src/share/vm/c1/c1_Runtime1.cpp

Mon, 12 Aug 2019 18:30:40 +0300

author
apetushkov
date
Mon, 12 Aug 2019 18:30:40 +0300
changeset 9858
b985cbb00e68
parent 9305
278ac6d2b59e
child 9931
fd44df5e3bc3
permissions
-rw-r--r--

8223147: JFR Backport
8199712: Flight Recorder
8203346: JFR: Inconsistent signature of jfr_add_string_constant
8195817: JFR.stop should require name of recording
8195818: JFR.start should increase autogenerated name by one
8195819: Remove recording=x from jcmd JFR.check output
8203921: JFR thread sampling is missing fixes from JDK-8194552
8203929: Limit amount of data for JFR.dump
8203664: JFR start failure after AppCDS archive created with JFR StartFlightRecording
8003209: JFR events for network utilization
8207392: [PPC64] Implement JFR profiling
8202835: jfr/event/os/TestSystemProcess.java fails on missing events
Summary: Backport JFR from JDK11. Initial integration
Reviewed-by: neugens

     1 /*
     2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/codeBuffer.hpp"
    27 #include "c1/c1_CodeStubs.hpp"
    28 #include "c1/c1_Defs.hpp"
    29 #include "c1/c1_FrameMap.hpp"
    30 #include "c1/c1_LIRAssembler.hpp"
    31 #include "c1/c1_MacroAssembler.hpp"
    32 #include "c1/c1_Runtime1.hpp"
    33 #include "classfile/systemDictionary.hpp"
    34 #include "classfile/vmSymbols.hpp"
    35 #include "code/codeBlob.hpp"
    36 #include "code/compiledIC.hpp"
    37 #include "code/pcDesc.hpp"
    38 #include "code/scopeDesc.hpp"
    39 #include "code/vtableStubs.hpp"
    40 #include "compiler/disassembler.hpp"
    41 #include "gc_interface/collectedHeap.hpp"
    42 #include "interpreter/bytecode.hpp"
    43 #include "interpreter/interpreter.hpp"
    44 #include "jfr/support/jfrIntrinsics.hpp"
    45 #include "memory/allocation.inline.hpp"
    46 #include "memory/barrierSet.hpp"
    47 #include "memory/oopFactory.hpp"
    48 #include "memory/resourceArea.hpp"
    49 #include "oops/objArrayKlass.hpp"
    50 #include "oops/oop.inline.hpp"
    51 #include "runtime/biasedLocking.hpp"
    52 #include "runtime/compilationPolicy.hpp"
    53 #include "runtime/interfaceSupport.hpp"
    54 #include "runtime/javaCalls.hpp"
    55 #include "runtime/sharedRuntime.hpp"
    56 #include "runtime/threadCritical.hpp"
    57 #include "runtime/vframe.hpp"
    58 #include "runtime/vframeArray.hpp"
    59 #include "utilities/copy.hpp"
    60 #include "utilities/events.hpp"
    63 // Implementation of StubAssembler
    65 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
    66   _name = name;
    67   _must_gc_arguments = false;
    68   _frame_size = no_frame_size;
    69   _num_rt_args = 0;
    70   _stub_id = stub_id;
    71 }
    74 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
    75   _name = name;
    76   _must_gc_arguments = must_gc_arguments;
    77 }
    80 void StubAssembler::set_frame_size(int size) {
    81   if (_frame_size == no_frame_size) {
    82     _frame_size = size;
    83   }
    84   assert(_frame_size == size, "can't change the frame size");
    85 }
    88 void StubAssembler::set_num_rt_args(int args) {
    89   if (_num_rt_args == 0) {
    90     _num_rt_args = args;
    91   }
    92   assert(_num_rt_args == args, "can't change the number of args");
    93 }
    95 // Implementation of Runtime1
    97 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
    98 const char *Runtime1::_blob_names[] = {
    99   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
   100 };
   102 #ifndef PRODUCT
   103 // statistics
   104 int Runtime1::_generic_arraycopy_cnt = 0;
   105 int Runtime1::_primitive_arraycopy_cnt = 0;
   106 int Runtime1::_oop_arraycopy_cnt = 0;
   107 int Runtime1::_generic_arraycopystub_cnt = 0;
   108 int Runtime1::_arraycopy_slowcase_cnt = 0;
   109 int Runtime1::_arraycopy_checkcast_cnt = 0;
   110 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
   111 int Runtime1::_new_type_array_slowcase_cnt = 0;
   112 int Runtime1::_new_object_array_slowcase_cnt = 0;
   113 int Runtime1::_new_instance_slowcase_cnt = 0;
   114 int Runtime1::_new_multi_array_slowcase_cnt = 0;
   115 int Runtime1::_monitorenter_slowcase_cnt = 0;
   116 int Runtime1::_monitorexit_slowcase_cnt = 0;
   117 int Runtime1::_patch_code_slowcase_cnt = 0;
   118 int Runtime1::_throw_range_check_exception_count = 0;
   119 int Runtime1::_throw_index_exception_count = 0;
   120 int Runtime1::_throw_div0_exception_count = 0;
   121 int Runtime1::_throw_null_pointer_exception_count = 0;
   122 int Runtime1::_throw_class_cast_exception_count = 0;
   123 int Runtime1::_throw_incompatible_class_change_error_count = 0;
   124 int Runtime1::_throw_array_store_exception_count = 0;
   125 int Runtime1::_throw_count = 0;
   127 static int _byte_arraycopy_cnt = 0;
   128 static int _short_arraycopy_cnt = 0;
   129 static int _int_arraycopy_cnt = 0;
   130 static int _long_arraycopy_cnt = 0;
   131 static int _oop_arraycopy_cnt = 0;
   133 address Runtime1::arraycopy_count_address(BasicType type) {
   134   switch (type) {
   135   case T_BOOLEAN:
   136   case T_BYTE:   return (address)&_byte_arraycopy_cnt;
   137   case T_CHAR:
   138   case T_SHORT:  return (address)&_short_arraycopy_cnt;
   139   case T_FLOAT:
   140   case T_INT:    return (address)&_int_arraycopy_cnt;
   141   case T_DOUBLE:
   142   case T_LONG:   return (address)&_long_arraycopy_cnt;
   143   case T_ARRAY:
   144   case T_OBJECT: return (address)&_oop_arraycopy_cnt;
   145   default:
   146     ShouldNotReachHere();
   147     return NULL;
   148   }
   149 }
   152 #endif
   154 // Simple helper to see if the caller of a runtime stub which
   155 // entered the VM has been deoptimized
   157 static bool caller_is_deopted() {
   158   JavaThread* thread = JavaThread::current();
   159   RegisterMap reg_map(thread, false);
   160   frame runtime_frame = thread->last_frame();
   161   frame caller_frame = runtime_frame.sender(&reg_map);
   162   assert(caller_frame.is_compiled_frame(), "must be compiled");
   163   return caller_frame.is_deoptimized_frame();
   164 }
   166 // Stress deoptimization
   167 static void deopt_caller() {
   168   if ( !caller_is_deopted()) {
   169     JavaThread* thread = JavaThread::current();
