src/share/vm/oops/methodDataOop.cpp

Wed, 02 Feb 2011 11:35:26 -0500

author
bobv
date
Wed, 02 Feb 2011 11:35:26 -0500
changeset 2508
b92c45f2bc75
parent 2462
8012aa3ccede
child 2534
e5383553fd4e
child 2559
72d6c57d0658
permissions
-rw-r--r--

7016023: Enable building ARM and PPC from src/closed repository
Reviewed-by: dholmes, bdelsart

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "gc_implementation/shared/markSweep.inline.hpp"
    28 #include "interpreter/bytecode.hpp"
    29 #include "interpreter/bytecodeStream.hpp"
    30 #include "interpreter/linkResolver.hpp"
    31 #include "oops/methodDataOop.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/compilationPolicy.hpp"
    34 #include "runtime/deoptimization.hpp"
    35 #include "runtime/handles.inline.hpp"
    37 // ==================================================================
    38 // DataLayout
    39 //
    40 // Overlay for generic profiling data.
    42 // Some types of data layouts need a length field.
    43 bool DataLayout::needs_array_len(u1 tag) {
    44   return (tag == multi_branch_data_tag) || (tag == arg_info_data_tag);
    45 }
    47 // Perform generic initialization of the data.  More specific
    48 // initialization occurs in overrides of ProfileData::post_initialize.
    49 void DataLayout::initialize(u1 tag, u2 bci, int cell_count) {
    50   _header._bits = (intptr_t)0;
    51   _header._struct._tag = tag;
    52   _header._struct._bci = bci;
    53   for (int i = 0; i < cell_count; i++) {
    54     set_cell_at(i, (intptr_t)0);
    55   }
    56   if (needs_array_len(tag)) {
    57     set_cell_at(ArrayData::array_len_off_set, cell_count - 1); // -1 for header.
    58   }
    59 }
    61 void DataLayout::follow_weak_refs(BoolObjectClosure* cl) {
    62   ResourceMark m;
    63   data_in()->follow_weak_refs(cl);
    64 }
    67 // ==================================================================
    68 // ProfileData
    69 //
    70 // A ProfileData object is created to refer to a section of profiling
    71 // data in a structured way.
    73 // Constructor for invalid ProfileData.
    74 ProfileData::ProfileData() {
    75   _data = NULL;
    76 }
    78 #ifndef PRODUCT
    79 void ProfileData::print_shared(outputStream* st, const char* name) {
    80   st->print("bci: %d", bci());
    81   st->fill_to(tab_width_one);
    82   st->print("%s", name);
    83   tab(st);
    84   int trap = trap_state();
    85   if (trap != 0) {
    86     char buf[100];
    87     st->print("trap(%s) ", Deoptimization::format_trap_state(buf, sizeof(buf), trap));
    88   }
    89   int flags = data()->flags();
    90   if (flags != 0)
    91     st->print("flags(%d) ", flags);
    92 }
    94 void ProfileData::tab(outputStream* st) {
    95   st->fill_to(tab_width_two);
    96 }
    97 #endif // !PRODUCT
    99 // ==================================================================
   100 // BitData
   101 //
   102 // A BitData corresponds to a one-bit flag.  This is used to indicate
   103 // whether a checkcast bytecode has seen a null value.
   106 #ifndef PRODUCT
   107 void BitData::print_data_on(outputStream* st) {
   108   print_shared(st, "BitData");
   109 }
   110 #endif // !PRODUCT
   112 // ==================================================================
   113 // CounterData
   114 //
   115 // A CounterData corresponds to a simple counter.
   117 #ifndef PRODUCT
   118 void CounterData::print_data_on(outputStream* st) {
   119   print_shared(st, "CounterData");
   120   st->print_cr("count(%u)", count());
   121 }
   122 #endif // !PRODUCT
   124 // ==================================================================
   125 // JumpData
   126 //
   127 // A JumpData is used to access profiling information for a direct
   128 // branch.  It is a counter, used for counting the number of branches,
   129 // plus a data displacement, used for realigning the data pointer to
   130 // the corresponding target bci.
   132 void JumpData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
   133   assert(stream->bci() == bci(), "wrong pos");
   134   int target;
   135   Bytecodes::Code c = stream->code();
   136   if (c == Bytecodes::_goto_w || c == Bytecodes::_jsr_w) {
   137     target = stream->dest_w();
   138   } else {
   139     target = stream->dest();
   140   }
   141   int my_di = mdo->dp_to_di(dp());
   142   int target_di = mdo->bci_to_di(target);
   143   int offset = target_di - my_di;
   144   set_displacement(offset);
   145 }
   147 #ifndef PRODUCT
   148 void JumpData::print_data_on(outputStream* st) {
   149   print_shared(st, "JumpData");
   150   st->print_cr("taken(%u) displacement(%d)", taken(), displacement());
   151 }
   152 #endif // !PRODUCT
   154 // ==================================================================
   155 // ReceiverTypeData
   156 //
   157 // A ReceiverTypeData is used to access profiling information about a
   158 // dynamic type check.  It consists of a counter which counts the total times
   159 // that the check is reached, and a series of (klassOop, count) pairs
   160 // which are used to store a type profile for the receiver of the check.
