src/os/windows/vm/os_windows.cpp

Mon, 12 Aug 2019 18:30:40 +0300

author
apetushkov
date
Mon, 12 Aug 2019 18:30:40 +0300
changeset 9858
b985cbb00e68
parent 9711
0f2fe7d37d8c
child 9891
4904bded9702
permissions
-rw-r--r--

8223147: JFR Backport
8199712: Flight Recorder
8203346: JFR: Inconsistent signature of jfr_add_string_constant
8195817: JFR.stop should require name of recording
8195818: JFR.start should increase autogenerated name by one
8195819: Remove recording=x from jcmd JFR.check output
8203921: JFR thread sampling is missing fixes from JDK-8194552
8203929: Limit amount of data for JFR.dump
8203664: JFR start failure after AppCDS archive created with JFR StartFlightRecording
8003209: JFR events for network utilization
8207392: [PPC64] Implement JFR profiling
8202835: jfr/event/os/TestSystemProcess.java fails on missing events
Summary: Backport JFR from JDK11. Initial integration
Reviewed-by: neugens

     1 /*
     2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
    26 #define _WIN32_WINNT 0x500
    28 // no precompiled headers
    29 #include "classfile/classLoader.hpp"
    30 #include "classfile/systemDictionary.hpp"
    31 #include "classfile/vmSymbols.hpp"
    32 #include "code/icBuffer.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/disassembler.hpp"
    36 #include "interpreter/interpreter.hpp"
    37 #include "jvm_windows.h"
    38 #include "memory/allocation.inline.hpp"
    39 #include "memory/filemap.hpp"
    40 #include "mutex_windows.inline.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "os_share_windows.hpp"
    43 #include "prims/jniFastGetField.hpp"
    44 #include "prims/jvm.h"
    45 #include "prims/jvm_misc.hpp"
    46 #include "runtime/arguments.hpp"
    47 #include "runtime/extendedPC.hpp"
    48 #include "runtime/globals.hpp"
    49 #include "runtime/interfaceSupport.hpp"
    50 #include "runtime/java.hpp"
    51 #include "runtime/javaCalls.hpp"
    52 #include "runtime/mutexLocker.hpp"
    53 #include "runtime/objectMonitor.hpp"
    54 #include "runtime/orderAccess.inline.hpp"
    55 #include "runtime/osThread.hpp"
    56 #include "runtime/perfMemory.hpp"
    57 #include "runtime/sharedRuntime.hpp"
    58 #include "runtime/statSampler.hpp"
    59 #include "runtime/stubRoutines.hpp"
    60 #include "runtime/thread.inline.hpp"
    61 #include "runtime/threadCritical.hpp"
    62 #include "runtime/timer.hpp"
    63 #include "services/attachListener.hpp"
    64 #include "services/memTracker.hpp"
    65 #include "services/runtimeService.hpp"
    66 #include "utilities/decoder.hpp"
    67 #include "utilities/defaultStream.hpp"
    68 #include "utilities/events.hpp"
    69 #include "utilities/growableArray.hpp"
    70 #include "utilities/vmError.hpp"
    72 #ifdef _DEBUG
    73 #include <crtdbg.h>
    74 #endif
    77 #include <windows.h>
    78 #include <sys/types.h>
    79 #include <sys/stat.h>
    80 #include <sys/timeb.h>
    81 #include <objidl.h>
    82 #include <shlobj.h>
    84 #include <malloc.h>
    85 #include <signal.h>
    86 #include <direct.h>
    87 #include <errno.h>
    88 #include <fcntl.h>
    89 #include <io.h>
    90 #include <process.h>              // For _beginthreadex(), _endthreadex()
    91 #include <imagehlp.h>             // For os::dll_address_to_function_name
    92 /* for enumerating dll libraries */
    93 #include <vdmdbg.h>
    95 // for timer info max values which include all bits
    96 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    98 // For DLL loading/load error detection
    99 // Values of PE COFF
   100 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
   101 #define IMAGE_FILE_SIGNATURE_LENGTH 4
   103 static HANDLE main_process;
   104 static HANDLE main_thread;
   105 static int    main_thread_id;
   107 static FILETIME process_creation_time;
   108 static FILETIME process_exit_time;
   109 static FILETIME process_user_time;
   110 static FILETIME process_kernel_time;
   112 #ifdef _M_IA64
   113   #define __CPU__ ia64
   114 #else
   115   #ifdef _M_AMD64
   116     #define __CPU__ amd64
   117   #else
   118     #define __CPU__ i486
   119   #endif
   120 #endif
   122 // save DLL module handle, used by GetModuleFileName
   124 HINSTANCE vm_lib_handle;
   126 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
   127   switch (reason) {
   128     case DLL_PROCESS_ATTACH:
   129       vm_lib_handle = hinst;
   130       if(ForceTimeHighResolution)
   131         timeBeginPeriod(1L);
   132       break;
   133     case DLL_PROCESS_DETACH:
   134       if(ForceTimeHighResolution)
   135         timeEndPeriod(1L);
   137       break;
   138     default:
   139       break;
   140   }
   141   return true;
   142 }
   144 static inline double fileTimeAsDouble(FILETIME* time) {
   145   const double high  = (double) ((unsigned int) ~0);
   146   const double split = 10000000.0;
   147   double result = (time->dwLowDateTime / split) +
   148                    time->dwHighDateTime * (high/split);
   149   return result;
   150 }
   152 // Implementation of os
   154 bool os::getenv(const char* name, char* buffer, int len) {
   155  int result = GetEnvironmentVariable(name, buffer, len);
   156  return result > 0 && result < len;
   157 }
   159 bool os::unsetenv(const char* name) {
   160   assert(name != NULL, "Null pointer");
   161   return (SetEnvironmentVariable(name, NULL) == TRUE);
   162 }
   164 // No setuid programs under Windows.
   165 bool os::have_special_privileges() {
   166   return false;
   167 }
   170 // This method is  a periodic task to check for misbehaving JNI applications
   171 // under CheckJNI, we can add any periodic checks here.
   172 // For Windows at the moment does nothing
   173 void os::run_periodic_checks() {
   174   return;
   175 }
   177 #ifndef _WIN64
   178 // previous UnhandledExceptionFilter, if there is one
   179 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
   181 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   182 #endif
   183 void os::init_system_properties_values() {
   184   /* sysclasspath, java_home, dll_dir */
   185   {
   186       char *home_path;
   187       char *dll_path;
   188       char *pslash;
   189       char *bin = "\\bin";
   190       char home_dir[MAX_PATH];
   192       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   193           os::jvm_path(home_dir, sizeof(home_dir));
   194           // Found the full path to jvm.dll.
   195           // Now cut the path to <java_home>/jre if we can.
   196           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   197           pslash = strrchr(home_dir, '\\');
   198           if (pslash != NULL) {
   199               *pslash = '\0';                 /* get rid of \{client|server} */
   200               pslash = strrchr(home_dir, '\\');
   201               if (pslash != NULL)
   202                   *pslash = '\0';             /* get rid of \bin */
   203           }
   204       }
   206       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
   207       if (home_path == NULL)
   208           return;
   209       strcpy(home_path, home_dir);
   210       Arguments::set_java_home(home_path);
   212       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
   213       if (dll_path == NULL)
   214           return;
   215       strcpy(dll_path, home_dir);
   216       strcat(dll_path, bin);
   217       Arguments::set_dll_dir(dll_path);
   219       if (!set_boot_path('\\', ';'))
   220           return;
   221   }
   223   /* library_path */
   224   #define EXT_DIR "\\lib\\ext"
   225   #define BIN_DIR "\\bin"
   226   #define PACKAGE_DIR "\\Sun\\Java"
   227   {
   228     /* Win32 library search order (See the documentation for LoadLibrary):
   229      *
   230      * 1. The directory from which application is loaded.
   231      * 2. The system wide Java Extensions directory (Java only)
   232      * 3. System directory (GetSystemDirectory)
   233      * 4. Windows directory (GetWindowsDirectory)
   234      * 5. The PATH environment variable
   235      * 6. The current directory
   236      */
   238     char *library_path;
   239     char tmp[MAX_PATH];
   240     char *path_str = ::getenv("PATH");
   242     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   243         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
   245     library_path[0] = '\0';
   247     GetModuleFileName(NULL, tmp, sizeof(tmp));
   248     *(strrchr(tmp, '\\')) = '\0';
   249     strcat(library_path, tmp);
   251     GetWindowsDirectory(tmp, sizeof(tmp));
   252     strcat(library_path, ";");
   253     strcat(library_path, tmp);
   254     strcat(library_path, PACKAGE_DIR BIN_DIR);
   256     GetSystemDirectory(tmp, sizeof(tmp));
   257     strcat(library_path, ";");
   258     strcat(library_path, tmp);
   260     GetWindowsDirectory(tmp, sizeof(tmp));
   261     strcat(library_path, ";");
   262     strcat(library_path, tmp);
   264     if (path_str) {
   265         strcat(library_path, ";");
   266         strcat(library_path, path_str);
   267     }
   269     strcat(library_path, ";.");
   271     Arguments::set_library_path(library_path);
   272     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
   273   }
   275   /* Default extensions directory */
   276   {
   277     char path[MAX_PATH];
   278     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   279     GetWindowsDirectory(path, MAX_PATH);
   280     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   281         path, PACKAGE_DIR, EXT_DIR);
   282     Arguments::set_ext_dirs(buf);
   283   }
   284   #undef EXT_DIR
   285   #undef BIN_DIR
   286   #undef PACKAGE_DIR
   288   /* Default endorsed standards directory. */
   289   {
   290     #define ENDORSED_DIR "\\lib\\endorsed"
   291     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   292     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
   293     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   294     Arguments::set_endorsed_dirs(buf);
   295     #undef ENDORSED_DIR
   296   }
   298 #ifndef _WIN64
   299   // set our UnhandledExceptionFilter and save any previous one
   300   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
   301 #endif
   303   // Done
   304   return;
   305 }
   307 void os::breakpoint() {
   308   DebugBreak();
   309 }
   311 // Invoked from the BREAKPOINT Macro
   312 extern "C" void breakpoint() {
   313   os::breakpoint();
   314 }
   316 /*
   317  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
   318  * So far, this method is only used by Native Memory Tracking, which is
   319  * only supported on Windows XP or later.
   320  */
   322 int os::get_native_stack(address* stack, int frames, int toSkip) {
   323 #ifdef _NMT_NOINLINE_
   324   toSkip ++;
   325 #endif
   326   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
   327     (PVOID*)stack, NULL);
   328   for (int index = captured; index < frames; index ++) {
   329     stack[index] = NULL;
   330   }
   331   return captured;
   332 }
   335 // os::current_stack_base()
   336 //
   337 //   Returns the base of the stack, which is the stack's
   338 //   starting address.  This function must be called
   339 //   while running on the stack of the thread being queried.
   341 address os::current_stack_base() {
   342   MEMORY_BASIC_INFORMATION minfo;
   343   address stack_bottom;
   344   size_t stack_size;
   346   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   347   stack_bottom =  (address)minfo.AllocationBase;
   348   stack_size = minfo.RegionSize;
   350   // Add up the sizes of all the regions with the same
   351   // AllocationBase.
   352   while( 1 )
   353   {
   354     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   355     if ( stack_bottom == (address)minfo.AllocationBase )
   356       stack_size += minfo.RegionSize;
   357     else
   358       break;
   359   }
   361 #ifdef _M_IA64
   362   // IA64 has memory and register stacks
   363   //
   364   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
   365   // at thread creation (1MB backing store growing upwards, 1MB memory stack
   366   // growing downwards, 2MB summed up)
   367   //
   368   // ...
   369   // ------- top of stack (high address) -----
   370   // |
   371   // |      1MB
   372   // |      Backing Store (Register Stack)
   373   // |
   374   // |         / \
   375   // |          |
   376   // |          |
   377   // |          |
   378   // ------------------------ stack base -----
   379   // |      1MB
   380   // |      Memory Stack
   381   // |
   382   // |          |
   383   // |          |
   384   // |          |
   385   // |         \ /
   386   // |
   387   // ----- bottom of stack (low address) -----
   388   // ...
   390   stack_size = stack_size / 2;
   391 #endif
   392   return stack_bottom + stack_size;
   393 }
   395 size_t os::current_stack_size() {
   396   size_t sz;
   397   MEMORY_BASIC_INFORMATION minfo;
   398   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   399   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   400   return sz;
   401 }
   403 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
   404   const struct tm* time_struct_ptr = localtime(clock);
   405   if (time_struct_ptr != NULL) {
   406     *res = *time_struct_ptr;
   407     return res;
   408   }
   409   return NULL;
   410 }
   412 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   414 // Thread start routine for all new Java threads
   415 static unsigned __stdcall java_start(Thread* thread) {
   416   // Try to randomize the cache line index of hot stack frames.
   417   // This helps when threads of the same stack traces evict each other's
   418   // cache lines. The threads can be either from the same JVM instance, or
   419   // from different JVM instances. The benefit is especially true for
   420   // processors with hyperthreading technology.
   421   static int counter = 0;
   422   int pid = os::current_process_id();
   423   _alloca(((pid ^ counter++) & 7) * 128);
   425   OSThread* osthr = thread->osthread();
   426   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   428   if (UseNUMA) {
   429     int lgrp_id = os::numa_get_group_id();
   430     if (lgrp_id != -1) {
   431       thread->set_lgrp_id(lgrp_id);
   432     }
   433   }
   436   // Install a win32 structured exception handler around every thread created
   437   // by VM, so VM can genrate error dump when an exception occurred in non-
   438   // Java thread (e.g. VM thread).
   439   __try {
   440      thread->run();
   441   } __except(topLevelExceptionFilter(
   442              (_EXCEPTION_POINTERS*)_exception_info())) {
   443       // Nothing to do.
   444   }
   446   // One less thread is executing
   447   // When the VMThread gets here, the main thread may have already exited
   448   // which frees the CodeHeap containing the Atomic::add code
   449   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   450     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   451   }
   453   return 0;
   454 }
   456 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   457   // Allocate the OSThread object
   458   OSThread* osthread = new OSThread(NULL, NULL);
   459   if (osthread == NULL) return NULL;
   461   // Initialize support for Java interrupts
   462   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   463   if (interrupt_event == NULL) {
   464     delete osthread;
   465     return NULL;
   466   }
   467   osthread->set_interrupt_event(interrupt_event);
   469   // Store info on the Win32 thread into the OSThread
   470   osthread->set_thread_handle(thread_handle);
   471   osthread->set_thread_id(thread_id);
   473   if (UseNUMA) {
   474     int lgrp_id = os::numa_get_group_id();
   475     if (lgrp_id != -1) {
   476       thread->set_lgrp_id(lgrp_id);
   477     }
   478   }
   480   // Initial thread state is INITIALIZED, not SUSPENDED
   481   osthread->set_state(INITIALIZED);
   483   return osthread;
   484 }
   487 bool os::create_attached_thread(JavaThread* thread) {
   488 #ifdef ASSERT
   489   thread->verify_not_published();
   490 #endif
   491   HANDLE thread_h;
   492   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   493                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   494     fatal("DuplicateHandle failed\n");
   495   }
   496   OSThread* osthread = create_os_thread(thread, thread_h,
   497                                         (int)current_thread_id());
   498   if (osthread == NULL) {
   499      return false;
   500   }
   502   // Initial thread state is RUNNABLE
   503   osthread->set_state(RUNNABLE);
   505   thread->set_osthread(osthread);
   506   return true;
   507 }
   509 bool os::create_main_thread(JavaThread* thread) {
   510 #ifdef ASSERT
   511   thread->verify_not_published();
   512 #endif
   513   if (_starting_thread == NULL) {
   514     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   515      if (_starting_thread == NULL) {
   516         return false;
   517      }
   518   }
   520   // The primordial thread is runnable from the start)
   521   _starting_thread->set_state(RUNNABLE);
   523   thread->set_osthread(_starting_thread);
   524   return true;
   525 }
   527 // Allocate and initialize a new OSThread
   528 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   529   unsigned thread_id;
   531   // Allocate the OSThread object
   532   OSThread* osthread = new OSThread(NULL, NULL);
   533   if (osthread == NULL) {
   534     return false;
   535   }
   537   // Initialize support for Java interrupts
   538   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   539   if (interrupt_event == NULL) {
   540     delete osthread;
   541     return NULL;
   542   }
   543   osthread->set_interrupt_event(interrupt_event);
   544   osthread->set_interrupted(false);
   546   thread->set_osthread(osthread);
   548   if (stack_size == 0) {
   549     switch (thr_type) {
   550     case os::java_thread:
   551       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   552       if (JavaThread::stack_size_at_create() > 0)
   553         stack_size = JavaThread::stack_size_at_create();
   554       break;
   555     case os::compiler_thread:
   556       if (CompilerThreadStackSize > 0) {
   557         stack_size = (size_t)(CompilerThreadStackSize * K);
   558         break;
   559       } // else fall through:
   560         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   561     case os::vm_thread:
   562     case os::pgc_thread:
   563     case os::cgc_thread:
   564     case os::watcher_thread:
   565       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   566       break;
   567     }
   568   }
   570   // Create the Win32 thread
   571   //
   572   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   573   // does not specify stack size. Instead, it specifies the size of
   574   // initially committed space. The stack size is determined by
   575   // PE header in the executable. If the committed "stack_size" is larger
   576   // than default value in the PE header, the stack is rounded up to the
   577   // nearest multiple of 1MB. For example if the launcher has default
   578   // stack size of 320k, specifying any size less than 320k does not
   579   // affect the actual stack size at all, it only affects the initial
   580   // commitment. On the other hand, specifying 'stack_size' larger than
   581   // default value may cause significant increase in memory usage, because
   582   // not only the stack space will be rounded up to MB, but also the
   583   // entire space is committed upfront.
   584   //
   585   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   586   // for CreateThread() that can treat 'stack_size' as stack size. However we
   587   // are not supposed to call CreateThread() directly according to MSDN
   588   // document because JVM uses C runtime library. The good news is that the
   589   // flag appears to work with _beginthredex() as well.
   591 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   592 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   593 #endif
   595   HANDLE thread_handle =
   596     (HANDLE)_beginthreadex(NULL,
   597                            (unsigned)stack_size,
   598                            (unsigned (__stdcall *)(void*)) java_start,
   599                            thread,
   600                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   601                            &thread_id);
   602   if (thread_handle == NULL) {
   603     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   604     // without the flag.
   605     thread_handle =
   606     (HANDLE)_beginthreadex(NULL,
   607                            (unsigned)stack_size,
   608                            (unsigned (__stdcall *)(void*)) java_start,
   609                            thread,
   610                            CREATE_SUSPENDED,
   611                            &thread_id);
   612   }
   613   if (thread_handle == NULL) {
   614     // Need to clean up stuff we've allocated so far
   615     CloseHandle(osthread->interrupt_event());
   616     thread->set_osthread(NULL);
   617     delete osthread;
   618     return NULL;
   619   }
   621   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   623   // Store info on the Win32 thread into the OSThread
   624   osthread->set_thread_handle(thread_handle);
   625   osthread->set_thread_id(thread_id);
   627   // Initial thread state is INITIALIZED, not SUSPENDED
   628   osthread->set_state(INITIALIZED);
   630   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   631   return true;
   632 }
   635 // Free Win32 resources related to the OSThread
   636 void os::free_thread(OSThread* osthread) {
   637   assert(osthread != NULL, "osthread not set");
   638   CloseHandle(osthread->thread_handle());
   639   CloseHandle(osthread->interrupt_event());
   640   delete osthread;
   641 }
   644 static int    has_performance_count = 0;
   645 static jlong first_filetime;
   646 static jlong initial_performance_count;
   647 static jlong performance_frequency;
   650 jlong as_long(LARGE_INTEGER x) {
   651   jlong result = 0; // initialization to avoid warning
   652   set_high(&result, x.HighPart);
   653   set_low(&result,  x.LowPart);
   654   return result;
   655 }
   658 jlong os::elapsed_counter() {
   659   LARGE_INTEGER count;
   660   if (has_performance_count) {
   661     QueryPerformanceCounter(&count);
   662     return as_long(count) - initial_performance_count;
   663   } else {
   664     FILETIME wt;
   665     GetSystemTimeAsFileTime(&wt);
   666     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   667   }
   668 }
   671 jlong os::elapsed_frequency() {
   672   if (has_performance_count) {
   673     return performance_frequency;
   674   } else {
   675    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   676    return 10000000;
   677   }
   678 }
   681 julong os::available_memory() {
   682   return win32::available_memory();
   683 }
   685 julong os::win32::available_memory() {
   686   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
   687   // value if total memory is larger than 4GB
   688   MEMORYSTATUSEX ms;
   689   ms.dwLength = sizeof(ms);
   690   GlobalMemoryStatusEx(&ms);
   692   return (julong)ms.ullAvailPhys;
   693 }
   695 julong os::physical_memory() {
   696   return win32::physical_memory();
   697 }
   699 bool os::has_allocatable_memory_limit(julong* limit) {
   700   MEMORYSTATUSEX ms;
   701   ms.dwLength = sizeof(ms);
   702   GlobalMemoryStatusEx(&ms);
   703 #ifdef _LP64
   704   *limit = (julong)ms.ullAvailVirtual;
   705   return true;
   706 #else
   707   // Limit to 1400m because of the 2gb address space wall
   708   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
   709   return true;
   710 #endif
   711 }
   713 // VC6 lacks DWORD_PTR
   714 #if _MSC_VER < 1300
   715 typedef UINT_PTR DWORD_PTR;
   716 #endif
   718 int os::active_processor_count() {
   719   // User has overridden the number of active processors
   720   if (ActiveProcessorCount > 0) {
   721     if (PrintActiveCpus) {
   722       tty->print_cr("active_processor_count: "
   723                     "active processor count set by user : %d",
   724                      ActiveProcessorCount);
   725     }
   726     return ActiveProcessorCount;
   727   }
   729   DWORD_PTR lpProcessAffinityMask = 0;
   730   DWORD_PTR lpSystemAffinityMask = 0;
   731   int proc_count = processor_count();
   732   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   733       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   734     // Nof active processors is number of bits in process affinity mask
   735     int bitcount = 0;
   736     while (lpProcessAffinityMask != 0) {
   737       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   738       bitcount++;
   739     }
   740     return bitcount;
   741   } else {
   742     return proc_count;
   743   }
   744 }
   746 void os::set_native_thread_name(const char *name) {
   748   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
   749   //
   750   // Note that unfortunately this only works if the process
   751   // is already attached to a debugger; debugger must observe
   752   // the exception below to show the correct name.
