src/share/vm/runtime/sharedRuntime.cpp

Thu, 03 Jun 2010 13:21:47 -0400

author
acorn
date
Thu, 03 Jun 2010 13:21:47 -0400
changeset 1942
b96a3e44582f
parent 1862
cd5dbf694d45
child 1907
c18cbe5936b8
child 1918
1a5913bf5e19
permissions
-rw-r--r--

6852873: Reduce safepoint cleanup time
Summary: New optional flags to reduce inflated monitor cleanup times
Reviewed-by: chrisphi, dice

     1 /*
     2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_sharedRuntime.cpp.incl"
    27 #include <math.h>
    29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
    30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
    31                       char*, int, char*, int, char*, int);
    32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
    33                       char*, int, char*, int, char*, int);
    35 // Implementation of SharedRuntime
    37 #ifndef PRODUCT
    38 // For statistics
    39 int SharedRuntime::_ic_miss_ctr = 0;
    40 int SharedRuntime::_wrong_method_ctr = 0;
    41 int SharedRuntime::_resolve_static_ctr = 0;
    42 int SharedRuntime::_resolve_virtual_ctr = 0;
    43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
    44 int SharedRuntime::_implicit_null_throws = 0;
    45 int SharedRuntime::_implicit_div0_throws = 0;
    46 int SharedRuntime::_throw_null_ctr = 0;
    48 int SharedRuntime::_nof_normal_calls = 0;
    49 int SharedRuntime::_nof_optimized_calls = 0;
    50 int SharedRuntime::_nof_inlined_calls = 0;
    51 int SharedRuntime::_nof_megamorphic_calls = 0;
    52 int SharedRuntime::_nof_static_calls = 0;
    53 int SharedRuntime::_nof_inlined_static_calls = 0;
    54 int SharedRuntime::_nof_interface_calls = 0;
    55 int SharedRuntime::_nof_optimized_interface_calls = 0;
    56 int SharedRuntime::_nof_inlined_interface_calls = 0;
    57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
    58 int SharedRuntime::_nof_removable_exceptions = 0;
    60 int SharedRuntime::_new_instance_ctr=0;
    61 int SharedRuntime::_new_array_ctr=0;
    62 int SharedRuntime::_multi1_ctr=0;
    63 int SharedRuntime::_multi2_ctr=0;
    64 int SharedRuntime::_multi3_ctr=0;
    65 int SharedRuntime::_multi4_ctr=0;
    66 int SharedRuntime::_multi5_ctr=0;
    67 int SharedRuntime::_mon_enter_stub_ctr=0;
    68 int SharedRuntime::_mon_exit_stub_ctr=0;
    69 int SharedRuntime::_mon_enter_ctr=0;
    70 int SharedRuntime::_mon_exit_ctr=0;
    71 int SharedRuntime::_partial_subtype_ctr=0;
    72 int SharedRuntime::_jbyte_array_copy_ctr=0;
    73 int SharedRuntime::_jshort_array_copy_ctr=0;
    74 int SharedRuntime::_jint_array_copy_ctr=0;
    75 int SharedRuntime::_jlong_array_copy_ctr=0;
    76 int SharedRuntime::_oop_array_copy_ctr=0;
    77 int SharedRuntime::_checkcast_array_copy_ctr=0;
    78 int SharedRuntime::_unsafe_array_copy_ctr=0;
    79 int SharedRuntime::_generic_array_copy_ctr=0;
    80 int SharedRuntime::_slow_array_copy_ctr=0;
    81 int SharedRuntime::_find_handler_ctr=0;
    82 int SharedRuntime::_rethrow_ctr=0;
    84 int     SharedRuntime::_ICmiss_index                    = 0;
    85 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
    86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
    88 void SharedRuntime::trace_ic_miss(address at) {
    89   for (int i = 0; i < _ICmiss_index; i++) {
    90     if (_ICmiss_at[i] == at) {
    91       _ICmiss_count[i]++;
    92       return;
    93     }
    94   }
    95   int index = _ICmiss_index++;
    96   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
    97   _ICmiss_at[index] = at;
    98   _ICmiss_count[index] = 1;
    99 }
   101 void SharedRuntime::print_ic_miss_histogram() {
   102   if (ICMissHistogram) {
   103     tty->print_cr ("IC Miss Histogram:");
   104     int tot_misses = 0;
   105     for (int i = 0; i < _ICmiss_index; i++) {
   106       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   107       tot_misses += _ICmiss_count[i];
   108     }
   109     tty->print_cr ("Total IC misses: %7d", tot_misses);
   110   }
   111 }
   112 #endif // PRODUCT
   114 #ifndef SERIALGC
   116 // G1 write-barrier pre: executed before a pointer store.
   117 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   118   if (orig == NULL) {
   119     assert(false, "should be optimized out");
   120     return;
   121   }
   122   assert(orig->is_oop(true /* ignore mark word */), "Error");
   123   // store the original value that was in the field reference
   124   thread->satb_mark_queue().enqueue(orig);
   125 JRT_END
   127 // G1 write-barrier post: executed after a pointer store.
   128 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   129   thread->dirty_card_queue().enqueue(card_addr);
   130 JRT_END
   132 #endif // !SERIALGC
   135 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   136   return x * y;
   137 JRT_END
   140 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   141   if (x == min_jlong && y == CONST64(-1)) {
   142     return x;
   143   } else {
   144     return x / y;
   145   }
   146 JRT_END
   149 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   150   if (x == min_jlong && y == CONST64(-1)) {
   151     return 0;
   152   } else {
   153     return x % y;
   154   }
   155 JRT_END
   158 const juint  float_sign_mask  = 0x7FFFFFFF;
   159 const juint  float_infinity   = 0x7F800000;
   160 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   161 const julong double_infinity  = CONST64(0x7FF0000000000000);
   163 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   164 #ifdef _WIN64
   165   // 64-bit Windows on amd64 returns the wrong values for
   166   // infinity operands.
   167   union { jfloat f; juint i; } xbits, ybits;
   168   xbits.f = x;
   169   ybits.f = y;
   170   // x Mod Infinity == x unless x is infinity
   171   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   172        ((ybits.i & float_sign_mask) == float_infinity) ) {
   173     return x;
   174   }
   175 #endif
   176   return ((jfloat)fmod((double)x,(double)y));
   177 JRT_END
   180 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   181 #ifdef _WIN64
   182   union { jdouble d; julong l; } xbits, ybits;
   183   xbits.d = x;
   184   ybits.d = y;
   185   // x Mod Infinity == x unless x is infinity
   186   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   187        ((ybits.l & double_sign_mask) == double_infinity) ) {
   188     return x;
   189   }
   190 #endif
   191   return ((jdouble)fmod((double)x,(double)y));
   192 JRT_END
   195 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   196   if (g_isnan(x))
   197     return 0;
   198   if (x >= (jfloat) max_jint)
   199     return max_jint;
   200   if (x <= (jfloat) min_jint)
   201     return min_jint;
   202   return (jint) x;
   203 JRT_END
   206 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   207   if (g_isnan(x))
   208     return 0;
   209   if (x >= (jfloat) max_jlong)
   210     return max_jlong;
   211   if (x <= (jfloat) min_jlong)
   212     return min_jlong;
   213   return (jlong) x;
   214 JRT_END
   217 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   218   if (g_isnan(x))
   219     return 0;
   220   if (x >= (jdouble) max_jint)
   221     return max_jint;
   222   if (x <= (jdouble) min_jint)
   223     return min_jint;
   224   return (jint) x;
   225 JRT_END
   228 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   229   if (g_isnan(x))
   230     return 0;
   231   if (x >= (jdouble) max_jlong)
   232     return max_jlong;
   233   if (x <= (jdouble) min_jlong)
   234     return min_jlong;
   235   return (jlong) x;
   236 JRT_END
   239 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   240   return (jfloat)x;
   241 JRT_END
   244 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   245   return (jfloat)x;
   246 JRT_END
   249 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   250   return (jdouble)x;
   251 JRT_END
   253 // Exception handling accross interpreter/compiler boundaries
   254 //
   255 // exception_handler_for_return_address(...) returns the continuation address.
   256 // The continuation address is the entry point of the exception handler of the
   257 // previous frame depending on the return address.
   259 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   260   assert(frame::verify_return_pc(return_address), "must be a return pc");
   262   // Reset MethodHandle flag.
   263   thread->set_is_method_handle_return(false);
   265   // the fastest case first
   266   CodeBlob* blob = CodeCache::find_blob(return_address);
   267   if (blob != NULL && blob->is_nmethod()) {
   268     nmethod* code = (nmethod*)blob;
   269     assert(code != NULL, "nmethod must be present");
   270     // Check if the return address is a MethodHandle call site.
   271     thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
   272     // native nmethods don't have exception handlers
   273     assert(!code->is_native_method(), "no exception handler");
   274     assert(code->header_begin() != code->exception_begin(), "no exception handler");
   275     if (code->is_deopt_pc(return_address)) {
   276       return SharedRuntime::deopt_blob()->unpack_with_exception();
   277     } else {
   278       return code->exception_begin();
   279     }
   280   }
   282   // Entry code
   283   if (StubRoutines::returns_to_call_stub(return_address)) {
   284     return StubRoutines::catch_exception_entry();
   285   }
   286   // Interpreted code
   287   if (Interpreter::contains(return_address)) {
   288     return Interpreter::rethrow_exception_entry();
   289   }
   291   // Compiled code
   292   if (CodeCache::contains(return_address)) {
   293     CodeBlob* blob = CodeCache::find_blob(return_address);
   294     if (blob->is_nmethod()) {
   295       nmethod* code = (nmethod*)blob;
   296       assert(code != NULL, "nmethod must be present");
   297       // Check if the return address is a MethodHandle call site.