   162 void ReceiverTypeData::follow_contents() {
   163   // This is a set of weak references that need
   164   // to be followed at the end of the strong marking
   165   // phase. Memoize this object so it can be visited
   166   // in the weak roots processing phase.
   167   MarkSweep::revisit_mdo(data());
   168 }
   170 #ifndef SERIALGC
   171 void ReceiverTypeData::follow_contents(ParCompactionManager* cm) {
   172   // This is a set of weak references that need
   173   // to be followed at the end of the strong marking
   174   // phase. Memoize this object so it can be visited
   175   // in the weak roots processing phase.
   176   PSParallelCompact::revisit_mdo(cm, data());
   177 }
   178 #endif // SERIALGC
   180 void ReceiverTypeData::oop_iterate(OopClosure* blk) {
   181   if (blk->should_remember_mdo()) {
   182     // This is a set of weak references that need
   183     // to be followed at the end of the strong marking
   184     // phase. Memoize this object so it can be visited
   185     // in the weak roots processing phase.
   186     blk->remember_mdo(data());
   187   } else { // normal scan
   188     for (uint row = 0; row < row_limit(); row++) {
   189       if (receiver(row) != NULL) {
   190         oop* adr = adr_receiver(row);
   191         blk->do_oop(adr);
   192       }
   193     }
   194   }
   195 }
   197 void ReceiverTypeData::oop_iterate_m(OopClosure* blk, MemRegion mr) {
   198   // Currently, this interface is called only during card-scanning for
   199   // a young gen gc, in which case this object cannot contribute anything,
   200   // since it does not contain any references that cross out of
   201   // the perm gen. However, for future more general use we allow
   202   // the possibility of calling for instance from more general
   203   // iterators (for example, a future regionalized perm gen for G1,
   204   // or the possibility of moving some references out of perm in
   205   // the case of other collectors). In that case, you will need
   206   // to relax or remove some of the assertions below.
   207 #ifdef ASSERT
   208   // Verify that none of the embedded oop references cross out of
   209   // this generation.
   210   for (uint row = 0; row < row_limit(); row++) {
   211     if (receiver(row) != NULL) {
   212       oop* adr = adr_receiver(row);
   213       CollectedHeap* h = Universe::heap();
   214       assert(h->is_permanent(adr) && h->is_permanent_or_null(*adr), "Not intra-perm");
   215     }
   216   }
   217 #endif // ASSERT
   218   assert(!blk->should_remember_mdo(), "Not expected to remember MDO");
   219   return;   // Nothing to do, see comment above
   220 #if 0
   221   if (blk->should_remember_mdo()) {
   222     // This is a set of weak references that need
   223     // to be followed at the end of the strong marking
   224     // phase. Memoize this object so it can be visited
   225     // in the weak roots processing phase.
   226     blk->remember_mdo(data());
   227   } else { // normal scan
   228     for (uint row = 0; row < row_limit(); row++) {
   229       if (receiver(row) != NULL) {
   230         oop* adr = adr_receiver(row);
   231         if (mr.contains(adr)) {
   232           blk->do_oop(adr);
   233         } else if ((HeapWord*)adr >= mr.end()) {
   234           // Test that the current cursor and the two ends of the range
   235           // that we may have skipped iterating over are monotonically ordered;
   236           // this is just a paranoid assertion, just in case represetations
   237           // should change in the future rendering the short-circuit return
   238           // here invalid.
   239           assert((row+1 >= row_limit() || adr_receiver(row+1) > adr) &&
   240                  (row+2 >= row_limit() || adr_receiver(row_limit()-1) > adr_receiver(row+1)), "Reducing?");
   241           break; // remaining should be outside this mr too
   242         }
   243       }
   244     }
   245   }
   246 #endif
   247 }
   249 void ReceiverTypeData::adjust_pointers() {
   250   for (uint row = 0; row < row_limit(); row++) {
   251     if (receiver(row) != NULL) {
   252       MarkSweep::adjust_pointer(adr_receiver(row));
   253     }
   254   }
   255 }
   257 void ReceiverTypeData::follow_weak_refs(BoolObjectClosure* is_alive_cl) {
   258   for (uint row = 0; row < row_limit(); row++) {
   259     klassOop p = receiver(row);
   260     if (p != NULL && !is_alive_cl->do_object_b(p)) {
   261       clear_row(row);
   262     }
   263   }
   264 }
   266 #ifndef SERIALGC
   267 void ReceiverTypeData::update_pointers() {
   268   for (uint row = 0; row < row_limit(); row++) {
   269     if (receiver_unchecked(row) != NULL) {
   270       PSParallelCompact::adjust_pointer(adr_receiver(row));
   271     }
   272   }
   273 }
   275 void ReceiverTypeData::update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {
   276   // The loop bounds could be computed based on beg_addr/end_addr and the
   277   // boundary test hoisted outside the loop (see klassVTable for an example);
   278   // however, row_limit() is small enough (2) to make that less efficient.