   754   const DWORD MS_VC_EXCEPTION = 0x406D1388;
   755   struct {
   756     DWORD dwType;     // must be 0x1000
   757     LPCSTR szName;    // pointer to name (in user addr space)
   758     DWORD dwThreadID; // thread ID (-1=caller thread)
   759     DWORD dwFlags;    // reserved for future use, must be zero
   760   } info;
   762   info.dwType = 0x1000;
   763   info.szName = name;
   764   info.dwThreadID = -1;
   765   info.dwFlags = 0;
   767   __try {
   768     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
   769   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
   770 }
   772 bool os::distribute_processes(uint length, uint* distribution) {
   773   // Not yet implemented.
   774   return false;
   775 }
   777 bool os::bind_to_processor(uint processor_id) {
   778   // Not yet implemented.
   779   return false;
   780 }
   782 static void initialize_performance_counter() {
   783   LARGE_INTEGER count;
   784   if (QueryPerformanceFrequency(&count)) {
   785     has_performance_count = 1;
   786     performance_frequency = as_long(count);
   787     QueryPerformanceCounter(&count);
   788     initial_performance_count = as_long(count);
   789   } else {
   790     has_performance_count = 0;
   791     FILETIME wt;
   792     GetSystemTimeAsFileTime(&wt);
   793     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   794   }
   795 }
   798 double os::elapsedTime() {
   799   return (double) elapsed_counter() / (double) elapsed_frequency();
   800 }
   803 // Windows format:
   804 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   805 // Java format:
   806 //   Java standards require the number of milliseconds since 1/1/1970
   808 // Constant offset - calculated using offset()
   809 static jlong  _offset   = 116444736000000000;
   810 // Fake time counter for reproducible results when debugging
   811 static jlong  fake_time = 0;
   813 #ifdef ASSERT
   814 // Just to be safe, recalculate the offset in debug mode
   815 static jlong _calculated_offset = 0;
   816 static int   _has_calculated_offset = 0;
   818 jlong offset() {
   819   if (_has_calculated_offset) return _calculated_offset;
   820   SYSTEMTIME java_origin;
   821   java_origin.wYear          = 1970;
   822   java_origin.wMonth         = 1;
   823   java_origin.wDayOfWeek     = 0; // ignored
   824   java_origin.wDay           = 1;
   825   java_origin.wHour          = 0;
   826   java_origin.wMinute        = 0;
   827   java_origin.wSecond        = 0;
   828   java_origin.wMilliseconds  = 0;
   829   FILETIME jot;
   830   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   831     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
   832   }
   833   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   834   _has_calculated_offset = 1;
   835   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   836   return _calculated_offset;
   837 }
   838 #else
   839 jlong offset() {
   840   return _offset;
   841 }
   842 #endif
   844 jlong windows_to_java_time(FILETIME wt) {
   845   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   846   return (a - offset()) / 10000;
   847 }
   849 FILETIME java_to_windows_time(jlong l) {
   850   jlong a = (l * 10000) + offset();
   851   FILETIME result;
   852   result.dwHighDateTime = high(a);
   853   result.dwLowDateTime  = low(a);
   854   return result;
   855 }
   857 bool os::supports_vtime() { return true; }
   858 bool os::enable_vtime() { return false; }
   859 bool os::vtime_enabled() { return false; }
   861 double os::elapsedVTime() {
   862   FILETIME created;
   863   FILETIME exited;
   864   FILETIME kernel;
   865   FILETIME user;
   866   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
   867     // the resolution of windows_to_java_time() should be sufficient (ms)
   868     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
   869   } else {
   870     return elapsedTime();
   871   }
   872 }
   874 jlong os::javaTimeMillis() {
   875   if (UseFakeTimers) {
   876     return fake_time++;
   877   } else {
   878     FILETIME wt;
   879     GetSystemTimeAsFileTime(&wt);
   880     return windows_to_java_time(wt);
   881   }
   882 }
   884 jlong os::javaTimeNanos() {
   885   if (!has_performance_count) {
   886     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
   887   } else {
   888     LARGE_INTEGER current_count;
   889     QueryPerformanceCounter(&current_count);
   890     double current = as_long(current_count);
   891     double freq = performance_frequency;
   892     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
   893     return time;
   894   }
   895 }
   897 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   898   if (!has_performance_count) {
   899     // javaTimeMillis() doesn't have much percision,
   900     // but it is not going to wrap -- so all 64 bits
   901     info_ptr->max_value = ALL_64_BITS;
   903     // this is a wall clock timer, so may skip
   904     info_ptr->may_skip_backward = true;
   905     info_ptr->may_skip_forward = true;
   906   } else {
   907     jlong freq = performance_frequency;
   908     if (freq < NANOSECS_PER_SEC) {
   909       // the performance counter is 64 bits and we will
   910       // be multiplying it -- so no wrap in 64 bits
   911       info_ptr->max_value = ALL_64_BITS;
   912     } else if (freq > NANOSECS_PER_SEC) {
   913       // use the max value the counter can reach to
   914       // determine the max value which could be returned
   915       julong max_counter = (julong)ALL_64_BITS;
   916       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
   917     } else {
   918       // the performance counter is 64 bits and we will
   919       // be using it directly -- so no wrap in 64 bits
   920       info_ptr->max_value = ALL_64_BITS;
   921     }
   923     // using a counter, so no skipping
   924     info_ptr->may_skip_backward = false;
   925     info_ptr->may_skip_forward = false;
   926   }
   927   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   928 }
   930 char* os::local_time_string(char *buf, size_t buflen) {
   931   SYSTEMTIME st;
   932   GetLocalTime(&st);
   933   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   934                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   935   return buf;
   936 }
   938 bool os::getTimesSecs(double* process_real_time,
   939                      double* process_user_time,
   940                      double* process_system_time) {
   941   HANDLE h_process = GetCurrentProcess();
   942   FILETIME create_time, exit_time, kernel_time, user_time;
   943   BOOL result = GetProcessTimes(h_process,
   944                                &create_time,
   945                                &exit_time,
   946                                &kernel_time,
   947                                &user_time);
   948   if (result != 0) {
   949     FILETIME wt;
   950     GetSystemTimeAsFileTime(&wt);
   951     jlong rtc_millis = windows_to_java_time(wt);
   952     jlong user_millis = windows_to_java_time(user_time);
   953     jlong system_millis = windows_to_java_time(kernel_time);
   954     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   955     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   956     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   957     return true;
   958   } else {
   959     return false;
   960   }
   961 }
   963 void os::shutdown() {
   965   // allow PerfMemory to attempt cleanup of any persistent resources
   966   perfMemory_exit();
   968   // flush buffered output, finish log files
   969   ostream_abort();
   971   // Check for abort hook
   972   abort_hook_t abort_hook = Arguments::abort_hook();
   973   if (abort_hook != NULL) {
   974     abort_hook();
   975   }
   976 }
   979 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   980                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
   982 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
   983   HINSTANCE dbghelp;
   984   EXCEPTION_POINTERS ep;
   985   MINIDUMP_EXCEPTION_INFORMATION mei;
   986   MINIDUMP_EXCEPTION_INFORMATION* pmei;
   988   HANDLE hProcess = GetCurrentProcess();
   989   DWORD processId = GetCurrentProcessId();
   990   HANDLE dumpFile;
   991   MINIDUMP_TYPE dumpType;
   992   static const char* cwd;
   994 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
   995 #ifndef ASSERT
   996   // If running on a client version of Windows and user has not explicitly enabled dumping
   997   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
   998     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
   999     return;
  1000     // If running on a server version of Windows and user has explictly disabled dumping
  1001   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
  1002     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
  1003     return;
  1005 #else
  1006   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
  1007     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
  1008     return;
  1010 #endif
  1012   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
  1014   if (dbghelp == NULL) {
  1015     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
  1016     return;
  1019   _MiniDumpWriteDump = CAST_TO_FN_PTR(
  1020     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
  1021     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
  1022     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
  1024   if (_MiniDumpWriteDump == NULL) {
  1025     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
  1026     return;
  1029   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
  1031 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
  1032 // API_VERSION_NUMBER 11 or higher contains the ones we want though
  1033 #if API_VERSION_NUMBER >= 11
  1034   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
  1035     MiniDumpWithUnloadedModules);
  1036 #endif
  1038   cwd = get_current_directory(NULL, 0);
  1039   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
  1040   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
  1042   if (dumpFile == INVALID_HANDLE_VALUE) {
  1043     VMError::report_coredump_status("Failed to create file for dumping", false);
  1044     return;
  1046   if (exceptionRecord != NULL && contextRecord != NULL) {
  1047     ep.ContextRecord = (PCONTEXT) contextRecord;
  1048     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
  1050     mei.ThreadId = GetCurrentThreadId();
  1051     mei.ExceptionPointers = &ep;
  1052     pmei = &mei;
  1053   } else {
  1054     pmei = NULL;
  1058   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
  1059   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
  1060   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
  1061       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
  1062         DWORD error = GetLastError();
  1063         LPTSTR msgbuf = NULL;
  1065         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
  1066                       FORMAT_MESSAGE_FROM_SYSTEM |
  1067                       FORMAT_MESSAGE_IGNORE_INSERTS,
  1068                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
  1070           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
  1071           LocalFree(msgbuf);
  1072         } else {
  1073           // Call to FormatMessage failed, just include the result from GetLastError
  1074           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
  1076         VMError::report_coredump_status(buffer, false);
  1077   } else {
  1078     VMError::report_coredump_status(buffer, true);
  1081   CloseHandle(dumpFile);
  1086 void os::abort(bool dump_core)
  1088   os::shutdown();
  1089   // no core dump on Windows
  1090   ::exit(1);
  1093 // Die immediately, no exit hook, no abort hook, no cleanup.
  1094 void os::die() {
  1095   _exit(-1);
  1098 // Directory routines copied from src/win32/native/java/io/dirent_md.c
  1099 //  * dirent_md.c       1.15 00/02/02
  1100 //
  1101 // The declarations for DIR and struct dirent are in jvm_win32.h.
  1103 /* Caller must have already run dirname through JVM_NativePath, which removes
  1104    duplicate slashes and converts all instances of '/' into '\\'. */
  1106 DIR *
  1107 os::opendir(const char *dirname)
  1109     assert(dirname != NULL, "just checking");   // hotspot change
  1110     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
  1111     DWORD fattr;                                // hotspot change
  1112     char alt_dirname[4] = { 0, 0, 0, 0 };
  1114     if (dirp == 0) {
  1115         errno = ENOMEM;
  1116         return 0;
  1119     /*
  1120      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
  1121      * as a directory in FindFirstFile().  We detect this case here and
  1122      * prepend the current drive name.
  1123      */
  1124     if (dirname[1] == '\0' && dirname[0] == '\\') {
  1125         alt_dirname[0] = _getdrive() + 'A' - 1;
  1126         alt_dirname[1] = ':';
  1127         alt_dirname[2] = '\\';
  1128         alt_dirname[3] = '\0';
  1129         dirname = alt_dirname;
  1132     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
  1133     if (dirp->path == 0) {
  1134         free(dirp, mtInternal);
  1135         errno = ENOMEM;
  1136         return 0;
  1138     strcpy(dirp->path, dirname);
  1140     fattr = GetFileAttributes(dirp->path);
  1141     if (fattr == 0xffffffff) {
  1142         free(dirp->path, mtInternal);
  1143         free(dirp, mtInternal);
  1144         errno = ENOENT;
  1145         return 0;
  1146     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
  1147         free(dirp->path, mtInternal);
  1148         free(dirp, mtInternal);
  1149         errno = ENOTDIR;
  1150         return 0;
  1153     /* Append "*.*", or possibly "\\*.*", to path */
  1154     if (dirp->path[1] == ':'
  1155         && (dirp->path[2] == '\0'
  1156             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
  1157         /* No '\\' needed for cases like "Z:" or "Z:\" */
  1158         strcat(dirp->path, "*.*");
  1159     } else {
  1160         strcat(dirp->path, "\\*.*");
  1163     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
  1164     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1165         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
  1166             free(dirp->path, mtInternal);
  1167             free(dirp, mtInternal);
  1168             errno = EACCES;
  1169             return 0;
  1172     return dirp;
  1175 struct dirent *
  1176 os::readdir(DIR *dirp)
  1178     assert(dirp != NULL, "just checking");      // hotspot change
  1179     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1180         return NULL;
  1183     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
  1185     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
  1186         if (GetLastError() == ERROR_INVALID_HANDLE) {
  1187             errno = EBADF;
  1188             return NULL;
  1190         FindClose(dirp->handle);
  1191         dirp->handle = INVALID_HANDLE_VALUE;
  1194     return &dirp->dirent;
  1197 int
  1198 os::closedir(DIR *dirp)
  1200     assert(dirp != NULL, "just checking");      // hotspot change
  1201     if (dirp->handle != INVALID_HANDLE_VALUE) {
  1202         if (!FindClose(dirp->handle)) {
  1203             errno = EBADF;
  1204             return -1;
  1206         dirp->handle = INVALID_HANDLE_VALUE;
  1208     free(dirp->path, mtInternal);
  1209     free(dirp, mtInternal);
  1210     return 0;
  1213 // This must be hard coded because it's the system's temporary
  1214 // directory not the java application's temp directory, ala java.io.tmpdir.
  1215 const char* os::get_temp_directory() {
  1216   static char path_buf[MAX_PATH];
  1217   if (GetTempPath(MAX_PATH, path_buf)>0)
  1218     return path_buf;
  1219   else{
  1220     path_buf[0]='\0';
  1221     return path_buf;
  1225 static bool file_exists(const char* filename) {
  1226   if (filename == NULL || strlen(filename) == 0) {
  1227     return false;
  1229   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
  1232 bool os::dll_build_name(char *buffer, size_t buflen,
  1233                         const char* pname, const char* fname) {
  1234   bool retval = false;
  1235   const size_t pnamelen = pname ? strlen(pname) : 0;
  1236   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1238   // Return error on buffer overflow.
  1239   if (pnamelen + strlen(fname) + 10 > buflen) {
  1240     return retval;
  1243   if (pnamelen == 0) {
  1244     jio_snprintf(buffer, buflen, "%s.dll", fname);
  1245     retval = true;
  1246   } else if (c == ':' || c == '\\') {
  1247     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
  1248     retval = true;
  1249   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1250     int n;
  1251     char** pelements = split_path(pname, &n);
  1252     if (pelements == NULL) {
  1253       return false;
  1255     for (int i = 0 ; i < n ; i++) {
  1256       char* path = pelements[i];
  1257       // Really shouldn't be NULL, but check can't hurt
  1258       size_t plen = (path == NULL) ? 0 : strlen(path);
  1259       if (plen == 0) {
  1260         continue; // skip the empty path values
  1262       const char lastchar = path[plen - 1];
  1263       if (lastchar == ':' || lastchar == '\\') {
  1264         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
  1265       } else {
  1266         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
  1268       if (file_exists(buffer)) {
  1269         retval = true;
  1270         break;
  1273     // release the storage
  1274     for (int i = 0 ; i < n ; i++) {
  1275       if (pelements[i] != NULL) {
  1276         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1279     if (pelements != NULL) {
  1280       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1282   } else {
  1283     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
  1284     retval = true;
  1286   return retval;
  1289 // Needs to be in os specific directory because windows requires another
  1290 // header file <direct.h>
  1291 const char* os::get_current_directory(char *buf, size_t buflen) {
  1292   int n = static_cast<int>(buflen);
  1293   if (buflen > INT_MAX)  n = INT_MAX;
  1294   return _getcwd(buf, n);
  1297 //-----------------------------------------------------------
  1298 // Helper functions for fatal error handler
  1299 #ifdef _WIN64
  1300 // Helper routine which returns true if address in
  1301 // within the NTDLL address space.
  1302 //
  1303 static bool _addr_in_ntdll( address addr )
  1305   HMODULE hmod;
  1306   MODULEINFO minfo;
  1308   hmod = GetModuleHandle("NTDLL.DLL");
  1309   if ( hmod == NULL ) return false;
  1310   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
  1311                                &minfo, sizeof(MODULEINFO)) )
  1312     return false;
  1314   if ( (addr >= minfo.lpBaseOfDll) &&
  1315        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1316     return true;
  1317   else
  1318     return false;
  1320 #endif
  1323 // Enumerate all modules for a given process ID
  1324 //
  1325 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1326 // different API for doing this. We use PSAPI.DLL on NT based
  1327 // Windows and ToolHelp on 95/98/Me.
  1329 // Callback function that is called by enumerate_modules() on
  1330 // every DLL module.
  1331 // Input parameters:
  1332 //    int       pid,
  1333 //    char*     module_file_name,
  1334 //    address   module_base_addr,
  1335 //    unsigned  module_size,
  1336 //    void*     param
  1337 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1339 // enumerate_modules for Windows NT, using PSAPI
  1340 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1342   HANDLE   hProcess ;
  1344 # define MAX_NUM_MODULES 128
  1345   HMODULE     modules[MAX_NUM_MODULES];
  1346   static char filename[ MAX_PATH ];
  1347   int         result = 0;
  1349   if (!os::PSApiDll::PSApiAvailable()) {
  1350     return 0;
  1353   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1354                          FALSE, pid ) ;
  1355   if (hProcess == NULL) return 0;
  1357   DWORD size_needed;
  1358   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
  1359                            sizeof(modules), &size_needed)) {
  1360       CloseHandle( hProcess );
  1361       return 0;
  1364   // number of modules that are currently loaded
  1365   int num_modules = size_needed / sizeof(HMODULE);
  1367   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1368     // Get Full pathname:
  1369     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
  1370                              filename, sizeof(filename))) {
  1371         filename[0] = '\0';
  1374     MODULEINFO modinfo;
  1375     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
  1376                                &modinfo, sizeof(modinfo))) {
  1377         modinfo.lpBaseOfDll = NULL;
  1378         modinfo.SizeOfImage = 0;
  1381     // Invoke callback function
  1382     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1383                   modinfo.SizeOfImage, param);
  1384     if (result) break;
  1387   CloseHandle( hProcess ) ;
  1388   return result;
  1392 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1393 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1395   HANDLE                hSnapShot ;
  1396   static MODULEENTRY32  modentry ;
  1397   int                   result = 0;
  1399   if (!os::Kernel32Dll::HelpToolsAvailable()) {
  1400     return 0;
  1403   // Get a handle to a Toolhelp snapshot of the system
  1404   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1405   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1406       return FALSE ;
  1409   // iterate through all modules
  1410   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1411   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
  1413   while( not_done ) {
  1414     // invoke the callback
  1415     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1416                 modentry.modBaseSize, param);
  1417     if (result) break;
  1419     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1420     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
  1423   CloseHandle(hSnapShot);
  1424   return result;
  1427 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1429   // Get current process ID if caller doesn't provide it.
  1430   if (!pid) pid = os::current_process_id();
  1432   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1433   else                    return _enumerate_modules_windows(pid, func, param);
  1436 struct _modinfo {
  1437    address addr;
  1438    char*   full_path;   // point to a char buffer
  1439    int     buflen;      // size of the buffer
  1440    address base_addr;
  1441 };
  1443 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1444                                   unsigned size, void * param) {
  1445    struct _modinfo *pmod = (struct _modinfo *)param;
  1446    if (!pmod) return -1;
  1448    if (base_addr     <= pmod->addr &&
  1449        base_addr+size > pmod->addr) {
  1450      // if a buffer is provided, copy path name to the buffer
  1451      if (pmod->full_path) {
  1452        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1454      pmod->base_addr = base_addr;
  1455      return 1;
  1457    return 0;
  1460 bool os::dll_address_to_library_name(address addr, char* buf,
  1461                                      int buflen, int* offset) {
  1462   // buf is not optional, but offset is optional
  1463   assert(buf != NULL, "sanity check");
  1465 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1466 //       return the full path to the DLL file, sometimes it returns path
  1467 //       to the corresponding PDB file (debug info); sometimes it only
  1468 //       returns partial path, which makes life painful.