   298       thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
   299       assert(code->header_begin() != code->exception_begin(), "no exception handler");
   300       return code->exception_begin();
   301     }
   302     if (blob->is_runtime_stub()) {
   303       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
   304     }
   305   }
   306   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   307 #ifndef PRODUCT
   308   { ResourceMark rm;
   309     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   310     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   311     tty->print_cr("b) other problem");
   312   }
   313 #endif // PRODUCT
   314   ShouldNotReachHere();
   315   return NULL;
   316 }
   319 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   320   return raw_exception_handler_for_return_address(thread, return_address);
   321 JRT_END
   324 address SharedRuntime::get_poll_stub(address pc) {
   325   address stub;
   326   // Look up the code blob
   327   CodeBlob *cb = CodeCache::find_blob(pc);
   329   // Should be an nmethod
   330   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   332   // Look up the relocation information
   333   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   334     "safepoint polling: type must be poll" );
   336   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   337     "Only polling locations are used for safepoint");
   339   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   340   if (at_poll_return) {
   341     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   342            "polling page return stub not created yet");
   343     stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
   344   } else {
   345     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   346            "polling page safepoint stub not created yet");
   347     stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
   348   }
   349 #ifndef PRODUCT
   350   if( TraceSafepoint ) {
   351     char buf[256];
   352     jio_snprintf(buf, sizeof(buf),
   353                  "... found polling page %s exception at pc = "
   354                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   355                  at_poll_return ? "return" : "loop",
   356                  (intptr_t)pc, (intptr_t)stub);
   357     tty->print_raw_cr(buf);
   358   }
   359 #endif // PRODUCT
   360   return stub;
   361 }
   364 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
   365   assert(caller.is_interpreted_frame(), "");
   366   int args_size = ArgumentSizeComputer(sig).size() + 1;
   367   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   368   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
   369   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   370   return result;
   371 }
   374 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   375   if (JvmtiExport::can_post_on_exceptions()) {
   376     vframeStream vfst(thread, true);
   377     methodHandle method = methodHandle(thread, vfst.method());
   378     address bcp = method()->bcp_from(vfst.bci());
   379     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   380   }
   381   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   382 }
   384 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
   385   Handle h_exception = Exceptions::new_exception(thread, name, message);
   386   throw_and_post_jvmti_exception(thread, h_exception);
   387 }
   389 // The interpreter code to call this tracing function is only
   390 // called/generated when TraceRedefineClasses has the right bits
   391 // set. Since obsolete methods are never compiled, we don't have
   392 // to modify the compilers to generate calls to this function.
   393 //
   394 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   395     JavaThread* thread, methodOopDesc* method))
   396   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   398   if (method->is_obsolete()) {
   399     // We are calling an obsolete method, but this is not necessarily
   400     // an error. Our method could have been redefined just after we
   401     // fetched the methodOop from the constant pool.
   403     // RC_TRACE macro has an embedded ResourceMark
   404     RC_TRACE_WITH_THREAD(0x00001000, thread,
   405                          ("calling obsolete method '%s'",
   406                           method->name_and_sig_as_C_string()));
   407     if (RC_TRACE_ENABLED(0x00002000)) {
   408       // this option is provided to debug calls to obsolete methods
   409       guarantee(false, "faulting at call to an obsolete method.");
   410     }
   411   }
   412   return 0;
   413 JRT_END
   415 // ret_pc points into caller; we are returning caller's exception handler
   416 // for given exception
   417 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   418                                                     bool force_unwind, bool top_frame_only) {
   419   assert(nm != NULL, "must exist");
   420   ResourceMark rm;
   422   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   423   // determine handler bci, if any
   424   EXCEPTION_MARK;
   426   int handler_bci = -1;
   427   int scope_depth = 0;
   428   if (!force_unwind) {
   429     int bci = sd->bci();
   430     do {
   431       bool skip_scope_increment = false;
   432       // exception handler lookup
   433       KlassHandle ek (THREAD, exception->klass());
   434       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
   435       if (HAS_PENDING_EXCEPTION) {
   436         // We threw an exception while trying to find the exception handler.
   437         // Transfer the new exception to the exception handle which will
   438         // be set into thread local storage, and do another lookup for an
   439         // exception handler for this exception, this time starting at the
   440         // BCI of the exception handler which caused the exception to be
   441         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   442         // argument to ensure that the correct exception is thrown (4870175).
   443         exception = Handle(THREAD, PENDING_EXCEPTION);
   444         CLEAR_PENDING_EXCEPTION;
   445         if (handler_bci >= 0) {
   446           bci = handler_bci;
   447           handler_bci = -1;
   448           skip_scope_increment = true;
   449         }
   450       }
   451       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   452         sd = sd->sender();
   453         if (sd != NULL) {
   454           bci = sd->bci();
   455         }
   456         ++scope_depth;
   457       }
   458     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
   459   }
   461   // found handling method => lookup exception handler
   462   int catch_pco = ret_pc - nm->instructions_begin();
   464   ExceptionHandlerTable table(nm);
   465   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   466   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   467     // Allow abbreviated catch tables.  The idea is to allow a method
   468     // to materialize its exceptions without committing to the exact
   469     // routing of exceptions.  In particular this is needed for adding
   470     // a synthethic handler to unlock monitors when inlining
   471     // synchonized methods since the unlock path isn't represented in
   472     // the bytecodes.
   473     t = table.entry_for(catch_pco, -1, 0);
   474   }
   476 #ifdef COMPILER1
   477   if (t == NULL && nm->is_compiled_by_c1()) {
   478     assert(nm->unwind_handler_begin() != NULL, "");
   479     return nm->unwind_handler_begin();
   480   }
   481 #endif
   483   if (t == NULL) {
   484     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   485     tty->print_cr("   Exception:");
   486     exception->print();
   487     tty->cr();
   488     tty->print_cr(" Compiled exception table :");
   489     table.print();
   490     nm->print_code();
   491     guarantee(false, "missing exception handler");
   492     return NULL;
   493   }
   495   return nm->instructions_begin() + t->pco();
   496 }
   498 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   499   // These errors occur only at call sites
   500   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   501 JRT_END
   503 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   504   // These errors occur only at call sites
   505   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   506 JRT_END
   508 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   509   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   510 JRT_END
   512 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   513   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   514 JRT_END
   516 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   517   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   518   // cache sites (when the callee activation is not yet set up) so we are at a call site
   519   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   520 JRT_END
   522 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   523   // We avoid using the normal exception construction in this case because
   524   // it performs an upcall to Java, and we're already out of stack space.
   525   klassOop k = SystemDictionary::StackOverflowError_klass();
   526   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
   527   Handle exception (thread, exception_oop);
   528   if (StackTraceInThrowable) {
   529     java_lang_Throwable::fill_in_stack_trace(exception);
   530   }
   531   throw_and_post_jvmti_exception(thread, exception);
   532 JRT_END
   534 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   535                                                            address pc,
   536                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   537 {
   538   address target_pc = NULL;
   540   if (Interpreter::contains(pc)) {
   541 #ifdef CC_INTERP
   542     // C++ interpreter doesn't throw implicit exceptions
   543     ShouldNotReachHere();
   544 #else
   545     switch (exception_kind) {
   546       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   547       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   548       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   549       default:                      ShouldNotReachHere();
   550     }
   551 #endif // !CC_INTERP
   552   } else {
   553     switch (exception_kind) {
   554       case STACK_OVERFLOW: {
   555         // Stack overflow only occurs upon frame setup; the callee is
   556         // going to be unwound. Dispatch to a shared runtime stub
   557         // which will cause the StackOverflowError to be fabricated
   558         // and processed.
   559         // For stack overflow in deoptimization blob, cleanup thread.
   560         if (thread->deopt_mark() != NULL) {
   561           Deoptimization::cleanup_deopt_info(thread, NULL);
   562         }
   563         return StubRoutines::throw_StackOverflowError_entry();
   564       }
   566       case IMPLICIT_NULL: {
   567         if (VtableStubs::contains(pc)) {
   568           // We haven't yet entered the callee frame. Fabricate an
   569           // exception and begin dispatching it in the caller. Since
   570           // the caller was at a call site, it's safe to destroy all
   571           // caller-saved registers, as these entry points do.
   572           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   574           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   575           if (vt_stub == NULL) return NULL;
   577           if (vt_stub->is_abstract_method_error(pc)) {
   578             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   579             return StubRoutines::throw_AbstractMethodError_entry();
   580           } else {
   581             return StubRoutines::throw_NullPointerException_at_call_entry();
   582           }
   583         } else {
   584           CodeBlob* cb = CodeCache::find_blob(pc);
   586           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   587           if (cb == NULL) return NULL;
   589           // Exception happened in CodeCache. Must be either:
   590           // 1. Inline-cache check in C2I handler blob,
   591           // 2. Inline-cache check in nmethod, or
   592           // 3. Implict null exception in nmethod
   594           if (!cb->is_nmethod()) {
   595             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
   596                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
   597             // There is no handler here, so we will simply unwind.
   598             return StubRoutines::throw_NullPointerException_at_call_entry();
   599           }
   601           // Otherwise, it's an nmethod.  Consult its exception handlers.
   602           nmethod* nm = (nmethod*)cb;
   603           if (nm->inlinecache_check_contains(pc)) {
   604             // exception happened inside inline-cache check code
   605             // => the nmethod is not yet active (i.e., the frame
   606             // is not set up yet) => use return address pushed by
   607             // caller => don't push another return address
   608             return StubRoutines::throw_NullPointerException_at_call_entry();
   609           }
   611 #ifndef PRODUCT
   612           _implicit_null_throws++;
   613 #endif
   614           target_pc = nm->continuation_for_implicit_exception(pc);
   615           // If there's an unexpected fault, target_pc might be NULL,
   616           // in which case we want to fall through into the normal
   617           // error handling code.
   618         }
   620         break; // fall through
   621       }
   624       case IMPLICIT_DIVIDE_BY_ZERO: {
   625         nmethod* nm = CodeCache::find_nmethod(pc);
   626         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   627 #ifndef PRODUCT
   628         _implicit_div0_throws++;
   629 #endif
   630         target_pc = nm->continuation_for_implicit_exception(pc);
   631         // If there's an unexpected fault, target_pc might be NULL,
   632         // in which case we want to fall through into the normal
   633         // error handling code.