   170     RegisterMap reg_map(thread, false);
   171     frame runtime_frame = thread->last_frame();
   172     frame caller_frame = runtime_frame.sender(&reg_map);
   173     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   174     assert(caller_is_deopted(), "Must be deoptimized");
   175   }
   176 }
   179 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
   180   assert(0 <= id && id < number_of_ids, "illegal stub id");
   181   ResourceMark rm;
   182   // create code buffer for code storage
   183   CodeBuffer code(buffer_blob);
   185   Compilation::setup_code_buffer(&code, 0);
   187   // create assembler for code generation
   188   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
   189   // generate code for runtime stub
   190   OopMapSet* oop_maps;
   191   oop_maps = generate_code_for(id, sasm);
   192   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
   193          "if stub has an oop map it must have a valid frame size");
   195 #ifdef ASSERT
   196   // Make sure that stubs that need oopmaps have them
   197   switch (id) {
   198     // These stubs don't need to have an oopmap
   199     case dtrace_object_alloc_id:
   200     case g1_pre_barrier_slow_id:
   201     case g1_post_barrier_slow_id:
   202     case slow_subtype_check_id:
   203     case fpu2long_stub_id:
   204     case unwind_exception_id:
   205     case counter_overflow_id:
   206 #if defined(SPARC) || defined(PPC)
   207     case handle_exception_nofpu_id:  // Unused on sparc
   208 #endif
   209       break;
   211     // All other stubs should have oopmaps
   212     default:
   213       assert(oop_maps != NULL, "must have an oopmap");
   214   }
   215 #endif
   217   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
   218   sasm->align(BytesPerWord);
   219   // make sure all code is in code buffer
   220   sasm->flush();
   221   // create blob - distinguish a few special cases
   222   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
   223                                                  &code,
   224                                                  CodeOffsets::frame_never_safe,
   225                                                  sasm->frame_size(),
   226                                                  oop_maps,
   227                                                  sasm->must_gc_arguments());
   228   // install blob
   229   assert(blob != NULL, "blob must exist");
   230   _blobs[id] = blob;
   231 }
   234 void Runtime1::initialize(BufferBlob* blob) {
   235   // platform-dependent initialization
   236   initialize_pd();
   237   // generate stubs
   238   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
   239   // printing
   240 #ifndef PRODUCT
   241   if (PrintSimpleStubs) {
   242     ResourceMark rm;
   243     for (int id = 0; id < number_of_ids; id++) {
   244       _blobs[id]->print();
   245       if (_blobs[id]->oop_maps() != NULL) {
   246         _blobs[id]->oop_maps()->print();
   247       }
   248     }
   249   }
   250 #endif
   251 }
   254 CodeBlob* Runtime1::blob_for(StubID id) {
   255   assert(0 <= id && id < number_of_ids, "illegal stub id");
   256   return _blobs[id];
   257 }
   260 const char* Runtime1::name_for(StubID id) {
   261   assert(0 <= id && id < number_of_ids, "illegal stub id");
   262   return _blob_names[id];
   263 }
   265 const char* Runtime1::name_for_address(address entry) {
   266   for (int id = 0; id < number_of_ids; id++) {
   267     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
   268   }
   270 #define FUNCTION_CASE(a, f) \
   271   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
   273   FUNCTION_CASE(entry, os::javaTimeMillis);
   274   FUNCTION_CASE(entry, os::javaTimeNanos);
   275   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
   276   FUNCTION_CASE(entry, SharedRuntime::d2f);
   277   FUNCTION_CASE(entry, SharedRuntime::d2i);
   278   FUNCTION_CASE(entry, SharedRuntime::d2l);
   279   FUNCTION_CASE(entry, SharedRuntime::dcos);
   280   FUNCTION_CASE(entry, SharedRuntime::dexp);
   281   FUNCTION_CASE(entry, SharedRuntime::dlog);
   282   FUNCTION_CASE(entry, SharedRuntime::dlog10);
   283   FUNCTION_CASE(entry, SharedRuntime::dpow);
   284   FUNCTION_CASE(entry, SharedRuntime::drem);
   285   FUNCTION_CASE(entry, SharedRuntime::dsin);
   286   FUNCTION_CASE(entry, SharedRuntime::dtan);
   287   FUNCTION_CASE(entry, SharedRuntime::f2i);
   288   FUNCTION_CASE(entry, SharedRuntime::f2l);
   289   FUNCTION_CASE(entry, SharedRuntime::frem);
   290   FUNCTION_CASE(entry, SharedRuntime::l2d);
   291   FUNCTION_CASE(entry, SharedRuntime::l2f);
   292   FUNCTION_CASE(entry, SharedRuntime::ldiv);
   293   FUNCTION_CASE(entry, SharedRuntime::lmul);
   294   FUNCTION_CASE(entry, SharedRuntime::lrem);
   295   FUNCTION_CASE(entry, SharedRuntime::lrem);
   296   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
   297   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
   298   FUNCTION_CASE(entry, is_instance_of);
   299   FUNCTION_CASE(entry, trace_block_entry);
   300 #ifdef JFR_HAVE_INTRINSICS
   301   FUNCTION_CASE(entry, JFR_TIME_FUNCTION);
   302 #endif
   303   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
   305 #undef FUNCTION_CASE
   307   // Soft float adds more runtime names.
   308   return pd_name_for_address(entry);
   309 }
   312 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
   313   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
   315   assert(klass->is_klass(), "not a class");
   316   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
   317   instanceKlassHandle h(thread, klass);
   318   h->check_valid_for_instantiation(true, CHECK);
   319   // make sure klass is initialized
   320   h->initialize(CHECK);
   321   // allocate instance and return via TLS
   322   oop obj = h->allocate_instance(CHECK);
   323   thread->set_vm_result(obj);
   324 JRT_END
   327 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
   328   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
   329   // Note: no handle for klass needed since they are not used
   330   //       anymore after new_typeArray() and no GC can happen before.
