetushkov
date
Mon, 12 Aug 2019 18:30:40 +0300
changeset 9858
b985cbb00e68
parent 6912
c49dcaf78a65
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

8223147: JFR Backport
8199712: Flight Recorder
8203346: JFR: Inconsistent signature of jfr_add_string_constant
8195817: JFR.stop should require name of recording
8195818: JFR.start should increase autogenerated name by one
8195819: Remove recording=x from jcmd JFR.check output
8203921: JFR thread sampling is missing fixes from JDK-8194552
8203929: Limit amount of data for JFR.dump
8203664: JFR start failure after AppCDS archive created with JFR StartFlightRecording
8003209: JFR events for network utilization
8207392: [PPC64] Implement JFR profiling
8202835: jfr/event/os/TestSystemProcess.java fails on missing events
Summary: Backport JFR from JDK11. Initial integration
Reviewed-by: neugens

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
    27 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    28 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    29 #include "gc_implementation/parallelScavenge/psTasks.hpp"
    30 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    31 #include "oops/oop.inline.hpp"
    32 #include "oops/oop.psgc.inline.hpp"
    33 #include "runtime/prefetch.inline.hpp"
    35 // Checks an individual oop for missing precise marks. Mark
    36 // may be either dirty or newgen.
    37 class CheckForUnmarkedOops : public OopClosure {
    38  private:
    39   PSYoungGen*         _young_gen;
    40   CardTableExtension* _card_table;
    41   HeapWord*           _unmarked_addr;
    42   jbyte*              _unmarked_card;
    44  protected:
    45   template <class T> void do_oop_work(T* p) {
    46     oop obj = oopDesc::load_decode_heap_oop(p);
    47     if (_young_gen->is_in_reserved(obj) &&
    48         !_card_table->addr_is_marked_imprecise(p)) {
    49       // Don't overwrite the first missing card mark
    50       if (_unmarked_addr == NULL) {
    51         _unmarked_addr = (HeapWord*)p;
    52         _unmarked_card = _card_table->byte_for(p);
    53       }
    54     }
    55   }
    57  public:
    58   CheckForUnmarkedOops(PSYoungGen* young_gen, CardTableExtension* card_table) :
    59     _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
    61   virtual void do_oop(oop* p)       { CheckForUnmarkedOops::do_oop_work(p); }
    62   virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
    64   bool has_unmarked_oop() {
    65     return _unmarked_addr != NULL;
    66   }
    67 };
    69 // Checks all objects for the existance of some type of mark,
    70 // precise or imprecise, dirty or newgen.
    71 class CheckForUnmarkedObjects : public ObjectClosure {
    72  private:
    73   PSYoungGen*         _young_gen;
    74   CardTableExtension* _card_table;
    76  public:
    77   CheckForUnmarkedObjects() {
    78     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    79     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    81     _young_gen = heap->young_gen();
    82     _card_table = (CardTableExtension*)heap->barrier_set();
    83     // No point in asserting barrier set type here. Need to make CardTableExtension
    84     // a unique barrier set type.
    85   }
    87   // Card marks are not precise. The current system can leave us with
    88   // a mismash of precise marks and beginning of object marks. This means
    89   // we test for missing precise marks first. If any are found, we don't
    90   // fail unless the object head is also unmarked.
    91   virtual void do_object(oop obj) {
    92     CheckForUnmarkedOops object_check(_young_gen, _card_table);
    93     obj->oop_iterate_no_header(&object_check);
    94     if (object_check.has_unmarked_oop()) {
    95       assert(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
    96     }
    97   }
    98 };
   100 // Checks for precise marking of oops as newgen.
   101 class CheckForPreciseMarks : public OopClosure {
   102  private:
   103   PSYoungGen*         _young_gen;
   104   CardTableExtension* _card_table;
   106  protected:
   107   template <class T> void do_oop_work(T* p) {
   108     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   109     if (_young_gen->is_in_reserved(obj)) {
   110       assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
   111       _card_table->set_card_newgen(p);
   112     }
   113   }
   115  public:
   116   CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) :
   117     _young_gen(young_gen), _card_table(card_table) { }
   119   virtual void do_oop(oop* p)       { CheckForPreciseMarks::do_oop_work(p); }
   120   virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
   121 };
   123 // We get passed the space_top value to prevent us from traversing into
   124 // the old_gen promotion labs, which cannot be safely parsed.