   279   for (uint row = 0; row < row_limit(); row++) {
   280     if (receiver_unchecked(row) != NULL) {
   281       PSParallelCompact::adjust_pointer(adr_receiver(row), beg_addr, end_addr);
   282     }
   283   }
   284 }
   285 #endif // SERIALGC
   287 #ifndef PRODUCT
   288 void ReceiverTypeData::print_receiver_data_on(outputStream* st) {
   289   uint row;
   290   int entries = 0;
   291   for (row = 0; row < row_limit(); row++) {
   292     if (receiver(row) != NULL)  entries++;
   293   }
   294   st->print_cr("count(%u) entries(%u)", count(), entries);
   295   int total = count();
   296   for (row = 0; row < row_limit(); row++) {
   297     if (receiver(row) != NULL) {
   298       total += receiver_count(row);
   299     }
   300   }
   301   for (row = 0; row < row_limit(); row++) {
   302     if (receiver(row) != NULL) {
   303       tab(st);
   304       receiver(row)->print_value_on(st);
   305       st->print_cr("(%u %4.2f)", receiver_count(row), (float) receiver_count(row) / (float) total);
   306     }
   307   }
   308 }
   309 void ReceiverTypeData::print_data_on(outputStream* st) {
   310   print_shared(st, "ReceiverTypeData");
   311   print_receiver_data_on(st);
   312 }
   313 void VirtualCallData::print_data_on(outputStream* st) {
   314   print_shared(st, "VirtualCallData");
   315   print_receiver_data_on(st);
   316 }
   317 #endif // !PRODUCT
   319 // ==================================================================
   320 // RetData
   321 //
   322 // A RetData is used to access profiling information for a ret bytecode.
   323 // It is composed of a count of the number of times that the ret has
   324 // been executed, followed by a series of triples of the form
   325 // (bci, count, di) which count the number of times that some bci was the
   326 // target of the ret and cache a corresponding displacement.
   328 void RetData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
   329   for (uint row = 0; row < row_limit(); row++) {
   330     set_bci_displacement(row, -1);
   331     set_bci(row, no_bci);
   332   }
   333   // release so other threads see a consistent state.  bci is used as
   334   // a valid flag for bci_displacement.
   335   OrderAccess::release();
   336 }
   338 // This routine needs to atomically update the RetData structure, so the
   339 // caller needs to hold the RetData_lock before it gets here.  Since taking
   340 // the lock can block (and allow GC) and since RetData is a ProfileData is a
   341 // wrapper around a derived oop, taking the lock in _this_ method will
   342 // basically cause the 'this' pointer's _data field to contain junk after the
   343 // lock.  We require the caller to take the lock before making the ProfileData
   344 // structure.  Currently the only caller is InterpreterRuntime::update_mdp_for_ret
   345 address RetData::fixup_ret(int return_bci, methodDataHandle h_mdo) {
   346   // First find the mdp which corresponds to the return bci.
   347   address mdp = h_mdo->bci_to_dp(return_bci);
   349   // Now check to see if any of the cache slots are open.
   350   for (uint row = 0; row < row_limit(); row++) {
   351     if (bci(row) == no_bci) {
   352       set_bci_displacement(row, mdp - dp());
   353       set_bci_count(row, DataLayout::counter_increment);
   354       // Barrier to ensure displacement is written before the bci; allows
   355       // the interpreter to read displacement without fear of race condition.
   356       release_set_bci(row, return_bci);
   357       break;
   358     }
   359   }
   360   return mdp;
   361 }
   364 #ifndef PRODUCT
   365 void RetData::print_data_on(outputStream* st) {
   366   print_shared(st, "RetData");
   367   uint row;
   368   int entries = 0;
   369   for (row = 0; row < row_limit(); row++) {
   370     if (bci(row) != no_bci)  entries++;
   371   }
   372   st->print_cr("count(%u) entries(%u)", count(), entries);
   373   for (row = 0; row < row_limit(); row++) {
   374     if (bci(row) != no_bci) {
   375       tab(st);
   376       st->print_cr("bci(%d: count(%u) displacement(%d))",
   377                    bci(row), bci_count(row), bci_displacement(row));
   378     }
   379   }
   380 }
   381 #endif // !PRODUCT
   383 // ==================================================================
   384 // BranchData
   385 //
   386 // A BranchData is used to access profiling data for a two-way branch.