   331   //       (This may have to change if this code changes!)
   332   assert(klass->is_klass(), "not a class");
   333   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
   334   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
   335   thread->set_vm_result(obj);
   336   // This is pretty rare but this runtime patch is stressful to deoptimization
   337   // if we deoptimize here so force a deopt to stress the path.
   338   if (DeoptimizeALot) {
   339     deopt_caller();
   340   }
   342 JRT_END
   345 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
   346   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
   348   // Note: no handle for klass needed since they are not used
   349   //       anymore after new_objArray() and no GC can happen before.
   350   //       (This may have to change if this code changes!)
   351   assert(array_klass->is_klass(), "not a class");
   352   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
   353   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
   354   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
   355   thread->set_vm_result(obj);
   356   // This is pretty rare but this runtime patch is stressful to deoptimization
   357   // if we deoptimize here so force a deopt to stress the path.
   358   if (DeoptimizeALot) {
   359     deopt_caller();
   360   }
   361 JRT_END
   364 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
   365   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
   367   assert(klass->is_klass(), "not a class");
   368   assert(rank >= 1, "rank must be nonzero");
   369   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
   370   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
   371   thread->set_vm_result(obj);
   372 JRT_END
   375 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
   376   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
   377 JRT_END
   380 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
   381   ResourceMark rm(thread);
   382   const char* klass_name = obj->klass()->external_name();
   383   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
   384 JRT_END
   387 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
   388 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
   389 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
   390 // a constant.
   391 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
   392   nmethod* osr_nm = NULL;
   393   methodHandle method(THREAD, m);
   395   RegisterMap map(THREAD, false);
   396   frame fr =  THREAD->last_frame().sender(&map);
   397   nmethod* nm = (nmethod*) fr.cb();
   398   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
   399   methodHandle enclosing_method(THREAD, nm->method());
   401   CompLevel level = (CompLevel)nm->comp_level();
   402   int bci = InvocationEntryBci;
   403   if (branch_bci != InvocationEntryBci) {
   404     // Compute desination bci
   405     address pc = method()->code_base() + branch_bci;
   406     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
   407     int offset = 0;
   408     switch (branch) {
   409       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
   410       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
   411       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
   412       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
   413       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
   414       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
   415       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
   416         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
   417         break;
   418       case Bytecodes::_goto_w:
   419         offset = Bytes::get_Java_u4(pc + 1);
   420         break;
   421       default: ;
   422     }
   423     bci = branch_bci + offset;
   424   }
   425   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
   426   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
   427   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
   428   return osr_nm;
   429 }
   431 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
   432   nmethod* osr_nm;
   433   JRT_BLOCK
   434     osr_nm = counter_overflow_helper(thread, bci, method);
   435     if (osr_nm != NULL) {
   436       RegisterMap map(thread, false);
   437       frame fr =  thread->last_frame().sender(&map);
   438       Deoptimization::deoptimize_frame(thread, fr.id());
   439     }
   440   JRT_BLOCK_END
   441   return NULL;
   442 JRT_END
   444 extern void vm_exit(int code);
   446 // Enter this method from compiled code handler below. This is where we transition
   447 // to VM mode. This is done as a helper routine so that the method called directly
   448 // from compiled code does not have to transition to VM. This allows the entry
   449 // method to see if the nmethod that we have just looked up a handler for has
   450 // been deoptimized while we were in the vm. This simplifies the assembly code
   451 // cpu directories.
   452 //
   453 // We are entering here from exception stub (via the entry method below)
   454 // If there is a compiled exception handler in this method, we will continue there;
   455 // otherwise we will unwind the stack and continue at the caller of top frame method
   456 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
   457 // control the area where we can allow a safepoint. After we exit the safepoint area we can
   458 // check to see if the handler we are going to return is now in a nmethod that has
   459 // been deoptimized. If that is the case we return the deopt blob
   460 // unpack_with_exception entry instead. This makes life for the exception blob easier
   461 // because making that same check and diverting is painful from assembly language.
   462 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
   463   // Reset method handle flag.
   464   thread->set_is_method_handle_return(false);
   466   Handle exception(thread, ex);
   467   nm = CodeCache::find_nmethod(pc);
   468   assert(nm != NULL, "this is not an nmethod");
   469   // Adjust the pc as needed/
   470   if (nm->is_deopt_pc(pc)) {
   471     RegisterMap map(thread, false);
   472     frame exception_frame = thread->last_frame().sender(&map);
   473     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
   474     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
   475     pc = exception_frame.pc();
   476   }
   477 #ifdef ASSERT
   478   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
   479   assert(exception->is_oop(), "just checking");
   480   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
   481   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   482     if (ExitVMOnVerifyError) vm_exit(-1);
   483     ShouldNotReachHere();
   484   }
   485 #endif
   487   // Check the stack guard pages and reenable them if necessary and there is
   488   // enough space on the stack to do so.  Use fast exceptions only if the guard
   489   // pages are enabled.
   490   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   491   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   493   if (JvmtiExport::can_post_on_exceptions()) {
   494     // To ensure correct notification of exception catches and throws
   495     // we have to deoptimize here.  If we attempted to notify the
   496     // catches and throws during this exception lookup it's possible
   497     // we could deoptimize on the way out of the VM and end back in
   498     // the interpreter at the throw site.  This would result in double
   499     // notifications since the interpreter would also notify about
   500     // these same catches and throws as it unwound the frame.
   502     RegisterMap reg_map(thread);
   503     frame stub_frame = thread->last_frame();
   504     frame caller_frame = stub_frame.sender(&reg_map);
   506     // We don't really want to deoptimize the nmethod itself since we
   507     // can actually continue in the exception handler ourselves but I
   508     // don't see an easy way to have the desired effect.
   509     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   510     assert(caller_is_deopted(), "Must be deoptimized");
   512     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   513   }
   515   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
   516   if (guard_pages_enabled) {
   517     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
   518     if (fast_continuation != NULL) {
   519       // Set flag if return address is a method handle call site.
   520       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
   521       return fast_continuation;
   522     }
   523   }
   525   // If the stack guard pages are enabled, check whether there is a handler in
   526   // the current method.  Otherwise (guard pages disabled), force an unwind and
   527   // skip the exception cache update (i.e., just leave continuation==NULL).