   634         break; // fall through
   635       }
   637       default: ShouldNotReachHere();
   638     }
   640     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   642     // for AbortVMOnException flag
   643     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   644     if (exception_kind == IMPLICIT_NULL) {
   645       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   646     } else {
   647       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   648     }
   649     return target_pc;
   650   }
   652   ShouldNotReachHere();
   653   return NULL;
   654 }
   657 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
   658 {
   659   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
   660 }
   661 JNI_END
   664 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   665   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   666 }
   669 #ifndef PRODUCT
   670 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   671   const frame f = thread->last_frame();
   672   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   673 #ifndef PRODUCT
   674   methodHandle mh(THREAD, f.interpreter_frame_method());
   675   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   676 #endif // !PRODUCT
   677   return preserve_this_value;
   678 JRT_END
   679 #endif // !PRODUCT
   682 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   683   os::yield_all(attempts);
   684 JRT_END
   687 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   688   assert(obj->is_oop(), "must be a valid oop");
   689   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
   690   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
   691 JRT_END
   694 jlong SharedRuntime::get_java_tid(Thread* thread) {
   695   if (thread != NULL) {
   696     if (thread->is_Java_thread()) {
   697       oop obj = ((JavaThread*)thread)->threadObj();
   698       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   699     }
   700   }
   701   return 0;
   702 }
   704 /**
   705  * This function ought to be a void function, but cannot be because
   706  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   707  * 6254741.  Once that is fixed we can remove the dummy return value.
   708  */
   709 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   710   return dtrace_object_alloc_base(Thread::current(), o);
   711 }
   713 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   714   assert(DTraceAllocProbes, "wrong call");
   715   Klass* klass = o->blueprint();
   716   int size = o->size();
   717   symbolOop name = klass->name();
   718   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   719                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   720   return 0;
   721 }
   723 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   724     JavaThread* thread, methodOopDesc* method))
   725   assert(DTraceMethodProbes, "wrong call");
   726   symbolOop kname = method->klass_name();
   727   symbolOop name = method->name();
   728   symbolOop sig = method->signature();
   729   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   730       kname->bytes(), kname->utf8_length(),
   731       name->bytes(), name->utf8_length(),
   732       sig->bytes(), sig->utf8_length());
   733   return 0;
   734 JRT_END
   736 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   737     JavaThread* thread, methodOopDesc* method))
   738   assert(DTraceMethodProbes, "wrong call");
   739   symbolOop kname = method->klass_name();
   740   symbolOop name = method->name();
   741   symbolOop sig = method->signature();
   742   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
   743       kname->bytes(), kname->utf8_length(),
   744       name->bytes(), name->utf8_length(),
   745       sig->bytes(), sig->utf8_length());
   746   return 0;
   747 JRT_END
   750 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
   751 // for a call current in progress, i.e., arguments has been pushed on stack
   752 // put callee has not been invoked yet.  Used by: resolve virtual/static,
   753 // vtable updates, etc.  Caller frame must be compiled.
   754 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
   755   ResourceMark rm(THREAD);
   757   // last java frame on stack (which includes native call frames)
   758   vframeStream vfst(thread, true);  // Do not skip and javaCalls
   760   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
   761 }
   764 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
   765 // for a call current in progress, i.e., arguments has been pushed on stack
   766 // but callee has not been invoked yet.  Caller frame must be compiled.
   767 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
   768                                               vframeStream& vfst,
   769                                               Bytecodes::Code& bc,
   770                                               CallInfo& callinfo, TRAPS) {
   771   Handle receiver;
   772   Handle nullHandle;  //create a handy null handle for exception returns
   774   assert(!vfst.at_end(), "Java frame must exist");
   776   // Find caller and bci from vframe
   777   methodHandle caller (THREAD, vfst.method());
   778   int          bci    = vfst.bci();
   780   // Find bytecode
   781   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
   782   bc = bytecode->adjusted_invoke_code();
   783   int bytecode_index = bytecode->index();
   785   // Find receiver for non-static call
   786   if (bc != Bytecodes::_invokestatic) {
   787     // This register map must be update since we need to find the receiver for
   788     // compiled frames. The receiver might be in a register.
   789     RegisterMap reg_map2(thread);
   790     frame stubFrame   = thread->last_frame();
   791     // Caller-frame is a compiled frame
   792     frame callerFrame = stubFrame.sender(&reg_map2);
   794     methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
   795     if (callee.is_null()) {
   796       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
   797     }
   798     // Retrieve from a compiled argument list
   799     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
   801     if (receiver.is_null()) {
   802       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
   803     }
   804   }
   806   // Resolve method. This is parameterized by bytecode.
   807   constantPoolHandle constants (THREAD, caller->constants());
   808   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
   809   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
   811 #ifdef ASSERT
   812   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
   813   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
   814     assert(receiver.not_null(), "should have thrown exception");
   815     KlassHandle receiver_klass (THREAD, receiver->klass());
   816     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
   817                             // klass is already loaded
   818     KlassHandle static_receiver_klass (THREAD, rk);
   819     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
   820     if (receiver_klass->oop_is_instance()) {
   821       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
   822         tty->print_cr("ERROR: Klass not yet initialized!!");
   823         receiver_klass.print();
   824       }
   825       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
   826     }
   827   }
   828 #endif
   830   return receiver;
   831 }
   833 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
   834   ResourceMark rm(THREAD);
   835   // We need first to check if any Java activations (compiled, interpreted)
   836   // exist on the stack since last JavaCall.  If not, we need
   837   // to get the target method from the JavaCall wrapper.
   838   vframeStream vfst(thread, true);  // Do not skip any javaCalls
   839   methodHandle callee_method;
   840   if (vfst.at_end()) {
   841     // No Java frames were found on stack since we did the JavaCall.
   842     // Hence the stack can only contain an entry_frame.  We need to
   843     // find the target method from the stub frame.
   844     RegisterMap reg_map(thread, false);
   845     frame fr = thread->last_frame();
   846     assert(fr.is_runtime_frame(), "must be a runtimeStub");
   847     fr = fr.sender(&reg_map);
   848     assert(fr.is_entry_frame(), "must be");
   849     // fr is now pointing to the entry frame.
   850     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
   851     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
   852   } else {
   853     Bytecodes::Code bc;
   854     CallInfo callinfo;
   855     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
   856     callee_method = callinfo.selected_method();
   857   }
   858   assert(callee_method()->is_method(), "must be");
   859   return callee_method;
   860 }
   862 // Resolves a call.
   863 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
   864                                            bool is_virtual,
   865                                            bool is_optimized, TRAPS) {
   866   methodHandle callee_method;
   867   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
   868   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
   869     int retry_count = 0;
   870     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
   871            callee_method->method_holder() != SystemDictionary::Object_klass()) {
   872       // If has a pending exception then there is no need to re-try to
   873       // resolve this method.
   874       // If the method has been redefined, we need to try again.
   875       // Hack: we have no way to update the vtables of arrays, so don't
   876       // require that java.lang.Object has been updated.
   878       // It is very unlikely that method is redefined more than 100 times
   879       // in the middle of resolve. If it is looping here more than 100 times
   880       // means then there could be a bug here.
   881       guarantee((retry_count++ < 100),
   882                 "Could not resolve to latest version of redefined method");
   883       // method is redefined in the middle of resolve so re-try.
   884       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
   885     }
   886   }
   887   return callee_method;
   888 }
   890 // Resolves a call.  The compilers generate code for calls that go here
   891 // and are patched with the real destination of the call.
   892 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
   893                                            bool is_virtual,
   894                                            bool is_optimized, TRAPS) {
   896   ResourceMark rm(thread);
   897   RegisterMap cbl_map(thread, false);
   898   frame caller_frame = thread->last_frame().sender(&cbl_map);
   900   CodeBlob* caller_cb = caller_frame.cb();
   901   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
   902   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
   903   // make sure caller is not getting deoptimized
   904   // and removed before we are done with it.
   905   // CLEANUP - with lazy deopt shouldn't need this lock
   906   nmethodLocker caller_lock(caller_nm);
   909   // determine call info & receiver
   910   // note: a) receiver is NULL for static calls
   911   //       b) an exception is thrown if receiver is NULL for non-static calls
   912   CallInfo call_info;
   913   Bytecodes::Code invoke_code = Bytecodes::_illegal;
   914   Handle receiver = find_callee_info(thread, invoke_code,
   915                                      call_info, CHECK_(methodHandle()));
   916   methodHandle callee_method = call_info.selected_method();
   918   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
   919          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
   921 #ifndef PRODUCT
   922   // tracing/debugging/statistics
   923   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
   924                 (is_virtual) ? (&_resolve_virtual_ctr) :
   925                                (&_resolve_static_ctr);
   926   Atomic::inc(addr);
   928   if (TraceCallFixup) {
   929     ResourceMark rm(thread);
   930     tty->print("resolving %s%s (%s) call to",
   931       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
   932       Bytecodes::name(invoke_code));
   933     callee_method->print_short_name(tty);
   934     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
   935   }
   936 #endif
   938   // JSR 292
   939   // If the resolved method is a MethodHandle invoke target the call
   940   // site must be a MethodHandle call site.
   941   if (callee_method->is_method_handle_invoke()) {
   942     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
   943   }
   945   // Compute entry points. This might require generation of C2I converter
   946   // frames, so we cannot be holding any locks here. Furthermore, the
   947   // computation of the entry points is independent of patching the call.  We
   948   // always return the entry-point, but we only patch the stub if the call has
   949   // not been deoptimized.  Return values: For a virtual call this is an
   950   // (cached_oop, destination address) pair. For a static call/optimized
   951   // virtual this is just a destination address.
   953   StaticCallInfo static_call_info;
   954   CompiledICInfo virtual_call_info;
   956   // Make sure the callee nmethod does not get deoptimized and removed before
   957   // we are done patching the code.
   958   nmethod* callee_nm = callee_method->code();
   959   nmethodLocker nl_callee(callee_nm);
   960 #ifdef ASSERT
   961   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
   962 #endif
   964   if (is_virtual) {
   965     assert(receiver.not_null(), "sanity check");
   966     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
   967     KlassHandle h_klass(THREAD, receiver->klass());
   968     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
   969                      is_optimized, static_bound, virtual_call_info,
   970                      CHECK_(methodHandle()));
   971   } else {
   972     // static call
   973     CompiledStaticCall::compute_entry(callee_method, static_call_info);
   974   }
   976   // grab lock, check for deoptimization and potentially patch caller
   977   {
   978     MutexLocker ml_patch(CompiledIC_lock);
   980     // Now that we are ready to patch if the methodOop was redefined then
   981     // don't update call site and let the caller retry.