   387 // It consists of taken and not_taken counts as well as a data displacement
   388 // for the taken case.
   390 void BranchData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
   391   assert(stream->bci() == bci(), "wrong pos");
   392   int target = stream->dest();
   393   int my_di = mdo->dp_to_di(dp());
   394   int target_di = mdo->bci_to_di(target);
   395   int offset = target_di - my_di;
   396   set_displacement(offset);
   397 }
   399 #ifndef PRODUCT
   400 void BranchData::print_data_on(outputStream* st) {
   401   print_shared(st, "BranchData");
   402   st->print_cr("taken(%u) displacement(%d)",
   403                taken(), displacement());
   404   tab(st);
   405   st->print_cr("not taken(%u)", not_taken());
   406 }
   407 #endif
   409 // ==================================================================
   410 // MultiBranchData
   411 //
   412 // A MultiBranchData is used to access profiling information for
   413 // a multi-way branch (*switch bytecodes).  It consists of a series
   414 // of (count, displacement) pairs, which count the number of times each
   415 // case was taken and specify the data displacment for each branch target.
   417 int MultiBranchData::compute_cell_count(BytecodeStream* stream) {
   418   int cell_count = 0;
   419   if (stream->code() == Bytecodes::_tableswitch) {
   420     Bytecode_tableswitch sw(stream->method()(), stream->bcp());
   421     cell_count = 1 + per_case_cell_count * (1 + sw.length()); // 1 for default
   422   } else {
   423     Bytecode_lookupswitch sw(stream->method()(), stream->bcp());
   424     cell_count = 1 + per_case_cell_count * (sw.number_of_pairs() + 1); // 1 for default
   425   }
   426   return cell_count;
   427 }
   429 void MultiBranchData::post_initialize(BytecodeStream* stream,
   430                                       methodDataOop mdo) {
   431   assert(stream->bci() == bci(), "wrong pos");
   432   int target;
   433   int my_di;
   434   int target_di;
   435   int offset;
   436   if (stream->code() == Bytecodes::_tableswitch) {
   437     Bytecode_tableswitch sw(stream->method()(), stream->bcp());
   438     int len = sw.length();
   439     assert(array_len() == per_case_cell_count * (len + 1), "wrong len");
   440     for (int count = 0; count < len; count++) {
   441       target = sw.dest_offset_at(count) + bci();
   442       my_di = mdo->dp_to_di(dp());
   443       target_di = mdo->bci_to_di(target);
   444       offset = target_di - my_di;
   445       set_displacement_at(count, offset);
   446     }
   447     target = sw.default_offset() + bci();
   448     my_di = mdo->dp_to_di(dp());
   449     target_di = mdo->bci_to_di(target);
   450     offset = target_di - my_di;
   451     set_default_displacement(offset);
   453   } else {
   454     Bytecode_lookupswitch sw(stream->method()(), stream->bcp());
   455     int npairs = sw.number_of_pairs();
   456     assert(array_len() == per_case_cell_count * (npairs + 1), "wrong len");
   457     for (int count = 0; count < npairs; count++) {
   458       LookupswitchPair pair = sw.pair_at(count);
   459       target = pair.offset() + bci();
   460       my_di = mdo->dp_to_di(dp());
   461       target_di = mdo->bci_to_di(target);
   462       offset = target_di - my_di;
   463       set_displacement_at(count, offset);
   464     }
   465     target = sw.default_offset() + bci();
   466     my_di = mdo->dp_to_di(dp());
   467     target_di = mdo->bci_to_di(target);
   468     offset = target_di - my_di;
   469     set_default_displacement(offset);
   470   }
   471 }
   473 #ifndef PRODUCT
   474 void MultiBranchData::print_data_on(outputStream* st) {
   475   print_shared(st, "MultiBranchData");
   476   st->print_cr("default_count(%u) displacement(%d)",
   477                default_count(), default_displacement());
   478   int cases = number_of_cases();
   479   for (int i = 0; i < cases; i++) {
   480     tab(st);
   481     st->print_cr("count(%u) displacement(%d)",
   482                  count_at(i), displacement_at(i));
   483   }
   484 }
   485 #endif
   487 #ifndef PRODUCT
   488 void ArgInfoData::print_data_on(outputStream* st) {
   489   print_shared(st, "ArgInfoData");
   490   int nargs = number_of_args();
   491   for (int i = 0; i < nargs; i++) {
   492     st->print("  0x%x", arg_modified(i));
   493   }
   494   st->cr();
   495 }
   497 #endif
   498 // ==================================================================
   499 // methodDataOop
   500 //
   501 // A methodDataOop holds information which has been collected about
   502 // a method.