   528   address continuation = NULL;
   529   if (guard_pages_enabled) {
   531     // New exception handling mechanism can support inlined methods
   532     // with exception handlers since the mappings are from PC to PC
   534     // debugging support
   535     // tracing
   536     if (TraceExceptions) {
   537       ttyLocker ttyl;
   538       ResourceMark rm;
   539       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ") thrown in compiled method <%s> at PC " INTPTR_FORMAT " for thread " INTPTR_FORMAT "",
   540                     exception->print_value_string(), p2i((address)exception()), nm->method()->print_value_string(), p2i(pc), p2i(thread));
   541     }
   542     // for AbortVMOnException flag
   543     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   545     // Clear out the exception oop and pc since looking up an
   546     // exception handler can cause class loading, which might throw an
   547     // exception and those fields are expected to be clear during
   548     // normal bytecode execution.
   549     thread->clear_exception_oop_and_pc();
   551     bool recursive_exception = false;
   552     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
   553     // If an exception was thrown during exception dispatch, the exception oop may have changed
   554     thread->set_exception_oop(exception());
   555     thread->set_exception_pc(pc);
   557     // the exception cache is used only by non-implicit exceptions
   558     // Update the exception cache only when there didn't happen
   559     // another exception during the computation of the compiled
   560     // exception handler. Checking for exception oop equality is not
   561     // sufficient because some exceptions are pre-allocated and reused.
   562     if (continuation != NULL && !recursive_exception) {
   563       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
   564     }
   565   }
   567   thread->set_vm_result(exception());
   568   // Set flag if return address is a method handle call site.
   569   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
   571   if (TraceExceptions) {
   572     ttyLocker ttyl;
   573     ResourceMark rm;
   574     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
   575                   p2i(thread), p2i(continuation), p2i(pc));
   576   }
   578   return continuation;
   579 JRT_END
   581 // Enter this method from compiled code only if there is a Java exception handler
   582 // in the method handling the exception.
   583 // We are entering here from exception stub. We don't do a normal VM transition here.
   584 // We do it in a helper. This is so we can check to see if the nmethod we have just
   585 // searched for an exception handler has been deoptimized in the meantime.
   586 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
   587   oop exception = thread->exception_oop();
   588   address pc = thread->exception_pc();
   589   // Still in Java mode
   590   DEBUG_ONLY(ResetNoHandleMark rnhm);
   591   nmethod* nm = NULL;
   592   address continuation = NULL;
   593   {
   594     // Enter VM mode by calling the helper
   595     ResetNoHandleMark rnhm;
   596     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
   597   }
   598   // Back in JAVA, use no oops DON'T safepoint
   600   // Now check to see if the nmethod we were called from is now deoptimized.
   601   // If so we must return to the deopt blob and deoptimize the nmethod
   602   if (nm != NULL && caller_is_deopted()) {
   603     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   604   }
   606   assert(continuation != NULL, "no handler found");
   607   return continuation;
   608 }
   611 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
   612   NOT_PRODUCT(_throw_range_check_exception_count++;)
   613   char message[jintAsStringSize];
   614   sprintf(message, "%d", index);
   615   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
   616 JRT_END
   619 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
   620   NOT_PRODUCT(_throw_index_exception_count++;)
   621   char message[16];
   622   sprintf(message, "%d", index);
   623   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
   624 JRT_END
   627 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
   628   NOT_PRODUCT(_throw_div0_exception_count++;)
   629   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   630 JRT_END
   633 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
   634   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
   635   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   636 JRT_END
   639 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
   640   NOT_PRODUCT(_throw_class_cast_exception_count++;)
   641   ResourceMark rm(thread);
   642   char* message = SharedRuntime::generate_class_cast_message(
   643     thread, object->klass()->external_name());
   644   SharedRuntime::throw_and_post_jvmti_exception(
   645     thread, vmSymbols::java_lang_ClassCastException(), message);
   646 JRT_END
   649 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
   650   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
   651   ResourceMark rm(thread);
   652   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
   653 JRT_END
   656 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
   657   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
   658   if (PrintBiasedLockingStatistics) {
   659     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
   660   }
   661   Handle h_obj(thread, obj);
   662   assert(h_obj()->is_oop(), "must be NULL or an object");
   663   if (UseBiasedLocking) {
   664     // Retry fast entry if bias is revoked to avoid unnecessary inflation
   665     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
   666   } else {
   667     if (UseFastLocking) {
   668       // When using fast locking, the compiled code has already tried the fast case
   669       assert(obj == lock->obj(), "must match");
   670       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
   671     } else {
   672       lock->set_obj(obj);
   673       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
   674     }
   675   }
   676 JRT_END
   679 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
   680   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
   681   assert(thread == JavaThread::current(), "threads must correspond");
   682   assert(thread->last_Java_sp(), "last_Java_sp must be set");
   683   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
   684   EXCEPTION_MARK;
   686   oop obj = lock->obj();
   687   assert(obj->is_oop(), "must be NULL or an object");
   688   if (UseFastLocking) {
   689     // When using fast locking, the compiled code has already tried the fast case
   690     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
   691   } else {
   692     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
   693   }
   694 JRT_END
   696 // Cf. OptoRuntime::deoptimize_caller_frame
   697 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread))
   698   // Called from within the owner thread, so no need for safepoint
   699   RegisterMap reg_map(thread, false);
   700   frame stub_frame = thread->last_frame();
   701   assert(stub_frame.is_runtime_frame(), "sanity check");
   702   frame caller_frame = stub_frame.sender(&reg_map);
   704   // We are coming from a compiled method; check this is true.
   705   assert(CodeCache::find_nmethod(caller_frame.pc()) != NULL, "sanity");
   707   // Deoptimize the caller frame.
   708   Deoptimization::deoptimize_frame(thread, caller_frame.id());
   710   // Return to the now deoptimized frame.