   983     if (!callee_method->is_old()) {
   984 #ifdef ASSERT
   985       // We must not try to patch to jump to an already unloaded method.
   986       if (dest_entry_point != 0) {
   987         assert(CodeCache::find_blob(dest_entry_point) != NULL,
   988                "should not unload nmethod while locked");
   989       }
   990 #endif
   991       if (is_virtual) {
   992         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
   993         if (inline_cache->is_clean()) {
   994           inline_cache->set_to_monomorphic(virtual_call_info);
   995         }
   996       } else {
   997         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
   998         if (ssc->is_clean()) ssc->set(static_call_info);
   999       }
  1002   } // unlock CompiledIC_lock
  1004   return callee_method;
  1008 // Inline caches exist only in compiled code
  1009 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1010 #ifdef ASSERT
  1011   RegisterMap reg_map(thread, false);
  1012   frame stub_frame = thread->last_frame();
  1013   assert(stub_frame.is_runtime_frame(), "sanity check");
  1014   frame caller_frame = stub_frame.sender(&reg_map);
  1015   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1016 #endif /* ASSERT */
  1018   methodHandle callee_method;
  1019   JRT_BLOCK
  1020     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1021     // Return methodOop through TLS
  1022     thread->set_vm_result(callee_method());
  1023   JRT_BLOCK_END
  1024   // return compiled code entry point after potential safepoints
  1025   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1026   return callee_method->verified_code_entry();
  1027 JRT_END
  1030 // Handle call site that has been made non-entrant
  1031 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1032   // 6243940 We might end up in here if the callee is deoptimized
  1033   // as we race to call it.  We don't want to take a safepoint if
  1034   // the caller was interpreted because the caller frame will look
  1035   // interpreted to the stack walkers and arguments are now
  1036   // "compiled" so it is much better to make this transition
  1037   // invisible to the stack walking code. The i2c path will
  1038   // place the callee method in the callee_target. It is stashed
  1039   // there because if we try and find the callee by normal means a
  1040   // safepoint is possible and have trouble gc'ing the compiled args.
  1041   RegisterMap reg_map(thread, false);
  1042   frame stub_frame = thread->last_frame();
  1043   assert(stub_frame.is_runtime_frame(), "sanity check");
  1044   frame caller_frame = stub_frame.sender(&reg_map);
  1046   // MethodHandle invokes don't have a CompiledIC and should always
  1047   // simply redispatch to the callee_target.
  1048   address   sender_pc = caller_frame.pc();
  1049   CodeBlob* sender_cb = caller_frame.cb();
  1050   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
  1051   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
  1052   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
  1053     // If the callee_target is set, then we have come here via an i2c
  1054     // adapter.
  1055     methodOop callee = thread->callee_target();
  1056     if (callee != NULL) {
  1057       assert(callee->is_method(), "sanity");
  1058       is_mh_invoke_via_adapter = true;
  1062   if (caller_frame.is_interpreted_frame() ||
  1063       caller_frame.is_entry_frame()       ||
  1064       is_mh_invoke_via_adapter) {
  1065     methodOop callee = thread->callee_target();
  1066     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1067     thread->set_vm_result(callee);
  1068     thread->set_callee_target(NULL);
  1069     return callee->get_c2i_entry();
  1072   // Must be compiled to compiled path which is safe to stackwalk
  1073   methodHandle callee_method;
  1074   JRT_BLOCK
  1075     // Force resolving of caller (if we called from compiled frame)
  1076     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1077     thread->set_vm_result(callee_method());
  1078   JRT_BLOCK_END
  1079   // return compiled code entry point after potential safepoints
  1080   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1081   return callee_method->verified_code_entry();
  1082 JRT_END
  1085 // resolve a static call and patch code
  1086 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1087   methodHandle callee_method;
  1088   JRT_BLOCK
  1089     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1090     thread->set_vm_result(callee_method());
  1091   JRT_BLOCK_END
  1092   // return compiled code entry point after potential safepoints
  1093   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1094   return callee_method->verified_code_entry();
  1095 JRT_END
  1098 // resolve virtual call and update inline cache to monomorphic
  1099 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1100   methodHandle callee_method;
  1101   JRT_BLOCK
  1102     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1103     thread->set_vm_result(callee_method());
  1104   JRT_BLOCK_END
  1105   // return compiled code entry point after potential safepoints
  1106   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1107   return callee_method->verified_code_entry();
  1108 JRT_END
  1111 // Resolve a virtual call that can be statically bound (e.g., always
  1112 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1113 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1114   methodHandle callee_method;
  1115   JRT_BLOCK
  1116     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1117     thread->set_vm_result(callee_method());
  1118   JRT_BLOCK_END
  1119   // return compiled code entry point after potential safepoints
  1120   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1121   return callee_method->verified_code_entry();
  1122 JRT_END
  1128 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1129   ResourceMark rm(thread);
  1130   CallInfo call_info;
  1131   Bytecodes::Code bc;
  1133   // receiver is NULL for static calls. An exception is thrown for NULL
  1134   // receivers for non-static calls
  1135   Handle receiver = find_callee_info(thread, bc, call_info,
  1136                                      CHECK_(methodHandle()));
  1137   // Compiler1 can produce virtual call sites that can actually be statically bound
  1138   // If we fell thru to below we would think that the site was going megamorphic
  1139   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1140   // we'd try and do a vtable dispatch however methods that can be statically bound
  1141   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1142   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1143   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1144   // never to miss again. I don't believe C2 will produce code like this but if it
  1145   // did this would still be the correct thing to do for it too, hence no ifdef.
  1146   //
  1147   if (call_info.resolved_method()->can_be_statically_bound()) {
  1148     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1149     if (TraceCallFixup) {
  1150       RegisterMap reg_map(thread, false);
  1151       frame caller_frame = thread->last_frame().sender(&reg_map);
  1152       ResourceMark rm(thread);
  1153       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1154       callee_method->print_short_name(tty);
  1155       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1156       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1158     return callee_method;
  1161   methodHandle callee_method = call_info.selected_method();
  1163   bool should_be_mono = false;
  1165 #ifndef PRODUCT
  1166   Atomic::inc(&_ic_miss_ctr);
  1168   // Statistics & Tracing
  1169   if (TraceCallFixup) {
  1170     ResourceMark rm(thread);
  1171     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1172     callee_method->print_short_name(tty);
  1173     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1176   if (ICMissHistogram) {
  1177     MutexLocker m(VMStatistic_lock);
  1178     RegisterMap reg_map(thread, false);
  1179     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1180     // produce statistics under the lock
  1181     trace_ic_miss(f.pc());
  1183 #endif
  1185   // install an event collector so that when a vtable stub is created the
  1186   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1187   // event can't be posted when the stub is created as locks are held
  1188   // - instead the event will be deferred until the event collector goes
  1189   // out of scope.
  1190   JvmtiDynamicCodeEventCollector event_collector;
  1192   // Update inline cache to megamorphic. Skip update if caller has been
  1193   // made non-entrant or we are called from interpreted.
  1194   { MutexLocker ml_patch (CompiledIC_lock);
  1195     RegisterMap reg_map(thread, false);
  1196     frame caller_frame = thread->last_frame().sender(&reg_map);
  1197     CodeBlob* cb = caller_frame.cb();
  1198     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1199       // Not a non-entrant nmethod, so find inline_cache
  1200       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1201       bool should_be_mono = false;
  1202       if (inline_cache->is_optimized()) {
  1203         if (TraceCallFixup) {
  1204           ResourceMark rm(thread);
  1205           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1206           callee_method->print_short_name(tty);
  1207           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1209         should_be_mono = true;
  1210       } else {
  1211         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
  1212         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
  1214           if (receiver()->klass() == ic_oop->holder_klass()) {
  1215             // This isn't a real miss. We must have seen that compiled code
  1216             // is now available and we want the call site converted to a
  1217             // monomorphic compiled call site.
  1218             // We can't assert for callee_method->code() != NULL because it
  1219             // could have been deoptimized in the meantime
  1220             if (TraceCallFixup) {
  1221               ResourceMark rm(thread);
  1222               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1223               callee_method->print_short_name(tty);
  1224               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1226             should_be_mono = true;
  1231       if (should_be_mono) {
  1233         // We have a path that was monomorphic but was going interpreted
  1234         // and now we have (or had) a compiled entry. We correct the IC
  1235         // by using a new icBuffer.
  1236         CompiledICInfo info;
  1237         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1238         inline_cache->compute_monomorphic_entry(callee_method,
  1239                                                 receiver_klass,
  1240                                                 inline_cache->is_optimized(),
  1241                                                 false,
  1242                                                 info, CHECK_(methodHandle()));
  1243         inline_cache->set_to_monomorphic(info);
  1244       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1245         // Change to megamorphic
  1246         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1247       } else {
  1248         // Either clean or megamorphic
  1251   } // Release CompiledIC_lock
  1253   return callee_method;
  1256 //
  1257 // Resets a call-site in compiled code so it will get resolved again.
  1258 // This routines handles both virtual call sites, optimized virtual call
  1259 // sites, and static call sites. Typically used to change a call sites
  1260 // destination from compiled to interpreted.
  1261 //
  1262 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1263   ResourceMark rm(thread);
  1264   RegisterMap reg_map(thread, false);
  1265   frame stub_frame = thread->last_frame();
  1266   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1267   frame caller = stub_frame.sender(&reg_map);
  1269   // Do nothing if the frame isn't a live compiled frame.
  1270   // nmethod could be deoptimized by the time we get here
  1271   // so no update to the caller is needed.
  1273   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1275     address pc = caller.pc();
  1276     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
  1278     // Default call_addr is the location of the "basic" call.
  1279     // Determine the address of the call we a reresolving. With
  1280     // Inline Caches we will always find a recognizable call.