  1470   struct _modinfo mi;
  1471   mi.addr      = addr;
  1472   mi.full_path = buf;
  1473   mi.buflen    = buflen;
  1474   int pid = os::current_process_id();
  1475   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1476     // buf already contains path name
  1477     if (offset) *offset = addr - mi.base_addr;
  1478     return true;
  1481   buf[0] = '\0';
  1482   if (offset) *offset = -1;
  1483   return false;
  1486 bool os::dll_address_to_function_name(address addr, char *buf,
  1487                                       int buflen, int *offset) {
  1488   // buf is not optional, but offset is optional
  1489   assert(buf != NULL, "sanity check");
  1491   if (Decoder::decode(addr, buf, buflen, offset)) {
  1492     return true;
  1494   if (offset != NULL)  *offset  = -1;
  1495   buf[0] = '\0';
  1496   return false;
  1499 // save the start and end address of jvm.dll into param[0] and param[1]
  1500 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1501                     unsigned size, void * param) {
  1502    if (!param) return -1;
  1504    if (base_addr     <= (address)_locate_jvm_dll &&
  1505        base_addr+size > (address)_locate_jvm_dll) {
  1506          ((address*)param)[0] = base_addr;
  1507          ((address*)param)[1] = base_addr + size;
  1508          return 1;
  1510    return 0;
  1513 address vm_lib_location[2];    // start and end address of jvm.dll
  1515 // check if addr is inside jvm.dll
  1516 bool os::address_is_in_vm(address addr) {
  1517   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1518     int pid = os::current_process_id();
  1519     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1520       assert(false, "Can't find jvm module.");
  1521       return false;
  1525   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1528 // print module info; param is outputStream*
  1529 static int _print_module(int pid, char* fname, address base,
  1530                          unsigned size, void* param) {
  1531    if (!param) return -1;
  1533    outputStream* st = (outputStream*)param;
  1535    address end_addr = base + size;
  1536    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1537    return 0;
  1540 // Loads .dll/.so and
  1541 // in case of error it checks if .dll/.so was built for the
  1542 // same architecture as Hotspot is running on
  1543 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1545   void * result = LoadLibrary(name);
  1546   if (result != NULL)
  1548     return result;
  1551   DWORD errcode = GetLastError();
  1552   if (errcode == ERROR_MOD_NOT_FOUND) {
  1553     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1554     ebuf[ebuflen-1]='\0';
  1555     return NULL;
  1558   // Parsing dll below
  1559   // If we can read dll-info and find that dll was built
  1560   // for an architecture other than Hotspot is running in
  1561   // - then print to buffer "DLL was built for a different architecture"
  1562   // else call os::lasterror to obtain system error message
  1564   // Read system error message into ebuf
  1565   // It may or may not be overwritten below (in the for loop and just above)
  1566   lasterror(ebuf, (size_t) ebuflen);
  1567   ebuf[ebuflen-1]='\0';
  1568   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1569   if (file_descriptor<0)
  1571     return NULL;
  1574   uint32_t signature_offset;
  1575   uint16_t lib_arch=0;
  1576   bool failed_to_get_lib_arch=
  1578     //Go to position 3c in the dll
  1579     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1580     ||
  1581     // Read loacation of signature
  1582     (sizeof(signature_offset)!=
  1583       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1584     ||
  1585     //Go to COFF File Header in dll
  1586     //that is located after"signature" (4 bytes long)
  1587     (os::seek_to_file_offset(file_descriptor,
  1588       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1589     ||
  1590     //Read field that contains code of architecture
  1591     // that dll was build for
  1592     (sizeof(lib_arch)!=
  1593       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1594   );
  1596   ::close(file_descriptor);
  1597   if (failed_to_get_lib_arch)
  1599     // file i/o error - report os::lasterror(...) msg
  1600     return NULL;
  1603   typedef struct
  1605     uint16_t arch_code;
  1606     char* arch_name;
  1607   } arch_t;
  1609   static const arch_t arch_array[]={
  1610     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1611     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1612     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1613   };
  1614   #if   (defined _M_IA64)
  1615     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1616   #elif (defined _M_AMD64)
  1617     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1618   #elif (defined _M_IX86)
  1619     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1620   #else
  1621     #error Method os::dll_load requires that one of following \
  1622            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1623   #endif
  1626   // Obtain a string for printf operation
  1627   // lib_arch_str shall contain string what platform this .dll was built for
  1628   // running_arch_str shall string contain what platform Hotspot was built for
  1629   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1630   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1632     if (lib_arch==arch_array[i].arch_code)
  1633       lib_arch_str=arch_array[i].arch_name;
  1634     if (running_arch==arch_array[i].arch_code)
  1635       running_arch_str=arch_array[i].arch_name;
  1638   assert(running_arch_str,
  1639     "Didn't find runing architecture code in arch_array");
  1641   // If the architure is right
  1642   // but some other error took place - report os::lasterror(...) msg
  1643   if (lib_arch == running_arch)
  1645     return NULL;
  1648   if (lib_arch_str!=NULL)
  1650     ::_snprintf(ebuf, ebuflen-1,
  1651       "Can't load %s-bit .dll on a %s-bit platform",
  1652       lib_arch_str,running_arch_str);
  1654   else
  1656     // don't know what architecture this dll was build for
  1657     ::_snprintf(ebuf, ebuflen-1,
  1658       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1659       lib_arch,running_arch_str);
  1662   return NULL;
  1666 void os::print_dll_info(outputStream *st) {
  1667    int pid = os::current_process_id();
  1668    st->print_cr("Dynamic libraries:");
  1669    enumerate_modules(pid, _print_module, (void *)st);
  1672 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
  1673   HANDLE   hProcess;
  1675 # define MAX_NUM_MODULES 128
  1676   HMODULE     modules[MAX_NUM_MODULES];
  1677   static char filename[MAX_PATH];
  1678   int         result = 0;
  1680   int pid = os::current_process_id();
  1681   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1682                          FALSE, pid);
  1683   if (hProcess == NULL) return 0;
  1685   DWORD size_needed;
  1686   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
  1687     CloseHandle(hProcess);
  1688     return 0;
  1691   // number of modules that are currently loaded
  1692   int num_modules = size_needed / sizeof(HMODULE);
  1694   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1695     // Get Full pathname:
  1696     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
  1697       filename[0] = '\0';
  1700     MODULEINFO modinfo;
  1701     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
  1702       modinfo.lpBaseOfDll = NULL;
  1703       modinfo.SizeOfImage = 0;
  1706     // Invoke callback function
  1707     result = callback(filename, (address)modinfo.lpBaseOfDll,
  1708                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
  1709     if (result) break;
  1712   CloseHandle(hProcess);
  1713   return result;
  1716 void os::print_os_info_brief(outputStream* st) {
  1717   os::print_os_info(st);
  1720 void os::print_os_info(outputStream* st) {
  1721   st->print("OS:");
  1723   os::win32::print_windows_version(st);
  1726 void os::win32::print_windows_version(outputStream* st) {
  1727   OSVERSIONINFOEX osvi;
  1728   VS_FIXEDFILEINFO *file_info;
  1729   TCHAR kernel32_path[MAX_PATH];
  1730   UINT len, ret;
  1732   // Use the GetVersionEx information to see if we're on a server or
  1733   // workstation edition of Windows. Starting with Windows 8.1 we can't
  1734   // trust the OS version information returned by this API.
  1735   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1736   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1737   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1738     st->print_cr("Call to GetVersionEx failed");
  1739     return;
  1741   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
  1743   // Get the full path to \Windows\System32\kernel32.dll and use that for
  1744   // determining what version of Windows we're running on.
  1745   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
  1746   ret = GetSystemDirectory(kernel32_path, len);
  1747   if (ret == 0 || ret > len) {
  1748     st->print_cr("Call to GetSystemDirectory failed");
  1749     return;
  1751   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
  1753   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
  1754   if (version_size == 0) {
  1755     st->print_cr("Call to GetFileVersionInfoSize failed");
  1756     return;
  1759   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
  1760   if (version_info == NULL) {
  1761     st->print_cr("Failed to allocate version_info");
  1762     return;
  1765   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
  1766     os::free(version_info);
  1767     st->print_cr("Call to GetFileVersionInfo failed");
  1768     return;
  1771   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
  1772     os::free(version_info);
  1773     st->print_cr("Call to VerQueryValue failed");
  1774     return;
  1777   int major_version = HIWORD(file_info->dwProductVersionMS);
  1778   int minor_version = LOWORD(file_info->dwProductVersionMS);
  1779   int build_number = HIWORD(file_info->dwProductVersionLS);
  1780   int build_minor = LOWORD(file_info->dwProductVersionLS);
  1781   int os_vers = major_version * 1000 + minor_version;
  1782   os::free(version_info);
  1784   st->print(" Windows ");
  1785   switch (os_vers) {
  1787   case 6000:
  1788     if (is_workstation) {
  1789       st->print("Vista");
  1790     } else {
  1791       st->print("Server 2008");
  1793     break;
  1795   case 6001:
  1796     if (is_workstation) {
  1797       st->print("7");
  1798     } else {
  1799       st->print("Server 2008 R2");
  1801     break;
  1803   case 6002:
  1804     if (is_workstation) {
  1805       st->print("8");
  1806     } else {
  1807       st->print("Server 2012");
  1809     break;
  1811   case 6003:
  1812     if (is_workstation) {
  1813       st->print("8.1");
  1814     } else {
  1815       st->print("Server 2012 R2");
  1817     break;
  1819   case 6004:
  1820     if (is_workstation) {
  1821       st->print("10");
  1822     } else {
  1823       // distinguish Windows Server 2016 and 2019 by build number
  1824       // Windows server 2019 GA 10/2018 build number is 17763
  1825       if (build_number > 17762) {
  1826         st->print("Server 2019");
  1827       } else {
  1828         st->print("Server 2016");
  1831     break;
  1833   default:
  1834     // Unrecognized windows, print out its major and minor versions
  1835     st->print("%d.%d", major_version, minor_version);
  1836     break;
  1839   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1840   // find out whether we are running on 64 bit processor or not
  1841   SYSTEM_INFO si;
  1842   ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1843   os::Kernel32Dll::GetNativeSystemInfo(&si);
  1844   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
  1845     st->print(" , 64 bit");
  1848   st->print(" Build %d", build_number);
  1849   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
  1850   st->cr();
  1853 void os::pd_print_cpu_info(outputStream* st) {
  1854   // Nothing to do for now.
  1857 void os::print_memory_info(outputStream* st) {
  1858   st->print("Memory:");
  1859   st->print(" %dk page", os::vm_page_size()>>10);
  1861   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
  1862   // value if total memory is larger than 4GB
  1863   MEMORYSTATUSEX ms;
  1864   ms.dwLength = sizeof(ms);
  1865   GlobalMemoryStatusEx(&ms);
  1867   st->print(", physical %uk", os::physical_memory() >> 10);
  1868   st->print("(%uk free)", os::available_memory() >> 10);
  1870   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
  1871   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
  1872   st->cr();
  1875 void os::print_siginfo(outputStream *st, void *siginfo) {
  1876   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1877   st->print("siginfo:");
  1878   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1880   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1881       er->NumberParameters >= 2) {
  1882       switch (er->ExceptionInformation[0]) {
  1883       case 0: st->print(", reading address"); break;
  1884       case 1: st->print(", writing address"); break;
  1885       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1886                             er->ExceptionInformation[0]);
  1888       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1889   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1890              er->NumberParameters >= 2 && UseSharedSpaces) {
  1891     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1892     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1893       st->print("\n\nError accessing class data sharing archive."       \
  1894                 " Mapped file inaccessible during execution, "          \
  1895                 " possible disk/network problem.");
  1897   } else {
  1898     int num = er->NumberParameters;
  1899     if (num > 0) {
  1900       st->print(", ExceptionInformation=");
  1901       for (int i = 0; i < num; i++) {
  1902         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1906   st->cr();
  1910 int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
  1911 #if _MSC_VER >= 1900
  1912   // Starting with Visual Studio 2015, vsnprint is C99 compliant.
  1913   int result = ::vsnprintf(buf, len, fmt, args);
  1914   // If an encoding error occurred (result < 0) then it's not clear
  1915   // whether the buffer is NUL terminated, so ensure it is.
  1916   if ((result < 0) && (len > 0)) {
  1917     buf[len - 1] = '\0';
  1919   return result;
  1920 #else
  1921   // Before Visual Studio 2015, vsnprintf is not C99 compliant, so use
  1922   // _vsnprintf, whose behavior seems to be *mostly* consistent across
  1923   // versions.  However, when len == 0, avoid _vsnprintf too, and just
  1924   // go straight to _vscprintf.  The output is going to be truncated in
  1925   // that case, except in the unusual case of empty output.  More
  1926   // importantly, the documentation for various versions of Visual Studio
  1927   // are inconsistent about the behavior of _vsnprintf when len == 0,
  1928   // including it possibly being an error.
  1929   int result = -1;
  1930   if (len > 0) {
  1931     result = _vsnprintf(buf, len, fmt, args);
  1932     // If output (including NUL terminator) is truncated, the buffer
  1933     // won't be NUL terminated.  Add the trailing NUL specified by C99.
  1934     if ((result < 0) || (result >= (int) len)) {
  1935       buf[len - 1] = '\0';
  1938   if (result < 0) {
  1939     result = _vscprintf(fmt, args);
  1941   return result;
  1942 #endif // _MSC_VER dispatch
  1945 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1946   // do nothing
  1949 static char saved_jvm_path[MAX_PATH] = {0};
  1951 // Find the full path to the current module, jvm.dll
  1952 void os::jvm_path(char *buf, jint buflen) {
  1953   // Error checking.
  1954   if (buflen < MAX_PATH) {
  1955     assert(false, "must use a large-enough buffer");
  1956     buf[0] = '\0';
  1957     return;
  1959   // Lazy resolve the path to current module.
  1960   if (saved_jvm_path[0] != 0) {
  1961     strcpy(buf, saved_jvm_path);
  1962     return;
  1965   buf[0] = '\0';
  1966   if (Arguments::created_by_gamma_launcher()) {
  1967      // Support for the gamma launcher. Check for an
  1968      // JAVA_HOME environment variable
  1969      // and fix up the path so it looks like
  1970      // libjvm.so is installed there (append a fake suffix
  1971      // hotspot/libjvm.so).
  1972      char* java_home_var = ::getenv("JAVA_HOME");
  1973      if (java_home_var != NULL && java_home_var[0] != 0 &&
  1974          strlen(java_home_var) < (size_t)buflen) {
  1976         strncpy(buf, java_home_var, buflen);
  1978         // determine if this is a legacy image or modules image
  1979         // modules image doesn't have "jre" subdirectory
  1980         size_t len = strlen(buf);
  1981         char* jrebin_p = buf + len;
  1982         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
  1983         if (0 != _access(buf, 0)) {
  1984           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
  1986         len = strlen(buf);
  1987         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
  1991   if(buf[0] == '\0') {
  1992     GetModuleFileName(vm_lib_handle, buf, buflen);
  1994   strncpy(saved_jvm_path, buf, MAX_PATH);
  1998 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1999 #ifndef _WIN64
  2000   st->print("_");
  2001 #endif
  2005 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2006 #ifndef _WIN64
  2007   st->print("@%d", args_size  * sizeof(int));
  2008 #endif
  2011 // This method is a copy of JDK's sysGetLastErrorString
  2012 // from src/windows/hpi/src/system_md.c
  2014 size_t os::lasterror(char* buf, size_t len) {
  2015   DWORD errval;
  2017   if ((errval = GetLastError()) != 0) {
  2018     // DOS error
  2019     size_t n = (size_t)FormatMessage(
  2020           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  2021           NULL,
  2022           errval,
  2023           0,
  2024           buf,
  2025           (DWORD)len,
  2026           NULL);
  2027     if (n > 3) {
  2028       // Drop final '.', CR, LF
  2029       if (buf[n - 1] == '\n') n--;
  2030       if (buf[n - 1] == '\r') n--;
  2031       if (buf[n - 1] == '.') n--;
  2032       buf[n] = '\0';
  2034     return n;
  2037   if (errno != 0) {
  2038     // C runtime error that has no corresponding DOS error code
  2039     const char* s = strerror(errno);
  2040     size_t n = strlen(s);
  2041     if (n >= len) n = len - 1;
  2042     strncpy(buf, s, n);
  2043     buf[n] = '\0';
  2044     return n;
  2047   return 0;
  2050 int os::get_last_error() {
  2051   DWORD error = GetLastError();
  2052   if (error == 0)
  2053     error = errno;
  2054   return (int)error;
  2057 // sun.misc.Signal
  2058 // NOTE that this is a workaround for an apparent kernel bug where if
  2059 // a signal handler for SIGBREAK is installed then that signal handler
  2060 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  2061 // See bug 4416763.
  2062 static void (*sigbreakHandler)(int) = NULL;
  2064 static void UserHandler(int sig, void *siginfo, void *context) {
  2065   os::signal_notify(sig);
  2066   // We need to reinstate the signal handler each time...
  2067   os::signal(sig, (void*)UserHandler);
  2070 void* os::user_handler() {
  2071   return (void*) UserHandler;
  2074 void* os::signal(int signal_number, void* handler) {
  2075   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  2076     void (*oldHandler)(int) = sigbreakHandler;
  2077     sigbreakHandler = (void (*)(int)) handler;
  2078     return (void*) oldHandler;
  2079   } else {
  2080     return (void*)::signal(signal_number, (void (*)(int))handler);
  2084 void os::signal_raise(int signal_number) {
  2085   raise(signal_number);
  2088 // The Win32 C runtime library maps all console control events other than ^C
  2089 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  2090 // logoff, and shutdown events.  We therefore install our own console handler
  2091 // that raises SIGTERM for the latter cases.
  2092 //
  2093 static BOOL WINAPI consoleHandler(DWORD event) {
  2094   switch(event) {
  2095     case CTRL_C_EVENT:
  2096       if (is_error_reported()) {
  2097         // Ctrl-C is pressed during error reporting, likely because the error
  2098         // handler fails to abort. Let VM die immediately.
  2099         os::die();
  2102       os::signal_raise(SIGINT);
  2103       return TRUE;
  2104       break;
  2105     case CTRL_BREAK_EVENT:
  2106       if (sigbreakHandler != NULL) {
  2107         (*sigbreakHandler)(SIGBREAK);
  2109       return TRUE;
  2110       break;
  2111     case CTRL_LOGOFF_EVENT: {
  2112       // Don't terminate JVM if it is running in a non-interactive session,
  2113       // such as a service process.
  2114       USEROBJECTFLAGS flags;
  2115       HANDLE handle = GetProcessWindowStation();
  2116       if (handle != NULL &&
  2117           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
  2118             sizeof( USEROBJECTFLAGS), NULL)) {
  2119         // If it is a non-interactive session, let next handler to deal
  2120         // with it.
  2121         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
  2122           return FALSE;
  2126     case CTRL_CLOSE_EVENT:
  2127     case CTRL_SHUTDOWN_EVENT:
  2128       os::signal_raise(SIGTERM);
  2129       return TRUE;
  2130       break;
  2131     default:
  2132       break;
  2134   return FALSE;
  2137 /*
  2138  * The following code is moved from os.cpp for making this
  2139  * code platform specific, which it is by its very nature.
  2140  */
  2142 // Return maximum OS signal used + 1 for internal use only
  2143 // Used as exit signal for signal_thread
  2144 int os::sigexitnum_pd(){
  2145   return NSIG;
  2148 // a counter for each possible signal value, including signal_thread exit signal
  2149 static volatile jint pending_signals[NSIG+1] = { 0 };
  2150 static HANDLE sig_sem = NULL;
  2152 void os::signal_init_pd() {
  2153   // Initialize signal structures
  2154   memset((void*)pending_signals, 0, sizeof(pending_signals));
  2156   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  2158   // Programs embedding the VM do not want it to attempt to receive
  2159   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  2160   // shutdown hooks mechanism introduced in 1.3.  For example, when
  2161   // the VM is run as part of a Windows NT service (i.e., a servlet
  2162   // engine in a web server), the correct behavior is for any console
  2163   // control handler to return FALSE, not TRUE, because the OS's
  2164   // "final" handler for such events allows the process to continue if
  2165   // it is a service (while terminating it if it is not a service).
  2166   // To make this behavior uniform and the mechanism simpler, we
  2167   // completely disable the VM's usage of these console events if -Xrs
  2168   // (=ReduceSignalUsage) is specified.  This means, for example, that
  2169   // the CTRL-BREAK thread dump mechanism is also disabled in this
  2170   // case.  See bugs 4323062, 4345157, and related bugs.
  2172   if (!ReduceSignalUsage) {
  2173     // Add a CTRL-C handler
  2174     SetConsoleCtrlHandler(consoleHandler, TRUE);
  2178 void os::signal_notify(int signal_number) {
  2179   BOOL ret;
  2180   if (sig_sem != NULL) {
  2181     Atomic::inc(&pending_signals[signal_number]);
  2182     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  2183     assert(ret != 0, "ReleaseSemaphore() failed");
  2187 static int check_pending_signals(bool wait_for_signal) {
  2188   DWORD ret;
  2189   while (true) {
  2190     for (int i = 0; i < NSIG + 1; i++) {
  2191       jint n = pending_signals[i];
  2192       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2193         return i;
  2196     if (!wait_for_signal) {
  2197       return -1;
  2200     JavaThread *thread = JavaThread::current();
  2202     ThreadBlockInVM tbivm(thread);
  2204     bool threadIsSuspended;
  2205     do {
  2206       thread->set_suspend_equivalent();
  2207       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2208       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  2209       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  2211       // were we externally suspended while we were waiting?