   711 JRT_END
   714 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
   715   Bytecode_field field_access(caller, bci);
   716   // This can be static or non-static field access
   717   Bytecodes::Code code       = field_access.code();
   719   // We must load class, initialize class and resolvethe field
   720   fieldDescriptor result; // initialize class if needed
   721   constantPoolHandle constants(THREAD, caller->constants());
   722   LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
   723   return result.field_holder();
   724 }
   727 //
   728 // This routine patches sites where a class wasn't loaded or
   729 // initialized at the time the code was generated.  It handles
   730 // references to classes, fields and forcing of initialization.  Most
   731 // of the cases are straightforward and involving simply forcing
   732 // resolution of a class, rewriting the instruction stream with the
   733 // needed constant and replacing the call in this function with the
   734 // patched code.  The case for static field is more complicated since
   735 // the thread which is in the process of initializing a class can
   736 // access it's static fields but other threads can't so the code
   737 // either has to deoptimize when this case is detected or execute a
   738 // check that the current thread is the initializing thread.  The
   739 // current
   740 //
   741 // Patches basically look like this:
   742 //
   743 //
   744 // patch_site: jmp patch stub     ;; will be patched
   745 // continue:   ...
   746 //             ...
   747 //             ...
   748 //             ...
   749 //
   750 // They have a stub which looks like this:
   751 //
   752 //             ;; patch body
   753 //             movl <const>, reg           (for class constants)
   754 //        <or> movl [reg1 + <const>], reg  (for field offsets)
   755 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
   756 //             <being_init offset> <bytes to copy> <bytes to skip>
   757 // patch_stub: call Runtime1::patch_code (through a runtime stub)
   758 //             jmp patch_site
   759 //
   760 //
   761 // A normal patch is done by rewriting the patch body, usually a move,
   762 // and then copying it into place over top of the jmp instruction
   763 // being careful to flush caches and doing it in an MP-safe way.  The
   764 // constants following the patch body are used to find various pieces
   765 // of the patch relative to the call site for Runtime1::patch_code.
   766 // The case for getstatic and putstatic is more complicated because
   767 // getstatic and putstatic have special semantics when executing while
   768 // the class is being initialized.  getstatic/putstatic on a class
   769 // which is being_initialized may be executed by the initializing
   770 // thread but other threads have to block when they execute it.  This
   771 // is accomplished in compiled code by executing a test of the current
   772 // thread against the initializing thread of the class.  It's emitted
   773 // as boilerplate in their stub which allows the patched code to be
   774 // executed before it's copied back into the main body of the nmethod.
   775 //
   776 // being_init: get_thread(<tmp reg>
   777 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
   778 //             jne patch_stub
   779 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
   780 //             movl reg, [reg1 + <const>]  (for field offsets)
   781 //             jmp continue
   782 //             <being_init offset> <bytes to copy> <bytes to skip>
   783 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
   784 //             jmp patch_site
   785 //
   786 // If the class is being initialized the patch body is rewritten and
   787 // the patch site is rewritten to jump to being_init, instead of
   788 // patch_stub.  Whenever this code is executed it checks the current
   789 // thread against the intializing thread so other threads will enter
   790 // the runtime and end up blocked waiting the class to finish
   791 // initializing inside the calls to resolve_field below.  The
   792 // initializing class will continue on it's way.  Once the class is
   793 // fully_initialized, the intializing_thread of the class becomes
   794 // NULL, so the next thread to execute this code will fail the test,
   795 // call into patch_code and complete the patching process by copying
   796 // the patch body back into the main part of the nmethod and resume
   797 // executing.
   798 //
   799 //
   801 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
   802   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
   804   ResourceMark rm(thread);
   805   RegisterMap reg_map(thread, false);
   806   frame runtime_frame = thread->last_frame();
   807   frame caller_frame = runtime_frame.sender(&reg_map);
   809   // last java frame on stack
   810   vframeStream vfst(thread, true);
   811   assert(!vfst.at_end(), "Java frame must exist");
   813   methodHandle caller_method(THREAD, vfst.method());
   814   // Note that caller_method->code() may not be same as caller_code because of OSR's
   815   // Note also that in the presence of inlining it is not guaranteed
   816   // that caller_method() == caller_code->method()
   818   int bci = vfst.bci();
   819   Bytecodes::Code code = caller_method()->java_code_at(bci);
   821 #ifndef PRODUCT
   822   // this is used by assertions in the access_field_patching_id
   823   BasicType patch_field_type = T_ILLEGAL;
   824 #endif // PRODUCT
   825   bool deoptimize_for_volatile = false;
   826   int patch_field_offset = -1;
   827   KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
   828   KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
   829   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
   830   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
   831   bool load_klass_or_mirror_patch_id =
   832     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
   834   if (stub_id == Runtime1::access_field_patching_id) {
   836     Bytecode_field field_access(caller_method, bci);
   837     fieldDescriptor result; // initialize class if needed
   838     Bytecodes::Code code = field_access.code();
   839     constantPoolHandle constants(THREAD, caller_method->constants());
   840     LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
   841     patch_field_offset = result.offset();
   843     // If we're patching a field which is volatile then at compile it
   844     // must not have been know to be volatile, so the generated code
   845     // isn't correct for a volatile reference.  The nmethod has to be
   846     // deoptimized so that the code can be regenerated correctly.
   847     // This check is only needed for access_field_patching since this
   848     // is the path for patching field offsets.  load_klass is only
   849     // used for patching references to oops which don't need special
   850     // handling in the volatile case.
   851     deoptimize_for_volatile = result.access_flags().is_volatile();
   853 #ifndef PRODUCT
   854     patch_field_type = result.field_type();
   855 #endif
   856   } else if (load_klass_or_mirror_patch_id) {
   857     Klass* k = NULL;
   858     switch (code) {
   859       case Bytecodes::_putstatic:
   860       case Bytecodes::_getstatic:
   861         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
   862           init_klass = KlassHandle(THREAD, klass);
   863           mirror = Handle(THREAD, klass->java_mirror());
   864         }
   865         break;
   866       case Bytecodes::_new:
   867         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
   868           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
   869         }
   870         break;
   871       case Bytecodes::_multianewarray:
   872         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
   873           k = caller_method->constants()->klass_at(mna.index(), CHECK);
   874         }
   875         break;
   876       case Bytecodes::_instanceof:
   877         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
   878           k = caller_method->constants()->klass_at(io.index(), CHECK);
   879         }
   880         break;
   881       case Bytecodes::_checkcast:
   882         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
   883           k = caller_method->constants()->klass_at(cc.index(), CHECK);
   884         }
   885         break;
   886       case Bytecodes::_anewarray:
   887         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
   888           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
   889           k = ek->array_klass(CHECK);
   890         }
   891         break;
   892       case Bytecodes::_ldc:
   893       case Bytecodes::_ldc_w:
   894         {
   895           Bytecode_loadconstant cc(caller_method, bci);
   896           oop m = cc.resolve_constant(CHECK);
   897           mirror = Handle(THREAD, m);
   898         }
   899         break;
   900       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
   901     }
   902     // convert to handle
   903     load_klass = KlassHandle(THREAD, k);
   904   } else if (stub_id == load_appendix_patching_id) {
   905     Bytecode_invoke bytecode(caller_method, bci);
   906     Bytecodes::Code bc = bytecode.invoke_code();
   908     CallInfo info;
   909     constantPoolHandle pool(thread, caller_method->constants());
   910     int index = bytecode.index();
   911     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
   912     appendix = info.resolved_appendix();
   913     switch (bc) {
   914       case Bytecodes::_invokehandle: {
   915         int cache_index = ConstantPool::decode_cpcache_index(index, true);
   916         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
   917         pool->cache()->entry_at(cache_index)->set_method_handle(pool, info);
   918         break;
   919       }
   920       case Bytecodes::_invokedynamic: {
   921         pool->invokedynamic_cp_cache_entry_at(index)->set_dynamic_call(pool, info);
   922         break;
   923       }
   924       default: fatal("unexpected bytecode for load_appendix_patching_id");
   925     }
   926   } else {
   927     ShouldNotReachHere();
   928   }
   930   if (deoptimize_for_volatile) {
   931     // At compile time we assumed the field wasn't volatile but after
   932     // loading it turns out it was volatile so we have to throw the
   933     // compiled code out and let it be regenerated.