   126 // Do not call this method if the space is empty.
   127 // It is a waste to start tasks and get here only to
   128 // do no work.  If this method needs to be called
   129 // when the space is empty, fix the calculation of
   130 // end_card to allow sp_top == sp->bottom().
   132 void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array,
   133                                                     MutableSpace* sp,
   134                                                     HeapWord* space_top,
   135                                                     PSPromotionManager* pm,
   136                                                     uint stripe_number,
   137                                                     uint stripe_total) {
   138   int ssize = 128; // Naked constant!  Work unit = 64k.
   139   int dirty_card_count = 0;
   141   // It is a waste to get here if empty.
   142   assert(sp->bottom() < sp->top(), "Should not be called if empty");
   143   oop* sp_top = (oop*)space_top;
   144   jbyte* start_card = byte_for(sp->bottom());
   145   jbyte* end_card   = byte_for(sp_top - 1) + 1;
   146   oop* last_scanned = NULL; // Prevent scanning objects more than once
   147   // The width of the stripe ssize*stripe_total must be
   148   // consistent with the number of stripes so that the complete slice
   149   // is covered.
   150   size_t slice_width = ssize * stripe_total;
   151   for (jbyte* slice = start_card; slice < end_card; slice += slice_width) {
   152     jbyte* worker_start_card = slice + stripe_number * ssize;
   153     if (worker_start_card >= end_card)
   154       return; // We're done.
   156     jbyte* worker_end_card = worker_start_card + ssize;
   157     if (worker_end_card > end_card)
   158       worker_end_card = end_card;
   160     // We do not want to scan objects more than once. In order to accomplish
   161     // this, we assert that any object with an object head inside our 'slice'
   162     // belongs to us. We may need to extend the range of scanned cards if the
   163     // last object continues into the next 'slice'.
   164     //
   165     // Note! ending cards are exclusive!
   166     HeapWord* slice_start = addr_for(worker_start_card);
   167     HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
   169 #ifdef ASSERT
   170     if (GCWorkerDelayMillis > 0) {
   171       // Delay 1 worker so that it proceeds after all the work
   172       // has been completed.
   173       if (stripe_number < 2) {
   174         os::sleep(Thread::current(), GCWorkerDelayMillis, false);
   175       }
   176     }
   177 #endif
   179     // If there are not objects starting within the chunk, skip it.
   180     if (!start_array->object_starts_in_range(slice_start, slice_end)) {
   181       continue;
   182     }
   183     // Update our beginning addr
   184     HeapWord* first_object = start_array->object_start(slice_start);
   185     debug_only(oop* first_object_within_slice = (oop*) first_object;)
   186     if (first_object < slice_start) {
   187       last_scanned = (oop*)(first_object + oop(first_object)->size());
   188       debug_only(first_object_within_slice = last_scanned;)
   189       worker_start_card = byte_for(last_scanned);
   190     }
   192     // Update the ending addr
   193     if (slice_end < (HeapWord*)sp_top) {
   194       // The subtraction is important! An object may start precisely at slice_end.
   195       HeapWord* last_object = start_array->object_start(slice_end - 1);
   196       slice_end = last_object + oop(last_object)->size();
   197       // worker_end_card is exclusive, so bump it one past the end of last_object's
   198       // covered span.
   199       worker_end_card = byte_for(slice_end) + 1;
   201       if (worker_end_card > end_card)
   202         worker_end_card = end_card;
   203     }
   205     assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
   206     assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
   207     assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
   208     // Note that worker_start_card >= worker_end_card is legal, and happens when
   209     // an object spans an entire slice.
   210     assert(worker_start_card <= end_card, "worker start card beyond end card");
   211     assert(worker_end_card <= end_card, "worker end card beyond end card");
   213     jbyte* current_card = worker_start_card;
   214     while (current_card < worker_end_card) {
   215       // Find an unclean card.
   216       while (current_card < worker_end_card && card_is_clean(*current_card)) {
   217         current_card++;
   218       }
   219       jbyte* first_unclean_card = current_card;
   221       // Find the end of a run of contiguous unclean cards
   222       while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   223         while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   224           current_card++;
   225         }
   227         if (current_card < worker_end_card) {
   228           // Some objects may be large enough to span several cards. If such
   229           // an object has more than one dirty card, separated by a clean card,
   230           // we will attempt to scan it twice. The test against "last_scanned"
   231           // prevents the redundant object scan, but it does not prevent newly
   232           // marked cards from being cleaned.