  2212       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2213       if (threadIsSuspended) {
  2214         //
  2215         // The semaphore has been incremented, but while we were waiting
  2216         // another thread suspended us. We don't want to continue running
  2217         // while suspended because that would surprise the thread that
  2218         // suspended us.
  2219         //
  2220         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  2221         assert(ret != 0, "ReleaseSemaphore() failed");
  2223         thread->java_suspend_self();
  2225     } while (threadIsSuspended);
  2229 int os::signal_lookup() {
  2230   return check_pending_signals(false);
  2233 int os::signal_wait() {
  2234   return check_pending_signals(true);
  2237 // Implicit OS exception handling
  2239 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  2240   JavaThread* thread = JavaThread::current();
  2241   // Save pc in thread
  2242 #ifdef _M_IA64
  2243   // Do not blow up if no thread info available.
  2244   if (thread) {
  2245     // Saving PRECISE pc (with slot information) in thread.
  2246     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
  2247     // Convert precise PC into "Unix" format
  2248     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
  2249     thread->set_saved_exception_pc((address)precise_pc);
  2251   // Set pc to handler
  2252   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  2253   // Clear out psr.ri (= Restart Instruction) in order to continue
  2254   // at the beginning of the target bundle.
  2255   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
  2256   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
  2257 #else
  2258   #ifdef _M_AMD64
  2259   // Do not blow up if no thread info available.
  2260   if (thread) {
  2261     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
  2263   // Set pc to handler
  2264   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  2265   #else
  2266   // Do not blow up if no thread info available.
  2267   if (thread) {
  2268     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
  2270   // Set pc to handler
  2271   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
  2272   #endif
  2273 #endif
  2275   // Continue the execution
  2276   return EXCEPTION_CONTINUE_EXECUTION;
  2280 // Used for PostMortemDump
  2281 extern "C" void safepoints();
  2282 extern "C" void find(int x);
  2283 extern "C" void events();
  2285 // According to Windows API documentation, an illegal instruction sequence should generate
  2286 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  2287 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  2288 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  2290 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  2292 // From "Execution Protection in the Windows Operating System" draft 0.35
  2293 // Once a system header becomes available, the "real" define should be
  2294 // included or copied here.
  2295 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  2297 // Handle NAT Bit consumption on IA64.
  2298 #ifdef _M_IA64
  2299 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
  2300 #endif
  2302 // Windows Vista/2008 heap corruption check
  2303 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
  2305 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
  2306 // C++ compiler contain this error code. Because this is a compiler-generated
  2307 // error, the code is not listed in the Win32 API header files.
  2308 // The code is actually a cryptic mnemonic device, with the initial "E"
  2309 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
  2310 // ASCII values of "msc".
  2312 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
  2314 #define def_excpt(val) { #val, (val) }
  2316 static const struct { char* name; uint number; } exceptlabels[] = {
  2317     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  2318     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  2319     def_excpt(EXCEPTION_BREAKPOINT),
  2320     def_excpt(EXCEPTION_SINGLE_STEP),
  2321     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  2322     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  2323     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  2324     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  2325     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  2326     def_excpt(EXCEPTION_FLT_OVERFLOW),
  2327     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  2328     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  2329     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  2330     def_excpt(EXCEPTION_INT_OVERFLOW),
  2331     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  2332     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  2333     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  2334     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  2335     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  2336     def_excpt(EXCEPTION_STACK_OVERFLOW),
  2337     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  2338     def_excpt(EXCEPTION_GUARD_PAGE),
  2339     def_excpt(EXCEPTION_INVALID_HANDLE),
  2340     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
  2341     def_excpt(EXCEPTION_HEAP_CORRUPTION)
  2342 #ifdef _M_IA64
  2343     , def_excpt(EXCEPTION_REG_NAT_CONSUMPTION)
  2344 #endif
  2345 };
  2347 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  2348   uint code = static_cast<uint>(exception_code);
  2349   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
  2350     if (exceptlabels[i].number == code) {
  2351        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  2352        return buf;
  2356   return NULL;
  2359 //-----------------------------------------------------------------------------
  2360 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2361   // handle exception caused by idiv; should only happen for -MinInt/-1
  2362   // (division by zero is handled explicitly)
  2363 #ifdef _M_IA64
  2364   assert(0, "Fix Handle_IDiv_Exception");
  2365 #else
  2366   #ifdef  _M_AMD64
  2367   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2368   address pc = (address)ctx->Rip;
  2369   assert(pc[0] == 0xF7, "not an idiv opcode");
  2370   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2371   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  2372   // set correct result values and continue after idiv instruction
  2373   ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
  2374   ctx->Rax = (DWORD64)min_jint;      // result
  2375   ctx->Rdx = (DWORD64)0;             // remainder
  2376   // Continue the execution
  2377   #else
  2378   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2379   address pc = (address)ctx->Eip;
  2380   assert(pc[0] == 0xF7, "not an idiv opcode");
  2381   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2382   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  2383   // set correct result values and continue after idiv instruction
  2384   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2385   ctx->Eax = (DWORD)min_jint;      // result
  2386   ctx->Edx = (DWORD)0;             // remainder
  2387   // Continue the execution
  2388   #endif
  2389 #endif
  2390   return EXCEPTION_CONTINUE_EXECUTION;
  2393 #ifndef  _WIN64
  2394 //-----------------------------------------------------------------------------
  2395 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2396   // handle exception caused by native method modifying control word
  2397   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2398   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2400   switch (exception_code) {
  2401     case EXCEPTION_FLT_DENORMAL_OPERAND:
  2402     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  2403     case EXCEPTION_FLT_INEXACT_RESULT:
  2404     case EXCEPTION_FLT_INVALID_OPERATION:
  2405     case EXCEPTION_FLT_OVERFLOW:
  2406     case EXCEPTION_FLT_STACK_CHECK:
  2407     case EXCEPTION_FLT_UNDERFLOW:
  2408       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  2409       if (fp_control_word != ctx->FloatSave.ControlWord) {
  2410         // Restore FPCW and mask out FLT exceptions
  2411         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  2412         // Mask out pending FLT exceptions
  2413         ctx->FloatSave.StatusWord &=  0xffffff00;
  2414         return EXCEPTION_CONTINUE_EXECUTION;
  2418   if (prev_uef_handler != NULL) {
  2419     // We didn't handle this exception so pass it to the previous
  2420     // UnhandledExceptionFilter.
  2421     return (prev_uef_handler)(exceptionInfo);
  2424   return EXCEPTION_CONTINUE_SEARCH;
  2426 #else //_WIN64
  2427 /*
  2428   On Windows, the mxcsr control bits are non-volatile across calls
  2429   See also CR 6192333
  2430   If EXCEPTION_FLT_* happened after some native method modified
  2431   mxcsr - it is not a jvm fault.
  2432   However should we decide to restore of mxcsr after a faulty
  2433   native method we can uncomment following code
  2434       jint MxCsr = INITIAL_MXCSR;
  2435         // we can't use StubRoutines::addr_mxcsr_std()
  2436         // because in Win64 mxcsr is not saved there
  2437       if (MxCsr != ctx->MxCsr) {
  2438         ctx->MxCsr = MxCsr;
  2439         return EXCEPTION_CONTINUE_EXECUTION;
  2442 */
  2443 #endif // _WIN64
  2446 static inline void report_error(Thread* t, DWORD exception_code,
  2447                                 address addr, void* siginfo, void* context) {
  2448   VMError err(t, exception_code, addr, siginfo, context);
  2449   err.report_and_die();
  2451   // If UseOsErrorReporting, this will return here and save the error file
  2452   // somewhere where we can find it in the minidump.
  2455 //-----------------------------------------------------------------------------
  2456 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2457   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  2458   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2459 #ifdef _M_IA64
  2460   // On Itanium, we need the "precise pc", which has the slot number coded
  2461   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
  2462   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
  2463   // Convert the pc to "Unix format", which has the slot number coded
  2464   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
  2465   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
  2466   // information is saved in the Unix format.
  2467   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
  2468 #else
  2469   #ifdef _M_AMD64
  2470   address pc = (address) exceptionInfo->ContextRecord->Rip;
  2471   #else
  2472   address pc = (address) exceptionInfo->ContextRecord->Eip;
  2473   #endif
  2474 #endif
  2475   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  2477   // Handle SafeFetch32 and SafeFetchN exceptions.
  2478   if (StubRoutines::is_safefetch_fault(pc)) {
  2479     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
  2482 #ifndef _WIN64
  2483   // Execution protection violation - win32 running on AMD64 only
  2484   // Handled first to avoid misdiagnosis as a "normal" access violation;
  2485   // This is safe to do because we have a new/unique ExceptionInformation
  2486   // code for this condition.
  2487   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2488     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2489     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  2490     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2492     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  2493       int page_size = os::vm_page_size();
  2495       // Make sure the pc and the faulting address are sane.
  2496       //
  2497       // If an instruction spans a page boundary, and the page containing
  2498       // the beginning of the instruction is executable but the following
  2499       // page is not, the pc and the faulting address might be slightly
  2500       // different - we still want to unguard the 2nd page in this case.
  2501       //
  2502       // 15 bytes seems to be a (very) safe value for max instruction size.
  2503       bool pc_is_near_addr =
  2504         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2505       bool instr_spans_page_boundary =
  2506         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2507                          (intptr_t) page_size) > 0);
  2509       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2510         static volatile address last_addr =
  2511           (address) os::non_memory_address_word();
  2513         // In conservative mode, don't unguard unless the address is in the VM
  2514         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2515             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2517           // Set memory to RWX and retry
  2518           address page_start =
  2519             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2520           bool res = os::protect_memory((char*) page_start, page_size,
  2521                                         os::MEM_PROT_RWX);
  2523           if (PrintMiscellaneous && Verbose) {
  2524             char buf[256];
  2525             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2526                          "at " INTPTR_FORMAT
  2527                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2528                          page_start, (res ? "success" : strerror(errno)));
  2529             tty->print_raw_cr(buf);
  2532           // Set last_addr so if we fault again at the same address, we don't
  2533           // end up in an endless loop.
  2534           //
  2535           // There are two potential complications here.  Two threads trapping
  2536           // at the same address at the same time could cause one of the
  2537           // threads to think it already unguarded, and abort the VM.  Likely
  2538           // very rare.
  2539           //
  2540           // The other race involves two threads alternately trapping at
  2541           // different addresses and failing to unguard the page, resulting in
  2542           // an endless loop.  This condition is probably even more unlikely
  2543           // than the first.
  2544           //
  2545           // Although both cases could be avoided by using locks or thread
  2546           // local last_addr, these solutions are unnecessary complication:
  2547           // this handler is a best-effort safety net, not a complete solution.
  2548           // It is disabled by default and should only be used as a workaround
  2549           // in case we missed any no-execute-unsafe VM code.
  2551           last_addr = addr;
  2553           return EXCEPTION_CONTINUE_EXECUTION;
  2557       // Last unguard failed or not unguarding
  2558       tty->print_raw_cr("Execution protection violation");
  2559       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2560                    exceptionInfo->ContextRecord);
  2561       return EXCEPTION_CONTINUE_SEARCH;
  2564 #endif // _WIN64
  2566   // Check to see if we caught the safepoint code in the
  2567   // process of write protecting the memory serialization page.
  2568   // It write enables the page immediately after protecting it
  2569   // so just return.
  2570   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2571     JavaThread* thread = (JavaThread*) t;
  2572     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2573     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2574     if ( os::is_memory_serialize_page(thread, addr) ) {
  2575       // Block current thread until the memory serialize page permission restored.
  2576       os::block_on_serialize_page_trap();
  2577       return EXCEPTION_CONTINUE_EXECUTION;
  2581   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
  2582       VM_Version::is_cpuinfo_segv_addr(pc)) {
  2583     // Verify that OS save/restore AVX registers.
  2584     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
  2587   if (t != NULL && t->is_Java_thread()) {
  2588     JavaThread* thread = (JavaThread*) t;
  2589     bool in_java = thread->thread_state() == _thread_in_Java;
  2591     // Handle potential stack overflows up front.
  2592     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2593       if (os::uses_stack_guard_pages()) {
  2594 #ifdef _M_IA64
  2595         // Use guard page for register stack.
  2596         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2597         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2598         // Check for a register stack overflow on Itanium
  2599         if (thread->addr_inside_register_stack_red_zone(addr)) {
  2600           // Fatal red zone violation happens if the Java program
  2601           // catches a StackOverflow error and does so much processing
  2602           // that it runs beyond the unprotected yellow guard zone. As
  2603           // a result, we are out of here.
  2604           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
  2605         } else if(thread->addr_inside_register_stack(addr)) {
  2606           // Disable the yellow zone which sets the state that
  2607           // we've got a stack overflow problem.
  2608           if (thread->stack_yellow_zone_enabled()) {
  2609             thread->disable_stack_yellow_zone();
  2611           // Give us some room to process the exception.
  2612           thread->disable_register_stack_guard();
  2613           // Tracing with +Verbose.
  2614           if (Verbose) {
  2615             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
  2616             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
  2617             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
  2618             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
  2619                           thread->register_stack_base(),
  2620                           thread->register_stack_base() + thread->stack_size());
  2623           // Reguard the permanent register stack red zone just to be sure.
  2624           // We saw Windows silently disabling this without telling us.
  2625           thread->enable_register_stack_red_zone();
  2627           return Handle_Exception(exceptionInfo,
  2628             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2630 #endif
  2631         if (thread->stack_yellow_zone_enabled()) {
  2632           // Yellow zone violation.  The o/s has unprotected the first yellow
  2633           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2634           // update the enabled status, even if the zone contains only one page.
  2635           thread->disable_stack_yellow_zone();
  2636           // If not in java code, return and hope for the best.
  2637           return in_java ? Handle_Exception(exceptionInfo,
  2638             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2639             :  EXCEPTION_CONTINUE_EXECUTION;
  2640         } else {
  2641           // Fatal red zone violation.
  2642           thread->disable_stack_red_zone();
  2643           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2644           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2645                        exceptionInfo->ContextRecord);
  2646           return EXCEPTION_CONTINUE_SEARCH;
  2648       } else if (in_java) {
  2649         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2650         // a one-time-only guard page, which it has released to us.  The next
  2651         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2652         return Handle_Exception(exceptionInfo,
  2653           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2654       } else {
  2655         // Can only return and hope for the best.  Further stack growth will
  2656         // result in an ACCESS_VIOLATION.
  2657         return EXCEPTION_CONTINUE_EXECUTION;
  2659     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2660       // Either stack overflow or null pointer exception.
  2661       if (in_java) {
  2662         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2663         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2664         address stack_end = thread->stack_base() - thread->stack_size();
  2665         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2666           // Stack overflow.
  2667           assert(!os::uses_stack_guard_pages(),
  2668             "should be caught by red zone code above.");
  2669           return Handle_Exception(exceptionInfo,
  2670             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2672         //
  2673         // Check for safepoint polling and implicit null
  2674         // We only expect null pointers in the stubs (vtable)
  2675         // the rest are checked explicitly now.
  2676         //
  2677         CodeBlob* cb = CodeCache::find_blob(pc);
  2678         if (cb != NULL) {
  2679           if (os::is_poll_address(addr)) {
  2680             address stub = SharedRuntime::get_poll_stub(pc);
  2681             return Handle_Exception(exceptionInfo, stub);
  2685 #ifdef _WIN64
  2686           //
  2687           // If it's a legal stack address map the entire region in
  2688           //
  2689           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2690           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2691           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2692                   addr = (address)((uintptr_t)addr &
  2693                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2694                   os::commit_memory((char *)addr, thread->stack_base() - addr,
  2695                                     !ExecMem);
  2696                   return EXCEPTION_CONTINUE_EXECUTION;
  2698           else
  2699 #endif
  2701             // Null pointer exception.
  2702 #ifdef _M_IA64
  2703             // Process implicit null checks in compiled code. Note: Implicit null checks
  2704             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
  2705             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
  2706               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
  2707               // Handle implicit null check in UEP method entry
  2708               if (cb && (cb->is_frame_complete_at(pc) ||
  2709                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
  2710                 if (Verbose) {
  2711                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
  2712                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
  2713                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
  2714                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
  2715                                 *(bundle_start + 1), *bundle_start);
  2717                 return Handle_Exception(exceptionInfo,
  2718                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
  2722             // Implicit null checks were processed above.  Hence, we should not reach
  2723             // here in the usual case => die!
  2724             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
  2725             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2726                          exceptionInfo->ContextRecord);
  2727             return EXCEPTION_CONTINUE_SEARCH;
  2729 #else // !IA64
  2731             // Windows 98 reports faulting addresses incorrectly
  2732             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2733                 !os::win32::is_nt()) {
  2734               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2735               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2737             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2738                          exceptionInfo->ContextRecord);
  2739             return EXCEPTION_CONTINUE_SEARCH;
  2740 #endif
  2745 #ifdef _WIN64
  2746       // Special care for fast JNI field accessors.
  2747       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2748       // in and the heap gets shrunk before the field access.
  2749       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2750         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2751         if (addr != (address)-1) {
  2752           return Handle_Exception(exceptionInfo, addr);
  2755 #endif
  2757       // Stack overflow or null pointer exception in native code.
  2758       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2759                    exceptionInfo->ContextRecord);
  2760       return EXCEPTION_CONTINUE_SEARCH;
  2761     } // /EXCEPTION_ACCESS_VIOLATION
  2762     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  2763 #if defined _M_IA64
  2764     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
  2765               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
  2766       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
  2768       // Compiled method patched to be non entrant? Following conditions must apply:
  2769       // 1. must be first instruction in bundle
  2770       // 2. must be a break instruction with appropriate code
  2771       if((((uint64_t) pc & 0x0F) == 0) &&
  2772          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
  2773         return Handle_Exception(exceptionInfo,
  2774                                 (address)SharedRuntime::get_handle_wrong_method_stub());
  2776     } // /EXCEPTION_ILLEGAL_INSTRUCTION
  2777 #endif
  2780     if (in_java) {
  2781       switch (exception_code) {
  2782       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2783         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2785       case EXCEPTION_INT_OVERFLOW:
  2786         return Handle_IDiv_Exception(exceptionInfo);
  2788       } // switch
  2790 #ifndef _WIN64
  2791     if (((thread->thread_state() == _thread_in_Java) ||
  2792         (thread->thread_state() == _thread_in_native)) &&
  2793         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
  2795       LONG result=Handle_FLT_Exception(exceptionInfo);
  2796       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2798 #endif //_WIN64
  2801   if (exception_code != EXCEPTION_BREAKPOINT) {
  2802     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2803                  exceptionInfo->ContextRecord);
  2805   return EXCEPTION_CONTINUE_SEARCH;
  2808 #ifndef _WIN64
  2809 // Special care for fast JNI accessors.
  2810 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2811 // the heap gets shrunk before the field access.
  2812 // Need to install our own structured exception handler since native code may
  2813 // install its own.
  2814 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2815   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2816   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2817     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2818     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2819     if (addr != (address)-1) {
  2820       return Handle_Exception(exceptionInfo, addr);
  2823   return EXCEPTION_CONTINUE_SEARCH;
  2826 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2827 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2828   __try { \
  2829     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2830   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2831   } \
  2832   return 0; \
  2835 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2836 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2837 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2838 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2839 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2840 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2841 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2842 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2844 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2845   switch (type) {
  2846     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2847     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2848     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2849     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2850     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2851     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2852     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2853     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2854     default:        ShouldNotReachHere();
  2856   return (address)-1;
  2858 #endif
  2860 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
  2861   // Install a win32 structured exception handler around the test
  2862   // function call so the VM can generate an error dump if needed.
  2863   __try {
  2864     (*funcPtr)();
  2865   } __except(topLevelExceptionFilter(
  2866              (_EXCEPTION_POINTERS*)_exception_info())) {
  2867     // Nothing to do.
  2871 // Virtual Memory
  2873 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2874 int os::vm_allocation_granularity() {
  2875   return os::win32::vm_allocation_granularity();
  2878 // Windows large page support is available on Windows 2003. In order to use
  2879 // large page memory, the administrator must first assign additional privilege
  2880 // to the user:
  2881 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2882 //   + select Local Policies -> User Rights Assignment
  2883 //   + double click "Lock pages in memory", add users and/or groups
  2884 //   + reboot
  2885 // Note the above steps are needed for administrator as well, as administrators
  2886 // by default do not have the privilege to lock pages in memory.
  2887 //
  2888 // Note about Windows 2003: although the API supports committing large page
  2889 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2890 // scenario, I found through experiment it only uses large page if the entire
  2891 // memory region is reserved and committed in a single VirtualAlloc() call.
  2892 // This makes Windows large page support more or less like Solaris ISM, in
  2893 // that the entire heap must be committed upfront. This probably will change
  2894 // in the future, if so the code below needs to be revisited.