   934     if (TracePatching) {
   935       tty->print_cr("Deoptimizing for patching volatile field reference");
   936     }
   937     // It's possible the nmethod was invalidated in the last
   938     // safepoint, but if it's still alive then make it not_entrant.
   939     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   940     if (nm != NULL) {
   941       nm->make_not_entrant();
   942     }
   944     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   946     // Return to the now deoptimized frame.
   947   }
   949   // Now copy code back
   951   {
   952     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
   953     //
   954     // Deoptimization may have happened while we waited for the lock.
   955     // In that case we don't bother to do any patching we just return
   956     // and let the deopt happen
   957     if (!caller_is_deopted()) {
   958       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
   959       address instr_pc = jump->jump_destination();
   960       NativeInstruction* ni = nativeInstruction_at(instr_pc);
   961       if (ni->is_jump() ) {
   962         // the jump has not been patched yet
   963         // The jump destination is slow case and therefore not part of the stubs
   964         // (stubs are only for StaticCalls)
   966         // format of buffer
   967         //    ....
   968         //    instr byte 0     <-- copy_buff
   969         //    instr byte 1
   970         //    ..
   971         //    instr byte n-1
   972         //      n
   973         //    ....             <-- call destination
   975         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
   976         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
   977         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
   978         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
   979         address copy_buff = stub_location - *byte_skip - *byte_count;
   980         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
   981         if (TracePatching) {
   982           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
   983                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
   984           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
   985           assert(caller_code != NULL, "nmethod not found");
   987           // NOTE we use pc() not original_pc() because we already know they are
   988           // identical otherwise we'd have never entered this block of code
   990           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
   991           assert(map != NULL, "null check");
   992           map->print();
   993           tty->cr();
   995           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   996         }
   997         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
   998         bool do_patch = true;
   999         if (stub_id == Runtime1::access_field_patching_id) {
  1000           // The offset may not be correct if the class was not loaded at code generation time.
  1001           // Set it now.
  1002           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
  1003           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
  1004           assert(patch_field_offset >= 0, "illegal offset");
  1005           n_move->add_offset_in_bytes(patch_field_offset);
  1006         } else if (load_klass_or_mirror_patch_id) {
  1007           // If a getstatic or putstatic is referencing a klass which
  1008           // isn't fully initialized, the patch body isn't copied into
  1009           // place until initialization is complete.  In this case the
  1010           // patch site is setup so that any threads besides the
  1011           // initializing thread are forced to come into the VM and
  1012           // block.
  1013           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
  1014                      InstanceKlass::cast(init_klass())->is_initialized();
  1015           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
  1016           if (jump->jump_destination() == being_initialized_entry) {
  1017             assert(do_patch == true, "initialization must be complete at this point");
  1018           } else {
  1019             // patch the instruction <move reg, klass>
  1020             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
  1022             assert(n_copy->data() == 0 ||
  1023                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
  1024                    "illegal init value");
  1025             if (stub_id == Runtime1::load_klass_patching_id) {
  1026               assert(load_klass() != NULL, "klass not set");
  1027               n_copy->set_data((intx) (load_klass()));
  1028             } else {
  1029               assert(mirror() != NULL, "klass not set");
  1030               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
  1031               n_copy->set_data(cast_from_oop<intx>(mirror()));
  1034             if (TracePatching) {
  1035               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
  1038         } else if (stub_id == Runtime1::load_appendix_patching_id) {
  1039           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
  1040           assert(n_copy->data() == 0 ||
  1041                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
  1042                  "illegal init value");
  1043           n_copy->set_data(cast_from_oop<intx>(appendix()));
  1045           if (TracePatching) {
  1046             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
  1048         } else {
  1049           ShouldNotReachHere();
  1052 #if defined(SPARC) || defined(PPC)
  1053         if (load_klass_or_mirror_patch_id ||
  1054             stub_id == Runtime1::load_appendix_patching_id) {
  1055           // Update the location in the nmethod with the proper
  1056           // metadata.  When the code was generated, a NULL was stuffed
  1057           // in the metadata table and that table needs to be update to
  1058           // have the right value.  On intel the value is kept
  1059           // directly in the instruction instead of in the metadata
  1060           // table, so set_data above effectively updated the value.