   504 int methodDataOopDesc::bytecode_cell_count(Bytecodes::Code code) {
   505   switch (code) {
   506   case Bytecodes::_checkcast:
   507   case Bytecodes::_instanceof:
   508   case Bytecodes::_aastore:
   509     if (TypeProfileCasts) {
   510       return ReceiverTypeData::static_cell_count();
   511     } else {
   512       return BitData::static_cell_count();
   513     }
   514   case Bytecodes::_invokespecial:
   515   case Bytecodes::_invokestatic:
   516     return CounterData::static_cell_count();
   517   case Bytecodes::_goto:
   518   case Bytecodes::_goto_w:
   519   case Bytecodes::_jsr:
   520   case Bytecodes::_jsr_w:
   521     return JumpData::static_cell_count();
   522   case Bytecodes::_invokevirtual:
   523   case Bytecodes::_invokeinterface:
   524     return VirtualCallData::static_cell_count();
   525   case Bytecodes::_invokedynamic:
   526     return CounterData::static_cell_count();
   527   case Bytecodes::_ret:
   528     return RetData::static_cell_count();
   529   case Bytecodes::_ifeq:
   530   case Bytecodes::_ifne:
   531   case Bytecodes::_iflt:
   532   case Bytecodes::_ifge:
   533   case Bytecodes::_ifgt:
   534   case Bytecodes::_ifle:
   535   case Bytecodes::_if_icmpeq:
   536   case Bytecodes::_if_icmpne:
   537   case Bytecodes::_if_icmplt:
   538   case Bytecodes::_if_icmpge:
   539   case Bytecodes::_if_icmpgt:
   540   case Bytecodes::_if_icmple:
   541   case Bytecodes::_if_acmpeq:
   542   case Bytecodes::_if_acmpne:
   543   case Bytecodes::_ifnull:
   544   case Bytecodes::_ifnonnull:
   545     return BranchData::static_cell_count();
   546   case Bytecodes::_lookupswitch:
   547   case Bytecodes::_tableswitch:
   548     return variable_cell_count;
   549   }
   550   return no_profile_data;
   551 }
   553 // Compute the size of the profiling information corresponding to
   554 // the current bytecode.
   555 int methodDataOopDesc::compute_data_size(BytecodeStream* stream) {
   556   int cell_count = bytecode_cell_count(stream->code());
   557   if (cell_count == no_profile_data) {
   558     return 0;
   559   }
   560   if (cell_count == variable_cell_count) {
   561     cell_count = MultiBranchData::compute_cell_count(stream);
   562   }
   563   // Note:  cell_count might be zero, meaning that there is just
   564   //        a DataLayout header, with no extra cells.
   565   assert(cell_count >= 0, "sanity");
   566   return DataLayout::compute_size_in_bytes(cell_count);
   567 }
   569 int methodDataOopDesc::compute_extra_data_count(int data_size, int empty_bc_count) {
   570   if (ProfileTraps) {
   571     // Assume that up to 3% of BCIs with no MDP will need to allocate one.
   572     int extra_data_count = (uint)(empty_bc_count * 3) / 128 + 1;
   573     // If the method is large, let the extra BCIs grow numerous (to ~1%).
   574     int one_percent_of_data
   575       = (uint)data_size / (DataLayout::header_size_in_bytes()*128);
   576     if (extra_data_count < one_percent_of_data)
   577       extra_data_count = one_percent_of_data;
   578     if (extra_data_count > empty_bc_count)
   579       extra_data_count = empty_bc_count;  // no need for more
   580     return extra_data_count;
   581   } else {
   582     return 0;
   583   }
   584 }
   586 // Compute the size of the methodDataOop necessary to store
   587 // profiling information about a given method.  Size is in bytes.
   588 int methodDataOopDesc::compute_allocation_size_in_bytes(methodHandle method) {
   589   int data_size = 0;
   590   BytecodeStream stream(method);
   591   Bytecodes::Code c;
   592   int empty_bc_count = 0;  // number of bytecodes lacking data
   593   while ((c = stream.next()) >= 0) {
   594     int size_in_bytes = compute_data_size(&stream);
   595     data_size += size_in_bytes;
   596     if (size_in_bytes == 0)  empty_bc_count += 1;
   597   }
   598   int object_size = in_bytes(data_offset()) + data_size;
   600   // Add some extra DataLayout cells (at least one) to track stray traps.
   601   int extra_data_count = compute_extra_data_count(data_size, empty_bc_count);
   602   object_size += extra_data_count * DataLayout::compute_size_in_bytes(0);
   604   // Add a cell to record information about modified arguments.