  2896 #ifndef MEM_LARGE_PAGES
  2897 #define MEM_LARGE_PAGES 0x20000000
  2898 #endif
  2900 static HANDLE    _hProcess;
  2901 static HANDLE    _hToken;
  2903 // Container for NUMA node list info
  2904 class NUMANodeListHolder {
  2905 private:
  2906   int *_numa_used_node_list;  // allocated below
  2907   int _numa_used_node_count;
  2909   void free_node_list() {
  2910     if (_numa_used_node_list != NULL) {
  2911       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
  2915 public:
  2916   NUMANodeListHolder() {
  2917     _numa_used_node_count = 0;
  2918     _numa_used_node_list = NULL;
  2919     // do rest of initialization in build routine (after function pointers are set up)
  2922   ~NUMANodeListHolder() {
  2923     free_node_list();
  2926   bool build() {
  2927     DWORD_PTR proc_aff_mask;
  2928     DWORD_PTR sys_aff_mask;
  2929     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
  2930     ULONG highest_node_number;
  2931     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
  2932     free_node_list();
  2933     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
  2934     for (unsigned int i = 0; i <= highest_node_number; i++) {
  2935       ULONGLONG proc_mask_numa_node;
  2936       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
  2937       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
  2938         _numa_used_node_list[_numa_used_node_count++] = i;
  2941     return (_numa_used_node_count > 1);
  2944   int get_count() {return _numa_used_node_count;}
  2945   int get_node_list_entry(int n) {
  2946     // for indexes out of range, returns -1
  2947     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
  2950 } numa_node_list_holder;
  2954 static size_t _large_page_size = 0;
  2956 static bool resolve_functions_for_large_page_init() {
  2957   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
  2958     os::Advapi32Dll::AdvapiAvailable();
  2961 static bool request_lock_memory_privilege() {
  2962   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2963                                 os::current_process_id());
  2965   LUID luid;
  2966   if (_hProcess != NULL &&
  2967       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2968       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2970     TOKEN_PRIVILEGES tp;
  2971     tp.PrivilegeCount = 1;
  2972     tp.Privileges[0].Luid = luid;
  2973     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2975     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2976     // privilege. Check GetLastError() too. See MSDN document.
  2977     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2978         (GetLastError() == ERROR_SUCCESS)) {
  2979       return true;
  2983   return false;
  2986 static void cleanup_after_large_page_init() {
  2987   if (_hProcess) CloseHandle(_hProcess);
  2988   _hProcess = NULL;
  2989   if (_hToken) CloseHandle(_hToken);
  2990   _hToken = NULL;
  2993 static bool numa_interleaving_init() {
  2994   bool success = false;
  2995   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
  2997   // print a warning if UseNUMAInterleaving flag is specified on command line
  2998   bool warn_on_failure = use_numa_interleaving_specified;
  2999 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  3001   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
  3002   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  3003   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
  3005   if (os::Kernel32Dll::NumaCallsAvailable()) {
  3006     if (numa_node_list_holder.build()) {
  3007       if (PrintMiscellaneous && Verbose) {
  3008         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
  3009         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
  3010           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
  3012         tty->print("\n");
  3014       success = true;
  3015     } else {
  3016       WARN("Process does not cover multiple NUMA nodes.");
  3018   } else {
  3019     WARN("NUMA Interleaving is not supported by the operating system.");
  3021   if (!success) {
  3022     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
  3024   return success;
  3025 #undef WARN
  3028 // this routine is used whenever we need to reserve a contiguous VA range
  3029 // but we need to make separate VirtualAlloc calls for each piece of the range
  3030 // Reasons for doing this:
  3031 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
  3032 //  * UseNUMAInterleaving requires a separate node for each piece
  3033 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
  3034                                          bool should_inject_error=false) {
  3035   char * p_buf;
  3036   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
  3037   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  3038   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
  3040   // first reserve enough address space in advance since we want to be
  3041   // able to break a single contiguous virtual address range into multiple
  3042   // large page commits but WS2003 does not allow reserving large page space
  3043   // so we just use 4K pages for reserve, this gives us a legal contiguous
  3044   // address space. then we will deallocate that reservation, and re alloc
  3045   // using large pages
  3046   const size_t size_of_reserve = bytes + chunk_size;
  3047   if (bytes > size_of_reserve) {
  3048     // Overflowed.
  3049     return NULL;
  3051   p_buf = (char *) VirtualAlloc(addr,
  3052                                 size_of_reserve,  // size of Reserve
  3053                                 MEM_RESERVE,
  3054                                 PAGE_READWRITE);
  3055   // If reservation failed, return NULL
  3056   if (p_buf == NULL) return NULL;
  3057   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
  3058   os::release_memory(p_buf, bytes + chunk_size);
  3060   // we still need to round up to a page boundary (in case we are using large pages)
  3061   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
  3062   // instead we handle this in the bytes_to_rq computation below
  3063   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
  3065   // now go through and allocate one chunk at a time until all bytes are
  3066   // allocated
  3067   size_t  bytes_remaining = bytes;
  3068   // An overflow of align_size_up() would have been caught above
  3069   // in the calculation of size_of_reserve.
  3070   char * next_alloc_addr = p_buf;
  3071   HANDLE hProc = GetCurrentProcess();
  3073 #ifdef ASSERT
  3074   // Variable for the failure injection
  3075   long ran_num = os::random();
  3076   size_t fail_after = ran_num % bytes;
  3077 #endif
  3079   int count=0;
  3080   while (bytes_remaining) {
  3081     // select bytes_to_rq to get to the next chunk_size boundary
  3083     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
  3084     // Note allocate and commit
  3085     char * p_new;
  3087 #ifdef ASSERT
  3088     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
  3089 #else
  3090     const bool inject_error_now = false;
  3091 #endif
  3093     if (inject_error_now) {
  3094       p_new = NULL;
  3095     } else {
  3096       if (!UseNUMAInterleaving) {
  3097         p_new = (char *) VirtualAlloc(next_alloc_addr,
  3098                                       bytes_to_rq,
  3099                                       flags,
  3100                                       prot);
  3101       } else {
  3102         // get the next node to use from the used_node_list
  3103         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
  3104         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
  3105         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
  3106                                                             next_alloc_addr,
  3107                                                             bytes_to_rq,
  3108                                                             flags,
  3109                                                             prot,
  3110                                                             node);
  3114     if (p_new == NULL) {
  3115       // Free any allocated pages
  3116       if (next_alloc_addr > p_buf) {
  3117         // Some memory was committed so release it.
  3118         size_t bytes_to_release = bytes - bytes_remaining;
  3119         // NMT has yet to record any individual blocks, so it
  3120         // need to create a dummy 'reserve' record to match
  3121         // the release.
  3122         MemTracker::record_virtual_memory_reserve((address)p_buf,
  3123           bytes_to_release, CALLER_PC);
  3124         os::release_memory(p_buf, bytes_to_release);
  3126 #ifdef ASSERT
  3127       if (should_inject_error) {
  3128         if (TracePageSizes && Verbose) {
  3129           tty->print_cr("Reserving pages individually failed.");
  3132 #endif
  3133       return NULL;
  3136     bytes_remaining -= bytes_to_rq;
  3137     next_alloc_addr += bytes_to_rq;
  3138     count++;
  3140   // Although the memory is allocated individually, it is returned as one.
  3141   // NMT records it as one block.
  3142   if ((flags & MEM_COMMIT) != 0) {
  3143     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
  3144   } else {
  3145     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
  3148   // made it this far, success
  3149   return p_buf;
  3154 void os::large_page_init() {
  3155   if (!UseLargePages) return;
  3157   // print a warning if any large page related flag is specified on command line
  3158   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  3159                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  3160   bool success = false;
  3162 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  3163   if (resolve_functions_for_large_page_init()) {
  3164     if (request_lock_memory_privilege()) {
  3165       size_t s = os::Kernel32Dll::GetLargePageMinimum();
  3166       if (s) {
  3167 #if defined(IA32) || defined(AMD64)
  3168         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  3169           WARN("JVM cannot use large pages bigger than 4mb.");
  3170         } else {
  3171 #endif
  3172           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  3173             _large_page_size = LargePageSizeInBytes;
  3174           } else {
  3175             _large_page_size = s;
  3177           success = true;
  3178 #if defined(IA32) || defined(AMD64)
  3180 #endif
  3181       } else {
  3182         WARN("Large page is not supported by the processor.");
  3184     } else {
  3185       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  3187   } else {
  3188     WARN("Large page is not supported by the operating system.");
  3190 #undef WARN
  3192   const size_t default_page_size = (size_t) vm_page_size();
  3193   if (success && _large_page_size > default_page_size) {
  3194     _page_sizes[0] = _large_page_size;
  3195     _page_sizes[1] = default_page_size;
  3196     _page_sizes[2] = 0;
  3199   cleanup_after_large_page_init();
  3200   UseLargePages = success;
  3203 // On win32, one cannot release just a part of reserved memory, it's an
  3204 // all or nothing deal.  When we split a reservation, we must break the
  3205 // reservation into two reservations.
  3206 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
  3207                               bool realloc) {
  3208   if (size > 0) {
  3209     release_memory(base, size);
  3210     if (realloc) {
  3211       reserve_memory(split, base);
  3213     if (size != split) {
  3214       reserve_memory(size - split, base + split);
  3219 // Multiple threads can race in this code but it's not possible to unmap small sections of
  3220 // virtual space to get requested alignment, like posix-like os's.
  3221 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
  3222 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
  3223   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
  3224       "Alignment must be a multiple of allocation granularity (page size)");
  3225   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
  3227   size_t extra_size = size + alignment;
  3228   assert(extra_size >= size, "overflow, size is too large to allow alignment");
  3230   char* aligned_base = NULL;
  3232   do {
  3233     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
  3234     if (extra_base == NULL) {
  3235       return NULL;
  3237     // Do manual alignment
  3238     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
  3240     os::release_memory(extra_base, extra_size);
  3242     aligned_base = os::reserve_memory(size, aligned_base);
  3244   } while (aligned_base == NULL);
  3246   return aligned_base;
  3249 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  3250   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  3251          "reserve alignment");
  3252   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  3253   char* res;
  3254   // note that if UseLargePages is on, all the areas that require interleaving
  3255   // will go thru reserve_memory_special rather than thru here.
  3256   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
  3257   if (!use_individual) {
  3258     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
  3259   } else {
  3260     elapsedTimer reserveTimer;
  3261     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
  3262     // in numa interleaving, we have to allocate pages individually
  3263     // (well really chunks of NUMAInterleaveGranularity size)
  3264     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
  3265     if (res == NULL) {
  3266       warning("NUMA page allocation failed");
  3268     if( Verbose && PrintMiscellaneous ) {
  3269       reserveTimer.stop();
  3270       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
  3271                     reserveTimer.milliseconds(), reserveTimer.ticks());
  3274   assert(res == NULL || addr == NULL || addr == res,
  3275          "Unexpected address from reserve.");
  3277   return res;
  3280 // Reserve memory at an arbitrary address, only if that area is
  3281 // available (and not reserved for something else).
  3282 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3283   // Windows os::reserve_memory() fails of the requested address range is
  3284   // not avilable.
  3285   return reserve_memory(bytes, requested_addr);
  3288 size_t os::large_page_size() {
  3289   return _large_page_size;
  3292 bool os::can_commit_large_page_memory() {
  3293   // Windows only uses large page memory when the entire region is reserved
  3294   // and committed in a single VirtualAlloc() call. This may change in the
  3295   // future, but with Windows 2003 it's not possible to commit on demand.
  3296   return false;
  3299 bool os::can_execute_large_page_memory() {
  3300   return true;
  3303 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
  3304   assert(UseLargePages, "only for large pages");
  3306   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
  3307     return NULL; // Fallback to small pages.
  3310   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
  3311   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3313   // with large pages, there are two cases where we need to use Individual Allocation
  3314   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
  3315   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
  3316   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
  3317     if (TracePageSizes && Verbose) {
  3318        tty->print_cr("Reserving large pages individually.");
  3320     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
  3321     if (p_buf == NULL) {
  3322       // give an appropriate warning message
  3323       if (UseNUMAInterleaving) {
  3324         warning("NUMA large page allocation failed, UseLargePages flag ignored");
  3326       if (UseLargePagesIndividualAllocation) {
  3327         warning("Individually allocated large pages failed, "
  3328                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
  3330       return NULL;
  3333     return p_buf;
  3335   } else {
  3336     if (TracePageSizes && Verbose) {
  3337        tty->print_cr("Reserving large pages in a single large chunk.");
  3339     // normal policy just allocate it all at once
  3340     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3341     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
  3342     if (res != NULL) {
  3343       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
  3346     return res;
  3350 bool os::release_memory_special(char* base, size_t bytes) {
  3351   assert(base != NULL, "Sanity check");
  3352   return release_memory(base, bytes);
  3355 void os::print_statistics() {
  3358 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
  3359   int err = os::get_last_error();
  3360   char buf[256];
  3361   size_t buf_len = os::lasterror(buf, sizeof(buf));
  3362   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  3363           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
  3364           exec, buf_len != 0 ? buf : "<no_error_string>", err);
  3367 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
  3368   if (bytes == 0) {
  3369     // Don't bother the OS with noops.
  3370     return true;
  3372   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  3373   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  3374   // Don't attempt to print anything if the OS call fails. We're
  3375   // probably low on resources, so the print itself may cause crashes.
  3377   // unless we have NUMAInterleaving enabled, the range of a commit
  3378   // is always within a reserve covered by a single VirtualAlloc
  3379   // in that case we can just do a single commit for the requested size
  3380   if (!UseNUMAInterleaving) {
  3381     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
  3382       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
  3383       return false;
  3385     if (exec) {
  3386       DWORD oldprot;
  3387       // Windows doc says to use VirtualProtect to get execute permissions
  3388       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
  3389         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
  3390         return false;
  3393     return true;
  3394   } else {
  3396     // when NUMAInterleaving is enabled, the commit might cover a range that
  3397     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
  3398     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
  3399     // returns represents the number of bytes that can be committed in one step.
  3400     size_t bytes_remaining = bytes;
  3401     char * next_alloc_addr = addr;
  3402     while (bytes_remaining > 0) {
  3403       MEMORY_BASIC_INFORMATION alloc_info;
  3404       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
  3405       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
  3406       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
  3407                        PAGE_READWRITE) == NULL) {
  3408         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
  3409                                             exec);)
  3410         return false;
  3412       if (exec) {
  3413         DWORD oldprot;
  3414         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
  3415                             PAGE_EXECUTE_READWRITE, &oldprot)) {
  3416           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
  3417                                               exec);)
  3418           return false;
  3421       bytes_remaining -= bytes_to_rq;
  3422       next_alloc_addr += bytes_to_rq;
  3425   // if we made it this far, return true
  3426   return true;
  3429 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  3430                        bool exec) {
  3431   // alignment_hint is ignored on this OS
  3432   return pd_commit_memory(addr, size, exec);
  3435 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  3436                                   const char* mesg) {
  3437   assert(mesg != NULL, "mesg must be specified");
  3438   if (!pd_commit_memory(addr, size, exec)) {
  3439     warn_fail_commit_memory(addr, size, exec);
  3440     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  3444 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  3445                                   size_t alignment_hint, bool exec,
  3446                                   const char* mesg) {
  3447   // alignment_hint is ignored on this OS
  3448   pd_commit_memory_or_exit(addr, size, exec, mesg);
  3451 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
  3452   if (bytes == 0) {
  3453     // Don't bother the OS with noops.
  3454     return true;
  3456   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  3457   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  3458   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
  3461 bool os::pd_release_memory(char* addr, size_t bytes) {
  3462   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  3465 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3466   return os::commit_memory(addr, size, !ExecMem);
  3469 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3470   return os::uncommit_memory(addr, size);
  3473 // Set protections specified
  3474 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3475                         bool is_committed) {
  3476   unsigned int p = 0;
  3477   switch (prot) {
  3478   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  3479   case MEM_PROT_READ: p = PAGE_READONLY; break;
  3480   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  3481   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  3482   default:
  3483     ShouldNotReachHere();
  3486   DWORD old_status;
  3488   // Strange enough, but on Win32 one can change protection only for committed
  3489   // memory, not a big deal anyway, as bytes less or equal than 64K
  3490   if (!is_committed) {
  3491     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
  3492                           "cannot commit protection page");
  3494   // One cannot use os::guard_memory() here, as on Win32 guard page
  3495   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  3496   //
  3497   // Pages in the region become guard pages. Any attempt to access a guard page
  3498   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  3499   // the guard page status. Guard pages thus act as a one-time access alarm.
  3500   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  3503 bool os::guard_memory(char* addr, size_t bytes) {
  3504   DWORD old_status;
  3505   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
  3508 bool os::unguard_memory(char* addr, size_t bytes) {
  3509   DWORD old_status;
  3510   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
  3513 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3514 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3515 void os::numa_make_global(char *addr, size_t bytes)    { }
  3516 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  3517 bool os::numa_topology_changed()                       { return false; }
  3518 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
  3519 int os::numa_get_group_id()                            { return 0; }
  3520 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  3521   if (numa_node_list_holder.get_count() == 0 && size > 0) {
  3522     // Provide an answer for UMA systems
  3523     ids[0] = 0;
  3524     return 1;
  3525   } else {
  3526     // check for size bigger than actual groups_num
  3527     size = MIN2(size, numa_get_groups_num());
  3528     for (int i = 0; i < (int)size; i++) {
  3529       ids[i] = numa_node_list_holder.get_node_list_entry(i);
  3531     return size;
  3535 bool os::get_page_info(char *start, page_info* info) {
  3536   return false;
  3539 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  3540   return end;
  3543 char* os::non_memory_address_word() {
  3544   // Must never look like an address returned by reserve_memory,
  3545   // even in its subfields (as defined by the CPU immediate fields,
  3546   // if the CPU splits constants across multiple instructions).
  3547   return (char*)-1;
  3550 #define MAX_ERROR_COUNT 100
  3551 #define SYS_THREAD_ERROR 0xffffffffUL
  3553 void os::pd_start_thread(Thread* thread) {
  3554   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  3555   // Returns previous suspend state:
  3556   // 0:  Thread was not suspended
  3557   // 1:  Thread is running now
  3558   // >1: Thread is still suspended.
  3559   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  3562 class HighResolutionInterval : public CHeapObj<mtThread> {
  3563   // The default timer resolution seems to be 10 milliseconds.
  3564   // (Where is this written down?)
  3565   // If someone wants to sleep for only a fraction of the default,
  3566   // then we set the timer resolution down to 1 millisecond for
  3567   // the duration of their interval.
  3568   // We carefully set the resolution back, since otherwise we
  3569   // seem to incur an overhead (3%?) that we don't need.
  3570   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  3571   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  3572   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  3573   // timeBeginPeriod() if the relative error exceeded some threshold.
  3574   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  3575   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  3576   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  3577   // resolution timers running.
  3578 private:
  3579     jlong resolution;
  3580 public:
  3581   HighResolutionInterval(jlong ms) {
  3582     resolution = ms % 10L;
  3583     if (resolution != 0) {
  3584       MMRESULT result = timeBeginPeriod(1L);
  3587   ~HighResolutionInterval() {
  3588     if (resolution != 0) {
  3589       MMRESULT result = timeEndPeriod(1L);
  3591     resolution = 0L;
  3593 };
  3595 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  3596   jlong limit = (jlong) MAXDWORD;
  3598   while(ms > limit) {
  3599     int res;
  3600     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  3601       return res;
  3602     ms -= limit;
  3605   assert(thread == Thread::current(),  "thread consistency check");
  3606   OSThread* osthread = thread->osthread();
  3607   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  3608   int result;
  3609   if (interruptable) {
  3610     assert(thread->is_Java_thread(), "must be java thread");
  3611     JavaThread *jt = (JavaThread *) thread;
  3612     ThreadBlockInVM tbivm(jt);
  3614     jt->set_suspend_equivalent();
  3615     // cleared by handle_special_suspend_equivalent_condition() or
  3616     // java_suspend_self() via check_and_wait_while_suspended()
  3618     HANDLE events[1];
  3619     events[0] = osthread->interrupt_event();
  3620     HighResolutionInterval *phri=NULL;
  3621     if(!ForceTimeHighResolution)
  3622       phri = new HighResolutionInterval( ms );
  3623     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  3624       result = OS_TIMEOUT;
  3625     } else {
  3626       ResetEvent(osthread->interrupt_event());
  3627       osthread->set_interrupted(false);
  3628       result = OS_INTRPT;
  3630     delete phri; //if it is NULL, harmless
  3632     // were we externally suspended while we were waiting?
  3633     jt->check_and_wait_while_suspended();
  3634   } else {
  3635     assert(!thread->is_Java_thread(), "must not be java thread");
  3636     Sleep((long) ms);
  3637     result = OS_TIMEOUT;
  3639   return result;
  3642 //
  3643 // Short sleep, direct OS call.
  3644 //
  3645 // ms = 0, means allow others (if any) to run.
  3646 //
  3647 void os::naked_short_sleep(jlong ms) {
  3648   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  3649   Sleep(ms);
  3652 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3653 void os::infinite_sleep() {
  3654   while (true) {    // sleep forever ...
  3655     Sleep(100000);  // ... 100 seconds at a time
  3659 typedef BOOL (WINAPI * STTSignature)(void) ;
  3661 os::YieldResult os::NakedYield() {
  3662   // Use either SwitchToThread() or Sleep(0)
  3663   // Consider passing back the return value from SwitchToThread().
  3664   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
  3665     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  3666   } else {
  3667     Sleep(0);
  3669   return os::YIELD_UNKNOWN ;
  3672 void os::yield() {  os::NakedYield(); }
  3674 void os::yield_all(int attempts) {
  3675   // Yields to all threads, including threads with lower priorities
  3676   Sleep(1);
  3679 // Win32 only gives you access to seven real priorities at a time,
  3680 // so we compress Java's ten down to seven.  It would be better
  3681 // if we dynamically adjusted relative priorities.