   233           HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
   234           size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
   235           HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
   236           jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
   237           assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
   238           if (ending_card_of_last_object > current_card) {
   239             // This means the object spans the next complete card.
   240             // We need to bump the current_card to ending_card_of_last_object
   241             current_card = ending_card_of_last_object;
   242           }
   243         }
   244       }
   245       jbyte* following_clean_card = current_card;
   247       if (first_unclean_card < worker_end_card) {
   248         oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
   249         assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
   250         // "p" should always be >= "last_scanned" because newly GC dirtied
   251         // cards are no longer scanned again (see comment at end
   252         // of loop on the increment of "current_card").  Test that
   253         // hypothesis before removing this code.
   254         // If this code is removed, deal with the first time through
   255         // the loop when the last_scanned is the object starting in
   256         // the previous slice.
   257         assert((p >= last_scanned) ||
   258                (last_scanned == first_object_within_slice),
   259                "Should no longer be possible");
   260         if (p < last_scanned) {
   261           // Avoid scanning more than once; this can happen because
   262           // newgen cards set by GC may a different set than the
   263           // originally dirty set
   264           p = last_scanned;
   265         }
   266         oop* to = (oop*)addr_for(following_clean_card);
   268         // Test slice_end first!
   269         if ((HeapWord*)to > slice_end) {
   270           to = (oop*)slice_end;
   271         } else if (to > sp_top) {
   272           to = sp_top;
   273         }
   275         // we know which cards to scan, now clear them
   276         if (first_unclean_card <= worker_start_card+1)
   277           first_unclean_card = worker_start_card+1;
   278         if (following_clean_card >= worker_end_card-1)
   279           following_clean_card = worker_end_card-1;
   281         while (first_unclean_card < following_clean_card) {
   282           *first_unclean_card++ = clean_card;
   283         }
   285         const int interval = PrefetchScanIntervalInBytes;
   286         // scan all objects in the range
   287         if (interval != 0) {
   288           while (p < to) {
   289             Prefetch::write(p, interval);
   290             oop m = oop(p);
   291             assert(m->is_oop_or_null(), "check for header");
   292             m->push_contents(pm);
   293             p += m->size();
   294           }
   295           pm->drain_stacks_cond_depth();
   296         } else {
   297           while (p < to) {
   298             oop m = oop(p);
   299             assert(m->is_oop_or_null(), "check for header");
   300             m->push_contents(pm);
   301             p += m->size();
   302           }
   303           pm->drain_stacks_cond_depth();
   304         }
   305         last_scanned = p;
   306       }
   307       // "current_card" is still the "following_clean_card" or
   308       // the current_card is >= the worker_end_card so the
   309       // loop will not execute again.
   310       assert((current_card == following_clean_card) ||
   311              (current_card >= worker_end_card),
   312         "current_card should only be incremented if it still equals "
   313         "following_clean_card");
   314       // Increment current_card so that it is not processed again.
   315       // It may now be dirty because a old-to-young pointer was
   316       // found on it an updated.  If it is now dirty, it cannot be
   317       // be safely cleaned in the next iteration.
   318       current_card++;
   319     }
   320   }
   321 }
   323 // This should be called before a scavenge.
   324 void CardTableExtension::verify_all_young_refs_imprecise() {
   325   CheckForUnmarkedObjects check;
   327   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   328   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   330   PSOldGen* old_gen = heap->old_gen();
   332   old_gen->object_iterate(&check);
   333 }
   335 // This should be called immediately after a scavenge, before mutators resume.