  1061           nmethod* nm = CodeCache::find_nmethod(instr_pc);
  1062           assert(nm != NULL, "invalid nmethod_pc");
  1063           RelocIterator mds(nm, copy_buff, copy_buff + 1);
  1064           bool found = false;
  1065           while (mds.next() && !found) {
  1066             if (mds.type() == relocInfo::oop_type) {
  1067               assert(stub_id == Runtime1::load_mirror_patching_id ||
  1068                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
  1069               oop_Relocation* r = mds.oop_reloc();
  1070               oop* oop_adr = r->oop_addr();
  1071               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
  1072               r->fix_oop_relocation();
  1073               found = true;
  1074             } else if (mds.type() == relocInfo::metadata_type) {
  1075               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
  1076               metadata_Relocation* r = mds.metadata_reloc();
  1077               Metadata** metadata_adr = r->metadata_addr();
  1078               *metadata_adr = load_klass();
  1079               r->fix_metadata_relocation();
  1080               found = true;
  1083           assert(found, "the metadata must exist!");
  1085 #endif
  1086         if (do_patch) {
  1087           // replace instructions
  1088           // first replace the tail, then the call
  1089 #ifdef ARM
  1090           if((load_klass_or_mirror_patch_id ||
  1091               stub_id == Runtime1::load_appendix_patching_id) &&
  1092               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
  1093             nmethod* nm = CodeCache::find_nmethod(instr_pc);
  1094             address addr = NULL;
  1095             assert(nm != NULL, "invalid nmethod_pc");
  1096             RelocIterator mds(nm, copy_buff, copy_buff + 1);
  1097             while (mds.next()) {
  1098               if (mds.type() == relocInfo::oop_type) {
  1099                 assert(stub_id == Runtime1::load_mirror_patching_id ||
  1100                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
  1101                 oop_Relocation* r = mds.oop_reloc();
  1102                 addr = (address)r->oop_addr();
  1103                 break;
  1104               } else if (mds.type() == relocInfo::metadata_type) {
  1105                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
  1106                 metadata_Relocation* r = mds.metadata_reloc();
  1107                 addr = (address)r->metadata_addr();
  1108                 break;
  1111             assert(addr != NULL, "metadata relocation must exist");
  1112             copy_buff -= *byte_count;
  1113             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
  1114             n_copy2->set_pc_relative_offset(addr, instr_pc);
  1116 #endif
  1118           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
  1119             address ptr = copy_buff + i;
  1120             int a_byte = (*ptr) & 0xFF;
  1121             address dst = instr_pc + i;
  1122             *(unsigned char*)dst = (unsigned char) a_byte;
  1124           ICache::invalidate_range(instr_pc, *byte_count);
  1125           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
  1127           if (load_klass_or_mirror_patch_id ||
  1128               stub_id == Runtime1::load_appendix_patching_id) {
  1129             relocInfo::relocType rtype =
  1130               (stub_id == Runtime1::load_klass_patching_id) ?
  1131                                    relocInfo::metadata_type :
  1132                                    relocInfo::oop_type;
  1133             // update relocInfo to metadata
  1134             nmethod* nm = CodeCache::find_nmethod(instr_pc);
  1135             assert(nm != NULL, "invalid nmethod_pc");
  1137             // The old patch site is now a move instruction so update
  1138             // the reloc info so that it will get updated during
  1139             // future GCs.
  1140             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
  1141             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
  1142                                                      relocInfo::none, rtype);
  1143 #ifdef SPARC
  1144             // Sparc takes two relocations for an metadata so update the second one.
  1145             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
  1146             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
  1147             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
  1148                                                      relocInfo::none, rtype);
  1149 #endif
  1150 #ifdef PPC
  1151           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
  1152             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
  1153             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
  1154                                                      relocInfo::none, rtype);
  1156 #endif
  1159         } else {
  1160           ICache::invalidate_range(copy_buff, *byte_count);
  1161           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
  1167   // If we are patching in a non-perm oop, make sure the nmethod
  1168   // is on the right list.
  1169   if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
  1170                               (appendix.not_null() && appendix->is_scavengable()))) {
  1171     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1172     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
  1173     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
  1174     if (!nm->on_scavenge_root_list()) {
  1175       CodeCache::add_scavenge_root_nmethod(nm);
  1178     // Since we've patched some oops in the nmethod,
  1179     // (re)register it with the heap.
  1180     Universe::heap()->register_nmethod(nm);
  1182 JRT_END
  1184 //
  1185 // Entry point for compiled code. We want to patch a nmethod.
  1186 // We don't do a normal VM transition here because we want to
  1187 // know after the patching is complete and any safepoint(s) are taken
  1188 // if the calling nmethod was deoptimized. We do this by calling a
  1189 // helper method which does the normal VM transition and when it
  1190 // completes we can check for deoptimization. This simplifies the
  1191 // assembly code in the cpu directories.
  1192 //
  1193 int Runtime1::move_klass_patching(JavaThread* thread) {
  1194 //
  1195 // NOTE: we are still in Java
  1196 //
  1197   Thread* THREAD = thread;
  1198   debug_only(NoHandleMark nhm;)
  1200     // Enter VM mode
  1202     ResetNoHandleMark rnhm;
  1203     patch_code(thread, load_klass_patching_id);
  1205   // Back in JAVA, use no oops DON'T safepoint
  1207   // Return true if calling code is deoptimized
  1209   return caller_is_deopted();
  1212 int Runtime1::move_mirror_patching(JavaThread* thread) {
  1213 //
  1214 // NOTE: we are still in Java
  1215 //
  1216   Thread* THREAD = thread;
  1217   debug_only(NoHandleMark nhm;)
  1219     // Enter VM mode
  1221     ResetNoHandleMark rnhm;
  1222     patch_code(thread, load_mirror_patching_id);
  1224   // Back in JAVA, use no oops DON'T safepoint
  1226   // Return true if calling code is deoptimized
  1228   return caller_is_deopted();
  1231 int Runtime1::move_appendix_patching(JavaThread* thread) {
  1232 //
  1233 // NOTE: we are still in Java
  1234 //
  1235   Thread* THREAD = thread;
  1236   debug_only(NoHandleMark nhm;)
  1238     // Enter VM mode
  1240     ResetNoHandleMark rnhm;
  1241     patch_code(thread, load_appendix_patching_id);
  1243   // Back in JAVA, use no oops DON'T safepoint
  1245   // Return true if calling code is deoptimized
  1247   return caller_is_deopted();
  1249 //
  1250 // Entry point for compiled code. We want to patch a nmethod.
  1251 // We don't do a normal VM transition here because we want to
  1252 // know after the patching is complete and any safepoint(s) are taken
  1253 // if the calling nmethod was deoptimized. We do this by calling a
  1254 // helper method which does the normal VM transition and when it
  1255 // completes we can check for deoptimization. This simplifies the
  1256 // assembly code in the cpu directories.