  3683 int os::java_to_os_priority[CriticalPriority + 1] = {
  3684   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3685   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3686   THREAD_PRIORITY_LOWEST,                       // 2
  3687   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3688   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3689   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3690   THREAD_PRIORITY_NORMAL,                       // 6
  3691   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3692   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  3693   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3694   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
  3695   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
  3696 };
  3698 int prio_policy1[CriticalPriority + 1] = {
  3699   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3700   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3701   THREAD_PRIORITY_LOWEST,                       // 2
  3702   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3703   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3704   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3705   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  3706   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3707   THREAD_PRIORITY_HIGHEST,                      // 8
  3708   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3709   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
  3710   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
  3711 };
  3713 static int prio_init() {
  3714   // If ThreadPriorityPolicy is 1, switch tables
  3715   if (ThreadPriorityPolicy == 1) {
  3716     int i;
  3717     for (i = 0; i < CriticalPriority + 1; i++) {
  3718       os::java_to_os_priority[i] = prio_policy1[i];
  3721   if (UseCriticalJavaThreadPriority) {
  3722     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
  3724   return 0;
  3727 OSReturn os::set_native_priority(Thread* thread, int priority) {
  3728   if (!UseThreadPriorities) return OS_OK;
  3729   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  3730   return ret ? OS_OK : OS_ERR;
  3733 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  3734   if ( !UseThreadPriorities ) {
  3735     *priority_ptr = java_to_os_priority[NormPriority];
  3736     return OS_OK;
  3738   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  3739   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  3740     assert(false, "GetThreadPriority failed");
  3741     return OS_ERR;
  3743   *priority_ptr = os_prio;
  3744   return OS_OK;
  3748 // Hint to the underlying OS that a task switch would not be good.
  3749 // Void return because it's a hint and can fail.
  3750 void os::hint_no_preempt() {}
  3752 void os::interrupt(Thread* thread) {
  3753   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3754          "possibility of dangling Thread pointer");
  3756   OSThread* osthread = thread->osthread();
  3757   osthread->set_interrupted(true);
  3758   // More than one thread can get here with the same value of osthread,
  3759   // resulting in multiple notifications.  We do, however, want the store
  3760   // to interrupted() to be visible to other threads before we post
  3761   // the interrupt event.
  3762   OrderAccess::release();
  3763   SetEvent(osthread->interrupt_event());
  3764   // For JSR166:  unpark after setting status
  3765   if (thread->is_Java_thread())
  3766     ((JavaThread*)thread)->parker()->unpark();
  3768   ParkEvent * ev = thread->_ParkEvent ;
  3769   if (ev != NULL) ev->unpark() ;
  3774 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3775   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3776          "possibility of dangling Thread pointer");
  3778   OSThread* osthread = thread->osthread();
  3779   // There is no synchronization between the setting of the interrupt
  3780   // and it being cleared here. It is critical - see 6535709 - that
  3781   // we only clear the interrupt state, and reset the interrupt event,
  3782   // if we are going to report that we were indeed interrupted - else
  3783   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
  3784   // depending on the timing. By checking thread interrupt event to see
  3785   // if the thread gets real interrupt thus prevent spurious wakeup.
  3786   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
  3787   if (interrupted && clear_interrupted) {
  3788     osthread->set_interrupted(false);
  3789     ResetEvent(osthread->interrupt_event());
  3790   } // Otherwise leave the interrupted state alone
  3792   return interrupted;
  3795 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3796 ExtendedPC os::get_thread_pc(Thread* thread) {
  3797   CONTEXT context;
  3798   context.ContextFlags = CONTEXT_CONTROL;
  3799   HANDLE handle = thread->osthread()->thread_handle();
  3800 #ifdef _M_IA64
  3801   assert(0, "Fix get_thread_pc");
  3802   return ExtendedPC(NULL);
  3803 #else
  3804   if (GetThreadContext(handle, &context)) {
  3805 #ifdef _M_AMD64
  3806     return ExtendedPC((address) context.Rip);
  3807 #else
  3808     return ExtendedPC((address) context.Eip);
  3809 #endif
  3810   } else {
  3811     return ExtendedPC(NULL);
  3813 #endif
  3816 // GetCurrentThreadId() returns DWORD
  3817 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3819 static int _initial_pid = 0;
  3821 int os::current_process_id()
  3823   return (_initial_pid ? _initial_pid : _getpid());
  3826 int    os::win32::_vm_page_size       = 0;
  3827 int    os::win32::_vm_allocation_granularity = 0;
  3828 int    os::win32::_processor_type     = 0;
  3829 // Processor level is not available on non-NT systems, use vm_version instead
  3830 int    os::win32::_processor_level    = 0;
  3831 julong os::win32::_physical_memory    = 0;
  3832 size_t os::win32::_default_stack_size = 0;
  3834          intx os::win32::_os_thread_limit    = 0;
  3835 volatile intx os::win32::_os_thread_count    = 0;
  3837 bool   os::win32::_is_nt              = false;
  3838 bool   os::win32::_is_windows_2003    = false;
  3839 bool   os::win32::_is_windows_server  = false;
  3841 void os::win32::initialize_system_info() {
  3842   SYSTEM_INFO si;
  3843   GetSystemInfo(&si);
  3844   _vm_page_size    = si.dwPageSize;
  3845   _vm_allocation_granularity = si.dwAllocationGranularity;
  3846   _processor_type  = si.dwProcessorType;
  3847   _processor_level = si.wProcessorLevel;
  3848   set_processor_count(si.dwNumberOfProcessors);
  3850   MEMORYSTATUSEX ms;
  3851   ms.dwLength = sizeof(ms);
  3853   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3854   // dwMemoryLoad (% of memory in use)
  3855   GlobalMemoryStatusEx(&ms);
  3856   _physical_memory = ms.ullTotalPhys;
  3858   OSVERSIONINFOEX oi;
  3859   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  3860   GetVersionEx((OSVERSIONINFO*)&oi);
  3861   switch(oi.dwPlatformId) {
  3862     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3863     case VER_PLATFORM_WIN32_NT:
  3864       _is_nt = true;
  3866         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3867         if (os_vers == 5002) {
  3868           _is_windows_2003 = true;
  3870         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
  3871           oi.wProductType == VER_NT_SERVER) {
  3872             _is_windows_server = true;
  3875       break;
  3876     default: fatal("Unknown platform");
  3879   _default_stack_size = os::current_stack_size();
  3880   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3881   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3882     "stack size not a multiple of page size");
  3884   initialize_performance_counter();
  3886   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3887   // known to deadlock the system, if the VM issues to thread operations with
  3888   // a too high frequency, e.g., such as changing the priorities.
  3889   // The 6000 seems to work well - no deadlocks has been notices on the test
  3890   // programs that we have seen experience this problem.
  3891   if (!os::win32::is_nt()) {
  3892     StarvationMonitorInterval = 6000;
  3897 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
  3898   char path[MAX_PATH];
  3899   DWORD size;
  3900   DWORD pathLen = (DWORD)sizeof(path);
  3901   HINSTANCE result = NULL;
  3903   // only allow library name without path component
  3904   assert(strchr(name, '\\') == NULL, "path not allowed");
  3905   assert(strchr(name, ':') == NULL, "path not allowed");
  3906   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
  3907     jio_snprintf(ebuf, ebuflen,
  3908       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
  3909     return NULL;
  3912   // search system directory
  3913   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
  3914     strcat(path, "\\");
  3915     strcat(path, name);
  3916     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3917       return result;
  3921   // try Windows directory
  3922   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
  3923     strcat(path, "\\");
  3924     strcat(path, name);
  3925     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3926       return result;
  3930   jio_snprintf(ebuf, ebuflen,
  3931     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
  3932   return NULL;
  3935 void os::win32::setmode_streams() {
  3936   _setmode(_fileno(stdin), _O_BINARY);
  3937   _setmode(_fileno(stdout), _O_BINARY);
  3938   _setmode(_fileno(stderr), _O_BINARY);
  3942 bool os::is_debugger_attached() {
  3943   return IsDebuggerPresent() ? true : false;
  3947 void os::wait_for_keypress_at_exit(void) {
  3948   if (PauseAtExit) {
  3949     fprintf(stderr, "Press any key to continue...\n");
  3950     fgetc(stdin);
  3955 int os::message_box(const char* title, const char* message) {
  3956   int result = MessageBox(NULL, message, title,
  3957                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3958   return result == IDYES;
  3961 int os::allocate_thread_local_storage() {
  3962   return TlsAlloc();
  3966 void os::free_thread_local_storage(int index) {
  3967   TlsFree(index);
  3971 void os::thread_local_storage_at_put(int index, void* value) {
  3972   TlsSetValue(index, value);
  3973   assert(thread_local_storage_at(index) == value, "Just checking");
  3977 void* os::thread_local_storage_at(int index) {
  3978   return TlsGetValue(index);
  3982 #ifndef PRODUCT
  3983 #ifndef _WIN64
  3984 // Helpers to check whether NX protection is enabled
  3985 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3986   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3987       pex->ExceptionRecord->NumberParameters > 0 &&
  3988       pex->ExceptionRecord->ExceptionInformation[0] ==
  3989       EXCEPTION_INFO_EXEC_VIOLATION) {
  3990     return EXCEPTION_EXECUTE_HANDLER;
  3992   return EXCEPTION_CONTINUE_SEARCH;
  3995 void nx_check_protection() {
  3996   // If NX is enabled we'll get an exception calling into code on the stack
  3997   char code[] = { (char)0xC3 }; // ret
  3998   void *code_ptr = (void *)code;
  3999   __try {
  4000     __asm call code_ptr
  4001   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  4002     tty->print_raw_cr("NX protection detected.");
  4005 #endif // _WIN64
  4006 #endif // PRODUCT
  4008 // this is called _before_ the global arguments have been parsed
  4009 void os::init(void) {
  4010   _initial_pid = _getpid();
  4012   init_random(1234567);
  4014   win32::initialize_system_info();
  4015   win32::setmode_streams();
  4016   init_page_sizes((size_t) win32::vm_page_size());
  4018   // For better scalability on MP systems (must be called after initialize_system_info)
  4019 #ifndef PRODUCT
  4020   if (is_MP()) {
  4021     NoYieldsInMicrolock = true;
  4023 #endif
  4024   // This may be overridden later when argument processing is done.
  4025   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  4026     os::win32::is_windows_2003());
  4028   // Initialize main_process and main_thread
  4029   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  4030  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  4031                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  4032     fatal("DuplicateHandle failed\n");
  4034   main_thread_id = (int) GetCurrentThreadId();
  4037 // To install functions for atexit processing
  4038 extern "C" {
  4039   static void perfMemory_exit_helper() {
  4040     perfMemory_exit();
  4044 static jint initSock();
  4046 // this is called _after_ the global arguments have been parsed
  4047 jint os::init_2(void) {
  4048   // Allocate a single page and mark it as readable for safepoint polling
  4049   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  4050   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  4052   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  4053   guarantee( return_page != NULL, "Commit Failed for polling page");
  4055   os::set_polling_page( polling_page );
  4057 #ifndef PRODUCT
  4058   if( Verbose && PrintMiscellaneous )
  4059     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4060 #endif
  4062   if (!UseMembar) {
  4063     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
  4064     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  4066     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
  4067     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  4069     os::set_memory_serialize_page( mem_serialize_page );
  4071 #ifndef PRODUCT
  4072     if(Verbose && PrintMiscellaneous)
  4073       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4074 #endif
  4077   // Setup Windows Exceptions
  4079   // for debugging float code generation bugs
  4080   if (ForceFloatExceptions) {
  4081 #ifndef  _WIN64
  4082     static long fp_control_word = 0;
  4083     __asm { fstcw fp_control_word }
  4084     // see Intel PPro Manual, Vol. 2, p 7-16
  4085     const long precision = 0x20;
  4086     const long underflow = 0x10;
  4087     const long overflow  = 0x08;
  4088     const long zero_div  = 0x04;
  4089     const long denorm    = 0x02;
  4090     const long invalid   = 0x01;
  4091     fp_control_word |= invalid;
  4092     __asm { fldcw fp_control_word }
  4093 #endif
  4096   // If stack_commit_size is 0, windows will reserve the default size,
  4097   // but only commit a small portion of it.
  4098   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  4099   size_t default_reserve_size = os::win32::default_stack_size();
  4100   size_t actual_reserve_size = stack_commit_size;
  4101   if (stack_commit_size < default_reserve_size) {
  4102     // If stack_commit_size == 0, we want this too
  4103     actual_reserve_size = default_reserve_size;
  4106   // Check minimum allowable stack size for thread creation and to initialize
  4107   // the java system classes, including StackOverflowError - depends on page
  4108   // size.  Add a page for compiler2 recursion in main thread.
  4109   // Add in 2*BytesPerWord times page size to account for VM stack during
  4110   // class initialization depending on 32 or 64 bit VM.
  4111   size_t min_stack_allowed =
  4112             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  4113             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
  4114   if (actual_reserve_size < min_stack_allowed) {
  4115     tty->print_cr("\nThe stack size specified is too small, "
  4116                   "Specify at least %dk",
  4117                   min_stack_allowed / K);
  4118     return JNI_ERR;
  4121   JavaThread::set_stack_size_at_create(stack_commit_size);
  4123   // Calculate theoretical max. size of Threads to guard gainst artifical
  4124   // out-of-memory situations, where all available address-space has been
  4125   // reserved by thread stacks.
  4126   assert(actual_reserve_size != 0, "Must have a stack");
  4128   // Calculate the thread limit when we should start doing Virtual Memory
  4129   // banging. Currently when the threads will have used all but 200Mb of space.
  4130   //
  4131   // TODO: consider performing a similar calculation for commit size instead
  4132   // as reserve size, since on a 64-bit platform we'll run into that more
  4133   // often than running out of virtual memory space.  We can use the
  4134   // lower value of the two calculations as the os_thread_limit.
  4135   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  4136   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  4138   // at exit methods are called in the reverse order of their registration.
  4139   // there is no limit to the number of functions registered. atexit does
  4140   // not set errno.
  4142   if (PerfAllowAtExitRegistration) {
  4143     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4144     // atexit functions can be delayed until process exit time, which
  4145     // can be problematic for embedded VM situations. Embedded VMs should
  4146     // call DestroyJavaVM() to assure that VM resources are released.
  4148     // note: perfMemory_exit_helper atexit function may be removed in
  4149     // the future if the appropriate cleanup code can be added to the
  4150     // VM_Exit VMOperation's doit method.
  4151     if (atexit(perfMemory_exit_helper) != 0) {
  4152       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  4156 #ifndef _WIN64
  4157   // Print something if NX is enabled (win32 on AMD64)
  4158   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  4159 #endif
  4161   // initialize thread priority policy
  4162   prio_init();
  4164   if (UseNUMA && !ForceNUMA) {
  4165     UseNUMA = false; // We don't fully support this yet
  4168   if (UseNUMAInterleaving) {
  4169     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
  4170     bool success = numa_interleaving_init();
  4171     if (!success) UseNUMAInterleaving = false;
  4174   if (initSock() != JNI_OK) {
  4175     return JNI_ERR;
  4178   return JNI_OK;
  4181 // Mark the polling page as unreadable
  4182 void os::make_polling_page_unreadable(void) {
  4183   DWORD old_status;
  4184   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  4185     fatal("Could not disable polling page");
  4186 };
  4188 // Mark the polling page as readable
  4189 void os::make_polling_page_readable(void) {
  4190   DWORD old_status;
  4191   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  4192     fatal("Could not enable polling page");
  4193 };
  4196 int os::stat(const char *path, struct stat *sbuf) {
  4197   char pathbuf[MAX_PATH];
  4198   if (strlen(path) > MAX_PATH - 1) {
  4199     errno = ENAMETOOLONG;
  4200     return -1;
  4202   os::native_path(strcpy(pathbuf, path));
  4203   int ret = ::stat(pathbuf, sbuf);
  4204   if (sbuf != NULL && UseUTCFileTimestamp) {
  4205     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  4206     // the system timezone and so can return different values for the
  4207     // same file if/when daylight savings time changes.  This adjustment
  4208     // makes sure the same timestamp is returned regardless of the TZ.
  4209     //
  4210     // See:
  4211     // http://msdn.microsoft.com/library/
  4212     //   default.asp?url=/library/en-us/sysinfo/base/
  4213     //   time_zone_information_str.asp
  4214     // and
  4215     // http://msdn.microsoft.com/library/default.asp?url=
  4216     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  4217     //
  4218     // NOTE: there is a insidious bug here:  If the timezone is changed
  4219     // after the call to stat() but before 'GetTimeZoneInformation()', then
  4220     // the adjustment we do here will be wrong and we'll return the wrong
  4221     // value (which will likely end up creating an invalid class data
  4222     // archive).  Absent a better API for this, or some time zone locking
  4223     // mechanism, we'll have to live with this risk.
  4224     TIME_ZONE_INFORMATION tz;
  4225     DWORD tzid = GetTimeZoneInformation(&tz);
  4226     int daylightBias =
  4227       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  4228     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  4230   return ret;
  4234 #define FT2INT64(ft) \
  4235   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  4238 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4239 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4240 // of a thread.
  4241 //
  4242 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4243 // the fast estimate available on the platform.
  4245 // current_thread_cpu_time() is not optimized for Windows yet
  4246 jlong os::current_thread_cpu_time() {
  4247   // return user + sys since the cost is the same
  4248   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  4251 jlong os::thread_cpu_time(Thread* thread) {
  4252   // consistent with what current_thread_cpu_time() returns.
  4253   return os::thread_cpu_time(thread, true /* user+sys */);
  4256 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4257   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4260 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  4261   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  4262   // If this function changes, os::is_thread_cpu_time_supported() should too
  4263   if (os::win32::is_nt()) {
  4264     FILETIME CreationTime;
  4265     FILETIME ExitTime;
  4266     FILETIME KernelTime;
  4267     FILETIME UserTime;
  4269     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  4270                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  4271       return -1;
  4272     else
  4273       if (user_sys_cpu_time) {
  4274         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  4275       } else {
  4276         return FT2INT64(UserTime) * 100;
  4278   } else {
  4279     return (jlong) timeGetTime() * 1000000;
  4283 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4284   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  4285   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  4286   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  4287   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  4290 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4291   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  4292   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  4293   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  4294   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  4297 bool os::is_thread_cpu_time_supported() {
  4298   // see os::thread_cpu_time
  4299   if (os::win32::is_nt()) {
  4300     FILETIME CreationTime;
  4301     FILETIME ExitTime;
  4302     FILETIME KernelTime;
  4303     FILETIME UserTime;
  4305     if ( GetThreadTimes(GetCurrentThread(),
  4306                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  4307       return false;
  4308     else
  4309       return true;
  4310   } else {
  4311     return false;
  4315 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  4316 // It does have primitives (PDH API) to get CPU usage and run queue length.
  4317 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  4318 // If we wanted to implement loadavg on Windows, we have a few options:
  4319 //
  4320 // a) Query CPU usage and run queue length and "fake" an answer by
  4321 //    returning the CPU usage if it's under 100%, and the run queue
  4322 //    length otherwise.  It turns out that querying is pretty slow
  4323 //    on Windows, on the order of 200 microseconds on a fast machine.
  4324 //    Note that on the Windows the CPU usage value is the % usage
  4325 //    since the last time the API was called (and the first call
  4326 //    returns 100%), so we'd have to deal with that as well.
  4327 //
  4328 // b) Sample the "fake" answer using a sampling thread and store
  4329 //    the answer in a global variable.  The call to loadavg would
  4330 //    just return the value of the global, avoiding the slow query.
  4331 //
  4332 // c) Sample a better answer using exponential decay to smooth the
  4333 //    value.  This is basically the algorithm used by UNIX kernels.
  4334 //
  4335 // Note that sampling thread starvation could affect both (b) and (c).
  4336 int os::loadavg(double loadavg[], int nelem) {
  4337   return -1;
  4341 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  4342 bool os::dont_yield() {
  4343   return DontYieldALot;
  4346 // This method is a slightly reworked copy of JDK's sysOpen
  4347 // from src/windows/hpi/src/sys_api_md.c
  4349 int os::open(const char *path, int oflag, int mode) {
  4350   char pathbuf[MAX_PATH];
  4352   if (strlen(path) > MAX_PATH - 1) {
  4353     errno = ENAMETOOLONG;
  4354           return -1;
  4356   os::native_path(strcpy(pathbuf, path));
  4357   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
  4360 FILE* os::open(int fd, const char* mode) {
  4361   return ::_fdopen(fd, mode);
  4364 // Is a (classpath) directory empty?
  4365 bool os::dir_is_empty(const char* path) {
  4366   WIN32_FIND_DATA fd;
  4367   HANDLE f = FindFirstFile(path, &fd);
  4368   if (f == INVALID_HANDLE_VALUE) {
  4369     return true;
  4371   FindClose(f);
  4372   return false;
  4375 // create binary file, rewriting existing file if required
  4376 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4377   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  4378   if (!rewrite_existing) {
  4379     oflags |= _O_EXCL;
  4381   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  4384 // return current position of file pointer
  4385 jlong os::current_file_offset(int fd) {
  4386   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  4389 // move file pointer to the specified offset
  4390 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4391   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  4395 jlong os::lseek(int fd, jlong offset, int whence) {
  4396   return (jlong) ::_lseeki64(fd, offset, whence);
  4399 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
  4400   OVERLAPPED ov;
  4401   DWORD nread;
  4402   BOOL result;
  4404   ZeroMemory(&ov, sizeof(ov));
  4405   ov.Offset = (DWORD)offset;
  4406   ov.OffsetHigh = (DWORD)(offset >> 32);
  4408   HANDLE h = (HANDLE)::_get_osfhandle(fd);
  4410   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
  4412   return result ? nread : 0;
  4415 // This method is a slightly reworked copy of JDK's sysNativePath
  4416 // from src/windows/hpi/src/path_md.c
  4418 /* Convert a pathname to native format.  On win32, this involves forcing all
  4419    separators to be '\\' rather than '/' (both are legal inputs, but Win95
  4420    sometimes rejects '/') and removing redundant separators.  The input path is
  4421    assumed to have been converted into the character encoding used by the local
  4422    system.  Because this might be a double-byte encoding, care is taken to
  4423    treat double-byte lead characters correctly.