   605   int arg_size = method->size_of_parameters();
   606   object_size += DataLayout::compute_size_in_bytes(arg_size+1);
   607   return object_size;
   608 }
   610 // Compute the size of the methodDataOop necessary to store
   611 // profiling information about a given method.  Size is in words
   612 int methodDataOopDesc::compute_allocation_size_in_words(methodHandle method) {
   613   int byte_size = compute_allocation_size_in_bytes(method);
   614   int word_size = align_size_up(byte_size, BytesPerWord) / BytesPerWord;
   615   return align_object_size(word_size);
   616 }
   618 // Initialize an individual data segment.  Returns the size of
   619 // the segment in bytes.
   620 int methodDataOopDesc::initialize_data(BytecodeStream* stream,
   621                                        int data_index) {
   622   int cell_count = -1;
   623   int tag = DataLayout::no_tag;
   624   DataLayout* data_layout = data_layout_at(data_index);
   625   Bytecodes::Code c = stream->code();
   626   switch (c) {
   627   case Bytecodes::_checkcast:
   628   case Bytecodes::_instanceof:
   629   case Bytecodes::_aastore:
   630     if (TypeProfileCasts) {
   631       cell_count = ReceiverTypeData::static_cell_count();
   632       tag = DataLayout::receiver_type_data_tag;
   633     } else {
   634       cell_count = BitData::static_cell_count();
   635       tag = DataLayout::bit_data_tag;
   636     }
   637     break;
   638   case Bytecodes::_invokespecial:
   639   case Bytecodes::_invokestatic:
   640     cell_count = CounterData::static_cell_count();
   641     tag = DataLayout::counter_data_tag;
   642     break;
   643   case Bytecodes::_goto:
   644   case Bytecodes::_goto_w:
   645   case Bytecodes::_jsr:
   646   case Bytecodes::_jsr_w:
   647     cell_count = JumpData::static_cell_count();
   648     tag = DataLayout::jump_data_tag;
   649     break;
   650   case Bytecodes::_invokevirtual:
   651   case Bytecodes::_invokeinterface:
   652     cell_count = VirtualCallData::static_cell_count();
   653     tag = DataLayout::virtual_call_data_tag;
   654     break;
   655   case Bytecodes::_invokedynamic:
   656     // %%% should make a type profile for any invokedynamic that takes a ref argument
   657     cell_count = CounterData::static_cell_count();
   658     tag = DataLayout::counter_data_tag;
   659     break;
   660   case Bytecodes::_ret:
   661     cell_count = RetData::static_cell_count();
   662     tag = DataLayout::ret_data_tag;
   663     break;
   664   case Bytecodes::_ifeq:
   665   case Bytecodes::_ifne:
   666   case Bytecodes::_iflt:
   667   case Bytecodes::_ifge:
   668   case Bytecodes::_ifgt:
   669   case Bytecodes::_ifle:
   670   case Bytecodes::_if_icmpeq:
   671   case Bytecodes::_if_icmpne:
   672   case Bytecodes::_if_icmplt:
   673   case Bytecodes::_if_icmpge:
   674   case Bytecodes::_if_icmpgt:
   675   case Bytecodes::_if_icmple:
   676   case Bytecodes::_if_acmpeq:
   677   case Bytecodes::_if_acmpne:
   678   case Bytecodes::_ifnull:
   679   case Bytecodes::_ifnonnull:
   680     cell_count = BranchData::static_cell_count();
   681     tag = DataLayout::branch_data_tag;
   682     break;
   683   case Bytecodes::_lookupswitch:
   684   case Bytecodes::_tableswitch:
   685     cell_count = MultiBranchData::compute_cell_count(stream);
   686     tag = DataLayout::multi_branch_data_tag;
   687     break;
   688   }
   689   assert(tag == DataLayout::multi_branch_data_tag ||
   690          cell_count == bytecode_cell_count(c), "cell counts must agree");
   691   if (cell_count >= 0) {
   692     assert(tag != DataLayout::no_tag, "bad tag");
   693     assert(bytecode_has_profile(c), "agree w/ BHP");
   694     data_layout->initialize(tag, stream->bci(), cell_count);
   695     return DataLayout::compute_size_in_bytes(cell_count);
   696   } else {
   697     assert(!bytecode_has_profile(c), "agree w/ !BHP");
   698     return 0;
   699   }
   700 }
   702 // Get the data at an arbitrary (sort of) data index.
   703 ProfileData* methodDataOopDesc::data_at(int data_index) {
   704   if (out_of_bounds(data_index)) {
   705     return NULL;
   706   }
   707   DataLayout* data_layout = data_layout_at(data_index);
   708   return data_layout->data_in();
   709 }
   711 ProfileData* DataLayout::data_in() {
   712   switch (tag()) {
   713   case DataLayout::no_tag:
   714   default:
   715     ShouldNotReachHere();
   716     return NULL;
   717   case DataLayout::bit_data_tag:
   718     return new BitData(this);
   719   case DataLayout::counter_data_tag:
   720     return new CounterData(this);
   721   case DataLayout::jump_data_tag:
   722     return new JumpData(this);
   723   case DataLayout::receiver_type_data_tag:
   724     return new ReceiverTypeData(this);
   725   case DataLayout::virtual_call_data_tag:
   726     return new VirtualCallData(this);
   727   case DataLayout::ret_data_tag:
   728     return new RetData(this);
   729   case DataLayout::branch_data_tag:
   730     return new BranchData(this);
   731   case DataLayout::multi_branch_data_tag:
   732     return new MultiBranchData(this);
   733   case DataLayout::arg_info_data_tag:
   734     return new ArgInfoData(this);
   735   };
   736 }
   738 // Iteration over data.