  1281     // With Inline Caches disabled we may or may not find a
  1282     // recognizable call. We will always find a call for static
  1283     // calls and for optimized virtual calls. For vanilla virtual
  1284     // calls it depends on the state of the UseInlineCaches switch.
  1285     //
  1286     // With Inline Caches disabled we can get here for a virtual call
  1287     // for two reasons:
  1288     //   1 - calling an abstract method. The vtable for abstract methods
  1289     //       will run us thru handle_wrong_method and we will eventually
  1290     //       end up in the interpreter to throw the ame.
  1291     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1292     //       call and between the time we fetch the entry address and
  1293     //       we jump to it the target gets deoptimized. Similar to 1
  1294     //       we will wind up in the interprter (thru a c2i with c2).
  1295     //
  1296     address call_addr = NULL;
  1298       // Get call instruction under lock because another thread may be
  1299       // busy patching it.
  1300       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1301       // Location of call instruction
  1302       if (NativeCall::is_call_before(pc)) {
  1303         NativeCall *ncall = nativeCall_before(pc);
  1304         call_addr = ncall->instruction_address();
  1308     // Check for static or virtual call
  1309     bool is_static_call = false;
  1310     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1311     // Make sure nmethod doesn't get deoptimized and removed until
  1312     // this is done with it.
  1313     // CLEANUP - with lazy deopt shouldn't need this lock
  1314     nmethodLocker nmlock(caller_nm);
  1316     if (call_addr != NULL) {
  1317       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1318       int ret = iter.next(); // Get item
  1319       if (ret) {
  1320         assert(iter.addr() == call_addr, "must find call");
  1321         if (iter.type() == relocInfo::static_call_type) {
  1322           is_static_call = true;
  1323         } else {
  1324           assert(iter.type() == relocInfo::virtual_call_type ||
  1325                  iter.type() == relocInfo::opt_virtual_call_type
  1326                 , "unexpected relocInfo. type");
  1328       } else {
  1329         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1332       // Cleaning the inline cache will force a new resolve. This is more robust
  1333       // than directly setting it to the new destination, since resolving of calls
  1334       // is always done through the same code path. (experience shows that it
  1335       // leads to very hard to track down bugs, if an inline cache gets updated
  1336       // to a wrong method). It should not be performance critical, since the
  1337       // resolve is only done once.
  1339       MutexLocker ml(CompiledIC_lock);
  1340       //
  1341       // We do not patch the call site if the nmethod has been made non-entrant
  1342       // as it is a waste of time
  1343       //
  1344       if (caller_nm->is_in_use()) {
  1345         if (is_static_call) {
  1346           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1347           ssc->set_to_clean();
  1348         } else {
  1349           // compiled, dispatched call (which used to call an interpreted method)
  1350           CompiledIC* inline_cache = CompiledIC_at(call_addr);
  1351           inline_cache->set_to_clean();
  1358   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1361 #ifndef PRODUCT
  1362   Atomic::inc(&_wrong_method_ctr);
  1364   if (TraceCallFixup) {
  1365     ResourceMark rm(thread);
  1366     tty->print("handle_wrong_method reresolving call to");
  1367     callee_method->print_short_name(tty);
  1368     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1370 #endif
  1372   return callee_method;
  1375 // ---------------------------------------------------------------------------
  1376 // We are calling the interpreter via a c2i. Normally this would mean that
  1377 // we were called by a compiled method. However we could have lost a race
  1378 // where we went int -> i2c -> c2i and so the caller could in fact be
  1379 // interpreted. If the caller is compiled we attempt to patch the caller
  1380 // so he no longer calls into the interpreter.
  1381 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
  1382   methodOop moop(method);
  1384   address entry_point = moop->from_compiled_entry();
  1386   // It's possible that deoptimization can occur at a call site which hasn't
  1387   // been resolved yet, in which case this function will be called from
  1388   // an nmethod that has been patched for deopt and we can ignore the
  1389   // request for a fixup.
  1390   // Also it is possible that we lost a race in that from_compiled_entry
  1391   // is now back to the i2c in that case we don't need to patch and if
  1392   // we did we'd leap into space because the callsite needs to use
  1393   // "to interpreter" stub in order to load up the methodOop. Don't
  1394   // ask me how I know this...
  1396   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1397   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1398     return;
  1401   // The check above makes sure this is a nmethod.
  1402   nmethod* nm = cb->as_nmethod_or_null();
  1403   assert(nm, "must be");
  1405   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
  1406   // to implement MethodHandle actions.
  1407   if (nm->is_method_handle_return(caller_pc)) {
  1408     return;
  1411   // There is a benign race here. We could be attempting to patch to a compiled
  1412   // entry point at the same time the callee is being deoptimized. If that is
  1413   // the case then entry_point may in fact point to a c2i and we'd patch the
  1414   // call site with the same old data. clear_code will set code() to NULL
  1415   // at the end of it. If we happen to see that NULL then we can skip trying
  1416   // to patch. If we hit the window where the callee has a c2i in the
  1417   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1418   // and patch the code with the same old data. Asi es la vida.
  1420   if (moop->code() == NULL) return;
  1422   if (nm->is_in_use()) {
  1424     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1425     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1426     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
  1427       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
  1428       //
  1429       // bug 6281185. We might get here after resolving a call site to a vanilla
  1430       // virtual call. Because the resolvee uses the verified entry it may then
  1431       // see compiled code and attempt to patch the site by calling us. This would
  1432       // then incorrectly convert the call site to optimized and its downhill from
  1433       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1434       // just made a call site that could be megamorphic into a monomorphic site
  1435       // for the rest of its life! Just another racing bug in the life of
  1436       // fixup_callers_callsite ...
  1437       //
  1438       RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
  1439       iter.next();
  1440       assert(iter.has_current(), "must have a reloc at java call site");
  1441       relocInfo::relocType typ = iter.reloc()->type();
  1442       if ( typ != relocInfo::static_call_type &&
  1443            typ != relocInfo::opt_virtual_call_type &&
  1444            typ != relocInfo::static_stub_type) {
  1445         return;
  1447       address destination = call->destination();
  1448       if (destination != entry_point) {
  1449         CodeBlob* callee = CodeCache::find_blob(destination);
  1450         // callee == cb seems weird. It means calling interpreter thru stub.
  1451         if (callee == cb || callee->is_adapter_blob()) {
  1452           // static call or optimized virtual
  1453           if (TraceCallFixup) {
  1454             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1455             moop->print_short_name(tty);
  1456             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1458           call->set_destination_mt_safe(entry_point);
  1459         } else {
  1460           if (TraceCallFixup) {
  1461             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1462             moop->print_short_name(tty);
  1463             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1465           // assert is too strong could also be resolve destinations.
  1466           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1468       } else {
  1469           if (TraceCallFixup) {
  1470             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1471             moop->print_short_name(tty);
  1472             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1478 IRT_END
  1481 // same as JVM_Arraycopy, but called directly from compiled code
  1482 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1483                                                 oopDesc* dest, jint dest_pos,
  1484                                                 jint length,
  1485                                                 JavaThread* thread)) {
  1486 #ifndef PRODUCT
  1487   _slow_array_copy_ctr++;
  1488 #endif
  1489   // Check if we have null pointers
  1490   if (src == NULL || dest == NULL) {
  1491     THROW(vmSymbols::java_lang_NullPointerException());
  1493   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1494   // even though the copy_array API also performs dynamic checks to ensure
  1495   // that src and dest are truly arrays (and are conformable).
  1496   // The copy_array mechanism is awkward and could be removed, but
  1497   // the compilers don't call this function except as a last resort,
  1498   // so it probably doesn't matter.
  1499   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
  1500                                         (arrayOopDesc*)dest, dest_pos,
  1501                                         length, thread);
  1503 JRT_END
  1505 char* SharedRuntime::generate_class_cast_message(
  1506     JavaThread* thread, const char* objName) {
  1508   // Get target class name from the checkcast instruction
  1509   vframeStream vfst(thread, true);
  1510   assert(!vfst.at_end(), "Java frame must exist");
  1511   Bytecode_checkcast* cc = Bytecode_checkcast_at(
  1512     vfst.method()->bcp_from(vfst.bci()));
  1513   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
  1514     cc->index(), thread));
  1515   return generate_class_cast_message(objName, targetKlass->external_name());
  1518 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
  1519                                                         oopDesc* required,
  1520                                                         oopDesc* actual) {
  1521   assert(EnableMethodHandles, "");
  1522   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
  1523   if (singleKlass != NULL) {
  1524     const char* objName = "argument or return value";
  1525     if (actual != NULL) {
  1526       // be flexible about the junk passed in:
  1527       klassOop ak = (actual->is_klass()
  1528                      ? (klassOop)actual
  1529                      : actual->klass());
  1530       objName = Klass::cast(ak)->external_name();
  1532     Klass* targetKlass = Klass::cast(required->is_klass()
  1533                                      ? (klassOop)required
  1534                                      : java_lang_Class::as_klassOop(required));
  1535     return generate_class_cast_message(objName, targetKlass->external_name());
  1536   } else {
  1537     // %%% need to get the MethodType string, without messing around too much
  1538     // Get a signature from the invoke instruction
  1539     const char* mhName = "method handle";
  1540     const char* targetType = "the required signature";
  1541     vframeStream vfst(thread, true);
  1542     if (!vfst.at_end()) {
  1543       Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
  1544       methodHandle target;
  1546         EXCEPTION_MARK;
  1547         target = call->static_target(THREAD);
  1548         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
  1550       if (target.not_null()
  1551           && target->is_method_handle_invoke()
  1552           && required == target->method_handle_type()) {
  1553         targetType = target->signature()->as_C_string();
  1556     klassOop kignore; int fignore;
  1557     methodOop actual_method = MethodHandles::decode_method(actual,
  1558                                                           kignore, fignore);
  1559     if (actual_method != NULL) {
  1560       if (methodOopDesc::is_method_handle_invoke_name(actual_method->name()))
  1561         mhName = "$";
  1562       else
  1563         mhName = actual_method->signature()->as_C_string();
  1564       if (mhName[0] == '$')
  1565         mhName = actual_method->signature()->as_C_string();
  1567     return generate_class_cast_message(mhName, targetType,
  1568                                        " cannot be called as ");
  1572 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
  1573                                                             oopDesc* required) {
  1574   if (required == NULL)  return NULL;
  1575   if (required->klass() == SystemDictionary::Class_klass())
  1576     return required;
  1577   if (required->is_klass())
  1578     return Klass::cast(klassOop(required))->java_mirror();
  1579   return NULL;
  1583 char* SharedRuntime::generate_class_cast_message(
  1584     const char* objName, const char* targetKlassName, const char* desc) {
  1585   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1587   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1588   if (NULL == message) {
  1589     // Shouldn't happen, but don't cause even more problems if it does
  1590     message = const_cast<char*>(objName);
  1591   } else {
  1592     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1594   return message;
  1597 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1598   (void) JavaThread::current()->reguard_stack();
  1599 JRT_END
  1602 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1603 #ifndef PRODUCT
  1604 int SharedRuntime::_monitor_enter_ctr=0;
  1605 #endif
  1606 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1607   oop obj(_obj);
  1608 #ifndef PRODUCT
  1609   _monitor_enter_ctr++;             // monitor enter slow
  1610 #endif
  1611   if (PrintBiasedLockingStatistics) {
  1612     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1614   Handle h_obj(THREAD, obj);
  1615   if (UseBiasedLocking) {
  1616     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1617     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1618   } else {
  1619     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1621   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1622 JRT_END
  1624 #ifndef PRODUCT
  1625 int SharedRuntime::_monitor_exit_ctr=0;
  1626 #endif
  1627 // Handles the uncommon cases of monitor unlocking in compiled code
  1628 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1629    oop obj(_obj);
  1630 #ifndef PRODUCT
  1631   _monitor_exit_ctr++;              // monitor exit slow
  1632 #endif
  1633   Thread* THREAD = JavaThread::current();
  1634   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1635   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1636   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1637 #undef MIGHT_HAVE_PENDING
  1638 #ifdef MIGHT_HAVE_PENDING
  1639   // Save and restore any pending_exception around the exception mark.