   336 void CardTableExtension::verify_all_young_refs_precise() {
   337   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   338   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   340   PSOldGen* old_gen = heap->old_gen();
   342   CheckForPreciseMarks check(heap->young_gen(), (CardTableExtension*)heap->barrier_set());
   344   old_gen->oop_iterate_no_header(&check);
   346   verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
   347 }
   349 void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) {
   350   CardTableExtension* card_table = (CardTableExtension*)Universe::heap()->barrier_set();
   351   // FIX ME ASSERT HERE
   353   jbyte* bot = card_table->byte_for(mr.start());
   354   jbyte* top = card_table->byte_for(mr.end());
   355   while(bot <= top) {
   356     assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
   357     if (*bot == verify_card)
   358       *bot = youngergen_card;
   359     bot++;
   360   }
   361 }
   363 bool CardTableExtension::addr_is_marked_imprecise(void *addr) {
   364   jbyte* p = byte_for(addr);
   365   jbyte val = *p;
   367   if (card_is_dirty(val))
   368     return true;
   370   if (card_is_newgen(val))
   371     return true;
   373   if (card_is_clean(val))
   374     return false;
   376   assert(false, "Found unhandled card mark type");
   378   return false;
   379 }
   381 // Also includes verify_card
   382 bool CardTableExtension::addr_is_marked_precise(void *addr) {
   383   jbyte* p = byte_for(addr);
   384   jbyte val = *p;
   386   if (card_is_newgen(val))
   387     return true;
   389   if (card_is_verify(val))
   390     return true;
   392   if (card_is_clean(val))
   393     return false;
   395   if (card_is_dirty(val))
   396     return false;
   398   assert(false, "Found unhandled card mark type");
   400   return false;
   401 }
   403 // Assumes that only the base or the end changes.  This allows indentification
   404 // of the region that is being resized.  The
   405 // CardTableModRefBS::resize_covered_region() is used for the normal case
   406 // where the covered regions are growing or shrinking at the high end.
   407 // The method resize_covered_region_by_end() is analogous to
   408 // CardTableModRefBS::resize_covered_region() but
   409 // for regions that grow or shrink at the low end.
   410 void CardTableExtension::resize_covered_region(MemRegion new_region) {
   412   for (int i = 0; i < _cur_covered_regions; i++) {
   413     if (_covered[i].start() == new_region.start()) {
   414       // Found a covered region with the same start as the
   415       // new region.  The region is growing or shrinking
   416       // from the start of the region.
   417       resize_covered_region_by_start(new_region);
   418       return;
   419     }
   420     if (_covered[i].start() > new_region.start()) {
   421       break;
   422     }
   423   }
   425   int changed_region = -1;
   426   for (int j = 0; j < _cur_covered_regions; j++) {
   427     if (_covered[j].end() == new_region.end()) {
   428       changed_region = j;
   429       // This is a case where the covered region is growing or shrinking
   430       // at the start of the region.
   431       assert(changed_region != -1, "Don't expect to add a covered region");
   432       assert(_covered[changed_region].byte_size() != new_region.byte_size(),
   433         "The sizes should be different here");
   434       resize_covered_region_by_end(changed_region, new_region);
   435       return;
   436     }
   437   }
   438   // This should only be a new covered region (where no existing
   439   // covered region matches at the start or the end).
   440   assert(_cur_covered_regions < _max_covered_regions,
   441     "An existing region should have been found");
   442   resize_covered_region_by_start(new_region);
   443 }
   445 void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) {
   446   CardTableModRefBS::resize_covered_region(new_region);
   447   debug_only(verify_guard();)
   448 }
   450 void CardTableExtension::resize_covered_region_by_end(int changed_region,
   451                                                       MemRegion new_region) {
   452   assert(SafepointSynchronize::is_at_safepoint(),
   453     "Only expect an expansion at the low end at a GC");
   454   debug_only(verify_guard();)
   455 #ifdef ASSERT
   456   for (int k = 0; k < _cur_covered_regions; k++) {
   457     if (_covered[k].end() == new_region.end()) {
   458       assert(changed_region == k, "Changed region is incorrect");
   459       break;
   460     }
   461   }
   462 #endif
   464   // Commit new or uncommit old pages, if necessary.