   739 ProfileData* methodDataOopDesc::next_data(ProfileData* current) {
   740   int current_index = dp_to_di(current->dp());
   741   int next_index = current_index + current->size_in_bytes();
   742   ProfileData* next = data_at(next_index);
   743   return next;
   744 }
   746 // Give each of the data entries a chance to perform specific
   747 // data initialization.
   748 void methodDataOopDesc::post_initialize(BytecodeStream* stream) {
   749   ResourceMark rm;
   750   ProfileData* data;
   751   for (data = first_data(); is_valid(data); data = next_data(data)) {
   752     stream->set_start(data->bci());
   753     stream->next();
   754     data->post_initialize(stream, this);
   755   }
   756 }
   758 // Initialize the methodDataOop corresponding to a given method.
   759 void methodDataOopDesc::initialize(methodHandle method) {
   760   ResourceMark rm;
   761   // Set the method back-pointer.
   762   _method = method();
   764   if (TieredCompilation) {
   765     _invocation_counter.init();
   766     _backedge_counter.init();
   767     _num_loops = 0;
   768     _num_blocks = 0;
   769     _highest_comp_level = 0;
   770     _highest_osr_comp_level = 0;
   771     _would_profile = false;
   772   }
   773   set_creation_mileage(mileage_of(method()));
   775   // Initialize flags and trap history.
   776   _nof_decompiles = 0;
   777   _nof_overflow_recompiles = 0;
   778   _nof_overflow_traps = 0;
   779   assert(sizeof(_trap_hist) % sizeof(HeapWord) == 0, "align");
   780   Copy::zero_to_words((HeapWord*) &_trap_hist,
   781                       sizeof(_trap_hist) / sizeof(HeapWord));
   783   // Go through the bytecodes and allocate and initialize the
   784   // corresponding data cells.
   785   int data_size = 0;
   786   int empty_bc_count = 0;  // number of bytecodes lacking data
   787   BytecodeStream stream(method);
   788   Bytecodes::Code c;
   789   while ((c = stream.next()) >= 0) {
   790     int size_in_bytes = initialize_data(&stream, data_size);
   791     data_size += size_in_bytes;
   792     if (size_in_bytes == 0)  empty_bc_count += 1;
   793   }
   794   _data_size = data_size;
   795   int object_size = in_bytes(data_offset()) + data_size;
   797   // Add some extra DataLayout cells (at least one) to track stray traps.
   798   int extra_data_count = compute_extra_data_count(data_size, empty_bc_count);
   799   int extra_size = extra_data_count * DataLayout::compute_size_in_bytes(0);
   801   // Add a cell to record information about modified arguments.
   802   // Set up _args_modified array after traps cells so that
   803   // the code for traps cells works.
   804   DataLayout *dp = data_layout_at(data_size + extra_size);
   806   int arg_size = method->size_of_parameters();
   807   dp->initialize(DataLayout::arg_info_data_tag, 0, arg_size+1);
   809   object_size += extra_size + DataLayout::compute_size_in_bytes(arg_size+1);
   811   // Set an initial hint. Don't use set_hint_di() because
   812   // first_di() may be out of bounds if data_size is 0.
   813   // In that situation, _hint_di is never used, but at
   814   // least well-defined.
   815   _hint_di = first_di();
   817   post_initialize(&stream);
   819   set_object_is_parsable(object_size);
   820 }
   822 // Get a measure of how much mileage the method has on it.
   823 int methodDataOopDesc::mileage_of(methodOop method) {
   824   int mileage = 0;
   825   if (TieredCompilation) {
   826     mileage = MAX2(method->invocation_count(), method->backedge_count());
   827   } else {
   828     int iic = method->interpreter_invocation_count();
   829     if (mileage < iic)  mileage = iic;
   830     InvocationCounter* ic = method->invocation_counter();
   831     InvocationCounter* bc = method->backedge_counter();
   832     int icval = ic->count();
   833     if (ic->carry()) icval += CompileThreshold;
   834     if (mileage < icval)  mileage = icval;
   835     int bcval = bc->count();
   836     if (bc->carry()) bcval += CompileThreshold;
   837     if (mileage < bcval)  mileage = bcval;
   838   }
   839   return mileage;
   840 }
   842 bool methodDataOopDesc::is_mature() const {
   843   return CompilationPolicy::policy()->is_mature(_method);
   844 }
   846 // Translate a bci to its corresponding data index (di).