  4425    This procedure modifies the given path in place, as the result is never
  4426    longer than the original.  There is no error return; this operation always
  4427    succeeds. */
  4428 char * os::native_path(char *path) {
  4429   char *src = path, *dst = path, *end = path;
  4430   char *colon = NULL;           /* If a drive specifier is found, this will
  4431                                         point to the colon following the drive
  4432                                         letter */
  4434   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
  4435   assert(((!::IsDBCSLeadByte('/'))
  4436     && (!::IsDBCSLeadByte('\\'))
  4437     && (!::IsDBCSLeadByte(':'))),
  4438     "Illegal lead byte");
  4440   /* Check for leading separators */
  4441 #define isfilesep(c) ((c) == '/' || (c) == '\\')
  4442   while (isfilesep(*src)) {
  4443     src++;
  4446   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
  4447     /* Remove leading separators if followed by drive specifier.  This
  4448       hack is necessary to support file URLs containing drive
  4449       specifiers (e.g., "file://c:/path").  As a side effect,
  4450       "/c:/path" can be used as an alternative to "c:/path". */
  4451     *dst++ = *src++;
  4452     colon = dst;
  4453     *dst++ = ':';
  4454     src++;
  4455   } else {
  4456     src = path;
  4457     if (isfilesep(src[0]) && isfilesep(src[1])) {
  4458       /* UNC pathname: Retain first separator; leave src pointed at
  4459          second separator so that further separators will be collapsed
  4460          into the second separator.  The result will be a pathname
  4461          beginning with "\\\\" followed (most likely) by a host name. */
  4462       src = dst = path + 1;
  4463       path[0] = '\\';     /* Force first separator to '\\' */
  4467   end = dst;
  4469   /* Remove redundant separators from remainder of path, forcing all
  4470       separators to be '\\' rather than '/'. Also, single byte space
  4471       characters are removed from the end of the path because those
  4472       are not legal ending characters on this operating system.
  4473   */
  4474   while (*src != '\0') {
  4475     if (isfilesep(*src)) {
  4476       *dst++ = '\\'; src++;
  4477       while (isfilesep(*src)) src++;
  4478       if (*src == '\0') {
  4479         /* Check for trailing separator */
  4480         end = dst;
  4481         if (colon == dst - 2) break;                      /* "z:\\" */
  4482         if (dst == path + 1) break;                       /* "\\" */
  4483         if (dst == path + 2 && isfilesep(path[0])) {
  4484           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
  4485             beginning of a UNC pathname.  Even though it is not, by
  4486             itself, a valid UNC pathname, we leave it as is in order
  4487             to be consistent with the path canonicalizer as well
  4488             as the win32 APIs, which treat this case as an invalid
  4489             UNC pathname rather than as an alias for the root
  4490             directory of the current drive. */
  4491           break;
  4493         end = --dst;  /* Path does not denote a root directory, so
  4494                                     remove trailing separator */
  4495         break;
  4497       end = dst;
  4498     } else {
  4499       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
  4500         *dst++ = *src++;
  4501         if (*src) *dst++ = *src++;
  4502         end = dst;
  4503       } else {         /* Copy a single-byte character */
  4504         char c = *src++;
  4505         *dst++ = c;
  4506         /* Space is not a legal ending character */
  4507         if (c != ' ') end = dst;
  4512   *end = '\0';
  4514   /* For "z:", add "." to work around a bug in the C runtime library */
  4515   if (colon == dst - 1) {
  4516           path[2] = '.';
  4517           path[3] = '\0';
  4520   return path;
  4523 // This code is a copy of JDK's sysSetLength
  4524 // from src/windows/hpi/src/sys_api_md.c
  4526 int os::ftruncate(int fd, jlong length) {
  4527   HANDLE h = (HANDLE)::_get_osfhandle(fd);
  4528   long high = (long)(length >> 32);
  4529   DWORD ret;
  4531   if (h == (HANDLE)(-1)) {
  4532     return -1;
  4535   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
  4536   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
  4537       return -1;
  4540   if (::SetEndOfFile(h) == FALSE) {
  4541     return -1;
  4544   return 0;
  4548 // This code is a copy of JDK's sysSync
  4549 // from src/windows/hpi/src/sys_api_md.c
  4550 // except for the legacy workaround for a bug in Win 98
  4552 int os::fsync(int fd) {
  4553   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
  4555   if ( (!::FlushFileBuffers(handle)) &&
  4556          (GetLastError() != ERROR_ACCESS_DENIED) ) {
  4557     /* from winerror.h */
  4558     return -1;
  4560   return 0;
  4563 static int nonSeekAvailable(int, long *);
  4564 static int stdinAvailable(int, long *);
  4566 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
  4567 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
  4569 // This code is a copy of JDK's sysAvailable
  4570 // from src/windows/hpi/src/sys_api_md.c
  4572 int os::available(int fd, jlong *bytes) {
  4573   jlong cur, end;
  4574   struct _stati64 stbuf64;
  4576   if (::_fstati64(fd, &stbuf64) >= 0) {
  4577     int mode = stbuf64.st_mode;
  4578     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
  4579       int ret;
  4580       long lpbytes;
  4581       if (fd == 0) {
  4582         ret = stdinAvailable(fd, &lpbytes);
  4583       } else {
  4584         ret = nonSeekAvailable(fd, &lpbytes);
  4586       (*bytes) = (jlong)(lpbytes);
  4587       return ret;
  4589     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
  4590       return FALSE;
  4591     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
  4592       return FALSE;
  4593     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
  4594       return FALSE;
  4596     *bytes = end - cur;
  4597     return TRUE;
  4598   } else {
  4599     return FALSE;
  4603 // This code is a copy of JDK's nonSeekAvailable
  4604 // from src/windows/hpi/src/sys_api_md.c
  4606 static int nonSeekAvailable(int fd, long *pbytes) {
  4607   /* This is used for available on non-seekable devices
  4608     * (like both named and anonymous pipes, such as pipes
  4609     *  connected to an exec'd process).
  4610     * Standard Input is a special case.
  4612     */
  4613   HANDLE han;
  4615   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
  4616     return FALSE;
  4619   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
  4620         /* PeekNamedPipe fails when at EOF.  In that case we
  4621          * simply make *pbytes = 0 which is consistent with the
  4622          * behavior we get on Solaris when an fd is at EOF.
  4623          * The only alternative is to raise an Exception,
  4624          * which isn't really warranted.
  4625          */
  4626     if (::GetLastError() != ERROR_BROKEN_PIPE) {
  4627       return FALSE;
  4629     *pbytes = 0;
  4631   return TRUE;
  4634 #define MAX_INPUT_EVENTS 2000
  4636 // This code is a copy of JDK's stdinAvailable
  4637 // from src/windows/hpi/src/sys_api_md.c
  4639 static int stdinAvailable(int fd, long *pbytes) {
  4640   HANDLE han;
  4641   DWORD numEventsRead = 0;      /* Number of events read from buffer */
  4642   DWORD numEvents = 0;  /* Number of events in buffer */
  4643   DWORD i = 0;          /* Loop index */
  4644   DWORD curLength = 0;  /* Position marker */
  4645   DWORD actualLength = 0;       /* Number of bytes readable */
  4646   BOOL error = FALSE;         /* Error holder */
  4647   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
  4649   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
  4650         return FALSE;
  4653   /* Construct an array of input records in the console buffer */
  4654   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
  4655   if (error == 0) {
  4656     return nonSeekAvailable(fd, pbytes);
  4659   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
  4660   if (numEvents > MAX_INPUT_EVENTS) {
  4661     numEvents = MAX_INPUT_EVENTS;
  4664   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
  4665   if (lpBuffer == NULL) {
  4666     return FALSE;
  4669   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
  4670   if (error == 0) {
  4671     os::free(lpBuffer, mtInternal);
  4672     return FALSE;
  4675   /* Examine input records for the number of bytes available */
  4676   for(i=0; i<numEvents; i++) {
  4677     if (lpBuffer[i].EventType == KEY_EVENT) {
  4679       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
  4680                                       &(lpBuffer[i].Event);
  4681       if (keyRecord->bKeyDown == TRUE) {
  4682         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
  4683         curLength++;
  4684         if (*keyPressed == '\r') {
  4685           actualLength = curLength;
  4691   if(lpBuffer != NULL) {
  4692     os::free(lpBuffer, mtInternal);
  4695   *pbytes = (long) actualLength;
  4696   return TRUE;
  4699 // Map a block of memory.
  4700 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  4701                      char *addr, size_t bytes, bool read_only,
  4702                      bool allow_exec) {
  4703   HANDLE hFile;
  4704   char* base;
  4706   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  4707                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  4708   if (hFile == NULL) {
  4709     if (PrintMiscellaneous && Verbose) {
  4710       DWORD err = GetLastError();
  4711       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
  4713     return NULL;
  4716   if (allow_exec) {
  4717     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  4718     // unless it comes from a PE image (which the shared archive is not.)
  4719     // Even VirtualProtect refuses to give execute access to mapped memory
  4720     // that was not previously executable.
  4721     //
  4722     // Instead, stick the executable region in anonymous memory.  Yuck.
  4723     // Penalty is that ~4 pages will not be shareable - in the future
  4724     // we might consider DLLizing the shared archive with a proper PE
  4725     // header so that mapping executable + sharing is possible.
  4727     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  4728                                 PAGE_READWRITE);
  4729     if (base == NULL) {
  4730       if (PrintMiscellaneous && Verbose) {
  4731         DWORD err = GetLastError();
  4732         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  4734       CloseHandle(hFile);
  4735       return NULL;
  4738     DWORD bytes_read;
  4739     OVERLAPPED overlapped;
  4740     overlapped.Offset = (DWORD)file_offset;
  4741     overlapped.OffsetHigh = 0;
  4742     overlapped.hEvent = NULL;
  4743     // ReadFile guarantees that if the return value is true, the requested
  4744     // number of bytes were read before returning.
  4745     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  4746     if (!res) {
  4747       if (PrintMiscellaneous && Verbose) {
  4748         DWORD err = GetLastError();
  4749         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  4751       release_memory(base, bytes);
  4752       CloseHandle(hFile);
  4753       return NULL;
  4755   } else {
  4756     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  4757                                     NULL /*file_name*/);
  4758     if (hMap == NULL) {
  4759       if (PrintMiscellaneous && Verbose) {
  4760         DWORD err = GetLastError();
  4761         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
  4763       CloseHandle(hFile);
  4764       return NULL;
  4767     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  4768     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  4769                                   (DWORD)bytes, addr);
  4770     if (base == NULL) {
  4771       if (PrintMiscellaneous && Verbose) {
  4772         DWORD err = GetLastError();
  4773         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  4775       CloseHandle(hMap);
  4776       CloseHandle(hFile);
  4777       return NULL;
  4780     if (CloseHandle(hMap) == 0) {
  4781       if (PrintMiscellaneous && Verbose) {
  4782         DWORD err = GetLastError();
  4783         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  4785       CloseHandle(hFile);
  4786       return base;
  4790   if (allow_exec) {
  4791     DWORD old_protect;
  4792     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  4793     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  4795     if (!res) {
  4796       if (PrintMiscellaneous && Verbose) {
  4797         DWORD err = GetLastError();
  4798         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  4800       // Don't consider this a hard error, on IA32 even if the
  4801       // VirtualProtect fails, we should still be able to execute
  4802       CloseHandle(hFile);
  4803       return base;
  4807   if (CloseHandle(hFile) == 0) {
  4808     if (PrintMiscellaneous && Verbose) {
  4809       DWORD err = GetLastError();
  4810       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  4812     return base;
  4815   return base;
  4819 // Remap a block of memory.
  4820 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  4821                        char *addr, size_t bytes, bool read_only,
  4822                        bool allow_exec) {
  4823   // This OS does not allow existing memory maps to be remapped so we
  4824   // have to unmap the memory before we remap it.
  4825   if (!os::unmap_memory(addr, bytes)) {
  4826     return NULL;
  4829   // There is a very small theoretical window between the unmap_memory()
  4830   // call above and the map_memory() call below where a thread in native
  4831   // code may be able to access an address that is no longer mapped.
  4833   return os::map_memory(fd, file_name, file_offset, addr, bytes,
  4834            read_only, allow_exec);
  4838 // Unmap a block of memory.
  4839 // Returns true=success, otherwise false.
  4841 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  4842   BOOL result = UnmapViewOfFile(addr);
  4843   if (result == 0) {
  4844     if (PrintMiscellaneous && Verbose) {
  4845       DWORD err = GetLastError();
  4846       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  4848     return false;
  4850   return true;
  4853 void os::pause() {
  4854   char filename[MAX_PATH];
  4855   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4856     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4857   } else {
  4858     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4861   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4862   if (fd != -1) {
  4863     struct stat buf;
  4864     ::close(fd);
  4865     while (::stat(filename, &buf) == 0) {
  4866       Sleep(100);
  4868   } else {
  4869     jio_fprintf(stderr,
  4870       "Could not open pause file '%s', continuing immediately.\n", filename);
  4874 Thread* os::ThreadCrashProtection::_protected_thread = NULL;
  4875 os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
  4876 volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
  4878 os::ThreadCrashProtection::ThreadCrashProtection() {
  4881 // See the caveats for this class in os_windows.hpp
  4882 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
  4883 // into this method and returns false. If no OS EXCEPTION was raised, returns
  4884 // true.
  4885 // The callback is supposed to provide the method that should be protected.
  4886 //
  4887 bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
  4889   Thread::muxAcquire(&_crash_mux, "CrashProtection");
  4891   _protected_thread = ThreadLocalStorage::thread();
  4892   assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
  4894   bool success = true;
  4895   __try {
  4896     _crash_protection = this;
  4897     cb.call();
  4898   } __except(EXCEPTION_EXECUTE_HANDLER) {
  4899     // only for protection, nothing to do
  4900     success = false;
  4902   _crash_protection = NULL;
  4903   _protected_thread = NULL;
  4904   Thread::muxRelease(&_crash_mux);
  4905   return success;
  4908 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
  4909   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
  4912 /*
  4913  * See the caveats for this class in os_windows.hpp
  4914  * Protects the callback call so that raised OS EXCEPTIONS causes a jump back
  4915  * into this method and returns false. If no OS EXCEPTION was raised, returns
  4916  * true.
  4917  * The callback is supposed to provide the method that should be protected.
  4918  */
  4919 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
  4920   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
  4921   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
  4922       "crash_protection already set?");
  4924   bool success = true;
  4925   __try {
  4926     WatcherThread::watcher_thread()->set_crash_protection(this);
  4927     cb.call();
  4928   } __except(EXCEPTION_EXECUTE_HANDLER) {
  4929     // only for protection, nothing to do
  4930     success = false;
  4932   WatcherThread::watcher_thread()->set_crash_protection(NULL);
  4933   return success;
  4936 // An Event wraps a win32 "CreateEvent" kernel handle.
  4937 //
  4938 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  4939 //
  4940 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  4941 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  4942 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  4943 //     In addition, an unpark() operation might fetch the handle field, but the
  4944 //     event could recycle between the fetch and the SetEvent() operation.
  4945 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  4946 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  4947 //     on an stale but recycled handle would be harmless, but in practice this might
  4948 //     confuse other non-Sun code, so it's not a viable approach.
  4949 //
  4950 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  4951 //     with the Event.  The event handle is never closed.  This could be construed
  4952 //     as handle leakage, but only up to the maximum # of threads that have been extant
  4953 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  4954 //     permit a process to have hundreds of thousands of open handles.
  4955 //
  4956 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  4957 //     and release unused handles.
  4958 //
  4959 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  4960 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  4961 //
  4962 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  4963 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  4964 //
  4965 // We use (2).
  4966 //
  4967 // TODO-FIXME:
  4968 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  4969 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  4970 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  4971 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  4972 //     into a single win32 CreateEvent() handle.
  4973 //
  4974 // _Event transitions in park()
  4975 //   -1 => -1 : illegal
  4976 //    1 =>  0 : pass - return immediately
  4977 //    0 => -1 : block
  4978 //
  4979 // _Event serves as a restricted-range semaphore :
  4980 //    -1 : thread is blocked
  4981 //     0 : neutral  - thread is running or ready
  4982 //     1 : signaled - thread is running or ready
  4983 //
  4984 // Another possible encoding of _Event would be
  4985 // with explicit "PARKED" and "SIGNALED" bits.
  4987 int os::PlatformEvent::park (jlong Millis) {
  4988     guarantee (_ParkHandle != NULL , "Invariant") ;
  4989     guarantee (Millis > 0          , "Invariant") ;
  4990     int v ;
  4992     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  4993     // the initial park() operation.
  4995     for (;;) {
  4996         v = _Event ;
  4997         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4999     guarantee ((v == 0) || (v == 1), "invariant") ;
  5000     if (v != 0) return OS_OK ;
  5002     // Do this the hard way by blocking ...
  5003     // TODO: consider a brief spin here, gated on the success of recent
  5004     // spin attempts by this thread.
  5005     //
  5006     // We decompose long timeouts into series of shorter timed waits.
  5007     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  5008     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  5009     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  5010     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  5011     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  5012     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  5013     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  5014     // for the already waited time.  This policy does not admit any new outcomes.
  5015     // In the future, however, we might want to track the accumulated wait time and
  5016     // adjust Millis accordingly if we encounter a spurious wakeup.
  5018     const int MAXTIMEOUT = 0x10000000 ;
  5019     DWORD rv = WAIT_TIMEOUT ;
  5020     while (_Event < 0 && Millis > 0) {
  5021        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  5022        if (Millis > MAXTIMEOUT) {
  5023           prd = MAXTIMEOUT ;
  5025        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  5026        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  5027        if (rv == WAIT_TIMEOUT) {
  5028            Millis -= prd ;
  5031     v = _Event ;
  5032     _Event = 0 ;
  5033     // see comment at end of os::PlatformEvent::park() below:
  5034     OrderAccess::fence() ;
  5035     // If we encounter a nearly simultanous timeout expiry and unpark()
  5036     // we return OS_OK indicating we awoke via unpark().
  5037     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  5038     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  5041 void os::PlatformEvent::park () {
  5042     guarantee (_ParkHandle != NULL, "Invariant") ;
  5043     // Invariant: Only the thread associated with the Event/PlatformEvent
  5044     // may call park().
  5045     int v ;
  5046     for (;;) {
  5047         v = _Event ;
  5048         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5050     guarantee ((v == 0) || (v == 1), "invariant") ;
  5051     if (v != 0) return ;
  5053     // Do this the hard way by blocking ...
  5054     // TODO: consider a brief spin here, gated on the success of recent
  5055     // spin attempts by this thread.
  5056     while (_Event < 0) {
  5057        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  5058        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  5061     // Usually we'll find _Event == 0 at this point, but as
  5062     // an optional optimization we clear it, just in case can
  5063     // multiple unpark() operations drove _Event up to 1.
  5064     _Event = 0 ;
  5065     OrderAccess::fence() ;
  5066     guarantee (_Event >= 0, "invariant") ;
  5069 void os::PlatformEvent::unpark() {
  5070   guarantee (_ParkHandle != NULL, "Invariant") ;
  5072   // Transitions for _Event:
  5073   //    0 :=> 1
  5074   //    1 :=> 1
  5075   //   -1 :=> either 0 or 1; must signal target thread
  5076   //          That is, we can safely transition _Event from -1 to either
  5077   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  5078   //          unpark() calls.
  5079   // See also: "Semaphores in Plan 9" by Mullender & Cox
  5080   //
  5081   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  5082   // that it will take two back-to-back park() calls for the owning
  5083   // thread to block. This has the benefit of forcing a spurious return
  5084   // from the first park() call after an unpark() call which will help
  5085   // shake out uses of park() and unpark() without condition variables.
  5087   if (Atomic::xchg(1, &_Event) >= 0) return;
  5089   ::SetEvent(_ParkHandle);
  5093 // JSR166
  5094 // -------------------------------------------------------
  5096 /*
  5097  * The Windows implementation of Park is very straightforward: Basic
  5098  * operations on Win32 Events turn out to have the right semantics to
  5099  * use them directly. We opportunistically resuse the event inherited
  5100  * from Monitor.