  1640   // While the slow_exit must not throw an exception, we could come into
  1641   // this routine with one set.
  1642   oop pending_excep = NULL;
  1643   const char* pending_file;
  1644   int pending_line;
  1645   if (HAS_PENDING_EXCEPTION) {
  1646     pending_excep = PENDING_EXCEPTION;
  1647     pending_file  = THREAD->exception_file();
  1648     pending_line  = THREAD->exception_line();
  1649     CLEAR_PENDING_EXCEPTION;
  1651 #endif /* MIGHT_HAVE_PENDING */
  1654     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1655     EXCEPTION_MARK;
  1656     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1659 #ifdef MIGHT_HAVE_PENDING
  1660   if (pending_excep != NULL) {
  1661     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1663 #endif /* MIGHT_HAVE_PENDING */
  1664 JRT_END
  1666 #ifndef PRODUCT
  1668 void SharedRuntime::print_statistics() {
  1669   ttyLocker ttyl;
  1670   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1672   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1673   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1674   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1676   SharedRuntime::print_ic_miss_histogram();
  1678   if (CountRemovableExceptions) {
  1679     if (_nof_removable_exceptions > 0) {
  1680       Unimplemented(); // this counter is not yet incremented
  1681       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1685   // Dump the JRT_ENTRY counters
  1686   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1687   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1688   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1689   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1690   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1691   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1692   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1694   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1695   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1696   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1697   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1698   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1700   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1701   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1702   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1703   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1704   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1705   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1706   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1707   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1708   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1709   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1710   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1711   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1712   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1713   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1714   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1715   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1717   AdapterHandlerLibrary::print_statistics();
  1719   if (xtty != NULL)  xtty->tail("statistics");
  1722 inline double percent(int x, int y) {
  1723   return 100.0 * x / MAX2(y, 1);
  1726 class MethodArityHistogram {
  1727  public:
  1728   enum { MAX_ARITY = 256 };
  1729  private:
  1730   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1731   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1732   static int _max_arity;                      // max. arity seen
  1733   static int _max_size;                       // max. arg size seen
  1735   static void add_method_to_histogram(nmethod* nm) {
  1736     methodOop m = nm->method();
  1737     ArgumentCount args(m->signature());
  1738     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1739     int argsize = m->size_of_parameters();
  1740     arity   = MIN2(arity, MAX_ARITY-1);
  1741     argsize = MIN2(argsize, MAX_ARITY-1);
  1742     int count = nm->method()->compiled_invocation_count();
  1743     _arity_histogram[arity]  += count;
  1744     _size_histogram[argsize] += count;
  1745     _max_arity = MAX2(_max_arity, arity);
  1746     _max_size  = MAX2(_max_size, argsize);
  1749   void print_histogram_helper(int n, int* histo, const char* name) {
  1750     const int N = MIN2(5, n);
  1751     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1752     double sum = 0;
  1753     double weighted_sum = 0;
  1754     int i;
  1755     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  1756     double rest = sum;
  1757     double percent = sum / 100;
  1758     for (i = 0; i <= N; i++) {
  1759       rest -= histo[i];
  1760       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  1762     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  1763     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  1766   void print_histogram() {
  1767     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1768     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  1769     tty->print_cr("\nSame for parameter size (in words):");
  1770     print_histogram_helper(_max_size, _size_histogram, "size");
  1771     tty->cr();
  1774  public:
  1775   MethodArityHistogram() {
  1776     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1777     _max_arity = _max_size = 0;
  1778     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  1779     CodeCache::nmethods_do(add_method_to_histogram);
  1780     print_histogram();
  1782 };
  1784 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  1785 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  1786 int MethodArityHistogram::_max_arity;
  1787 int MethodArityHistogram::_max_size;
  1789 void SharedRuntime::print_call_statistics(int comp_total) {
  1790   tty->print_cr("Calls from compiled code:");
  1791   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  1792   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  1793   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  1794   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  1795   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  1796   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  1797   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  1798   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  1799   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  1800   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  1801   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  1802   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  1803   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  1804   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  1805   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  1806   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  1807   tty->cr();
  1808   tty->print_cr("Note 1: counter updates are not MT-safe.");
  1809   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  1810   tty->print_cr("        %% in nested categories are relative to their category");
  1811   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  1812   tty->cr();
  1814   MethodArityHistogram h;
  1816 #endif
  1819 // A simple wrapper class around the calling convention information
  1820 // that allows sharing of adapters for the same calling convention.
  1821 class AdapterFingerPrint : public CHeapObj {
  1822  private:
  1823   union {
  1824     int  _compact[3];
  1825     int* _fingerprint;
  1826   } _value;
  1827   int _length; // A negative length indicates the fingerprint is in the compact form,
  1828                // Otherwise _value._fingerprint is the array.
  1830   // Remap BasicTypes that are handled equivalently by the adapters.
  1831   // These are correct for the current system but someday it might be
  1832   // necessary to make this mapping platform dependent.
  1833   static BasicType adapter_encoding(BasicType in) {
  1834     assert((~0xf & in) == 0, "must fit in 4 bits");
  1835     switch(in) {
  1836       case T_BOOLEAN:
  1837       case T_BYTE:
  1838       case T_SHORT:
  1839       case T_CHAR:
  1840         // There are all promoted to T_INT in the calling convention
  1841         return T_INT;
  1843       case T_OBJECT:
  1844       case T_ARRAY:
  1845 #ifdef _LP64
  1846         return T_LONG;
  1847 #else
  1848         return T_INT;
  1849 #endif
  1851       case T_INT:
  1852       case T_LONG:
  1853       case T_FLOAT:
  1854       case T_DOUBLE:
  1855       case T_VOID:
  1856         return in;
  1858       default:
  1859         ShouldNotReachHere();
  1860         return T_CONFLICT;
  1864  public:
  1865   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  1866     // The fingerprint is based on the BasicType signature encoded
  1867     // into an array of ints with four entries per int.
  1868     int* ptr;
  1869     int len = (total_args_passed + 3) >> 2;
  1870     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
  1871       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  1872       // Storing the signature encoded as signed chars hits about 98%
  1873       // of the time.