  1257 //
  1259 int Runtime1::access_field_patching(JavaThread* thread) {
  1260 //
  1261 // NOTE: we are still in Java
  1262 //
  1263   Thread* THREAD = thread;
  1264   debug_only(NoHandleMark nhm;)
  1266     // Enter VM mode
  1268     ResetNoHandleMark rnhm;
  1269     patch_code(thread, access_field_patching_id);
  1271   // Back in JAVA, use no oops DON'T safepoint
  1273   // Return true if calling code is deoptimized
  1275   return caller_is_deopted();
  1276 JRT_END
  1279 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
  1280   // for now we just print out the block id
  1281   tty->print("%d ", block_id);
  1282 JRT_END
  1285 // Array copy return codes.
  1286 enum {
  1287   ac_failed = -1, // arraycopy failed
  1288   ac_ok = 0       // arraycopy succeeded
  1289 };
  1292 // Below length is the # elements copied.
  1293 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
  1294                                           oopDesc* dst, T* dst_addr,
  1295                                           int length) {
  1297   // For performance reasons, we assume we are using a card marking write
  1298   // barrier. The assert will fail if this is not the case.
  1299   // Note that we use the non-virtual inlineable variant of write_ref_array.
  1300   BarrierSet* bs = Universe::heap()->barrier_set();
  1301   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1302   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1303   if (src == dst) {
  1304     // same object, no check
  1305     bs->write_ref_array_pre(dst_addr, length);
  1306     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1307     bs->write_ref_array((HeapWord*)dst_addr, length);
  1308     return ac_ok;
  1309   } else {
  1310     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
  1311     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
  1312     if (stype == bound || stype->is_subtype_of(bound)) {
  1313       // Elements are guaranteed to be subtypes, so no check necessary
  1314       bs->write_ref_array_pre(dst_addr, length);
  1315       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1316       bs->write_ref_array((HeapWord*)dst_addr, length);
  1317       return ac_ok;
  1320   return ac_failed;
  1323 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
  1324 // and we did not copy anything
  1325 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
  1326 #ifndef PRODUCT
  1327   _generic_arraycopy_cnt++;        // Slow-path oop array copy
  1328 #endif
  1330   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
  1331   if (!dst->is_array() || !src->is_array()) return ac_failed;
  1332   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
  1333   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
  1335   if (length == 0) return ac_ok;
  1336   if (src->is_typeArray()) {
  1337     Klass* klass_oop = src->klass();
  1338     if (klass_oop != dst->klass()) return ac_failed;
  1339     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
  1340     const int l2es = klass->log2_element_size();
  1341     const int ihs = klass->array_header_in_bytes() / wordSize;
  1342     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
  1343     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
  1344     // Potential problem: memmove is not guaranteed to be word atomic
  1345     // Revisit in Merlin
  1346     memmove(dst_addr, src_addr, length << l2es);
  1347     return ac_ok;
  1348   } else if (src->is_objArray() && dst->is_objArray()) {
  1349     if (UseCompressedOops) {
  1350       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
  1351       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
  1352       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1353     } else {
  1354       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
  1355       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
  1356       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1359   return ac_failed;
  1360 JRT_END
  1363 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
  1364 #ifndef PRODUCT
  1365   _primitive_arraycopy_cnt++;
  1366 #endif
  1368   if (length == 0) return;
  1369   // Not guaranteed to be word atomic, but that doesn't matter
  1370   // for anything but an oop array, which is covered by oop_arraycopy.
  1371   Copy::conjoint_jbytes(src, dst, length);
  1372 JRT_END
  1374 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
  1375 #ifndef PRODUCT
  1376   _oop_arraycopy_cnt++;
  1377 #endif
  1379   if (num == 0) return;
  1380   BarrierSet* bs = Universe::heap()->barrier_set();
  1381   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1382   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1383   if (UseCompressedOops) {
  1384     bs->write_ref_array_pre((narrowOop*)dst, num);
  1385     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
  1386   } else {
  1387     bs->write_ref_array_pre((oop*)dst, num);
  1388     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
  1390   bs->write_ref_array(dst, num);
  1391 JRT_END
  1394 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
  1395   // had to return int instead of bool, otherwise there may be a mismatch
  1396   // between the C calling convention and the Java one.
  1397   // e.g., on x86, GCC may clear only %al when returning a bool false, but
  1398   // JVM takes the whole %eax as the return value, which may misinterpret
  1399   // the return value as a boolean true.
  1401   assert(mirror != NULL, "should null-check on mirror before calling");
  1402   Klass* k = java_lang_Class::as_Klass(mirror);
  1403   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
  1404 JRT_END
  1406 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
  1407   ResourceMark rm;
  1409   assert(!TieredCompilation, "incompatible with tiered compilation");
  1411   RegisterMap reg_map(thread, false);
  1412   frame runtime_frame = thread->last_frame();
  1413   frame caller_frame = runtime_frame.sender(&reg_map);
  1415   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
  1416   assert (nm != NULL, "no more nmethod?");
  1417   nm->make_not_entrant();
  1419   methodHandle m(nm->method());
  1420   MethodData* mdo = m->method_data();
  1422   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
  1423     // Build an MDO.  Ignore errors like OutOfMemory;
  1424     // that simply means we won't have an MDO to update.
  1425     Method::build_interpreter_method_data(m, THREAD);
  1426     if (HAS_PENDING_EXCEPTION) {
  1427       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1428       CLEAR_PENDING_EXCEPTION;
  1430     mdo = m->method_data();
  1433   if (mdo != NULL) {
  1434     mdo->inc_trap_count(Deoptimization::Reason_none);
  1437   if (TracePredicateFailedTraps) {
  1438     stringStream ss1, ss2;
  1439     vframeStream vfst(thread);
  1440     methodHandle inlinee = methodHandle(vfst.method());
  1441     inlinee->print_short_name(&ss1);
  1442     m->print_short_name(&ss2);
  1443     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
  1447   Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1449 JRT_END
  1451 #ifndef PRODUCT
  1452 void Runtime1::print_statistics() {
  1453   tty->print_cr("C1 Runtime statistics:");
  1454   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
  1455   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
  1456   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
  1457   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
  1458   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
  1459   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
  1460   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
  1461   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_cnt);
  1462   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_cnt);
  1463   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_cnt);
  1464   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_cnt);
  1465   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
  1466   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
  1467   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_cnt);
  1468   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
  1469   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
  1470   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
  1472   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
  1473   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
  1474   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
  1475   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
  1476   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
  1477   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
  1478   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
  1480   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
  1481   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
  1482   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
  1483   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
  1484   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
  1485   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
  1486   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
  1487   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
  1489   SharedRuntime::print_ic_miss_histogram();
  1490   tty->cr();
  1492 #endif // PRODUCT

mercurial