  5101  */
  5104 void Parker::park(bool isAbsolute, jlong time) {
  5105   guarantee (_ParkEvent != NULL, "invariant") ;
  5106   // First, demultiplex/decode time arguments
  5107   if (time < 0) { // don't wait
  5108     return;
  5110   else if (time == 0 && !isAbsolute) {
  5111     time = INFINITE;
  5113   else if  (isAbsolute) {
  5114     time -= os::javaTimeMillis(); // convert to relative time
  5115     if (time <= 0) // already elapsed
  5116       return;
  5118   else { // relative
  5119     time /= 1000000; // Must coarsen from nanos to millis
  5120     if (time == 0)   // Wait for the minimal time unit if zero
  5121       time = 1;
  5124   JavaThread* thread = (JavaThread*)(Thread::current());
  5125   assert(thread->is_Java_thread(), "Must be JavaThread");
  5126   JavaThread *jt = (JavaThread *)thread;
  5128   // Don't wait if interrupted or already triggered
  5129   if (Thread::is_interrupted(thread, false) ||
  5130     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  5131     ResetEvent(_ParkEvent);
  5132     return;
  5134   else {
  5135     ThreadBlockInVM tbivm(jt);
  5136     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5137     jt->set_suspend_equivalent();
  5139     WaitForSingleObject(_ParkEvent,  time);
  5140     ResetEvent(_ParkEvent);
  5142     // If externally suspended while waiting, re-suspend
  5143     if (jt->handle_special_suspend_equivalent_condition()) {
  5144       jt->java_suspend_self();
  5149 void Parker::unpark() {
  5150   guarantee (_ParkEvent != NULL, "invariant") ;
  5151   SetEvent(_ParkEvent);
  5154 // Run the specified command in a separate process. Return its exit value,
  5155 // or -1 on failure (e.g. can't create a new process).
  5156 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
  5157   STARTUPINFO si;
  5158   PROCESS_INFORMATION pi;
  5160   memset(&si, 0, sizeof(si));
  5161   si.cb = sizeof(si);
  5162   memset(&pi, 0, sizeof(pi));
  5163   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  5164                             cmd,    // command line
  5165                             NULL,   // process security attribute
  5166                             NULL,   // thread security attribute
  5167                             TRUE,   // inherits system handles
  5168                             0,      // no creation flags
  5169                             NULL,   // use parent's environment block
  5170                             NULL,   // use parent's starting directory
  5171                             &si,    // (in) startup information
  5172                             &pi);   // (out) process information
  5174   if (rslt) {
  5175     // Wait until child process exits.
  5176     WaitForSingleObject(pi.hProcess, INFINITE);
  5178     DWORD exit_code;
  5179     GetExitCodeProcess(pi.hProcess, &exit_code);
  5181     // Close process and thread handles.
  5182     CloseHandle(pi.hProcess);
  5183     CloseHandle(pi.hThread);
  5185     return (int)exit_code;
  5186   } else {
  5187     return -1;
  5191 //--------------------------------------------------------------------------------------------------
  5192 // Non-product code
  5194 static int mallocDebugIntervalCounter = 0;
  5195 static int mallocDebugCounter = 0;
  5196 bool os::check_heap(bool force) {
  5197   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  5198   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  5199     // Note: HeapValidate executes two hardware breakpoints when it finds something
  5200     // wrong; at these points, eax contains the address of the offending block (I think).
  5201     // To get to the exlicit error message(s) below, just continue twice.
  5202     HANDLE heap = GetProcessHeap();
  5203     { HeapLock(heap);
  5204       PROCESS_HEAP_ENTRY phe;
  5205       phe.lpData = NULL;
  5206       while (HeapWalk(heap, &phe) != 0) {
  5207         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  5208             !HeapValidate(heap, 0, phe.lpData)) {
  5209           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  5210           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  5211           fatal("corrupted C heap");
  5214       DWORD err = GetLastError();
  5215       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  5216         fatal(err_msg("heap walk aborted with error %d", err));
  5218       HeapUnlock(heap);
  5220     mallocDebugIntervalCounter = 0;
  5222   return true;
  5226 bool os::find(address addr, outputStream* st) {
  5227   // Nothing yet
  5228   return false;
  5231 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  5232   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  5234   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  5235     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  5236     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  5237     address addr = (address) exceptionRecord->ExceptionInformation[1];
  5239     if (os::is_memory_serialize_page(thread, addr))
  5240       return EXCEPTION_CONTINUE_EXECUTION;
  5243   return EXCEPTION_CONTINUE_SEARCH;
  5246 // We don't build a headless jre for Windows
  5247 bool os::is_headless_jre() { return false; }
  5249 static jint initSock() {
  5250   WSADATA wsadata;
  5252   if (!os::WinSock2Dll::WinSock2Available()) {
  5253     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
  5254       ::GetLastError());
  5255     return JNI_ERR;
  5258   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
  5259     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
  5260       ::GetLastError());
  5261     return JNI_ERR;
  5263   return JNI_OK;
  5266 struct hostent* os::get_host_by_name(char* name) {
  5267   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
  5270 int os::socket_close(int fd) {
  5271   return ::closesocket(fd);
  5274 int os::socket_available(int fd, jint *pbytes) {
  5275   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
  5276   return (ret < 0) ? 0 : 1;
  5279 int os::socket(int domain, int type, int protocol) {
  5280   return ::socket(domain, type, protocol);
  5283 int os::listen(int fd, int count) {
  5284   return ::listen(fd, count);
  5287 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
  5288   return ::connect(fd, him, len);
  5291 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
  5292   return ::accept(fd, him, len);
  5295 int os::sendto(int fd, char* buf, size_t len, uint flags,
  5296                struct sockaddr* to, socklen_t tolen) {
  5298   return ::sendto(fd, buf, (int)len, flags, to, tolen);
  5301 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
  5302                  sockaddr* from, socklen_t* fromlen) {
  5304   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
  5307 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
  5308   return ::recv(fd, buf, (int)nBytes, flags);
  5311 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
  5312   return ::send(fd, buf, (int)nBytes, flags);
  5315 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
  5316   return ::send(fd, buf, (int)nBytes, flags);
  5319 int os::timeout(int fd, long timeout) {
  5320   fd_set tbl;
  5321   struct timeval t;
  5323   t.tv_sec  = timeout / 1000;
  5324   t.tv_usec = (timeout % 1000) * 1000;
  5326   tbl.fd_count    = 1;
  5327   tbl.fd_array[0] = fd;
  5329   return ::select(1, &tbl, 0, 0, &t);
  5332 int os::get_host_name(char* name, int namelen) {
  5333   return ::gethostname(name, namelen);
  5336 int os::socket_shutdown(int fd, int howto) {
  5337   return ::shutdown(fd, howto);
  5340 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
  5341   return ::bind(fd, him, len);
  5344 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
  5345   return ::getsockname(fd, him, len);
  5348 int os::get_sock_opt(int fd, int level, int optname,
  5349                      char* optval, socklen_t* optlen) {
  5350   return ::getsockopt(fd, level, optname, optval, optlen);
  5353 int os::set_sock_opt(int fd, int level, int optname,
  5354                      const char* optval, socklen_t optlen) {
  5355   return ::setsockopt(fd, level, optname, optval, optlen);
  5358 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
  5359 #if defined(IA32)
  5360 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
  5361 #elif defined (AMD64)
  5362 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
  5363 #endif
  5365 // returns true if thread could be suspended,
  5366 // false otherwise
  5367 static bool do_suspend(HANDLE* h) {
  5368   if (h != NULL) {
  5369     if (SuspendThread(*h) != ~0) {
  5370       return true;
  5373   return false;
  5376 // resume the thread
  5377 // calling resume on an active thread is a no-op
  5378 static void do_resume(HANDLE* h) {
  5379   if (h != NULL) {
  5380     ResumeThread(*h);
  5384 // retrieve a suspend/resume context capable handle
  5385 // from the tid. Caller validates handle return value.
  5386 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
  5387   if (h != NULL) {
  5388     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
  5392 //
  5393 // Thread sampling implementation
  5394 //
  5395 void os::SuspendedThreadTask::internal_do_task() {
  5396   CONTEXT    ctxt;
  5397   HANDLE     h = NULL;
  5399   // get context capable handle for thread
  5400   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
  5402   // sanity
  5403   if (h == NULL || h == INVALID_HANDLE_VALUE) {
  5404     return;
  5407   // suspend the thread
  5408   if (do_suspend(&h)) {
  5409     ctxt.ContextFlags = sampling_context_flags;
  5410     // get thread context
  5411     GetThreadContext(h, &ctxt);
  5412     SuspendedThreadTaskContext context(_thread, &ctxt);
  5413     // pass context to Thread Sampling impl
  5414     do_task(context);
  5415     // resume thread
  5416     do_resume(&h);
  5419   // close handle
  5420   CloseHandle(h);
  5424 // Kernel32 API
  5425 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
  5426 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
  5427 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
  5428 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
  5429 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
  5431 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
  5432 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
  5433 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
  5434 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
  5435 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
  5438 BOOL                        os::Kernel32Dll::initialized = FALSE;
  5439 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
  5440   assert(initialized && _GetLargePageMinimum != NULL,
  5441     "GetLargePageMinimumAvailable() not yet called");
  5442   return _GetLargePageMinimum();
  5445 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
  5446   if (!initialized) {
  5447     initialize();
  5449   return _GetLargePageMinimum != NULL;
  5452 BOOL os::Kernel32Dll::NumaCallsAvailable() {
  5453   if (!initialized) {
  5454     initialize();
  5456   return _VirtualAllocExNuma != NULL;
  5459 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
  5460   assert(initialized && _VirtualAllocExNuma != NULL,
  5461     "NUMACallsAvailable() not yet called");
  5463   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
  5466 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
  5467   assert(initialized && _GetNumaHighestNodeNumber != NULL,
  5468     "NUMACallsAvailable() not yet called");
  5470   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
  5473 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
  5474   assert(initialized && _GetNumaNodeProcessorMask != NULL,
  5475     "NUMACallsAvailable() not yet called");
  5477   return _GetNumaNodeProcessorMask(node, proc_mask);
  5480 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
  5481   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
  5482     if (!initialized) {
  5483       initialize();
  5486     if (_RtlCaptureStackBackTrace != NULL) {
  5487       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
  5488         BackTrace, BackTraceHash);
  5489     } else {
  5490       return 0;
  5494 void os::Kernel32Dll::initializeCommon() {
  5495   if (!initialized) {
  5496     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5497     assert(handle != NULL, "Just check");
  5498     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
  5499     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
  5500     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
  5501     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
  5502     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
  5503     initialized = TRUE;
  5509 #ifndef JDK6_OR_EARLIER
  5511 void os::Kernel32Dll::initialize() {
  5512   initializeCommon();
  5516 // Kernel32 API
  5517 inline BOOL os::Kernel32Dll::SwitchToThread() {
  5518   return ::SwitchToThread();
  5521 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5522   return true;
  5525   // Help tools
  5526 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5527   return true;
  5530 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5531   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5534 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5535   return ::Module32First(hSnapshot, lpme);
  5538 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5539   return ::Module32Next(hSnapshot, lpme);
  5542 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5543   ::GetNativeSystemInfo(lpSystemInfo);
  5546 // PSAPI API
  5547 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5548   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5551 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5552   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5555 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5556   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5559 inline BOOL os::PSApiDll::PSApiAvailable() {
  5560   return true;
  5564 // WinSock2 API
  5565 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5566   return ::WSAStartup(wVersionRequested, lpWSAData);
  5569 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5570   return ::gethostbyname(name);
  5573 inline BOOL os::WinSock2Dll::WinSock2Available() {
  5574   return true;
  5577 // Advapi API
  5578 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5579    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5580    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5581      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5582        BufferLength, PreviousState, ReturnLength);
  5585 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5586   PHANDLE TokenHandle) {
  5587     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5590 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5591   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5594 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
  5595   return true;
  5598 void* os::get_default_process_handle() {
  5599   return (void*)GetModuleHandle(NULL);
  5602 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
  5603 // which is used to find statically linked in agents.
  5604 // Additionally for windows, takes into account __stdcall names.
  5605 // Parameters:
  5606 //            sym_name: Symbol in library we are looking for
  5607 //            lib_name: Name of library to look in, NULL for shared libs.
  5608 //            is_absolute_path == true if lib_name is absolute path to agent
  5609 //                                     such as "C:/a/b/L.dll"
  5610 //            == false if only the base name of the library is passed in
  5611 //               such as "L"
  5612 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
  5613                                     bool is_absolute_path) {
  5614   char *agent_entry_name;
  5615   size_t len;
  5616   size_t name_len;
  5617   size_t prefix_len = strlen(JNI_LIB_PREFIX);
  5618   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
  5619   const char *start;
  5621   if (lib_name != NULL) {
  5622     len = name_len = strlen(lib_name);
  5623     if (is_absolute_path) {
  5624       // Need to strip path, prefix and suffix
  5625       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
  5626         lib_name = ++start;
  5627       } else {
  5628         // Need to check for drive prefix
  5629         if ((start = strchr(lib_name, ':')) != NULL) {
  5630           lib_name = ++start;
  5633       if (len <= (prefix_len + suffix_len)) {
  5634         return NULL;
  5636       lib_name += prefix_len;
  5637       name_len = strlen(lib_name) - suffix_len;
  5640   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
  5641   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
  5642   if (agent_entry_name == NULL) {
  5643     return NULL;
  5645   if (lib_name != NULL) {
  5646     const char *p = strrchr(sym_name, '@');
  5647     if (p != NULL && p != sym_name) {
  5648       // sym_name == _Agent_OnLoad@XX
  5649       strncpy(agent_entry_name, sym_name, (p - sym_name));
  5650       agent_entry_name[(p-sym_name)] = '\0';
  5651       // agent_entry_name == _Agent_OnLoad
  5652       strcat(agent_entry_name, "_");
  5653       strncat(agent_entry_name, lib_name, name_len);
  5654       strcat(agent_entry_name, p);
  5655       // agent_entry_name == _Agent_OnLoad_lib_name@XX
  5656     } else {
  5657       strcpy(agent_entry_name, sym_name);
  5658       strcat(agent_entry_name, "_");
  5659       strncat(agent_entry_name, lib_name, name_len);
  5661   } else {
  5662     strcpy(agent_entry_name, sym_name);
  5664   return agent_entry_name;
  5667 #else
  5668 // Kernel32 API
  5669 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
  5670 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
  5671 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
  5672 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
  5673 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
  5675 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
  5676 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
  5677 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
  5678 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
  5679 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
  5681 void os::Kernel32Dll::initialize() {
  5682   if (!initialized) {
  5683     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5684     assert(handle != NULL, "Just check");
  5686     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
  5687     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
  5688       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
  5689     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
  5690     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
  5691     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
  5692     initializeCommon();  // resolve the functions that always need resolving
  5694     initialized = TRUE;
  5698 BOOL os::Kernel32Dll::SwitchToThread() {
  5699   assert(initialized && _SwitchToThread != NULL,
  5700     "SwitchToThreadAvailable() not yet called");
  5701   return _SwitchToThread();
  5705 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5706   if (!initialized) {
  5707     initialize();
  5709   return _SwitchToThread != NULL;
  5712 // Help tools
  5713 BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5714   if (!initialized) {
  5715     initialize();
  5717   return _CreateToolhelp32Snapshot != NULL &&
  5718          _Module32First != NULL &&
  5719          _Module32Next != NULL;
  5722 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5723   assert(initialized && _CreateToolhelp32Snapshot != NULL,
  5724     "HelpToolsAvailable() not yet called");
  5726   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5729 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5730   assert(initialized && _Module32First != NULL,
  5731     "HelpToolsAvailable() not yet called");
  5733   return _Module32First(hSnapshot, lpme);
  5736 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5737   assert(initialized && _Module32Next != NULL,
  5738     "HelpToolsAvailable() not yet called");
  5740   return _Module32Next(hSnapshot, lpme);
  5744 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
  5745   if (!initialized) {
  5746     initialize();
  5748   return _GetNativeSystemInfo != NULL;
  5751 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5752   assert(initialized && _GetNativeSystemInfo != NULL,
  5753     "GetNativeSystemInfoAvailable() not yet called");
  5755   _GetNativeSystemInfo(lpSystemInfo);
  5758 // PSAPI API
  5761 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
  5762 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
  5763 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
  5765 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
  5766 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
  5767 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
  5768 BOOL                    os::PSApiDll::initialized = FALSE;
  5770 void os::PSApiDll::initialize() {
  5771   if (!initialized) {
  5772     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
  5773     if (handle != NULL) {
  5774       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
  5775         "EnumProcessModules");
  5776       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
  5777         "GetModuleFileNameExA");
  5778       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
  5779         "GetModuleInformation");
  5781     initialized = TRUE;
  5787 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5788   assert(initialized && _EnumProcessModules != NULL,
  5789     "PSApiAvailable() not yet called");
  5790   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5793 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5794   assert(initialized && _GetModuleFileNameEx != NULL,
  5795     "PSApiAvailable() not yet called");
  5796   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5799 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5800   assert(initialized && _GetModuleInformation != NULL,
  5801     "PSApiAvailable() not yet called");
  5802   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5805 BOOL os::PSApiDll::PSApiAvailable() {
  5806   if (!initialized) {
  5807     initialize();
  5809   return _EnumProcessModules != NULL &&
  5810     _GetModuleFileNameEx != NULL &&
  5811     _GetModuleInformation != NULL;
  5815 // WinSock2 API
  5816 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
  5817 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
  5819 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
  5820 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
  5821 BOOL             os::WinSock2Dll::initialized = FALSE;
  5823 void os::WinSock2Dll::initialize() {
  5824   if (!initialized) {
  5825     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
  5826     if (handle != NULL) {
  5827       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
  5828       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
  5830     initialized = TRUE;
  5835 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5836   assert(initialized && _WSAStartup != NULL,
  5837     "WinSock2Available() not yet called");
  5838   return _WSAStartup(wVersionRequested, lpWSAData);
  5841 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5842   assert(initialized && _gethostbyname != NULL,
  5843     "WinSock2Available() not yet called");
  5844   return _gethostbyname(name);
  5847 BOOL os::WinSock2Dll::WinSock2Available() {
  5848   if (!initialized) {
  5849     initialize();
  5851   return _WSAStartup != NULL &&
  5852     _gethostbyname != NULL;
  5855 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  5856 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
  5857 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
  5859 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
  5860 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
  5861 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
  5862 BOOL                     os::Advapi32Dll::initialized = FALSE;
  5864 void os::Advapi32Dll::initialize() {
  5865   if (!initialized) {
  5866     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
  5867     if (handle != NULL) {
  5868       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
  5869         "AdjustTokenPrivileges");
  5870       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
  5871         "OpenProcessToken");
  5872       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
  5873         "LookupPrivilegeValueA");
  5875     initialized = TRUE;
  5879 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5880    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5881    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5882    assert(initialized && _AdjustTokenPrivileges != NULL,
  5883      "AdvapiAvailable() not yet called");
  5884    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5885        BufferLength, PreviousState, ReturnLength);
  5888 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5889   PHANDLE TokenHandle) {
  5890    assert(initialized && _OpenProcessToken != NULL,
  5891      "AdvapiAvailable() not yet called");
  5892     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5895 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5896    assert(initialized && _LookupPrivilegeValue != NULL,
  5897      "AdvapiAvailable() not yet called");
  5898   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5901 BOOL os::Advapi32Dll::AdvapiAvailable() {
  5902   if (!initialized) {
  5903     initialize();
  5905   return _AdjustTokenPrivileges != NULL &&
  5906     _OpenProcessToken != NULL &&
  5907     _LookupPrivilegeValue != NULL;
  5910 #endif
  5912 #ifndef PRODUCT
  5914 // test the code path in reserve_memory_special() that tries to allocate memory in a single
  5915 // contiguous memory block at a particular address.
  5916 // The test first tries to find a good approximate address to allocate at by using the same
  5917 // method to allocate some memory at any address. The test then tries to allocate memory in
  5918 // the vicinity (not directly after it to avoid possible by-chance use of that location)
  5919 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
  5920 // the previously allocated memory is available for allocation. The only actual failure
  5921 // that is reported is when the test tries to allocate at a particular location but gets a
  5922 // different valid one. A NULL return value at this point is not considered an error but may
  5923 // be legitimate.
  5924 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
  5925 void TestReserveMemorySpecial_test() {
  5926   if (!UseLargePages) {
  5927     if (VerboseInternalVMTests) {
  5928       gclog_or_tty->print("Skipping test because large pages are disabled");
  5930     return;
  5932   // save current value of globals
  5933   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
  5934   bool old_use_numa_interleaving = UseNUMAInterleaving;
  5936   // set globals to make sure we hit the correct code path
  5937   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
  5939   // do an allocation at an address selected by the OS to get a good one.
  5940   const size_t large_allocation_size = os::large_page_size() * 4;
  5941   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
  5942   if (result == NULL) {
  5943     if (VerboseInternalVMTests) {
  5944       gclog_or_tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
  5945         large_allocation_size);
  5947   } else {
  5948     os::release_memory_special(result, large_allocation_size);
  5950     // allocate another page within the recently allocated memory area which seems to be a good location. At least
  5951     // we managed to get it once.
  5952     const size_t expected_allocation_size = os::large_page_size();
  5953     char* expected_location = result + os::large_page_size();
  5954     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
  5955     if (actual_location == NULL) {
  5956       if (VerboseInternalVMTests) {
  5957         gclog_or_tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
  5958           expected_location, large_allocation_size);
  5960     } else {
  5961       // release memory
  5962       os::release_memory_special(actual_location, expected_allocation_size);
  5963       // only now check, after releasing any memory to avoid any leaks.
  5964       assert(actual_location == expected_location,
  5965         err_msg("Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
  5966           expected_location, expected_allocation_size, actual_location));
  5970   // restore globals
  5971   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
  5972   UseNUMAInterleaving = old_use_numa_interleaving;
  5974 #endif // PRODUCT

mercurial