  1874       _length = -len;
  1875       ptr = _value._compact;
  1876     } else {
  1877       _length = len;
  1878       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
  1879       ptr = _value._fingerprint;
  1882     // Now pack the BasicTypes with 4 per int
  1883     int sig_index = 0;
  1884     for (int index = 0; index < len; index++) {
  1885       int value = 0;
  1886       for (int byte = 0; byte < 4; byte++) {
  1887         if (sig_index < total_args_passed) {
  1888           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
  1891       ptr[index] = value;
  1895   ~AdapterFingerPrint() {
  1896     if (_length > 0) {
  1897       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
  1901   int value(int index) {
  1902     if (_length < 0) {
  1903       return _value._compact[index];
  1905     return _value._fingerprint[index];
  1907   int length() {
  1908     if (_length < 0) return -_length;
  1909     return _length;
  1912   bool is_compact() {
  1913     return _length <= 0;
  1916   unsigned int compute_hash() {
  1917     int hash = 0;
  1918     for (int i = 0; i < length(); i++) {
  1919       int v = value(i);
  1920       hash = (hash << 8) ^ v ^ (hash >> 5);
  1922     return (unsigned int)hash;
  1925   const char* as_string() {
  1926     stringStream st;
  1927     for (int i = 0; i < length(); i++) {
  1928       st.print(PTR_FORMAT, value(i));
  1930     return st.as_string();
  1933   bool equals(AdapterFingerPrint* other) {
  1934     if (other->_length != _length) {
  1935       return false;
  1937     if (_length < 0) {
  1938       return _value._compact[0] == other->_value._compact[0] &&
  1939              _value._compact[1] == other->_value._compact[1] &&
  1940              _value._compact[2] == other->_value._compact[2];
  1941     } else {
  1942       for (int i = 0; i < _length; i++) {
  1943         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  1944           return false;
  1948     return true;
  1950 };
  1953 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  1954 class AdapterHandlerTable : public BasicHashtable {
  1955   friend class AdapterHandlerTableIterator;
  1957  private:
  1959 #ifndef PRODUCT
  1960   static int _lookups; // number of calls to lookup
  1961   static int _buckets; // number of buckets checked
  1962   static int _equals;  // number of buckets checked with matching hash
  1963   static int _hits;    // number of successful lookups
  1964   static int _compact; // number of equals calls with compact signature
  1965 #endif
  1967   AdapterHandlerEntry* bucket(int i) {
  1968     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
  1971  public:
  1972   AdapterHandlerTable()
  1973     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
  1975   // Create a new entry suitable for insertion in the table
  1976   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  1977     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
  1978     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  1979     return entry;
  1982   // Insert an entry into the table
  1983   void add(AdapterHandlerEntry* entry) {
  1984     int index = hash_to_index(entry->hash());
  1985     add_entry(index, entry);
  1988   void free_entry(AdapterHandlerEntry* entry) {
  1989     entry->deallocate();
  1990     BasicHashtable::free_entry(entry);
  1993   // Find a entry with the same fingerprint if it exists
  1994   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  1995     NOT_PRODUCT(_lookups++);
  1996     AdapterFingerPrint fp(total_args_passed, sig_bt);
  1997     unsigned int hash = fp.compute_hash();
  1998     int index = hash_to_index(hash);
  1999     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2000       NOT_PRODUCT(_buckets++);
  2001       if (e->hash() == hash) {
  2002         NOT_PRODUCT(_equals++);
  2003         if (fp.equals(e->fingerprint())) {
  2004 #ifndef PRODUCT
  2005           if (fp.is_compact()) _compact++;
  2006           _hits++;
  2007 #endif
  2008           return e;
  2012     return NULL;
  2015 #ifndef PRODUCT
  2016   void print_statistics() {
  2017     ResourceMark rm;
  2018     int longest = 0;
  2019     int empty = 0;
  2020     int total = 0;
  2021     int nonempty = 0;
  2022     for (int index = 0; index < table_size(); index++) {
  2023       int count = 0;
  2024       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2025         count++;
  2027       if (count != 0) nonempty++;
  2028       if (count == 0) empty++;
  2029       if (count > longest) longest = count;
  2030       total += count;
  2032     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2033                   empty, longest, total, total / (double)nonempty);
  2034     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2035                   _lookups, _buckets, _equals, _hits, _compact);
  2037 #endif
  2038 };
  2041 #ifndef PRODUCT
  2043 int AdapterHandlerTable::_lookups;
  2044 int AdapterHandlerTable::_buckets;
  2045 int AdapterHandlerTable::_equals;
  2046 int AdapterHandlerTable::_hits;
  2047 int AdapterHandlerTable::_compact;
  2049 class AdapterHandlerTableIterator : public StackObj {
  2050  private:
  2051   AdapterHandlerTable* _table;
  2052   int _index;
  2053   AdapterHandlerEntry* _current;
  2055   void scan() {
  2056     while (_index < _table->table_size()) {
  2057       AdapterHandlerEntry* a = _table->bucket(_index);
  2058       if (a != NULL) {
  2059         _current = a;
  2060         return;
  2062       _index++;
  2066  public:
  2067   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2068     scan();
  2070   bool has_next() {
  2071     return _current != NULL;
  2073   AdapterHandlerEntry* next() {
  2074     if (_current != NULL) {
  2075       AdapterHandlerEntry* result = _current;
  2076       _current = _current->next();
  2077       if (_current == NULL) scan();
  2078       return result;
  2079     } else {
  2080       return NULL;
  2083 };
  2084 #endif
  2087 // ---------------------------------------------------------------------------
  2088 // Implementation of AdapterHandlerLibrary
  2089 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2090 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2091 const int AdapterHandlerLibrary_size = 16*K;
  2092 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2094 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2095   // Should be called only when AdapterHandlerLibrary_lock is active.
  2096   if (_buffer == NULL) // Initialize lazily
  2097       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2098   return _buffer;
  2101 void AdapterHandlerLibrary::initialize() {
  2102   if (_adapters != NULL) return;
  2103   _adapters = new AdapterHandlerTable();
  2105   // Create a special handler for abstract methods.  Abstract methods
  2106   // are never compiled so an i2c entry is somewhat meaningless, but
  2107   // fill it in with something appropriate just in case.  Pass handle
  2108   // wrong method for the c2i transitions.
  2109   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  2110   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2111                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2112                                                               wrong_method, wrong_method);
  2115 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2116                                                       address i2c_entry,
  2117                                                       address c2i_entry,
  2118                                                       address c2i_unverified_entry) {
  2119   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2122 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2123   // Use customized signature handler.  Need to lock around updates to
  2124   // the AdapterHandlerTable (it is not safe for concurrent readers
  2125   // and a single writer: this could be fixed if it becomes a
  2126   // problem).
  2128   // Get the address of the ic_miss handlers before we grab the
  2129   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2130   // was caused by the initialization of the stubs happening
  2131   // while we held the lock and then notifying jvmti while
  2132   // holding it. This just forces the initialization to be a little
  2133   // earlier.
  2134   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2135   assert(ic_miss != NULL, "must have handler");
  2137   ResourceMark rm;
  2139   NOT_PRODUCT(int code_size);
  2140   AdapterBlob* B = NULL;
  2141   AdapterHandlerEntry* entry = NULL;
  2142   AdapterFingerPrint* fingerprint = NULL;
  2144     MutexLocker mu(AdapterHandlerLibrary_lock);
  2145     // make sure data structure is initialized
  2146     initialize();
  2148     if (method->is_abstract()) {
  2149       return _abstract_method_handler;
  2152     // Fill in the signature array, for the calling-convention call.
  2153     int total_args_passed = method->size_of_parameters(); // All args on stack
  2155     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2156     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2157     int i = 0;
  2158     if (!method->is_static())  // Pass in receiver first
  2159       sig_bt[i++] = T_OBJECT;
  2160     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2161       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2162       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2163         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2165     assert(i == total_args_passed, "");
  2167     // Lookup method signature's fingerprint
  2168     entry = _adapters->lookup(total_args_passed, sig_bt);
  2170 #ifdef ASSERT
  2171     AdapterHandlerEntry* shared_entry = NULL;
  2172     if (VerifyAdapterSharing && entry != NULL) {
  2173       shared_entry = entry;
  2174       entry = NULL;
  2176 #endif
  2178     if (entry != NULL) {
  2179       return entry;
  2182     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2183     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2185     // Make a C heap allocated version of the fingerprint to store in the adapter
  2186     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2188     // Create I2C & C2I handlers
  2190     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2191     if (buf != NULL) {
  2192       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
  2193       short buffer_locs[20];
  2194       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2195                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2196       MacroAssembler _masm(&buffer);
  2198       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2199                                                      total_args_passed,
  2200                                                      comp_args_on_stack,
  2201                                                      sig_bt,
  2202                                                      regs,
  2203                                                      fingerprint);
  2205 #ifdef ASSERT
  2206       if (VerifyAdapterSharing) {
  2207         if (shared_entry != NULL) {
  2208           assert(shared_entry->compare_code(buf->instructions_begin(), buffer.code_size(), total_args_passed, sig_bt),
  2209                  "code must match");
  2210           // Release the one just created and return the original
  2211           _adapters->free_entry(entry);
  2212           return shared_entry;
  2213         } else  {
  2214           entry->save_code(buf->instructions_begin(), buffer.code_size(), total_args_passed, sig_bt);
  2217 #endif
  2219       B = AdapterBlob::create(&buffer);
  2220       NOT_PRODUCT(code_size = buffer.code_size());
  2222     if (B == NULL) {
  2223       // CodeCache is full, disable compilation
  2224       // Ought to log this but compile log is only per compile thread
  2225       // and we're some non descript Java thread.
  2226       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2227       CompileBroker::handle_full_code_cache();
  2228       return NULL; // Out of CodeCache space
  2230     entry->relocate(B->instructions_begin());
  2231 #ifndef PRODUCT
  2232     // debugging suppport
  2233     if (PrintAdapterHandlers) {
  2234       tty->cr();
  2235       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
  2236                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2237                     method->signature()->as_C_string(), fingerprint->as_string(), code_size );
  2238       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2239       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + code_size);
  2241 #endif
  2243     _adapters->add(entry);
  2245   // Outside of the lock
  2246   if (B != NULL) {
  2247     char blob_id[256];
  2248     jio_snprintf(blob_id,
  2249                  sizeof(blob_id),
  2250                  "%s(%s)@" PTR_FORMAT,
  2251                  B->name(),
  2252                  fingerprint->as_string(),
  2253                  B->instructions_begin());
  2254     VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
  2255     Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
  2257     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2258       JvmtiExport::post_dynamic_code_generated(blob_id,
  2259                                                B->instructions_begin(),
  2260                                                B->instructions_end());
  2263   return entry;
  2266 void AdapterHandlerEntry::relocate(address new_base) {
  2267     ptrdiff_t delta = new_base - _i2c_entry;
  2268     _i2c_entry += delta;
  2269     _c2i_entry += delta;
  2270     _c2i_unverified_entry += delta;
  2274 void AdapterHandlerEntry::deallocate() {
  2275   delete _fingerprint;
  2276 #ifdef ASSERT
  2277   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
  2278   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
  2279 #endif
  2283 #ifdef ASSERT
  2284 // Capture the code before relocation so that it can be compared
  2285 // against other versions.  If the code is captured after relocation
  2286 // then relative instructions won't be equivalent.
  2287 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2288   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
  2289   _code_length = length;
  2290   memcpy(_saved_code, buffer, length);
  2291   _total_args_passed = total_args_passed;
  2292   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
  2293   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
  2297 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2298   if (length != _code_length) {
  2299     return false;
  2301   for (int i = 0; i < length; i++) {
  2302     if (buffer[i] != _saved_code[i]) {
  2303       return false;
  2306   return true;
  2308 #endif
  2311 // Create a native wrapper for this native method.  The wrapper converts the
  2312 // java compiled calling convention to the native convention, handlizes
  2313 // arguments, and transitions to native.  On return from the native we transition
  2314 // back to java blocking if a safepoint is in progress.