   465   if (resize_commit_uncommit(changed_region, new_region)) {
   466     // Set the new start of the committed region
   467     resize_update_committed_table(changed_region, new_region);
   468   }
   470   // Update card table entries
   471   resize_update_card_table_entries(changed_region, new_region);
   473   // Update the covered region
   474   resize_update_covered_table(changed_region, new_region);
   476   if (TraceCardTableModRefBS) {
   477     int ind = changed_region;
   478     gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
   479     gclog_or_tty->print_cr("  "
   480                   "  _covered[%d].start(): " INTPTR_FORMAT
   481                   "  _covered[%d].last(): " INTPTR_FORMAT,
   482                   ind, p2i(_covered[ind].start()),
   483                   ind, p2i(_covered[ind].last()));
   484     gclog_or_tty->print_cr("  "
   485                   "  _committed[%d].start(): " INTPTR_FORMAT
   486                   "  _committed[%d].last(): " INTPTR_FORMAT,
   487                   ind, p2i(_committed[ind].start()),
   488                   ind, p2i(_committed[ind].last()));
   489     gclog_or_tty->print_cr("  "
   490                   "  byte_for(start): " INTPTR_FORMAT
   491                   "  byte_for(last): " INTPTR_FORMAT,
   492                   p2i(byte_for(_covered[ind].start())),
   493                   p2i(byte_for(_covered[ind].last())));
   494     gclog_or_tty->print_cr("  "
   495                   "  addr_for(start): " INTPTR_FORMAT
   496                   "  addr_for(last): " INTPTR_FORMAT,
   497                   p2i(addr_for((jbyte*) _committed[ind].start())),
   498                   p2i(addr_for((jbyte*) _committed[ind].last())));
   499   }
   500   debug_only(verify_guard();)
   501 }
   503 bool CardTableExtension::resize_commit_uncommit(int changed_region,
   504                                                 MemRegion new_region) {
   505   bool result = false;
   506   // Commit new or uncommit old pages, if necessary.
   507   MemRegion cur_committed = _committed[changed_region];
   508   assert(_covered[changed_region].end() == new_region.end(),
   509     "The ends of the regions are expected to match");
   510   // Extend the start of this _committed region to
   511   // to cover the start of any previous _committed region.
   512   // This forms overlapping regions, but never interior regions.
   513   HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
   514   if (min_prev_start < cur_committed.start()) {
   515     // Only really need to set start of "cur_committed" to
   516     // the new start (min_prev_start) but assertion checking code
   517     // below use cur_committed.end() so make it correct.
   518     MemRegion new_committed =
   519         MemRegion(min_prev_start, cur_committed.end());
   520     cur_committed = new_committed;
   521   }
   522 #ifdef ASSERT
   523   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   524   assert(cur_committed.start() ==
   525     (HeapWord*) align_size_up((uintptr_t) cur_committed.start(),
   526                               os::vm_page_size()),
   527     "Starts should have proper alignment");
   528 #endif
   530   jbyte* new_start = byte_for(new_region.start());
   531   // Round down because this is for the start address
   532   HeapWord* new_start_aligned =
   533     (HeapWord*)align_size_down((uintptr_t)new_start, os::vm_page_size());
   534   // The guard page is always committed and should not be committed over.
   535   // This method is used in cases where the generation is growing toward
   536   // lower addresses but the guard region is still at the end of the
   537   // card table.  That still makes sense when looking for writes
   538   // off the end of the card table.
   539   if (new_start_aligned < cur_committed.start()) {
   540     // Expand the committed region
   541     //
   542     // Case A
   543     //                                          |+ guard +|
   544     //                          |+ cur committed +++++++++|
   545     //                  |+ new committed +++++++++++++++++|
   546     //
   547     // Case B
   548     //                                          |+ guard +|
   549     //                        |+ cur committed +|
   550     //                  |+ new committed +++++++|
   551     //
   552     // These are not expected because the calculation of the
   553     // cur committed region and the new committed region
   554     // share the same end for the covered region.
   555     // Case C
   556     //                                          |+ guard +|
   557     //                        |+ cur committed +|
   558     //                  |+ new committed +++++++++++++++++|
   559     // Case D
   560     //                                          |+ guard +|
   561     //                        |+ cur committed +++++++++++|
   562     //                  |+ new committed +++++++|
   564     HeapWord* new_end_for_commit =
   565       MIN2(cur_committed.end(), _guard_region.start());
   566     if(new_start_aligned < new_end_for_commit) {
   567       MemRegion new_committed =
   568         MemRegion(new_start_aligned, new_end_for_commit);
   569       os::commit_memory_or_exit((char*)new_committed.start(),
   570                                 new_committed.byte_size(), !ExecMem,
   571                                 "card table expansion");
   572     }
   573     result = true;
   574   } else if (new_start_aligned > cur_committed.start()) {
   575     // Shrink the committed region
   576 #if 0 // uncommitting space is currently unsafe because of the interactions
   577       // of growing and shrinking regions.  One region A can uncommit space
   578       // that it owns but which is being used by another region B (maybe).
   579       // Region B has not committed the space because it was already
   580       // committed by region A.