   847 address methodDataOopDesc::bci_to_dp(int bci) {
   848   ResourceMark rm;
   849   ProfileData* data = data_before(bci);
   850   ProfileData* prev = NULL;
   851   for ( ; is_valid(data); data = next_data(data)) {
   852     if (data->bci() >= bci) {
   853       if (data->bci() == bci)  set_hint_di(dp_to_di(data->dp()));
   854       else if (prev != NULL)   set_hint_di(dp_to_di(prev->dp()));
   855       return data->dp();
   856     }
   857     prev = data;
   858   }
   859   return (address)limit_data_position();
   860 }
   862 // Translate a bci to its corresponding data, or NULL.
   863 ProfileData* methodDataOopDesc::bci_to_data(int bci) {
   864   ProfileData* data = data_before(bci);
   865   for ( ; is_valid(data); data = next_data(data)) {
   866     if (data->bci() == bci) {
   867       set_hint_di(dp_to_di(data->dp()));
   868       return data;
   869     } else if (data->bci() > bci) {
   870       break;
   871     }
   872   }
   873   return bci_to_extra_data(bci, false);
   874 }
   876 // Translate a bci to its corresponding extra data, or NULL.
   877 ProfileData* methodDataOopDesc::bci_to_extra_data(int bci, bool create_if_missing) {
   878   DataLayout* dp    = extra_data_base();
   879   DataLayout* end   = extra_data_limit();
   880   DataLayout* avail = NULL;
   881   for (; dp < end; dp = next_extra(dp)) {
   882     // No need for "OrderAccess::load_acquire" ops,
   883     // since the data structure is monotonic.
   884     if (dp->tag() == DataLayout::no_tag)  break;
   885     if (dp->tag() == DataLayout::arg_info_data_tag) {
   886       dp = end; // ArgInfoData is at the end of extra data section.
   887       break;
   888     }
   889     if (dp->bci() == bci) {
   890       assert(dp->tag() == DataLayout::bit_data_tag, "sane");
   891       return new BitData(dp);
   892     }
   893   }
   894   if (create_if_missing && dp < end) {
   895     // Allocate this one.  There is no mutual exclusion,
   896     // so two threads could allocate different BCIs to the
   897     // same data layout.  This means these extra data
   898     // records, like most other MDO contents, must not be
   899     // trusted too much.
   900     DataLayout temp;
   901     temp.initialize(DataLayout::bit_data_tag, bci, 0);
   902     dp->release_set_header(temp.header());
   903     assert(dp->tag() == DataLayout::bit_data_tag, "sane");
   904     //NO: assert(dp->bci() == bci, "no concurrent allocation");
   905     return new BitData(dp);
   906   }
   907   return NULL;
   908 }
   910 ArgInfoData *methodDataOopDesc::arg_info() {
   911   DataLayout* dp    = extra_data_base();
   912   DataLayout* end   = extra_data_limit();
   913   for (; dp < end; dp = next_extra(dp)) {
   914     if (dp->tag() == DataLayout::arg_info_data_tag)
   915       return new ArgInfoData(dp);
   916   }
   917   return NULL;
   918 }
   920 #ifndef PRODUCT
   921 void methodDataOopDesc::print_data_on(outputStream* st) {
   922   ResourceMark rm;
   923   ProfileData* data = first_data();
   924   for ( ; is_valid(data); data = next_data(data)) {
   925     st->print("%d", dp_to_di(data->dp()));
   926     st->fill_to(6);
   927     data->print_data_on(st);
   928   }
   929   st->print_cr("--- Extra data:");
   930   DataLayout* dp    = extra_data_base();
   931   DataLayout* end   = extra_data_limit();
   932   for (; dp < end; dp = next_extra(dp)) {
   933     // No need for "OrderAccess::load_acquire" ops,
   934     // since the data structure is monotonic.
   935     if (dp->tag() == DataLayout::no_tag)  continue;
   936     if (dp->tag() == DataLayout::bit_data_tag) {
   937       data = new BitData(dp);
   938     } else {
   939       assert(dp->tag() == DataLayout::arg_info_data_tag, "must be BitData or ArgInfo");
   940       data = new ArgInfoData(dp);
   941       dp = end; // ArgInfoData is at the end of extra data section.
   942     }
   943     st->print("%d", dp_to_di(data->dp()));
   944     st->fill_to(6);
   945     data->print_data_on(st);
   946   }
   947 }
   948 #endif
   950 void methodDataOopDesc::verify_data_on(outputStream* st) {
   951   NEEDS_CLEANUP;
   952   // not yet implemented.
   953 }

mercurial