  2315 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
  2316   ResourceMark rm;
  2317   nmethod* nm = NULL;
  2319   if (PrintCompilation) {
  2320     ttyLocker ttyl;
  2321     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
  2322     method->print_short_name(tty);
  2323     if (method->is_static()) {
  2324       tty->print(" (static)");
  2326     tty->cr();
  2329   assert(method->has_native_function(), "must have something valid to call!");
  2332     // perform the work while holding the lock, but perform any printing outside the lock
  2333     MutexLocker mu(AdapterHandlerLibrary_lock);
  2334     // See if somebody beat us to it
  2335     nm = method->code();
  2336     if (nm) {
  2337       return nm;
  2340     ResourceMark rm;
  2342     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2343     if (buf != NULL) {
  2344       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
  2345       double locs_buf[20];
  2346       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2347       MacroAssembler _masm(&buffer);
  2349       // Fill in the signature array, for the calling-convention call.
  2350       int total_args_passed = method->size_of_parameters();
  2352       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  2353       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
  2354       int i=0;
  2355       if( !method->is_static() )  // Pass in receiver first
  2356         sig_bt[i++] = T_OBJECT;
  2357       SignatureStream ss(method->signature());
  2358       for( ; !ss.at_return_type(); ss.next()) {
  2359         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2360         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2361           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2363       assert( i==total_args_passed, "" );
  2364       BasicType ret_type = ss.type();
  2366       // Now get the compiled-Java layout as input arguments
  2367       int comp_args_on_stack;
  2368       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2370       // Generate the compiled-to-native wrapper code
  2371       nm = SharedRuntime::generate_native_wrapper(&_masm,
  2372                                                   method,
  2373                                                   total_args_passed,
  2374                                                   comp_args_on_stack,
  2375                                                   sig_bt,regs,
  2376                                                   ret_type);
  2380   // Must unlock before calling set_code
  2381   // Install the generated code.
  2382   if (nm != NULL) {
  2383     method->set_code(method, nm);
  2384     nm->post_compiled_method_load_event();
  2385   } else {
  2386     // CodeCache is full, disable compilation
  2387     // Ought to log this but compile log is only per compile thread
  2388     // and we're some non descript Java thread.
  2389     MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2390     CompileBroker::handle_full_code_cache();
  2392   return nm;
  2395 #ifdef HAVE_DTRACE_H
  2396 // Create a dtrace nmethod for this method.  The wrapper converts the
  2397 // java compiled calling convention to the native convention, makes a dummy call
  2398 // (actually nops for the size of the call instruction, which become a trap if
  2399 // probe is enabled). The returns to the caller. Since this all looks like a
  2400 // leaf no thread transition is needed.
  2402 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2403   ResourceMark rm;
  2404   nmethod* nm = NULL;
  2406   if (PrintCompilation) {
  2407     ttyLocker ttyl;
  2408     tty->print("---   n%s  ");
  2409     method->print_short_name(tty);
  2410     if (method->is_static()) {
  2411       tty->print(" (static)");
  2413     tty->cr();
  2417     // perform the work while holding the lock, but perform any printing
  2418     // outside the lock
  2419     MutexLocker mu(AdapterHandlerLibrary_lock);
  2420     // See if somebody beat us to it
  2421     nm = method->code();
  2422     if (nm) {
  2423       return nm;
  2426     ResourceMark rm;
  2428     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2429     if (buf != NULL) {
  2430       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
  2431       // Need a few relocation entries
  2432       double locs_buf[20];
  2433       buffer.insts()->initialize_shared_locs(
  2434         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2435       MacroAssembler _masm(&buffer);
  2437       // Generate the compiled-to-native wrapper code
  2438       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2441   return nm;
  2444 // the dtrace method needs to convert java lang string to utf8 string.
  2445 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2446   typeArrayOop jlsValue  = java_lang_String::value(src);
  2447   int          jlsOffset = java_lang_String::offset(src);
  2448   int          jlsLen    = java_lang_String::length(src);
  2449   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2450                                            jlsValue->char_at_addr(jlsOffset);
  2451   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2453 #endif // ndef HAVE_DTRACE_H
  2455 // -------------------------------------------------------------------------
  2456 // Java-Java calling convention
  2457 // (what you use when Java calls Java)
  2459 //------------------------------name_for_receiver----------------------------------
  2460 // For a given signature, return the VMReg for parameter 0.
  2461 VMReg SharedRuntime::name_for_receiver() {
  2462   VMRegPair regs;
  2463   BasicType sig_bt = T_OBJECT;
  2464   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2465   // Return argument 0 register.  In the LP64 build pointers
  2466   // take 2 registers, but the VM wants only the 'main' name.
  2467   return regs.first();
  2470 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool has_receiver, int* arg_size) {
  2471   // This method is returning a data structure allocating as a
  2472   // ResourceObject, so do not put any ResourceMarks in here.
  2473   char *s = sig->as_C_string();
  2474   int len = (int)strlen(s);
  2475   *s++; len--;                  // Skip opening paren
  2476   char *t = s+len;
  2477   while( *(--t) != ')' ) ;      // Find close paren
  2479   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2480   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2481   int cnt = 0;
  2482   if (has_receiver) {
  2483     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2486   while( s < t ) {
  2487     switch( *s++ ) {            // Switch on signature character
  2488     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2489     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2490     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2491     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2492     case 'I': sig_bt[cnt++] = T_INT;     break;
  2493     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2494     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2495     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2496     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2497     case 'L':                   // Oop
  2498       while( *s++ != ';'  ) ;   // Skip signature
  2499       sig_bt[cnt++] = T_OBJECT;
  2500       break;
  2501     case '[': {                 // Array
  2502       do {                      // Skip optional size
  2503         while( *s >= '0' && *s <= '9' ) s++;
  2504       } while( *s++ == '[' );   // Nested arrays?
  2505       // Skip element type
  2506       if( s[-1] == 'L' )
  2507         while( *s++ != ';'  ) ; // Skip signature
  2508       sig_bt[cnt++] = T_ARRAY;
  2509       break;
  2511     default : ShouldNotReachHere();
  2514   assert( cnt < 256, "grow table size" );
  2516   int comp_args_on_stack;
  2517   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2519   // the calling convention doesn't count out_preserve_stack_slots so
  2520   // we must add that in to get "true" stack offsets.
  2522   if (comp_args_on_stack) {
  2523     for (int i = 0; i < cnt; i++) {
  2524       VMReg reg1 = regs[i].first();
  2525       if( reg1->is_stack()) {
  2526         // Yuck
  2527         reg1 = reg1->bias(out_preserve_stack_slots());
  2529       VMReg reg2 = regs[i].second();
  2530       if( reg2->is_stack()) {
  2531         // Yuck
  2532         reg2 = reg2->bias(out_preserve_stack_slots());
  2534       regs[i].set_pair(reg2, reg1);
  2538   // results
  2539   *arg_size = cnt;
  2540   return regs;
  2543 // OSR Migration Code
  2544 //
  2545 // This code is used convert interpreter frames into compiled frames.  It is
  2546 // called from very start of a compiled OSR nmethod.  A temp array is
  2547 // allocated to hold the interesting bits of the interpreter frame.  All
  2548 // active locks are inflated to allow them to move.  The displaced headers and
  2549 // active interpeter locals are copied into the temp buffer.  Then we return
  2550 // back to the compiled code.  The compiled code then pops the current
  2551 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2552 // copies the interpreter locals and displaced headers where it wants.
  2553 // Finally it calls back to free the temp buffer.
  2554 //
  2555 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2557 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2559 #ifdef IA64
  2560   ShouldNotReachHere(); // NYI
  2561 #endif /* IA64 */
  2563   //
  2564   // This code is dependent on the memory layout of the interpreter local
  2565   // array and the monitors. On all of our platforms the layout is identical
  2566   // so this code is shared. If some platform lays the their arrays out
  2567   // differently then this code could move to platform specific code or
  2568   // the code here could be modified to copy items one at a time using
  2569   // frame accessor methods and be platform independent.
  2571   frame fr = thread->last_frame();
  2572   assert( fr.is_interpreted_frame(), "" );
  2573   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2575   // Figure out how many monitors are active.
  2576   int active_monitor_count = 0;
  2577   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2578        kptr < fr.interpreter_frame_monitor_begin();
  2579        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2580     if( kptr->obj() != NULL ) active_monitor_count++;
  2583   // QQQ we could place number of active monitors in the array so that compiled code
  2584   // could double check it.
  2586   methodOop moop = fr.interpreter_frame_method();
  2587   int max_locals = moop->max_locals();
  2588   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2589   int buf_size_words = max_locals + active_monitor_count*2;
  2590   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
  2592   // Copy the locals.  Order is preserved so that loading of longs works.
  2593   // Since there's no GC I can copy the oops blindly.
  2594   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2595   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2596                        (HeapWord*)&buf[0],
  2597                        max_locals);
  2599   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2600   int i = max_locals;
  2601   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2602        kptr2 < fr.interpreter_frame_monitor_begin();
  2603        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2604     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2605       BasicLock *lock = kptr2->lock();
  2606       // Inflate so the displaced header becomes position-independent
  2607       if (lock->displaced_header()->is_unlocked())
  2608         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2609       // Now the displaced header is free to move
  2610       buf[i++] = (intptr_t)lock->displaced_header();
  2611       buf[i++] = (intptr_t)kptr2->obj();
  2614   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2616   return buf;
  2617 JRT_END
  2619 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2620   FREE_C_HEAP_ARRAY(intptr_t,buf);
  2621 JRT_END
  2623 #ifndef PRODUCT
  2624 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2625   AdapterHandlerTableIterator iter(_adapters);
  2626   while (iter.has_next()) {
  2627     AdapterHandlerEntry* a = iter.next();
  2628     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2630   return false;
  2633 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
  2634   AdapterHandlerTableIterator iter(_adapters);
  2635   while (iter.has_next()) {
  2636     AdapterHandlerEntry* a = iter.next();
  2637     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
  2638       tty->print("Adapter for signature: ");
  2639       tty->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2640                     a->fingerprint()->as_string(),
  2641                     a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
  2642       return;
  2645   assert(false, "Should have found handler");
  2648 void AdapterHandlerLibrary::print_statistics() {
  2649   _adapters->print_statistics();
  2652 #endif /* PRODUCT */

mercurial