   581     MemRegion uncommit_region = committed_unique_to_self(changed_region,
   582       MemRegion(cur_committed.start(), new_start_aligned));
   583     if (!uncommit_region.is_empty()) {
   584       if (!os::uncommit_memory((char*)uncommit_region.start(),
   585                                uncommit_region.byte_size())) {
   586         // If the uncommit fails, ignore it.  Let the
   587         // committed table resizing go even though the committed
   588         // table will over state the committed space.
   589       }
   590     }
   591 #else
   592     assert(!result, "Should be false with current workaround");
   593 #endif
   594   }
   595   assert(_committed[changed_region].end() == cur_committed.end(),
   596     "end should not change");
   597   return result;
   598 }
   600 void CardTableExtension::resize_update_committed_table(int changed_region,
   601                                                        MemRegion new_region) {
   603   jbyte* new_start = byte_for(new_region.start());
   604   // Set the new start of the committed region
   605   HeapWord* new_start_aligned =
   606     (HeapWord*)align_size_down((uintptr_t)new_start,
   607                              os::vm_page_size());
   608   MemRegion new_committed = MemRegion(new_start_aligned,
   609     _committed[changed_region].end());
   610   _committed[changed_region] = new_committed;
   611   _committed[changed_region].set_start(new_start_aligned);
   612 }
   614 void CardTableExtension::resize_update_card_table_entries(int changed_region,
   615                                                           MemRegion new_region) {
   616   debug_only(verify_guard();)
   617   MemRegion original_covered = _covered[changed_region];
   618   // Initialize the card entries.  Only consider the
   619   // region covered by the card table (_whole_heap)
   620   jbyte* entry;
   621   if (new_region.start() < _whole_heap.start()) {
   622     entry = byte_for(_whole_heap.start());
   623   } else {
   624     entry = byte_for(new_region.start());
   625   }
   626   jbyte* end = byte_for(original_covered.start());
   627   // If _whole_heap starts at the original covered regions start,
   628   // this loop will not execute.
   629   while (entry < end) { *entry++ = clean_card; }
   630 }
   632 void CardTableExtension::resize_update_covered_table(int changed_region,
   633                                                      MemRegion new_region) {
   634   // Update the covered region
   635   _covered[changed_region].set_start(new_region.start());
   636   _covered[changed_region].set_word_size(new_region.word_size());
   638   // reorder regions.  There should only be at most 1 out
   639   // of order.
   640   for (int i = _cur_covered_regions-1 ; i > 0; i--) {
   641     if (_covered[i].start() < _covered[i-1].start()) {
   642         MemRegion covered_mr = _covered[i-1];
   643         _covered[i-1] = _covered[i];
   644         _covered[i] = covered_mr;
   645         MemRegion committed_mr = _committed[i-1];
   646       _committed[i-1] = _committed[i];
   647       _committed[i] = committed_mr;
   648       break;
   649     }
   650   }
   651 #ifdef ASSERT
   652   for (int m = 0; m < _cur_covered_regions-1; m++) {
   653     assert(_covered[m].start() <= _covered[m+1].start(),
   654       "Covered regions out of order");
   655     assert(_committed[m].start() <= _committed[m+1].start(),
   656       "Committed regions out of order");
   657   }
   658 #endif
   659 }
   661 // Returns the start of any committed region that is lower than
   662 // the target committed region (index ind) and that intersects the
   663 // target region.  If none, return start of target region.
   664 //
   665 //      -------------
   666 //      |           |
   667 //      -------------
   668 //              ------------
   669 //              | target   |
   670 //              ------------
   671 //                               -------------
   672 //                               |           |
   673 //                               -------------
   674 //      ^ returns this
   675 //
   676 //      -------------
   677 //      |           |
   678 //      -------------
   679 //                      ------------
   680 //                      | target   |
   681 //                      ------------
   682 //                               -------------
   683 //                               |           |
   684 //                               -------------
   685 //                      ^ returns this
   687 HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const {
   688   assert(_cur_covered_regions >= 0, "Expecting at least on region");
   689   HeapWord* min_start = _committed[ind].start();
   690   for (int j = 0; j < ind; j++) {
   691     HeapWord* this_start = _committed[j].start();
   692     if ((this_start < min_start) &&
   693         !(_committed[j].intersection(_committed[ind])).is_empty()) {
   694        min_start = this_start;
   695     }
   696   }
   697   return min_start;
   698 }

mercurial